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ABSTRACT
Existing work on the measurements of trust during Human-Robot
Interaction (HRI) indicates that psychophysiological behaviours
(PBs) have the potential to measure trust. However, we see limited
work on the use of multiple PBs in combination to calibrate hu-
man’s trust in robots in real-time during HRI. Therefore, this study
aims to estimate human trust in robots by examining the differences
in PBs between trust and distrust states. It further investigates the
changes in PBs across repeated HRI and also explores the potential
of machine learning classifiers in predicting trust levels during HRI.
We collected participants’ electrodermal activity (EDA), blood vol-
ume pulse (BVP), heart rate (HR), skin temperature (SKT), blinking
rate (BR), and blinking duration (BD) during repeated HRI. The
results showed significant differences in HR and SKT between trust
and distrust groups and no significant interaction effect of session
and decision for all PBs. Random Forest classifier achieved the best
accuracy of 68.6% to classify trust, while SKT, HR, BR, and BD were
the important features. These findings highlight the value of PBs
in measuring trust in real-time during HRI and encourage further
investigation of trust measures with PBs in various HRI settings.

CCS CONCEPTS
• Human-centered computing → Human Robot interaction ;
User studies; • Computer systems organization → Robotics.
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1 INTRODUCTION
In an increasingly interconnected world, human-robot interactions
(HRI) are becoming more prevalent across various collaborative and
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competitive settings, such as healthcare, manufacturing, econom-
ics, and sports [28, 45, 46, 48]. In these settings, establishing and
maintaining trust is essential for successful and efficient HRI, as it
directly impacts user acceptance, safety, and overall performance
[20]. Consequently, humans need to have a balanced level of trust in
robots, which is an optimal level of trust that neither underestimates
nor overestimates the robot’s capabilities. This helps to prevent dis-
use and the loss of benefits from using the system [43]. Identifying
the balanced level of trust highlights the importance of developing
real-time, online trust measurement methods during HRI. However,
measuring human trust in robots presents a challenge, as factors
affecting trust, such as context, robot characteristics, and individual
differences, can vary significantly [8].

In HRI, researchers use two methods to assess human trust: sub-
jective trust and objective trust measurement [25]. The subjective
measuring method involves evaluating the responses of experiment
participants to questionnaires meant to determine people’s trust
in the robots [16]. In contrast, objective trust measuring methods
analyse how experiment participants interact with robots, as op-
posed to depending on participants’ assumptions about themselves
[29]. Objective trust measurement methods are less frequently used
in human-robot trust studies compared with subjective trust mea-
surement methods [25]. However, the subjective method may not
capture the dynamic nature of trust during real-time interactions
[9]. Objectively measuring trust can analyse user behaviours dur-
ing an interaction with robots in real-time which can be beneficial
for understanding and optimizing these interactions. Real-time
trust measurement ensures effective and efficient interactions with
robots over time, including optimising decision-making [38]. It al-
lows for real-time capture of trust levels, enabling robotic systems
to adapt their communication strategies and provide more trust-
worthy and persuasive information, thereby improving the overall
user experience [38].

Considering the challenges of representing human trust math-
ematically in robots within HRI [17], researchers have explored
alternative approaches for assessing humans trust in robots. One
such approach, which builds upon the concept of objective trust
measurement, is the use of human psychophysiological behaviours
(PBs) [41]. PBs, such as electrodermal activity (EDA), blood vol-
ume pulse (BVP), heart rate (HR), blinking rate (BR) and blinking
duration (BD), offer a promising avenue for understanding and
assessing trust in real-time [5]. These behaviours indicate an in-
dividual’s emotional and cognitive states during interactions with
robots. By monitoring these responses, we can gain insights into
the dynamic nature of trust and its impact on HRI [4].

The importance of measuring trust during long-term HRI has
been recognized, but there is limited work in this area [36]. Trust
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calibration is essential in long-term HRI, as it involves adjusting
trust levels based on the robot’s performance, human experience,
and evolving expectations [14]. In this context, research in HRI
indicates that trust levels change according to experiences gained
over time [13, 21]. To the best of our knowledge, the analysis of PBs
to assess and monitor trust in repeated interactions remains unex-
amined. Addressing this gap by incorporating PBs could provide
valuable insights into trust dynamics and contribute to the devel-
opment of adaptive robots capable of fostering positive long-term
interactions.

In light of these considerations, we investigate the following
research questions:
• RQ1: How do specific human PBs differ between trusting and
distrusting states during interactions with a robotic agent?
• RQ2: How do PBs evolve as individuals gain experience during
repeated HRI?
• RQ3: Which classification algorithms demonstrate the highest
accuracy and performance in predicting trust levels based on PBs
during HRI?
• RQ4: Which psychophysiological features are predictive of trust
or distrust behaviours during HRI?

To investigate these RQs, we conducted an experiment that en-
abled participants to play a game involving instances to either
trust or distrust the NAO robot. We recorded PBs, including EDA,
BVP, HR, SKT, BR, and BD to measure humans’ trust in robots in
real-time. The novel contributions of this paper are as follows:
• We present a comprehensive analysis of the relationship between
human PBs and trust levels in HRI, providing insights into the most
indicative behaviours for real-time trust measurement.
• We show that the use of multiple psychophysiological as a com-
bination can potentially classify two different levels of trust during
long-term HRI, highlighting the potential for trust calibration and
the design of adaptive robotic systems.
• We share the study materials and evolving dataset with the com-
munity to advance knowledge on trust in HRI which can be found
here.

