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A B S T R A C T

Tissue structures, phenotypes, and pathology are routinely investigated based on histology. This
includes chemically staining the transparent tissue sections to make them visible to the human
eye. Although chemical staining is fast and routine, it permanently alters the tissue and often
consumes hazardous reagents. On the other hand, on using adjacent tissue sections for combined
measurements, the cell-wise resolution is lost owing to sections representing different parts of the
tissue. Hence, techniques providing visual information of the basic tissue structure enabling
additional measurements from the exact same tissue section are required. Here we tested un-
stained tissue imaging for the development of computational hematoxylin and eosin (HE) staining.
We used unsupervised deep learning (CycleGAN) and whole slide images of prostate tissue sec-
tions to compare the performance of imaging tissue in paraffin, as deparaffinized in air, and as
deparaffinized in mounting medium with section thicknesses varying between 3 and 20 mm. We
showed that although thicker sections increase the information content of tissue structures in the
images, thinner sections generally perform better in providing information that can be reproduced
in virtual staining. According to our results, tissue imaged in paraffin and as deparaffinized pro-
vides a good overall representation of the tissue for virtually HE-stained images. Further, using a
pix2pix model, we showed that the reproduction of overall tissue histology can be clearly
improved with image-to-image translation using supervised learning and pixel-wise ground truth.
We also showed that virtual HE staining can be used for various tissues and used with both
20� and 40� imaging magnifications. Although the performance and methods of virtual staining
need further development, our study provides evidence of the feasibility of whole slide unstained
microscopy as a fast, cheap, and feasible approach to producing virtual staining of tissue histology
while sparing the exact same tissue section ready for subsequent utilization with follow-up
methods at single-cell resolution.

© 2023 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian
Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Histology is the cornerstonemethod to assess tissue structures,
phenotypes, and pathology. The histologic workflow includes
tissue fixation, embedding, sectioning, and mounting on cover-
slips. The initially transparent sections are typically stained
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chemically to visualize them with colors for overall tissue
phenotype examination, most commonly with hematoxylin and
eosin (HE). Hematoxylin, once oxidized, is a positively charged dye
that stains basophilic structures, such as nuclei and ribosomes,
blue, whereas eosin is a negatively charged dye staining most
other cellular organelles pink. Through differences in staining
intensity, HE staining is thus capable of displaying a wide range of
morphologic structures with great detail, making it the standard
stain combination used in routine pathology.1

The chemical staining procedures are often irreversible, pre-
venting the use of the same tissue section for other purposes af-
terward. Hence, for most traditional approaches, the tissue is
sectioned into multiple sections used for different stainings or
other assays individually. This, however, does not allow assess-
ment of several properties in same cells as, depending on the
section thickness, each section contains material from mostly
different cells.

Recent methodologic development of spatial molecular
methods, such as spatial transcriptomics, allows single-cell and
even subcellular resolution of macromolecules and are thus useful
in assessing cellular heterogeneity in tissues and disease.2 With
current protocols, the reference staining, such as HE, needs to be
performed from a neighboring section.3 This hampers the accu-
racy in relating the overall tissue structure and pathologic iden-
tification of cells to the molecular, subcellular information. To
overcome this caveat in the current technologies, the same tissue
section should be used for both overall tissue investigation and
spatial, molecular assays. To achieve this, visualization of the tis-
sue should be performed without an irreversible chemical stain-
ing. If the chemical staining could be computationally created,
tissue sections could be imaged in an unstained, transparentmode
prior to molecular assessments and visualized in silico. Develop-
ment of such virtual staining approaches requires associating the
information content in images of HE-stained sections with that of
the unstained sections and developing computational methods to
virtually create the stained representative of an image of an un-
stained tissue section.

Virtual HE stainingof unstained tissue images can be categorized
as an image-to-image translation problem, which is a well-known
problem area in computer vision. Deep learning-based image-to-
image translation has proven to be efficient in generating synthetic
images translated from one domain to another.4 Such an approach
for virtual histologic staining requires both unstained and stained
tissue images as training data. The association between these can be
facilitated either in a supervised manner through pixel-wise cor-
respondence or in an unsupervised manner through learning the
stylewithout a direct pixel-wisematch between the source and the
target domains. Information from adjacent or nearby histologic
tissue sections is not fully aligned owing to the 3-dimensional
structure of tissue; hence, an unsupervised approach is used here
for such data. Unsupervised image-to-image translationmethods5-8

use techniques such as cycle consistency loss5 for learning image
mapping. CycleGAN is the most commonly used unsupervised
method for image-to-image translation. It employs an adversarial
training technique, in which 2 components, a generator and a
discriminator, train in a 0-sum manner to generate and detect
synthetic images, respectively.9 CycleGAN, however, consists of 2
pairs of generators and discriminators, 1 pair for each-way trans-
lation, ie, A-to-B and B-to-A.6 The method was first used to
translate natural images, whereas in medical imaging, the method
and its variants have been successfully applied in magnetic reso-
nance to computer tomography image synthesis.10-13 In computa-
tional pathology, CycleGAN has been established as a tool for
cross-stain translation14-16 and domain adaptation or stain
2

transformation.17,18 The supervised image-to-image translation
methods19-22 require paired or registered data23 for training. Thus
far, only a few studies experimented with traditional light micro-
scopy on unstained tissues for virtual HE staining.24,25

