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A B S T R A C T

The early diagnosis and personalised treatment of diseases are facilitated by machine learning. The quality of
data has an impact on diagnosis because medical data are usually sparse, imbalanced, and contain irrelevant
attributes, resulting in suboptimal diagnosis. To address the impacts of data challenges, improve resource
allocation, and achieve better health outcomes, a novel visual learning approach is proposed. This study
contributes to the visual learning approach by determining whether less or more synthetic data are required
to improve the quality of a dataset, such as the number of observations and features, according to the
intended personalised treatment and early diagnosis. In addition, numerous visualisation experiments are
conducted, including using statistical characteristics, cumulative sums, histograms, correlation matrix, root
mean square error, and principal component analysis in order to visualise both original and synthetic data
to address the data challenges. Real medical datasets for cancer, heart disease, diabetes, cryotherapy and
immunotherapy are selected as case studies. As a benchmark and point of classification comparison in terms
of such as accuracy, sensitivity, and specificity, several models are implemented such as k-Nearest Neighbours
and Random Forest. To simulate algorithm implementation and data, Generative Adversarial Network is used to
create and manipulate synthetic data, whilst, Random Forest is implemented to classify the data. An amendable
and adaptable system is constructed by combining Generative Adversarial Network and Random Forest models.
The system model presents working steps, overview and flowchart. Experiments reveal that the majority of
data-enhancement scenarios allow for the application of visual learning in the first stage of data analysis as
a novel approach. To achieve meaningful adaptable synergy between appropriate quality data and optimal
classification performance while maintaining statistical characteristics, visual learning provides researchers
and practitioners with practical human-in-the-loop machine learning visualisation tools. Prior to implementing
algorithms, the visual learning approach can be used to actualise early, and personalised diagnosis. For the
immunotherapy data, the Random Forest performed best with precision, recall, f-measure, accuracy, sensitivity,
and specificity of 81%, 82%, 81%, 88%, 95%, and 60%, as opposed to 91%, 96%, 93%, 93%, 96%, and 73%
for synthetic data, respectively. Future studies might examine the optimal strategies to balance the quantity
and quality of medical data.
1. Introduction

Machine learning and data-driven analytics frequently use super-
vised and unsupervised approaches [1,2], such as classification [3] or
clustering machine learning algorithms, to extract beneficial patterns
for disease diagnosis. Health data are challenging because these can
be small and imbalanced, containing irrelevant attributes, which affect
the performance of the applied algorithms. In addition, data analysts
only consider preprocessing, cleaning, and preparation of the data
before moving on to feature selection or algorithm implementation [4].
Therefore, starting the data mining process by assessing other crucial
visualisation methods could save both time and resources. The absence
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of diagnosis results judgement by human experts has created a gap in
the published literature.

Combining the skills of human medical experts and the capabili-
ties of a data-driven perspective may reveal more accurate diagnoses,
improved patterns, and insightful efficient solutions. Data are at the
heart of machine learning, and the better the understanding of the data,
the better the performance. Therefore, it is important to concentrate on
finding and addressing the fundamental causes of data challenges. Fur-
thermore, to identify the improved balance between data quality and
classification efficiency, a novel visual learning approach is proposed
in this study.
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Experiments are conducted to uncover similarities and differences
between visualisations of the original and synthetic data, the visualisa-
tions are compared and contrasted, including statistical characteristics
such as means and standard deviations, cumulative sums, histograms,
principal component analysis (PCA), correlation matrix, and root mean
square error (RMSE). Adapting visualisation experiments will facilitate
the proposal of better algorithms as well as the improvement of those
already in use, as a comparison of original and synthetic data visualisa-
tions may reveal early diagnosis and personalised treatment insights for
human-in-the-loop machine learning research. Prior to considering any
data preparation or preprocessing, such as data cleaning, the concern is
determining whether the current observations, features, and data size
are appropriate. A customised version of the Generative Adversarial
Network (GAN) [5,6] is used to construct synthetic data with the
same statistical properties as the original data. GAN is designed to
process data with continuous and binary variables. The generated and
original data are classified by comparing multiple algorithms: J48, Zero
Rule, Support Vector Machines (SVM), Multi Scheme, k-Nearest Neigh-
bours, Artificial Neural Network, Naive Bayes, Random Forest [7],
and Decision Trees [8,9]. Random Forest performed better, therefore,
it is mainly used to classify the data. The most effective number of
observations and features for a dataset are made based on how the
Random Forest performed on both real and synthetic data.

This study combines supervised learning in the form of Random
Forest with unsupervised learning through the use of GAN, as well as
providing visualisation experiments for human experts. A new obser-
vation’s fingerprints can be extracted more effectively by visualising
features in detail, considering how they are distributed. In addition,
a visual learning approach is introduced to evaluate the data be-
fore using time and resource-intensive techniques. To provide high-
quality healthcare, it is necessary to accurately diagnose patients and
identify personalised treatments [10]. Visualisation exercises are cru-
cial [11] for selecting the best treatment method for early diagnosis.
Consequently, visual learning may improve data-driven performance
and should be used in conjunction with other learning approaches,
including supervised learning.

Visualisation experiments combined with predictive models are cru-
cial tools which aid healthcare professionals in identifying people who
are at high risk of developing diseases or the precise health condition of
the patient. However, data quality may impact the diagnosis outcome
or the selection of the most suitable treatment. This results in earlier
diagnosis and more effective management of the disease, potentially
preventing or delaying complications by adjusting interventions and
treatments according to specific risk factors. Early diagnosis and per-
sonalised treatment can lead to improved resource allocation, better
health outcomes, and lower healthcare costs. Flexible visual learning
diagnosis system is amendable both at the data and algorithm levels,
and it can be tailored to data, aiming to obtain the optimal data quality
to meet the requirements of a diagnostic health system. Personalised
and early diagnosis are made possible by a combination of data visual-
isations, classification, and human judgement. Visual learning focuses
on the idea that a classification approach should be based on treat-
ment choices offered by actionable insights from visual experiments,
to understand the data better before commencing data analysis.

The objectives of this study are to propose a novel machine learning
approach in healthcare for personalised treatment and early diagnosis,
to increase collaborative complementarity between data-driven per-
spective and human-in-the-loop. This is done in order to address the un-
derlying causes of data challenges and find a balance between suitable
data quality and optimal diagnosis performance. Hybrid visual learn-
ing approach is introduced, to combine supervised and unsupervised
approaches with statistical machine learning visualisation experiments,
and human-in-the-loop. Key strategies and experiments are conducted
considering data challenges and data modelling simultaneously.

First, the unsupervised algorithm Generative Adversarial Network is
2

implemented to transform the original medical data into synthetic data,
to construct a learning approach based on comparing visualisations of
original and synthetic data.

Second, visualisation experiments are conducted to compare the
original and synthetic data, assessing which classification models might
be more appropriate. A more flexible system is proposed by adjusting
the data, to validate and evaluate the results meanwhile keeping the
statistical properties of the data. To determine the general applicability
of the visual learning approach in various medical domains, visuali-
sations such as histograms, standard deviations (SDs) and means for
numerous medical datasets of heart [12], cancer [13,14], immunother-
apy [15], cryotherapy [16], exasens data [17] and diabetes [18] are
compared.