The remainder of this paper is organized as follows: Section 2
provides background and discusses relevant literature. Section 3
thoroughly describe the study. Sections 4 & 5 present the results
and their discussion. Finally, section 6 concludes the paper.

2 BACKGROUND & RELATEDWORK
2.1 Trust conceptualization
Trust is a multifaceted and complicated concept, and despite exten-
sive research efforts, there is still no comprehensive and universally
accepted definition [1, 20]. The Merriam-Webster Dictionary lists
trust as "assured reliance on the character, ability, strength, or truth
of someone or something". Rotter [42] defined trust as a "general-
ized expectancy held by an individual that the word, promise, oral
or written statement of another individual or group can be relied on".
The term generalized expectancy represents the combined effect of
an individual’s experiences and interactions with another entity,
such as a person or technology, which ultimately influences their
trust level. This generalized expectancy can be inferred from physi-
ological measures. Relaxation may indicate trust, while heightened

alertness may indicate distrust or uncertainty towards a robot. Aje-
naghughrure et al. [5] defined trust as a subconscious compound
cognitive process. This involves mental deliberation, reasoning, and
mental processing, which include memory, learning, and accumu-
lated knowledge. Physiological measures can offer insight into real-
time trust evaluations, even when they do not align with conscious
trust affirmations. In this paper, we adopt and build on the above
definitions. These definitions are highly relevant to our research
for several reasons. First, they highlight the dynamic and evolving
nature of trust, which is crucial when examining and assessing hu-
man trust in robots in real-time using PBs. Second, they underscore
the importance of trust in competitive situations where a robot’s
truthfulness significantly influences human decision-making.

2.2 Measurement of trust
In addition to subjective [35, 44, 50] and objective methods [23, 25,
29] for measuring trust during HRI, researchers have explored the
use of PBs to assess trust in collaborative contexts [3, 19, 22, 24].
Past research has identified two methods in which PBs were used
to access an individuals trust in robots. 1) Empirical evaluations,
and 2) Machine learning methods.
Empirical Evaluations and Psychophysiological Behaviors -
Psychophysiology is the scientific field that examines the relation-
ship between human physiological responses and psychological
states, such as emotions and trust, which gives rise to the term psy-
cho + physiology [47]. This discipline entails using physiological
sensors to capture and record human physiological changes (psy-
chophysiological signals) during psychological experiences, like
emotions and trust [15, 27]. These physiological sensors constantly
track and document alterations in four distinct human organs: (1)
the brain, through measuring neurological activity via an electroen-
cephalogram (EEG); (2) the heart, through measuring HR, or BVP;
(3) skin, through measuring EDA or skin temperature (SKT); and
(4) eyes, through measuring BR or BD [2].

PBs have been studied across various disciplines, including psy-
chology, neuroscience, medicine, games and human-robot interac-
tion [4, 10, 27]. In HRI, these PBs have been proposed as alternative
methods for assessing trust in HRI [11]. These behaviours reflect an
individual’s emotional and cognitive states and can provide valu-
able insights into their trust-related responses during interactions
[5]. Several studies have explored the use of PBs in human-robot
trust research such as [6, 26, 32, 33].

Khawaji et al. [26] investigated the use of galvanic skin response
(GSR) in measuring trust and cognitive load in a text-based chat
environment. The study evaluated the GSR signals at four gradients
and overlapping trust and cognitive load conditions. Participants
engaged in a text-chat conversation while playing an investment
game. Lu and Sarter [33] explored eye movement as a measure
of trust in automation. Participants engaged in a target identifi-
cation task. Eye fixation data were collected to assess trust in the
automation based on participants’ visual attention and system re-
liability. The results suggest that eye tracking may be a valuable
tool to trust calibration based on priming and system reliability.
The results showed that GSR signals were significantly affected by
trust conditions and were higher in the high level of trust. This
finding provided evidence that GSR can be used as a reliable tool
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for measuring trust in HRI. Gupta et al. [19] assessed human trust
in a virtual assistant using physiological sensing in virtual reality
during a cooperative information retrieval task. They employed
heart rate variability, skin conductance, and facial electromyog-
raphy to evaluate trust under four conditions: low cognitive load
with low accurate assistance, low cognitive load with high accu-
rate assistance, high cognitive load with low accurate assistance,
and high cognitive load with high accurate assistance. The results
showed that HRV was a reliable indicator of trust levels towards
the virtual assistant, with participants displaying higher HRV when
their level of trust was high. However, no significant differences
were observed in EEG or GSR measures between different levels
of trust. This suggests that further investigation into PBs for trust
assessment is needed.
Machine learning to estimate Trust - Ajenaghughrure et al. [3]
developed a predictive model for assessing user trust in a conversa-
tional user interface using PBs. In their study, participants engaged
in an information search game, where they answered questions
with the help of Google Assistant. The authors used heart rate vari-
ability and skin conductance to assess trust and distrust behaviours.
Their findings showed increased trust when the system provided
accurate assistance, as indicated by changes in physiological sig-
nals in their trust levels. They achieved a mean accuracy of 77.8%,
demonstrating the model’s effectiveness in evaluating trust through
physiological signal analysis. Khalid et al. [24] examined subjec-
tive measures such as ability, benevolence, and integrity alongside
PBs, including facial expressions, voice, and heart rate, to estimate
trust levels in natural dialogues of real-world scenarios involving
human-robot-human interactions. Heart rate variability and skin
conductance were used as measures of trust. By employing a neuro-
fuzzy neural network and integrating both objective and subjective
indicators, their results showed a 67% accuracy in trust estimation,
demonstrating that PBs can asses human trust during HRI. Hu et al.
[22] developed a trust sensor model that maps PB measurements to
human trust levels in real-time during collaboration with a machine
to perform a simulated car driving task to reach a target location
while avoiding obstacles. They used electroencephalography and
GSR to capture PBs during trust and distrust. The study employed
multiple classification methods, including binary classification tech-
niques such as support vector machine and logistic regression. The
results showed that EEG and GSR features were correlated with
trust and were most significant when a human’s trust level in an au-
tomated system was low. This demonstrates that PB measurements
can be effectively used to sense trust in real-time. Lochner et al.
[32] explored using PBs to calibrate human trust in automation.
They collected GSR from participants during a semi-automated
UAV operation task and measured trust and cognitive load based on
their experience with the system. The authors used a decision tree
algorithm to classify trust and achieved an accuracy of 80%. This
demonstrates that PBs can effectively measure trust and cognitive
load during human-automation interaction.

