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Figure 1: A single model supports the generation of visually guided, high-fidelity sounds for
multiple classes from an open-domain dataset faster than the time it will take to play it.

Abstract
Recent advances in visually-induced audio generation are based on sampling short,

low-fidelity, and one-class sounds. Moreover, sampling 1 second of audio from the state-
of-the-art model takes minutes on a high-end GPU. In this work, we propose a single
model capable of generating visually relevant, high-fidelity sounds prompted with a set
of frames from open-domain videos in less time than it takes to play it on a single GPU.

We train a transformer to sample a new spectrogram from the pre-trained spectrogram
codebook given the set of video features. The codebook is obtained using a variant
of VQGAN trained to produce a compact sampling space with a novel spectrogram-
based perceptual loss. The generated spectrogram is transformed into a waveform using
a window-based GAN that significantly speeds up generation. Considering the lack of
metrics for automatic evaluation of generated spectrograms, we also build a family of
metrics called FID and MKL. These metrics are based on a novel sound classifier, called
Melception, and designed to evaluate the fidelity and relevance of open-domain samples.

Both qualitative and quantitative studies are conducted on small- and large-scale
datasets to evaluate the fidelity and relevance of generated samples. We also compare our
model to the state-of-the-art and observe a substantial improvement in quality, size, and
computation time. Code, demo, and samples: v-iashin.github.io/SpecVQGAN

1 Introduction
A user-controlled sound generation has many applications for e.g. movie and music pro-
duction. Currently, foley designers are required to search through large databases of sound
effects to find a suitable sound for a scene. A less painstaking approach would be to auto-
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matically generate a novel and relevant sound, given a few visual cues. Recent advances in
deep learning brought to light many promising models for user-controlled content synthesis.

Previous works have proposed models to controllably generate e.g. images [13, 17, 35,
41, 44, 46, 50, 52, 64, 66, 67], videos [6, 12, 25, 34, 38, 42, 59, 60, 60, 63], and audios
[1, 9, 15, 22, 24, 43, 57, 58], or separate sounds [18, 19, 69, 70, 74]. However, most of the
audio works are music-related, and only a few attempts have been made to generate visually
guided audio in an open domain setup [11, 73]. These methods rely on a one-model-per-class
approach, which can be prohibitively expensive to scale to hundreds of classes.

Our goal in this paper is to build a single model that is capable of generating sounds
conditioned on visual input from multiple classes with a restricted time budget. To address
this, we propose to learn a prior in a form of the Vector Quantized Variational Autoencoder
(VQVAE) codebook [61] and operate on spectrograms for efficiency. To shrink the sampling
space more aggressively, we draw on advances in controlled image generation [17] relying on
a variant of VQVAE with adversarial loss and introduce a novel spectrogram perceptual loss.

Such an approach allows us to reliably reconstruct a high-fidelity spectrogram from a
smaller representation resolution. We, thus, can train a transformer on a shorter sequence to
sample from the codebook and autoregressively construct a high-fidelity spectrogram while
being conditioned on the visual cues. Finally, we vocode the spectrogram into a waveform
using a variant of MelGAN [32] suitable for open-domain applications.

Human evaluation of content generation models is an expensive and tedious procedure.
In the image generation field, this problem is bypassed with the automatic evaluation of
fidelity using a family of metrics based on an ImageNet-pretrained [14] Inception model [56]
e.g. Inception Score [53], Fréchet- [27] and Kernel Inception Distance [4] (FID & KID). The
automatic evaluation of a sound generation model, however, remains an open question.

FID was adapted to assess fidelity of the generated audio in [30]. This metric is designed
for very short sounds (<1 second) and, therefore, has limited applicability for long audio as
it may miss long-term cues. Another challenge in the visually guided sound generation is to
reliably estimate the relevance of produced samples. To mitigate both problems, we propose
a family of metrics for fidelity and relevance evaluation based on a novel architecture called
Melception, trained as a classifier on VGGSound [7], a large-scale open-domain dataset.