Third, based on the results of visualisation experiments, several suit-
able classification models are put into practice such as the supervised
algorithm Random Forest. Algorithms are adapted to update the data,
bridging the data challenges such as small size and imbalanced classes.
Fourth, to validate the performance of models on original and synthetic
data, the classification results are compared with published studies. The
innovations and contributions of this study are described below:

1. The introduction of a hybrid approach to visual learning that
combines supervised and unsupervised methods with experi-
ments in statistical machine learning visualisation enables
human-in-the-loop with informed decisions making choices
about early diagnosis and personalised treatments.

2. An adaptable and personalised system is provided, facilitat-
ing crucial data amendments and visualisations to obtain the
optimal early diagnosis.

3. A distinctive system is presented, by first visualising the original
and synthetic data through experiments and then accordingly
applying the personalised appropriate classification solution. For
application and generalisation, the system is used in a variety of
health domains.

4. Instead of treating the symptoms of data challenges, the under-
lying causes of suboptimal classification are addressed.

5. Models are integrated to automate the evaluation of the visual
learning approach. Generative Adversarial Network (GAN) is
developed to create and manipulate synthetic data and Ran-
dom Forest is used to classify the data. GAN+RF combination
addresses data challenges optimally.

The remainder of this paper is organised as follows: Section 2
explores the related published literature. Section 3 presents the method-
ology. The visual learning approach is proposed, constructing a system
model, flowchart and working steps. The unsupervised algorithm Gen-
erative Adversarial Network (GAN) and supervised algorithm Random
Forest (RF) are described in detail. The medical datasets used as case
studies are indicated. The comparison of developed machine learn-
ing algorithms is performed. The implementation of GAN and RF is
presented. Machine learning and statistical experiments are provided.
Sections 4 and 5 summarise and discuss the implications of the findings
with recommendations for further research.

2. Literature review

Several researchers have developed various machine-learning-based
approaches [19–22] to predict the response of patients to immunother-
apy and cryotherapy treatment options using immunotherapy [15]
and cryotherapy [16] datasets. Two Adaptive Neuro-fuzzy Inference
Systems (ANFIS) were proposed [23], to assist in deciding between
cryotherapy and immunotherapy for the treatment of warts, obtaining
accuracies of 83.3% and 80.7%, respectively. To forecast the effective-
ness of wart treatment methods, a Decision Tree (DT) based approach
was proposed [24], which was transformed into fuzzily informative
images for immunotherapy and cryotherapy datasets, achieving accura-
cies of 90% and 94.4%, respectively. In another study, a Classification

and Regression Tree (CART) was deployed to create predictive models,
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Table 1
Novel classification studies on immunotherapy data taking efficiency, effectiveness, and personalised machine learning experiments into
consideration.

Immunotherapy study Focus

Literature review Application Domains, Datasets, Algorithms and
Software Tools [28]
Tools, Current Trends and Resources

Implementing Random Forest and Decision Trees Efficiency of immunotherapy treatments [29]

Novel Algorithm: Pareto Principle Multi-objective optimisation and ABC analysis [30]

Experiments:

Personalised and adaptable machine experiments Converting small data to big data [31]

Five novel machine learning classification experiments To plan, conduct, and evaluate experiments, addressing
the issues of imbalanced immunotherapy and medical [32] data
and the model outperformed other classifiers in terms of accuracy
(100% for both immunotherapy and cryotherapy). In addition, a ge-
netic programming-based Decision Tree was used to improve accu-
racy [25]. Fuzzy Rough Set (FRS), Classification and Regression Tree
(CART), and Naive Bayes (NB) were combined for feature selection
in another study [26] deploying algorithms such as Random Forest
and Support Vector Machines to assess the effectiveness of both im-
munotherapy and cryotherapy treatments, resulting in an accuracy of
96%. The traditional pruning algorithm was replaced by Particle Swarm
Optimisation (PSO) tuning the CART hyperparameters [27], obtaining
an accuracy of 100%.

Because immunotherapy and health-related datasets are frequently
imbalanced and small, machine learning algorithms typically perform
suboptimally when classifying these datasets. To address the data chal-
lenges, numerous studies on classification modelling have been con-
ducted, including literature reviews, efficiency analyses, and person-
alised machine learning experiments, as shown in Table 1.

An exploration of the published literature reveals that the main
focus of data-driven studies is typically algorithm implementation,
feature selection [33,34], and data preprocessing [35], which may
involve small data modifications, to reveal useful insights. However, to
address the fundamental impacts of data challenges, new approaches
which consider both the data and algorithm levels are beneficial for
discovering a balance between the desired diagnosis and the quality of
the data while maintaining the statistical properties of the data.

After studying the published littérateur, the following observations
are made: First, the human in the loop is missing, which is referred
to as judgement by human medical experts. This gap is addressed by
conducting visual experiments presenting a proper overview of the
medical data at hand and the utilised algorithms assessing personalised
and early diagnosis. Second, data challenges are not considered by
assessing the data and algorithm levels together; for instance, in the
case of immunotherapy datasets of warts. Third, no re-evaluation of
the data was performed after conducting the machine learning tasks.
The visual learning approach, that is proposed in this study, focuses
on the re-evaluation of the diagnosis system, which is flexible at both
data and algorithm levels. Fourth, the symptoms are treated and not the
root impacts of data challenges. In addition, visual learning offers an
understanding of the actual data condition or the level of data challenge
to address and personalise the diagnosis accordingly. Fifth, a single
learning approach, either supervised or unsupervised, is usually utilised
to reveal diagnosis patterns and insights, while visual learning employs
both supervised and unsupervised approaches or a combination of these
to uncover the optimal early diagnosis in a given situation, and a new
system is proposed to manage and handle the data better. By combining
the approaches in this manner, the best can be taken from each, this
can help health professionals and researchers improve the allocation of
resources accordingly to adapt and individualise the diagnosis to the
3

data at hand.
Fig. 1. Tackling data challenges for personalised and early diagnosis at the data,
algorithm and human levels.

3. Methodology

Hybrid visual learning approach is based on decisions and consid-
erations involved at data, algorithm and human levels as described
in Fig. 1. Data level is the foundation of machine learning and the
cause of suboptimal diagnosis performance. Medical data challenges
are considered to address the causes and the symptoms, involving small
sample sizes, imbalanced classes and irrelevant features. Decisions are
based on multiple perspectives of data quality such as the number of
features and statistical characteristics. At the algorithm level, synthetic
data are generated, manipulated and classified using GAN and RF. After
modelling the data the performance is considered whether it is optimal,
otherwise, data adjustments are made to discover the personalised
treatment and early diagnosis for the data and disease.

To increase collaborative complementarity between data-driven
perspective and human-in-the-loop, a novel machine learning approach
is presented with respect to healthcare for individualised treatment
and early diagnosis. A hybrid visual learning approach is introduced,
combining supervised and unsupervised approaches with statistical ma-
chine learning visualisation experiments for the judgement of human
medical experts, which is the human level, to address the underlying
causes of data challenges and find a balance between the amount of
data required and the optimal classification for improved diagnosis
performance. Important experiments and strategies are carried out
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Fig. 2. The process of visual learning approach, a focus on data and machine learning
modelling.

while taking data modelling and data challenge issues into consid-
eration. First, the Generative Adversarial Network, an unsupervised
algorithm, is used to create synthetic data from the original medical
data. Second, based on the findings of the visualisation experiments,
a number of suitable classification models are applied, such as the
supervised algorithm Random Forest. In visual learning proposed work:
system model, steps of working and flowchart are indicated.

