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ABSTRACT
Parametric system identification, which is the process of uncovering the inherent dynamics of
a system based on the model built with the observed inputs and outputs data, has been inten-
sively studied in the past few decades. Recent years have seen a surge in the use of neural networks
(NNs) in system identification, owing to their high approximation capability, less reliance on prior
knowledge, and the growth of computational power. However, there is a lack of review on neu-
ral network modelling in the paradigm of parametric system identification, particularly in the time
domain. This article discussed the connection in principle between conventional parametric mod-
els and three types of NNs including Feedforward Neural Networks, Recurrent Neural Networks and
Encoder-Decoder. Then it reviewed the advantages and limitations of related research in address-
ing two major challenges of parametric system identification, including the model interpretability
and modelling with nonstationary realisations. Finally, new challenges and future trends in neural
network-based parametric system identification are presented in this article.
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1. Introduction

Complex Systems feature a large number of
measurable components interacting simultaneously
and nonlinearly with each other on multiple levels
(Zhao et al., 2017). In real-world scenarios, elusiveness
widely exists in Complex Systems, such as climate sys-
tems (Gu et al., 2019; Zhao et al., 2016), neuro systems
(He & Yang, 2021; Zhao et al., 2013), Cyber-Physical
systems (Kaiser et al., 2018; Zhu et al., 2021), etc. Sys-
tem identification, which is the process of uncovering
the inherent dynamics of the system directly from the
observed inputs and outputs data, can be used to con-
trol, analyse, or design a complex system (Billings,
2013).

System identification can generally be divided into
two types: parametric approaches and nonparamet-
ric approaches. The nonparametric system identi-
fication investigates the system’s specific properties
by analysing the observed data directly without a
model. In contrast, the parametric system identi-
fication unveils the system’s inherent dynamics by
building a universal approximation model based on
observed data. The analysis or prediction of the
actual system is based on the model instead of the
measurement data. One prominent advantage of such
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an approach is that it is still able to represent the sys-
tem well when the noise is nonlinearly and causally
correlated to the system inputs and outputs. A mathe-
matic model of noise can be built and accommodated
in the general model creating an unbiased estima-
tion of the mean of the system output distribution
(Billings, 2013). There are two significant challenges in
parametric system identification.

Interpretability. Since parametric system identifi-
cation is a model-based analysis procedure, it is nec-
essary to build an interpretable model that can reveal
the physical properties of the underlying system. Inter-
pretability or transparency is often referred to as the
dependency and causality betweenmultiple inputs and
outputs, as well as the system spectrum properties.
The interpretable model should provide the system
structure information for analysis, such as the sys-
tem order (maximum time delay), significant system
inputs, dominating frequency response properties, etc.
However, this is challenging for the system identifica-
tion approaches acting as a black box where no a priori
knowledge is available about the actual system.

Identification with nonstationary realisations.
When a system is chaotic, unstable, or time-varying,
the observed data will be nonstationary, making
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modelling even more challenging. Conventionally,
nonstationary time series can be regarded as homoge-
neous or inhomogeneous according to whether they
can be stationarised by temporal pattern decompo-
sition. The temporal pattern of homogeneously non-
stationary time series is regarded as the intricate
combination of trend, seasonal, and stochastic patterns
(Box et al., 2015). If the time series is inhomogeneous
nonstationary, the actual underlying system may be
chaotic, time-varying and suffering from random dis-
turbance (Ardalani-Farsa & Zolfaghari, 2010; Billings,
2013; Liu et al., 2020). The training data space will be
impossible to cover all situations, and a fixed model
will always suffer from a covariate shift. So, it is chal-
lenging to build a robust and adaptivemodel capturing
all genuine dynamic characteristics of the actual sys-
temwhen themeasurement data is both homogeneous
and inhomogeneous nonstationary.

