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ABSTRACT A large number of sensors are deployed for performing various tasks in the smart cities. The
sensors are connected with each other through the Internet that leads to the emergence of Internet of Things
(IoT). As the time passes, the number of deployed sensors is exponentially increasing. Not only this, the
enhancement of sensors has also laid the base of automation. However, the increased number of sensors make
the IoT networks more complex and scaled. Due to the increasing size and complexity, IoT networks of scale-
free nature are found highly prone to attacks. In order to maintain the functionality of crucial applications,
it is mandatory to increase the robustness of IoT networks. Additionally, it has been found that scale-free
networks are resistant to random attacks. However, they are highly vulnerable to intentional, malicious,
deliberate, targeted and cyber attacks where nodes are destroyed based on preference. Moreover, sensors
of IoT network have limited communication, processing and energy resources. Hence, they cannot bear the
load of computationally extensive robustness algorithms. A communication model is proposed in this paper
to save the sensors from computational overhead of robustness algorithms by migrating the computational
load to back-end high power processing clusters. Elephant Herding Robustness Evolution (EHRE) algorithm
is proposed based on an enhanced communication model. In the proposed work, 6 phases of operations
are used: initialization, sorting, clan updating, clan separating,selection and formation, and filtration. These
process collectively increase the robustness of the scale-free IoT networks. EHRE is compared with well-
known previous algorithms and is proven to be robust with a remarkable lead in performance. Moreover,
EHRE is capable to achieve global optimum results in less number of iterations. EHRE achieves 95%
efficiency after 60 iterations and 99% efficiency after 70 iterations. Moreover, EHRE performs 58.77%
better than Enhanced Differential Evolution (EDE) algorithm, 65.22% better than Genetic Algorithm (GA),
86.35% better than Simulating Annealing (SA) and 94.77% better than Hill climbing Algorithm (HA).

INDEX TERMS Elephant herding robustness evolution, Internet of Things, scale-free networks, malicious
attacks, targeted attacks, topology robustness, smart cities.
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NOMENCLATURE
IoT Internet of Things.
EHRE Elephant Herding Robustness Evolution.
EDE Enhanced Differential Evolution.
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GA Genetic Algorithm.
SA Simulating Annealing.
HA Hill climbing Algorithm.
BA Barabasi Albert.
EABA Energy Aware Barabasi Albert.
GPS Global Positioning System.
SAN Storage Area Network.

I. INTRODUCTION
The modern era is the era of automation where everything is
getting automated. Internet was formedwith themain thought
to connect people and devices. Devices are becoming smarter
with every passing day along with exponential expansion.
The devices are coming together and connecting with each
other using the Internet, referred to as Internet of Things
(IoT). IoT is a favorite field for researchers and scientists
in the recent decade. These devices will expand and will
acquire even more space than humans in the near future.
It is estimated that these devices will cross even twenty nine
billion in the year 2030 [1], [2]. The rapid expansion of IoT
is due to low cost sensors that are smart enough to sense
multiple attributes at the same time. This expansion of sensors
has laid the foundation for automation in multiple fields
and making multiple tasks very easy [3], [4]. The IoT is an
integration of multiple disciplines, including fifth generation
(5G) ultra-dense cellular networks, heterogeneous ad hoc
networks, hybrid mobile networks, wireless sensor networks,
and so on. The IoT has a broad range of applications in
smart cities [3], [5], [6], [7], [8], [9]. Typically, it deploys a
large number of networking nodes within a certain area, and
these nodes communicate with each other to collect data
and provide reference for smart cities in various fields like
industry, agriculture, security, transportation, smart home,
health care, etc. Meanwhile, these are producing a vast
amount and different types of data. Therefore, how to
improve the robustness of IoT against node failure of smart
cities has become an essential issue in recent years. With
the evolution of technology, automation has exponentially
increased in almost all fields to speed up the processes
and to decrease human errors. IoT helps in automation
through sensors. In health care, vital information of patients is
proactively monitored through smart watches, Holter monitor
and other health care sensors. They all are combined to
form a health care IoT network. Industrial processes are
revolutionized through IoT and are managed through sensor
based IoT networks. In transportation, congestion control and
early warning traffic systems work on IoT based sensors.
Robustness of IoT network is important as its unavailability
can result in life threatening results due to dependence of
critical data that is served through IoT. A novel algorithm,
Elephant Herding Robustness Evolution (EHRE), is proposed
to enhance the robustness of IoT network. It is inspired
by the herding behavior of elephants and designed to solve
complex problems. It is a very powerful algorithm that works
on a swarm-based search approach. As per the best of our

knowledge, it is the first attempt to map elephant herding
behavior over IoT networks and to enhance robustness of IoT
networks through this design. It has multiple evolutionary
characteristics that were not present in classical heuristic
algorithms including fast convergence and ability to obtain
global optimum results.

Majorly, there are two network models for IoT, i.e., scale-
free and small world. Scale-free models are normally used
to model homogeneous networks while small world models
are used for heterogeneous networks. Due to the fact that IoT
sensors share the same communication ranges, bandwidths,
and processing power, IoT is considered to be scale-free
in nature [3], [4], [9]. We have adopted scale-free model
for IoT network of smart cities. In scale-free networks,
nodes form edges based on the power-law distribution due
to which there are fewer high degree nodes as compared
to low degree nodes. While scale-free networks are highly
immune to random attacks, they are extremely vulnerable to
targeted, malicious, intentional, high-level, and cyber attacks
[3], [4], [9], [10], [11], [12], [13]. When high degree nodes
are specifically targeted in scale-free networks, they tend
to fragment quickly after a few attacks. As a result, the
network is paralyzed [10], [11], [12], [13]. To ensure smooth
operations of the smart cities and reliability of extremely
crucial IoT applications, resilience of the scale-free IoT
networks against malicious, targeted, intentional, and cyber
attacks is of key importance.

Main contributions
The main contributions are as follows.

• Sensor nodes in IoT network have limited processing
and communication resources due to which they cannot
have a large number of neighbors and long-distance
links. Scale-free topology with preferential attachment
property is formulated through sensor’s dense deploy-
ment. Distance of links and overloading of neighbors
are controlled through Sensorrange and Neighborthreshold
respectively.

• A novel algorithm, EHRE, is proposed to obtain global
optimum results in very less time. Hence, the energy,
processing and communication resources of IoT sensors
are saved.

• The proposed algorithm keeps the degree distribution
of sensors unchanged during all operations. Hence,
additional resources are not required for communication
links and energy is optimized.

• Systemmodel for IoT network of smart cities is designed
that transfers the processing overhead of structural
topology robustness algorithm from IoT sensors to the
big data server cluster. Hence, energy and resources of
sensors are saved.

Smart cities are powered by numerous Artificial Intelli-
gence (AI) and Machine Learning (ML) based applications
that are dependent on IoT sensors for data gathering and
decision making. In smart traffic control systems of smart
cities based on IoT, early detection, prediction and congestion
control of traffic are ensured through AI assistance [15].
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Traffic data that can assist in prevention of accidents and
congestion control is highly prone to intelligent targeted
cyber attacks that can result in life threatening losses in the
form of road accidents [15]. EHRE can effectively prevent
targeted cyber attacks by converging the topology towards
an enhanced and robust structure. IoT is the pivot of smart
cities. IoT systems of military and government are targeted
by political hackers and criminals to gain information [15].
These IoT systems can be protected by the formation of a
topology that is robust against targeted cyber attacks.

The rest of the paper is organized as follows. Section II
describes the literature review of already proposed topology
robustness strategies for IoT networks and allied issues.
Section III describes the system model for optimized and
future IoT network based smart cities. Section IV represents
the preliminaries. Section V describes the mapping of EHRE
on IoT networks. Section VI shows the simulation details and
results. Section 8 concludes the paper.

II. RELATED WORK
Numerous networks including IoT and wireless networks
are analyzed by the researchers and found to be scale-free.
The behavior of nodes during edge generation in scale-free
networks is defined by a power-law distribution. Scale-free
networks were studied by A. L. Barabasi and R. Albert, who
then presented a model they called the BA model [14] to
generate topologies with power law distribution, where the
edges formed by the nodes in the generated network strictly
follow the power-law distribution. Besides, the topologies
generated by BA model are not compatible with the IoT
and wireless networks. In IoT and wireless networks, sensor
nodes have limited energy resources along with limited
communication capabilities as most of the sensors are
battery-powered. When sensor nodes are forced to make
communication links over large distances, they will quickly
deplete their energy and will die after a short time span.

Herrmann et al. suggest using the Hill climbing Algorithm
(HA) [16] to improve the resilience of scale-free networks.
By altering the topology to resemble an onion, HA improves
the robustness of scale-free networks. The edges are picked
and swapped at random to operate. HA has a low computa-
tional efficiency as a result of the random selection and edge
swapping.

P. Buesser et al. suggest Simulating Annealing (SA) [17]
to improve the stability of scale-free networks. Although SA
relies on the randomization phenomena, it also takes into
account inferior configurations when edges are randomly
swapped.

Y. Jian et al. propose Energy Aware BA (EABA)
model [18] for scale-free networks. Ranges and energy
consumption are varied by tuning the variables in EABA that
results in communication overhead due to parallel operations
of energy balancing and data transmission adjustment. EABA
is unable to handle IoT and wireless networks because it does
not take into account the constrained communication range of

IoT sensor nodes. It is inefficient at computing and gets stuck
in local optimum conditions.