3.1. Visual learning proposed work

Supervised and unsupervised approaches [2] typically use fixed
data, or only minor data changes are made, such as feature selection or
sampling. By contrast, the data in the case of visual learning are flexible
in terms of quality and quantity, because the number of observations,
features, and other parameters can be changed in accordance with an
analysis of data.

3.1.1. System model and flowchart
Visual learning is implemented in two steps. The first step is illus-

trated in Fig. 2 [36]. The process’s default order of action sequence is
𝐴 ⟶ 𝐵 ⟶ 𝐶 ⟶ 𝐷 ⟶ 𝐸. However, the process parameters can be
changed according to a dataset to obtain personalised visual learning.
The basis of the entire perspective is data to allow effective addressing
of the primary causes of data challenges. The second step demonstrates
the planning and execution of visual learning, as shown in the flowchart
in Fig. 3.

3.1.2. Working steps
The implementation steps of the adoptable visual learning approach

are described below and illustrated in Figs. 1 and 2.
(1) The pre-algorithm stage, or data level, consists of step A. (2) The

algorithmic level, Generative Adversarial Network (GAN) and Random
Forest (RF) are combined, integrated, and automated. This is done to
evaluate the outcomes of the visual learning performance in step B. (3)
Human judgement level, involving visualisation experiments of original
and synthetic data in steps C, D and E.

1. Step A considering: calculate the percentage of the majority
and minority classes of data. Consider whether the number of
observations and features of data are suitable, less or more
than necessary to find the point of balance and to discover the
maximum performance potential.

2. Step B deploying: convert original data to synthetic data apply-
ing Generative Adversarial Network (GAN) according to needs,
availability or actual circumstances. Deploy Random Forest for
classification, meanwhile, manipulating and simulating the data
simultaneously according to the required personalised treatment
and early diagnosis.
4

Fig. 3. The flowchart of the proposed visual learning approach.

3. Step C visualising and comparing: the original and synthetic data
to consider for example if more data are beneficial.

4. Step D assessing: statistical characteristics such as means and
standard deviations, cumulative sums, histograms, principal
component analysis (PCA), correlation matrix, and root mean
square error (RMSE).

5. Step E evaluating: Repeat and modify the steps described above
of the visual learning approach as necessary for further improve-
ment of the outcomes. To get a personalised learning experience
for the available data, the steps are scalable, adaptable and
amendable independently.

3.1.3. Overview
The ability to create simulations is facilitated by the fact that the

data are no longer fixed; instead the data can be modified. Thus, a
dynamic system is created which has the potential to be changed and
improved in many ways, making it competitive with other learning
approaches. The advantage of the visual learning approach is that it
is adaptable to challenging data as in Fig. 4.

3.2. Generative Adversarial Network (GAN)

The minimax two-player game is the source of the fundamental con-
cept behind Generative Adversarial Network (GAN) [5]. A basic GAN
consists of a generator G that replicates the distribution of real data
and a discriminator D which attempts to separate the real data from
the data produced by G. In a GAN, the two models are trained with the
goal of minimising the difference between synthetic and real samples
and maximising the confidence in differentiating between synthetic and
real samples. During training, the two models simultaneously compete
with one another to improve their ability to generate and discriminate
data and find a Nash equilibrium. Therefore, the minimax two-player
game, dependent on G and D, is assessed using the cost function V (G,
D) as in Eqs. (1) and (2).

𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 (𝐺,𝐷) =E [𝑙𝑜𝑔𝐷(𝑋)]
𝐺 𝐷 𝑋∼𝑃𝑑𝑎𝑡𝑎
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Fig. 4. Overview of the visual learning approach.
+ E𝑍∼𝑃𝑍 [𝑙𝑜𝑔(1 −𝐷(𝐺(𝑍)))] (1)

min
𝐺

max
𝐷

E𝑥∼𝑝data(𝑥)[log𝐷(𝑥)]

+E𝑧∼𝑝z(𝑧)[1 − log𝐷(𝐺(𝑧))] (2)

Where:
𝑥 = a sample from the real data distribution 𝑝𝑑𝑎𝑡𝑎(x)
E(.) = the expectation
𝑧 = derived from a priori input noise variables 𝑝𝑧(𝑧)
𝑝𝑔(𝑥) = the generated data distribution
𝐺(𝑧) = the data generated by G and subject to distribution 𝑝𝑑𝑎𝑡𝑎
𝐺(𝑥) = data generated by G
𝐷(𝑥) = the likelihood that 𝑥 is sampled from 𝑝𝑑𝑎𝑡𝑎
One model is fixed during the GAN training process, whereas the

other is optimised [37]. To maximise the discrimination accuracy,
the generator is first fixed, and the discriminator divides the real
samples into positive and generated samples as negatively as possible.
Consequently, the ideal solution for the discriminator is obtained as
in Eq. (3).

𝐷∗
𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)

(3)

The generator is then trained by minimising log(1 - D (G(z))) for
a fixed D. G is trained by maximising an alternative log D(G(z)) to
account for the saturation situation early in learning. Ideally, 𝑝𝑔 =
𝑝𝑑𝑎𝑡𝑎, which is equivalent to D(x), is attained to achieve a global
optimum. For finite datasets, the discriminator may not achieve ideal
optimisation. Instead, several iterations of training D and one iteration
of training G are alternated during the optimisation process. Generative
models have expanded significantly and have been used successfully
in a wide range of practical applications [38]. When computing the
density estimation, the generative models use the model distribution
𝑝𝑚𝑜𝑑𝑒𝑙 to approximate the learned data distribution 𝑝𝑑𝑎𝑡𝑎. The selection
of an appropriate objective (loss) function and appropriate formulation
for the density function of the 𝑝𝑚𝑜𝑑𝑒𝑙 are the two main issues in density
estimation methods. The maximum likelihood estimation theory, in
which the model parameters maximise the likelihood of the training
data, is the de facto standard for the most commonly used objective.

One perspective for dealing with the marginal likelihood intractabil-
ity problem is to forego computing it ever and instead learn model
parameters through an indirect method. GAN accomplish this by having
a strong D, which can differentiate samples from 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑚𝑜𝑑𝑒𝑙. If D is
unable to do so, the model learns to produce samples which are similar
to the samples from the real data. The use of an explicit density function
in which the maximum likelihood framework is used to estimate the
5

parameters is a potential method for formulating the density function of
𝑝𝑚𝑜𝑑𝑒𝑙. Another option is to estimate the data distribution while exclud-
ing analytical forms of the 𝑝𝑚𝑜𝑑𝑒𝑙 using an implicit density function, that
is, training a G, where real and generated data are contained within the
same sphere [39,40] if they are mapped to the feature space. However,
the most notable class of potential solutions is GAN.

The ability to support both exact sampling and approximate esti-
mation renders GAN an expressive class of generative models. GAN
automatically picks up high-dimensional distributions over images,
audio, and data, which are difficult to explicitly model. Basic GAN is
an algorithmic structure which pits two neural networks against one
another to capture the true distribution of data. To determine (globally)
the Nash equilibrium in a zero-sum game, both neural nets attempt
to optimise various opposing objective (loss) functions. The network
architecture, objective (loss) function, and optimisation algorithm com-
prise the main building blocks for the design and optimisation of
GAN. Numerous efforts have been made to enhance GAN through re-
engineering the architecture [41] better objective functions [42], and
different optimisation algorithms.