In summary, the described empirical studies have employed
various PBs, such as GSR, eye fixation, and EEG, to assess trust
in collaboration contexts in a single interaction. Besides, existing
work on the use of machine learning to estimate trust has used
limited PBs in combination and has also created a dataset based on
one-off interaction. In addition, most of these studies had simulated

Figure 1: System description

environments rather than real HRI. Moreover, existing research has
mainly focused on collaborative settings, with the only exception
we identified being [40], which investigates trust in competitive
contexts. In competitive contexts, factors influencing human trust,
such as the robot’s truthfulness in providing advice or information
and the capability of robots to outperform humans, may not be
present in collaborative settings. Furthermore, past research did
not consider psychophysiological during repeated HRI. This paper
aims to bridge these gaps by assessing human trust in robots in
real-time using BPs within a competitive task during repeated HRI.

3 STUDY DESIGN
This study aimed to investigate whether PBs can be collectively
used to sense humans’ trust in robots. To collect data, we involved
participants playing with the Nao robot across four game sessions.
We tested the following hypotheses:

H1 : Human PBs, including EDA, BVP, HR, SKT, BR and BD, will
show significant differences between trusting and distrusting states
during interactions with a robotic agent.[5].
H2 : Significant interaction effects between session (1, 2, 3, and 4)
and the chosen PBs will be observed during HRI.
H3 : The classification algorithms will be able to classify levels of
trust with potentially higher accuracy, demonstrating the potential
of using PBs to sense trust in real-time.

H1 is based on the understanding that trust and distrust states
can be reflected in an individual’s PB responses, which are associ-
ated with emotional and cognitive factors [5]. H2 acknowledges
the potential influence of repeated interactions on PBs, as trust de-
velopment is a dynamic process, and trust levels may change over
time [36]. H3 is supported by previous work in various domains,
demonstrating the effectiveness of machine learning classifiers in
analyzing and predicting human behaviour based on physiological
measures [3, 6].

Ethics - Given the involvement of human participants in the study,
we submitted an application to the university’s ethics committee
to guarantee the ethical integrity of our research. After review, the
application was approved [160322/5031].
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3.1 System description
The system, as illustrated in Figure 1, consists of two main compo-
nents: 1) an interactive card game specifically designed to generate
trust or distrust situations between participants and the robot, and
2) a semi-autonomous robot equipped to engage in playing the card
game alongside human participants. By collecting data on PBs as
humans showed trust and distrust behaviours, our primary aim
was to explore participants’ PB responses in real-time within the
context of HRI.

The Bluff Game - We designed a Python-based interactive
card game called Bluff Game, where participants competed against
a robot. The game was two players game (participant vs robot) and
comprised 52 cards, including four sets of aces, numbered cards
1 through 10, jacks, queens, and kings. Additionally, there were
play and decision buttons (trust and distrust) for the participants
to interact with during the game. At the beginning of the game,
each player received 15 cards. The objective was to be the first to
discard all the cards in hand. Participants took turns, and during
each turn, a player chose a set of 2-4 cards to dispose of. Their
opponent then decided whether to trust or distrust the player based
on the truthfulness of the stated set of cards being discarded. For
instance, if a player claimed to have a pair of kings, the opponent
had to choose to trust or distrust the claim. If the opponent trusted
the player, the cards were discarded, and the opponent took their
turn. In this case, the opponent could not view the player’s cards.
However, if the opponent distrusted the player, the player had to
show their cards. If the claim was accurate, the opponent received
the cards, and they were added to the opponent’s hand. If the
claim was false, the cards were returned to the player, and the
opponent took their turn. The game progressed in this manner
until one player had successfully discarded all their cards. The
game dynamically updated each player’s card list after every turn.
We designed this game to collect psychophysiological data in trust
or distrust situations.

