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Secure Particle Filtering With Paillier
Encryption-Decryption Scheme: Application to

Multi-machine Power Grids
Bogang Qu, Zidong Wang, Bo Shen, Hongli Dong and Xin Zhang

Abstract—This paper is concerned with the encryption-
decryption-based state estimation problem for a class of multi-
machine power grids with non-Gaussian noises. For the purposes
of security enhancement and data privacy protection, the Paillier
encryption-decryption scheme is adopted to map the measure-
ment data into the ciphertext space before being transmitted
through the communication network. The aim of this paper
is to develop a novel secure particle filter algorithm to cope
with the nonlinearity/non-Gaussianity from the system plant and
the decrypted signals after the measurement transmission. In
particular, a modified likelihood function is proposed to obtain
the importance weights where the encryption-decryption process
of the measurement data is taken into full consideration. The
developed algorithm is applied to multi-machine power grids, and
it is demonstrated via simulation studies (on three test scenarios
of the IEEE 39-bus power system) that our proposed secure
state estimation scheme possesses the desired performance index
in terms of security and accuracy.

Index Terms—Particle filter, encryption-decryption scheme,
nonlinear/non-Gaussian systems, secure state estimation, power
grids.

Abbreviations and Notations

PMU Phasor measurement unit
PF Particle filtering
SG Synchronous generator
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PDF Probability density function
SIR Sampling importance resampling
EKF Extend Kalman filter
UKF Unscented Kalman filter
ACT Average Computing Time
R

p The p-dimensional Euclidean space
px The PDF of a random variablex
Z The set of integers
Z
+ The set of non-negative integers

Zn The set of prime numbers less thann
Z
∗
n The set of numbers less than and co-prime to

n

gcd(p, q) The greatest common divisor ofp andq
lcm(p, q) The least common multiple ofp andq
x ∼ N (µ, σ) The random variablex following Gaussian

distribution with meanµ and varianceσ
I The identity matrix with compatible dimen-

sions

I. I NTRODUCTION

Owing to the rapid progress in developing communication
and sensing technologies, the situational awareness issues have
recently aroused a lot of interest from both academia and
industry with respect to various practical systems, see [1]
for electric vehicle systems, [2]–[5] for networked control
systems, and [6], [7] for power systems. For instance, the situ-
ational awareness problems have been thoroughly investigated
in [6] for monitoring photovoltaic power plants and in [7] for
detecting load/line/generation events, where the information
about the inner states of the power grids have proven to be
vitally important in 1) enhancing the situational awareness;
2) benefiting real-time control; and 3) facilitating security
assessment of the entire system. In fact, the state estimation
techniques have drawn much research attention in revealing
the inner dynamics/behaviors of the power grids [8]–[14].

Over the past few decades, the general state estimation
issue has been a hot research topic in the fields of signal
processing [15]–[18], control engineering [19]–[21] and fault
diagnosis [22]–[25]. With respect to power grids, the state
estimation techniques have also received an ever-growing
research interest, see e.g. [6], [7], [9], [12]–[14], [26], [27].
For example, in [6], the situational awareness of the active
distribution systems has been studied with the aid of weighted-
least-square-based state estimation algorithm. In [12], a novel
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distributed state estimation scheme has been proposed for
the large-scale power networks by resorting to the unscented
information filtering technique. It should be noted that most
existing state estimation results for power grids have been
obtained under the assumption that the noises follow Gaussian
distributions. Such an assumption, however, might be violat-
ed with the dynamically changeable operating conditions of
power grids.

It has been well recognized that the process/measurement
noises of practical power grids do not necessarily follow the
Gaussian distributions. For example, it has been confirmed that
the synchronized voltage measurement (collected from the In-
dian synchrophasor network [28]) and the phasor measurement
unit (PMU) measurement (collected by the Pacific Northwest
National Laboratory [29]) actually obeynon-Gaussian(e.g.
logistic or log-normal) distributions. Also, it has been revealed
in [11] that the stochastic power flows (caused by the renew-
able energy generations) follow non-Gaussian distributions as
well. All these facts have motivated us to research into the
state estimation problems for power grids with non-Gaussian
process/measurement noises, where the particle filtering (PF)
algorithm appears to be especially suitable due to its distinctive
advantages in tackling nonlinearities and non-Gaussian noises
[30].

Modern power grids, which rely heavily on open communi-
cation networks, are known to be vulnerable to various security
threats [3], [26], [31], [32] and, accordingly, a rich body of
literature has appeared on the security defense issues for power
grids from the perspectives of physical security, information
security and communication security [32]. The main idea of
the physical defense strategy is to optimize the measuring
topology by adjusting the placements of the PMUs and other
measuring facilities [33]. For enhancing information security,
a common approach is to develop online/offline detection
criteria by using the historical measurement data [34]. As
for the communication security, a widely used method is to
protect the communication channel with the aid of encryption
techniques [35].