3.3. Random Forest

Random Forest (RF) is a classification and regression technique
built on the compilation of numerous decision trees [43]. It is an
ensemble of trees built from a training set and internally validated to
predict the response given the predictors for upcoming observations.
The construction of each tree, the method used to create the modified
datasets on which each tree is based, and the method used to combine
the predictions of each tree to produce a singular consensus prediction.
The RF method uses the so-called Decrease of Gini Impurity (DGI) as
a splitting criterion, where each tree is a standard Classification or
Regression Tree (CART), which chooses the splitting predictor from a
randomly chosen subset of predictors (the subset is different at each
split). Every tree is built using a bootstrap sample taken with replace-
ment from the original dataset, and the predictions from every tree are
then combined through majority voting. Most software currently in the
market, as described below, uses this version of the RF.

3.3.1. Classification evaluation
The following are definitions for precision, recall, f-measure, accu-

racy, sensitivity and specificity as in Eqs. (4), (5), (6), (7), (8), and (9),
respectively.

TP = True Positive, TN = True Negative
FP = False Positive, FN = False Negative

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (4)

𝑇𝑃 + 𝐹𝑃
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Table 2
Information on the immunotherapy dataset’s statistics. * Time before start of treatment.
**The surface area of the largest wart. SD (standard deviation), mm (millimetre), Ca.
(categorical), Nu. (numerical), Pl. (plantar), Co. (Common)

Number Attributes Kind Immunotherapy results

Quantity Mean /SD
1 Sex Ca. Male (41) Female (49)
2 Age (years) Nu. 15–56 31.04/12.23
3 *Time Nu. 0–12 7.23/3.10
4 Number of warts Nu. 1–19 6.16/4.2
5 Type of warts Ca. Pl. (22) Co. (47) Both (21
6 ** Area (mm2) Nu. 6–900 95.7/136.61
7 Induration (mm) Nu. 2–70 14.33
8 Success of treatment Ca. Yes (71) No (19)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 1

2 (𝐹𝑃 + 𝐹𝑁)
(6)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁

(7)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(8)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(9)

3.4. Medical datasets

Multiple medical and health-related datasets from UCI machine
learning repository and Kaggle are used as case studies: heart [12], can-
cer [13,14], immunotherapy [15], cryotherapy [16], exasens data [17]
and diabetes [18]. To represent potential data challenges the datasets
are chosen from various health domains to consider the general applica-
bility of the visual learning approach. For example, the immunotherapy
and cryotherapy datasets are comprehensively explained and used.
The immunotherapy dataset sample consists of 90 patients older than
15 years old who were receiving immunotherapy treatment and were
part of a two-year dataset collection in a hospital clinic. Immunother-
apeutic methods work by boosting the host cell-mediated immunity
to neutralise the virus [44]. The patients received immunotherapy,
with a maximum of three concurrent sessions, and a break in between.
Table 2 provides information on the results, clinical characteristics, and
demographics of the data.

3.4.1. Challenges
Real medical data are limited, difficult to access, imbalanced and

contain irrelevant features. The complexities of medical data make it
challenging to predict outcomes [45] because personalised and early
disease detection are essential for treating patients, necessitating the
creation of effective and high-performance algorithms, techniques, and
tools for the analysis of big data in medicine. For tasks involving
health research or clinical applications, considerable time and expertise
are required to use and interpret a variety of high-dimensional data
types [46]. Additionally, the interpretation of multiple data types re-
quires more computing power than the interpretation of each data type,
and modelling algorithms which can learn from a staggering number
of intricate features are required. The use of machine learning algo-
rithms to automate these processes and support disease detection and
diagnosis has grown in popularity [34,47]. Interestingly, deep learning
models may be able to take advantage of this complexity by revealing
insightful information and locating pertinent features from various data
types [48,49]. A branch of artificial intelligence (AI) known as machine
learning (ML) focuses on developing predictions by spotting patterns in
6

data.
Data synthesis is a statistical disclosure limitation (SDL) technique
in which the true values of sensitive variables are replaced with ran-
domly generated values [50]. To create partially synthetic records,
the conditional distribution of the sensitive variables given the non-
sensitive variables is modelled and then sampled. These include im-
puted values for the sensitive variables as well as the underlying values
for the non-sensitive variables from the dataset.

3.5. Algorithms comparison

To compare the classification performance of Random Forest to
other machine learning algorithms, baseline models and other models
are used as a benchmark and point of comparison. This shows how
much classification is improved in comparison to the baseline models
and enables the assessment of absolute performance improvements over
the baseline models. The training and testing ratio for the utilised
models is 70% and 30%, respectively. An experiment is carried out on
the immunotherapy dataset [3] using the following supervised classifi-
cation models: J48, Zero Rule, Support Vector Machines (SVM), Multi
Scheme, k-Nearest Neighbours, Artificial Neural Network, Naive Bayes,
Random Forest, and Decision Trees [8,9]. The experiment’s objective is
to apply and contrast several algorithms to ascertain which algorithms
are most effective at identifying successful and ineffective therapies in
the immunotherapy dataset. Table 3 displays the results of the machine
learning algorithms. The Random Forest (RF) algorithm outperformed
other algorithms, achieving classification accuracy, sensitivity, and
specificity values of 88.88%, 95.45%, and 60.0%, respectively.

3.6. GAN and RF implementation

Generative Adversarial Network (GAN) can be applied to data from
various diseases, depending on the criteria chosen for implementation,
for instance, the number of observations and features, the degree of
imbalance, and the sample size. In this study, small and imbalanced
medical data with irrelevant features served as the data selection cri-
teria for implementing the GAN. To consider the general applicability
and generalisation of the visual learning approach, various real medical
datasets from medical fields are chosen. In a real-world scenario, the
implementation criteria may vary and should be according to the actual
degree of complexity of the data. The human medical expert judgement
based on visualisation experiments, such as the test of statistical char-
acteristics as in experiment one Section 3.7.1, is a crucial component
of using GAN on the datasets.

First, an unsupervised algorithm called Generative Adversarial Net-
work (GAN) is created to produce synthetic data from the original
data. Then, Random Forest (RF) [51,52], a supervised classification
algorithm, is utilised to assess how well it performs on both real
and synthetic data. To determine the best visual learning strategy,
the supervised and unsupervised methods are combined. The desired
quality of synthetic data can be altered by adjusting the parameters
of the Generative Adversarial Network (GAN), which makes the system
modifiable, while, maintaining the statistical characteristics of the data.
Thus, after considering a data challenge, GAN is applied appropriately.
For example, if the data are small, imbalanced, and contain irrelevant
features, the best performance can be obtained by adjusting the data
quality according to the challenge at hand. By developing Random For-
est the average precision, recall, and f-measure for the immunotherapy
data are 91%, 96%, and 93% for real data, compared to 81%, 82%, and
81% for synthetic data, respectively, as in Table 6.

A hyperparameter tuning procedure is used to systematically alter
the following parameters in order to get the optimal performance out
of the defined Generative Adversarial Network (GAN) in Table 4 and
Random Forest in Table 5.

The Generator and Discriminator’s individual losses as well as the
combined loss have been selected as metrics for a tactical assessment
of the defined hyperparameters. The average and maximum correlation



Computers in Biology and Medicine 164 (2023) 107295A.Y. Mahmoud et al.
Table 3
The accuracy, sensitivity, and specificity of various algorithms implementation on imbalanced immunotherapy data.

