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Abstract

The goal of this work is to investigate nonlinear models and their complexity using techniques that are universal and have
onnections to historical and material aspects. Using the premise of a constant population that is uniformly mixed, a nonlinear
ompartmental model that depicts the movement between voter classes is taken into consideration. In the current work, we
nvestigate the dynamical framework that supports the interactions between the three parties. It is discussed how rate change
ffects various metrics. The conditions for boundedness, stability, existence, and other dynamics are obtained. We derive the
ffects of generalizing the model in any order. The current study supports investigations into complex real-world issues and
orecasts of necessary plans.

2023TheAuthor(s).PublishedbyElsevierB.V.onbehalfof InternationalAssociationforMathematicsandComputers inSimulation
IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mathematical modeling and numerical methods are the best tools for investigating complex problems in physics,
hemistry [31], and biology. In particular, analyzing phenomena based on complex combinations is a highly
agnetized area of research where many young researchers are inclined towards research where they can derive the
ost stimulating behaviors using suitable mathematical software. Recently we can notice the number of research

rticles available in the literature to illustrate the essence and impact of differential equations, particularly ordinary
ifferential equations which seem simple but depend on one independent variable; they can only offer a highly
omplex nature including chaotic behavior. Researchers have worked to understand this fascinating nature of
ynamical systems with chaotic behavior since Lorentz first observed such behavior in electron interactions. These
ystems, which exhibit the butterfly effect and asymptotic stability, are interesting for researchers. However, this
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interest has also prompted the creation of many tools that help analyze these models efficiently. The significance of
modeling in advanced manufacturing technology implementation is investigated [12] and discrete time queueing-
inventory model is examined with back-order of items by researchers in [2]. Further, predictor–corrector method is
effectively used in [23] to investigate about the SIR model with 2019-nCoV.

Recently, we witnessed many interesting results published within the frame of mathematical models associated
ith many diverse areas. For instance, the seismic resilience evaluation of the water supply system is examined

n [43], the children’s cognitive function and mental health are modeled in [32], the school student’s academic
erformance during Covid-19 is natured using machine learning in [47], the complex Ginzburg–Landau equation is
umerically analyzed in comparison with results available in the literature by researchers in [53], the implementation
n small and medium-sized enterprises are effectively analyzed in [13], the special case of Korteweg–De Vries
quation on critical flow over a hole is effectively and graphically examined using three fractional operators in [51].
hese studies help and motivate us to conduct the present work.

Nature’s complexity has long attracted researchers to complicated model patterns. Another instance of it is when
one of its properties can be accurately represented by any formalization. Mathematically modeling a political
ystem with three parties is important because it provides a mathematical framework for analyzing the behavior
f the parties and the outcomes of elections. This allows us to better understand the dynamics of the political
ystem, predict future outcomes, and potentially identify ways to improve the system. There are several reasons why
athematical modeling of a political system with three parties is necessary. First, it allows us to quantify the impact

f different factors on election outcomes, such as voter preferences, party ideology, campaign spending, and other
ariables. Second, it may help identify trends or patterns that are difficult to observe through qualitative analysis
lone. Finally, mathematical modeling allows for the testing of different scenarios and hypothetical situations in
way that is not possible through empirical research alone. Modeling the dynamics of the political parties with

eliable assumptions is an important investigation for analyzing and improving political systems, and can help us
etter understand the behavior of politicians and voters in complex electoral systems. For every individual who
nters the system, a different person exits it. In the majority of nations, citizens who turn 18 years or immigrants
ho obtain citizenship join the group of people who are eligible to vote. It is expected that interacting with a party
ember and the likelihood of acquiring their ideology will have an impact on the decision an eligible voter makes.
In the present investigation, we assumed the total population N remains constant [5]. Let PA, PB and PC be

three political parties with per capita recruitment rate α1, α2 and α3, respectively. The difference between the per
capita recruitment rate of PB from party PA and PA from party PB is symbolized as Ω1. In the same manner, Ω2 is
he recruitment rate of PC from party PB and PB from party PC , and Ω3 is the recruitment rate of PA from party
PC and PC from party PA. The individuals enter and leave the voting system rate is denoted as β. The dynamics
s presented as follows

d PA

dt
= PA[α1(1 − PA − PB − PC ) + Ω3 PC − Ω1 PB − β],

d PB

dt
= PB[α2(1 − PA − PB − PC ) + Ω1 PA − Ω1 PC − β], (1)

d PC

dt
= PC [α3(1 − PA − PB − PC ) + Ω2 PB − Ω1 PA − β].

