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Abstract—Location privacy poses a critical challenge as the use
of mobile devices and location-based services becomes more and
more widespread. Proximity-detection data can reveal sensitive
information about individuals, making it essential to preserve
their location data. One way to achieve privacy protection is
by adding noise to ground-truth data, which can introduce
uncertainty while still allowing moderate utility for proximity-
detection services and Received Signal Strength (RSS)-based
localization. However, it is important to carefully adjust the
amount of noise added in order to balance the privacy and
accuracy concerns. This paper expands our previous work on
evaluating location privacy bounds based on measurement error
and intentionally added noise. Our model builds upon existing
work in differential privacy and introduces other techniques to
estimate privacy bounds specific to proximity data. By using
real-world measurement data, we measure the privacy-accuracy
trade-off and suggest cases where additional noise could be
added. Our framework can be utilized to inform privacy-
preserving location-based applications and guide the selection of
appropriate noise levels in order to achieve the desired privacy-
accuracy balance.

Index Terms—Location privacy, RSS, BLE, localization,
proximity detection.

I. INTRODUCTION

With the advent of Location-Based Services (LBSs) and the
widespread adoption of localization through wireless signals,
users are becoming more willing to share their location
with friends and family on their social networks and via
various applications. These situations might not raise ethical
concerns instantaneously, but privacy becomes a problem only
when it is breached [1]. This argument is supported by the
survey on Location Privacy-Preserving Mechanisms (LPPMs)
in [2], where the authors explicitly highlighted the differences
between different database types. Furthermore, the LBS having
to estimate the distances among given devices poses a privacy
risk when the database is not stored securely or a third party
gains access to the information.

Since widespread services allow accurate location
estimation, the need to quantify privacy is a significant
concern to the research community working on indoor
localization. The reader is advised to read further about the
subject in [3]. While many studies have focused on improving
the accuracy and efficiency of Bluetooth Low Energy (BLE)
indoor positioning systems, there needs to be more literature
regarding the optimal privacy values for these systems. BLE
indoor positioning systems typically use the Medium Access
Control (MAC) address of the BLE devices to locate them,
and this can be easily tracked and identified by malicious

actors. In addition, the use of proximity-based authentication
can also leak sensitive information about the users’ locations
and movements. Some studies have addressed the privacy
concerns of BLE indoor positioning systems by proposing
different obfuscation techniques or modifying the BLE
protocol to enhance privacy [4], [5]. However, there is still
a need for more research in this area, especially considering
the increasing adoption of BLE indoor positioning systems
in various domains, for instance, healthcare, retail, and smart
buildings.

BLE enables many opportunities for proximity detection,
supports mesh network operations that open ways for
data exchange among the devices, and thus can be used
for estimating the distances between devices. Nowadays,
proximity detection is covered mainly by BLE, as the
widespread adoption of the technology conditions it. However,
many other technologies can implement the proximity-
detection scenario: UWB, light, and acoustic sensors, among
many others. In proximity detection services, the device needs
to find only the range towards another smartphone, item, or
Access Points (APs), e.g.,in [6], the average accuracy range
for the distance estimates was within 0.79 and 2.28 m.

Moreover, with the increasing availability of BLE chipsets
in mobile phones and wearable devices providing various
services for users, including proximity detection, the problem
of quantifying and preserving privacy appears more relevant
in all layers within the OSI model. The authors in [7]
performed an independent evaluation of privacy of the
proximity-detection setting on the Physical Layer (PHY)
for various devices: from mobile phones to wearables. The
researchers in [7], demonstrated that a fingerprinting attack is
feasible since the devices regularly send beacons, making their
presence in the room relatively simple to detect.

Privacy-preserving methods, such as obfuscation, are
implemented in the OSI model at higher (above PHY)
levels. Thus, the study in [8] described developing a privacy-
preserving RSS-based indoor positioning system. By adopting
homomorphic encryption, the system protects location privacy
for the users and the server while reaching a moderate degree
of location accuracy.

The study in [9] provided a strong privacy guarantee by
letting individuals alter their data locally on the edge device
before transmitting the location information to a third party.
In contrast, our paper refers to the noise added on the server
side. The processing location — on the user’s device or server



— significantly distinguishes these two methods. Local noise
addition is more effective than service-based computations
and uses fewer resources because it does not tax the server
capacity. However, it might not offer as strong a guarantee of
privacy as the server-side insertion of noise.

For years, challenges in BLE RSS positioning have been
a subject of interest, and several research groups have
made open-access data from controlled experiments available.
Currently, many RSS BLE datasets are in open access,
published by the researchers [10]–[12]. As a result of its
relevance and future use in obtaining the statistics for further
theoretical investigation of privacy levels for BLE proximity-
detection scenarios, the data gathered and published in [13]
was selected for our study.