To tackle these challenges in the time domain,
the regressor library-based modelling like the deriva-
tion of Nonlinear AutoRegressive Moving Average
with eXogenous inputs (NARMAX) model with the
forward regression with Orthogonal Least Square
(FROLS) algorithm (Billings, 2013) and the deriva-
tion of the state-space model with Sparse Identifi-
cation of Nonlinear Dynamics (SINDy) algorithm
(Brunton et al., 2016) have been developed in the
past few decades. For the transparency problem, the
dependency between variables is revealed by select-
ing significant system inputs. The significant inputs
correlated to the system outputs or states can be
selected with Principal Component Analysis (PCA)
based Multiple Forward Regression with Orthogonal
Least Square (MFROLS) algorithm (Billings, 2013)
or Forward Orthogonal Search (FOS) algorithm by
maximising the overall dependency (MOD) (Wei &
Billings, 2007). Then the regressor library contain-
ing all lagged significant features with a certain max-
imum time delay can be built. The form of the
library component can be polynomial with a certain
degree of nonlinearity, sinusoidal function, wavelet
function and radial basis function (RBF) (Brunton
et al., 2016; Hong et al., 2008). The causality between
inputs and outputs can be revealed through Error
Reduction Ratio – causality test (Zhao et al., 2017)
or the NARX-based Granger causality test (Zhao
et al., 2013). As for the spectrum analysis for model
transparency, a polynomial and wavelet NARMAX
model can be transferred into generalised frequency

response functions (GFRF) by omitting noise terms
(Li & Billings, 2005).

For the time-invariant system with homogeneous
nonstationary realisations, when observed data
exhibits a trend and seasonal pattern, the Autore-
gressive Integrated Moving Average (ARIMA) model
can be used, which employs a certain order and
step difference operation to make time-series station-
ary. The ARIMA model can be extended to the sea-
sonal multiplicative model when the seasonal pat-
terns are interdependent. When heteroskedasticity
appears in the residual analysis, the Generalised Auto-
Regressive Conditional Heteroscedastic (GARCH)
model is commonly adopted to mitigate the problem
(Box et al., 2015). The ARIMA and GARCH models
can be generalised to aNonlinear AutoRegressive Inte-
gratedMoving Average with eXogenous Input (NARI-
MAX) model and NARMAX-based GARCH model,
respectively, when the mean function is nonlinear
(Bodhanwala, 2014; Neshat et al., 2018). When the
actual system is time-varying or suffering from distur-
bance generating inhomogeneous nonstationary reali-
sations, the sliding window approach can be applied to
select a commonmodel structure representing the sys-
tem structure, and the model parameters can be esti-
mated with adaptive parameter estimation techniques
such asKalmanfilter (KF), reclusive least square (RLS),
least mean square (LMS), Sequential Monte Carlo
(SMC) methods like particle filters (Schön et al., 2015)
or the wavelet modelling (He & Yang, 2021; Li et al.,
2016). It should be noted that selecting the appropri-
ate maximum time delay and degree of nonlinearity
to minimise the number of candidate model terms
in the library is critical for speeding up the calcula-
tion when applying traditional regressor library-based
modelling methods. However, it usually relies on a
priori knowledge.

In recent years, with the growth of computation
power, neural network-based methods have become
more popular in parametric system identification and
unknown function approximation because of their
prominent universal approximation ability (Aggarwal,
2018; Hornik et al., 1989; Jiao et al., 2018; Ljung et al.,
2020; Shen et al., 2020, 2021). Furthermore, the build-
ing procedure of the neural network model does not
rely on a priori knowledge about the actual system
because its structure-related factors are regarded as
hyperparameters that can be tuned in training and
validation (Goodfellow et al., 2016). However, very
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limited reviews have been reported on system identifi-
cationwith neural networks to summarise their advan-
tages and limitations and discuss the new challenges
and future trends addressed by this article. As far as we
are concerned, this is the first time that state-of-the-art
neural networks have been reviewed in the context of
parametric system identification. An additional nov-
elty of this paper is the proposal of a new angle for the
performance evaluation of neural networks, consider-
ing two criteria of interest in parametric system iden-
tification, interpretability and nonstationary. Another
contribution of this study is the systematic establish-
ment of a link between neural network-basedmethods
and non-neural network-basedmethods in the context
of parametric system identification.

2. The connection between neural networks
and parametric system identification

Neural networks for time-series modelling can be
generally classified into three types based on their
structure and training methods: feedforward neural
networks (FNN), recurrent neural networks (RNN),
and encoder-decoder models. Recently, the connec-
tion between neural networks and parametric mod-
els used for system identification has been studied in
(Ljung et al., 2020), where the FNNs and RNNs can
be regarded as a Nonlinear Autoregressive with Exoge-
nous inputs (NARX) and nonlinear state-space model,
respectively.