In the securestate estimation of power systems, one of the
common used approaches is to detect and eliminate/correct the
possible cyber-attacks contained in the measurement data to
mitigate the negative influences on the estimation performance,
see e.g. [3], [8], [10]. For example, in [10], a distributed
state estimation scheme has been developed for the wide-area
smart grids where an online anomaly processing mechanism is
designed to detect and eliminate the adverse effects caused by
the cyber-attack-contaminated measurements. Different from
the detection-correction framework, another widely used way
is to enhance the robustness against cyber-attacks by embed-
ding special performance indices or penalty functions into
the state estimation algorithms, see e.g. [8], [36], [37]. For
instance, in order to mitigate the negative influences cause
by cyber-attacks, a novel robust unscented Kalman filter has
been proposed in [37] with the aid of minimum error entropy
criterion.

It is worth pointing out that in actual power systems, the
types (e.g. false data injection attacks, replay attacks and/or
bias injection attacks) and the features (e.g. occasionality,

probability and/or intermittency) of the cyber-attacks are var-
ious, and it is difficult and even impossible to detect them
correctly all the time. As a result, the smearing impacts caused
by the undetected cyber-attacks [38] might seriously affect
the performance of the secure state estimation algorithm-
s developed within the threat-detection framework. On the
other hand, it is difficult to extend the existing robust state
estimation algorithms to cover the cyber-attacks with various
types/features since the cyber-attacks are “coarsely” tread as
complex disturbances (e.g. non-Gaussian disturbance) in these
algorithms. To this end, a seemingly natural idea is to develop
“active” schemes to prevent the cyber-attacks from occurring,
thereby equipping the state estimation algorithm with desired
security.

As a popular active security countermeasure, the
cryptography-based technique has been widely applied
in networked systems to ensure the security and protect
privacy of data transmissions [10], [35], [39]. Accordingly,
the encryption-decryption-based state estimation problem has
attracted a rapidly growing research interest, see e.g. [40],
[41]. For instance, in order to prevent eavesdropping in the
remote state estimation, a linear encryption scheme has been
adopted in [40] to promote the security of the transmitted data.
In [41], a secure state estimation algorithm has been designed
with the aid of multiplicative (and additive) homomorphic
encryption techniques. Nevertheless, when it comes to the
power grids, the secure state estimation problem under
the cryptography framework has not yet received sufficient
attention, despite its conspicuous engineering significance.

In view of the forgoing discussions, we conclude that there
is a lack of secure state estimation algorithms for power grids
with cryptographic measurement, and developing such kind of
algorithms is highly desired given the increasing demand of
secure monitoring in power grids. It is, therefore, the main
purpose of this paper to shorten the gap by examining the
secure state estimation problem with the following salient
features.

• A particle-filter-based state estimation scheme is devel-
oped to cope with the strong nonlinearities and non-
Gaussian noises of the power grids, and such a scheme
is implemented in a decentralized manner with the aid
of model decoupling technique of power grids, therefore
facilitating online applications.

• The Paillier encryption-decryption mechanism is adopted
to cater for the ever-increasing demand for preservation
of data privacy of the power grids, thereby ensuring the
security of the data transmission in the communication
network.

• A new likelihood function is first put forward based on
the decrypted measurement data, and a novel secure PF
is then designed where the parameters of the encryption-
decryption process are exploited in the calculation of the
importance weights.

The rest of this paper is outlined as follows. Section II for-
mulates the state estimation issue for a class of multi-machine
power grids with non-Gaussian noises under the framework of
the Paillier encryption-decryption mechanism. The basic steps
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of the PF algorithm are reviewed in Section III. Section IV
investigates the secure particle filter design problem based on
the modified likelihood function. A practical application to the
state estimation problem is provided in Section V for multi-
machine power grids with cryptographic measurement data.
Finally, some conclusion remarks are drawn in Section VI.

II. PROBLEM FORMULATION

A. Power Grid Model

Consider a multi-machine power grid which containsL
synchronous generators (SGs), where the discrete-time model
of the l-th SG is of the following form [14]:

δl,k+1 =δl,k + (ωl,k − ωs)∆t, (1a)

ωl,k+1 =ωl,k +
ωs

2Hl

[

Tm,l − Pl,k −Dl(ωl,k − ωs)
]

∆t,

(1b)

E′
q,l,k+1 =E′

q,l,k +
1

T ′
d0,l

[

− E′
q,l,k − (Xd,l −X ′

d,l)Id,l,k

+ Efd,l,k

]

∆t, (1c)

E′
d,l,k+1 =E′

d,l,k +
1

T ′
q0,l

[

− E′
d,l,k + (Xq,l −X ′

q,l)Iq,l,k
]

∆t

(1d)

with

Id,l,k =
1

X ′
dl

(E′
q,l,k − Vq,l,k), Iq,l,k =

1

X ′
ql

(−E′
d,l,k + Vd,l,k),

Vd,l,k =Vl,k sin(δl,k − θl,k), Vq,l,k = Vl,k cos(δl,k − θl,k)
(2)

where the details of the parameters in (1) and (2) are given in
Table I.