In this study, we used CycleGAN for transforming unstained
tissue section images acquired frommultiple experimental setups
into virtually stained HE images. We experimentally optimized
and streamlined the sample processing and imaging pipeline to
enable efficient virtual HE staining. We tested different tissue
section thicknesses and 3 different ways to prepare the sections
for imaging to identify the best-suited protocol for virtual staining.
Further, with the optimized tissue section thickness and imaging
protocol, we used the pix2pix method, which is a conditional
adversarial network variant used for supervised image-to-image
translation,19 to show increased histologic accuracy and applica-
bility of virtual staining to various tissues with supervised deep
learning. We imaged unstained tissue sections with standard
brightfield imaging technology available in practically any lab. Our
results validated a viable method for unstained tissue imaging and
virtual HE staining of histologic whole slide images (WSIs) and
presented a way to record and visualize the overall tissue struc-
tures from a tissue section in ways that spare the tissue intact for
usage in follow-up measurements.
Materials and Methods

Tissue Samples

Tissues of wild-type FVB/Nmicewere used. The PAXgene-fixed
(PreAnalytiX GmbH), paraffin-embedded anterior lobe of mouse
prostate was cut into 3-, 5-, 8-, 12-, and 20-mm-thick sections.
Formalin-fixed, paraffin-embedded liver, kidney, and testis were
cut into 5-mm-thick sections. The tissue sections were placed on
glass slides and attached by incubation in þ37 �C for 30 minutes.
The paraffin was removed with xylene, after which the tissue was
rehydrated with absolute and 96% ethanol and dipped in distilled
water. HE staining was continued immediately after rehydration
with Delafield Hematoxylin (reference number: 1159380100;
Merck), followed by running tapwater, adding 120-mMHCl in 70%
ethanol, running tap water, and adding eosin (reference number:
1159350025; Merck). The staining was followed by dehydration
with 96% absolute ethanol and xylene. Coverslips were attached
with a mounting medium (DPX Mountant for Histology, reference
number: 06522; Sigma). Adjacent sections of each thickness were
processed in the following 4 different ways: 1 without any pro-
cessing after attaching to slides, 1 with paraffin removal and
rehydration, 1 with paraffin removal, rehydration, dehydration,
and mounting of the coverslip, and 1 with standard HE staining,
which includes all the steps of the above protocol. The tissue
material used originates from prior studies,26-28 in which all ani-
mal experimentation and care procedures were performed in
accordancewith guidelines and regulations of the national Animal
Experiment Board of Finland and were approved by the board of
laboratory animal work of the State Provincial Offices of South
Finland (license number: ESAVI/6271/04.10.03/2011).
Imaging

Imaging was performed using Thunder Imager 3D Tissue slide
scanner (Leica Microsystems) equipped with DMC2900 camera
(Leica Microsystems) and HC PL APO 40x/0.95 DRY and HC PL
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FLUOTAR 20x/0.5 DRY objectives (Leica Microsystems) with dif-
ferential interference contrast using Kohler illumination. The light
source was white light-emitting diode, with the refractive index
being set as 1, and themounting medium refractive index as 1.457.
WSIs were stitched together with LAS X (ver 3.7.4.; Leica Micro-
systems). The pixel size of the acquired WSIs was 0.353 mm for
40�, and 0.671 mm for 20�, and the imageswere stored as tiff files.
Unsupervised Virtual Staining Algorithm

For training, all unstained tissue images and their HE-stained
reference tissue images were split horizontally such that both
halves had the same amount of tissue content. The bottom halves
were used for training the CycleGAN model, and the top halves
were used for testing its performance on the virtual staining task.
For training, the WSIs were split into 256 x 256 pixel tiles with a
stride size of 128 pixels in both x and y directions to ensure a
significant overlap.

Random tile sampling was employed for each training WSI.
Altogether, 16,000 tiles were used for the training. All models
were trained for 40 epochs, with a batch size of 4. For every epoch,
25% of the image tiles were randomly augmented on the fly,
including flipping, rotation, and scaling.