A model to improve the robustness of scale-free networks
is put forth by Rong et al. in [19]. The suggested model works
by categorizing the network’s edges into different groups and
is based on edge classification. Due to the model’s disregard
for the sensor nodes’ resource constraints, it is not suitable
to IoT and wireless networks. In IoT, nodes cannot have high
communication range due to limited energy, processing and
communication capabilities. Moreover, only a single type of
edge swap mechanism is considered in the proposed model,
which restricts the model to achieve high robustness and
global optimum results.

A memetic algorithm is proposed by Zhou and Liu [20] to
enhance the robustness of scale-free networks. The algorithm
is based on multi-channel operations along with considering
the degree distribution of nodes. Multi-channel operation
leads to high complexity and computational overhead that
results in quick depletion of node’s energy. Moreover, it does
not consider the limitation of communication radius for IoT
nodes due to which it cannot be applied to IoT network to
enhance topology robustness.

A multi-objective approach is put out by Zhou and
Liu [21] to improve the resilience of scale-free networks.
The suggested algorithm evaluates networks under various
forms of attacks. Evaluation also takes into account scenarios
from the real world. The suggested algorithm cannot be
applied to the IoT because it fails to cater to the resource
constraints of the IoT devices.

The greedy approach was proposed by Qiu et al. [22] for
enhancing the robustness of IoT networks. The proposed
solution works on greedy approach and improves the
robustness of the topology by adding additional links. The
addition of links results in huge financial impact and requires
extra resources, which are practically not feasible in a large
scale network. Additional links also change the edge density
of the existing network along with degree distribution.

Qiu et al. [9] propose a Genetic Algorithm (GA) based
solution for improving robustness of scale-free networks. The
proposed solution is unable to perform deep search in solution
space for global optimum results. As a result, the robustness
is not enhanced to the maximum level. Besides, the fixed
probabilities for crossover and mutation operators are used
that restrict the solution from getting global optimum results
along with the lack of maintaining diversity. The proposed
solution has a slow convergence rate.

ROSE [23] is proposed by T. Qiu et al. for enhancing
robustness of scale-free networks. It works by convert-
ing topology into onion-like structure through two major
operations. ROSE uses the first node as a reference for
converting topology into onion-like structure in degree
difference operation. However, in most scale-free networks,
the first node is not the highest degree node. Due to which
ROSE failed to convert the topology into a perfect onion-
like structure because of wrong selection. Moreover, the
robustness of the topology is not fully enhanced by ROSE.
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The scale-free networks’ robustness can be improved
with ROCKS, according to Qiu et al. [24]. ROCKS cannot
discover the solution space’s hidden advantages since it
employs fixed crossover and mutation probability. This
prevents the global optimum solution from being reached.
Furthermore, ROCKS is unable to do a thorough search
in the solution space. It also has a modest convergence
rate.

Detection ofmalicious data flows and anomaly is of critical
importance in IoT network according to Shafiq et al. [25].
Undesired and unauthorized data traffic should be blocked in
IoT networks to ensure data security and improve robustness
of IoT network. An algorithm based on improved feature
selection approach named CorrAUC is proposed to detect
malicious traffic in IoT networks. Malicious traffic and
unauthorized data flows in IoT networks can be effectively
controlled throughmachine learning according to Shafiq et al.
[26]. However, these machine learning based techniques can
misclassify many traffic flows in IoT networks due to wrong
feature selection. To resolve this issue, effective feature
selection is applied followed by CorrACC. Shafiq et al.
[27] worked on identification of cyber attacks in IoT based
smart cities. These attacks can cause significant damage
to the infrastructure and human life. Hence, improving the
robustness of IoT based smart cities is critically important.
Shafiq et al. [28] put an effort to highlight literature review
of sustainable smart cities, data mining, machine learning
and feature selection to classify data flows in IoT networks.
When machine learning techniques are applied, then datasets
and features gain essential importance. Shafiq et al. [28] put
an effort to highlight literature review of sustainable smart
cities, data mining, machine learning and feature selection
to classify data flows in IoT networks. When machine
learning techniques are applied, then datasets and features
gain essential importance.

III. ROBUST AND EFFICIENT SCALE-FREE IOT MODEL FOR
SMART CITIES
In this section, we have proposed a modeling strategy
for a scale-free IoT network. We have further evaluated
the scale-free nature of our proposed IoT network based
on complex network theory. The system model proposed
for scale-free IoT based smart cities, shown in figure 1,
is motivated from [3], [4], and [9]. Multiple networks come
together and forms the IoT network. The communication
in IoT networks is majorly done via a wireless medium.
Besides, many sensors have limited communication and
processing capabilities along with energy constraints. The
mentioned limitations have the following effects on the
network.

• Sensor nodes cannot make arbitrarily long communi-
cation links with other nodes due to limited commu-
nication range, which is being controlled by parameter
Sensorrange.

• The number of edges or links each node can form
is limited due to the above mentioned constraints.

Moreover, the number of links each node can form
is controlled by parameter Neighborthreshold . After
reaching the threshold value, sensors are not allowed to
form additional links.

Due to the limited communication capability, sensor nodes
cannot make communication links with a sufficient number
of neighbors due to which preferential attachment attribute
of the BA model is not fully implementable. To overcome
this, we have deployed a dense IoT network. To achieve dense
topology, each sensor node should be in the communication
range with atleast 50% of the sensors and the communication
range of senor nodes should be large enough to cover
a desired number of sensors in the network. If nodes’
communication radii are not appreciably great, high degree
nodes will be dispersed around the network, which will
cause network fragmentation. Significant research on dense
network topologies is now being done [3], [4], [29], [30]
due to the rapid developments made in the field of sensor
manufacturing. Dense network topologies will be common in
the future as the costs of sensors are decreasing day by day.
Moreover, ranges of sensors can be enhanced to an optimum
level with minimum cost. It leads to the dense deployment
of sensors and now sensors can be found everywhere includ-
ing homes, transportation, roadsides, commercial buildings,
shopping malls and hospitals to support a variety of multiple
services under the umbrella of IoT based smart cities. As a
whole sum, dense deployments are adopted more often in
the current era. We have considered the following aspects for
creation of IoT networks with scale-free nature in the smart
cities.

• Communication links are non simultaneously added
between nodes. The new incoming node will establish
links with the existing nodes in the network. Here, non
simultaneouslymeans, at the same instance, the new link
is not established by a pair of nodes.

• New incoming node prefers to establish link with the
existing nodes in the communication range that are
controlled by parameter Sensorrange based on their
degree. It is desirable to select high degree nodes as
neighbors. The phenomena is based on the Roulette
approach, which uses newly arriving nodes to create
links.

• By connecting with the other nodes already in the
network, new entering nodes become neighbors. It is
known as the node’s local world. Higher degree nodes
use consume energy. Hence, having high probability
to die down quickly. It may lead the network to get
fragmented. Besides, Neighborthreshold is used to restrict
a node from establishing links more than the desired
limit. This value limits the total number of neighbors
that each node can have. The weight of adjacent
nodes within its range is calculated each time a new
node joins a network, denoted as Sensorrange, using
the equation given below. The newly joined node Ni
prefers to establish neighborhood relation with nodes in
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Sensorrange having high value ofNwe(i) as per equation 1.

Nwe(i) = Di/
nnei∑
j=1

Dj, (1)

where the number of nodes in the newly joined node’s
Sensorrange is denoted by the symbol nnei. Node i’s degree
is denoted by the symbol Di. The proposed architecture,
as depicted in Figure 1, is formed with the aim to relief
the sensors from computational overhead of advanced opti-
mization algorithms. The suggested model takes into account
the limited processing and communication resources of IoT
sensors. Traditional models are based on intercommunication
of sensor nodes as per protocols defined by algorithms, which
increases the computational load on sensors and leads to
high energy consumption. The proposed architecture collects
the topology information from the sensors and performs
all the processing in the data center. The proposed EHRE
algorithm has multiple evolutionary characteristics including
fast convergence and ability to obtain global optimum results
in very less time due to reliance on swarm based search
methods. These capabilities also make the algorithm to save
energy and computational resources. These characteristics
were not present in traditional heuristic algorithms.

• Smart cities cloud:All IoT segments, i.e., smart homes,
smart industry, smart agriculture, health care and smart
transportation, in our suggested model are mostly based
on sensors, as seen in Figure 1. To the cloud of the
smart cities, all the sensors broadcast their positions,
application-specific data, and neighbor information. The
smart cities cloud acts as an aggregation hub where all
the data is received from multiple IoT networks and
aggregated. The aggregated data is forwarded to big data
server cluster through the sink node.

• Sink node: Sink node is an intermediate communication
hub between the IoT network and back-end data process-
ing facility. It supports two-way data communication
and sends all the information received from smart cities
cloud to back-end data storage. The sink node acts as an
intermediate communication hub between smart cities’
cloud and the big data server cluster. The sink node is
responsible for sending the locations and neighbors of
sensor nodes to the big data server cluster and it will
also intimate sensor nodes to form edges according to
directions of the central processor.