FNN is the neural network topology with no pre-
vious states or outputs feedback loop. According to
the structure of hidden units, FNN can be generally
divided into three types: the multilayer perceptron
(MLP)(Acuna et al., 2012; Wang & Song, 2014), the
radial basis function network (RBFN) (Ahmed et al.,
2010; Moody & Darken, 1988; Pérez-Sánchez et al.,
2018) and the temporal convolution neural network
(CNN) (Bai et al., 2018; Cao et al., 2021; Fan et al.,
2021; Hao et al., 2020; Oord et al., 2016; Tang et al.,
2022). FNN can be generally describedwith theNARX
model family, where the system is assumed to have
white noise. For simplicity, the single-input and single-
output (SISO) model is demonstrated in this paper.
The multi-input and multiple-output (MIMO) case,
where the variables are all endogenous, is referred to
as the nonlinear vector autoregressive (NVAR) model
and is usually used for iterative prediction (Gauthier
et al., 2021). The SISO NARX model can be described

Figure 1. The structure of series-parallel mode NARX MLP.

as follows:

y(k) = F[y(k − 1), y(k − 2), . . . , y(k − ny), u(k − 1),

u(k − 2), . . . , u(k − nu)] + e(k), (1)

where F[·] can be any nonlinear function and ny, nu are
the maximum time delay of the system output y and
exogenous input u respectively. The FNN representing
the NARXmodel is known as the series-parallel mode
NARX network (Jumilla-Corral et al., 2021; Wang &
Song, 2014). In Figure 1, an example of MLP repre-
senting the NARX model is illustrated.

The FNN uses the direct method for prediction.
The network output can be either a certain time step
ahead value y(k + n) or values over a certain time span
τ ahead {y(k + n), y(k + n + 1), . . . , y(k + n + τ)}.
As long as the FNNhas promising approximation abil-
ity, n steps can be long-term (Wei & Billings, 2006).
However, when the future input data is not avail-
able, only the reclusive method can be applied, which
implies that the previous prediction result of the FNN
must be used as input to produce a new prediction.
Since the FNN is trained with the direct method, as
long as the error between system output and model
output is not zero, the error will be accumulated as
the prediction goes on, ending up with a potentially
poor result (Wang & Song, 2014). To overcome this
problem, recurrent neural networks (RNNs) have been
developed.

In the RNN, past information is transferred through
the previous states or outputs, and each time step
shares the same weight, which is similar to the nonlin-
ear state space model. A general nonlinear state-space
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model in the discrete domain is described as follows
(Ljung et al., 2020):

x(t + 1) = f (x(t), y(t), u(t), θ) (2)

ŷ(t|θ) = h(x(t), θ), (3)

where x, y and u are the system state, output, and input
respectively. The nonlinear functions f and h can be
parametrised by θ in various ways. In RNNs, the f
and h become activation functions and θ become the
weights and biases. An example of vanilla RNN includ-
ing the previous output feedback (Jordan) type and
previous state feedback (Elman) type is shown below:

ht = σh(Whxxt + Whhyt−1 + bh) (4)

ht = σh(Whxxt + Whhht−1 + bh) (5)

yt = σy(Wyht + by). (6)

The Jordan RNN can be represented by Equations (4)
and (6). The Elman RNN can be represented by Equa-
tions (5) and (6). In Eqs. (4) – (6), the hypermeter
σh, σy are the activation functions of the hidden layer
and output layer, respectively. The parameter Whx,
Whh bh,Wy, by are the weights and biases of the hid-
den layer and output layer, respectively. The values
of ht−1 and yt−1 are the previous state and previous
output (Elman, 1990).Modern RNNs such as the long-
short term memory (LSTM) and gated recurrent unit
(GRU), which were developed based on the Elman
RNN by controlling the information flow with gates,
can also be regarded as examples of the nonlinear
state-space model (Ljung et al., 2020).

RNNs address the reclusive prediction error by
training via the backpropagation through time (BPTT)
within a selected time window τ (Werbos, 1990). The

BPTT takes the accumulated error into account by
updating parameters based on both current predic-
tion errors and future prediction errorswithin the time
window τ in training. Since the accumulated loss is
only optimised within τ , the value of τ should be
selected the same as or larger than the maximum time
delay of the input time series that affects the output.
Therefore, the time window is closely related to the
system order.

