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Abstract

PageRank is an algorithm used in Internet search to score the importance of

web pages. The aim of this paper is demonstrate some new results concerning

the relationship between the concept of PageRank and automorphisms of a

graph. In particular, we show that if vertices u and v are similar in a graph G

(i.e., there is an automorphism mapping u to v), then u and v have the same

PageRank score. More generally, we prove that if the PageRanks of all vertices

in G are distinct, then the automorphism group of G consists of the identity

alone. Finally, the PageRank entropy measure of several kinds of real-world

networks and all trees of orders 10-13 and 22 is investigated.
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1. Introduction1

The eigenvalues and eigenvectors of the adjacency matrix of a graph offer2

necessary conditions for a graph to possess certain properties. In particular,3

they have been found useful in studies of graphs associated with web searches.4

The world wide web can be modeled as a directed graph in a natural way by5

interpreting web pages as vertices and links between web pages as directed edges6

in the graph.This model provides a basis for ranking web pages by means of the7

PageRank (PR) algorithm. The algorithm was developed by Brin and Page in8

1998 [2].9

The PageRank (PR) algorithm provides a mechanism for scoring the im-10

portance of web pages. PR has applications in such diverse fields such as neu-11

roscience [32], bioinformatics [16, 30], sports [3, 25], traffic modeling [5, 29],12

chemistry [28] and social network analysis [12, 23], as well as others [22, 26].13

Also, PR has been used extensively for improving the quality of search engines14

such as google and so forth, see [5]15

The research reported here is especially relevant for chemical database ap-16

plications. Searching for compounds with special properties can be aided by17

making use of page rank, and the automorphism group is useful for computing18

page rank. For other possible applications of the results in this paper (see [4]).19

In this paper, we establish connections between the PageRank concept and20

automorphisms of a graph. The motivation to do so is to get deeper insights into21

graph-theoretical properties of graphs (here symmetry) in conjunction with PR.22

First, we define the PageRank (PR) vector and show how it can be computed.23

In Section 3, we establish new results concerning the concept of PageRank and24

automorphisms of a graph. In section 4, the PageRank entropy measure is25

defined In other words, analyzing the reported data shows that the PR-entropy26

measure is not highly correlated with the size of automorphism group and hence27

it can be regarded as a new measure to study the algebraic properties of the28

automorphism group.29

Finally, in Section 5, we define the notion of a Co-PageRank graph and30
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offer a conjecture concerning PageRank scores of vertices in non-Co-PageRank31

graphs. The notation used in this paper mainly follows [24].32

2. PageRank Vector33

The following discussion makes use of the model of the web as a directed34

graph. Let n be the number of all web pages, and suppose Pn×n is the Markov35

transitions matrix associated with the web graph defined as follows:36

pij =

 1
di

if page i and page j are linked

0 otherwise
,

where di is the degree of vertex i. In other words, pij is the probability of navi-37

gating from vertex i to vertex j. For a dangling vertex (one with outdegree 0),38

a zero row appears in the matrix P which violates the condition of a transition39

matrix. To overcome this violation and obtain a transition matrix, we define40

P + luT where u is the probability distribution vector, u = [1/n, 1/n, ..., 1/n]T ,41

and l is an n-dimensional vector as follows:42

li =

 1 if i is a dangling node

0 otherwise
.

A PR vector [24], is an n-dimensional vector π satisfying the following:43

 πT = πT G̃

π
T

j = 1
, (1)

where G̃ = α(P + luT )+(1−α)jvT , j = [1, 1, . . . , 1] and α ∈ (0, 1) (typically44

α = 0.85). In the present paper, we focus on graphs without dangling vertices.45

Hence, the vector π can be derived from the following equation:46

πT = απTP + (1− α)vT , (2)

or equivalently,47

(I − αPT )π = (1− α)v, (3)

3



in which v = [1/n, 1/n, ..., 1/n]T .48

The PageRank (PR) score of vertex i is the ith entry of the vector π [6]. An49

example will help to fix ideas.50

The Google matrix G̃ of a directed network is a stochastic square matrix

with non-negative matrix elements and the sum of elements in each column

being equal to unity. By above notation, the elements of the Google matrix are

defined as

G̃ij = αPij + (1− α)
1

n
.