• Big data server cluster: It is a data processing facility of
smart cities where all the information regarding sensors
including location and neighbors is processed. When-
ever a new node enters any IoT segment, it calculates its
location through the Global Positioning System (GPS)
module that is an embedded part of every sensor and
sends it to the big data server cluster. The location and
neighbors’ information of each sensor node resides in
the big data server cluster and is provided to all the
stakeholders when required. The location and neighbor
information are automatically updated by the big data

server cluster after a specific interval of time and after
the occurrence of a change in the topology.

• Storage Area Network (SAN): SAN is a data storage
facility that stores huge quantity of data for longer
periods. With the passage of time, data of IoT sensors
will increase due to scalability and increase in number of
applications. The increase in data demands for excessive
big data server cluster resources. It is because SAN is
connected to the big data server cluster to keep records
of all topology changes and provide previous history of
sensor locations and neighbors’ information. Whenever
changes are observed in topologies due to the addition
or deletion of the sensor node, location of sensors and
connected neighbors are updated in the big data server
cluster and the previous information of the topology is
transferred to SAN.

• Central processor: The central processor is regarded
as the brain of the entire network. It acts as a decision
maker that ensures topology robustness by swapping the
edges of sensor nodes. Topology robustness is optimized
by extracting current locations and neighbor information
of all sensor nodes from the big data server cluster.
The central processor forms an adjacency matrix of the
whole topology based on extracted locations and neigh-
bors’ information. The robustness of current topology is
calculated through extracted adjacency matrix based on
Schneider R. An elephant is formed after the conversion
of the adjacencymatrix.Multiple clans are formed by the
central processor with each clan having a fixed number
of elephants. The proposed EHRE algorithm is used by
the central processor to optimize the current topology
of IoT networks. Sensors reform their links with the
neighboring sensors according to optimized topology
as per directions received from central processor. Once
an optimized topology is formed, it is updated in
the big data server cluster. In IoT networks, most
of the sensors are powered by batteries, and have
limited communication and computational resources.
If computationally extensive algorithms are processed
by sensor nodes, then they will quickly deplete their
energy reservoir. One major goal of our proposed
system model is to ensure that sensors are not affected
by the complexity of the proposed solution. Sensors
must send their location and neighbors’ information
to big data server cluster for ensuring robustness. All
the computational calculations are performed by a
central processor. Central processor has no limitation of
computational resources as it can be upgraded by adding
additional resources as per requirements.

Real world industry is going through the era of optimiza-
tion that aims to minimize the requirement of people through
automation. It has enhanced the production capacity along
with speeding up the processes with minimum errors. IoT
has played a pivotal role in enabling automation capabil-
ity of real-world industry where machines are monitored
and managed by IoT based interconnected devices. The
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real-world industry processes are now highly dependent
on these interconnected IoT devices for proper working
[31]. Any interruption in communication due to targeted
cyber attacks will hinder the performance of the industrial
automation systems resulting in huge financial loss. The
proposed EHRE algorithm ensures the robustness of IoT
network, saves the industrial automation systems from
hindrances and avoids financial loss. The level of response
has become truly proactive through IoT based interconnected
devices, i.e., smart watches, health care sensors, etc. These
devices are capable of collecting clinical data along with
vital information of patients. In remote areas, these IoT
based health care devices communicate and send patients’
data to health care centers, which enables the doctors to
monitor the patients living in remote areas where advanced
health care facilities are not available [32]. Hence, it can
save precious human lives. Besides, any distribution in IoT
network of health care devices due to cyber attack may cause
life threatening losses. To address this, EHRE is proposed that
optimizes the topology of IoT networks and enhances their
resilience against malicious cyber attacks.

IV. PRELIMINARIES
Topology robustness matrices Schneider R and Rlink are used
to evaluate the proposed robustness solution. EHRE is swarm
based novel heuristic algorithm having multiple strengths
including maintaining diversity in solution space through
clans, fast convergence and ability to attain global optimum
results. EHRE rapidly converge the solution to optimum
solution by eliminating weak individuals. EHRE is mapped
over scale-free networks for enhancing topology robustness
through 6 phases of operations.

A. TOPOLOGY ROBUSTNESS MATRICES FOR SCALE-FREE
IoT NETWORKS
The main indicator of how well a network resists attacks
is its robustness. As the IoT is mostly made up of wireless
battery-powered nodes, nodes and edges in the network may
be destroyed as a result of intentional and malicious cyber
attacks, as the result of a disaster. The nodes and edges
may also be destroyed due to nodes running out of charge.
As a result of attacks, communication nodes or links are
destroyed that lead to separate the network and IoT network
is fragmented, and time critical information is blocked and
cannot be exchanged between the stakeholders. Strength
of network to sustain such failures or attacks is termed
as robustness. IoT network is responsible to host critical
applications, i.e., smart health care, smart transportation,
smart industry and smart agriculture, which are the major
parts of the automated smart cities. Any disruption in these
applications can result in unbearable loss. Hence, enhanced
robustness of IoT network is the prime requirement. These
attacks on IoT networks are characterized as random and
Intentional or malicious or targeted attacks. In random
attacks, nodes or edges are destroyed randomly without any
preference. In scale-free networks, majority of the nodes are

having low degree. Hence, more often low degree nodes
are destroyed by random attack. Destruction of low degree
nodes are having very minimal impact on network. Scale-free
networks are by nature robust against random attacks.

In malicious or targeted cyber attacks, nodes or edges are
attacked based on some preference, i.e., edge density. Mali-
cious cyber attacks are also termed deliberate, intentional,
targeted or high degree attacks. These attacks often prioritize
network nodes based on the number of edges they have, while
high degree nodes are eliminated one at a time. These attacks
quickly fragment the network by very few attacks and the
entire network is collapsed as a result. Hence, these attacks
have high importance in terms of network robustness and
cause worst damage to network structure.

From perspective of black hat cyber attack, attack of
all types caused by black hat attacker are divided in two
categories, i.e., random and intentional. Scale-free network is
by nature robust against random attacks due to having large
number of low degree nodes. During the intentional attack
by black hat attacker, proposed EHRE algorithm is used to
optimize the topology against intentional attacks regardless
of their occurrence via any means.

For decades, researchers have evaluated IoT networks and
found them to be scale-free in nature [3], [4]. Node’s edge
distribution follows the power-law distribution in the scale-
free networks. The robustness against the random attacks is
via this inherit property. Contrarily, against the malicious
or targeted cyber attacks, the vulnerability is manifolds.
So, to evaluate the robustness of EHRE for IoT networks,
we have used deliberate, intentional, targeted and malicious
cyber attacks. We obtained the degree of nodes through
neighbor information residing in big data server cluster. Then,
we sorted the nodes and edges on the basis of their importance
in the networks. Besides, the nodes are selected for attacks on
the basis of their degrees.

Schneider [9], [33] proposed a robustness metric R for
evaluating the network based on percolation theory. High
degree adaptive attack strategy is the basis of Schneider R.
It is based on an iterative mechanism. It first calculates the
highest degree node in each step and then removes it until
the entire network is fragmented. Schneider R calculates
the largest connected sub graph in the network after each
malicious or targeted cyber attack. It is a well known metric
used for estimating the capacity of the network to withstand
deliberate, targeted, intentional and malicious cyber attacks.
Schneider R is calculated using equation 2.

R =
1
N

N∑
i=1

MaxSubGraph(i), (2)

where the accumulated number of network nodes is given by
N while MaxSubGraph shows the number of nodes in the
largest component of the network after ith cycle of attack.
Range of Schneider R is between 0 to 0.5, where 0.5 refers to
full mesh network. 1

N is a normalization factor, which is used
for the comparison of networks having different number of
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FIGURE 1. Proposed IoT system model for smart cities.
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nodes. Besides, high value of Schneider R refers to increased
robustness of the network against malicious, targeted, high
degree and deliberate cyber attacks.

Schneider R is based on high degree adaptive attack
performed on the nodes. The same concept is extended to
edges of the network by Zeng and Liu [21], [34] as per
equation 3.

Rlink =
1
L

L∑
j=1

MaxSubGraph(j), (3)

where Rlink refers to the link robustness, L is the total
number of communication links or edges in the network.
MaxSubGraph shows the maximum numbers of nodes in
the largest connected sub graph after jth cycle of attack. 1

L
is the normalization factor that enables the comparison of
different works having different number of edges or links.
EHRE is a multi-objective algorithm wherein we have used
both Schneider R and Rlink for evaluating its performance.

B. EHRE ALGORITHM
Modern meta heuristic algorithms cannot provide the exact
results. However, desirable optimum solutions can be
achieved in a reasonable time. Multiple meta heuristic
algorithms are proposed for solving complex problems.
Swarm based meta heuristic algorithms are widely applied
to multiple problems and desirable results are achieved
due to their varied strengths, i.e., fast convergence and
achieving global optimum results. EHRE is a type of heuristic
algorithm that is based on swarm based meta heuristic search
methods [35], [36], [37], [38]. It is designed for solving
complex optimization problems. EHRE is influenced by
the elephant’s herding behavior [35], [36], [37], [38]. It has
manymultiple evolutionary characteristics that aremostly not
present in the conventional heuristic algorithms that include
rapid convergence rate, converging capability towards global
optimum results by exploring hidden strengths of population
space and maintaining population diversity through multiple
clans. Elephants live in different clans under the leadership
of a matriarch. Male elephants leave their clans as they grow
up. The behavior of elephants is modeled into the following
two operators.