One limitation of the typical recurrent layer is that
the time window of its inputs and outputs is required
to be fixed during the training. To tackle this problem,
the encoder-decoder model, which is also referred as
the sequence to sequence (seq2seq) model, is designed
for modelling when the memory window of input and
output sequence is not fixed (Liu et al., 2021). The
typical seq2seq model using RNN as the encoder and
decoder is shown in Figure 2. Two separate RNNs
are adopted as the encoder and decoder, respectively
where the input time window ism and the output time
window is n. The encoder takes the input sequence
and only outputs a fixed-length vector to the decoder,
either using the state of the final time step or a tem-
poral embedding vector if the attention mechanism
is adopted to tackle the memory loss of the decoder
(Bahdanau et al., 2014; Vaswani et al., 2017). The
decoder takes the fixed-length vector for initial predic-
tion when a start token is received. The start token can
be either one hot vector or a part of time series before
the value is predicted (Vaswani et al., 2017; Zhou et al.,
2021). It should be noted that both FNN and RNN
can be used for the encoder and decoder (Lim &
Zohren, 2021). Furthermore, the decoder part can be
either autoregressive or non-autoregressive (Vaswani
et al., 2017; Zhou et al., 2021). Therefore, the type

Figure 2. Seq2seq model with RNN encoder and decoder expanding along time.
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of parametric model corresponding to an encoder-
decoder model is dependent on its specific structure.

3. Neural networkmodels for system
identification

In the paradigm of parametric system identification,
themodel is built based on observed system inputs and
outputs time series. Then the correlation, causality and
spectrum analysis, and system behaviour forecast are
implemented based on the identifiedmodel.When the
neural network acts as the model for parametric sys-
tem identification, the neural network will be trained
with the historical system inputs and outputs. Then the
analysis and prediction are implemented based on the
trained neural network.

Themodel interpretability andmodellingwith non-
stationary realisations are two challenges of para-
metric system identification. The interpretability of
a model often refers to the model’s transparency to
correlation, causality, and spectrum analysis. The sys-
tem characteristics, including the significant system
inputs, system order and delay information, should
be revealed through the parametric correlation and
causality analysis. For spectrum analysis, the model
built in the time domain should be capable of transfor-
mation to the frequency domain.However, the original
structures of deep neural networks are regarded as
black boxes and hard to interpret (Cui & Athey, 2022;
Rudin, 2019). Furthermore, for nonstationary time
series, conventional neural networks are incapable
of tracking data dynamics and adapting to under-
lying changes (Ditzler et al., 2015). Recently, some
research has been conducted to enhance the inter-
pretability of neural networks and their performance
in modelling nonstationary time series. Table 1 sum-
marises the research progress in addressing two major

challenges of parametric system identification based
on different types of neural networks for dynamic
system modelling.

3.1. System characteristic identification

In parametric system identification, the system char-
acteristics, including significant system inputs, system
order, delay information, and system spectrum infor-
mation, are identified based on the interpretation of
the parametric model. In Table 2, some milestone
works of system characteristic identification using dif-
ferent neural networks are reviewed in terms of their
key operations and limitations. The detail of these
milestone works and their follow-up works are dis-
cussed below.

3.1.1. The selection of significant system inputs
The first type of method to select significant system
inputs is based on the nonlinear Granger causality
(GC) test, where a measure is defined to evaluate
whether a certain input helps to predict the output.
Montalto et al. (2015) proposed an NN-GC approach
where the nonlinear GC is derived by calculating the
difference between prediction errors of MLP with and
without the past information of certain input variables
using the non-uniform embedding (NUE) strategy.
NUE is the framework to select the most informative
lagged input one after another. However, the imple-
mentation is complicated with high computational
costs. In (Wang et al., 2018), it has been tested that the
NUE strategy version of the 20-order NN-GC model
costs almost twice as much CPU time as the NN-GC
without NUE.

Based on NN-GC, in (Wang et al., 2018), the
RNN-GC framework was developed where both lin-
ear and nonlinear Granger causalities are derived by

Table 1. The capability of different types of neural networks to tackle parametric system identifica-
tion challenges.

Interpretability Nonstationarity

General NN
types Subtypes

Correlation
& Causality Spectrum

Homogeneous
nonstationary

Inhomogeneous
nonstationary

FNN MLP � �
RBFN � � �
CNN � �

RNN Vanilla RNNs �
Modern RNNs � �

Encoder –
decoder

Autoregressive
decoder

� � �

Non-autoregressive
decoder

� �
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Table 2. Summary of different types of neural networks in system characteristic identification.

Basic NN type Key operations Outcome
Revealed system
information Limitation

MLP (Montalto et al.,
2015)

• Adopting the NN in the NUE
framework.

• Measure the causality
according to relative prediction
error.

Nonlinear Granger
causality

• Significant system inputs • Input time series length
(maximum time delay) is
fixed.

• High computational costs.

RBFN (Billings et al.,
2007)

• Preselecting the centres of
kernels with K-means.