TABLE I: Parameters of the SG and its measurement

Parameter Meaning
l Index of the SG(l = 1, 2, . . . , L)
∆t Discretization period
k Time instant
δ Rotor angle of the SG
ω Rotor speed of the SG
ws Nominal synchronous speed
ωs

2Hl
Inertia time constant of the SG

P SG’s terminal active power
Tm Mechanical torque input of the SG
D Damping factor of the SG
Efd Excitation field voltage of the SG
E′

d
, E′

q dq-axes transient voltages of the SG
Xd,Xq dq-axes synchronous reactances of the SG
X′

d
,X′

q dq-axes transient synchronous reactances of the SG
T ′

d0
, T ′

q0 dq-axes transient open-circuit time instants of the SG
Id, Iq dq-axes currents of the SG
Vd, Vq dq-axes voltages of the SG
V Terminal bus voltage magnitude of the SG
θ Terminal bus phase angle of the SG
f SG’s terminal frequency
f0 SG’s nominal frequency
P SG’s terminal active power injection
Q SG’s terminal reactive power injection

Based on (1)-(2), the discretized state-space model of the
l-th SG can be obtained as

xl,k+1 = fl(xl,k, ul,k) + wl,k (3)

where the state vector and the known input vector are, respec-
tively, defined by (for brevity, the time instantk∆t is simply
denoted byk)

xl,k ,
[

δl,k ωl,k E′
q,l,k E′

d,l,k

]T
∈ R

nx

and

ul,k ,
[

Vl,k θl,k Tm,l,k Efd,l,k

]T
∈ R

nu ,

the nonlinear functionfl(·) is determined by (1)-(2), andwl,k

represents the process noise satisfying the probability density
function (PDF)pwl,k

. Note that the mechanical torque input
Tm,l,k and the excitation field voltageEfd,l,k of the SG can
be measured, respectively, in real-world application, and they
are treated as known input in this paper.

B. PMU Measurement Model

For the purpose of implementing the state estimation al-
gorithm in a decentralized manner, the model decoupling
technique proposed in [14] is adopted in this paper to decouple
each SG from the rest of the power grid. To be specific, by
the model decoupling technique, the voltage phasor of the
terminal bus is treated as model input and the current phasor
of the terminal bus is treated as measured output. Note that
the terminal active and reactive power injections (which can be
obtained by using the voltage and current phasors) can better
reflect the dynamics of the generators [14]. In this sense, the
terminal frequency as well as the terminal active and reactive
power injections of thel-th generator are selected as the PMU
measurements, i.e.

fl,k =f0(wl,k − ws + 1), (4a)

Pl,k =Vd,l,kId,l,k + Vq,l,kIq,l,k, (4b)

Ql,k =− Vd,l,kIq,l,k + Vq,l,kId,l,k, (4c)

where the details of the parameters in (4) are shown in Table
I, and the definitions ofVd, Vq, Id andIq are all given in (2).

A compact PMU measurement model of thel-th SG can be
arranged as

z̄l,k = hl(xl,k, ul,k) + vl,k (5)

where the measurement vector is denoted by

z̄l,k ,
[

fl,k Pl,k Ql,k

]T
∈ R

nz ,

the nonlinear functionhi(·) is determined by (4), andvl,k is
the measurement noise obeying the PDFpvl,k .

C. Transmission Model

In order to enhance the transmission security of the mea-
surement data over the communication network, the Paillier
encryption-decryption scheme is adopted in this paper, which
consists of four steps (i.e., quantization-encoding, encryption,
decryption and decoding) given as follows.

Quantization-encoding:Note that, in practical systems, the
measurement signal has to be quantized and then encoded
before it is transmitted through communication networks. To
be specific, the quantization procedure for thes-th element of
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Fig. 1: Diagram of the secure state estimation for multi-machine power grids with encryption-decryption scheme.

the measurement vector, denoted asz̄
[s]
l,k (s = 1, 2, . . . , nz),

can be expressed as follows:

q̄
[s]
l,k = Q(z̄

[s]
l,k) = ar

(2a− 1)r

2
≤ z̄

[s]
l,k <

(2a+ 1)r

2
(6)

whereq̄[s]l,k is the quantized output;Q(·) represents the quanti-
zation function;a is an integer which satisfiesa ∈ {−A,−A+
1, · · · , 0, · · · ,A − 1,A} with 2A + 1 being the number
of quantization levels andA being positive integer; andr
represents the length between two neighboring quantization
levels.