• Clan Updating Operator: The matriarch governs all
elephants and acts as the fittest elephant. The position of
each elephant j in the clan ci is influenced by the position
of the matriarch xbest as per equation 4 [35]:

xnew,ci,j = xci,j + α(xbest,ci − xci,j)r, (4)

where, xnew,ci,j shows the new updated position of
elephant j in the clan ciwhile xci,j is the previous position
of the elephant. xbest,ci is the position of the matriarch. α
is the parameter that controls the influence of matriarch
on elephants and its value lies between 0 and 1. r ϵ [0,1]
is a randomnumber that is based on uniform distribution.
Matriarch is the fittest elephant in each clan and its value

is updated through equation 5 [35].

xbest,ci = β(xcenter,ci). (5)

β parameter controls the influence of xcenter,ci on xbest,ci
and its value lies between 0 and 1. xcenter,ci will be
calculated as per equation 6 [35].

xcenter,ci =
1
nci

nci∑
j=1

x(ci, j). (6)

nci shows the number of elephants in each clan. Through
clan updating operator, all the elephants will evolve and
improve their fitness due to the influence of a matriarch
as it is having the highest fitness value.

• Clan Separating Operator: After reaching puberty,
male elephants leave their clans [35]. The process
of leaving the clan is modeled into a clan separating
operator and it will further enhance the efficiency of the
algorithm. Through this operator, weak elephants will be
replaced by optimum individuals to save other elephants
from their effects during the process of evolution. The
worst elephant with the lowest fitness value will be
replaced as per equation 7 [35]:

xworst,ci = xmin + (xmax − xmin + 1)rand . (7)

xmax and xmin are the upper and lower bound positions
of elephants in the clan. rand is the scaling factor
based on uniform distribution and its value lies between
0 and 1.

V. UNFOLDING EHRE ALGORITHM OVER SCALE-FREE IOT
NETWORKS
Multiple phases for mapping EHRE algorithm over scale-free
IoT networks are discussed in this section.

A. INITIALIZATION PHASE
By converting the entire network into an adjacency matrix,
as shown in figure 2, the robustness of the scale-free network
can be increased by EHRE. A binary-coded matrix called
the adjacency matrix contains data on all of the connections
between nodes. Figure 2 shows the adjacency matrix for
nodes i, j, k and l. Adjacency matrix stores binary value
1 when there is a link between nodes and 0 if there is no
communication link. To further improve the computational
efficiency along with memory, the adjacency matrix is
converted into an elephant, as shown in figure 2. The elephant
contains all the required information regarding links and
nodes, same as the adjacency matrix.

Multiple clans ci are used by EHRE, as shown in
figure 3. Multiple clans ensure the prevention of premature
convergence along with attaining population diversity. The
number of clans is controlled through parameter Clanscale
during the evolution process of EHRE. We have taken the
value ofClanscale as 5 for our algorithm. Each clan has a fixed
number of elephants x that are controlled by nci. We have
fixed nci equal to 32 to prevent premature convergence for
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FIGURE 2. Adjacency matrix for EHRE.

FIGURE 3. Clan based multiple population.

our EHRE algorithm, as shown in figure 3. Each elephant is
donated by xci,j where ci is the clan to which the elephant
belongs to and j is the position of the elephant in the clan. xci,j
is a graph of vertices V and edges E , given by equation 8.

xci,j = G(V ,E). (8)

Where V = {1, 2, 3, . . . ,N } and E = {eij|i, j ∈ Vand i ̸= j}.

B. SORTING PHASE
The sorting phase is the preliminary phase for the remaining
operations. It prepares all the clans for further phases of
optimization.

• Step 1: Schneider R metric is based on node attacks
while Rlink metric is governed by link based attacks over
the network. In this phase, Schneider R and Rlink are
calculated for all the elephants belonging to the multiple
clans, as per equations 9 and 10.

Rclans = R{c1, c2, c3, . . . , cn}. (9)

Rlinkclans = R{c1, c2, c3, . . . , cn}. (10)

• Step 2: After calculating the Schneider R and Rlink , all
the elephants in each clan are sorted accordingly.

C. CLAN UPDATING OPERATOR PHASE
The clan updating operator phase converges the elephant xi
towards matriarch xbest , as it is the fittest elephant of the clan.

It recombines the fitness of elephants with the matriarch for
all clans ci.

• Step 1: In the start of the phase, the fittest elephant xi
is selected form Rclans and Rlinkclans. Both Rclans and
Rlinkclans are already calculated in the sorting phase.
Matriarch with the maximum value of fitness function
is found using equations 11 and 12.

xbest = Max(Rclans). (11)

xbest = Max(Rlinkclans). (12)

In the case, where we are taking node robustness R
as the fitness function, Rclans will be used to calculate
matriarch xbest and when considering link robustness
Rlink , then Rlinkclans will be used for the calculation of
the matriarch.

• Step 2: For all clans, each elephant xci,j will be updated
according to the position of xbest in each iteration as per
equation 4.

• Step 3: We will calculate the exclusive edges of xbest,ci
and xci,j. Exclusive edges of xbest,ci are established into
xci,j and the final topology is represented by xnew,ci,j.
However, the degrees of nodes remain the same after the
creation of exclusive edges.

• Step 3: We will update all elephants xci,j in the clan.
Matriarch xbest,ci will be calculated again for all the
clans.

1) EXCLUSIVE EDGE EXCHANGE OPERATION
Exclusive edges are linkages that only appear in one elephant
topology and not in any other. In figure 4, there are two
candidate elephant topologies, i.e., elephant 1 in figure 4(a)
and elephant 2 in figure 4(b). Exclusive edge eab exists
only in topology of elephant 1, whereas, exclusive edge
ecd exists only in topology of elephant 2, as shown by
blue color in figures 4(a) and 4(b). Now we will explain
process of implementing exclusive edge ecd into topology
of elephant 1. Finally, after the completion of exclusive
edge exchange operation, elephant 1 will disconnect existing
edges in order to generate edge ecd along with keeping
the degree distribution of each node unchanged. In order to
generate edge ecd in the topology of elephant 1, we will select
candidate nodes e and f from neighbors of node d that are
not having any existing connection with node c, as shown by
the green color in figure 4(c). Now we calculate the distance
of candidate nodes from the node c, as shown by the green
colored dotted lines in figure 4(d). Node f is the node nearest
to node c and has no existing edge with node c, as shown in
figure 4(e). Now, node c will search for its neighbor nodes
having no existing edge with node f along with being nearest
to node f . Node g as shown by the blue color in figure 4(f)
is the nearest node to node f from neighbors of node c.
Nodes c and g will disconnect the existing edge along with
nodes d and f , as shown by green dotted lines in figure 4(f).
Nodes c and d will form a new edge along with node g and
f as shown in figure 4(f). After the exclusive edge exchange
operation, edge ecd that was the exclusive edge from elephant
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FIGURE 4. Exclusive edge exchange operation.

2 is formed by elephant 1’s topology. The degrees of nodes c,
d , g and f are still the same after the completion of operation.

Algorithm 1 Clan Updating Operator Phase

1: Input: [Clans ci, Elephants of all clans xci,j and
Matriarch of all clans xbest,ci]

2: for Fittest elephant xi is selected form Rclans and
Rlinkclans do

3: xbest,ci based of the fitness function R and Rlink
4: end for
5: Find exclusive edges of xbest,ci for all clans ci then
6: for All clans ci do
7: Find exclusive edges of xci,j
8: Exclusive edges of xbest,ci are established into xci,j
9: Final topology after operation is termed as xnew,ci,j
10: Calculate fitness function R and Rlink for final

topology xnew,ci,j
11: if fitness function for xnew,ci,j > xci,j then
12: xnew,ci,j = xci,j
13: end if
14: end for
15: for Fittest elephant xi is selected from all clans xci do
16: Update matriarch xbest,ci based of fitness function R

and Rlink for all clans ci
17: end for

D. CLAN SEPARATING OPERATOR PHASE
The clan separating phase enhances the fitness of all clans ci
by replacing the elephants with poor fitness with the optimum
elephant. The elephant xworst,ci with the worst fitness will be
calculated as per equation 7.

• Step 1: Calculate the xworst,ci from each clan along with
xmax , xmin and xmin + 1 that are the first, last and second
last elephants, respectively, of the same clan.

• Step 2: Calculate the exclusive edges of xmax , xmin and
xmin + 1 for each clan.

• Step 3: Establish exclusive edges of xmax into xmin+1 to
get the resultant topology graph G′. Establish exclusive
edges of xmin in graph G′ to get the final topology graph
G′′.

• Step 4: Calculate fitness function for the final topology
G′′. If the robustness is enhanced, then replace it with
xworst,ci for each clan.