For inference, epochs with the lowest generator loss were
chosen. Because Generative Adversarial Networks (GANs) are
challenging to train, and the lowest loss does not always translate
to the best image quality, multiple epochs were chosen. For
inference, a tile size of 2048 � 2048 pixels and a stride of 512
pixels in both x and y directions were used. Because the generator
model was fully convolutional, it allowed changing the tile size as
per the requirements. Experiments have shown that increased tile
size during inference results in more uniform instance normali-
zation tile statics, which help to alleviate the tiling effect.17
Statistical Evaluation

Frachet inception distance (FID) score was used for statistical
evaluation.29 FID score is used to measure the distance between 2
distributions of images, typically when one set is real and the
other is virtually generated. In practice, the FID score is calculated
on feature vectors extracted from both sets of images. In the case
of virtual staining, InceptionV330 was used to extract the bottle-
neck features, a vector of 2048 dimensions. Feature-wise mean
and covariance matrix were computed on both reference HE tiles
and virtually stained HE tiles. The FID score was computed using
the following equation:

d2 ¼ jmX � mY j2 þ tr
�X

Xþ
X

Y �2
�X

X
X

Y
�1=2�

;

where d2 represents the FID score, mX and mY are the means, andP
X and

P
Y are the covariance matrices of the real and virtually

stained image tiles, respectively.
Supervised Virtual Staining Algorithm

A conditional adversarial network19 is a supervised learning
method for generating synthetic data using learningmapping from
input to output image. This study used a variant of a conditional
adversarial network called pix2pix for supervised image-to-image
translation. The pix2pix model consists of a U-netebased
3

generator31 and a PatchGAN-based discriminator.19 Because
pix2pix is a supervised method, it requires the data from the 2
domains to be first aligned with a pixel-level correspondence be-
tween the images of each individual image pair. Along with the
GAN loss, pix2pix also employs an additional L1 loss term for the
generator network bymaximizing the use of the aligned data, thus
producing better-quality translated images as compared with
unsupervised learning methods.

In addition to the preprocessing steps used in unsupervised
virtual staining experiments, the unstained and HE-stained im-
ages were aligned through an image registration process, which is
essential for supervised virtual staining experiments. The number
of tiles used for training varied depending on the size of the tissue;
for instance, for the testis, 50,000 tiles were used, whereas for the
liver, 35,000 tiles were used for training. Models were trained for
50 epochs. The tile size was also increased from 256 � 256 to
512 � 512 for model training.

With liver tissue, different image magnifications were experi-
mented with during inference. A model was trained on tissue
images captured with a 20� objective and used to virtually stain
an unstained tissue image captured with the same objective to
compare it with the 40� experiment results. In a separate
experiment, a model trained with tissue images captured at 40�
was fed an unstained tissue image captured with a 20� objective
during inference. This was followed by upsampling the 20�
objective image to 40� during inference.
Model Training Duration

The training time varied depending on the type of model,
quantity of data, number of graphics processing units (GPUs), and
number of training epochs. For instance, the pix2pix model for the
anterior prostate was trained with 125,000 tiles (4 samples), for
50 epochs, over 4 GPUs, and the training was completed in
approximately 16 hours. For the CycleGAN model, which is
significantly larger than pix2pix model, the training was
completed in approximately 31 hours for the anterior prostate
with 3-mm section thickness and coverslipped samples, with
40,000 tiles, for 40 epochs, and over 1 GPU. All the models were
trained on Tesla V100 GPUs (NVidia).
Histologic Evaluation

For visual and histopathologic evaluation, HE- and virtually
stained images were transformed to jp2 format and viewed with
JVS view 1.2 freeware32 or viewed as tiff images in OlyVIA 3.2.1.
(Olympus Corporation). For figure representations, snapshots
from JVS view, OlyVIA, and LAS X 3.7.4. (Leica Microsystems) were
edited with ImageJ Fiji 1.53f51 freeware,33 and lighting and
contrast were adjusted with a linear mode.
Results

Effects of Histologic Processing on Unstained Imaging of Whole
Slide Images

To understand how tissue preparation affects the virtual HE
staining of WSI tissues, we tested the conditions of tissue section
preparation for imaging with visible light (Fig. 1). First, we applied
the standard method of imaging tissue sections by just omitting
the chemical staining, which entailed removing paraffin,



Figure 1.
Conditions of tissue section preparation for WSI with visible light. A paraffin-embedded tissue block was sectioned with 5 different thicknesses for 4 sections each. The sections
were then either left unprocessed in paraffin (unprocessed), deparaffinized, coverslipped (including deparaffinization, mounting, and coverslipping), or standardly stained with
HE and mounted with a coverslip (HE), 1 for each thickness. The sections were then imaged with visible light as WSIs to be tested for virtual staining. HE, hematoxylin and eosin;
WSI, whole slide imaging.
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mounting the section with a mounting medium, and covering it
with a coverslip (samples referred to as coverslipped). Although
this approach was estimated to produce good-quality images as is
conventionally the case with any chemically stained tissue sec-
tions, the mounting and coverslipping make it challenging to use
the same tissue in follow-up approaches owing to potential
physical damage during removal of the coverslip and washing
away the mounting medium. Hence, we tested whether the
mounting and coverslipping could be omitted by using a second
approach in which the tissue sections on slides underwent
deparaffinization as usual and were imaged directly after that
through the air, without a coverslip (samples referred to as
deparaffinized). Furthermore, as for certain follow-up methods,
such as several spectroscopy techniques, there could be a benefit
of tissue sections still residing in the paraffin,34 we tested a third
approach inwhich the tissue sections attached to glass slides were
left untreated and imaged as such, still in paraffin (samples
referred to as unprocessed). Then, we compared these 3 unstained
imaging approaches with images from chemically HE-stained
tissue sections. The 3 unstained sections and the HE reference
stainings represented adjacent tissue sections in the following
order: HE, coverslipped, deparaffinized, and unprocessed.