Interaction Scenarios - The Nao robot was programmed to
interact verbally with participants throughout various game events.
We utilized the Wizard of Oz method (WOz) to control the game,
without informing the participants to prevent bias. The interaction
consisted of three phases: welcoming and introducing the game,
playing the game, and concluding the game.

Initially, the robot greeted the participant and provided a brief
introduction: “Hello. I am a Nao robot. Today, we will be playing a
card game against each other. Are you ready?” Participants played
the game on four separate occasions with a time gap of 5 minutes
between each session. During the second, third, and fourth sessions,
the robot thanked the participants and reintroduced the game by
stating: “Hello again. Thank you for playing. We are going to play
another game. Are you ready?” and “Let us start” respectively.

As the game started, the Nao robot informed the participant that
“the game starts now”. The robot took the first turn. Following the
game rules, the robot interacted with the participant during various
game events as follows:

(1) When the robot selected its set of cards and declared them, e.g.,
“I selected three queens”.
(2) When the participant trusted the robot, it responded with: “It is
your turn”.

(3) When the participant distrusted the robot, and the robot’s card
declaration was accurate, the robot stated: “I was telling the truth”.
(4) When the participant distrusted the robot, and the robot’s card
declaration was incorrect, the robot stated: “You got me, and it is
your turn”.
(5) When the robot trusted the participant, it said: “I trust you, and
it is my turn”.
(6) When the robot distrusted the participant, it said: “I think you
are bluffing”. If the participant was truthful, the robot said: “Oh, I
was wrong, and it is your turn now”.
(7) If the robot distrusted the participant and the participant was
incorrect, the robot stated: “Yes, I got you, and it is my turn now”.

After each game, the robot congratulated the participant or
wished them good luck for the next round. In case of a win, the robot
said: “Congratulations! You win, thank you and see you in the next
round”. If the participant lost, the robot encouraged them by saying:
“You just lost the game, good luck in the following rounds”. In the
final session, the robot added goodbye to its message, announcing
the end of the experiment.

3.2 Participants
The study initially recruited 45 participants between 18 and 60
years old. However, we faced issues in data collection for 2 partici-
pants, resulting in a final sample size of 43 participants (M = 29.53
years, SD = 6.71). The gender distribution included 16 females, 26
males, and 1 participant who chose not to disclose their gender.
We sent messages asking for participants using university mailing
lists and placed flyers across the campus to recruit the participants.
Participants registered for the study through the (Calendly) online
scheduling platform.

To evaluate the participants’ prior experience with robots, we
divided them into four categories: high, medium, low, and no expe-
rience. Those who had previously controlled or built a robot were
considered highly experienced, while participants who had used
robots multiple times were deemed to have medium experience.
Low experience referred to individuals who had only interacted
with robots occasionally. The distribution of participants across
these categories was as follows: 2 participants with high experience,
2 with medium experience, 24 with low experience, and 15 with no
experience interacting with robots.

3.3 Setup and Materials
The study was conducted in two separate rooms, as illustrated in
Figure 2. In Room 1, a laptop was placed on a table for participants
to play the game, with the Nao robot positioned opposite them.
Participants wore Pupil Invisible Eye Tracking Glasses and the to
record PBs while seated in front of the robot. They also used a tablet
to complete demographic information. This room was designed
to maintain consistent environmental conditions during the study,
including steady room temperature and consistent lighting. This
was done to minimize potential influences on physiological mea-
sures, specifically BD, BR, and SKT. In Room 2, the experimenter
monitored the interaction and remotely controlled the robot from
a laptop.

The humanoid Nao robot, developed by Aldebaran Robotics, was
used in this study. Nao is 58 cm tall and equipped with an inertial

https://calendly.com
https://pupil-labs.com/products/invisible/
https://www.empatica.com/
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NAO ROBOT

ROOM 1

PHONE 

WRISTBAND EYE-TRACKING GLASSES

PARTICIPANT

LAPTOP

TABLET

ROOM 2

EXPERIMENTER

LAPTOP

LAN

Figure 2: Experimental setup: The experimenter remotely
controls the robot from one room (left) while the participant
plays the game against the robot in a separate room (right).

sensor, two cameras, eyes with full-colour RGB LEDs, and various
other sensors. It is designed for research and educational purposes,
providing a versatile platform for human-robot interaction studies.

We captured physiological data by using the Empatica E4 Wrist-
band and Pupil Invisible Eye Tracking Glasses. The E4 Wristband,
developed by Empatica, is a wearable device that measures physio-
logical signals such as heart rate, skin conductance, and tempera-
ture. The Pupil Invisible Eye Tracking Glasses, developed by Pupil
Labs, are lightweight glasses equipped with high-resolution cam-
eras and sensors that record eye movement and gaze behaviour,
offering valuable insights into attention and cognitive processes
during human-robot interactions.