The main contributions of this work are: (1) a novel efficient approach for multi-class vi-
sually guided sound synthesis that relies on a transformer trained to sample from a codebook-
based prior; (2) a new perceptual loss for spectrogram synthesis, called LPAPS. The loss
relies on a novel general-purpose sound classifier, referred to as VGGish-ish, and helps VQ-
VAE to learn reconstruction of higher-fidelity spectrograms from small-scale representa-
tions; (3) a novel set of metrics suitable for automatic evaluation of the fidelity and relevance
of spectrogram synthesis, called Melception-based FID and MKL. We show the effectiveness
of our approach in comparison with prior work and provide an extensive ablation study on
small- and large-scale datasets (VAS and VGGSound) for visually guided sound synthesis.

2 Related Work
Codebook-based Content Generation The use of condensed prior information in a form
of a codebook has been shown to effectively reduce the sampling space of generative al-
gorithms. The initial idea was proposed in the seminal work [61] (VQVAE) and further
improved in [51] (VQVAE-2). Applications of VQVAE for content generation include im-
ages [51, 61], audio [15, 37, 61, 71], and videos [49, 65]. Recently, it was found to be
beneficial to train a transformer to sample from the codebook given a rich condition e.g.
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text [16, 50], low-resolution image, semantic, edge, and depth-maps [17]. Our method, in
contrast, is conditioned on a sequence of video frames and generates spectrograms.

Automatic Evaluation of Audio Synthesis While still being an open research question,
few promising ideas have been proposed for the automatic evaluation of audio synthesis.
Specifically, Kilgour et al. [30] adapted FID [27] to evaluate the fidelity of music enhance-
ment algorithms. Unfortunately, the proposed method operates on 1-second windows and,
therefore, does not utilize long-term cues. A similar approach was shown on a text-to-speech
task in [5]. Alternatively, a model trained on human judgments has been employed as a per-
ceptual loss during training [39]. However, collecting training material for a large-scale
dataset poses significant budget requirements. In this paper, we propose a set of metrics de-
signed to measure both the fidelity and relevance of prolonged open-domain spectrograms.

Instrument Music Generation With Visual Cues Generating short music audios became
a testbed for many cross-modal generation algorithms. Owens et al. [45] pioneered the
task by collecting a dataset of short videos containing hitting/scratching drumsticks against
objects and used a combination of AlexNet [31] and LSTM [28] as a baseline. Chen et al. [9]
focused on the generation of an image from the audio and vice-versa for single-instrument
performance videos from the URMP dataset [36] using two Generative Adversarial Nets
(GAN) [21] while Hao et al. [24] improved the performance of the GAN with cross-modal
cycle-consistency [72]. Furthermore, Tan et al. [57] incorporated self-attention [62] into the
GAN architecture and Su et al. [55] proposed to generate a piano sound by vocoding Midi
predicted from a video. Recently, Kurmi et al. [33] brought a generation of short (1s) musical
videos into the picture. These methods, however, focus on short (∼1 second) music videos
recorded in a controlled setting while our model operates on open-domain 10-second videos.

Open-domain Audio Generation Based on Visual Cues The generation of audio given a
set of open-domain visual cues is a novel and challenging task. The first attempt to solve the
task was published by Chen et al. [8] who proposed to employ a subset of AudioSet [20] to
train a model to learn a residual to an average spectrogram for a video class. However, more
relevant and higher-fidelity results were obtained by training a separate model for each video
class. Namely, Zhou et al. [73] trained a separate SampleRNN [40] to generate a waveform
for each of the 10 classes in the proposed dataset (VEGAS). Current state-of-the-art results
in the generation of relevant and high-fidelity sounds for a video were shown by Chen et al.
[11] (RegNet). They noticed the negative impact of “unseen” background sound on training
dynamics and introduced a ground-truth-based regularizer and an enhanced version of the
VEGAS dataset (VAS). While producing the most appealing results, the models are trained
for each data class and the sampling speed is slow limiting the applicability of the model. In
this paper, we propose a model that is capable of generating visually relevant sounds from
videos of multiple classes in a time that is less than it takes to play the sound.