After quantization, the coding process is adopted to convert
the quantized value into codeword. In this paper, we assume
that the corresponding codewordq[s]l,k of the quantized value

q̄
[s]
l,k (s = 1, 2, . . . , nz) can be found in the finite non-negative

integer setM (namely, the codeword space).

Encryption: After obtaining the codewordq[s]l,k (s =
1, 2, . . . , nz), we encrypt the plaintext by resorting to the
Paillier encryption-decryption technique. The basic steps of
the Paillier encryption are outlined as follows [41]:

• Generate public keyPK and private keySK.

1) Select two large prime numbersp andq (p 6= q) such
that gcd

(

pq, (p− 1)(q − 1)
)

= 1.
2) Calculaten = pq andλ = lcm(p− 1, q − 1).
3) Select a positive integerg such thatg ∈ Z

∗
n2 .

4) Define a functionL(x) asL(x) , x−1
n

.

5) Calculateµ =
(

L(gλ mod n2)
)−1

mod n.
6) Generate the public keyPK = (n, g) and the private

key SK = (λ, µ).

• Encrypt the plaintext:

1) Select a positive integerr such thatr ∈ Z
∗
n.

2) Based on the plaintextq[s]l,k (s = 1, 2, . . . , nz), calculate

the ciphertextc[s]l,k via

c
[s]
l,k = Enc(PK, r)

= gq
[s]
l,krn mod n2 (7)

whereEnc(·) represents the Paillier encryption func-
tion.

Decryption: After receiving the ciphertextc[s]l,k (s =
1, 2, . . . , nz), the decryption procedure is performed to cal-
culate the plaintextq[s]l,k via

q
[s]
l,k = Dec(SK, c

[s]
l,k)

= L(cλ mod n2)µ mod n (8)

whereDec(·) is the Paillier decryption function.
Decoding:Denoting the output of the decoding process as

z
[s]
l,k (s = 1, 2, . . . , nz), the value ofz[s]l,k can be recovered from

the plaintextq[s]l,k by resorting to the codeword spaceM.
Before proceeding further, the following two assumptions

are made.
Assumption 1:The initial statexl,0 follows the prior distri-

bution with pxl,0
, i.e. xl,0 ∼ pxl,0

.
Assumption 2:The process noisewl,k, the measurement

noisevl,k and the initial statexl,0 are mutually independent.
Remark 1:It is worth noting that most of the state estimation

algorithms developed for power grids rely on a fundamental
assumption that the initial states and the process/measurement
noises followGaussiandistributions with known PDFs (see
e.g. [8], [10], [12] and the references therein). Compared with
the existing results concerning the state estimation problem
of power systems, the conservatism of this paper can be
reduced to some extent since the PDFs of the initial state and
the process/measurement noises are assumed to be Gaussian
and/or non-Gaussian. In order to cater for engineering practice,
recently, a novel adaptive state estimation algorithm has been
designed in [42] for power system to tackle the unknown and
time-varying PMU error statistics. However, such an algorithm
is still essentially performed with the known noise statistics
since the PDFs of the noises have been identified already by
analyzing the historical data contained in a sliding window.

D. Problem Statement

The aim of this paper is to design a secure state estimation
algorithm such that:

1) the nonlinearities and the non-Gaussian noises of the
systems can be effectively handled;

2) the security of the transmitted measurement signal can
be guaranteed by resorting to the Paillier encryption-
decryption technique; and

3) the negative impacts from the decryption error can be
mitigated by improving the particle filtering algorithm.
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I II. REVIEW OF PARTICLE FILTERING METHOD

As is well known, the nonlinearity and the non-Gaussian
noise of the systems may seriously impair the estimation per-
formances of the weighted-least-square-based filtering method
and the conventional Kalman filtering method. As such,
the PF technique is adopted in this paper to tackle the
nonlinearity/non-Gaussianity. In this section, the fundamental
steps of the sampling-importance-resampling (SIR) based PF
are briefly reviewed.

Denote the sets of all available inputs and measurements up
to time instantk, respectively, as

Ul,k , {ul,1, ul,2, . . . , ul,k}

and

Zl,k , {zl,1, zl,2, . . . , zl,k}.