In a clinical setting, 4 to 5 mm is the standard thickness for
paraffin-embedded tissue sections35 and is most commonly used
with visual interpretation of HE staining. Section thickness affects
the information content in the images, and the optimal thickness
for the human eye may differ from that of virtual staining devel-
opment with deep learning. Hence, to test whether thinner or
thicker sections provide advantages in virtual staining, we tested 5
different thicknesses of the tissue, 3, 5, 8, 12, and 20 mm, all of
which were prepared and imaged with the 3 unstained and 1 HE-
stained approach (Fig. 1). After preparing the differentially pro-
cessed sections, the slides were imagedwith standard visible light
microscopy. Figure 2 shows the tissue content for each WSI for
each condition. It is evident that although the unprocessed and
deparaffinized sections provided a well-contrasted signal, the
tissue imaged through mounting medium and coverslip exhibited
a practically transparent overall appearance to the human eye.
4

Furthermore, the latter was followed by the appearance of a grid-
like pattern in the WSI from the slide scanner fields of imaging.
This created a visual pattern based on the field tiling, which was
unnoticeable with the other ways of imaging with apparent,
higher contrast image content (Fig. 2).
Unsupervised Virtual Staining and Computational Evaluation

Images of all section thickness and preparation condition
combinations for unstained imaging were individually used in
training and testing the CycleGAN deep learning model (Fig. 3A)
with their corresponding chemically stained HE images to pro-
duce a virtual HE staining. The images were split to use one half of
the WSI for training and the other for testing. To ensure similar
content between training and testing data, splitting was per-
formed in a direction that ensured each half of the tissue con-
tained roughly an equal area of all tissue types found in the
section. For prostate tissue, this includes glandular structures
surrounded by stromal connective tissue, smooth muscle, blood
and capillary vessels, and nervous and adipose tissue in the
stroma.36 We evaluated the WSI-level performance of the algo-
rithm by calculating FID scores (Fig. 3B) for each virtual staining.
Overall, the FID scores increased with thicker tissues, peaking at
12-mm samples. Comparing the FID scores between different tis-
sue sectioneprocessing techniques, deparaffinized samples had
the lowest FID scores, and the highest variation was seenwith the
coverslipped samples. This suggests that the deparaffinized sam-
ples may perform slightly better than the unprocessed sections,
whereas coverslipped tissue may perform the poorest.
Histologic Evaluation of Unsupervised Virtual Staining

Next, we performed histologic evaluation of the computa-
tionally stained sections compared with the reference HE sections.
A lowmagnification view of the overall performance of the virtual
staining algorithm with different section preparation techniques



Figure 2.
Tissue content of WSIs imaged for each section-processing condition. WSIs obtained
using brightfield microscopy for traditionally, chemically stained HE sections and
unstained tissue sections processed differently. The unprocessed and deparaffinized
sections provide a well-contrasted signal. The tissue imaged through mounting
medium and coverslip (coverslipped) exhibits a practically transparent overall
appearance to the human eye, accompanied by the appearance of a grid pattern
according to the slide scanner fields of imaging. HE-stained images are for reference.
HE, hematoxylin and eosin; WSI, whole slide imaging.
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was consistent with the FID scores, as the thinner sections
appeared to perform better than 12-mm- and 20-mm-thick tissues
(Fig. 3C). The deparaffinized samples having the lowest FID scores
seemed to produce the best results when considering the general
morphology of tissue and how hematoxylin and eosin were
localized in the virtually stained images compared with the
referenced HE sections. The unprocessed samples performed
nearly equally, although the remaining paraffin appeared as small
creases or folds in the virtually stained tissues, especially in the
thicker sections (see below). The images produced from the cov-
erslipped samples had a very pronounced vignetting effect, which
overpowered the virtual staining. This was due to the coverslip
mounting, making the tissue appear extremely low in contrast,
thus causing even the slightest of changes in lighting to substan-
tially stand out in the original unstained tissue. Some vignetting
was also apparent with the other processing methods with certain
tissue thicknesses (unprocessed, 3-5 mm and deparaffinized, 12
mm). Overall, among the different tissue section thicknesses, 5-mm
thickness appeared to perform the best (Fig. 3C).