• Heuristically setting kernel
width.

• Selecting significant bases and
calculate their weights with
FROLS.

Parsimonious
Multiscale RBFN
structure

• System order
• Specific time delay of input

and output

Not fully end-to-end since the
pre-processing of kernel centre
and width selection is required.

MLP/ Vanilla RNN/
LSTM (Tank et al.,
2021)

• Adopting component-wise
structure to predict each
variable separately.

• LASSO penalty on the weights
of the first layer.

Nonlinear Granger
causality

• Significant system inputs
• System order (maximum

time delay)
• Inputs specific time delay

The latent confounder problem is
not considered.

CNN (Nauta et al., 2019) • Adopting depthwise structure
to separate the contribution of
inputs to different outputs.

• Detecting nonlinear correlation
between inputs and outputs
with thresholded attention.

• Measure the causality with
permutation importance
validation

Nonlinear Granger
causality

• Significant system inputs
• System order (maximum

time delay)

Specific time delays cannot be
revealed.

MLP/ Vanilla RNN (Fung
et al., 1997)

Approximating activation function
with truncated Volterra series

GFRF • System spectrum information Only applicable with single
hidden layer MLP and Jordan
RNN.

MLP (Tutunji, 2016) Approximating activation function
with the first two terms of the
Taylor series to avoid nonlinearity.

Transfer function • System spectrum information • Only applicable with single
hidden layer MLP.

• Only a linear transfer function
can be derived.

calculating the prediction error of LSTM with and
without a certain input variable. In comparison toNN-
GC (Montalto et al., 2015), which uses MLP as the
prediction model, RNN is less prone to overfitting
due to its weight sharing over time, which makes the
parameter dimension irrelevant to the length of the
input time series. This makes RNN-GC less sensitive
to the model order, resulting in a higher accuracy of
causality detection. Furthermore, since the parame-
ter dimension is irrelevant to the length of the input
time series, one fixed RNN structure is able to fit
time series with differentmaximum time delays, which
makes it more flexible than MLP (Wang et al., 2018).
A similar framework has been implemented in (Rosoł
et al., 2022), except that the Wilcoxon signed-rank
test is adopted to assess the significance of causality.
In (Li et al., 2020), causality is expanded to include
the effect of future values on present values, which
is detected using a bidirectional LSTM. Recently, Liu
et al. (2021) proposed the seq2seq-LSTM Granger
Causality (SLGC) framework, where the LSTM-based
encoder-decoder model is adopted for prediction. The
seq2seq model can be adopted when the length of the
input and output sequence is not fixed and equal in

training. The nonlinear Granger causality is calculated
by comparing the fraction of variance explained by
the forecastingmodel with and without a certain input
variable, measured by the R-squared score. However,
these methods are relatively more complicated than
the following fully end-to-end method.

The sparse regression method is another way to
select significant system inputs where the nonlin-
ear GC between inputs and outputs is derived in a
fully end-to-end manner. In (Tank et al., 2021), the
component-wise LSTM (cLSTM) was developed to
disentangle the contribution of different inputs to the
outputs. The group least absolute shrinkage and selec-
tion operator (LASSO) penalty is applied on all weights
in the first cLSTM layer. Both gate weights and cell
state weights show the same sparsity pattern indicat-
ing the significant inputs. However, only the causality
can be detected in cLSTM, while the maximum time
delay and specific time delay cannot be derived by the
penalty-based method on RNN. Because the weight is
allocated for each time step in MLP while the weight
of RNN shares over time, there is no way to inspect
the contribution of a variable at a certain time step
according to the weight of RNN.
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Similarly, in (Khanna & Tan, 2019), the causality
was derived by applying group LASSO penalty on the
economy statistical recurrent unit (eSRU) which is a
simplified version of SRU with fewer parameters to
make it less susceptible to overfitting. In testing, with
the simulation dataset that includes Lorenz-96 and
vector autoregression (VAR), the eSRU with LASSO
penalty demonstrates almost perfectly recover of the
true causality, achieving an Area Under the Receiver
Operating Characteristic curve (AUROC) of nearly
93%. This AUROC is more than 10% higher than that
of cLSTM. Similarly, for the blood oxygenation level
dependent (BOLD) imaging dataset, the eSRU out-
performs cLSTM significantly, achieving an additional
AUROC of nearly 14%. However, in the DREAM-3
In Silico Network Challenge dataset, the eSRU only
exhibits a slight improvement over cLSTM. One lim-
itation of all research mentioned above is that the
hidden confounder problem has not been considered.