Then, the posterior PDFp(xl,k|Ul,k, Zl,k) of the statexl,k can
be inferred recursively by the Bayes rule as follows:

p(xl,k|Ul,k, Zl,k)

=
p(zl,k|xl,k, ul,k)p(xl,k|Ul,k−1, Zl,k−1)

∫

p(zl,k|xl,k, ul,k)p(xl,k|Ul,k−1, Zl,k−1)dxl,k

(9)

where

p(xl,k|Ul,k−1, Zl,k−1)

=

∫

p(xl,k|xl,k−1, ul,k−1)p(xl,k−1|Ul,k−1, Zl,k−1)dxl,k−1

is the predictive PDF of the statexl,k.
Note that, in practice, it is intractable to obtain the close-

form solution of the posterior PDF under the Bayesian frame-
work. In this case, an alternative approach, namely, the PF
technique, has been adopted to approximate the posterior PDF
p(xl,k|Ul,k, Zl,k) with a set of weighted particles, i.e.,

p(xl,k|Ul,k, Zl,k) ≈
M
∑

m=1

ωm
l,kδ(xl,k − xm

l,k) (10)

whereM is the number of particles;δ(·) denotes the Dirac
delta function;{xm

l,k}
M
m=1 represents a set of particles drawn

from a proposal distributionq(xl,k|xm
l,k−1, ul,k−1, zl,k); and

{ωm
l,k}

M
m=1 is a set of importance weights for the correspond-

ing particles. In this paper, we follow the procedure of the
SIR-based PF algorithm and select the state transition PDF
p(xl,k|xl,k−1, ul,k−1) as the proposal distribution [43].

The SIR-based PF algorithm is summarized as follows.
1) Initialization. The initial particles{xm

l,k}
M
m=1 are gener-

ated from the known prior PDFpxl,0
where the associated

weight for each initial particle is set as1/M .
2) Propagation. In this step, the posterior particle set

{xm
l,k−1}

M
m=1 at time instantk−1 is propagated one-step ahead

via (1) to obtain the prior particle set{x̄m
l,k}

M
m=1, i.e.,

x̄m
l,k = f(xm

l,k−1 + ul,k−1) + wm
l,k−1. (11)

3) Computation of the Importance Weights.After propaga-
tion, the associated importance weights for the prior particle
set{x̄m

l,k}
M
m=1 is determined by

ω̄m
l,k = ωm

l,k−1

p(zl,k|x̄m
l,k, ul,k)p(xl,k|xm

l,k−1, ul,k−1)

q(xl,k|xm
l,k−1, ul,k−1, zl,k)

. (12)

Note that, in the SIR-based PF algorithm, the state transition
PDF is usually selected as the proposal distribution, and we
can rewrite (12) as

ω̄m
l,k = ωm

l,k−1p(zl,k|x̄
m
l,k, ul,k). (13)

After normalization, we have

ωm
l,k =

ω̄m
l,k

∑M

m=1 ω̄
m
l,k

. (14)

4) State Estimation.Based on the prior particle set
{x̄m

l,k}
M
m=1 and the associated importance weights set

{ωm
l,k}

M
m=1, the estimate ofxl,k can be expressed as

x̂l,k =

M
∑

i=1

ωj
l,kx̄

j
l,k. (15)

5) Particle Resample.As a common phenomenon, the
particle degeneracy may occur after some iterations, which
means that only a few particles have significant weights. For
the purpose of mitigating the adverse effects on the estimation
performance caused by the particle degeneration, in this paper,
we follow the basic steps of the SIR-based PF algorithm
and perform the resampling strategy at each iteration. To be
specific, a new set of particles with equal weights are generated
from

∑M

m=1 ω
m
l,kδ(xl,k − xm

l,k). It should be noted that, even
though we design the secure state estimation algorithm in the
framework of the SIR-based PF, extensions to other resampling
strategies (e.g. the adaptive resampling strategy) are fairly
straightforward.

IV. D ESIGN OFSECURE PARTICLE FILTER

In general, the state estimation can be achieved directly
with the aid of SIR-based PF algorithm. However, due to
the adoption of the Paillier encryption-decryption scheme,
the actual measurement data we receive would be totally
different from the unencrypted one (i.e.z̄l,k in (5)). In other
words, the adverse effects caused by the encryption-decryption
mechanisms have to be considered in the calculation of the
likelihood function p(zl,k|x̄m

l,k, ul,k) evaluated atx̄m
l,k. The

diagram of the secure state estimation for multi-machine power
grids with encryption-decryption technique is shown in Fig. 1.

In this section, we aim to develop a secure state estimation
algorithm for a class of multi-machine power grids with
non-Gaussian noises by resorting to the Paillier encryption-
decryption technique, where a modified likelihood function is
constructed to compensate the effect of the decryption error.
It should be pointed out that the expressions of the likelihood
functionp(zl,k|x̄m

l,k, ul,k) (evaluated at̄xm
l,k) are dependent on

the properties of the measurement noises and, accordingly, we
consider the following two cases.

