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Abstract

Required sample sizes for a study need to be carefully assessed to account for logistics,

cost, ethics and statistical rigour. For example, many studies have shown that methodo-

logical variations can impact the critical thermal limits (CTLs) recorded for a species,

although studies on the impact of sample size on these measures are lacking. Here, we

present ThermalSampleR; an R CRAN package and Shiny application that can assist

researchers in determining when adequate sample sizes have been reached for their

data. The method is particularly useful because it is not taxon specific. The Shiny applica-

tion offers a user-friendly interface equivalent to the package for users not familiar with

R programming. ThermalSampleR is accompanied by an in-built example dataset,

which we use to guide the user through the workflow with a fully worked tutorial.
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INTRODUCTION

Insufficient sample sizes in a study represent a waste of resources by

not having the power to reliably detect patterns in the data, which

can lead to incorrect inferences and inappropriate management inter-

ventions (Duffy et al., 2021). Oversized studies consume more

resources than is necessary, which imposes unnecessary costs and

provides little improvement in the ability to answer particular ecologi-

cal research questions (Forcino et al., 2015). For studies that involve

animals, and particularly threatened species, sample size determina-

tion is important for ethical reasons too (Duffy et al., 2021). Indeed,

many journals, institutions and ethics committees require that

researchers justify the number of samples used during the study

(Hampton et al., 2019), which should be determined as the minimum

sample size necessary to achieve the goals of the study (Fitts, 2011).

Recently, several studies have shown that the results and

inferences obtained from thermal tolerance studies can be signifi-

cantly affected by methodological choices when designing and per-

forming the experiments, such as the use of a pre-experimental

acclimation period, the temperature ramping rate and ramping inter-

vals (e.g., Chown et al., 2009; Nyamukondiwa & Terblanche, 2009;

Rezende et al., 2014). Similarly, Duffy et al. (2021) demonstrated that

the number of individuals tested during thermal tolerance studies

(sample size) can significantly bias the results obtained and any infer-

ences drawn from these studies. Determining the sample size require-

ments for a study is an essential component of study design, which
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can have serious consequences for the logistics, cost, ethics and sta-

tistical rigour of the study (Arnold et al., 2011; Gerrodette, 1987).

Insect thermal limit studies are plentiful and therefore offer an ideal

source of data for exploring sample size requirements. Most insects are

poikilothermic ectotherms (Sinclair et al., 2015), and so their bodily func-

tions and life history characteristics are strongly correlated to the ambient

microclimate (Neven, 2000; Nguyen et al., 2014; Sinclair et al., 2015). To

survive and reproduce, insect body temperatures need to be maintained

within the limits of their thermal tolerance range (Koštál et al., 2011;

Nguyen et al., 2014). As such, thermal tolerances can be used to explain

the geographical distributions (Rezende et al., 2014; Sinclair et al., 2015)

and the performance of insects under different environmental conditions

(Nguyen et al., 2014; Nyamukondiwa & Terblanche, 2009; Sinclair

et al., 2015). In this vein, thermal tolerance investigations have been used

to determine the establishment and spread of insect pests (Wang

et al., 2019) and biological control agents (Coetzee et al., 2007).

The applicability of these studies has increased recently as

researchers aim to forecast changes in faunal and floral assem-

blages under current and future climate change scenarios (Bennett

et al., 2018; Duffy et al., 2015; Rezende et al., 2014).

In this paper, we present ThermalSampleR—an R package and R

Shiny graphical user interface (GUI) application that allows users to easily

assess the sample sizes required to obtain reliable and accurate thermal

physiology parameters (e.g., critical thermal limits [CTmin/CTmax]). Ther-

malSampleR is designed to make analysing sample size requirements

simple and provide easily interpretable summary statistics. The Shiny GUI

provides the functionality of the full R package to researchers with little

to no experience in R.

PACKAGE BACKGROUND

Several tools and analyses have been developed to aid in sample size

planning for biological studies, primarily focusing on the use of power

calculations (Peterman, 1990; Toft & Shea, 1983). The power of a sta-

tistical test refers to the probability that the test correctly rejects

the null hypothesis. However, power calculations are centred on

assessing whether sample sizes are large enough to detect a statis-

tically significant difference between groups (i.e., correctly reject-

ing the null hypothesis using a p-value). They are, therefore, of

little use for estimating the critical thermal limit (CTL) of a single

population or assessing the accuracy and precision of between-

group differences in thermal tolerance parameters. To remedy this,

many researchers have adopted the practice of calculating the

effect of sizes (e.g., difference in means/medians) and 95% confi-

dence intervals (CIs) for a more rigorous and intuitive method to

make comparisons amongst groups, rather than by simply relying

on a p-value (Gardner & Altman, 1986; Halsey, 2019; Nakagawa &

Cuthill, 2007). Practitioners need to consider sample size planning

for both power and accuracy in parameter estimation (AIPE), which

both require different statistical approaches (Maxwell et al., 2008).