3.1.2. The identification of system order and specific
delay terms
The identification of system order (maximum time
delay) and the specific input-output time delay is usu-
ally more challenging than the selection of significant
system inputs because the delay information should be
revealed in the causality analysis. In (Tank et al., 2021),
the component-wise MLP (cMLP) is developed to dis-
entangle the contribution of different inputs to the
outputs. The nonlinear Granger causality, maximum
time delay and specific time delay can be derived by
applying the group LASSO, hierarchical LASSO, and
group sparse group LASSO penalty on the first hidden
layer respectively. However, the hidden confounder
problem has not been considered.

In (Billings et al., 2007), the multiscale RBFN was
developed to capture the system dynamics. Similar
to the derivation of the polynomial NARMAX model
with ERR-OLS, the FROLS algorithm is applied to
select significant RBF bases and calculate their weights
(Billings, 2013; Billings et al., 2007). Since the delay
information is contained in RBF bases, the system
order and specific input-output delay information can
be revealed. However, pre-processing such as cluster-
ing is required to determine the centre and width of
each node heuristically, whichmakes it relatively more
complicated than the fully end-to-end method.

Nauta et al. (2019) developed the Temporal Causal
Discovery Framework (TCDF) to obtain causality

while predicting the target time series. In the TCDF,
the Attention-based Dilated Depthwise Separable
Temporal Convolutional Networks (AD-DSTCNs)
was developed to separate the contribution of inputs to
different outputs when representing the NVARmodel.
In AD-DSTCNs, the nonlinear correlation between
inputs and outputs is derived by the hard spatial atten-
tion which is implemented by setting the threshold on
the attention score since the correlation and causality
are binary decision problems. Then all the input vari-
ables correlated to the output are regarded as potential
causes of the output and validated by the permutation
importance validation method to find true causes if all
confounders aremeasured. Finally, themaximum time
delay (system order) can be discovered by following
the path with the highest kernel weights from the out-
put layer back to the input layer thanks to the depth-
wise separable structure and weight-sharing property
of convolution layers. However, the specific time delay
cannot be derived since only the path with the highest
kernel weights can be tracked.

3.1.3. Spectrum analysis
Similar to the conventional parametric system iden-
tification approach (Li & Billings, 2005), the spec-
trum analysis for the neural networks trained in the
time domain is based on model transformation. How-
ever, up to now, only single-hidden-layer MLP and
RNN can be transferred to a frequency domain model
for spectrum analysis. In (Fung et al., 1997), the
GFRF of single-hidden-layer MLP and Jordan RNN is
derived through truncatedVolterra series expansion of
the activation function. However, the applications on
modern RNNs, such as LSTM and GRU have not been
studied. In (Tutunji, 2016), the linear transfer function
of the single-hidden-layer MLP whose input includes
both system’s historical input and output is derived
by approximating the activation function with the first
two terms of the Taylor series expansion to avoid non-
linearity. However, the nonlinear GFRF is not derived,
which ends up with a steady-state error when theMLP
represents nonlinear systems.

3.2. Systemmodelling with nonstationary
realisations

There are generally two types of training methods for
neural networks, either online or offline, for tracking
the data dynamics and adapting to the underlying
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system changes from nonstationary realisations. The
online training method is adopted to adjust the neural
networks when the system is chaotic or time-varying
generating inhomogeneous nonstationary time series.
The offline method is more often employed to train
neural networks to learn the trend and seasonality
of homogeneous time series. Some milestone works
of modelling using neural networks with nonsta-
tionary realisations are reviewed and summarised in
Table 3 with respect to their training types and key
operations.

3.2.1. Homogeneous nonstationary
To address homogeneous nonstationary time series,
Wu et al. (2021) proposed the Autoformer to learn the
intricated temporal pattern for long-term predictions.
In the Autoformer, the auto-correlation mechanism
was developed to detect period-based dependency
and aggregate corresponding subseries as temporal
embeddings. Then, the series decomposition block
is designed to decompose seasonality and trend
progressively. The encoder only focuses on sea-
sonal part modelling and the decoder predicts the
trend and seasonal component with accumulation
structure and stacked Auto-Correlation mechanism,
respectively. This approach outperformed the self-
attention-based model like Informer (Zhou et al.,
2021) andReformer (Kitaev et al., 2020) since the auto-
correlation mechanism learns the sub-series depen-
dency while the self-attention mechanism only learns
the point-wise dependency (Wu et al., 2021). It also
outperformed the neural networks that decompose

trend and seasonality in pre-processing, such as the
CNN-based DeepGLO (Sen et al., 2019) and MLP-
based N-BEATS (Oreshkin et al., 2020). This is
because the pre-processing is constrained to historical
information while Autoformer progressively decom-
poses seasonality and trend series throughout the
whole forecasting process (Wu et al., 2021). How-
ever, due to its complicated and fixed structure, it
is non-adaptive to track the time-varying underlying
process dynamics in inhomogeneous non-stationary
data.