umanity chose the best instruments to study and record the ensuing effects in order to construct an ideal and
uccessful mathematical model of the phenomena related to complicated nature. Despite the fact that calculus
heory has been demonstrated to be the most accurate and efficient method for investigating and analyzing these
henomena using both differential and integral operators, many researchers during the twentieth century highlighted
he associated system’s limitations and the need to generalize it to include more significant physical properties
elated to history, time, material, and hereditary based properties. Many academics have recently been interested in
ractional calculus (FC), which dates back to 1695, as a result of their inquisitive thinking [30,45].

Scientifically, fractional calculus provides a more realistic explanation of non-linear, non-local, and memory-
ependent behavior in physical systems, which allows standard real-world models to be generalized to fractional
rder models [48,50]. Traditional models based on integer-order differential equations make the error of assuming
hat the process under consideration is instantaneous and memory-free, which is typically not the case in actuality.
ractional calculus provides a mathematical framework for describing systems with memory, non-locality, and non-

inearity. Many domains, including signal processing, control engineering, and biomedical systems, have effectively
134
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embraced fractional order models where standard integer order models are unable to accurately represent the
system’s behavior.

Numerous academics have noted that fractional calculus (FC) is a theoretical field that contributes little to
nnovation and is associated with difficult theoretical submission. The generalized dynamical model of cholera is
roposed in [6], and the human liver is analyzed in [8] using Caputo–Fabrizio fractional derivative. The accelerated
ass–spring system is effectively analyzed [18] using the fractional derivative, and we can find many interesting

esults derived with the help of fractional calculus [25,44]. However, the idea of fractional calculus has undergone
significant transformation as a result of Michele Caputo’s technique from 1967 cite [15]. Despite the fact that
ost of them think the tool’s limitations are mostly caused by current constraints [16,37,41]. Now, both for integral

nd differential operators, we provide a number of notions. The bulk of the newly proposed notations, however, can
nly be generalized with the help of the Caputo operator. Additionally, some researchers study alternative models
n relation to this operator cite [3,17]. The evaluation of new fractional operators Ref. [7,27] and the old ones led
o the careers of several young academics [4,10,34,49].

In this paper, we analyze the Adams–Bashforth-Moulton (ABM) technique, a well-posed numerical scheme [9,
9,28]. Many scholars use the same approach for complicated models even when they are described in terms of
artial differential equations by transforming them into ODEs since the proposed strategy is particularly effective
n studying the ODEs [1,20,21]. Eq. (1) is used to help us consider the fractional model in this instance

Dρ
t PA (t) = PA[α1(1 − PA − PB − PC ) + Ω3 PC − Ω1 PB − β],

Dρ
t PB (t) = PB[α2(1 − PA − PB − PC ) + Ω1 PA − Ω2 PC − β], (2)

Dρ
t PC (t) = PC [α3(1 − PA − PB − PC ) + Ω2 PB − Ω3 PA − β].

ere, ρ is the fractional order. The spread of two political parties is mathematically modeled in [38], and then it
as extended by the presence of switching [39]. Further, the dynamics of the poaching from one party to another is

nvestigated in [33]. The potential margin of vague state voters for a particular party is mathematically modeled by
esearchers in [11]. The significance of the decline of class in democratic politics is theoretically investigated in [24],
nd the stability of the dynamical system of the multiparty political system is derived in [40]. The researchers in [22]
nvestigated voting in multiparty elections with a model approach and derived strategic voting with the condition
or constituency context. Later, the dynamics of voters and three political parties are mathematically analyzed by
esearchers [9,14], and the chaotic behavior in terms of Hopf bifurcation is captured in [26]. These studies encourage
s to use effective numerical methods to demonstrate the system chaotic nature. However, we have not find the
eneralized model with the help of a novel fractional operator.