3 Framework
We aim to generate visually relevant and high-fidelity sounds. The main challenge is to
design a model that handles videos of multiple categories and operates in real-time. Thus,
we train a transformer to autoregressively compose a concise codebook representation of a
spectrogram primed with a small set of frame-wise features obtained from a video (Sec. 3.2).
The representation is then used in the pretrained codebook decoder to produce a spectrogram
as outlined in Sec. 3.1. Finally, a waveform is reconstructed from the spectrogram using a
pretrained vocoder as defined in Sec. 3.3. An overview of the architecture is shown in Fig. 2.

Citation
Citation
{Ding, Yang, Hong, Zheng, Zhou, Yin, Lin, Zou, Shao, Yang, and Tang} 2021

Citation
Citation
{Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, and Sutskever} 2021

Citation
Citation
{Esser, Rombach, and Ommer} 2021

Citation
Citation
{Kilgour, Zuluaga, Roblek, and Sharifi} 2018

Citation
Citation
{Heusel, Ramsauer, Unterthiner, Nessler, and Hochreiter} 2017

Citation
Citation
{Binkowski, Donahue, Dieleman, Clark, Elsen, Casagrande, Cobo, and Simonyan} 2020

Citation
Citation
{Manocha, Finkelstein, Zhang, Bryan, Mysore, and Jin} 2020

Citation
Citation
{Owens, Isola, McDermott, Torralba, Adelson, and Freeman} 2016

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Chen, Srivastava, Duan, and Xu} 2017

Citation
Citation
{Li, Liu, Dinesh, Duan, and Sharma} 2018

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Hao, Zhang, and Guan} 2018{}

Citation
Citation
{Zhou, Kr{ä}henb{ü}hl, Aubry, Huang, and Efros} 2016

Citation
Citation
{Tan, Wu, Zhao, and Chen} 2020

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Su, Liu, and Shlizerman} 2020

Citation
Citation
{Kurmi, Bajaj, Patro, Venkatesh, Namboodiri, and Jyothi} 2021

Citation
Citation
{Chen, Zhang, Fang, Wang, Bui, and Nevatia} 2018

Citation
Citation
{Gemmeke, Ellis, Freedman, Jansen, Lawrence, Moore, Plakal, and Ritter} 2017

Citation
Citation
{Zhou, Wang, Fang, Bui, and Berg} 2018

Citation
Citation
{Mehri, Kumar, Gulrajani, Kumar, Jain, Sotelo, Courville, and Bengio} 2017

Citation
Citation
{Chen, Zhang, Tan, Xiao, Huang, and Gan} 2020{}



4 IASHIN, RAHTU: TAMING VISUALLY GUIDED SOUND GENERATION

Transformer

3

Codebook
Decoder

RGB & flow

RGB & flow

RGB & flow 37

3

6

Embed Embed

99
42
6

37
3
3

99
99
6

37
3
3

Spectogram
Vocoder

99

Feature
Extractor

Embedded
Sequence

Codebook RepresentationFeatures

Input 
Frames Mel-

Spectrogram

Output 
Waveform

Codebook Indices

Figure 2: Vision-based Conditional Cross-modal Autoregressive Sampler. A transformer
autoregressively samples the next codebook index given a sequence of visual features along
with previously generated codebook indices. Once sampling is done, a sequence of generated
indices is used to look up a pretrained codebook. Next, a pretrained codebook decoder is used
to decode a spectrogram from a codebook representation. Finally, the generated spectrogram
is turned into a waveform using a pretrained general-purpose spectrogram vocoder.

3.1 Perceptually-rich Spectrogram Codebook
The transformer requires the input to be represented as a sequence. A direct operation on
wave samples or raw spectrogram pixels, however, quickly becomes intractable due to the
quadratic nature of the dot-product attention. Alternatively, one could apply an encoder such
as VQVAE [61] but the quantized bottleneck representation would be still infeasibly large.
Our approach draws on VQGAN [17], an efficient autoencoder that allows decoding an
image from a smaller-size representation than of VQVAE. To bridge the gap between image
and audio signals, we operate on spectrograms and propose a new perceptual loss (LPAPS).