The list of the present paper’s contributions is as follows:
• As a continuation of our last contributions [4], this paper

aims to study the degrees of privacy in BLE localization
while also adding value by implementing privacy metrics.

• We derived the channel path-loss models from the
BLE measurement data from one of our previous
studies [13] and quantified the margin of error from those
measurements at observed distances of 1, 2, and 3 meters.

• Then, we combined the theoretical research findings and
experimentation with actual RSS data and analyzed the
implementation of the differential privacy (DP) algorithm.

• For the analyzed measurement and simulated data,
we compared the privacy budget, characterized by
ϵ parameter (lower ϵ, higher privacy) to analyze
the privacy-accuracy trade-off for the considered BLE
localization and proximity-detection scenarios.

II. BLE RSS PARAMETERS

BLE is implemented with prevalence as a System-on-
a-Chip (SoC) or as a separate ready-made BLE module.
The technology operates at 2.4 GHz radio frequencies on
40 channels, 3 of which are used for advertising, namely
37, 38, and 39. The distance computation is also affected
by the adopted BLE advertising channel and whether the
channel is known on the RX side. Based on the results from
[14], the distortion caused by the frequency-dependent gains
[15], together with the frequency-dependent free-space signal
propagation, may all be compensated. Primarily in controlled
experiments using RPIs, where the channel on which a packet
was received is known, the issue of multi-path propagation,
typical for indoor scenarios, can also be minimized.

The one-slope path-loss model is often favored by
researchers over the Free-Space Path Loss (FSPL) when it
comes to RSS modeling [10]:

PR = PTa − 10nlog10d+ η, (1)

where the apparent transmit power PTa
(typically computed

as transmit power at 1m away from the transmitter), n is the
path-loss coefficient or factor, d is the TX–RX distance in m,
and η is a noise factor.

The path loss factor n can also indicate the level of
interference in the environment; it is related to the power

decay rate of the signal with distance. For example, a high
value of n may indicate a highly obstructed environment with
many reflections, diffraction, and scattering. In contrast, a low
value of n may indicate a relatively open environment with
few obstacles and minimal interference. When n is smaller,
the RSS curve (PR) is flatter as a distance function, making it
more difficult to discern between close distances (for example,
between 1 m and 2 m or between 2 m and 3 m).

The shadowing variance σ̂2
η could be defined as the error

between Nmeas measurements of the received signal strength
PRi , i = 1, . . . , Nmeas at various distances d and the
reconstructed data, namely:

σ̂2
η =

1

Nmeas

Nmeas∑
i=1

(
PRi − PTa − 10nlog10(d)

)2

. (2)

(a) LOS: UPB premises

(b) LOS: TAU premises

Fig. 1. RSS distributions against actual distances of 1, 2, and 3 m respectively
at two different locations at UPB and TAU deploying identical hardware.

Different variables, including human body absorbance,
signal multipath and ambient influences, antenna gains and
device orientation, and hardware features, contribute to the
instability of RSS recordings. Based on the data acquired
via RPIs used as TX and RX from [13], we plotted the
following distributions, corresponding to distances of 1, 2, and
3 m respectively, a total number of 5 recordings per fixed
distance was used, 320 measurements per recording at each



site were used to produce the graphs. Fig. 1 shows the results
acquired with the same devices, and both Figs. 1b and 1a
convey the message that means and medians (expressed in
dBm) are inversely proportional to the TX–RX increasing
distances. In the case of UPB, more outliers are present
for the measurements of 1 m. However, we observe more
outliers for TAU in the case of the 1 and 3 m distance. With
aggregated data from two different locations (UPB and TAU),
Table I depicts path-loss parameters for line-of-sight (LOS)
and non-line-of-sight (NLOS) settings using three different
BLE advertising channels.

In this case, the calculated value of σn derived from the
eq. 2 and values of n from Table I are used to derive distance
errors for multiple channels and environments. These values
of σm are subsequently used as a source of privacy, which we
refer as the measurement error. The columns of Table I specify
the location (TAU or UPB), conditions that included LOS
and NLOS, advertising channel indices, number of samples
varying per scenario in the shared dataset (referred to as
recording number), derived mean, median and n values in each
of the considered scenarios.

III. PRIVACY METRICS

Even in cases where the data collected by an indoor
positioning system is anonymized, there is still a risk that
individuals could be re-identified by an attacker, which could
potentially use additional data sources to link the anonymized
data to specific individuals. This facilitates the motivation to
quantify and preserve privacy in the considered scenario.