3.4 Procedure
The study was carried out in the following stages:
(1) Participants were provided with an experiment information
sheet, game instruction sheet, and consent form, which they were
required to sign.
(2) Participants completed a demographics questionnaire, which
included information about their experience with robots.
(3) Participants put on glasses and a wristband. The experimenter
initiated data collection from these devices and then left the room.
(4) Participants performed a calibration by playing the game against
the Nao robot while the experimenter remotely controlled the robot
from another room.
(5) After each game, the experimenter returned to the room and
stopped collecting physiological data, and asked the participant
to complete the questionnaire to rate the robot during the game.
However, the questionnaire is not included in the analysis of this
paper, as it falls outside the scope of the described contributions.
(6) Steps 3, 4, and 5 were repeated in the other three sessions.
(7) Finally, participants were thanked for their participation and
informed that they would receive a £10 Amazon voucher for their
involvement in the study.

3.5 Measurements
3.5.1 Psychophysiological Measures. In this study, we collected the
following real-time PBs during decision periods, from when the
robot played cards until the player made a decision:
(1) The eye tracking recorded participants’ eye BR and BD.

(2) The wristband measured participants’ EDA, BVP, HR, and SKT.
Our choice of physiological signals prioritizes participant comfort
and non-intrusiveness.Wearable devices capture chosen signals and
have strong empirical evidence for trust measurement presented in
the literature.

3.5.2 Behavioural Measures. We collected data on participants’ in-
game decisions, including their choices to trust or distrust the robot
and each decision’s start and end time. This information enabled
us to assess the participants’ PB responses during their decision.

3.6 Data Preparation
3.6.1 Behavioural Data Processing. The behavioural data collected
during the game were processed to obtain relevant metrics for
analysis:
(1) Decision outcomes: Trust and distrust decisions made by par-
ticipants were logged and coded as binary variables (0 for distrust,
1 for trust) for subsequent statistical analyses.
(2) Decision period: Each participant’s decision start and end time
was logged to extract psychophysiological data in the given interval.
The gameplay log was maintained to extract the decision’s start and
end times. The start decision time is when the robot plays cards,
and the end time is when the player presses one of the decision
buttons.

3.6.2 Psychophysiological Data Preprocessing. Before analyzing
the psychophysiological data, we performed the following:
(1) Noise and Artifact Removal: The psychophysiological data
underwent an essential preprocessing step where we applied a
low-pass filter to remove noise and artifacts. This ensured that the
subsequent analyses were based on clean and accurate signals.
(2) Segmentation: The psychophysiological data were recorded
with timestamps to mark the start and end of the time during the
session and to lead us to align them with the exact decision period
that was logged in the game. The psychophysiological data were
then segmented into epochs corresponding to the four rounds of
the game for each participant.
(3) Feature extraction: Based on each participant’s decision start
and the end time logged during the game, the physiological samples
were aggregated by computing the average value of EDA, BVP, HR,
and SKT. In addition, the number of blinks and the average blink
duration during the decision period were extracted. The average
values were computed because the physiological data in the raw
data was logged in each millisecond. As the raw physiological data
was recorded inmilliseconds and the decision periodwas in seconds,
averaging the values per second (as a 1-second minimum decision
period) enabled a more meaningful data comparison. This allowed
us to understand better and analyse the changes in PBs during
decision-making.
(4) Dataset Generation: To generate the dataset for the analysis
and classification task in the study, we followed these steps:

(a) First, we computed the value for each PBs (EDA, BVP, HR, SKT,
BR, and BD) during trust and distrust stated in all the sessions (1,
2, 3 and 4).

(b) Next, in each session (1, 2, 3 and 4), for each participant, we
averaged the value for each PBs (EDA, BVP, HR, SKT, BR, and
BD) in the trust and distrust states. For instance, if in session 1,
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Session 1 Session 2 Session 3 Session 4
Trust Distrust Trust Distrust Trust Distrust Trust Distrust

Feature (Unit) N M SD M SD M SD M SD M SD M SD M SD M SD
EDA (𝜇𝑆) 43 0.69 1.13 0.87 1.21 0.93 2.46 0.92 2.34 0.88 2.22 0.76 2.09 0.91 2.33 0.81 2.28
BVP (𝜇𝑉 ) 43 0.31 1.32 0.37 1.57 -0.01 0.24 -0.004 0.15 -0.09 0.65 0.14 0.68 0.33 1.28 0.03 0.25
HR (bpm) 43 107.77 20.76 94.58 31.08 103.97 17.66 98.17 34.61 104.23 14.62 90.11 39.97 102.65 24.84 89.09 40.61
SKT (◦𝐶) 43 27.80 1.22 25.39 7.21 28.19 1.30 26.21 7.35 28.48 1.27 24.66 10.11 28.53 1.35 24.57 10.08
BR (count) 43 1.56 1.62 1.11 1.25 1.53 3.62 1.79 5.37 1.38 3.63 2.00 1.82 1.75 3.78 1.74 3.48
BD (s) 43 177.20 149.85 181.85 164.68 197.11 114.75 151.66 145.32 191.83 99.69 183.95 180.80 191.14 102.08 204.90 176.27

Table 1: Mean (M) and Standard Deviation (SD) for the psychophysiological features of trust and distrust states during each
session.

we had 4 trust, and 3 distrust states for a participant. In this case,
we averaged the 4 and 3 values recorded in trust and distrust
states. It resulted in 1 value for trust and distrust for a participant.
We did this because the number of trust and distrust decisions
were different among participants across all four game sessions.