Next, we investigated whether the WSI-level results were
consistent with higher magnification histology (Fig. 4 and
Supplementary Figs. S1 and S2). In the virtually stained images,
5

there appeared to be areas that mimicked the images of the
reference HE sections almost perfectly in each thickness and
processing type; however, the size and proportion of the suc-
cessful areas varied. In the unprocessed tissues, the nuclei count
seemed to either be underrepresented or be exaggerated, and the
same effect could be seen in the coverslipped tissues as well. The
deparaffinized tissues were the ones performing the best based on
the morphology of the epithelium and the nuclei count, which
was consistent with the WSI-level results and FID scores (Fig. 4).

The epithelial tissue of the prostate gland is cuboidal to
columnar, with abundant, round, and central nuclei. Higher
magnifications of the epithelial tissue (Supplementary Fig. S1A)
showed that although the epithelial cells themselves were inter-
preted well by the algorithm, the virtual staining had difficulty
with the general morphology of the epithelium with the unpro-
cessed tissues in paraffin as the cells could not be distinguished
from each other, especially in the 5-mm- and 8-mm-thick tissues.
On the other hand, in the coverslipped and deparaffinized tissues,
a rough distinction between cells could be made, although the
shape of the cells did not always appear accurate. A common
feature that all the 3 virtual stainings shared, when compared
with the reference HE, was the absence of inflammatory and basal
cells in the lining and periphery of the epithelium, likely resulting
from the scarcity of these cells in number compared with the
epithelial cells. The same scarcity and the subsequent challenge to
be recreated by the virtual staining algorithm also applied to
blood vessels, which, in the prostate gland, are mainly small veins
or capillaries surrounded by endothelial cells and occasionally
containing red blood cells depending on the tissue preparation
method. The general structure and shape of the blood vessels
were often interpreted well; however, the very thin and elongated
endothelial cell nuclei were mostly missing (Supplementary
Fig. S1B). Surprisingly, the thinnest tissues performed the best in
this respect, and the red blood cells inside the vessels were
distinguishable in the coverslipped 3-mme and 5-mmethick tis-
sues as well as in the unprocessed 3-mmethick tissue.

Stroma is the second most abundant tissue found in prostates.
It consists of connective tissue and smooth muscle with an
eosinophilic cytoplasm and round to thin and elongated nuclei,
depending on the orientation of the fibers in the tissue. Similarly
to previous findings, 3-mme and 5-mmethick tissues performed
the best as the organization and color of the fibers were depicted
accurately (Supplementary Fig. S2B). Nuclei appeared often either
understated or overstated, except in the 3-mm and 5-mm depar-
affinized tissues, which showed the most accurate results when
taking both nuclei and cytoplasm into consideration. In the 3
thicker tissues, the stroma was not visualized as eosinophilic, and
nuclei count was again under- or overestimated. Adipose tissue is
a part of connective tissue, and when HE-stained, it appears
mainly as hollow circular adipocytes, with peripheral nuclei sur-
rounded by a thin extracellular matrix. Adipocytes were only
present in the 3-mm-thick tissue sections in this sample set.
Deparaffinized processing produced the best interpretation of
them in virtual staining, showing the extracellular matrix and a
few of the nuclei most accurately (Supplementary Fig. S2B). The
adipocyte nuclei, being small in size and irregular in shape and
location, were challenging to reproduce in virtual staining.
Technical Considerations of Unsupervised Virtual Staining

Based on the visual evaluation of the images, several technical
issues were identified that affect the performance of virtual HE
staining. These include artifacts resulting from optical vignetting,



Figure 3.
Unsupervised virtual HE staining with a CycleGAN deep learning model at a whole slide level. (A) A schematic representation of the CycleGAN network used. The network has 2
generators, G1 and G2, and 2 discriminators, D1 and D2. Aorg and Borg represent original input images from the 2 domains. Agen and Bgen represent synthetically generated output
images from the original counterparts. Arep and Brep represent repeat synthetically generated images using previously generated Bgen and Agen, respectively. Discriminator losses,
D1 loss and D2 loss, were computed using original input and generated output. Cycle consistency loss was computed using original input and repeat generated output. (B)
Computational evaluation of CycleGAN deep learning model performance with FID scores for each tissue section thickness and processing method. (C) A low magnification view
of the overall performance of virtual staining with different tissue sectioneprocessing techniques. FID, Frachet inception distance; HE, hematoxylin and eosin.
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Figure 4.
Histologic performance of unsupervised virtual HE staining with images of differentially processed tissue sections. Comparative views of the original unstained images and
virtual staining and HE reference images. An example of section thickness 5 mm is shown. (A) AWSI-level view at lowmagnification. (B) A view of a prostate gland structure. (C) A
high-magnification view of prostate epithelial cells. HE, hematoxylin and eosin; WSI, whole slide imaging.
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impurities from the microscope lens, and tiling artifacts from
image processing (Supplementary Fig. S3). Optical vignetting is
the radial attenuation of light from the center of the image toward
the edges, and it is an intrinsic problem of optical systems and
digital imaging.37 This effect, which is distinguishable by the eye
from the unstained images only with the coverslipped sections,
appeared to be a factor in virtual staining with the other sample
processing methods, too. As vignetting is inherent in each mi-
croscope and thus embedded in the tiles imaged by the micro-
scope, a pattern of rectangles is easily created by virtual staining.
In this study, the virtual staining algorithm interprets vignetting
as secretion of the glands (Supplementary Fig. S3A) or denser or
darker areas of tissue depending on tissue area.