. Basic results

Theorems and findings used to examine the system’s stability and boundedness are presented in this section.

efinition 2.1 ([42]). The Caputo fractional derivative with order ρ for ′n′ times continuously differentiable function
f (t) is given by

C
t0

Dρ
t f (t) =

1
Γ (n − ρ)

∫ t

t0

f (k)(ς )
(t − ς )ρ+1−n

dς, n − 1 < ρ < n, (3)

here the Gamma function is denoted by Γ (·).

efinition 2.2 ([36]). If |arg(λ(A))| > ρπ

2 , the autonomous system Dρx(t) = Ax(t), x(0) = x0 is asymptotically
table. If and only if the critical eigenvalues that meet the condition |arg(λ(A))| =

ρπ

2 have geometric multiplicity
, the system is said to be stable. The argument of the eigenvalues of the square matrix A is indicated here by the
ymbol arg(λ(A)).

emma 2.3 ([52]). For the system
C Dρ y(t) = g(t, y), t > t , (4)
t0 t 0
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with the initial condition y(t0), where 0 < ρ ≤ 1 and g : [t0,∞]×Ψ → Rn,Ψ ∈ Rn . There exists only one solution
of Eq. (4) on [t0,∞) × Ψ if the local Lipschitz condition with respect to y is followed by g(t, x).

emma 2.4 ([29]). Let g(t) be a continuous function on [t0,+∞) and satisfying
C
t0

Dρ
t g(t) ≤ −ψg(t) + ν, g(t0) = g(t0). (5)

ere, 0 < ρ < 1, (ψ, ν) ∈ R2, ψ ̸= 0 and t0 ≥ 0 is the initial time. Then

g(t) ≤

(
g(t0) −

ν

ψ

)
Eρ[−ψ(t − t0)ρ] +

ν

ψ
. (6)

emma 2.5 ([35]). The equilibrium y0 is globally stable if a function G(y) is globally positively definite, radially
nbounded, and its time derivative is globally negative, G ′(y) < 0 for all y ̸= y0.

. Boundedness

The boundedness of the solutions of Eq. (2) is established as follows:

heorem 3.1. The solutions of the projected model (2) are uniformly bounded.

roof. Let M(t) = PA(t) + PB(t) + PC (t). By considering the fractional derivative, one can get
C
t0 Dρt M(t) + ℏ1(t) =

C
t0 Dρt [PA(t) + PB (t) + PC (t)] + ℏ1(t)[PA(t) + PB (t) + PC (t)]

= PA[α1(1 − PA − PB − PC ) + Ω3 PC − Ω1 PB − β]
+PB [α2(1 − PA − PB − PC ) + Ω1 PA − Ω2 PC − β]
+ PC [α3(1 − PA − PB − PC ) + Ω2 PB − Ω3 PA − β] + ℏ1(t)[PA(t) + PB (t) + PC (t)]

≤ PA(α1 + Ω3 PC ) + PB (α2 + Ω1 PA) + PC (α3 + Ω2 PB ) + ℏ1(t)[PA(t) + PB (t) + PC (t)]. (7)

he solution exists and is unique in

Λ = {(PA, PB, PC ) : max{(PA|, (PB |, (PC |} ≤ N }. (8)

he above inequality yields,

C
t0

Dρ
t M(t) + ℏ1(t) ≤ +

(
(η + 1)
α

+ 1 +
f
β

+ 3ℏ1(t)
)
N .

y Lemma 2.4, we get

C
t0 Dρ

t M(t) ≤

(
M(t0) −

1
ℏ1(t)

((α1 + Ω3 PC ) + (α2 + Ω1 PA) + (α3 + Ω2 PB ) + 3ℏ1(t))N
)

Eρ(−θ (t − t0)ρ) (9)

C
t0 Dρ

t M(t) → ((α1 + Ω3 PC ) + (α2 + Ω1 PA) + (α3 + Ω2 PB ) + 3ℏ1(t))N , t → ∞. (10)

Clearly, all the solutions of Eq. (2) that initiate in Λ remained bounded in

Ξ = {(PA, PB, PC ) ∈ Λ|N (t) ≤ ((α1 + Ω3 PC ) + (α2 + Ω1 PA) + (α3 + Ω2 PB) + 3ℏ1(t))N + ϵ, ϵ > 0} . □

. Stability of the equilibrium points

The signs of the eigenvalues of the linearization of the equations concerning the equilibria can be used to classify
quilibria. The equilibrium point is hyperbolic if none of the eigenvalues have a real component with real value zero.
f all of the eigenvalues have negative real parts, the point is stable. If at least one has a positive real component,
he point is unstable. If at least one eigenvalue has a negative real portion and at least one has a positive real part,
he equilibrium is a saddle point and unstable. If all of a point’s eigenvalues are real and have the same sign, the
oint is referred to as a node.