Algorithm 2 Clan Separating Operator Phase

1: Input: [Clans ci and Elephants of all clans xci,j]
2: forWorst elephant xi is selected from all clans xci do
3: xworst,ci based on the fitness function R and Rlink
4: end for
5: Find exclusive edges of top most elephant xmax,ci for all

clans cithen
6: Find exclusive edges of last elephant xmin,ci for all clans
cithen

7: Find exclusive edges of second last elephant
xmin,ci + 1 for all clans cithen

8: for All clans ci do
9: Establish exclusive edges of xmax into xmin + 1
10: Get resultant topology graph G′

11: Establish exclusive edges of xmin in graph G′ to get
the final topology graph G′′

12: Calculate fitness function R and Rlink for final
topology G′′

13: if fitness function for G′′ > xci,j then
14: xworst,ci = G′′

15: end if
16: end for

E. SELECTION AND FORMATION OPTIMIZATION PHASE
The onion-like structure is proven to be robust against
malicious, targeted, international, high degree and cyber
attacks [10], [11], [12], [13]. By transforming topology
into an onion-like structure, the selection and formation
optimization step increases topology’s robustness. The same
degree nodes are joined together to form rings, in accordance
with the idea of an onion-like structure. As we come towards
the center of onion-like structure, the degree of nodes,
connected in ring formation, start to increase and as we
move towards the outer layer of the structure, the degree of
nodes start to decrease. Hence, nodes of the same degrees
are connected in each ring. Selection and formation phase
works on the phenomena to encourage nodes of the same
degrees to connect with each other. Hence, encouraged nodes
have minimum degree difference between them to satisfy the
criteria of onion-like structure.

• Step 1: It will select two independent edges from
the topology of the best optimum elephant that is
matriarch xbest . All the nodes of the independent edges
are within the communication radius of each other.
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Term independent edges means that nodes belonging
to each edge will not have any other edge or link
with the nodes of other edge. Nodes i and j belong
to the first independent edge. Whereas, nodes k and
l belong to the second independent edge. Degrees of
nodes i, j, k and l will be di, dj, dk and dl , respectively.
Their difference of degrees will be calculated as per
equations 13, 14 and 15.

Diff0 = |di − dj| + |dk − dl | (13)

Diff1 = |di − dk | + |dj − dl | (14)

Diff2 = |di − dl | + |dj − dk | (15)

• Step 2: We will calculate the Diffmin as per equation 16.
It will provide us with the most optimum swap com-
bination that will result in minimum degree difference
between the connecting nodes. Hence, it will result in
converging the topology towards an enhanced onion-like
structure.

Diffmin = min(Diff0,Diff1,Diff2) (16)

Algorithm 3 Selection and Formation Optimization
Phase

1: Input: [Matriarch xbest,ci, Clans ci and Elephants of all
clans xci,j]

2: for All clans ci do
3: Select two independent edges from matriarch xbest
4: Find degrees of nodes belonging to edges di, dj, dk

and dl
5: Calculate Diff0, Diff1, Diff2 and Diffmin using

equations 13-16.
6: end for
7: if Diffmin = Diff0 then
8: Topology remains unchanged
9: end if
10: if Diffmin = Diff1 then
11: Remove edges eij, ekl and Add edges eik , ejl to get

the topology G′

12: Calculate fitness function R and Rlink for the final
topology G′

13: if fitness function for G′ > xbest,ci then
14: xbest,ci = G′

15: end if
16: end if
17: if Diffmin = Diff2 then
18: Remove edges eij, ekl and Add edges eil , ejk to get

the topology G′

19: Calculate fitness function R and Rlink for the final
topology G′

20: if fitness function for G′ > xbest,ci then
21: xbest,ci = G′

22: end if
23: end if

FIGURE 5. Block diagram - unfolding EHRE algorithm over scale-free IoT
networks.

F. FILTRATION PHASE
The filtration phase filters the best individual elephants
that are matriarch xbest of all clans and save them from
further altering. Hence, globally optimized solutions are not
disturbed and are maintained in a separate space.

• Step 1: Calculate the fitness function for each matriarch
xbest of all clans ci.

• Step 2: Compare the matriarchs of all clans for getting
the maximum fitness function that is robustness as per
equation 17.

xfil−best = max(xbest,c1, xbest,c2, . . . , xbest,cn, ) (17)

Block diagram is illustrated for all operations as per
figure 5.

VI. SIMULATIONS AND RESULTS
The big data server of the smart cities receives information
from all of the IoT sensor nodes installed there, including
the location coordinates determined by GPS and the specifics
of their neighbors. If the users request it for additional
processing, it will give them access to the stored data. We
have simulated the IoT network in MATLAB based on
location coordinates of the sensor nodes extracted through the
big data server. It is observed by S. Prendeville et al. [39]
that modern cities will become efficient and economical by
implementing a circular disc shape design. To make our
network smarter and more economical, we have implemented
the topology in a circular disc shape design. The size of our
simulated network is controlled through Fieldperimeter , which
deals with the diameter of the topology. We have fixed the
diameter to 500 meter as depicted in figure 5. Sensor nodes
in IoT networks have constraint of communication range due
to which preferential attachment property of the BA model
suffers [23]. To resolve the issue of preferential attachment,
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FIGURE 6. Nodes’ deployment in a circular disc shape topology.

the dense sensor network topology is used [23]. Parameter
Sensorrange controls the communication radius of the sensors.
We fixed the communication radius to 200 meters, so that
each sensor should have sufficient neighbors to form a
dense IoT network, as shown in figure 6. Besides, the
sensor nodes cannot have an arbitrarily large number of
neighbors due to the limited processing and communication
capabilities. Parameter Neighborthreshold is defined to restrict
the maximum number of links each IoT sensor node can
form in the network. After reaching the threshold defined
by Neighborthreshold , IoT sensor node is not allowed to form
any further link. Many heuristic based optimization solutions
are proposed that suffer from premature convergence due
to lack of global search capability and population diversity
[40], [41]. Diversity during evolution process is achieved
through multiple clans that are controlled by parameter
Clanscale. We have fixed the number of clans to 5 for
simulations. Parameter nci controls the number of elephants
in each clan. Moreover, we have considered the value of nci as
32 for all clans. A large number of simulations are performed
in order to fix the values of Clanscale and nci for our proposed
scheme. All results are averaged for Runavg times, where
Runavg ≥ 25.

A. PERFORMANCE OF THE EHRE ALGORITHM AGAINST
SCHNEIDER R
IoT networks are widely spread on large scale due to having
extensive utilization in numerous applications and being part
of cyber space. Malicious or targeted or intentional attacks
occur on IoT network as a result of hacking attempt sourced
via cyber channel. We have simulated network of 100 nodes
for observing the performance of our proposed EHRE
algorithm. We have evaluated the EHRE for 100 iterations
against node robustness metric Schneider R. Besides, the
simulation results for 25 independent runs are averaged.
The performance of EHRE is demonstrated by the blue
colored line in figure 8 and is presented in table 1. Most of

FIGURE 7. Nodes forming neighbors in 200 meters range.

the conventional heuristic algorithms suffer from premature
convergence due to the deficiency of global search capability
that is caused due to loss of population diversity during evo-
lution process. Population diversity is maintained by EHRE
through multiple clans. EHRE simultaneously co-evolves
multiple clans through its 6 phase operation mechanism.
This phenomenon leads EHRE to converge rapidly towards
global optimum results. Hence, rapid convergence behavior
is observed, as shown in figure 8 and table 1. Optimal
individuals are mixed during evolution process of traditional
heuristic algorithms. Hence, optimal individuals are lost and
evolution process is not fully benefited. It leads to slowing
down the evolution process. Hence, slow convergence is
observed in most of the traditional heuristic algorithms. The
clan separation and filtration phases of EHRE are designed
to cope with the loss of optimal individuals and to save
the algorithm from slow convergence. The former phase of
EHRE replaces the weakest elephant from each clan with a
suitable elephant that is obtained after the specific evolution
mechanism during each cycle. While the latter phase of
EHRE filters out and saves the optimal elephants from each
clan. Hence, optimum elephants are not mixed and lost
during the evolution process. EHRE achieved approximately
95% efficiency after 60 iterations and 99% efficiency after
70 iterations in comparison to the value of Schneider R
achieved after 100 iterations, given in table 1. It validates the
fast convergence capability of EHRE.

EHRE also converges the topology very effectively into
onion-like structure through its selection and formation
optimization phase. It works on the phenomenon that perfect
onion-like structure is powered by rings of interconnected
nodes having similar degree. It selects two independent
edges from optimal elephant. In order to minimize the
degree difference between the nodes, it switches the edges
in every conceivable way. Figure 8’s simulation output
demonstrates how well EHRE works to improve the scale-
free IoT networks’ resistance to high-intensity attacks.
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FIGURE 8. Performance of the EHRE algorithm against schneider R.

TABLE 1. Performance of the EHRE agorithm against schneider R.

B. PERFORMANCE OF THE EHRE ALGORITHM AGAINST
EDGE ROBUSTNESS
In this subsection, performance of EHRE is observed for
100 iterations against edge robustness metric. The network
of 100 nodes is used for observing the performance of
EHRE. Edge robustness metric is based on link based
attacks. It measures the fraction of nodes present in the
largest connected cluster of nodes after removing links, based
on priority, in each cycle. EHRE performs equally well
against link based attacks, as shown by the red colored
line in figure 9 and given in table 2. Results in figure 9
and table 2 are average of 25 independent simulations.
EHRE performs well against link based attacks due to
its rapid convergence ability towards the global optimum
solution that is attained because of EHRE’s ability to co-
evolve multiple clans simultaneously through 6 phases of
operations. The clan updating phase of EHRE co-evolves
multiple clans on the basis of edge robustness. During the
evolution process, individual elephants that are robust against
edge attacks are searched and used in further phases of
operations.

The clan separating phase eliminates the weak indi-
vidual elephants that are not capable to cope with edge
attacks and replace them with suitable individual elephants
obtained by certain criteria. Hence, a rapid convergence
is observed during the evolution process of EHRE. EHRE

FIGURE 9. Performance of the EHRE algorithm against edge robustness.

