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Abstract—Demand-side management now encompasses more
residential loads. To efficiently apply demand response strategies,
it’s essential to periodically observe the contribution of various
domestic appliances to total energy consumption. Non-intrusive
load monitoring (NILM), also known as load disaggregation, is a
method for decomposing the total energy consumption profile
into individual appliance load profiles within the household.
It has multiple applications in demand-side management,
energy consumption monitoring, and analysis. Various methods,
including machine learning and deep learning, have been used to
implement and improve NILM algorithms. This paper reviews
some recent NILM methods based on deep learning and
introduces the most accurate methods for residential loads. It
summarizes public databases for NILM evaluation and compares
methods using standard performance metrics.

Index Terms—Smart Grids, NILM, Deep Learning, Energy
Management.

I. INTRODUCTION

The non-intrusive load monitoring (NILM) method has
gained popularity in recent years as a way to monitor appliance
and electrical utility energy usage in buildings and events
(on/off) using a single energy meter. If consumers had data
on appliance-level energy usage, they could better understand
their energy consumption behavior and take action to reduce
it. The aim of this study is to present an overview of the
latest algorithms currently being investigated by researchers
to create a precise non-intrusive load monitoring (NILM)
method for effective energy management. The article discusses
the potential applications of NILM across different fields,
along with future research objectives. The development of
sustainable and smart cities has been made possible by
advancements in artificial intelligence (AI), smart meters, the
internet of things (IoT), and smart grids, as cited in [1] and
[2]. Effective energy management is a crucial component of
sustainable city development, which aims to utilize resources
responsibly, protect the environment, and enhance society’s
well-being. The objective of energy management is to promote
energy system self-reliance and sustainability [1].

Energy management involves monitoring and controlling
electrical utilities to optimize energy use and reduce
consumption. However, with the increase in energy needs,

energy conservation has become a challenge in recent years
[3]. Greater energy use can lead to an energy crisis, climate
change, and a negative impact on the economy [4]. It is
estimated that the rise in carbon emissions will increase
global temperatures by 2.5 to 10 �C this century, causing
more frequent floods, droughts, a rise in sea level, and the
spread of infectious illnesses [5]. Therefore, it is essential
to reduce carbon emissions across all sectors, including
construction, industry, and transportation, to mitigate climate
change. Researchers are working on developing technology
solutions for energy conservation [3]. Buildings are one
of the major contributors to energy consumption [6], with
energy consumption in this sector steadily increasing over
time. In order to mitigate carbon emissions, optimizing
energy consumption in residential and commercial buildings
is crucial. This can be achieved through the construction or
design of energy-efficient structures, as well as improving
energy usage in existing buildings.

The paper is organized as follows. Section II introduces
the mathematical definition of the NILM problem. Section
III discusses deep learning-based NILM methods. Section IV
provides a summary of the public NILM datasets. Section V
presents a comparison study of NILM methods, and finally,
Section VI concludes the paper.

II. NILM PROBLEM DEFINITION

A. Mathematical Problem Definition

The issue at hand can be described as follows: at a given
time t, the total active power consumed by a system is
represented by y(t), while yi(t) represents the active power
consumed by the ith appliance at the same time. The overall
load is the sum of the energy consumed by individual
appliances and an unmeasured residual load, expressed as:

y(t) =
NX

i=1

yi(t) + e(t), (1)

where N denotes the number of appliances considered, and
e(t) represents the undetermined residual load. The aim is to
estimate F (y(t)) by determining the values of yi(t), given
only the value of y(t), as:979-8-3503-4743-2/23/$31.00 ©2023 IEEE



y1(t), y2(t), ..., yi(t), ..., yN (t) = F (y(t)), (2)

where F is an operator that produces N distinct values when
applied to the total active power. These numbers represent
the most accurate estimate of the power consumed by each
appliance. It should be noted that yi(t) typically does not
reflect the entire set of home appliances but rather a subset of
them. As a result, the unknown term e(t) takes into account
the loads caused by unmonitored appliances. If simultaneous
measurements of the aggregate consumption and load of each
appliance are available, approximating the F operator can
be considered a supervised learning problem. When mainly
concerned with activation times and cumulative consumption,
as is the case in real situations, the estimated individual
appliance consumption (ŷi(t)) can be obtained using functions
that are constant over the device’s activation period:

ŷi(t) = piâi(t), (3)

where pi represents the average consumption of appliance
i, and âi(t) represents an estimate of the activation state of the
particular appliance at time t. Its value is one if the device is
in use and uses energy, and zero otherwise. Therefore, starting
with the aggregate load, a technique is provided to derive the
most accurate and feasible assessment of the activation state
of the appliances:

â1(t), â2(t), ..., âi(t), ..., âN (t) = Fa(y(t)), (4)

After learning the average nominal consumption of the
considered equipment, one can use Equation 3 to estimate
consumption.