(c) Later, all this resulted in a dataset containing 43 average values for
each PBmeasure (EDA, BVP, HR, SKT, BR, and BD) corresponding
to trust and distrust decisions in each session.

(d) Lastly, to form the dataset for all sessions, we merged the data of
all the sessions into one.
By following these steps, we successfully generated a dataset

suitable for analyzing trust and distrust in HRI using PBs. The
dataset alongside codes can be accessed here. In the given link, the
file named as “Data_sessions” represents the dataset for session 1, 2,
3 and 4 respectively, while, the file named as “Data_all” represents
the all session data.

4 RESULTS
We present the results of the analyses regarding the differences in
PBs between trust and distrust groups, the effects of sessions on
these behaviours, and the accurate classification of trust levels in
real-time during HRI using machine learning classifiers.

To testH1 andH2, a repeated-measures ANOVA was conducted
to determine whether there is an effect of the decision (trust vs
distrust) and the interactive session (session 1, session 2, session 3,
and session 4) on the physiological measures (EDA, BVP, HR, SKT,
BR, and BD).

We found that there was a significant effect of decission on HR
(𝐹 (1, 84) = 11.652, 𝑝 < .001, 𝜂2𝑝 = .122.) and SKT (𝐹 (1, 84) = 13.473,
𝑝 < .001, 𝜂2𝑝 = .138) scores. However, we did not see a significant
effect of decision on BVP (𝐹 (1, 84) = .001,𝑝 = .970, 𝜂2𝑝 < .001),
EDA (𝐹 (1, 84) = .001, 𝑝 = .977, 𝜂2𝑝 < .001), BR (𝐹 (1, 84) = .050,
𝑝 = .823, 𝜂2𝑝 = .001) and BD (𝐹 (1, 84) = .218, 𝑝 = .642, 𝜂2 = .003)
respectively.

Furthermore, We did not observe a significant interaction effect
of session and decision (session * decision) on EDA [𝐹 (3, 82) = .353,
𝑝 = .787, 𝜂2 = .013], BVP [𝐹 (3, 82) = 1.8, 𝑝 = .154, 𝜂2 = .062],
HR [𝐹 (3, 82) = .376, 𝑝 = .77, 𝜂2 = .014], SKT [𝐹 (3, 82) = .517,
𝑝 = .672, 𝜂2 = .019], BR [𝐹 (3, 82) = .993, 𝑝 = .906, 𝜂2 = .007], and
BD [𝐹 (3, 82) = .983, 𝑝 = .405, 𝜂2 = .035] respectively.

We conducted a post-hoc Bonferroni test to assess whether HR,
SKT, and other measures differed significantly between the trust
and distrust classes within each session (sessions 1, 2, 3, and 4). The

analysis confirmed that HR significantly differed between trust and
distrust states in session 1 (𝑝 < 0.03), session 3 (𝑝 < 0.01), and
session 4 (𝑝 = 0.01). Moreover, a slightly significant difference was
found in session 2 (𝑝 = 0.086). In all of the sessions, we observed a
significantly higher mean value of HR in the trust state as compared
to the distrust state. Additionally, the analysis further showed that
SKT significantly differed between trust and distrust decisions in
session 1 (𝑝 < 0.03), session 3 (𝑝 < 0.01), and session 4 (𝑝 < 0.01).
Furthermore, slightly significant difference was found in Session
2 (𝑝 = 0.086). In all of these sessions, we observed a significantly
higher mean value of SKT in the trust state as compared to the
distrust state. Intriguingly, a post-hoc test confirmed a slightly
significant difference for BVP in session 3 (𝑝 = 0.090). The mean
and Standard deviation for the PB features during trust and distrust
across all sessions can be seen in Table 1 respectively.

To testH3, which was to investigate whether PBs can be used to
classify trust, we used the structured approach proposed by Ahmad
et al. [2]. We implemented five classifiers: Random Forest (RF),
Logistic Regression (LR), Support Vector Machines (SVM), Decision
Tree (DT), and AdaBoost (AB). The performance of these classifiers
was evaluated using 5-fold cross-validation. We found that RF and
DT achieved the best accuracies at 68.6%, and 62.2% respectively.
The remaining classifiers performed above chance level (see Table
2).

We understand that the fundamental concept of RF is that it
functions as an ensemble. RF builds models—trees—that produce
class predictions. Based on the class that received the most votes,
the model is forecasted. The low correlation between the trees is the
secret to improved performance. We recognise that the DT’s high
predictive accuracy had an impact on the RF’s performance since
the ensemble of trees that the RF generated may have improved
the classifier’s predictive capabilities.

To further delve into the accuracy findings, in Table 3, we show
the classification report for all the classifiers to highlight the F1
score for each class. This indicates that for RF, trust and distrust
were predicted correctly 70% and 65% on the test data, showing a
relatively higher accuracy of RF as compared to other classifiers.