To account for sample size planning for both power and AIPE,

the ThermalSampleR package uses simulation and bootstrap

resampling procedures to calculate population parameters and CIs

(Maxwell et al., 2008). The CI approach to power planning has the

added benefit (as compared to obtaining a p-value) of indicating a

direction of effect. Moreover, CIs can be used to assess sample

size planning for AIPE by computing and controlling the CI of the

parameter of interest (Maxwell et al., 2008). This contains two dis-

tinct components: (1) planning for accuracy, whereby researchers

assess the probability that the CI contains the true population parameter

of interest (e.g., CTmin/CTmax), and (2) planning for precision, where preci-

sion is measured by the width of the CI (i.e., a smaller CI width indicates

a more precise estimate of the population parameter; Maxwell

et al., 2008).

CTL studies can be divided into two broad categories: single-

sample studies and multiple-group comparison studies. Single-

sample studies use an estimate of a population parameter of inter-

est, such as the CTmin/CTmax of a single population of a species.

These kinds of studies are usually descriptive, or may be of interest

to predict where the best release sites could be in the country of

introduction for a new biocontrol agent, or how insects could be

expected to respond to climate change (e.g., Coetzee et al., 2007).

Two- or multiple-group comparison studies use an estimate of the

possible difference in CTLs between different groups. Examples of

these kinds of studies include, amongst others, those where multi-

ple species or populations of a biological control agent need to be

compared to determine which would be better suited for release at

a specific site, or where the CTLs of groups exposed to different

environmental conditions are compared to determine whether

acclimation is possible (e.g., Porter et al., 2019). The functions pro-

vided within the ThermalSampleR package are distinguished by

whether the experimental data originates from a single-sample

(boot_one() and plot_one_group()) or multiple-group comparisons

study (boot_two() and boot_two_groups()).

TUTORIAL

The following tutorial illustrates the core functions available within the

ThermalSampleR package. Our goal is to provide an easy-to-follow and

fully reproducible analysis of both a sample size assessment for (a) a sin-

gle-sample study and (b) a multiple-groups comparison study.

Package installation

ThermalSampleR can be accessed by running one of the options

below in R:

1. Via the CRAN repository

install.packages("ThermalSampleR")

2. GitHub

devtools::install_github
("clarkevansteenderen/ThermalSampleR")
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3. The R Shiny GUI can be accessed directly on the R console by

running

library(shiny)
shiny::runUrl(
"https://github.com/clarkevansteenderen/
ThermalSampleR_Shiny/
archive/main.tar.gz")

or via the link to the R Shiny application server:

https://clarkevansteenderen.shinyapps.io/ThermalSampleR_Shiny/

Data structure

This tutorial uses the coreid_data dataset as an example, which

is a data frame/tibble included in the package. This dataset

represents the CTmin data for the twig-wilting bug Catorintha

schaffneri (Hemiptera: Coreidae), a biological control agent

introduced into South Africa from Brazil to control the invasive

cactus Pereskia aculeata Miller (Cactaceae; Muskett et al., 2020).

The dataset contains two columns, the first being col, which

contains a unique identifier label (e.g., a species/taxon/population

name), distinguishing data obtained from adults (Catorhintha_

schaffneri_APM) or nymphs (Catorhintha_schaffneri_NPM). The

second column, response, contains a numeric vector containing

our response variable, the CTmin value (in �C). Each row represents

a unique individual that was tested during the experiment. Before

starting any analyses, we can inspect the raw data:

head(ThermalSampleR::coreid_data)
## col response
## 1 Catorhintha schaffneri_APM 5
## 2 Catorhintha schaffneri_APM 5
## 3 Catorhintha schaffneri_APM 5
## 4 Catorhintha schaffneri_APM 4
## 5 Catorhintha schaffneri_APM 4
## 6 Catorhintha schaffneri_APM 4