B. Appliance types

Based on their operational characteristics, appliances can be
classified into four types as discussed in [7]. Type I appliances
have two modes of operation - on and off. These include
appliances such as kettles, toasters, and light bulbs, which
consume energy only when turned on. Type I appliances are
predominantly resistive with few linear reactive components.
Type II appliances are characterized as multi-state or finite
state machines with a limited number of operational states
that may be run repeatedly. Changes in these appliances’
states can be observed by monitoring the power consumption’s
falling/rising edges over time. Stove burners, refrigerators, and
washing machines are some examples of Type II appliances
[7], [8]. Figure 1 demonstrates the distinct appliance operation
conditions.

Category III appliances, also known as Continuously
Variable Devices (CVDs), exhibit a non-repetitive power usage
pattern, which poses a challenge for energy consumption
disaggregation. Examples of Type III appliances include power
drills and dimmer lights [8]. Type IV appliances are those
that run continuously for extended periods of time, typically
lasting several days or weeks. Examples of Type IV equipment
include wireless telephone devices and cable TV receivers [8].

Fig. 1: A pictorial representation illustrates the different types
of appliances categorized based on their operating states.

Therefore, the Non-Intrusive Load Monitoring (NILM) system
is required to have the ability to differentiate between various
types of appliance events, which may happen concurrently or
independently and at varying time intervals.

III. DEEP LEARNING BASED NILM METHODS

NILM techniques can be broadly categorized into two
groups: supervised and unsupervised methods [9]. In
supervised NILM, individual appliance power usage is used
to train the models. On the other hand, unsupervised
methods can only utilize aggregate power usage data.
Examples of unsupervised NILM techniques include Hidden
Markov models (HMM) [10], [11], factorial HMM (FHMM)
[12], [13], and techniques based on event detection and
clustering [14], [15]. These techniques have been thoroughly
examined in previous studies [9], [16]. With the advent of
deep neural networks (DNNs), many neural network-based
supervised NILM techniques have been developed [17], [18].
Convolutional neural networks (CNN) have also recently
made significant advances [19], [20]. Graph signal processing
[21], HMM [12], [13], [15], [22], [23], and DNNs [24],
[25] are commonly used in suggested NILM approaches.
As the cost of employing appliance data for training has
grown dramatically, researchers have focused on developing
unsupervised approaches and incorporating appliance models.
Despite the significant progress made in NILM research
in recent years, challenges remain in terms of application,
identification accuracy, training time, and online deployment
techniques in smart metering frameworks.

A. Event-Based Non-Intrusive Detection

The event-based NILM method is based on the concept of
detecting and categorizing events within a combined electrical
signal. Figure 2 shows the block diagram of the this approach.
A robust event detector should be developed to cope with
noisy fluctuations and identify events with decay and growth
patterns, which is a bottleneck and inherent difficulty in
existing event detectors [26]. One approach includes the steps
of event detection, extraction, clustering, and matching in the
event-based block [27]. It should be noted that the accuracy of
previous event-based frameworks is dependent on the power
features that are introduced. Since some appliances may have
identical active power curves but radically distinct reactive



Fig. 2: Block diagram scheme of event-based NILM.

power trends, increasing the number of features can enhance
the accuracy of the appliance model, particularly for non-linear
loads. One of the advantages of incorporating reactive power
is that it enables discrimination between different types of
devices.

B. NILM Disaggregation by CNN

The proposed method [28] employs a convolutional neural
network (CNN) that takes the time interval of a home’s energy
consumption as input and predicts the activation status of each
device at every time step. The network architecture, referred to
as Temporal Pooling NILM (TP-NILM), is an updated version
of Zhao et al.’s PSPNet (Pyramid Scene Parsing Network)
used for semantic image segmentation [29]. The TP-NILM
follows the conventional approach to image segmentation,
with an encoder comprising pooling and convolutional layers
that enhance the feature space of the signal but decrease its
temporal resolution, and a decoder module that uses these
features to approximate the activation state of the devices at
the original resolution. To establish a temporal context that
covers extended periods without compromising the signal’s
resolution, the TP-NILM incorporates a Temporal Pooling
module that accumulates features at various resolutions,
enabling accurate reconstruction of the activation state.