Proposition 2.1. [24] If {1, µ2, . . . , µn} are all eigenvalues of transitions ma-51

trix P , then {1, αµ2, . . . , αµn} are all eigenvalues of G̃.52

Let G be a graph with adjacency eigenvalues λ1, λ2, · · · , λn. The graph

energy of G is defined as

E(G) =
n∑

i=1

|λi|,

see [18, 19, 20, 21]. Following Gutman definition, if {1, µ2, . . . , µn} are all eigen-

values of transitions matrix P , then the transition energy can be defined as

E(P ) =
n∑

i=1

|µi|.

Corollary 2.1. Suppose G is a graph with transitions matrix P . Then

E(G̃) = α(E(P )− 1) + 1.

Proof. By Proposition 2.1, the proof is straightforward.53

54

Example 2.1. The following is the adjacency matrix of the graph G1 in Figure55

1.56

A =



0 0 0 1 1

0 0 1 0 0

0 1 0 1 0

1 0 1 0 1

1 0 0 1 0


,
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The transition matrix of this graph is57

P =



0 0 0 1/2 1/2

0 0 1 0 0

0 1/2 0 1/2 0

1/3 0 1/3 0 1/3

1/2 0 0 1/2 0


.

With α = 0.85 Eq. 3 gives the following linear system58



π1 − 0.85
3 π4 − 0.85

2 π5 = 0.03

π2 − 0.85
2 π3 = 0.03

− 0.85π2 + π3 − 0.85
3 π4 = 0.03

− 0.85
2 π1 − ( 0.852 )π3 + π4 − ( 0.852 )π5 = 0.03

− ( 0.852 )π1 − ( 0.853 )π4 + π5 = 0.03

. (4)

Solving Eq. 4 we obtain the PR vector of G1:59

PR = [0.1918, 0.1204, 0.2126, 0.2834, 0.1918].

2.1. PageRank score of a vertex60

The concept of PageRank score at a vertex is needed to determine the rela-61

tionship between PageRank and automorphisms of a graph.62

Definition 2.1. Let A = (aij) be an n×n matrix. Then the 1-Norm of matrix63

A is defined as [27]64

||A||1 =Maxj

n∑
i=1

|aij |.

Definition 2.2. The spectral radius ρ(A) of an square matrix A is the largest65

absolute value of eigenvalues of A, see [27].66

Theorem 2.1. [1] Let A be an arbitrary square matrix. Then67

ρ(A) ≤ ||A||1.
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Theorem 2.2. [1] (Geometric series) Let A be an square matrix. If ρ(A) < 1,68

then (I −A)−1 exists, and it can be expressed as a convergent series,69

(I −A)−1 = I +A+A2 + · · ·+Am + · · · =
∞∑
k=0

Ak. (5)

Lemma 2.1. Let G be a graph of order n and π be the PR vector of G. The70

PR of vertex vi can be determined from the following equation:71

πi =
(1− α)

n

∞∑
k=0

αk
n∑

t=1

P k
ti, (6)

where α ∈ (0, 1) and P is the transition matrix.72

Proof. Since
n∑

i=1

PT
ij = 1, we see that ||PT ||1 = 1. Consequently, we have73

||αPT ||1 = α · ||PT ||1 = α < 1. Theorem 2.1 implies that ρ(αPT ) < 1, and74

Theorem 2.2 implies that the inverse matrix (I − αPT )−1 exists and thus75

(I − αPT )−1 =
∞∑
k=0

(αPT )
k
. (7)

From Eq. 3 and Eq. 7 we conclude that,76

π = (1− α)(I − αPT )−1v = (1− α)(

∞∑
k=0

(αPT )
k
)v

= (1− α)(I + αPT + α2PT 2
+ ...)v.