In (Chng et al., 1996), the gradient RBF (GRBF)
network was developed, where the input of RBFN
becomes a certain order difference operation of the
historical data. The order of the difference operation
is a hyperparameter that can be tuned to achieve lower
loss. The purpose of the difference operation is tomiti-
gate the trend and seasonal effect.When a certain input
is close to the centre of a hidden unit, the hidden unit
is activated, performing as a localised one-step-ahead
prediction of the output. Hence, the GRBF senses a
certain order of localised derivative of time series,
which captures the trend and seasonal pattern. How-
ever, the significant inputs of the actual system cannot
be selected in the samemanner as (Billings et al., 2007)
since the input of GRBF is a certain order difference
of data instead of the data from the original mea-
surement space. Although the fixed structure makes
it non-adaptive to underlying changes in inhomoge-
neous nonstationary realisations, the shallow structure
of RBF allows it to be adjusted to be adaptable (Liu
et al., 2020).

Table 3. Milestone works of modelling using neural networks with nonstationary realisations.

Nonstationary type Basic NN type Training type Key operations

Homogeneous RBFN (Chng et al.,
1996)

Offline • Taking the difference operation of inputs to
decompose trends and seasonality

Homogeneous Encoder-decoder
(Wu et al., 2021)

Offline • Detect period-based dependency with Auto-
correlation mechanism

• Decompose seasonality and trend progres-
sively with a Series decomposition block

Inhomogeneous RBFN (Chen et al.,
2016)

Online • Detect the time to replace the kernel according
to the squared relative error

• Select the kernel to be replaced according to
the weighted node-output variance

• Update parameters with RLS
Inhomogeneous Encoder-decoder

(Du et al., 2021)
Offline • A time series is separated into various homo-

geneous intervals with a temporal distribution
characterisation module.

• Common knowledge is extracted from various
homogeneous intervals by the temporal distri-
bution matching module.

Homogeneous &
Inhomogeneous

RBFN (Liu et al.,
2020)

Online • Combine the GRBF (Chng et al., 1996) and fast
tuneable RBF (Chen et al., 2016)
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3.2.2. Inhomogeneous nonstationary
For the inhomogeneous nonstationary time series, the
actual system may be time-varying or suffering from
different disturbances. Some traditional methods like
RLS can be used to adaptively estimate the weight
of RBFN online (Chen, 1995). For simplicity, a large
number of training data can be randomly selected as
kernel centres, and then RLS can be applied to estimate
the weight, which is known as the online sequential
extreme learning machine (OS-ELM) (Wang & Han,
2014). However, adaptively learning the weight of the
fixed structure of RBFN is not expressive enoughwhen
the significant inputs and causal relationship are time-
varying (Liu et al., 2020). The fast-tuneable RBF was
developed to adaptively learn the network structure
and parameters. The node will be replaced when the
squared relative error (SRE) is larger than a user-set
threshold. The node with the least contribution mea-
sured by weighted node-output variance (WNV) will
be abandoned. One simple way to set new node cen-
tre and width is using the current input data and the
new maximum distance between centres, respectively.
Then the weight can be updated with gradient descent
or least squares. If no node is replaced, parameters will
just be updated by RLS (Chen et al., 2016). However,
the fast-tuneable RBF doesn’t take the homogeneous
nonstationary condition into account.

Inspired by the conventional sliding-windowmodel
structure selection approach, Du et al. (2021) pro-
posed an adaptive RNNs (AdaRNN) framework to
identify different phases and fitted one robust model
capturing the common knowledge shared among dif-
ferent periods. In AdaRNN, the target time series are
split into K most dissimilar segments by reclusively
maximising the distance between distributions of the
randomly selected period with the greedy algorithm
in the Temporal Distribution Characterisation (TDC)
module. Then each segment is regarded as a homo-
geneous interval. Finally, an RNN-based encoder-
decoder model is adopted to robustly fit all selected
phases by matching distributions between RNN states
from different phases to extract common knowledge
in the encoder with the Temporal DistributionMatch-
ing (TDM) module. However, the end-to-end opti-
misation of both TDC and TDM remains a problem.
Furthermore, the adaptive parameter learning meth-
ods have not been considered, which makes it hard to
track some rapid changes in the time series generated
by a time-varying system.