Figure 3 illustrates the architecture of the network used in
this study. The encoder uses a rectified linear unit activation
function, batch-independent normalization downstream of the
activations, and a regularization dropout layer, with three
convolutional filters interleaved by max-pooling layers. The
encoder reduces the signal’s temporal resolution by a factor
of eight and raises the number of output characteristics
from a single aggregate power consumption value to 256.
The TP block provides context information to the decoding
block, allowing it to create extra features for decoding by
aggregating encoder output with various resolutions. The
encoder output is passed through four average pooling modules

Fig. 3: Outline of network structure for NILM by CNN.

with various filter sizes, which degrade the temporal resolution
while maintaining the number of features, before being
convolutioned with a unit filter size. This reduces the number
of characteristics to one-quarter of those used in the input.
The convolutional results are used as the input for a rectified
linear unit activation function, which is then batch normalized.
Lastly, linear up-sampling yields a temporal resolution at the
TP block’s output that is equal to the encoder’s output. A
dropout is also added to the output, allowing the network to
be controlled. The context features generated by this block are
connected to the encoder’s detail features, doubling the total
number of features in the decoder’s input. To raise the signal’s
temporal resolution and lower the number of features, the
decoder contains a transposed convolutional layer with a stride
and kernel size of 8. The ReLU is still used as the activation
function, followed by an extra convolutional layer with an
unified kernel size that keeps the temporal resolution and
increases the number of output channels to match the number
of devices being analyzed. In the output, a sigmoid function is
used. This is because in the semantic segmentation of photos,
each pixel is connected to a single class, however in the current
application, many appliances might be in use at the same time.
While working in this manner, the network decomposes all
appliances at the same time. This should enable an encoder
to use more broad convolutive filters that aren’t specialized
for a single kind of appliance, boosting the neural network’s
capacity to generalize. Gradient descent optimization may be
used to find the net’s weights. The loss function is a binary
crossentropy applied to each output channel that assesses the
disparity between the activations predicted by the net âi(t) and
the actual ones ai(t) for each appliance under consideration
and for each instant of the period under consideration.

IV. NILM PUBLIC DATASETS

To develop NILM (non-intrusive load monitoring)
algorithms and assess their performance, the research



community provides various NILM datasets in the public
domain [30]. Since each dataset monitors different appliances
in diverse environments and buildings over a varied time
period, each dataset has its own specific criteria [31], [32].
However, it has been observed that many public datasets have
structural variations that require pre-processing before usage.
To address this issue, the dsCleaner Python module was
developed to standardize, clean, and convert time series data
into a consistent file format, and also includes a resampling
method for datasets. Typically, NILM datasets consist of
aggregated energy data from a single meter and the actual
energy consumption of each appliance, which is measured by
plug-level meters and serves as the ground truth for evaluating
NILM algorithms. Table I lists the most popular publicly
accessible NILM datasets for research purposes [30].

In 2011, the Reference Energy Disaggregation Dataset
(REDD) [32] became available as the first openly accessible
dataset designed specifically to aid NILM research. Following
this, the building-Level fully-labeled dataset for Electricity
Disaggregation (BLUED) [33] was released in 2012, which
contained data from a single household.

The Almanac of Minutely Power dataset (AMPds) [34],
on the other hand, was made public in 2013 and comprised
both aggregate and sub-metered power data from a single
household. The Almanac of Minutely Power dataset Version
2 (AMPds2) [35] is another dataset that captures all three
primary types of consumption, including electricity, water, and
natural gas, over an extended period of 2 years. Furthermore,
it provides 11 measurement characteristics for electricity. The
data in AMPds2 has been pre-cleaned to ensure consistent and
comparable accuracy results among researchers and machine
learning algorithms.

The REFIT Electrical Load Measurements [36] dataset
is another one that includes cleaned electrical consumption
data in Watts for 20 households at both aggregate and
appliance levels, timestamped and sampled at 8-second
intervals. It is designed to support research into energy
conservation and advanced energy services, ranging from
non-intrusive appliance load monitoring, demand response
measures, tailored energy and retrofit advice, appliance
usage analysis, consumption and time-use statistics, and
smart home/building automation. Finally, the UK Domestic
Appliance-Level Electricity data set (UK-DALE) [37] was
released, containing data from four households.

The available NILM datasets have varying sample rates
ranging from 1 Hz to 100 kHz and cover individual appliances
as well as residential complexes. While data collected
from individual appliances can be valuable for modeling
and training the NILM system, its performance may not
be optimal when tested on the entire residential building.
Conversely, relying solely on whole-household datasets may
not be appropriate for training the algorithms, especially when
individual appliance data is unavailable.

Furthermore, certain databases provide primary current and
voltage signals, whereas others provide calculated electrical
parameters such as active power, reactive power, apparent

power, and power factor. However, in order to create an
effective NILM system, it is crucial to obtain unprocessed
electrical signals in order to extract fundamental and harmonic
characteristics.