Case 1: The measurement noise follows Gaussian distribu-
tion, i.e.vl,k ∼ N (µl,k, σ

2
l,k).

For the s-th (s = 1, 2, . . . , nz) element of the decoder
outputzl,k, the likelihood function can be represented as

p(z
[s]
l,k|xl,k, ul,k) =pi

(

z
[s]
l,k −

r

2
≤ z

[s]
l,k < z

[s]
l,k +

r

2

)

=p
(

ε
[s]
l,k ≤ v

[s]
l,k < ε̄

[s]
l,k

)
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=Φ
ε̄
[s]
l,k − µ

[s]
l,k

σ
[s]
l,k

)

− Φ
ε
[s]
l,k − µ

[s]
l,k

σ
[s]
l,k

)

(16)

where

ε
[s]
l,k ,z

[s]
l,k − h(xl,k, ul,k)−

r

2
,

ε̄
[s]
l,k ,z

[s]
l,k − h(xl,k, ul,k) +

r

2
,

and Φ(·) denotes the cumulative distribution function of the
standard normal distribution. Then, it follows from (16) that
the likelihood function evaluated at̄xm

l,k is described as

p(zl,k|x̄
m
l,k, ul,k) =

nz
∏

s=1

p(z
[s]
l,k|x̄

m
l,k, ul,k). (17)

Case 2: The measurement noise follows non-Gaussian dis-
tribution.

Note that the analytical approach developed in Case 1 is
no longer suitable for this case and, as such, we choose to
adopt the Monte-Carlo method to approximate the likelihood
function p(zl,k|xl,k, ul,k). To be specific, for each particle
x̄m
l,k, N samples (denoted as{zm,n

l,k }Nn=1) are drawn from
the measurement function (5) and the encryption-decryption
process. Then, the likelihood function evaluated atx̄m

l,k can be
approximated as

p(zl,k|x̄
m
l,k, ul,k) =

nz
∏

s=1

1

N

N
∑

n=1

I
{z

[s],m,n

l,k
=z

[s]
l,k

}

)

, (18)

whereI
{z

[s],m,n

l,k
≤z

[s]
l,k

}
is an indicator function and

I
{z

[s],m,n

l,k
≤z

[s]
l,k

}
=

{

1, if z
[s],m,n

l,k ≤ z
[s]
l,k,

β, otherwise
(19)

with β being a positive scalar andβ ≪ 1.
Remark 2:The transmission model we adopted in this paper

is actually a kind of nonlinear mapping and such a model
would make the distribution of the actual measurement (i.e.
zl,k) different from the one of the original measurement (i.e.
z̄l,k). As a consequence, the estimation performance may de-
grade severely if we use the actual measurement directly under
the framework of the SIR-based PF algorithm. For the purpose
of mitigating the influences on the estimation performance
caused by the transmission model, a novel likelihood function
is proposed to calculate the importance weights in which the
parameters of the transmission model are fully considered.

Remark 3:For the computational complexities of the PF
algorithm, there have been some scattered theoretical analysis
results available in the literature, see e.g. [44], [45]. For
example, in [44], the analytical expression of the computa-
tional complexities of the marginalized particle filter has been
derived by calculating the number of floating-point operations.
Note that in practice, the complicated factors (e.g. the nonlin-
ear strength of the system, the various resampling strategies,
the number of particles) involved in the PF algorithm make
it difficult to follow the similar lines to conduct a rigorous
analysis on the computational complexities. In order to assess
the computational complexity of the PF algorithm in an easy-
to-implement way, another widely used approach is to measure

the time required in each step of iteration. For instance, in [46],
a multi-scale based method has been proposed to accelerate the
tracking computation of the particle filters, and the efficiency
of the proposed algorithm has been verified by comparing
the computational time with the one of the conventional PF
algorithm. In this paper, the computational complexity of our
proposed algorithm is assessed by measuring the execution
time of each iteration.

For ease of illustration, the pseudocode of our proposed
secure state estimation algorithm is outlined in Algorithm 1.

Algorithm 1 Secure particle filtering algorithm under the
Paillier encryption-decryption scheme.

Initialization: Generate particles{xm
l,0}

M
m=1 from the initial PDF

pxl,0 and set the associated weights{ωm
l,0}

M
m=1 as

1/M .
Recursion:

1: for k = 0, 1, 2, . . . do
2: Collect the measurement after decryption (i.e.zl,k) at the

current time instant.
3: for m = 0, 1, 2, . . . ,M do
4: Propagate the posterior particlexm

l,k−1 one-step ahead
through (11) to generate the prior particlex̄m

l,k.
Case 1:Measurement noise follows Gaussian distribution.
Compute the likelihood functionp(zl,k|x̄m

l,k, ul,k) via (16)
and (17).
Case 2:Measurement noise follows non-Gaussian distribu-
tion.
Compute the likelihood functionp(zl,k|x̄m

l,k, ul,k) via (18)
and (19).