Algorithm Classification performance Specificity
ranking

Sensitivity
ranking

Accuracy
ranking

Accuracy Sensitivity Specificity

J48 85.18% 85.18% 0% 5 4 2
Zero Rule 85.18% 85.18% 0% 5 4 2
Support Vector Machines (SVM) 85.18% 91.30% 50% 2 2 2
Multi Scheme 85.18% 85.18% 0% 5 4 2
k-Nearest Neighbours 70.37% 95.45% 25% 4 1 4
Artificial Neural Network 77.77% 90.47% 33.33% 3 3 3
Bayes Network 77.77% 84% 0% 5 5 3
Random Forest 88.88% 95.45% 60% 1 1 1
Decision Trees 85.18% 85.18% 0% 5 4 2
Table 4
Hyperparameter tuning of Generative Adversarial Network (GAN).

Parameter Value

The discriminator’s and the generator’s rate of learning lr_d = 0.0005 and lr_g = 0.0005
The size of the hidden feature space hidden_feature_space = 200
Size of input noise binary_noise = 0.2
A single bag of rows’ total number of rows nr_of_rows = 25
Batch size batch_size = 100
Table 5
Hyperparameters of Random Forest.

Parameter Value

The random number of seed 1
The preferred number of instances 100
The number of features int(𝑙𝑜𝑔2(predictors) + 1)
The number of trees 100
The number of execution slots 1
The maximum depth of the tree unlimited

errors as well as the distribution’s average error have also been consid-
ered. While Pearson correlation coefficients were used to calculate the
error of the correlations, the error of the distributions was calculated
by comparing means and standard deviations.

In order for a GAN’s discriminator to properly learn to complete its
task, it requires original input data. The statistical characteristics of a
real clinical trial with 90 patients are used to simulate immunotherapy
data. For the model’s discriminator, 90 observations are used as input.
Table 6 shows eight binary and continuous features, which are sim-
ulated. Random noise is used as the input for the generator network,
which is then transformed based on the feedback from the discriminator
to take into account the statistical characteristics of the original data.

Generative Adversarial Networks for data generation are incredibly
efficient at producing unstructured data objects like images, however,
GAN can also be used to produce structured, tabular data, which is
frequently found in clinical trials. GAN is generally appropriate for
the reliable generation of synthetic but realistic clinical trial data,
producing more satisfying synthetic patients which closely resemble
the original data, whereas some other networks exhibit lengthy training
times. The customised GAN version is built on long short-term memory
(LSTM) layers and is thus able to maintain underlying data properties,
such as correlations and variable distributions, producing more satis-
fying results, even in small-sized samples, with a sufficient training
speed.

3.7. Visual experiments

The visualisation experiments are conducted to allow human med-
ical experts to select diagnosis and treatment decisions on a well-
informed basis, this is referred to the human level in visual learning
approach in Fig. 1. Additionally, the diagnosis system can be eval-
uated by human experts who may decide to make critical data or
algorithmic changes. In this way, individualised treatments are based
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Table 6
Classification of immunotherapy data using Random Forest on original and generated
data.

Random Forest Precision Recall F-measure

Classification of original data

Successful Treatment 83% 94% 88%
Average 81% 82% 81%

Classification of generated data

Successful Treatment 96% 100% 98%
Average 91% 96% 93%

on appropriate and flexible tactics. The visualisation experiments act as
the fingerprints of the entire visual learning approach, illustrating the
actual screenshot of the diagnosis to obtain a real overview of data to
achieve optimal, more precise and effective performance.

To better understand the data and identify the challenges at the
data level, experiments are conducted using various scenarios of vi-
sualisations to compare and contrast the real data with the synthetic
data. The data are also plotted side by side for improved treatment
decision support. Before implementing an algorithm, comprehensive
data visualisations help to better understand the data challenges and
to design and implement personalised solutions for early diagnosis.

The phrase ‘‘human-in-the-loop machine learning’’ (HILML) refers
to the interaction of human and machine learning (ML) processes to
address one or more of the following issues: enhancing ML accuracy,
quickening ML’s ascent to the desired accuracy, improving accuracy
and efficiency in humans [53,54]. HILML is used in this study to en-
hance data quality, which allows the applied algorithms to operate with
greater accuracy and efficiency, which has a positive domino effect
on obtaining a better health system. The original data are converted
into synthetic data using the Generative Adversarial Network (GAN)
algorithm [55] because health data are small, imbalanced, and contain
irrelevant features. The data are scaled and normalised to have a range
from −1 to 1. The following criteria are chosen so that some similarities
and differences could be identified: to gain insights and determine
whether the data are appropriate for efficient diagnosis performance
or more data are needed. A variety of visualisation experiments have
been developed: statistical characteristics, cumulative sums, histograms
correlation matrix and RMSE and principal component analysis.

Before beginning the algorithm implementation, taking exploratory
data analysis as a starting point could be useful for spotting patterns
in the data and determining how the features relate to one another for
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𝑥

Fig. 5. Means and SDs of features of immunotherapy data.
data elimination [56]. In a variety of clinical and experimental diseases,
histogram variables can be useful indicators of treatment response [57].
The features and characteristics of a dataset can be described by using
descriptive statistics [58]. This includes measures of central tendency,
such as the mean and standard deviation. Real-world medical data
are frequently challenging in terms of implementing machine-learning
algorithms. Applying analytical machine learning algorithms to raw
data directly may result in less optimal performance [59]. Excluding
patients with incomplete data, replacing the missing value with the
mean or the most frequent value of the corresponding predictor, and
imputation based on correlation models are methods for data pre-
processing. Another option is visual learning, which offers systematic
additional options such as cumulative sums and histograms.

3.7.1. Experiment 1: Statistical characteristics
The mean and standard deviation (SD) of the features of the im-

munotherapy data are shown in Fig. 5. To compare the statistical
characteristics of the real and synthetic data, visualisations are con-
structed such that the real data are on the 𝑥-axis and the synthetic data
on the 𝑦-axis are used to assess the means and SDs. In Fig. 5 the line
shows the relationship between the means of real and synthetic data,
indicating that both datasets have approximately the same statistical
characteristics in terms of means. All points of the data are situated
on a straight line, demonstrating a significant correlation among the
features. SDs, on the other hand, deviate from a straight line, suggesting
that the data points in synthetic data are more dispersed than the
real data. The standard deviation is the average distance between each
value in the dataset and the mean. When the standard deviation of a
dataset is high, the values are typically spread from the mean, whereas
when it is low, the values are typically grouped close to the mean.
Eq. (10) demonstrates that the mean of 𝑥 is equal to the summation of
all 𝑥 values divided by the number of values N. The general equation
for determining the mean of a set of numbers:

̄ = 1
𝑁

𝑁
∑

𝑖=1
𝑥𝑖 (10)

Where:
𝑥̄= mean value of the observations
𝑁 = number of observations (measurements)
𝑥𝑖 = observed values of a sample item
∑ = 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛
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The formula for the sample standard deviation is given by Eq. (11).