The scheme presented in Fig. 2 shows the privacy-
preserving proximity-detection scheme. Assume we have two
users, Alice and Bob, who want to know whether they are near
one other yet unwilling to share their actual positions (obtained
via other phone sensors using trilateration). Thus, in order to
avoid disclosing the true position, the server (which owns the
dataset with all distances) has two alternatives for preserving
the location: a measurement error or an intentional error — the
DP algorithm. The measurement error σm becomes apparent
once the RSSI data have been converted to distances. Then,
the trusted observer is shown as an example in the scheme,
and at this point, the additional error is introduced per the
DP mechanism. Hence, it becomes unfeasible for a malicious
entity to subsequently compromise one’s privacy, even if it
has access to the LBS’s database of proximity information
(distances) between the devices.

We analyze the data from the side server perspective (as a
trustworthy entity), independently of the user equipment (UE),
and infer the data from the received RSS values. By possessing
extensive information with RSS values and timestamps, we
might receive the information raw from the software, split the
results into the ones including the measurement error, and then
add the noise and evaluate how much privacy a user could gain
in case an LPPM was applied.

Therefore, to ensure that indoor positioning systems protect
the privacy of individuals, it is important to use privacy-
preserving techniques, such as DP, that limit the amount of

sensitive information that can be extracted from the data. The
following equation gives the formal definition of DP:

Pr(D) = exp(ϵ)Pr(D′), (3)

where Pr(D) is the probability distribution of the algorithm’s
output on the original dataset D, Pr(D′) is the probability
distribution of the output on a neighboring dataset D′, and ϵ
is a non-negative privacy parameter that controls the amount of
noise added to the algorithm’s output to achieve privacy known
as the privacy budget. The larger the value of ϵ, the more
privacy is sacrificed for greater accuracy/utility. Conversely,
the smaller the value of ϵ, the greater the privacy protection
at the expense of accuracy/utility.
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Fig. 2. The figure depicts the proximity detection scheme, in which devices
of Alice and Bob exchange beacons and then the data is transferred further
with some measurement error and in case of smaller σn values, additional
noise could be added.

DP is a technique used to protect the privacy of individuals
when releasing data or performing analyses on sensitive
datasets. For example, laplacian noise is often used in
differential privacy because it allows adding random noise
to a dataset, making it more difficult for an attacker to
infer sensitive information about individuals from the released
data [16].

The Laplace distribution is a continuous probability
distribution with a high probability of generating values near
zero and a gradually decreasing probability of generating
larger values. This property makes it well-suited for adding
noise to sensitive datasets, as it ensures that the added noise
is more likely to be small while still allowing for the possibility
of larger noise values.

The Laplacian noise with µ=0 with a scale factor of 1/ϵ,
as shown in eq. (4), is modelled as:

fLaplace(ϵ) =
1

2b
e(−

|x−µ|
b ), (4)

where b > 0. In case of location additional error, and
in the context of DP, Laplacian distribution is the most
commonly used [17].



TABLE I
STATISTICS DERIVED FROM THE MEASUREMENT DATA BETWEEN TWO RPIS USED AS TX AND RX AT d=2m APART.

Location LOS/NLOS Channel index Rec. number Samples Mean [dB] Std. [dB] n [-]

TAU LOS 37 7 320 -50.48 7.58 0.81
TAU LOS 38 1 3215 -46.02 5.61 3.24
TAU LOS 39 1 2607 -54.18 1.71 1.37
TAU LOS all (37, 38, 39) 5 736 -45.58 7.13 0.98
UPB LOS 37 7 326 -50.43 5.23 1.56
UPB LOS 38 1 3215 -51.64 3.29 3.41
UPB LOS 39 1 2607 -52.27 4.80 2.75
UPB LOS all (37, 38, 39) 5 736 -51.36 7.43 2.19
TAU NLOS (wall) all (37, 38, 39) 1 1824 -58.15 2.92 2.51
UPB NLOS (wall) 37 3 1726 -55.37 5.96 2.20
UPB NLOS (human) all (37, 38, 39) 1 495 -60.03 4.34 1.76
UPB NLOS (door) all (37, 38, 39) 1 1808 -48.65 3.27 2.03

The amount of noise added to a dataset depends on
the sensitivity of the data and the desired level of privacy
protection. Adding Laplacian noise to the data protects
individuals’ privacy, as it becomes much more difficult for
an attacker to determine the values of individual data points
from the released dataset.