Since πi is the ith row of the matrix (1 − α)(I − αPT )−1v, it is clear that77

πi is the ith row of column matrix (1−α)
n (I − αPT )−1e. This means that78

πi =
(1− α)

n

n∑
t=1

[
(I − αPT )−1

it

]
=

(1− α)

n

n∑
t=1

∞∑
k=0

(αPT )kit. (8)

Hence79

πi =
(1− α)

n

∞∑
k=0

αk
n∑

t=1

P k
ti. (9)

80
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According to the definition of matrix P , P k
ti is the transition probability from81

vertex t to vertex i in k steps.82

Theorem 2.3. Let G be a graph and i, j ∈ V (G). If
n∑

t=1
P k
ti =

n∑
t=1

P k
tj, (for all83

k ∈ N ), then πi = πj.84

Proof. Suppose
n∑

t=1
P k
ti =

n∑
t=1

P k
tj and α ∈ (0, 1). Then85

n∑
t=1

αkP k
ti =

n∑
t=1

αkP k
tj (for all k ∈ N),

and consequently86

∞∑
k=0

αk
n∑

t=1

P k
ti =

∞∑
k=0

αk
n∑

t=1

P k
tj .

Eq. 9 implies that87

πi =
(1− α)

n

∞∑
k=0

αk
n∑

t=1

P k
ti =

(1− α)

n

∞∑
k=0

αk
n∑

t=1

P k
tj = πj .

88

In light of Theorem 2.3, consider the tree T1 shown in Figure 2.89

Example 2.2. The sums of the entries in each column of matrices P, P 2, P 3,90

respectively, of graph T1, are shown in the end of each column. Consider also the91

vertices 1, 2 or 3, 4 of T1 and their corresponding columns in matrices P, P 2, P 3
92

as follows:93

A =



0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 1 0 1

0 0 0 0 1 0


, P =



0 0 1 0 0 0

0 0 0 1 0 0

1/2 0 0 0 1/2 0

0 1/2 0 0 1/2 0

0 0 1/3 1/3 0 1/3

0 0 0 0 1 0

1/2 1/2 4/3 4/3 2 1/3


,94
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P 2 =



1/2 0 0 0 1/2 0

0 1/2 0 0 1/2 0

0 0 2/3 1/6 0 1/6

0 0 1/6 2/3 0 1/6

1/6
1/6 0 0 2/3 0

0 0 1/3 1/3 0 1/3

2/3 2/3 7/6 7/6 5/3 2/3


,95

P 3 =



0 0 2/3 1/6 0 1/6

0 0 1/6 2/3 0 1/6

1/3 1/12 0 0 7/12 0

1/12 1/3 0 0 7/12 0

0 0 7/18 7/18 0 2/9

1/6 1/6 0 0 5/9 0

7/12 7/12 22/18 22/18 72/36 5/9


.96

The sums of columns 1, 2 or 3, 4 of P k (for all k ) are the same, and thus97

the PR scores of corresponding vertices are the same. This means that98

6∑
t=1

P k
t1 =

6∑
t=1

P k
t2,

and thus π1 = π2. A similar argument shows that π3 = π4. Hence, the PR99

vector of this tree is100

πT = [0.1090, 0.1090, 0.1975, 0.1975, 0.2821, 0.1049].

3. PageRank Vector and Graph Automorphisms101

An identity graph or asymmetric graph is a graph whose automorphism102

group consists of the identity element alone. An example of such a graph is T2103

shown in Figure 4. Note that all entries of the PR vector π of this graph are104

distinct. The aim of this section is to prove that if the PageRank scores of all105

vertices are distinct, then the graph must be asymmetric.106
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Lemma 3.1. Every vertex vi in a regular graph G of order n has PR score107

πi =
1
n .108

Proof. Let G be a regular graph of degree r. Then for every vertex vi ∈ V (G),109

we have110

n∑
t=1

Pti = r.
1

r
= 1,

and111

n∑
t=1

P 2
ti = 1.

1

r
.r = 1.