The analysis of the stability of the equilibrium points using the Matignon criterion [46] is carried out in this
ection. In Fractional calculus, the study of stability is important to analyze the system’s behavior which can also
136
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be validated with the numerical approach. When the system behaves chaotically, it is argued that all equilibrium
points are unstable. For the system (2), the Jacobian matrix of the system is given by

J =

⎛⎜⎜⎜⎜⎜⎝
−β − α1 PA + α1K − PBΩ1 + PCΩ3 PA (−α1 − Ω1) PA (Ω3 − α1)

PB (Ω1 − α2) −β + α2K + PAΩ1 − α2 PB − PCΩ2 PB (−α2 − Ω2)

PC (−α3 − Ω3) PC (Ω2 − α3) −β + α3K − PAΩ3 + PBΩ2 − α3 PC

⎞⎟⎟⎟⎟⎟⎠ ,

where K = (−u − v − w + 1). The equilibrium points of the system (2) are

E1 = (−9.99001, 0.99001, 0), E2 = (0, 0, 0), E3 = (0,−0.04263, 0.51632), E4 = (0, 0, 0.99001),

E5 = (0, 0.99001, 0), E6 = (0.46786, 0.03929, 0.47286), E7 = (0.9, 0,−1.16018−16), E8 = (0.9, 0, 0).

The eigenvalues of the matrix of E1 are λ11 = (11.979, 0.999,−0.99), E2 is λ12 = (0.99, 0.99, 0.09), E3 is
13 = (0.136895, 0.0426316,−0.0426316), E4 is λ14 = (−0.99,−0.99, 0.09), E5 is λ15 = (−0.999,−0.99, 0.99),

E6 is λ16 = (−0.551065,−0.000181701 ± 0.198837i), E7 is λ17 = (0.99,−0.09, 6.93889 × 10−17) and E8 is
18 = (0.99,−0.09,−2.77556 × 10−17). Clearly, by using the condition |arg(λ)| all the equilibrium points are
nstable for all orders α of the Caputo derivative.

. Existence and uniqueness of the solutions

The Banach fixed-point theorem is used in this section to prove the existence and distinctiveness of the solutions
o the suggested model. Due to the complexity and non-local behavior of the model (2), there are no direct methods
or evaluating the precise solutions; nonetheless, if certain requirements are met, the solution’s existence can be
uaranteed. Then by (2), we have

Dρ
t [PA(t)] = G1(t, PA),

Dρ
t [PB(t)] = G2(t, PB), (11)

Dρ
t [PC (t)] = G3(t, PC ).

ith a Volterra-type integral equation, we have

PA(t) − PA(t0) =
1

Γ (ρ)

∫ t

t0

G1(ϑ, PA)(t − ϑ)ρ−1dϑ,

PB(t) − PB(t0) =
1

Γ (ρ)

∫ t

t0

G2(ϑ, PB)(t − ϑ)ρ−1dϑ, (12)

PC (t) − PC (t0) =
1

Γ (ρ)

∫ t

t0

G3(ϑ, PC )(t − ϑ)ρ−1dϑ.

heorem 5.1. The kernel G1 holds the Lipschitz condition and contraction if 0 ≤ (α1(1 − (ν1 + ν1
‘) − ν2 − ν3) +

3ν3 − Ω1ν2 − β) < 1 holds.

roof. We shall consider the two functions PA and PA1 such as:

∥G1(t, PA) − G1(t, PA1)∥ = ∥ PA[α1(1 − PA − PB − PC ) + Ω3 PC − Ω1 PB − β]
− (PA1[α1(1 − PA1 − PB − PC ) + Ω3 PC − Ω1 PB − β]) ∥