Another sort of random noise that is often used in a variety
of applications, such as signal processing, data analysis, and
privacy protection, is referred to as Gaussian noise. Regarding
the added noise factor ϵ in eq. 3, two noise distributions are
considered for the purpose. These are a Gaussian distribution
with a standard deviation equal to 1/ϵ, as shown in eq. (5).
Accordingly, fGauss(ϵ) is modeled as

fGauss(ϵ) =
1

σm

√
2π

e
− (ϵ−µm)2

2σ2
m , (5)

where µm is the mean error and σm is the standard
deviation (SD) of the distance error. The reference to
measurement error is highlighted by the subscript m. Since
ϵ stands for a distance error, only the positive component
of fGauss(ϵ) properly describes the distance error, namely,
fGauss(ϵ)S(ϵ), in which S(ϵ) is a step function (S(ϵ) = 1 if
ϵ ≥ 0 and S(ϵ) = 0 if ϵ < 0).

When it comes to DP, Laplacian noise is often preferred over
Gaussian noise for several reasons. One of the main reasons for
using Laplacian noise in differential privacy is that it provides
stronger privacy guarantees than Gaussian noise for the same
amount of added noise. This is because the tails of the Laplace
distribution decay more slowly than the tails of the Gaussian
distribution, which means that Laplacian noise can add more
robust privacy protection, especially for outlier data points.

Another reason for using Laplacian noise is that it is
computationally efficient to generate and add to data. The
Laplace distribution has a simple mathematical form and can
be easily sampled using standard software libraries, making it
a practical choice for large-scale data analysis.

In contrast, Gaussian noise can be more challenging to work
with in the context of differential privacy because it can result
in a high risk of outliers. This means that even with small
amounts of added Gaussian noise, it is possible for an attacker

to reconstruct the original data with high accuracy, potentially
compromising privacy protection. In summary, Laplacian noise
is often used in differential privacy because it provides a way
to add random noise to a dataset that protects the privacy
of individuals while still allowing useful information to be
extracted from the data.

To summarize, while Gaussian noise can be useful in some
contexts, Laplacian noise is often preferred in differential
privacy because it provides stronger privacy guarantees and
is computationally efficient to generate and implement [18].

DP is a guarantee that the privacy of individuals is
not placed at risk when sending queries to datasets that
contains sensitive data. One application of differential privacy
is in location data where there is a trade-off between
protecting sensitive information about users and mining useful
information from datasets. For example, in order to determine
moving patterns and other trends. Differential privacy makes
inference and tracking attacks less likely. The metrics are
further explained in [19].

Sensitivity (δ) refers to how much the output of a function
differs when a single individual’s data point in the input dataset
is updated or deleted in the context of differential privacy.
Technically, the sensitivity of a function f is defined as the
maximum amount by which f can vary when the data sample
in the input dataset is changed:

fSensitivity = maxD,D′ ||f(D)− f(D′)||1, (6)

where D and D′ are two databases that differ by at most
one individual’s data point, ||.||1 denotes the L1 norm
(or some norm, usually the L1-norm or the L2-norm that
determines how the distance between the two function outputs
is measured), which is the sum of the absolute values of
the differences between corresponding elements of f(D)
and f(D′). Sensitivity is a key parameter in the design of
differentially private algorithms, as it determines the amount of
noise that needs to be added to the function output to achieve a
desired level of privacy protection. The larger the sensitivity,
the more noise needs to be added to the function output to
ensure that individual data points cannot be inferred from the
output with high probability. Higher sensitivity could result



in greater noise being added, which could reduce accuracy,
while lower sensitivity could lead to less noise being added
but could also result in reduced privacy protection.

As introduced in [20], another utility metric is the Mean
Absolute Error (MAE), expressed by the following:

MAE =
1

N

∑
n∈N

|dtruen − dobservedn |, (7)

where dtrue stands for the actual location, dobserved stands
for the one with the measurement noise and N denotes the
number of observations.

Whereas, Normalized Cell Error (NCE) refers to computing
the differences as follows:

NCE =
1

|S|
∑
n∈N

dtruen − dsynthn |, (8)

where dsynth is the location with the added noise and S
denotes the set of dsynth locations, and |S| is the cardinality
of S.

In this part, we primarily focused on outlining the scenario
we took into account and detailing the metrics we utilized to
weigh the privacy against utility trade-off.

Privacy metrics, such as ϵ provides a quantifiable measure
of the privacy guarantees of the algorithm, which can be used
to assess the level of privacy protection provided by different
noise levels.

On the other hand, utility metrics measure the accuracy and
usefulness of any application. By using utility metrics, such
as MAE and NCE we can assess the LBS performance quality
and ensure that the data processing provides meaningful and
useful results.