Hence, for each k ∈ N,112

n∑
t=1

P k
ti = 1. (10)

Using Eq. 10 and Lemma 2.1 implies that113

πi =
1− α

n

∞∑
k=0

αk
n∑

t=1

P k
ti

=
1− α

n

∞∑
k=0

αk =
1− α

n
(

1

1− α
)

=
1

n

This completes the proof.114

Let T be a tree on n vertices, and denote the degree of a vertex v by dv. A115

non-pendant vertex v of T is adjacent to dv > 1 vertices in T .116

Theorem 3.1. Let i, j be two vertices in a graph G. If there exists an auto-117

morphism ψ ∈ Aut(G) such that ψ(i) = j, then πi = πj.118

Proof. Suppose Ni denotes the set of neighbors of vertex i, namely Ni =119

{t ∈ V |ti ∈ E}, see Figure 5. For every vertex i1 in Ni there is a vertex120
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j1 ∈ Nj such that ψ(i1) = j1. Since i1 and j1 are similar, di1 = dj1 , and121

Pi1i =
1

di1
= 1

dj1
= Pj1j . Hence,122

n∑
t=1

Pti =
n∑

t=1

Ptj .

Continuing the method illustrated in Figure 6, for given vertex i2 ∈ Ni1 ,123

there exists a vertex j2 ∈ Nj1 such that ψ(i2) = j2, since ψ maps the edge Bi to124

Bj . This implies that di2 = dj2 and thus Pi2i1 = 1
di2

= 1
dj2

= Pj2j1 . Therefore,125

(P 2)i2i = (P 2)j2j and thus,126

n∑
t=1

P 2
ti =

n∑
t=1

P 2
tj . (11)

In general, we have,127

n∑
t=1

P k
ti =

n∑
t=1

P k
tj (k ∈ N). (12)

From Eq. 12 and Theorem 2.3 it follows that πi = πj , and the assertion is128

proved.129

Theorem 3.1 says that if an automorphism maps a vertex x to vertex y,130

they must have the same PR score. However, the converse does not hold. A131

counterexample is the Frucht graph shown in Figure 7. The Frucht graph is132

regular of degree 3 with 12 vertices and 18 edges and is asymmetric, see [13].133

Since it is a regular graph, Lemma 3.1 shows the PR-vector is [1/12, . . . , 1/12],134

while the automorphism group of this graph consists of the identity element135

alone.136

In what follows, we prove that a graph whose vertices have distinct PageRank137

scores is asymmetric. First, consider the following example.138

Example 3.1. The following is the adjacency matrix of the tree T2 shown in139

Figure 4:140
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A =



0 1 0 0 0 0 0

1 0 1 0 1 0 0

0 1 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0


,

In the matrix P associated with A, the sums of 4th and 7th columns are equal,141

but in P 2 and P 3 these column sums are not equal.142

P =



0 1 0 0 0 0 0

1/3 0 1/3 0 1/3 0 0

0 1/2 0 1/2 0 0 0

0 0 1 0 0 0 0

0 1/2 0 0 0 1/2 0

0 0 0 0 1/2 0 1/2

0 0 0 0 0 1 0

1/3 2 4/3 1/2 5/6 3/2 1/2



,143

P 2 =



1/3 0 1/3 0 1/3 0 0

0 2/3 0 1/6 0 1/6 0

1/6 0 2/3 0 1/6 0 0

0 1/2 0 1/2 0 0 0

1/6 0 1/6 0 5/12 0 1/4

0 1/4 0 0 0 3/4 0

0 0 0 0 1/2 0 1/2

2/3 7/12 7/6 4/6 17/12 11/12 3/4



,144
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P 3 =



0 2/3 0 1/6 0 1/6 0

2/9 0 5/6 0 11/36 0 1/12

0 7/12 0 1/3 0 1/12 0

1/6 0 2/3 0 1/6 0 0

0 11/24 0 1/12 0 11/24 0

1/12 0 1/12 0 11/24 0 3/8

0 1/4 0 0 0 3/4 0

17/36 47/24 19/12 7/12 67/72 35/24 11/24



.145

On the other hand, we have,146

7∑
t=1

Pt4 =

7∑
t=1

Pt7,

while147

7∑
t=1

P 2
t4 ̸=

7∑
t=1

P 2
t7 and

7∑
t=1

P 3
t4 ̸=

7∑
t=1

P 3
t7.