≤ ∥(α1(1 − (PA + PA1) − PB − PC ) + Ω3 PC − Ω1 PB − β)∥ ∥PA(t) − PA(t1)∥
≤ (α1(1 − (ν1 + ν1

‘) − ν2 − ν3) + Ω3ν3 − Ω1ν2 − β) ∥PA(t) − PA(t1)∥
≤ ζ1∥PA(t) − PA(t1)∥, (13)

here ∥PA∥ ≤ ν1, ∥PB∥ ≤ ν2, and ∥PC∥ ≤ ν3. Taking ζ1 = α1(1 − (ν1 + ν1
‘) − ν2 − ν3) + Ω3ν3 − Ω1ν2 − β, we

ave
∥G1(t, PA) − G1(t, PA1)∥ ≤ ζ1∥PA − PA(t1)∥. (14)
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Therefore, G1 satisfies the Lipschitz condition, and if 0 ≤ (α1(1 − (ν1 + ν1
‘) − ν2 − ν3) + Ω3ν3 − Ω1ν2 − β) < 1,

hen it follows a contraction. Similarly, for the remaining cases, it can be proved and represented as follows

∥G2(t, PB) − G2(t, PB 1)∥ ≤ ζ2∥PB(t) − PB(t1)∥, (15)
∥G3(t, PC ) − G3(t, PC 1)∥ ≤ ζ3∥PC (t) − PC (t1)∥.

ow, by system (12), the recursive form is

PAn(t) = PA0(t) +
1

Γ (ρ)

∫ t

t0

G1(ϑ, PAn−1)(t − ϑ)ρ−1dϑ,

PB n(t) = PB 0(t) +
1

Γ (ρ)

∫ t

t0

G2(ϑ, PB n−1)(t − ϑ)ρ−1dϑ, (16)

PC n(t) = PC 0(t) +
1

Γ (ρ)

∫ t

t0

G3(ϑ, PC n−1)(t − ϑ)ρ−1dϑ,

ith

PA0(t) = PA(t0), PB 0(t) = PB(t0), PC 0(t) = PC (t0).

hen by the successive terms difference, we have

ℵ1,n(t) = PAn(t) − PAn−1(t) =
1

Γ (ρ)

∫ t

t0

(G1(ϑ, PAn−1) − G1(ϑ, PAn−2))(t − ϑ)ρ−1dϑ,

ℵ2,n(t) = PB n(t) − PB n−1(t) =
1

Γ (ρ)

∫ t

t0

(G2(ϑ, PB n−1) − G2(ϑ, PB n−2))(t − ϑ)ρ−1dϑ, (17)

ℵ3,n(t) = PC n(t) − PC n−1(t) =
1

Γ (ρ)

∫ t

t0

(G3(ϑ, PC n−1) − G3(ϑ, PC n−2))(t − ϑ)ρ−1dϑ.

otice that,

PAn(t) =

n∑
i=1

ℵ1,i (t),

PB n(t) =

n∑
i=1

ℵ2,i (t),

PC n(t) =

n∑
i=1

ℵ3,i (t).

pplying norm on system (17) and then using Eq. (14), we have

∥ℵ1,n(t)∥ ≤
1

Γ (ρ)
ζ1

∫ t

t0

∥ℵ1,n−1(ϑ)∥dϑ, (18)

∥ℵ2,n(t)∥ ≤
1

Γ (ρ)
ζ2

∫ t

t0

∥ℵ2,n−1(ϑ)∥dϑ,

∥ℵ3,n(t)∥ ≤
1

Γ (ρ)
ζ3

∫ t

t0

∥ℵ3,n−1(ϑ)∥dϑ.

By using the above theorem, we prove the following results.