Sample size assessment—single sample

The simplest application of ThermalSampleR is to evaluate

whether a study has used a sufficient sample size to accurately

estimate a parameter of interest for a single taxon. Below, we illus-

trate this by performing these calculations to estimate sample sizes

required to accurately estimate the CTmin of adults of C. schaffneri

(denoted by Catorintha_schaffneri_APM in coreid_data; Muskett

et al., 2020). This simulation uses a bootstrap resampling proce-

dure to estimate the width of the 95% CI of the parameter of inter-

est estimate across a range of sample sizes, which defaults to

starting at n = 3 individuals tested, and which can be extrapolated

to sample sizes greater than the sample size of the existing data by

specifying a value to n_max:

# Set a seed to make the results
reproducible, for illustrative purposes.
set.seed(2012)

# Perform simulations
ThermalSampleR::bt_one = boot_one(

# Which dataframe does the data come from?
data = coreid_data,
# Provide the column name containing the
taxon ID
groups_col = col,
# Provide the name of the taxon to be
tested
groups_which = "Catorhintha_schaffneri_
APM",
# Provide the name of the column
containing the response variable (e.g
CTmin data)
response = response,
# Maximum sample to extrapolate to
n_max = 49,
# How many bootstrap resamples should be
drawn?
iter = 299)

The variable containing the bootstrap resamples should then be

passed to the plot_one_group() function to visualise the simulation

results. A number of optional parameters can be passed to the func-

tion to alter the aesthetics of the graphs:

ThermalSampleR::plot_one_group(
# Variable containing the output from
running boot_one() function
x = bt_one,
# Minimum sample size to plot
n_min = 3,
# Actual size of your existing dataset
n_max = 15,
# Colour for your experimental data
colour_exp = "forestgreen",
# Colour for the extrapolated predictions
colour_extrap = "orange",
# Position of the legend
legend.position = "right")

Inspecting Figure 1a, we visualise the precision of our CTmin esti-

mate for adult C. schaffneri, whereby precision is measured as the

width of a 95% CI. For example, in the context of CTLs, a CI width of

1 indicates that practitioners can be 95% confident that their CTL

estimate is within 1�C of the true CTmin value. The smaller the CI

width, the greater the precision of the CTL estimate. In this example,

the precision of our CTmin estimate was high and was not predicted to

improve substantially by increasing sample size once approximately

n = 20 individuals were tested, as the 95% CI reached a plateau at

n = 20. The plateau is in the extrapolation section of the graph
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indicating that more individuals would need to be tested for the

95% CI to become approximately stable. However, at the existing sam-

ple size of n = 15, the researchers could be relatively confident that the

CTmin estimate they have obtained is precise to within approximately

1.2–1.5�C. Researchers will need to decide for themselves what an

acceptable degree of precision is for their own datasets.

Inspecting Figure 1b, we visualise the sampling distribution (i.e., the

range of plausible CTmin values) for the taxa under study. This assessment

can produce biased results at small sample sizes because the population

parameter (e.g., the taxon’s CTmin) is unknown and must therefore be esti-

mated from the experimental data. Figure 1b gives an indication of param-

eter estimation accuracy by plotting the proportion of bootstrap resamples

across each sample size for which the 95% CI included the estimated pop-

ulation parameter. An accurate parameter estimate should produce CIs

that, on �95% of occasions, contain the estimated population parameter.

In this example, the accuracy of our CTmin estimate was high once n > 10

individuals were tested. As noted above, because the true population

parameter is estimated from the raw data, this analysis of parameter accu-

racy may be biased, and thus, should be interpreted with caution.

Take-home message: As long as the researchers were content with

obtaining a CTmin estimate for adult C. schaffneri with a precision of

approximately 1.2–1.5�C, the experiment could be concluded at

n = 15 individuals tested. Adding additional samples above n = 15

would likely improve the precision of the CTmin estimate; however,

the gain in precision must be considered in light of the logistics, costs

and ethics of testing additional specimens.

Sample size assessment—Multiple-group comparisons

ThermalSampleR also allows the user to estimate sample size ade-

quacy for studies comparing the CTLs across multiple groups

(e.g., testing for differences in CTmin between different taxa, popula-

tions, treatments applied and sexes). For example, the built-in example

data (coreid_data) in ThermalSampleR contains CTmin data for

30 adults and 30 nymphs of C. schaffneri. Researchers may be inter-

ested in determining whether releasing adults or nymphs would lead

to better establishment rates in the field. As such, the researchers

could assess the CTmin of each life stage and use these data to

release the life stage with the lower CTmin value as they would be

assumed to better tolerate low temperatures. To do this, we apply a

similar workflow as per the ‘single sample’ assessments in the previ-

ous section. We use a bootstrap resampling procedure to estimate

the width of the 95% CI of the difference in CTmin estimates

between our two groups of interest (C. schaffneri adults vs. nymphs)

across a range of sample sizes:

# Set a seed to make the results
reproducible, for illustrative purposes.
set.seed(2012)

# Perform simulations
ThermalSampleR::bt_two = boot_two(

# Which dataframe does the data come from?
data = coreid_data,
# Provide the column name containing the
taxon ID
groups_col = col,
# Provide the name of the column
containing the response variable (e.g
CTmin data)
response = response,
# Provide the name of the first taxon to be
compared
group1 = "Catorhintha_schaffneri_APM",
# Provide the name of the second taxon to
be compared
group2 = "Catorhintha_schaffneri_NPM",
# Maximum sample to extrapolate to
n_max = 49,
# How many bootstrap resamples should be
drawn?
iter = 299)

F I GU R E 1 Results of the single-sample sample size assessment for Catorintha schaffneri adults. Panel (a) shows the precision of the CTmin

estimate for C. schaffneri, where precision is measured as the width of a 95% confidence interval. Panel (b) shows the sampling distribution
(i.e., the range of plausible CTmin values) for C. schaffneri.
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The variable containing the bootstrap resamples should then be

passed to the plot_two_groups() function to visualise the simulation

results. A number of optional parameters can be passed to the func-

tion to alter the aesthetics of the graphs:

ThermalSampleR::plot_two_groups(
# Variable containing the output from
running the boot_two() function
x = bt_two,
# Minimum sample size to plot
n_min = 3,
# Actual size of your existing dataset
n_max = 30,
# Colour for your experimental data
colour_exp = "blue",
# Colour for the extrapolated predictions
colour_extrap = "red",
# Position of the legend
legend.position = "right",
# Change the degree of shading on the
graph
alpha_val = 0.25)

Figure 2a can be interpreted analogously to Figure 1a produced dur-

ing the ‘single sample’ assessments in the previous section. Here, we are

visualising the precision of our estimate for the difference in CTmin of

C. schaffneri adults versus nymphs across sample sizes. In this example,

where n = 30 individuals were tested for both adults and nymphs of

C. schaffneri, the precision of our estimated difference between the

groups was high and is not predicted to improve substantially by

increasing sample size, as the 95% CI reached a plateau at approxi-

mately n = 25. At n = 30, the researchers could be relatively confi-

dent that the difference in CTmin between adults and nymphs

could be estimated to within 1.5�C precision. The researchers will

need to decide for themselves what an acceptable degree of preci-

sion is for their own datasets. In Figure 2b, we visualise the 95% CI

of the mean difference in CTmin between adults and nymphs. At

n = 30 individuals tested, it appears that the CTmin of one group

(C. schaffneri adults) may be slightly higher than for nymphs. How-

ever, the 95% CI overlaps 0, indicating that the CTmin of adults and

nymphs are unlikely to be significantly different. Moreover, limits

of the 95% CI are relatively stable, indicating that adding additional

samples is unlikely to change the results obtained.

Take-home message: As long as the researchers were content with

obtaining an estimate for the difference in CTmin between

C. schaffneri adults and nymphs with a precision of approximately

1.5�C, the experiment could be concluded at n = 30 individuals

tested. Adding additional samples above n = 30 would likely improve

the precision of estimate; however, the gain in precision appears mini-

mal and must be considered in light of the logistics, costs and ethics

of testing additional specimens.

Sample size assessment—Test of Total Equivalency

Duffy et al. (2021) adopted a slightly different approach for assessing

sample size requirements for CTL studies by using an equivalency

F I GU R E 2 Results of the sample size assessments for the comparison of Catorintha schaffneri adults and nymphs. Panel (a) shows the
precision of the estimate for the difference in CTmin for C. schaffneri adults versus nymphs across sample sizes. Panel (b) shows the
95% confidence interval of the mean difference in CTmin between adults and nymphs.
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testing approach. Their approach differed from ours by randomly

resampling simulated datasets with varying skewness characteristics

rather than resampling the raw data. Thereafter, the authors com-

pare the mean and variance of smaller subsets of the full dataset to

the full dataset using a ‘two one-sided t-test’ approach (Duffy

et al., 2021). Tests applied were either standard one-sided t-tests

(for normally distributed datasets) or Chen’s modified one-sided t-

test (Chen, 1995). The user can specify an equivalence margin indi-

cating the acceptable degree of error between the data subsets and

the full dataset (e.g., an equivalence margin of 1�C indicates whether

the mean or variance of the thermal limit for each subsample was

within 1�C of the full dataset). The value of the approach adopted

by Duffy et al. (2021) is that it accounts for the often-skewed distri-

bution of thermal limits datasets (Janion-Scheepers et al., 2018).