𝑠 =

√

√

√

√
1

𝑁 − 1

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑥)2 (11)

Where:
s = sample standard deviation
𝑥̄= mean value of the observations
𝑁 = number of observations (measurements)
𝑥𝑖 = observed values of a sample item ∑= 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛
The experiment shows that, after a test, the statistical characteristics

of the original immunotherapy data are still present in the synthetic
data, however, the data points are more scattered in the synthetic data.
The two datasets have approximately equivalent statistical properties
when means are compared, however, dissimilar SD’s. This test is an
important component of visual learning because, to support clinical
diagnosis and treatment decisions, the statistical synthetic data are used
as a mirror and must be identical to the original data.

3.7.2. Experiment 2: Cumulative sums
To show the total sum of data as it increases over time or in any

parameter cumulative sums, also known as running totals, are used.
This enables the plotting of a given measure’s overall total contribution
to a feature. The immunotherapy dataset contains eight features: time,
induration diameter, age, result of treatment, sex, type, area, and
number of warts [23]. The commutative sums for the features of the
data are provided in Figs. 6 and 7 for both the original and synthetic
data. Assume a vector in an n-dimensional space in Eq. (12):

𝐯 ∶= ⟨𝑣1, 𝑣2,… , 𝑣𝑛⟩ (12)

Where the definition of the projections is defined in Eq. (13).

𝜋𝑘(𝐯) ∶= 𝑣𝑘 (13)

Then, the cumulative sum vector w is determined using Eq. (14):

𝐰 ∶=

⟨

𝜋1(𝐯), 𝜋1(𝐯) + 𝜋2(𝐯),… ,
𝑛
∑

𝑘=1
𝜋𝑘(𝐯)

⟩

(14)

The results of the experiment reveal how a feature’s structure affects
the cumulative sums of the feature. For instance, because the cumula-
tive sums of the area, time, and age features are nearly identical, these
features may be suitable for classifying the immunotherapy data even
before any data modelling is performed.
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Fig. 6. Cumulative sums for sex, age, type and area features of immunotherapy data.

3.7.3. Experiment 3: Histograms
A histogram is a vertical bar graph in which the heights of the

values represent the frequencies, which are also known as counts. The
frequency distribution of the selected class range determines the bar
width. Even before applying any machine learning model, histograms
can be used to understand features and datasets to identify potentially
useful features for classification, for instance, time and area features
in the case of immunotherapy data. The histograms for the features of
the immunotherapy data, for which a frequency distribution is created,
would resemble Figs. 8 and 9. Histograms are constructed, showing that
the distribution is altered for synthetic data, and the distributions are
more normally distributed compared to the original data, as shown in
Figs. 8 and 9.

3.7.4. Experiment 4: PCA
Principal component analysis (PCA) is used to create predictive

models and conduct exploratory data analysis. PCA creates new vari-
ables called principal components from linear combinations of the
original variables for dimensionality reduction. Dimensionality reduc-
tion involves projecting each data point into only the first few principal
components to obtain lower-dimensional data while retaining as much
variation in the data as possible. Data exploration and feature selection
are essential tools for selecting the most relevant features. The dataset
size needed for actual modelling can be minimised by retaining only
the essential data. Fig. 10 shows the PCA of the immunotherapy data
characteristics for both original and synthetic data.

The experiment demonstrates how correlation-based data analysis
is discovered among the features of the dataset by plotting the PCA
of both the original and synthetic data. First, the PCA of original
9

Fig. 7. Cumulative sums for number of warts, time, induration diameter and result of
treatment features of immunotherapy data.

data reveals that the dataset’s observations are not highly correlated
with one another, contrary to what the PCA of synthetic data shows,
as the variance among features in the PCA of the synthetic data, is
high. Second, significant variance exists among the observations in the
case of real data, which might be due to an insignificant correlation
between the features of the datasets. The results of the experiment
show that it is possible to identify correlations between the features
of a dataset by examining the variance among the observations by
comparing the PCA’s visualisation of the original and synthetic datasets.
In addition, after this experiment is conducted and PCA is identified,
correlation-based algorithms may be avoided when using algorithms to
save computational resources.

3.7.5. Experiment 5: Correlation matrix
A statistical measure known as correlation expresses how closely

two features are linearly related. The scatter matrix in Fig. 11 is plotted
as a heat diagram to better visualise the correlation among the data
features. The scatter matrix uses colours to illustrate the correlations
among the features of the dataset. Navy blue and yellow indicate
high and low correlations, respectively, and the darker the colour, the
greater the correlation among the attributes. Therefore, the synthetic
data reveal more correlations. The statistical measure of how well the
changes in the value of one variable predict changes in the value of
another is called the correlation coefficient. When the fluctuation of one
feature accurately predicts a similar tendency in another feature, it is
said that a change in one variable is the result of a change in another.
The correlation coefficient between two random features 𝑋 and 𝑌 is
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Fig. 8. Histograms for age, sex, number of warts and type features of immunotherapy data.
described by Eq. (15):

𝜌(𝑋, 𝑌 ) =
𝐂𝐨𝐯(𝑋, 𝑌 )

√

𝐕𝐚𝐫(𝑋)𝐕𝐚𝐫(𝑌 )
(15)

Where:
𝜌(𝑋, 𝑌 ) = correlation between the variables Y and X
𝐶𝑜𝑣 = covariance
𝐶𝑜𝑣(𝑋, 𝑌 ) = covariance between Y and X
𝑉 𝑎𝑟(𝑋) = variance of X
𝑉 𝑎𝑟(𝑌 ) = variance of Y
The sample correlation coefficient 𝑟 between two samples 𝑥 and 𝑦

is determined using Eq. (16):

𝑟𝑥𝑦 =
𝑆𝑥𝑦

𝑆𝑥𝑆𝑦
(16)

Where:
𝑆𝑥 = sample standard deviation of variable x
𝑆𝑦 = sample standard deviation of variable y
𝑆𝑥𝑦 = sample covariance
The intra-grid structure of the features is based on the correlation

effect coefficient [60], which is a number between [−1,1]. The more the
number goes toward 1, the greater the correlation among the features.
The exact values of the correlation matrix illustrate the relationship be-
tween features. Table 7 lists the most correlated features in decreasing
order. When the function is used, the age, type, number of warts, and
10
Table 7
Descending order correlation among features of the im-
munotherapy data and result of treatment.
Feature Coefficient of Correlation

Age 0.188314
Type 0.083396
Number of Warts 0.047160
Area 0.043349

area are found to be features which correlate most strongly with the
result of treatment.

If two features move together in the same direction are said to have
a positive correlation. When two different features change and move
in opposite directions is called inverse correlation. The experiment
indicates that a visual scatter matrix can assist researchers and health
professionals in identifying useful patterns, such as correlations, in
choosing the most appropriate and personalised treatment features.