TABLE 2. Performance of the EHRE algorithm against edge robustness.

attained 90% efficiency after 60 iterations and 99% effi-
ciency after 70 iterations in comparison to 100 iterations
against edge robustness. The simulation results presented
in figure 9 demonstrate that EHRE is robust against edge
attacks.

C. PERFORMANCE OF THE EHRE ALGORITHM AGAINST
EXISTING ALGORITHMS
The performance comparison of EHRE with the existing
heuristic algorithms i.e., EDE, GA, SA and HA, is provided
herein this subsection. A network of 100 nodes is considered
for performance comparison of above mentioned algorithms.
The performance of all algorithms is tested for 100 iterations.
Independent 25 runs for all algorithms are averaged to
demonstrate results in figure 9 and table 3. The blue colored
line shows EHRE, green colored line shows EDE, magenta
colored line shows GA, black colored line shows SA and
mustard colored line shows HA. EHRE performs better than
EDE, GA, SA and HA. Considering the performance of
EHRE after 100 iterations, EHRE performs 58.77% better
than EDE, 65.22%better thanGA, 86.35%better than SA and
94.77%better thanHA. It is also pertinent to highlight that the
convergence rate of EHRE is greatest of all algorithms. EHRE
has achieved 95% of the results after 60 iterations, which is a
remarkable improvement in comparison to other algorithms.
The fast convergence capability of EHRE in comparison

79068 VOLUME 11, 2023



T. N. Qureshi et al.: EHRE Algorithm With Multi-Clan Co-Evolution Against Cyber Attacks

FIGURE 10. Performance of the EHRE algorithm against existing
algorithms.

to EDE, GA, SA and HA is due to its enhanced ability
to maintain population diversity, which is not present in
most conventional heuristic algorithms. Enhanced population
diversity in EHRE is maintained due to parallel evolution
of multiple clans through 6 phases of operations. Starting
with the initialization phase of EHRE, 5 clans are created
with population size of 32 elephants in each clan. Multiple
clans create diversity in the search space. Hence, fast EHRE
converges rapidly by improving value of Schneider R. EHRE
also saves optimal individuals and prevents them frommixing
into the whole population. Besides, EHRE converges more
rapidly because of the exploration of the hidden strengths
of all clans and binding them together through its 6 phases
of operations. In most conventional heuristic algorithms,
optimal individuals are lost due to mixing with the rest
of the population. The rapid and remarkable improvement
in EHRE gives better results as compared to EDE, GA,
SA and HA. EDE and GA lack in performing diverse
extensive searching and exploring the solution space to find
global optimum results in comparison to EHRE. Besides,
the searching speed of EDE and GA is also limited as the
solution space is increased to create population diversity
due to which EDE and GA show low performance in
comparison to EHRE. The performance of HA is the least
of all algorithms. HA works by selecting random edges and
then swapping them together in each iteration due to which
HA is not capable to search global optimum results from
whole solution space due to randomization phenomenon and
stucks in local optima. On the other hand, SA is also based
on the randomization phenomenon. It also randomly selects
the edges and swap them together along with considering
the inferior configurations based on probability. As a result,
it has better performance in comparison to HA. However,
its performance is still low as compared to EHRE, EDE and
GA. Even after considering inferior variables, SA gets stuck
into local optima and is unable to give improved Schneider R
result.

TABLE 3. Performance of the EHRE algorithm against existing algorithms.

D. PERFORMANCE OF THE EHRE ALGORITHM AGAINST
EXISTING ALGORITHMS WITH VARIED NODE DENSITIES
By altering node densities, we compared EHRE with EDE,
GA, SA, and HA in this subsection. At each step, the increase
of 50 is done in the node density, and the nodes lie in the range
starting from 100 nodes and ending at 300 nodes. Figure 10
and Table 4 show the average results of 25 separate runs for
each algorithm. In figure 10, the blue colored line depicts
the performance of EHRE for networks of different node
densities while performance of EDE, GA, SA and HA is
shown by green, magenta, black and mustard colored lines,
respectively. HA shows the worst performance of all. It is due
to HA’s random selection and swapping of edges, which leads
the model to stuck in local optima. From table 4, it is obvious
that the performance of HA decreases as the node density
increases. HA’s performance decreases by 15.8% as the node
densities increases from 100 to 300. SA, on the other hand,
showsmarginal better performance than HA. SA is also based
on the randomization phenomenon. Though, it considers
some inferior configurations due to which it performs better
than HA. However, it cannot escape from local optima due
to randomization. Both HA and SA show low performance
due to lack of ability to explore the solution space for finding
global optimum results. SA shows 9.01% performance loss
as the number of nodes increases from 100 to 300. Besides,
both EDE and GA perform better than SA and HA. However,
they have lower performance as compared to EHRE. Both
EDE and GA cannot perform diverse extensive searching.
Hence, both lack in exploration of solution space to dig out
the global optimum results. The issue of exploration is even
more engraved as we increase the size of solution space
by increasing node densities. As a result, the increase of
50 in the node densities, ranging from 100 to 300, causes the
performance of EDE,GA, SA, andHA to decline, as shown in
table 6. EHRE performs the best of all algorithms for all node
densities. It gives relatively low performance degradation,
i.e., 3.22%, as node densities increase from 100 to 300. When
node density is increased to 150, EHRE performs 57.87%,
64.44%, 85.78% and 94.46% better than EDE, GA, SA and
HA, respectively. When node density is further increased to
200, EHRE performs 57.77%, 64.67%, 86.14% and 94.58%
better than EDE, GA, SA and HA, respectively. In the next
step, node density is increased to 250 nodes for performance
analysis. EHRE performs 58.60%, 64.40%, 90.69% and
100%better than EDE, GA, SA andHA, respectively. Finally,
all algorithms are tested for 300 nodes. EHRE performs
57.88%, 67.30%, 91% and 104.25% better than EDE, GA,
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FIGURE 11. Performance of the EHRE algorithm against existing
algorithms with varied node densities.

TABLE 4. Performance of the EHRE algorithm against existing algorithms
with varied node densities.

SA and HA. EHRE performs better than other algorithms in
all scenarios due to the enhanced capability of maintaining
population diversity through multiple clans. It also has deep
searching capability to find hidden strengths of solution space
through 6 phases of operations and finding global optimum
results, which lack in the traditional heuristic algorithms.
EHRE ensures prevention of optimal population individual
elephants from getting lost and mixing during evolution
process. EHRE also updates the weak population individual
elephants based on specific criteria during each cycle of
evolution and filters out the optimal elephants. It leads EHRE
to outperform all other algorithms under all scenarios having
varied node densities.

VII. CONCLUSION
An important field of research that is covered in this
paper is making the topologies of scale-free IoT networks
highly robust for the smart cities. The vulnerability of
the scale-free IoT networks against malicious, intentional,
targeted and cyber attacks is mitigated through the proposed
EHRE algorithm. A communication model is presented that
migrates the processing overhead from IoT sensors having
limited energy, processing and communication capabilities
to back-end high power processing clusters. Hence, save the
IoT sensors from processing and communication overhead.

Proposed EHRE algorithm enhances the robustness of scale-
free IoT network of smart cities through 6 phase operations
against node and link based attacks. Moreover, EHRE is
compared with the existing well-known algorithms, i.e.,
EDE, GA, HA and SA. EHRE is proven to enhance the
robustness with a remarkable margin as compares to the
existing algorithms. Besides, EHRE has built-in multiple
strengths that are not present in the conventional heuristic
algorithms, i.e., rapid convergence rate, converging capability
towards global optimum results by exploring hidden strengths
of population space and maintaining population diversity
through multiple clans. EHRE is also tested for scalability
by increasing the network size from 100 nodes to 500 nodes.
EHRE proved its fast convergence capability by achieving
approximately 95% efficiency after 60 iterations and 99%
efficiency after 70 iterations. Considering the performance
of EHRE after 100 iterations, EHRE performs 58.77% better
than EDE, 65.22% better than GA, 86.35% better than SA
and 94.77% better than HA. In addition, latency can be a
possible trade-off between the processing overload and the
time required to get instructions from the big data server
cluster of smart cities. This issue is intended to be addressed
in the future. Moreover, as EHRE is based on 6 phases of
operations that may require excessive processing resources,
so complexity of solution may be kept in consideration in
future research. Along with that, machine learning models
will be used as they are quite useful in many problem solving
scenarios.

REFERENCES
[1] L. S. Vailshery. Number of IoT connected devices worldwide 2019–2021,

with forecasts to 2030. Statista. Accessed: Mar. 3, 2023. [Online].
Available: https://www.statista.com/statistics/1183457/iot-connected-
devices-worldwide/

[2] S. E. Collier, ‘‘The emerging enernet: Convergence of the smart grid
with the Internet of Things,’’ in Proc. IEEE Rural Electr. Power
Conf., Asheville, NC, USA, Apr. 2015, pp. 65–68, doi: 10.1109/REPC.
2015.24.

[3] T. N. Qureshi, N. Javaid, A. Almogren, Z. Abubaker, H. Almajed, and
I. Mohiuddin, ‘‘Attack resistance-based topology robustness of scale-free
Internet of Things for smart cities,’’ Int. J. WebGrid Services, vol. 17, no. 4,
pp. 343–370, 2021.