The graph T2 has no vertices for which corresponding column sums are the148

same. This means that their PR scores are not equal and the entries of the PR149

vector are all distinct. Finally, the PR vector of this tree is150

πT = [0.0878, 0.2343, 0.1660, 0.0920, 0.1592, 0.1680, 0.0928].

On the other hand, the automorphism group of T2 consists of the identity element151

alone.152

Corollary 3.1. Let G be a graph. If the PR scores of all the vertices are153

distinct, then G is asymmetric.154

Proof. For two arbitrary vertices u, v ∈ V (G), if πu ̸= πv, then by Theorem 3.1,155

there is no an automorphism that maps u to v and the assertion follows.156

Corollary 3.2. Let T be a tree in which no two pendant vertices have the same157

PR scores. Then the automorphism group of T consists of the identity element158

alone.159
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Proof. For the non-identity automorphism ψ of Aut(T ), there are at least two160

pendant vertices i, j such that ψ(i) = j and thus πi = πj . But the pendant161

vertices have different PR scores from which the result follows.162

Definition 3.1. Let G be a graph with automorphism group Aut(G), and denote163

the orbit of a vertex u ∈ V (G) by uAut(G) or [u]. Note that uAut(G) is the set164

{α(u) : α ∈ Aut(G)}.165

A graph G is called vertex-transitive, if it has exactly one orbit. In other166

words, for any two vertices u, v ∈ V (G), there is an automorphism α ∈ Aut(G)167

such that α(u) = v.168

The PR complexity, PRC(G), is the number of different values of PR vector.169

Theorem 3.2. Let V1, V2, V3, . . . , Vk be all the orbits of Aut(G). Then for two170

vertices x, y ∈ Vi(1 ⩽ i ⩽ k), πx = πy. In particular, if G is vertex-transitive,171

then PRC(G) = 1.172

Proof. If two vertices are in the same orbit, there is an automorphism mapping173

one to the other. The assertion follows from Theorem 3.1.174

Corollary 3.3. Let #O be the number of distinct orbits of a graph G. Then

PRC(G) ≤ #O.

An illustration of this corollary is given by the tree T1 shown in Figure 2.175

This graph has four orbits {1, 2}, {3, 4}, {5} and {6}. By Theorem 3.2, π1 = π2176

and π3 = π4. This means that the PR vector π has at most four distinct entries.177

Example 3.2. Suppose t denotes the number of orbits of graph G. It should be178

noted here that there are graphs with k < t. For example consider the graph K179

in Figure 3. This graphs has three orbits while k = 2, the vertices in an orbit180

are colored by the same colors.181

This example shows that determining graphs with k = t is a hard task. We182

Solve this problem for graphs with exactly two orbits.183
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Lemma 3.2. The connected graph G is regular if and only if π = λj, where184

λ ∈ R.185

Proof. If G is regular, then by Lemma 3.1, π = 1
n j. Conversely, if π = λj for a

scaler λ ∈ R, then all entries of π are the same. Since for two vertices vi and

vj , we have

πi − πj = α(
πj
dj

− πi
di
),

necessarily di = dj and thus the graph is regular.186

Theorem 3.3. Let G be a graph with two distinct orbits. Then either G is a187

regular graph or k = 2.188

Proof. Since G has two orbits, it follows that k ≤ 2. If k ̸= 2, then by Lemma189

3.2, G is regular. This completes the proof.190

Corollary 3.4. Let G be an edge-transitive graph. Then either G is a regular191

graph or k = 2.192

Example 3.3. Consider the complete graph Km,n(m ̸= n). It is a well-known193

fact that Km,n has two orbitse. Since, m ̸= n, by Theorem 3.3, we obtain k = 2.194

In addition, the matrix P associated to the adjacency matrix of G is195

P =

 0n×n
1
m j

n×m

1
n jm×n 0m×m

 .

Hence,

Spec(P ) = {−1, 0, 0, ..., 0, 1}

and thus for the Google matrix, we have

Spec(G̃) = {1, 0, 0, ..., 0,−α}.