Depending on their size and the contrast they created, dust
particles on the coverslip were also interpreted by the algorithm
used in this study (Supplementary Fig. S3B). The more prominent,
darker particles created an entirely new tissue structure, whereas
the lighter particles seemed to only be interpreted similarly to
the vignetting effect, creating an even-colored area similar to the
secretion of the glands. In the unprocessed samples, there were
creases of paraffin appearing, which became more common with
7

thicker sections. This is most likely a consequence of excess
paraffin. These creases were interpreted as nuclei-dense areas
and, whereas the glands could be somewhat discerned, the
epithelial structure was not represented in virtual staining
(Supplementary Fig. S3C). The tile effect (Supplementary Fig. S3D)
from splitting the WSIs into 2048 x 2048 pixel tiles for training
appeared mostly either on the edges of the tissue or in the
secretion of the glands based on visual inspection. This could be
related to the high contrast between the sample and the back-
ground and, curiously, was more prominent in the coverslipped
and unprocessed section images.
Increased Performance of Virtual Staining With an Optimized
Imaging Protocol and Supervised Deep Learning

After determining the optimal section thickness and imaging
protocol for virtual staining of unstained tissue using the unsu-
pervised deep learning model, we tested whether supervised
deep learning could improve the histologic accuracy of virtual
staining. We used histologic sections imaged first as



Figure 5.
Supervised virtual HE staining with a pix2pix deep learning model for unstained tissue WSIs. (A) A schematic representation of the pix2pix network. The network has a
generator G and a discriminator D. Aorg, Borg, and Bgen represent the original input image, the registered ground truth image, and the synthetically generated output, respectively.
The network uses a combination of GAN loss and L1 loss for the generator output. (B) Histologic performance of supervised virtual HE staining of prostate gland structures.
Comparative views of the original unstained images and virtual staining and HE reference images of prostate gland structure. An overview (top row) and a close-up (bottom
row). Basal cell nuclei are indicated using arrowheads. (C) Histologic performance of supervised virtual HE staining of different organ tissues. Comparative views of original
unstained images and virtual staining and HE reference images of histology of liver (top row), testis (middle row), and kidney (bottom row). GAN, generative adversial network;
HE, hematoxylin and eosin; WSI, whole slide imaging.
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deparaffinized without a coverslip to obtain images of the un-
stained tissue, and then imaged the same section after HE staining
to obtain the ground truth image. First, we used mouse prostate
tissue and the pix2pix network (Fig. 5A) to evaluate the perfor-
mance of supervised learning in comparison with the previous
8

results with the unsupervised CycleGAN model. At a low magni-
fication, we found that the general tissue morphology, including
that of the stroma and the epithelium-lined glandular structures
of the prostate, was interpreted with high accuracy (Fig. 5B). A
detailed analysis demonstrated that even basal cells in the



Figure 6.
Histologic performance of supervised virtual HE staining imaged with different magnifications. Comparative views of the original unstained images and virtual staining images
with the pix2pix method and the HE reference images. A virtually stained liver was imaged and virtually stained at 40� (top row, 3 images from the left) and 20� (bottom row, 3
images from the left) magnifications. Virtually stained livers were imaged at 20� and virtually stained with a network trained with 40� images (rightmost images) in which the
input was upscaled to 40� (top image) and the input remained at 20� (bottom image). HE, hematoxylin and eosin.
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epithelium, which were not accurately represented with the un-
supervised model, were relatively well reproduced with the su-
pervised model (Fig. 5B).

Next, we tested whether virtual staining could similarly
reproduce other tissues with different types of histology. We used
samples of the liver, testis, and kidney, and performed virtual
staining with the pix2pix model. We found that the general
morphology of these tissues was represented well (Fig. 5C). This
includes all major structural components, such as the portal re-
gions and hepatic lobules of the liver, seminiferous tubules of
the testis, and glomeruli and the cortical tubular epithelium of
the kidney, which could be clearly distinguished. Although in the
testis, the very basophilic mature spermatozoa appeared more
challenging for the algorithm, and the scarce immature sper-
matogonia and spermatocytes were not shown in virtually stained
images, the cellular composition of the liver and the cortical
tubular epithelial structures in the kidney appeared highly
accurate.