[4] T. N. Qureshi, N. Javaid, A. Almogren, A. U. Khan, H. Almajed, and
I. Mohiuddin, ‘‘An adaptive enhanced differential evolution strategies for
topology robustness in Internet of Things,’’ Int. J. Web Grid Services,
vol. 18, no. 1, pp. 1–33, 2022.

[5] C.-W. Tsai, H.-H. Cho, T. K. Shih, J.-S. Pan, and J. J. P. C. Rodrigues,
‘‘Metaheuristics for the deployment of 5G,’’ IEEE Wireless Commun.,
vol. 22, no. 6, pp. 40–46, Dec. 2015, doi: 10.1109/MWC.2015.7368823.

[6] G. Han, L. Liu, S. Chan, R. Yu, and Y. Yang, ‘‘HySense: A hybrid
mobile crowdsensing framework for sensing opportunities compensation
under dynamic coverage constraint,’’ IEEE Commun. Mag., vol. 55, no. 3,
pp. 93–99, Mar. 2017, doi: 10.1109/MCOM.2017.1600658CM.

[7] N. Javaid, A. Sher, H. Nasir, and N. Guizani, ‘‘Intelligence in IoT-based 5G
networks: Opportunities and challenges,’’ IEEE Commun. Mag., vol. 56,
no. 10, pp. 94–100, Oct. 2018, doi: 10.1109/MCOM.2018.1800036.

[8] K. Adhinugraha, W. Rahayu, T. Hara, and D. Taniar, ‘‘On Internet-of-
Things (IoT) gateway coverage expansion,’’ Future Gener. Comput. Syst.,
vol. 107, pp. 578–587, Jun. 2020.

[9] T. Qiu, J. Liu, W. Si, M. Han, H. Ning, and M. Atiquzzaman, ‘‘A data-
driven robustness algorithm for the Internet of Things in smart cities,’’
IEEE Commun. Mag., vol. 55, no. 12, pp. 18–23, Dec. 2017, doi:
10.1109/MCOM.2017.1700247.

79070 VOLUME 11, 2023

http://dx.doi.org/10.1109/REPC.2015.24
http://dx.doi.org/10.1109/REPC.2015.24
http://dx.doi.org/10.1109/MWC.2015.7368823
http://dx.doi.org/10.1109/MCOM.2017.1600658CM
http://dx.doi.org/10.1109/MCOM.2018.1800036
http://dx.doi.org/10.1109/MCOM.2017.1700247


T. N. Qureshi et al.: EHRE Algorithm With Multi-Clan Co-Evolution Against Cyber Attacks

[10] S. M. Abbas, N. Javaid, A. T. Azar, U. Qasim, Z. A. Khan, and
S. Aslam, ‘‘Towards enhancing the robustness of scale-free IoT networks
by an intelligent rewiring mechanism,’’ Sensors, vol. 22, no. 7, p. 2658,
Mar. 2022, doi: 10.3390/s22072658.

[11] S. A. Changazi, A. D. Bakhshi, M. Yousaf, M. H. Islam, S. M. Mohsin,
S. S. Band, A. Alsufyani, and S. Bourouis, ‘‘GA-based geometrically
optimized topology robustness to improve ambient intelligence for future
Internet of Things,’’ Comput. Commun., vol. 193, pp. 109–117, Sep. 2022,
doi: 10.1016/j.comcom.2022.06.030.

[12] M. A. Khan and N. Javaid, ‘‘Computationally efficient topology optimiza-
tion of scale-free IoT networks,’’ Comput. Commun., vol. 185, pp. 1–12,
Mar. 2022, doi: 10.1016/j.comcom.2021.12.013.

[13] G. Keerthana, P. Anandan, and N. Nandhagopal, ‘‘Enhancing the
robustness and security against various attacks in a scale: Free network,’’
Wireless Pers. Commun., vol. 117, no. 4, pp. 3029–3050, Apr. 2020, doi:
10.1007/s11277-020-07356-5.

[14] A.-L. Barabási and R. Albert, ‘‘Emergence of scaling in random
networks,’’ Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999, doi:
10.1126/science.286.5439.509.

[15] J.-P.-A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, ‘‘Ethical hack-
ing for IoT: Security issues, challenges, solutions and recommendations,’’
Internet Things Cyber-Phys. Syst., vol. 3, pp. 280–308, 2023.

[16] H. J. Herrmann, C. M. Schneider, A. A. Moreira, J. S. Andrade Jr.,
and S. Havlin, ‘‘Onion-like network topology enhances robustness against
malicious attacks,’’ J. Stat. Mech., Theory Exp., vol. 2011, no. 01,
Jan. 2011, Art. no. P01027, doi: 10.1088/1742-5468/2011/01/p01027.

[17] P. Buesser, F. Daolio, and M. Tomassini, ‘‘Optimizing the robustness
of scale-free networks with simulated annealing,’’ in Adaptive and
Natural Computing Algorithms. 2011, pp. 167–176, doi: 10.1007/978-3-
642-20267-4_18.

[18] Y. Jian, E. Liu, Y. Wang, Z. Zhang, and C. Lin, ‘‘Scale-free model
for wireless sensor networks,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Shanghai, China, Apr. 2013, pp. 2329–2332, doi:
10.1109/WCNC.2013.6554924.

[19] L. Rong and J. Liu, ‘‘A heuristic algorithm for enhancing the
robustness of scale-free networks based on edge classification,’’
Phys. A, Stat. Mech. Appl., vol. 503, pp. 503–515, Aug. 2018, doi:
10.1016/j.physa.2018.02.173.

[20] M. Zhou and J. Liu, ‘‘A memetic algorithm for enhancing the robustness of
scale-free networks against malicious attacks,’’ Phys. A, Stat. Mech. Appl.,
vol. 410, pp. 131–143, Sep. 2014, doi: 10.1016/j.physa.2014.05.002.

[21] M. Zhou and J. Liu, ‘‘A two-phase multiobjective evolutionary algorithm
for enhancing the robustness of scale-free networks against multiple
malicious attacks,’’ IEEE Trans. Cybern., vol. 47, no. 2, pp. 539–552,
Feb. 2017, doi: 10.1109/TCYB.2016.2520477.

[22] T. Qiu, D. Luo, F. Xia, N. Deonauth, W. Si, and A. Tolba, ‘‘A greedy
model with small world for improving the robustness of heterogeneous
Internet of Things,’’ Comput. Netw., vol. 101, pp. 127–143, Jun. 2016, doi:
10.1016/j.comnet.2015.12.019.

[23] T. Qiu, A. Zhao, F. Xia, W. Si, and D. O. Wu, ‘‘ROSE: Robustness strategy
for scale-free wireless sensor networks,’’ IEEE/ACM Trans. Netw., vol. 25,
no. 5, pp. 2944–2959, Oct. 2017, doi: 10.1109/TNET.2017.2713530.

[24] T. Qiu, J. Liu, W. Si, and D. O.Wu, ‘‘Robustness optimization scheme with
multi-population co-evolution for scale-free wireless sensor networks,’’
IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1028–1042, Jun. 2019, doi:
10.1109/TNET.2019.2907243.

[25] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, ‘‘CorrAUC: A
malicious bot-IoT traffic detection method in IoT network using machine-
learning techniques,’’ IEEE Internet Things J., vol. 8, no. 5, pp. 3242–3254,
Mar. 2021, doi: 10.1109/JIOT.2020.3002255.

[26] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, ‘‘IoT malicious
traffic identification using wrapper-based feature selection mechanisms,’’
Comput. Secur., vol. 94, Jul. 2020, Art. no. 101863.

[27] M. Shafiq, Z. Tian, Y. Sun, X. Du, and M. Guizani, ‘‘Selection of effective
machine learning algorithm and bot-IoT attacks traffic identification for
Internet of Things in smart city,’’ Future Gener. Comput. Syst., vol. 107,
pp. 433–442, Jun. 2020.

[28] M. Shafiq, Z. Tian, A. K. Bashir, A. Jolfaei, and X. Yu, ‘‘Data mining and
machine learning methods for sustainable smart cities traffic classification:
A survey,’’ Sustain. Cities Soc., vol. 60, Sep. 2020, Art. no. 102177.

[29] W. P. Tay, J. N. Tsitsiklis, and M. Z. Win, ‘‘On the impact of node
failures and unreliable communications in dense sensor networks,’’ IEEE
Trans. Signal Process., vol. 56, no. 6, pp. 2535–2546, Jun. 2008, doi:
10.1109/TSP.2007.914343.

[30] M. Hefeeda and M. Bagheri, ‘‘Randomized k-coverage algorithms for
dense sensor networks,’’ in Proc. 26th IEEE Int. Conf. Comput. Commun.
(IEEE INFOCOM), Anchorage, AK,USA,May 2007, pp. 2376–2380, doi:
10.1109/INFCOM.2007.284.

[31] The Role of IoT in Industrial Automation. Accessed:
Jun. 10, 2023. [Online]. Available: https://www.hitachivantara.com
/en-hk/insights/faq/what-is-the-role-of-iot-in-industrial-automation.html

[32] B. Pradhan, S. Bhattacharyya, and K. Pal, ‘‘IoT-based applications
in healthcare devices,’’ J. Healthcare Eng., vol. 2021, Mar. 2021,
Art. no. 6632599.