5: Calculate the corresponding unnormalized importance
weight ω̄m

l,k via (13).
6: Compute the normalized importance weights{ωm

l,k}
M
m=1

according to (14).
7: Compute the estimatêxl,k by using (15).
8: Resample to obtain the new particle set{xm

l,k}
M
m=1.

9: end for
10: end for

V. SIMULATION EXAMPLE

To verify the effectiveness of our proposed secure state
estimation algorithm, the model IEEE 39-bus system has been
use for the simulation examples and the Matlab/Simulink
has been adopted for its modeling. The detailed parameters
of each SG described in (1), (2) and (4) can be found in
[47]. For the sake of saving space, only the states of SG
3 are taken for illustration. The system is initialized with
steady state values obtained from the pre-disturbance system
condition, i.e.x3,0 ∼ N ([0.9 0.5 0.1 0.45]T , diag4{0.01

2}).
The number of particles is selected asM = 200. The initial
particles of SG 3 are generated from the initial PDF of the
states, i.e.xm

3,0 ∼ N ([0.9 0.5 0.1 0.45]T , diag4{0.01
2}) where

m ∈ {1, 2, . . . ,M}. The associated weights of the initial
particles are all set to be1/M .

The notion mean square error (MSE) is adopted to evaluate
the estimation accuracy whereMSEj denotes MSE for the
estimate of thej-th state overHMC independent Monte Carlo
runs, i.e.,

MSEj =
1

HMC

HMC
∑

h=1

(

x
[j,h]
l,k − x̂

[j,h]
l,k

)2

,
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with x
[j,h]
l,k and x̂

[j,h]
l,k being the actual and estimated values

of x[j]
l,k (i.e. thej-th state of thel-th synchronous generator)

in the h-th run. In addition, we set the public key and the
private key asPK = (20687, 53) andSK = (10200, 14141),
respectively. To simplify the notation, the estimation results
of the conventional SIR-based particle filter under the original
measurement (i.e.̄zl,k) is labeled as SIR-PF-O, the estimation
results of the conventional SIR-based particle filter, extend
Kalman filter (EKF), unscented Kalman filter (UKF) and our
proposed algorithm under the actual measurementzl,k (i.e.
measurement after encryption-decryption) are labeled as SIR-
PF-A, EKF-A, UKF-A and Enc-Dec-PF-A, respectively.

A. Scenario 1: Gaussian Noise

In this scenario, both the process and measurement noises
follow the Gaussian distributions. To be specific, the Gaussian
white sequences with zero means and covariance matrices5×
10−6I and 10−4I are used to characterize the process noise
and measurement noise, respectively. The length between the
neighboring quantization levels is selected asr = 0.1.

In order to assess the state estimation performance, com-
parisons between the SIR-PF-O, SIR-PF-A and Enc-Dec-
PF-A are carried out. The simulation results are plotted in
Fig. 2. Specifically, the original measurement curves and the
corresponding curves after decryption are given in Fig. 2(a).
The trajectories of the states and the corresponding estimates
of SG 3 with the SIR-PF-O, SIR-PF-A and Enc-Dec-PF-A
are shown in Fig. 2(b). Fig. 2(c) shows the log(MSE) of each
state of the SIR-PF-O, SIR-PF-A and Enc-Dec-PF-A with 20
Monte Carlo runs.

From Fig. 2, it can be found that under Gaussian noises:
1) the measurement after encryption-decryption (i.e. the ac-
tual measurement) derivatives significantly from the original
measurement; 2) the revised likelihood function is effective
since our proposed algorithm (i.e. Enc-Dec-PF-A) is capa-
ble of tracking the state effectively with the cryptographic
measurement; 3) our proposed algorithm performs better than
the conventional SIR-based PF (i.e. SIR-PF-A) under the
cryptographic measurement; and 4) the estimation accuracy of
our proposed algorithm under the cryptographic measurement
is close to the one of the conventional SIR-based PF under
the original measurement (i.e. SIR-PF-O).

B. Scenario 2: Non-Gaussian Noise

In this scenario, the GMM-based non-Gaussian sequences
are used to simulate the process and measurement noises,
i.e. w3,k ∼ 0.8N1(0, 5 × 10−6I) + 0.2N2(0, 10

−4I) and
v3,k ∼ 0.9N1(0, 10

−4I) + 0.1N2(0, 10
−2I). The length of

the quantization level is still selected asr = 0.1.
The simulation results under Scenario 2 are plotted in Fig. 3.