The results thus far have been obtained using a 40� objective
in imaging. We wanted to test how the magnification during im-
aging and training of unstained tissue images affects virtual
staining. To this end, we virtually stained images of unstained liver
sections that were imaged both with 40� and 20�magnifications
using the model trained with 40� and 20� image data, respec-
tively. The performance of virtual staining with the supervised
model appeared to be almost equal between the 2 magnifications
(Fig. 6). The portal regions and hepatic lobules were both easily
distinguishable with both magnifications, although the density of
nuclei and overall basophilia of the tissue seemed slightly
decreased in the 20� compared with 40� virtually stained im-
ages.We further tested how upscaling the input 20� image to 40�
9

prior to virtual staining affected the results of virtual staining. The
accuracy of tissue representation dropped significantly, with the
portal regions no longer readily detectable and the hepatocytes
appearing considerably larger than accurate (Fig. 6). A similar
decrease in representation accuracy was detected when images
obtained with 20� magnification were virtually stained with a
network trained with images obtained with 40� magnification
(Fig. 6).
Discussion

We experimentally optimized and streamlined sample pro-
cessing and imaging to enable efficient virtual HE staining with
CycleGAN, an unsupervised deep learning approach. We
compared the effect of tissue sectioneprocessing and thickness on
the performance of virtual HE staining using images of unstained
histologic tissue sections. We showed the feasibility of using un-
stained tissue sections as deparaffinized or even in paraffin for
virtual staining. The benefits of the identified approaches for vir-
tual HE staining include avoiding chemical staining, enabling
utilization of the exact same tissue section for other purposes such
as macromolecule extractions or various spatial measurements,
and providing a fast, cheap, and accessible way to perform future
spatial measurements at a single-cell level in concordance with
traditional histology.

We explored the different conditions that can be used for un-
stained tissues, assessing the quality and information content they
provide for a virtual staining algorithm. Surprisingly, we found
that higher section thicknesses with increased tissue information
content in the images do not improve virtual staining results
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compared with standard tissue section thicknesses. Clinical his-
tology laboratories often have standardized tissue thicknesses of 4
to 5 mm for an optimized workflow.35 In this study, the 3 thinner
sections that were tested (3-8 mm) performed distinctively better
than the 2 thicker sections (12 and 20 mm). Our results showed
that the tissue thicknesses used currently for routine chemical HE
staining can also be used for virtual staining.

In this study, deparaffinization as the preprocessing technique
generated the best virtual staining results both at the WSI level
and at the tissue microstructure level. Nuclei count was compa-
rable with the ground truth not only in the abundant epithelial
tissues but also in the stromal connective tissue and smooth
muscle. Deparaffinized tissues have been reported to be used as
unstained tissues in virtual staining.24,25 Although removing the
paraffin and allowing the tissue to dry for microscopy somewhat
limit what the tissue can be used for, for most immunohisto-
chemical and histologic staining procedures, the same deparaffi-
nization can be used.

Although not as well performing as the deparaffinized samples,
the unprocessed samples showed promise for virtual staining. The
strongest benefit of this approach would be that the tissues still
embedded in paraffin can be used in practically any follow-up
measurement. With certain methods, such as Fourier transform
infrared (FTIR) and Raman spectroscopy, the measured signal can
even be improved by using unprocessed tissues. In the case of
FTIR, resonant Mie scattering distorts the pure spectrum of cells
and tissues, especially at the cellular level,38 and as the refractive
indexes of tissue sections and paraffin are similar to each other,39

the scattering is exacerbated by deparaffinization.34 A study by
Faol�ain et al40 used Raman spectroscopy to examine the effec-
tiveness of the most common deparaffinization agents and found
that all of them leave traces of paraffin in tissues. This adds
considerable variation to the spectra and prevents automated
analysis.40 Therefore, more precise results at the cellular level can
be acquired when tissues are imaged unprocessed, and the
paraffin spectra can be computationally subtracted after imaging
in both FTIR and Raman spectroscopy.39,41-43 In addition, a recent
study by Sabo et al44 investigated the use of nondeparaffinized
tissue in fluorescence imaging. They highlighted how unprocessed
tissue could be used for screening and quality control of tissue
sections, thus improving downstream processing and selection of
optimal samples.44 Although the unprocessed sections had
drawbacks in virtual staining in this study, namely with under- or
overestimating nuclei counts, inability to distinguish cells at the
epithelial level, as well as creasing of paraffin at the WSI level, the
technical benefits of this approach support the further develop-
ment of virtual staining algorithms suited for paraffin-embedded
sections.