4.1 Feature importance for Trust and Distrust
Using one feature at a time, we investigatedwhich PBs in our dataset
were predictive of either class (trust or distrust). We then computed
the F1-score for each class. The goal was to determine how well
each feature performed on its own in reliably classifying each class
in the dataset. Due to the RF classifier’s superior performance in

https://drive.google.com/drive/folders/11qFN659PaG1ERrP2Ky-Oxbcp-4qZnRrR?usp=sharing
https://drive.google.com/drive/folders/11qFN659PaG1ERrP2Ky-Oxbcp-4qZnRrR?usp=sharing
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Classifier Accuracy (%)
Session 1 Session 2 Session 3 Session 4 All session

SVM 58.9 +/- 0.11 53.8 +/- 0.09 55.5 +/- 0.04 50.5 +/- 0.11 53.5 +/- 0.02
RF 68.2 +/- 0.10 46.8 +/- 0.08 69.1 +/- 0.085 60.2 +/- 0.11 68.6 +/- 0.04
LR 55.5 +/- 0.07 49.4 +/- 0.08 49.9 +/- 0.07 46.4 +/- 0.04 50.5 +/- 0.05
DT 63.4 +/- 0.09 64.2 +/- 0.07 64.9 +/- 0.05 59.3 +/- 0.10 62.2 +/- 0.02
AB 63.4 +/- 0.05 57.8 +/- 0.11 67.6 +/- 0.06 54.0 +/- 0.08 53.6 +/- 0.05

Table 2: Classifier Accuracies for Psychophysiological Behaviors in Trust Classification.

Decision Classifier F1-score

Trust

AB 0.534
RF 0.708
DT 0.692
SVM 0.644
LR 0.572

Distrust

AB 0.536
RF 0.658
DT 0.492
SVM 0.304
LR 0.402

Table 3: F1-scores for the five classifiers to predict human’s
trust and distrust levels. Bold RF is the classifier that achieves
the highest accuracy.

predicting trust or distrust, we only provide the feature importance
for trust and distrust for this classifier. In Figure 3, we show the
best performing features for the RF classifier. HR, BR, BD, and SKT
were the best-performing features for trust and distrust classes.
We understand this finding through the lens of the mean and SD
values shown in Table 4. We observed mean differences between
the trust and distrust behaviours for all four measures (HR, BR, BD,
and SKT). It also prompted us to conduct a correlation analysis. We
found that all the four measures were significantly (𝑝 < 0.05) and
positively correlated. Consequently, this highlights the reasons for
the feature importance findings.

Similarly, as seen in Table 4, both EDA and BVP mean values did
not differ for both trust and distrust case resulting in EDA and BVP
as the least important features for the RF to predict the trust classes.
Further correlation analysis also confirmed that both variables were
significantly (𝑝 < 0.05) and positively correlated.

5 DISCUSSION
This study investigated whether PBs can be collectively used to
sense human trust in robots in real-time during HRI. In this section,
we discuss whether the hypotheses were accepted or rejected in
the light of the findings.

H1 hypothesizes a significant difference in human PB responses,
such as EDA, BVP, HR, SKT, BR, and BD, between trust and dis-
trust states during HRI. The findings of the study showed that HR
and SKT were significantly different between trust and distrust
groups across all the sessions. This finding is consistent with pre-
vious research that identified HR and SKT as important features
for assessing human trust in robots across diverse HRI settings

Figure 3: Feature importance for the RF classifier based on
the F1-scores for each trust class. The x-axis shows all the
PBs while the y-axis shows the accuracies achieved by each
PB as one feature to predict the class of trust.

Feature N Trust Distrust
M SD M SD

EDA 43 0.86 2.09 0.85 2.02
BVP 43 0.13 0.99 0.14 0.87
HR 43 104.60 17.66 92.99 36.64
SKT 43 28.25 1.31 25.21 8.75
BR 43 1.55 2.89 1.46 3.37
BD 43 189.32 117.49 180.59 166.94

Table 4: Mean (M) and Standard Deviation (SD) for the psy-
chophysiological features of trust (999 cases) and distrust
(480 cases) during all sessions.

[5, 19, 24, 37]. HR and SKT are considered valuable indices of sym-
pathetic arousal changes that can be measured during emotional
arousal and cognitive effort [7]. The notable difference in HR and
SKT between trust and distrust groups indicates that participants in
the trust group may have experienced increased emotional arousal
and cognitive effort due to the risks associated with the number
of cards remaining in the game. Trusting others in such contexts
might require heightened vulnerability and emotion, leading to
elevated arousal and cognitive processing [3].

On the other hand, the other PB responses (EDA, BVP, BR, and
BD) did not show significant differences between trust and distrust
groups. Changes in EDA, BVP, and other PBs correlate with anxi-
ety; however, such conditions may not have been observed during
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the gameplay. Ganglbauer et al. [18] suggested that assessing trust
through psychophysiological signals becomes challenging during
natural user interactions. We speculate that participants were re-
laxed, and no pressure elements, such as time constraints, were
part of the gameplay. Furthermore, participants’ prior robot inter-
action experiences, with most having low or none. This range may
have contributed to the variability in physiological responses and
trust rating, possibly impacting our findings. Future studies should
further explore this variable’s role in trust during HR. Another fac-
tor we acknowledge is the potential impact of mental load, which
may have affected participants’ physiological responses, particu-
larly in PBs like EDA/GSR that have been significant in previous
studies[26]. We conjecture that there was no significant change
for BR and BD because participants interacted naturally and had
low focus and attention levels, as they are important factors affect-
ing eye blinking [39]. The insignificant differences could also be
attributed to individual differences, as existing research suggests
that individuals may exhibit distinct physiological responses to
the same emotional state [12]. Furthermore, the game data epoch
time window could have influenced these results. This window
was based on participants’ response time to make decisions. In this
study, the average decision time was 4 seconds. Employing a longer
epoch time window in contexts that are not time-sensitive might
improve performance for these other PBs [4].