The effects of the encryption-decryption on the measurements
are clearly reflected in Fig. 3(a). The states and the corre-
sponding estimates obtained with the SIR-PF-O, SIR-PF-A
and Enc-Dec-PF-A are plotted in Fig. 3(b). Fig. 3(c) shows
the log(MSE) of each state of the SIR-PF-O, SIR-PF-A and
Enc-Dec-PF-A with 20 Monte Carlo runs.

(a)

(b)

(c)

Fig. 2: Scenario 1: Simulation results of SG 3 (a) Measurement
curves. (b) Estimated states. (c) Log(MSE) of each estimate.

It can be observed from Fig. 3 that under non-Gaussian
noises: 1) the measurement after encryption-decryption is
totally different from its original value; 2) the Enc-Dec-PF-A
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(a)

(b)

(c)

Fig. 3: Scenario 2: Simulation results of SG 3 (a) Measurement
curves. (b) Estimated states. (c) Log(MSE) of each estimate.

performs well in the presence of information loss caused by
the encryption-decryption process; 3) under the cryptographic
measurement, the estimation performance of the Enc-Dec-PF-

A outperforms the one of the SIR-PF-A due to the revised
likelihood function; and 4) the estimation accuracy of our
proposed algorithm under the cryptographic measurement is
close to the one of the conventional SIR-based PF under the
original measurement (i.e. SIR-PF-O).

C. Computational Efficiency

In this subsection, the computational efficiency of each
algorithm under the cryptographic measurement is discussed.
All the test cases are implemented on a PC with Intel Core
CPU i7-7700HQ, 2.80GHz and 16 GB RAM. The average
computing time (ACT) of each algorithm is presented in Table
II. From Table II, we can conclude that: 1) the ACT of the
encryption-decryption process is about 10 ms which is less
than the PMU scan rate (20 ms/sample); and 2) the ATC of
the Enc-Dec-PF-A is longer than the one of the SIR-PF-A due
to the computation of the modified likelihood function; and 3)
the total ATC of Enc-Dec-PF-A is less than the PMU scan rate,
which means that our proposed state estimation algorithm is
able to implement online.

TABLE II: Average Computing Time At Each PMU Scan (ms)

Algorithm
Encryption
Decryption

State
Estimation Total

Enc-Dec-PF-A 8.87 8.15 17.02
SIR-PF-A 9.81 4.84 14.65

D. Discussions

In this subsection: 1) the comparisons between our pro-
posed algorithm, EKF and UKF are all performed under the
cryptographic measurement; and 2) the effects of the number
of particles on the estimation accuracy and computation time
of our proposed algorithm are discussed. The simulation
conditions remain the same as they are shown in Scenario 2.
To be specific: 1) the curves of the states and the corresponding
estimates under the cryptographic measurement of SG 3 with
the Enc-Dec-PF-A, EKF-A and UKF-A are shown in Fig. 4(a);
2) Fig. 4(b) shows the log(MSE) of each state of the Enc-Dec-
PF-A, EKF-A and UKF-A with 20 Monte Carlo runs; and 3)
Fig. 5 and Table III reveal the effects of the number of particles
(i.e. M=100,200 and 300) on the estimation performance and
computation time, respectively.

TABLE III: Average Computing Time Of Each Iteration For
The Enc-Dec-PF-A With Different Number Of Particles (ms)

Number of Particles State Estimation
100 3.85
200 8.06
300 12.37

From Fig. 4, it can be found that under non-Gaussian noises:
1) the estimation results of the EKF-A and UKF-A deviate
significantly from their true values; and 2) our proposed
algorithm outperforms the EKF-A and UKF-A. Moreover, it
can be concluded from Fig. 5 and Table III that the estimation
accuracy and computation time of the proposed algorithm all
increase along with the growing number of particles.
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(a)

(b)

Fig. 4: Comparison studies of SG 3 (a) Estimated states. (b)
Log(MSE) of each estimate.

Fig. 5: Log(MSE) of each state of SG 3 with different number of
particles.

VI. CONCLUSION

In this paper, the secure state estimation problem has
been investigated for a class of multi-machine power grids.
For the purpose of enhancing the transmission security and
preserving the data privacy, the Paillier encryption-decryption
scheme has been adopted. A novel state estimation algorith-
m has been proposed to mitigate the influences caused by
the nonlinearities and non-Gaussian noises as well as the
encryption-decryption process on the estimation performance.
Specifically, the PF technique has been adopted to tackle the
nonlinearity/non-Gaussianity of the systems and the modified
likelihood function has been developed by fully taking the
encryption-decryption process of the measurement data. Final-
ly, based on the IEEE 39-bus system, three test scenarios have
been considered in the simulation experiment to validate the
effectiveness of the proposed secure state estimation scheme.
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