IV. RESULTS AND DISCUSSION

In this section, we present a DP implementation for BLE
RSS localization that enables the collection and analysis of
location data while protecting the privacy of the individuals
involved.

The following procedure was used in our study:

• In 2D space, define a grid of cells, with a grid step of 1
m. Each cell has a fixed size and occupies a tiny portion
of the available space.

• Count the number of users whose locations fall inside
each cell to get the actual number of users in each cell.

• For every cell, compute the differentially private distances
using a differentially private mechanism with the Laplace
or Gaussian noise.

• At the next step, compute NCE, which is calculated as
the greatest absolute difference between noisy and true
distances divided by the total of true distances.

• The second utility metric, MAE is calculated as the
absolute difference between each values obtained and the
corresponding real value, adds them together, and then
computes the average by dividing the total by the number
of observations.

Fig. 3. The plot illustrates the privacy-utility trade-off for LOS scenarios.
Due to an increase in the total quantity of noise that is introduced, Accuracy
and NCE (which is reversely related to the Utility) both deteriorate when ϵ
is increased.

Fig. 4. The figure shows the privacy-utility trade-off for NLOS scenarios.
Here, a gain in ϵ leads to a decrease in privacy, along with NCE, which
indicates an increase in utility.

Respectively, Fig. 3 and Fig. 4 provide an evaluation of the
trade-off from the perspective of NCE, comparing the results
to the privacy budget ϵ. We used the LOS data collected on
different BLE channels for the plot in Fig. 3. There is no
drastically leading type of noise, evidently, σm has a more
significant impact on the discrepancy between Laplacian or
Gaussian distributions.

Looking at the plots for varying parameters of Gaussian and
Laplacian distributions, we can see that as ϵ decreases (i.e.,
stronger privacy protection), the NCE values increase (i.e.,
accuracy decreases). This is expected, as stronger privacy
protection generally requires more noise to be added to the
data, which can result in reduced accuracy.

However, there is a trade-off between privacy and accuracy,
and we can see that there is a region where the NCE



values are relatively low while still providing reasonable
privacy protection. This region corresponds to a moderate
ϵ value, where the added noise is not too high to impact
accuracy severely. Of course, the optimal value of the privacy
budget ϵ will depend on the specific application and privacy
requirements.

Another approach to evaluate the same trade-off is to plot
MAE against the privacy budget ϵ, as shown in Fig. 5 and
Fig. 6 measuring the average magnitude of errors in a set of
data. It indicates how far the observed values are from the
actual ones. A lower MAE demonstrates that the model is
more accurate, while a higher MAE means that the model is
less accurate (has lower utility for a proximity-based detection
application such as finding the nearest shop, etc.).

While it is difficult to pinpoint which distribution behaves
better from Fig. 3 where different proximity-detection
distances are considered, Fig. 4 states it clearly that Gaussian
distribution shows a slightly better performance for the same
values of δ.

Fig. 5. This figure shows MAE vs ϵ for each scenario utilizing the
Laplace mechanism and Gaussian mechanism for various proximity-detection
situations with additional noise, when Sensitivity (δ) = 1. The three scenarios
assigned with digits from 1 to 3 refer to the different distances between the
target users of 2, 5 and 10 m respectively.

Fig. 6. The MAE versus ϵ relation is depicted herein using the Laplace
mechanism for a number of different proximity-detection scenarios that
involve extra noise and varied Sensitivity values (δ).

Following the Elbow rule described in [21], we arrive at
the conclusion that for the majority of proximity-detection

services deployed in smart buildings, a value of ϵ between 0.31
and 0.75 would be optimal, based on the situations and factors
we considered. This proposal, however, is of a general nature
and cannot be applied to every possible DP implementation.

V. CONCLUSIONS AND FUTURE WORK

To determine the optimal point, one should consider the
specific requirements and constraints of the application. For
example, on one hand, if the application is a medical study,
a higher level of privacy may be required to protect sensitive
information, even if this results in a slightly higher normalized
cell error. On the other hand, if the application is a marketing
study, a slightly lower level of privacy may be acceptable in
order to achieve a more accurate analysis.

Therefore, the optimal point will vary depending on the
specific use case, and should be determined by considering
the trade-off between privacy and accuracy in the context of
the application. Generally, the optimal point is where the NCE
is reasonably low while maintaining a high level of privacy.

Future research will focus on implementing more privacy-
preserving techniques that can provide accurate indoor
positioning while maintaining user privacy. Moreover,
developing privacy-aware design guidelines and best practices
for BLE indoor positioning systems can help ensure that these
systems are privacy-preserving by default.
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