Example 3.4. Let Sn denotes to the star graph with n vertices. The bistar196

graph Bm,n is a graph obtained from union of Sn+1 and Sm+1 by joining their197

central vertices. For the star graph, we obtain198

P (Sn+1) =

 01×1
1
n j1×n

jn×1 0n×n

 .
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This yields that PR = [π1, π2, . . . , π2, π2], where π1 = ( 1−α
n+1 + α) × 1

1+α and199

π2 = n+α
n(n+1)(1+α) . Also, for the bistar graph, it yields200

P (Bm,n) =

 A B

BT C

 ,

where C = 0m+n,201

A =

 0 1
n+1

1
m+1 0

 , and B =

 1
n+1 j1×n 01×m

01×n
1

m+1 j1×m

 .

Lemma 3.3. Let G be a graph and i, j be two distinct vertices having the same202

neighbors. Then πi = πj.203

Proof. Two following cases hold:204

a) Suppose vertices i and j are adjacent. According to the definition of PR205

score, we have,206

πi = α
∑

k∈Ni−{j}

πk
dk

+ α
πj
dj

+
1− α

n
,

and207

πj = α
∑

k∈Nj−{i}

πk
dk

+ α
πi
di

+
1− α

n
.

Thus208

πi − πj = α(
πj
dj

− πi
di
),

and therefore209

πi(1 +
α

di
) = πj(1 +

α

dj
).

Since |Ni| = |Nj |, we have di = dj which implies πi = πj .210

b) Now suppose i and j are not adjacent. Then πi = α
∑

k∈Ni

πk

dk
+ (1−α)

n and211

πj = α
∑

k∈Nj

πk

dk
+ (1−α)

n . Since Ni = Nj , we conclude πi − πj = 0 and thus212

πi = πj .213
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Lemma 3.4. Let i, j be two adjacent vertices of a graph G. If πi < πj, then214

Nj ⊈ Ni215

Proof. Suppose to the contrary that Nj ⊆ Ni. Hence, we obtain216

πj = α
∑
k∈Nj

πk
dk

+
1− α

n
≤ α

∑
k∈Ni

πk
dk

+
1− α

n
= πi,

a contradiction.217

Lemma 3.5. Let G be a graph. If i is a pendant vertex adjacent to vertex j,218

then πi < πj.219

Proof. Clearly dj ≥ 2 and thus − 1
dj

≥ − 1
2 . This implies220

(πi −
1

dj
πj) ≥ (πi −

1

2
πj). (13)

From the definition of PR and Eq. 13, we have221

πj = α(
πi
1
) + α

( ∑
k ∈ Nj

k ̸= i

πk
dk

)
+

1− α

n
, πi = α(

πj
dj

) +
1− α

n
.

Hence222
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πj − πi = α(πi −
1

dj
πj) + α

∑
k ∈ Nj

k ̸= i

πk
dk

+ (
1− α

n
− 1− α

n
)

≥ α(πi −
1

2
πj) + α

∑
k ∈ Nj

k ̸= i

πk
dk

= α(πi − πj) +
1

2
απj + α

∑
k ∈ Nj

k ̸= i

πk
dk

> α(πi − πj) +
1

2
απj ,

and thus223

(πj − πi) >
1
2απj

1 + α
> 0. (14)

224

4. Graph Entropy Measure225

The general Shannon entropy [5] is defined by I(p) = −
n∑

i=1

pi log(pi) for

finite probability vector p and the symbol log is the logarithm on the basis 2.

Let Λ =
∑n

j=1 Λj and pi = Λi/Λ, (i = 1, 2, . . . , n). Generally, the entropy of an

n-tuple (Λ1,Λ2, . . . ,Λn) of real numbers is given by

I(Λ1,Λ2, . . . ,Λn) = log

(
n∑

i=1

Λi

)
−

n∑
i=1

Λi∑n
j=1 Λj

log Λi. (15)