Coverslipped tissues are processed furthest during the histo-
logic workflow, and although the slides are generally not stained
after coverslipping owing to the fact that removing the coverslip
and further processing can damage the tissue, tissues in fluores-
cent protocols such as fluorescent immunohistochemistry and in
situ hybridization are mounted with coverslips as in HE staining.
Still, the staining itself does not appear in visible light. This en-
ables the use of coverslipped slides for virtual staining in combi-
nation with fluorescent stainings. The main limitation of using
coverslipped slides, however, is the pronounced vignetting effect,
which stands out in the virtually stained tissues as darker or
incorrectly interpreted tissue. This could be overcome by future
development of computationally normalizing the vignetting
effect.

Light microscopy is readily available in laboratories using HE
staining and is simple to use, making the transition from HE
10
staining to virtual staining of unstained tissue very simple.
Nowadays, the workflow in many histopathologic laboratories is
automated, and the acquisition of WSIs for pathologic evaluation
is often performed with a slide scanner. This requires automatic
sample detection and focusing, which may be a challenge for
certain types of unstained tissue. The mounting medium in cov-
erslipped tissues has properties that make the tissue almost
invisible when using a low magnification. This makes tissue
detection extremely difficult. In addition, the remaining paraffin
surrounding the tissue in unprocessed, paraffin-embedded tissues
could be classified as tissue by the scanner, which would increase
the scan time and size of the files significantly, which, in turn,
could generate problems for the algorithm. The automatic focus
has also been optimized for stained tissues and may need to be
readjusted for unstained tissues.

Although the FID score gives an indication of how close an
algorithm-generated set of synthetic images is to its correspond-
ing set of real images, whenever paired images are not available, it
is still a metric that depends on high level features and does not
necessarily gauge low-level visual differences. Hence, the visual
assessment of the appearance and performance of virtual staining
is crucial. Overall, epithelial tissue does give out the best results,
most likely owing to the high abundance and, thus, more preva-
lence in the training of the algorithm. Eosinophilic areas and
structures weremore difficult to recreate using the algorithm. This
could be caused by the lack of connective tissue and smooth
muscle when compared with epithelial tissue. This study also
identified technical issues that affect the performance of virtual
HE staining, including effects resulting from optical vignetting and
impurities from the microscope lens, as well as tiling artifacts
from image processing. All these challenges deserve attention in
future approaches and are likely to be improved with increased
amounts and variations in training data.

Currently, virtual staining of tissues is being applied in several
different ways, such as in tissue autofluorescence,45-47 trans-
forming one stain into another,14-16,48 normalizing HE stain-
ing,17,18,49 or using a different form of imaging, such as optical
imaging.41-43 Before this study, only a few studies explored
traditional light microscopy on unstained tissue for virtual HE
staining.24,25

In the first part of this study, to avoid tissue damage with the
removal of coverslips in the coverslipped samples, the reference
HE sections used were obtained from different tissue sections
than each of the unstained sections. Hence, an unsupervised
approach was used here to compare the feasibility of unstained
tissue for virtual HE staining. Unsupervised image-to-image
translation methods5-8 use techniques such as cycle consistency
loss5 for learning image mapping, thus eliminating the need for
paired data. However, as the unsupervised methods do not rely on
paired data, the ramp-up time is relatively short. Unsupervised
networks are often challenging to train because of the typically
bulky architecture. Despite being able to generate quality syn-
thetic images for natural domains, the precision may not be as
high as with supervised methods.

As supervised learningmethods tend to producemore accurate
and realistic synthetic images, virtual HE staining can be improved
using such approaches. This requires preparing a data set with a
high level of pixel-to-pixel correspondence, which, in practice
with histologic sections, means imaging the same sections first
without and thenwith chemical staining. Oncewe had shown that
unstained imaging with coverslipping with amountingmedium is
not required for efficient information gain from unstained histo-
logic sections, we applied a supervised approach. We showed that
increased histologic accuracy can be obtained using supervised
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deep learning with an optimized tissue section thickness and
imaging protocol. The reproduction of overall tissue histology was
clearly improved with supervised learning and pixel-wise ground
truth, and we showed that the method works with several tissues
with various histology.

We demonstrated that as the resolution was changed prior to
virtual staining either by upscaling from 20� to 40� or by using a
different magnification in training than as the input, the perfor-
mance of virtual staining dropped significantly. Surprisingly,
however, we found that using images obtained with 20� magni-
fication produces histologic accuracy near to that of images ob-
tained with 40� magnification. In this study, we tested the effect
of image resolution with only one tissue. Although the overall
morphology of liver and the cellular composition of the tissue-
specific structures were well produced, the limitations of each
magnification to histologic performance of virtual staining of
other tissues and, especially, pathology need to be separately
tested.

With these approaches focusing on the usage of deparaffinized
and unprocessed tissue sections, and with future development of
the algorithms, virtual staining has significant potential to revo-
lutionize the visualization of tissue used in research for standard
histologic assessment as well as in combining multiple and spatial
measurements. Great future potential of virtual staining also lies
in clinical histopathology, with the promise of faster protocols,
increased throughputs, and a decreased need for chemical stain-
ing steps, with less consumption of environmentally hazardous
chemicals.
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