3.7.6. Experiment 6: RMSE
The root mean square error (RMSE) method is based on the Eu-

clidean distance to assess the accuracy of the predictions. The RMSE
compares the quality between the predicted synthetic data values and
the measured original data values, a metric for determining the simi-
larity between two datasets. When evaluating a model’s performance
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Fig. 9. Histograms for time and area features of immunotherapy data.

during training, cross-validation, or monitoring after deployment, it is
useful to have a single number. The RMSE is an evaluation tool to aid
comprehension and is consistent with some of the most widely used
statistical assumptions. The RMSE is defined by Eq. (17) [61]:

𝑅𝑀𝑆𝐸 =

√

√

√

√( 1
𝑛𝑥𝑛𝑦

)
𝑛𝑥𝑛𝑦
∑

𝑖,𝑗

[

𝑟(𝑖, 𝑗) − 𝑡(𝑖, 𝑗)
𝑟(𝑖, 𝑗)

]2
(17)

Where:
(i, j) = pixel
r(i, j) = the planning image’s pixel (i, j) value in original data
t(i, j) = the value of pixel (i, j) in the synthetic data
𝑛𝑥𝑛𝑦 = total number of pixels
For numerical data, the RMSE is described by Eq. (18):

𝑅𝑀𝑆𝐸 =

√

√

√

√( 1
𝑛
)

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2 (18)

Where:
RMSE = root mean square error
𝑖 = variable 𝑖 n = number of non-missing data points
𝑥𝑖 = actual observations time series
𝑦 = estimated time series
11

𝑖

Table 8
RMSE for all features of the immunotherapy data.
Feature Root mean square error (RMSE)

sex 0.699205898780101
age 12.433824833895642
Time 3.327561183544157
Number of Warts 4.389381125701739
Type 0.8563488385776752
Area 177.32857136463437
Induration diameter 20.407514955688914
Result of Treatment 0.5055250296034367

The scale of the data has an impact on how well models compare
because RMSE is not scale-invariant; therefore, the use of RMSE on
standardised data is optimal. The experiment shows the RMSE values
for each feature of the data, enabling feature-level modifications for
personalised healthcare and early disease detection. The RMSE value
should be as low as possible. In the case of the immunotherapy data,
sex and type are the features which obtained the lowest RMSE values
of 0.69 and 0.85. The root mean square errors (RMSE) of the dataset
for each feature are listed in Table 8.

4. Results and discussion

Normally, studies consider only a single approach to data analysis,
for instance, supervised [62] or unsupervised. Supervised and unsu-
pervised approaches are combined in visual learning. The Generative
Adversarial Network (GAN), an unsupervised learning algorithm, is
implemented to generate synthetic data, and Random Forest, a super-
vised learning algorithm, is applied to classify medical datasets. In this
manner, many useful aspects can be supplemented to obtain the best of
multiple learning approaches. Another advantage of the visual learning
approach is swapping from one approach to another by moving through
the different methods forward and back, manipulating and adapting the
data, and finding the perfect personalised solution [63] required for the
data at hand, considering the challenges which should be addressed,
such as imbalanced small data.

The machine learning algorithm does not perform as well as it
should due to data challenges like imbalanced, irrelevant features and
small samples. By implementing necessary suitable changes to data
quality, it is possible to identify the appropriate data for the current
case. The performance of classification improves as data quality in-
creases. The process of diagnosis or classification is made more robust,
individualised, and effective by implementing the necessary changes at
the appropriate time, which is the early stages of data analysis. When
both original and synthetic data are available, the benefit is the option
of selecting between imperfect original or improved synthetic data to
produce better data quality for analysis. When considering disclosure
risk, synthesis is typically safer. To avoid noisy data, visual learning
adds more value to the data. More data-level initiatives improve the
direction of data analysis and application, making diagnosis more
resource-efficient and cost-effective to reduce the burden of diseases
and associated costs. To conduct data analysis on an informed basis
from the beginning to obtain an early diagnosis.

Using these scalable visual learning tools, patients can be divided
into subgroups with greater accuracy, according to their estimated dis-
ease risk [64]. One use of these predictive analytics is the identification
of a subgroup of patients who are at a higher risk of hospital admission
and are therefore likely to be responsible for the majority of healthcare
costs and the implementation of prompt preventive interventions based
on such predictions. If successfully validated and used, these risk strat-
ification tools could significantly lower the cost and morbidity related
to avoidable readmission.

The outcomes of the visual approach are compared with those
documented in previous studies. Experiments demonstrate that when
visual learning is developed, performance can be enhanced, enabling



Computers in Biology and Medicine 164 (2023) 107295A.Y. Mahmoud et al.
Fig. 10. PCA of the original and synthetic immunotherapy data.
prompt and accurate treatment because false positives and negatives
are expensive to treat [65]. The first finding indicates that the develop-
ment of additional methods is rarely necessary and the visual approach
is usually sufficient. Visual learning methods are essential for the early
detection of diseases and can be described as efficient and cost-effective
for avoiding errors when analysing data as in Fig. 4.

To determine the applicability scope of the visual learning ap-
proach, it is generalised to several healthcare domains using differ-
ent datasets from the UCI machine learning repository and Kaggle:
heart [12], cancer [13,14], immunotherapy [15], cryotherapy [16],
Exasens data [17] and Diabetes [18]. Both original and synthetic data
are subjected to Random Forest development, and the classification
results are compared with those from published studies as shown in
Table 9. Experimental work and classification results show that the
visual learning approach can be used in other medical fields.

The evaluation metrics used for classification are such as precision,
recall, and f-measure. By using GAN to create the synthetic data,
the performance is additionally enhanced. For instance, the obtained
precision, recall and f-measure for the immunotherapy data are im-
proved to 91%t, 96%, and 93%, respectively, from the original data’s
81%, 82%, and 81%. However, each dataset has specific challenges,
therefore the type of challenge should be first identified, and then
visual learning applied for personalised diagnosis and treatment. Before
applying visual learning, the degree and type of data challenges should
be considered first, as in the case of synthetic cryotherapy data the
performance decreased, as the cryotherapy data are balanced.

Data quality is usually improved through data preparation, also
referred to as data preprocessing, in the initial stage of data analysis.
This phase typically accounts for a significant workload [62,72]. Data
cleaning, transformation, and reduction are the three most frequently
used methods of data preparation. By implementing the visual learning
approach, a systematic perspective on data pre-processing is introduced
to enhance the quality of data, offering more convenient data visuali-
sation for health professionals and researchers to improve the accuracy
and efficiency of treatment decisions.

A machine learning algorithm must be properly engineered, similar
to any tool, to be truly effective. For machine learning applications in
12
the healthcare industry, clinical challenges must serve as both inspi-
ration and benchmark. The ability of visual learning to assimilate and
analyse huge, diverse datasets made up of various types of clinical data,
with the clinical problem as the focal point, makes it an invaluable
tool for clinicians to use when making decisions regarding the care of
patients. Clinicians can consider more pieces of evidence with the help
of this tool than otherwise process and analyse the data manually.

In addition, the challenging data issues are addressed at the data
and algorithm levels in the visual learning approach, this has the
advantage of not affecting the runtime of the classification model while
improving its effectiveness and precision in handling difficult medical
data. For example, focusing on the imbalanced learning issue at the
data level, that is, using the same classification model in the follow-
up analysis without considering the influence of the classifier and
adopting a different strategy by using the RF and GAN algorithms to
produce synthetic data and classify medical data to increase prediction
accuracy.

5. Conclusion

The aim of this study was to consider data challenges, which are the
gross root level in data analysis. Given that medical data are usually
imbalanced and small, a novel visual learning approach is presented
to determine the best solution at the fundamental level. To discover
the improved balance between data quality and required performance,
numerous methods, including synthetic data have been introduced, as
visualising the data at hand results in better understanding and treat-
ment decisions. The original health data are converted into synthetic
data, which is the basic procedure when using the visual learning ap-
proach. Visual learning can be used as pre-supervised and unsupervised
learning to provide an overview of the data, which is the most central
element of machine learning.