Recently, Liu et al. (2020) combined the GRBF and
the fast tuneable RBF creating the fast adaptive GRBF
networks which is capable of identifying the system
with data that is both homogeneous and inhomoge-
neous nonstationary. However, it still suffers from the
same problem as the GRBF that the significant inputs
of the actual system cannot be selected.

4. Research gaps and future direction

Many processes in climate systems and neuro systems
are inherently nonstationary, which makes the system
characteristics identification challenging (He & Yang,
2021; Zhao et al., 2016). In conventional parametric
system identification approaches, a robust and adap-
tive parsimonious model, such as the time-varying
NARMAX (TV-NARMAX), can be derived with non-
stationary realisations. The system input-output delay
information can be revealed in the model structure
and the spectrum information can be revealed by
transferring the TV-NARMAX model in the time
domain to a time-varyingGFRF (TV-GFRF) (He et al.,
2013, 2015; Li et al., 2017) in the frequency domain.
The significant inputs can be derived by the windowed
ERR-based causality test (Zhao et al., 2012, 2017).
Although a lot of studies have been carried out to either
improve the interpretability of neural networks in the
stationary scenario or their prediction performance
with nonstationary realisations, the system charac-
teristics identification with nonstationary realisations
based on neural networks is overlooked, which poten-
tially attracts future research. Although some state-of-
the-art (SOTA) neural networks, such as Autoformer
and AdaRNN, have been developed, there has been
very limited research on long-term forecasting with
both homogeneous and inhomogeneous realisations.
A potential future research direction could bemerging
the TDC and TDM mechanisms from AdaRNN into
the Autoformer to enhance its adaptability.

In conventional parametric system identification,
the residual analysis is critical for model validation
during a homogenous interval. Whether the resid-
ual is white noise indicates if all useful information
in both input and output time series has been fully
extracted by the model. If the residual is autocorre-
lated, the model is biased. Furthermore, if the residual
is correlated with the explanatory variables, a condi-
tion known as endogeneity, the model is also biased
(Box et al., 2015). Noise modelling should usually
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be considered to create unbiased estimation (Billings,
2013). On the other hand, if the residual has zero
mean but its variance is always changing, a condition
known as heteroscedasticity, the model is unbiased
but the confidence intervals and hypotheses tests can-
not be relied on. Then some models should also be
built to estimate the change of variance (Bodhanwala,
2014; Box et al., 2015). Most of the validation and test-
ing of neural networks in previous research is only
based on prediction errors, while the residual analy-
sis has not been considered. The question of whether
the produced neural network is unbiased and has valid
confidence intervals is often neglected, but it is impor-
tant in parametric system identification. Although the
residual analysis is considered in (Ljung et al., 2020),
noise modelling and variance estimation with neural
networks remain a problem. Therefore, it is still diffi-
cult to build an unbiased neural network model when
the noise is coloured and correlated with system inputs
and outputs. Future research is required to address
this bottleneck to further promote neural networks in
system identification.

5. Conclusions

This paper reviewed recent studies on parametric
system identification based on three types of neu-
ral networks, including feedforward neural networks,
recurrent neural networks and encoder-decoder, which
have better approximation ability and rely less on prior
knowledge than conventional approaches. It has been
discovered that the FNNs and RNNs can be regarded
as NARX and nonlinear state-space models, respec-
tively, while the parametricmodel corresponding to an
encoder-decoder depends on its specific structure. In
system characteristic identification based on the inter-
pretation of neural networks, it is observed that more
research has been conducted on selecting significant
inputs and extracting input-output delay information,
whereas the spectrum analysis with neural networks
has been relatively less studied and presents an area
for future research. On the other hand, system mod-
elling with both homogeneous and inhomogeneous
realisations have been less studied, leaving a gap for
future research. Furthermore, long-term forecasting
with both homogeneous and inhomogeneous realisa-
tions could be potentially handled by leveraging the
advantages of multiple SOTA neural networks, such
as Autoformer and AdaRNN. Finally, it was identified

that system characteristics identification with nonsta-
tionary realisations andmodelling with coloured noise
based on neural networks remain understudied and
waiting to be explored.
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