There are many different ways to associate an n-tuple (Λ1,Λ2, . . . ,Λn) to226

a graph G (see [1, 6, 7, 8, 9, 10, 11, 14, 22, 24, 32]). A graph entropy measure227

due to PageRank vector [15] is defined as228

Iπ(G) = log

(
n∑

i=1

πi

)
−

n∑
i=1

πi∑n
j=1 πj

log πi. (16)
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This phrase reduces the complexity of the graph G into a single quantity: Iπ(G)229

bits of information. This means that the PR-entropy Iπ, forms a simple and230

graceful discriminant statistic for determining the topology of a graph. This231

metric is the subject of the present section. The entropy function maximizes the232

freedom in choosing the pij ’s. The theory tell us that the entropy function gives233

the best unbiased probability assignment to the variables given the restriction.234

Example 4.1. Consider the Karate graph K [31] as depicted in Figure 10. It235

has 34 vertices and 78 edges and the PageRank vector is as follows:236

π = [ 0.097, 0.053, 0.057, 0.036, 0.022, 0.029, 0.029, 0.024, 0.029, 0.014, 0.022,

0.009, 0.015, 0.029, 0.014, 0.014, 0.017, 0.014, 0.014, 0.019, 0.014, 0.015,

0.014, 0.031, 0.021, 0.021, 0.015, 0.026, 0.019, 0.026, 0.025, 0.037, 0.072,

0.101].

The interpretation of π1 = 0.097 is that 9.7 percent of the time the random237

surfer visits page 1. Therefore, the pages in this tiny web can be ranked by238

their importance. Hence, page 34 is the most important page and page 12 by239

π12 = 0.009 is the least important page, according to the PageRank definition of240

importance. Also its PR-entropy is Iπ(K) = 4.78.241

Example 4.2. Consider the graph G as depicted in Figure 11. It presents a242

typical arrangement of symmetric subgraphs found in many real world networks.243

It has 33 vertices and 37 edges. The PageRank vector is as follows:244

π = [ 0.04, 0.031, 0.018, 0.031, 0.018, 0.064, 0.031, 0.031, 0.031, 0.04, 0.031,

0.016, 0.018, 0.035, 0.027, 0.075, 0.017, 0.017, 0.017, 0.017, 0.045, 0.046,

0.037, 0.015, 0.037, 0.015, 0.04, 0.046, 0.046, 0.017, 0.017, 0.017, 0.017].

The PR-entropy for graph G is Iπ(G) = 4.89.245

In continuing, five classes of trees of orders 10-13, and 22, were choosen246

and the results indicated a weak correlation between |Aut(G)| and Iπ(G). These247

values are given in Figures 12,13, Figure 14, 15, and Figure 16. In other words,248
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analyzing the reported data shows that the PR-entropy measure is not highly249

correlated with the size of automorphism group and hence it can be regarded as250

a new measure to study the algebraic properties of the automorphism group.251

It is clear that if in the Shannon entropy definition, all pi’s are equal, then252

Iπ achieves the maximum value which is log(n). By Lemma 3.2, if G is regular,253

then Iπ = log(n). Graphs with minimum value of PR-entropy are more difficult254

to characterize. We conjecture that for a given number n, the star graph Sn has255

the minimum PR-entropy. To do this, three classes of graphs, namely all graphs256

of orders 5-6 and all trees of order 12 were choosen and the results confirm our257

following conjecture.258

Conjecture 4.1. Among all connected graphs on n vertices, the star graph Sn259

has the minimum value of PR-entropy.260

In [14], it is proved that if T is a tree with two orbits and n ≥ 3 vertices,261

then T is isomorphic with either the star graph Sn or bistar graph Bm,m. By262

Example 3.4, we conclude the following result.263

Theorem 4.1. Let T be a tree with two orbits and n ≥ 3 vertices. Then one of264

the following cases hold:265

i) T ∼= Sn and Iπ(T ) ≈ 0.55 log n+ 0.91.266

ii) T ∼= Bm,m and Iπ(T ) ≈ 0.6 log n+ 0.93.267

Many networks can be modeled as a star graph. For example, an inwardly268

directed star graph may be used to represent retweet activity on Twitter and269

an outwardly directed star graph can be used to represent a hub authority. One270

may see that the star graph is a special case of G+ {u} in which G is a vertex-271