Theorem 5.2. The solution of the system of fractional differential equations (2) will exist and is unique if we
obtain some t0 such that

1
ζi t0 < 1, for i = 1, 2, 3.
Γ (ρ)
138
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0

Fig. 1. 3D parametric plots for ρ are (a) 1, (b) 0.95, (c) 0.9, (d) 0.8, (e) 0.5 and (e) combined with α1 = 0.1, α2 = 1, α3 = 1, β =

.01,Ω1 = 1,Ω2 = 1 and Ω3 = 0.1.
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0

Fig. 2. 2D parametric plots for PA v/s PB at ρ are (a) 1, (b) 0.95, (c) 0.9, (d) 0.8, (e) 0.5 and (e) with α1 = 0.1, α2 = 1, α3 = 1, β =

.01,Ω1 = 1,Ω2 = 1 and Ω3 = 0.1.
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1

Fig. 3. 2D parametric plots for PB v/s PC at ρ are (a) 1, (b) 0.95, (c) 0.9, (d) 0.8, (e) 0.5 and (e) combined with α1 = 0.1, α2 = 1, α3 =

, β = 0.01,Ω1 = 1,Ω2 = 1 and Ω3 = 0.1.
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1

Fig. 4. 2D parametric plots for PA v/s PC at ρ are (a) 1, (b) 0.95, (c) 0.9, (d) 0.8, (e) 0.5 and (e) combined with α1 = 0.1, α2 = 1, α3 =

, β = 0.01,Ω1 = 1,Ω2 = 1 and Ω3 = 0.1.
142



J.L.G. Guirao, M. Alsulami, H.M. Baskonus et al. Mathematics and Computers in Simulation 214 (2023) 133–151

P
w

H
s

N

Fig. 5. Time series graph for (a) PA, (b) PB and PC at α1 = 0.1, α2 = 1, α3 = 1, β = 0.01,Ω1 = 1,Ω2 = 1 and Ω3 = 0.1.

roof. Let PA(t), PB(t) and PC (t) be the bounded functions which satisfy the Lipschitz condition. Now, by Eq. (18),
e have

∥ℵ1,i (t)∥ ≤ ∥PAn(t0)∥
[

1
Γ (ρ)

ζ1

]n

, (19)

∥ℵ2,i (t)∥ ≤ ∥PB n(t0)∥
[

1
Γ (ρ)

ζ2

]n

,

∥ℵ3,i (t)∥ ≤ ∥PC n(t0)∥
[

1
Γ (ρ)

ζ3

]n

.

ence, both the existence and continuity are shown for the obtained solutions. To prove that the relation (19) is the
olution for (2), we consider:

PA(t) − PA(t0) = PAn(t) − W1n(t),
PB(t) − PB(t0) = PB n(t) − W2n(t),
PC (t) − PC (t0) = PC n(t) − W3n(t).

ow, we set

∥W1n(t)∥ = ∥
1

Γ (ρ)

∫ t

t0

(t − ϑ)ρ−1(G1(ϑ, PA) − G1(ϑ, PAn−1))dϑ∥ (20)

≤
1

Γ (ρ)

∫ t

t0

(t − ϑ)ρ−1
∥(G1(ϑ, PA) − G1(ϑ, PAn−1))∥dϑ

≤
1
ζ1∥PA − PAn−1∥t.
Γ (ρ)
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Fig. 6. 3D parametric plots for (a) Ω1 = 0.1, (b) Ω1 = 0.5 and (c) Ω1 = 1 with ρ = 1, α1 = 0.1, α2 = 1, α3 = 1, β = 0.01,Ω2 = 1 and
3 = 0.1.

ontinuing the same procedure, at t0, we get

∥W1n(t)∥ ≤

(
t0

Γ (ρ)

)n+1

ζ n+1
1 M. (21)

rom Eq. (21), we can see that as n tends to ∞, ∥W1n(t)∥ approaches to 0 provided t0
Γ (ρ) < 1. Similarly, it can be

proved that all ∥W2n(t)∥, ∥W3n(t)∥ tends to 0.
We prove uniqueness on contrary, if there exists other set of solutions P∗

A(t), P∗

B(t), P∗

C (t). Then,

PA(t) − P∗

A(t) =
1

Γ (ρ)

∫ t

t0

(G1(ϑ, PA) − G1(ϑ, P∗

A))dϑ.

y employing the norm, the above equation becomes

∥PA(t) − P∗

A(t)∥ = ∥
1

Γ (ρ)

∫ t

t0

(G1(ϑ, PA) − G1(ϑ, P∗

A))dϑ∥ (22)

≤
1

Γ (ρ)
ζ1t∥PA − P∗

A(t)∥.
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Fig. 7. Time series graph for (a) PA, (b) PB and (c) PC at α1 = 0.1, α2 = 1, α3 = 1, β = 0.01, α1 = 1,Ω2 = 1 and Ω3 = 0.1 for different
1.

or some t0, one can get

∥PA(t) − P∗

A(t)∥
(

1 −
1

Γ (ρ)
ζ1t0

)
≤ 0.