[33] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and
H. J. Herrmann, ‘‘Mitigation of malicious attacks on networks,’’ Proc.
Nat. Acad. Sci. USA, vol. 108, no. 10, pp. 3838–3841, Mar. 2011, doi:
10.1073/pnas.1009440108.

[34] A. Zeng and W. Liu, ‘‘Enhancing network robustness against malicious
attacks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 85, no. 6, Jun. 2012, Art. no. 066130, doi: 10.1103/phys-
reve.85.066130.

[35] G.-G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Elephant herding optimiza-
tion,’’ in Proc. 3rd Int. Symp. Comput. Bus. Intell. (ISCBI), Bali, Indonesia,
Dec. 2015, pp. 1–5, doi: 10.1109/ISCBI.2015.8.

[36] W. Li and G.-G. Wang, ‘‘Elephant herding optimization using dynamic
topology and biogeography-based optimization based on learning for
numerical optimization,’’ Eng. Comput., vol. 38, no. S2, pp. 1585–1613,
Feb. 2021, doi: 10.1007/s00366-021-01293-y.

[37] J. Li, H. Lei, A. H. Alavi, and G.-G. Wang, ‘‘Elephant herding
optimization: Variants, hybrids, and applications,’’ Mathematics, vol. 8,
no. 9, p. 1415, Aug. 2020, doi: 10.3390/math8091415.

[38] Y. Duan, C. Liu, S. Li, X. Guo, and C. Yang, ‘‘Gradient-based elephant
herding optimization for cluster analysis,’’ Appl. Intell., vol. 52, no. 10,
pp. 11606–11637, Jan. 2022, doi: 10.1007/s10489-021-03020-y.

[39] S. Prendeville, E. Cherim, and N. Bocken, ‘‘Circular cities: Mapping
six cities in transition,’’ Environ. Innov. Societal Transitions, vol. 26,
pp. 171–194, Mar. 2018, doi: 10.1016/j.eist.2017.03.002.

[40] T. Qiu, Z. Lu, K. Li, G. Xue, and D. O. Wu, ‘‘An adaptive robustness
evolution algorithm with self-competition for scale-free Internet of
Things,’’ in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM),
Toronto, ON, Canada, Jul. 2020, pp. 2106–2115, doi: 10.1109/INFO-
COM41043.2020.9155426.

[41] N. Chen, T. Qiu, Z. Lu, and D. O. Wu, ‘‘An adaptive robustness evolution
algorithm with self-competition and its 3D deployment for Internet of
Things,’’ IEEE/ACM Trans. Netw., vol. 30, no. 1, pp. 368–381, Feb. 2022,
doi: 10.1109/TNET.2021.3113916.

TALHA NAEEM QURESHI received the bach-
elor’s degree in computer engineering from
COMSATS University Islamabad Wah Campus,
and the M.S. degree in electrical engineering
from the Communications over Sensors (Com-
Sens) research laboratory, Department of Com-
puter Science, COMSATS University Islamabad,
Islamabad Campus under the supervision of Prof.
Dr. Nadeem Javaid. He is currently pursuing
the Ph.D. degree in computer science under the

supervision of Prof. Dr. Nadeem Javaid. He has ten international conference
proceedings and three international journal publications. His research
interests include the Internet of Things, wireless sensor networks, and energy
management in smart grids.

ZAHOOR ALI KHAN is currently the Division
Chair of the Computer Information Science (CIS)
Division and the Applied Media Division, Higher
Colleges of Technology, United Arab Emirates.
He has more than 19 years of research and devel-
opment experience. His current research interests
include e-health pervasive wireless applications,
theoretical and practical applications of WSNs,
smart grids, and the IoT. He is an editorial board
member of several prestigious journals. He is a

Senior Member of IAENG. His several conference papers have received the
Best Paper Award from BWCCA 2012, IEEE ITT 2017, and EIDWT-2019.
He also serves as a regular reviewer/organizer for numerous reputed journals,
conferences, and workshops.

VOLUME 11, 2023 79071

http://dx.doi.org/10.3390/s22072658
http://dx.doi.org/10.1016/j.comcom.2022.06.030
http://dx.doi.org/10.1016/j.comcom.2021.12.013
http://dx.doi.org/10.1007/s11277-020-07356-5
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1088/1742-5468/2011/01/p01027
http://dx.doi.org/10.1007/978-3-642-20267-4_18
http://dx.doi.org/10.1007/978-3-642-20267-4_18
http://dx.doi.org/10.1109/WCNC.2013.6554924
http://dx.doi.org/10.1016/j.physa.2018.02.173
http://dx.doi.org/10.1016/j.physa.2014.05.002
http://dx.doi.org/10.1109/TCYB.2016.2520477
http://dx.doi.org/10.1016/j.comnet.2015.12.019
http://dx.doi.org/10.1109/TNET.2017.2713530
http://dx.doi.org/10.1109/TNET.2019.2907243
http://dx.doi.org/10.1109/JIOT.2020.3002255
http://dx.doi.org/10.1109/TSP.2007.914343
http://dx.doi.org/10.1109/INFCOM.2007.284
http://dx.doi.org/10.1073/pnas.1009440108
http://dx.doi.org/10.1103/physreve.85.066130
http://dx.doi.org/10.1103/physreve.85.066130
http://dx.doi.org/10.1109/ISCBI.2015.8
http://dx.doi.org/10.1007/s00366-021-01293-y
http://dx.doi.org/10.3390/math8091415
http://dx.doi.org/10.1007/s10489-021-03020-y
http://dx.doi.org/10.1016/j.eist.2017.03.002
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155426
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155426
http://dx.doi.org/10.1109/TNET.2021.3113916


T. N. Qureshi et al.: EHRE Algorithm With Multi-Clan Co-Evolution Against Cyber Attacks

NADEEM JAVAID (Senior Member, IEEE)
received the bachelor’s degree in computer science
and physics from Gomal University, Dera Ismail
Khan, Pakistan, in 1995, the master’s degree
in electronics from Quaid-i-Azam University,
Islamabad, Pakistan, in 1999, and the Ph.D. degree
from the University of Paris-Est, France, in 2010.
He has Teaching and Research Experience of
25 years. He has worked as a Visiting Professor at
the University of Technology Sydney, Australia.

He is currently a Tenured Professor and the Founding Director of
the Communications Over Sensors (ComSens) Research Laboratory,
Department of Computer Science, COMSATS University Islamabad,
Islamabad Campus. He has supervised 187 master’s and 30 Ph.D.
theses. He has authored over 950 papers in technical journals and
international conferences. His research interests include energy optimization
in smart/microgrids and wireless sensor networks using data analytics and
blockchain. He was a recipient of the Best University Teacher Award
(BUTA’16) from the Higher Education Commission (HEC) of Pakistan,
in 2016, and the Research Productivity Award (RPA’17) from the Pakistan
Council for Science and Technology (PCST), in 2017. He is an Editor of
Sustainable Cities and Society journal. He has also worked as an Associate
Editor of IEEE ACCESS JOURNAL.

ABDULAZIZ ALDEGHEISHEM received the
Ph.D. degree in urban planning and spatial
information from the University of Illinois at
Urbana–Champaign, USA. He was the Head of the
Department of Urban Planning, in 2012. He was
an adviser to several government agencies and
supervised many projects and specialized studies.
He is currently the Dean of the College of
Architecture and Planning, King Saud University,
and a Professor with the Department of Urban

Planning. He is also an Adviser with the Vision Realization Office (VRO),
King Saud University, and the Supervisor of the Traffic Safety Technologies
Chair. His research interests include spatial information in urban planning
and management, also he focuses on areas related to city planning, spatial
management, and smart city technologies.

MUHAMMAD BABAR RASHEED (Senior
Member, IEEE) received the master’s and Ph.D.
degrees from COMSATS University, Islamabad,
in 2013 and 2017, respectively. He was a GET-
COFUND Marie Curie Fellow with Universidad
de Alcal’ (UAH), Spain. Previously, he was
an Associate Professor and an Assistant Pro-
fessor with the Department of Electronics and
Electrical Systems, The University of Lahore,
Pakistan. He obtained postdoctoral fellowships

from Durham University, U.K., and King Abdulaziz University (KAU),
Saudi Arabia, in 2019 and 2020, respectively. He is currently a Lecturer
with the University of Gloucestershire, U.K. He has authored over 40 peer-
reviewed papers in well-reputed journals and conference proceedings and
supervised/supervising more than ten students in their final year projects
and theses. His research interests include LP, NLP, heuristic optimizations,
machine learning, smart grids, electric vehicles, and demand response.
He is an active Reviewer of many esteemed journals and conferences,
including IEEETRANSACTIONS, IEEEACCESS, IEEETRANSACTIONSON INDUSTRY
APPLICATIONS, Applied Energy, and Energies.

NABIL ALRAJEH received the Ph.D. degree in
biomedical informatics engineering from Vander-
bilt University, USA. Currently, he is a Professor
of Health Informatics at King Saud University.
He worked as a Senior Advisor for the Ministry
of Higher Education, his role was implement-
ing development programs including educational
affairs, strategic planning, and research and inno-
vation. He served as a member of the boards
of trustees for five private universities in Saudi

Arabia. His research interests include E-health Applications, Hospital
Information Systems, Telemedicine, Healthcare applications of smart cities,
and Wireless Sensor Networks.

79072 VOLUME 11, 2023