Multiple visualisation methods are used to improve the quality of
the treatment decision support for researchers and health professionals,
offering judgement of the findings by medical experts while conserving
time and other computational resources. Means and SDs, cumulative
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Table 9
Comparing the implementation of Random Forest on original and synthetic data in various health domains with published literature.

Random Forest Precision Recall F-measure Accuracy Sensitivity Specificity

Classification of original data

Immunotherapy:

This study 81% 82% 81% 88.88% 95.45% 60%
Publications 77.08% [66] 73.26% [67] 79.12% [67] 100% [3] 100% [3] 100% [3]

Cancer:

This study 82.88% 88.05% 88.07% 90% 94% 96%
Publications 95.65% [68] 98% [69] 97.77% [68] 97.14% [68] 97.19% [70] 99.71% [70]

Cryotherapy:

This study 94% 95% 91% 97% 100% 98%
Publications 100% [71] 100% [71] 100% [71] 100% [32] 100% [32] 100% [32]

Classification of synthetic data

Immunotherapy 91% 96% 93% 93% 96% 73%

Cancer 92.88% 94% 96% 98% 97% 94%
Cryotherapy 92.12% 94.22% 90.10% 95.34% 99.40% 88.09%
Fig. 11. Comparison of correlation matrices for immunotherapy treatments.

sums, histograms, principal component analysis (PCA), correlation ma-
trix, and root mean square error (RMSE) of both the original and
synthetic data are constructed.

The means and standard deviations (SDs) of both datasets are
compared to determine whether the statistical properties of the original
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data are preserved in the synthetic data. The area, time, and age
features are potentially reasonable for feature selection because their
cumulative sums are almost identical. An unidentified observation can
be identified by using a histogram as a sample for a feature. To
determine whether features of a dataset are significantly correlated and
to avoid using correlation-based algorithms to conserve computational
resources, a scatter matrix is used to identify helpful patterns, such as
correlations, in selecting the most suitable and personalised treatment
features. A feature-level modification for individualised healthcare and
early disease detection is made possible by the experiment’s display
of the RMSE values for each data feature. The features with the lowest
RMSE values of 0.69 and 0.85 in the immunotherapy data were sex and
type. These visualisation methods are useful for exploring data before
implementing an algorithm. Instead of deploying complex methods for
information extraction, focusing on foundations can facilitate early dis-
ease detection, enhance efficiency, and improve personalised treatment
decisions.

Data as a central aspect of machine learning, is considered by
applying Generative Adversarial Network (GAN) and Random Forest
(RF) algorithms. The methods described in the visual learning ap-
proach can be considered as a pre-algorithm implementation process
to provide an overview of the data and data analysis as a prototype.
Visual learning offers an initial effective, cost-effective and efficient
approach to address the data challenges before implementing other
learning approaches, such as a supervised approach. The most relevant
calculations for a better overview of robust, durable, effective treat-
ments, early detection, and automated processes can be achieved using
visual learning. The degree and nature of data challenges should be
considered before applying visual learning.

An essential component of machine learning is pursued using Gener-
ative Adversarial Network (GAN) and Random Forest (RF) algorithms.
With precision, recall, f-measure, accuracy, sensitivity and specificity
for the immunotherapy data of 81%, 82%, 81%, 88%, 95%, and 60%,
respectively, compared to 91%, 96%, 93%, 93%, 96%, and 73% for syn-
thetic data, the Random Forest model performed best. Supervised and
unsupervised techniques are combined to determine the most effective
visual learning approach. The Generative Adversarial Network (GAN)
parameters can be changed to obtain the desired quality of synthetic
data, making this system modifiable, whilst maintaining the statisti-
cal properties, for instance, variable distributions and correlations of
the data. Thus, GAN is used in the right way after considering data
challenges. If the data are small, imbalanced, and contain irrelevant
features, optimal performance can be obtained by adjusting the data
quality in accordance with the task at hand.

Before moving on to other stages of data analysis, the methods
described in the visual learning approach can be considered a pre-
warming procedure. Before beginning the implementation of an algo-
rithm, visual learning can be implemented as a starting point to find
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Table 10
Suggestions for further research.

Number Considering

1 Efficient solutions for missing values

2 Communication of understandable and multi-disciplinary
data-driven results to non-technical stakeholders, and health
professionals

3 Re-organise the gathered data from various formats

4 Improve the structure, mapping and formats of data

5 Coordination of data generation from multiple sources

6 Interpretability, saving cost, management and computational
resources
interesting patterns in the data. Visual learning offers cost-effective
and efficient methods for addressing data challenges before implement-
ing other learning approaches. The visual learning approach provides
the optimal combination of the data, algorithm and human levels to
achieve the most important medical calculations and treatments: a
better overview of personalised treatments, early disease detection, and
automated procedures.

By enabling learning through visualisations for improved interac-
tions of human experts with machines, the so-called human-in-the-loop
and machine-in-the-loop machine learning [73,74], visual learning of-
fers a systematic, personalised approach that enables medical experts
and clinicians to collaborate with machines more effectively. This offers
learning to both experts and machines to make informed decisions
when human and machine abilities are limited, thereby resulting in
more effective early treatment decisions. Consequently, human judge-
ment verification [75] and machine efficiency complement one an-
other. To address data which are the root cause of less-than-optimal
data analysis and enhance diagnosis performance, complex data issues
necessitate visual learning as a multifaceted solution. It is advantageous
to use the diagnostic and treatment options provided by machine
learning in cooperation with human medical experts to create the best
healthcare system.

5.1. Limitations and future recommendations

The medical datasets are typically collected from a particular area,
in a variety of formats, are challenging to access, and have undergone
extensive preprocessing. Additionally, the datasets in real-world health
scenarios are typically not ready for data analysis and machine learning
models implementation. To make informed decisions for early diagno-
sis and personalised treatment when performing real diagnosis on a
dataset, the actual circumstances under which the data were gathered,
cleaned, and processed must be aligned with the diagnosis task at hand.

Each data should be taken into account separately when creating
synthetic data from original data because data are all unique and
may contain more or fewer challenges than the data from published
research these are compared to. As a result, while general comparisons
with published studies regarding data analysis are considered, decisions
regarding specific treatments should always be made in coordination
with the input of human experts. However, the decisions of experts
may be influenced by competing interests, geographic ties, schools of
thought, different types of treatments, and differing opinions.

The generated data might, to a certain extent, maybe devoided of
statistical characteristics, which would have an impact on how diag-
noses and treatments are determined. The limitation of visual learning
is that at one point the statistics characteristics of the synthetic data
will be lost, therefore it is essential to perform the first experiment to
check that these are preserved. To determine whether a dataset has the
potential to be further manipulated, visual experiments should be car-
ried out regularly after any modification. The first experiment provides
a valuable resource for evaluating a dataset’s statistical properties.

In future research, the data distribution and processing consider-
ations will be added to the prediction model at the algorithm level
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and applying other algorithms to generate synthetic data. This could
provide more opportunities for applying high-performance machine
learning techniques which require big data in downstream data pro-
cessing, focusing on the intersection of data and algorithms for disease
prediction. In addition, it is important to investigate and trace the
interpretability and relevance of the generated data in future studies
to compare human decisions based on visualisations and machine-
generated solutions. Future research may focus on exploring visual
learning, for example formalising and analysing the corresponding time
complexity of visual learning, furthermore, considering the issues in
Table 10.
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