transitive graph. Here, we explain how one can the PR-vector of G + {u} by272

having the PR-vector of G.273

Lemma 4.1. Let G be an r-regular graph on n vertices. Then the PageRank274

vector of graph G+ {u} is π = [π1, . . . , πn, πn+1], where πn+1 = ( 1−α
n+1 + α

r+1 )×275

( r+1
α+r+1 ) and π1 = . . . = πn = 1−πn+1

n .276
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Proof. Suppose G is a regular graph with P (G) associated to its adjacency277

matrix. For an arbitrary vertex u, the matrix P̃ = P (G+ {u}) can be regarded278

as follows:279

P̃ =

 1
r+1A

1
r+1 jn×1

1
n j1×n 01×1

 ,

where A is the adjacency matrix of G. By replacing P̃ with P in Eq. 3 the280

result follows.281

5. Co-PageRank Graphs282

There exist non-isomorphic graphs with the same PR vectors; these graphs283

are said to be Co-PageRank (or Co-PR). For example, the two graphs G and H284

shown in Figure 8 have the same PR-vector, namely,285

[0.185065, 0.185065, 0.129870, 0.185065, 0.185065, 0.129870].

but they are not isomorphic. In general, suppose α = α1, · · · , αn and β =286

β1, · · · , βn the PR vectors of two graphs G and H, respectively, where α1 ≤287

α2 ≤ · · · ≤ αn and β1 ≤ β2 ≤ · · · ≤ βn. If α = β, then G and H are Co-PR;288

if , on the other hand, α and β differ in at least one entry, then G and H289

are non-Co-PR. Two graphs G and H are completely non-Co-PR if for each i290

(1 ≤ i ≤ n) αi ̸= βi. For example, the two graphs L and K shown in Figure 9,291

are non-Co-PR, with292

PR(L) = [0.143736, 0.209536, 0.143736, 0.209536, 0.146727, 0.146727],

PR(K) = [0.161121, 0.237500, 0.177757, 0.100546, 0.161121, 0.161954].

We end this paper with the following conjecture.293

Conjecture 5.1. Suppose G and H are two non-Co-PR graphs. Then for each294

vertex u ∈ V (G) and each vertex v ∈ V (H), πu ̸= πv. More generally G and H295

are completely non-Co-PR.296
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Conclusion297

In this paper, we have investigated the relationship between the concept of298

PageRank and automorpisms of a graph. In particular, we proved that if the299

pendant vertices of a tree T have distinct PRs, then T is asymmetric. Results300

regarding symmetry relations for trees as well as graphs can be useful to design301

new graph measures. Moreover, we established conditions for which two distinct302

vertices of a graph have the same PageRank. The main result in this paper is303

that two vertices in the same orbit have the same PR score. As future work, we304

hope to determine the structure of automorphism groups of well-known graphs305

in terms of PR vectors.306
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Figure 1: Graph G1 in Example 2.1.

Figure 2: The tree T1 in Example 2.2.
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Figure 3: The graph K with three orbits and k = 2.

Figure 4: The tree T2 in Example 3.1.

Figure 5: The neighbors of two adjacent vertices i, j.
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Figure 6: The neighbors of neighbors of vertices i, j.

Figure 7: The Frucht graph.
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Figure 8: Two Co-PR graphs.

Figure 9: Two non-Co-PR graphs.
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Figure 10: Zachary’s Karate graph K.

Figure 11: The graph G.

Figure 12: All trees of order 10. The correlation between |Aut(T )| and Iπ(T ) is -0.60.
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Figure 13: All trees of order 11. The correlation between |Aut(T )| and Iπ(T ) is -0.50.

Figure 14: All trees of order 12. The correlation between |Aut(T )| and Iπ(T ) is -0.34.

Figure 15: All trees of order 13. The correlation between |Aut(T )| and Iπ(T ) is -0.46.

Figure 16: All trees of order 22. The correlation between |Aut(T )| and Iπ(T ) is -0.29.
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Figure 17: The value of Iπ(T ) for a star graph with at most 872 vertices.

Figure 18: The value of Iπ(T ) for a bistar graph with at most 467 vertices.
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