ThermalSampleR allows users to calculate sample size

requirements using this Test of Total Equivalency (TOTE) as devel-

oped by Duffy et al. (2021), using the equiv_tost() function. Using

the same coreid dataset from the previous sections, we illustrate

below how to assess sample size requirements to precisely estimate

the CTmin parameter for adult C. schaffneri across a range of sample

sizes (i.e., in a single-sample study design):

tte = ThermalSampleR::equiv_tost(
# Which dataframe does the data come from?
data = coreid_data,
# Provide the column name containing the
taxon ID
groups_col = col,
# Provide the name of the taxon to be
tested

F I GU R E 3 Test of Total Equivalency output for Catorintha schaffneri. Panel (a) shows the equivalence of means, and panel (b) shows the
equivalence of variances. Both graphs are simulated for low (1) and high (10) skewness in the data and show a plateau in the curves.

F I GU R E 4 Test of Total Equivalency using only six Catorintha schaffneri individuals. Panel (a) shows the equivalence of means, and panel
(b) shows the equivalence of variances. Both graphs are simulated for low (1) and high (10) skewness. Neither panel has reached a plateau.
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groups_which = "Catorhintha
schaffneri_APM",

# Provide the name of the column containing
the response variable (e.g CTmin data)

response = response,
# Define the skewness parameters
skews = c(1,10),

# Define the equivalence of subsets to full
population CT estimate (unit = degree
Celcius)

equiv_margin = 1,
# Size of the population to sample (will
test subsamples of size pop_n - x against
pop_n for equivalence). Defaults to
population size = 30

pop_n = 30
)

Inspecting both panels in Figure 3 indicates that the

researchers would have been able to obtain CTmin estimates

(in terms of both the mean and variance) equivalent to within 1�C

of the estimates derived from the full dataset (n = 30) if they had

tested approximately 10–12 individuals, irrespective of the skew-

ness in the underlying data.

The more important application of the TOTE approach is to itera-

tively assess sample sizes during the course of the experiment. Duffy

et al. (2021) recommend collecting some pilot data and then assessing

the sample size requirements to estimate CT traits. For example, had

we tested six insects in a pilot study and assessed the sample size

requirements, we would obtain the graphs in Figure 4. It is evident

that testing six individuals was not sufficient to obtain a reliable esti-

mate of the CT trait in this example. The researchers would then add

additional samples to their study (e.g., add another 10 individuals) and

then retest the sample size requirements, repeating the process until

the TOTE curves plateau.

CONCLUDING REMARKS

Statistical tools that aid researchers in gaining a clearer understanding

of the strengths and limitations of their analyses are essential

(Dushoff et al., 2019). Duffy et al. (2021) showed that sample size is

an important consideration in thermal tolerance experiments. Here,

we have provided the tool for researchers to determine whether their

sample sizes are appropriate or not. The tutorial workflow presented

here illustrates how assessing sample size improves the understanding

of results obtained from CTL studies, and we advocate for its inclusion

in future insect thermal tolerance studies.

Sample size planning should be performed in the framework of

sequential sampling (Kelley et al., 2018), whereby researchers itera-

tively perform experimental trials, collect data, complete simulations,

calculate the sample size metric of choice (e.g., CIs, type S/M errors)

and critically evaluate whether the required degree of certainty has

been achieved to warrant terminating or continuing the study. By

iteratively assessing sample size requirements, practitioners can deter-

mine whether their study is sufficiently powered, accurate and

precise for their research goals, whilst simultaneously ensuring

that resources are allocated efficiently and no unnecessary testing

is performed. Ideally, only once accurate CTL estimates have been

obtained that are sufficiently precise, would testing cease. Practi-

cally, there are circumstances where this would not be possible

(e.g., such as when working with endangered species). We fully

acknowledge that researchers often need to balance sample sizes

with other constraining factors.

Although our simulations were run on CTL data obtained from

insects, these simulations are not taxon specific. The ThermalSam-

pleR package and Shiny application are free and open-source, and

we encourage feedback from users via pull requests on the associated

GitHub repository. The package is an ongoing project, and future

updates will focus on adapting our methods to incorporate a variety

of other measures in addition to CTL data.
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