Since (
1 −

1
Γ (ρ)

ζ1t
)

≥ 0, (23)

from the above inequality, it is clear that PA(t) − P∗

A(t) = 0. Hence, Eq. (23) proves the required result.

6. Numerical method

Here, employ the most cited numerical Adams–Bashforth–Moulton (ABM) method to find the solution. Now,
consider

C Dρ
t y(t) = φ(t, y(t)), 0 ≤ t ≤ T,

y(m)(0) = y(m)
0 , m = 0, 1, 2, 3, . . . , ν, ν = ⌈ρ⌉.

(24)

The Volterra integral equation of (24) is of the form

y(t) =

ν−1∑
m=0

y(m)
0

tm

m!
+

1
Γ (ρ)

∫ t

0
(t − s)ρ−1φ(s, y(s))ds. (25)

Diethelm and his co-authors in [21] have successfully used ABM technique by setting h =
T
N , tn = nh,

= 0, 1, 2, . . . , N ∈ Z+ to integrate Eq. (25), The system (2) in a simplified equation is

Dρ
t PA (t) = PA[α1(1 − PA − PB − PC ) + Ω3 PC − Ω1 PB − β],

Dρ
t PB (t) = PB[α2(1 − PA − PB − PC ) + Ω1 PA − Ω2 PC − β], (26)
ρ
Dt PC (t) = PC [α3(1 − PA − PB − PC ) + Ω2 PB − Ω3 PA − β].
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T

Fig. 8. 3D parametric plots for (a) Ω3 = 0.1, (b) Ω3 = 0.5 and (c) Ω3 = 1 with ρ = 1, α1 = 0.1, α2 = 1, α3 = 1, β = 0.01,Ω1 = 1 and
2 = 1.

hen

PAn+1 = PA0 +
hρ

Γ (ρ + 2)

(
PA

H
n+1[α1(1 − PA

H
n+1 − PB

H
n+1 − PC

H
n+1) + Ω3 PC

H
n+1 − Ω1 PB

H
n+1 − β]

)
+

hρ

Γ (ρ + 2)

n∑
i=0

ai,n+1 (PAi [α1(1 − PAi − PB i − PC i ) + Ω3 PC i − Ω1 PB i − β]) ,

PB n+1 = PB 0 +
hρ

Γ (ρ + 2)

(
PB

H
n+1[α2(1 − PA

H
n+1 − PB

H
n+1 − PC

H
n+1) + Ω1 PA

H
n+1 − Ω2 PC

H
n+1 − β]

)
+

hρ

Γ (ρ + 2)

n∑
i=0

ai,n+1 (PB i [α2(1 − PAi − PB i − PC i ) + Ω1 PAi − Ω2 PC i − β]) , (27)

PC n+1 = PC 0 +
hρ

Γ (ρ + 2)

(
PC

H
n+1[α3(1 − PA

H
n+1 − PB

H
n+1 − PC

H
n+1) + Ω2 PB

H
n+1 − Ω3 PA

H
n+1 − β]

)
+

hρ

Γ (ρ + 2)

n∑
ai,n+1 (PC i [α3(1 − PAi − PB i − PC i ) + Ω2 PB i − Ω3 PAi − β]) .
i=0
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Fig. 9. Time series graph for (a) PA, (b) PB and (c)PC at α1 = 0.1, α2 = 1, α3 = 1, β = 0.01, α1 = 1,Ω1 = 1 and Ω2 = 0.1 for different
3.