V. EXPERIMENTAL RESULTS

A. Evaluation Metrics

To evaluate the performance of algorithms in recognizing
appliance switching ON or OFF, the classification metrics
presented in Eqs. 5-8 were used. The metrics are calculated
using True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). TP represented the number
of times a device was correctly recognized as ON, whereas
TN represented the number of correctly identified OFF
occurrences. FP highlighted instances when ON states were
recorded despite the appliance not consuming power. On the
other hand, FN displayed the number of OFF occurrences that
were incorrectly recognized.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Presicion =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2 ⇤ Presicion ⇤ Recall
Presicion + Recall

(8)

The recall metric in Eq. 7 measures the ratio of correctly
identified positive instances (TP) to the total number of
positive instances in the dataset. On the other hand, the
precision metric in Eq. 6 represents the ratio of correctly
identified positive instances (TP) to the total number of
instances identified as positive by the algorithm. The F1 score
is a weighted mean of precision and recall, which is used
to determine the accuracy of the algorithm in identifying
appliance states. Higher F1 scores indicate better algorithm
performance in recognizing appliance state transitions.

The mean absolute error (MAE) and proportion of energy
correctly allocated (PECA) metrics in Eqs. 9 and 10,
respectively, are non-event-based metrics used to evaluate
the accuracy of load disaggregation systems in calculating
and assigning electricity usage. MAE measures the average
absolute difference between the estimated and actual energy
usage, while PECA evaluates the percentage of energy
correctly allocated to individual appliances.

MAE = 1/T ⇤
TX

t=1

|ŷit � yit| (9)

FECA = 1�
PT

t=1

PN
i=1 |ŷit � yit|

2
PT

t=1 ȳt
(10)

In the preceding equations, ŷit and yit are the estimated
and ground-truth power of the ith device at time step t,
respectively. Furthermore, ȳt is the total power at time t [24].



TABLE I: Summary of NILM public datasets

Dataset Sampling
Rate Time
Resolution

Duration Type Number of
Households

Number of
Appliances

Country URL

REDD 16.5 KHz 19 days Residential 6 6 US https://tokhub.github.io/dbecd/links/redd.html
BLUED 12 KHz 1 week Residential 1 50 US https://tokhub.github.io/dbecd/links/Blued.html

UK-DALE 16 KHz 2 years Residential 5 5 UK https://jack-kelly.com/data/
REFIT 8 seconds 2 years Residential 20 9 UK https://pureportal.strath.ac.uk/en/datasets/refit-

electrical-load-measurements
AMPds2 1 min 2 years Residential 1 21 Canada http://dx.doi.org/10.7910/DVN/FIE0S4

B. Performance Evaluation and Comparison Study

In this part, the disaggregation findings for the NILM
approaches using the REDD, UK-DALE, and REFIT datasets
are shown. The performance indicators obtained by executing
the tests on these datasets shows that F1 produced the best
results for refrigerators, air conditioners, freezers, televisions,
and washing machines across the three datasets, with values
greater than 0.70. Toasters and electronics, on the other hand,
have lower F1 scores of roughly 0.25 owing to misclassifica-
tion caused by the non-uniform pattern of these items.

The accuracy metrics of the findings were compared for
published methods: on-line NILM [27], NILM-TK [14], an
FHMM implementation; Neural-NILM [7], a DNN adaption
for energy estimation. The Neural-NILM used three DNN
architectures: i) long short-term memory, ii) de-noising
auto-encoders, and iii) rectangles. Rectangle networks, in
particular, regress the start-time, end-time, and average power
of appliance activation.

In experiments using UK-DALE dataset, a comparison of
on-line NILM, NILM-TK and Neural-NILM methods for five
appliances (fridge, washing machine, dishwasher, microwave,
and kettle) is done. The microwave gives the lowest marks
for all three methods. MAE and an F1 score of roughly 195
Watts and 0.01, respectively, are reported by NILM-TK. The
best MAE of 6 Watts and an F1 score of 0.21 is shown by
the neural-NILM. With an F1 score of about 0.35, the on-line
NILM method outperforms the other two. The MAE and F1

scores reported by NILM-TK are roughly 67 watts and 0.55,
respectively. The Neural-NILM has an MAE of 18 Watts and
an F1 score of 0.82. In terms of energy estimate, the Neural-
NILM outperformed the suggested technique, particularly
for complicated equipment like dishwashers and washing
machines. Nonetheless, the time and computational resources
required to train the neural network and generate the models
need a large amount of appliance-level data. The on-line NILM
technique, on the other hand, may generate appliance models
using aggregate data without the necessity for appliance-level
sub-metered data.

VI. CONCLUSION

The three-phase distribution network often feeds the
final residential customers through single phase cables. It
is important to make the loads balanced. Demand side
management and different optimisation techniques would help
on this. However, understanding the contribution of different

appliances to energy consumption is beneficial. NILM is
demonstrated to be a good approach to this end. The accuracy
of NILM depends on the method applied. This paper reviewed
some deep learning-based methods which outperform other
existing NILM algorithms. The paper compared the results of
applying these advanced methods to provide a basis for future
implementation. These datasets have public access and are
widely used in NILM literature. Several performance criteria
are formulated to analyze the performance of the methods.
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