Although HR and SKT were significant features in our study,
the factors affecting them may vary across individuals and settings
[11]. Thus, future research should consider HR and SKT as trust
indicators and investigate them across diverse individuals and sce-
narios to ensure the validity of these measures for sensing trust.
We believe this will make these more generalisable measures. In
summary, the hypothesis H1 was partially accepted as we did not
find significant differences for all the PBs.

H2 hypothesized an interaction effect (session and decision to
trust or distrust) on PBs. Our results did not confirm this hypothesis,
as we did not find a significant interaction effect of session and
decision (session * decision) on all PB features. We understand that
this could be due to the consistent behaviour of the game across
the four sessions. We assumed that participants’ experience with
the interaction partner (robot) will impact the PBs across the four
sessions. However, the findings did not support the assumptions.We
encourage the community to investigate an individual experience
with the robot in the context of trust and PBs during repeated HRI.
It may lead to intriguing insights to further enhance our knowledge
of sensing trust in real-time using PBs. Furthermore, understanding
these factors can contribute to the development of effective trust
measures for long-term HRI. Besides, we will consider mitigating
this in the context of our experimental setup in the future.

H3 suggested that human trust levels in HRI can be accurately
classified using PB data. The results showed that RF classifiers pro-
vided the best accuracy in trust level classification, with SKT, HR,
BR and BD features crucial for predicting human trust in robots dur-
ing HRI. We link this feature importance finding to its connection
with emotional arousal, cognitive effort, and rapid physiological
changes typically occurring in response to trust-related decisions
in game contexts [30].

The findings build on the existing literature demonstrating that
PB features can predict trust in human-machine interactions [22].

Comparing the findings on classification accuracy with existing
results, we see that Khalid et al. [24] used Heart rate variability
and skin conductance to sense trust and achieved an accuracy of
67% using a neuro-fuzzy neural network. The findings showed an
improved accuracy of 68.6% using an RF classifier to sense trust
by using a range of PBs. Other works that have achieved a higher
accuracy as compared to our findings for instance (Ajenaghughrure
et al. [3], & Lochner et al. [32]) relied on two PBs. We argue that it
is critical to use multiple PBs as physiological behaviours tend to
be task dependent or sensitive to environments [2]. In addition, we
note that past work applied a decision tree with a standard 70 and 30
split for train and test data which may not be a suitable and rigorous
strategy to train on a dataset [32, 49]. Moreover, the findings were
based on a small sample size (10 participants) [3]. Lastly, most of the
settings used in past work had tasks in simulation, consequently
highlighting the value of the described work in this paper.

We employed widely-used machine learning classifiers, such
as RF, LR, SVM, DT, and AB, due to their adaptability, robustness,
diverse learning mechanisms, and ease of implementation and op-
timization [34]. The study achieved relatively higher accuracy in
predicting trust levels, which can be attributed to the use of multi-
ple PBs that changed behaviour differently in combination across
the trust and distrust situations. We speculated to have achieved a
higher accuracy but, we understand that our task may have offered
an overall low vulnerability [31] to have shown difference among
all the PBs. In summary, features with non-significant differences
did show a trajectory and indicated that real-time trust calibration
in HRI should consider multiple features, which aligns with the
literature [5].

6 CONCLUSION & FUTUREWORK
In this paper, we investigated whether different psychophysiolog-
ical behaviours (PBs) differ significantly when humans trust or
distrust a robot during a repeated Human-Robot Interaction (HRI).
In addition, we investigate whether PBs can accurately predict
human’s trust or distrust in the robotic partner during HRI. In
a game-based repeated HRI, we examined the differences in PBs
between trust and distrust states, the effects of multiple sessions
on these behaviours. We also explored the potential of machine
learning classifiers in predicting trust during HRI. The findings
confirmed that PBs such as HR and SKT differ in trust and distrust
behaviours. It indicated that the use of multiple PBs collectively
can enable sensing of human trust in robots in real-time during
HRI. It further suggested we need to collect data on PBs across var-
ious settings to establish the validity of these measures in sensing
trust. Doing so will enable the use of PBs to sense trust in real-time.
Such measures of trust can be employed to develop robots that
can adapt to user trust in real-time. Besides, we share our dataset
with the research community to promote further advancements in
knowledge.

In future work, we aim to explore additional PB features from
multiple relevant body organs in a different HRI setting such as long-
term collaborative HRI. Our study and future intention hold the
potential to facilitate the development of adaptive robotic systems
based on real-time trust measurements, ultimately leading to more
effective HRI.
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