Here

PA
H
n+1 = PA0 +

hρ

Γ (ρ + 1)

n∑
i=0

bi,n+1 (PAi [α1(1 − PAi − PB i − PC i ) + Ω3 PC i − Ω1 PB i − β]) ,

PB
H
n+1 = PB 0 +

hρ

Γ (ρ + 1)

n∑
i=0

bi,n+1 (PB i [α2(1 − PAi − PB i − PC i ) + Ω1 PAi − Ω2 PC i − β]) , (28)

PC
H
n+1 = PC 0 +

hρ

Γ (ρ + 1)

n∑
i=0

bi,n+1 (PC i [α3(1 − PAi − PB i − PC i ) + Ω2 PB i − Ω3 PAi − β]) ,

ai,n+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
nρ+1

− (n − ρ)(n + 1)ρ, i = 0,

(n − i + 2)ρ+1
+ (n − i)ρ+1

− 2(n − i + 1)ρ+1, 1 ≤ i ≤ n,

1, i = n + 1,

(29)

nd

bi,n+1 =
hρ

ρ
((n − i + 1)ρ − (n − i)ρ) , 0 ≤ i ≤ n. (30)

. Results and discussion

The investigation of daily life activity can help us to understand the impotence and essence of investigating
henomena using mathematical theories and mathematical tools. Particularly, for the computation and graphical
llustration, we used MATHEMATICA software. Here, we investigate about the dynamics of the voters with three

ifferent political parties with many assumptions. The numerical behavior of the system with a different order in
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Fig. 10. 3D parametric plots for (a) Ω2 = 0.1, (b) Ω2 = 0.5 and (c) Ω2 = 1 with ρ = 1, α1 = 0.1, α2 = 1, α3 = 1, β = 0.01,Ω1 = 1 and
3 = 1.

erms of 3D-parametric plots are shown in Fig. 1. We can observe that from this figure, the changes in fractional
rder are simplified from unstable to being stable. In Figs. 2, we captured the changes of order in 2D parametric
lots with two political parties PA v/s PB . In the same manner, Fig. 3 helps us to understand the interaction b/w two
arties PB v/s PC . These figures show that as order decreases from 1 to 0.50, the spirals are reduced. It gives some
dea about to stable the voters dynamics. The similar thought for PC v/s PA can be noticed in Fig. 4. We noticed
he impact of generalizing the classical model and it helped us to understand that the density of voter transmission
ecreased over the periods. This can be noticed in Fig. 5.

The parameters which signify the dynamics of the voters and three political parties need huge scientific analysis
ecause they help the policymakers and leaders of the parties to ensure stability to retain their position in the long
un. In this connection, the net shift between parties is captured in Figs. 6 and 7. Specifically, the new range changes
re associated with the hereditary properties of the voters who think of moving between three parties. This can be
rawn in Figs. 8 and 9. If the difference between the per capita recruitment rate of PB from party PA and PA from
arty PB is less than the flexion of the voter as days move is less for PA and PB , but it will hugely affect for

PC Ω1. In the same manner, the recruitment rate of PC from party PB and PB from party PC , and the recruitment
ate of PA from party PC and PC from party PA have a significant impact on the three parties and corresponding
upporters (Figs. 10 and 11).
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Fig. 11. Time series graph for (a) PA, (b) PB and (c) PC at α1 = 0.1, α2 = 1, α3 = 1, β = 0.01, α1 = 1,Ω1 = 1 and Ω3 = 1 for different
2.

. Conclusion

The primary finding of the current study illustrates the impact of the fractional operator on the three-party political
ystem. Because of the projected model’s instability, which was discovered during the current inquiry, we can see
ow intricate it is. We can select the parameter to regulate the political system with the aid of the depicted dynamical
nalysis. The parameter Ωi (i = 1, 2, 3) signifies the net shift between party and plays an vital role in the present
nvestigation as well as dynamics of the projected system. In order to illustrate the its effect on dynamics, we draw

any figures to exact how it effects and helps political parties control the transmission from one parties to other
ithout much concerning about other parties. We were able to achieve the results with the use of a tried-and-true
umerical method, and we then conducted more research using various values of the parameters. The capacity of
he fractional operator to get the behavior related with the complexity of the three parties can be confirmed with the
id of the stated graphical findings. Conclusively, we emphasize the importance of generalizing the integer order
odel in order to capture its fundamental behavior and forecast the relevant effects of the voters with three political

arties using appropriate assumptions and parameter selection. This research opens the way to comprehending the
ractional order deeper meaning when looking at happenings in the real world.
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