Spectrogram VQVAE Vector-Quantized Variational Autoencoder (VQVAE) [61] is trained
to approximate an input using a compressed intermediate representation, retrieved from a
discrete codebook. Our adaption of VQVAE, Spectrogram VQVAE, inputs a spectrogram
x ∈ RF×T and outputs a reconstructed version of it x̂ ∈ RF×T . First, the input x is encoded
into a small-scale representation ẑ = E(x) ∈ RF ′×T ′×nz where nz is the dimension of the
codebook entries and F ′ × T ′ is a reduced frequency and time dimension. Next, the el-
ements of the encoded representation ẑ are mapped onto the closest items in a codebook
Z = {zk}K

k=1 ⊂ Rnz , forming a quantized representation zq ∈ RF ′×T ′×nz :

zq = q(ẑ) :=
(

argmin
zk∈Z

||ẑ f t − zk|| for all ( f, t) in (F ′×T ′)

)
. (1)

Since (1) is non-differentiable, we approximate the gradient by a straight-though estimator
[2]. The reconstructed spectrogram x̂ is subsequently decoded from the codebook represen-
tation as x̂ = G(zq) = G(q(E(x))). The full VQVAE objective is defined by

LVQVAE =
∣∣∣∣x− x̂

∣∣∣∣︸ ︷︷ ︸
recons loss

+
∣∣∣∣E(x)− sg[zq]

∣∣∣∣2
2 +β

∣∣∣∣sg[E(x)]− zq
∣∣∣∣2

2︸ ︷︷ ︸
codebook loss

(2)

where sg is the stop-gradient operation that acts as an identity during the forward pass but
has zero gradient at the backward pass.

The resolution of the intermediate codebook representation (F ′×T ′) produced by VQ-
VAE remains to be too large for a transformer to operate on. However, more suitable down-
sampling rates, e.g. 1/16 of the input size, lead to poor reconstructions as shown in [17].
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Figure 3: Training Perceptually-Rich Spectrogram Codebook. A spectrogram is passed
through a 2D codebook encoder that effectively shrinks the spectrogram. Next, each element
of a small-scale encoded representation is mapped to its closest neighbor from the codebook.
A 2D codebook decoder is then used to reconstruct the input spectrogram. The training of
the model is guided by codebook, reconstruction, adversarial, and LPAPS losses.

Spectrogram VQGAN and LPAPS VQGAN [17] is a version of VQVAE, extended with
a patch-based adversarial loss [29] and perceptual loss (LPIPS) [68], that help to preserve the
reconstruction quality when upsampled from a smaller-scale representation. Since the per-
ceptual loss, used in the original VQGAN, relies on the ImageNet [14] pretrained VGG-16
[54], it is unreasonable to expect decent performance on sound spectrograms. Therefore, we
introduce a novel way of guiding spectrogram-based audio synthesis, referred to as Learned
Perceptual Audio Patch Similarity (LPAPS).

The closest relative of VGG-16 in audio classification is VGGish [26], which has the
same capacity as VGG-9. However, we cannot directly build LPAPS on the pretrained VG-
Gish or its architecture, since VGGish digests spectrograms with a rather short time span
(<1 second), while our application requires operating on spectrograms spanning up to 10
seconds. Moreover, the lack of depth and, therefore, downsampling operations prevents the
model from extracting larger-scale features that could be useful in separating real and fake
spectrograms. To address this, we train a variant of the VGG-16 architecture on the VG-
GSound dataset [7]. We refer to the obtained model as VGGish-ish.

Fig. 3 shows the training procedure for Spectrogram VQGAN with the final loss:

LSpecVQGAN = LVQVAE + logD(x)+ log(1−D(x̂))︸ ︷︷ ︸
patch-based adversarial loss

+∑
s

1
FsT s ||x

s − x̂s||22︸ ︷︷ ︸
LPAPS loss

, (3)

where D is a patch-based discriminator and xs, x̂s ∈RFs×T s×Cs
are features from real and fake

spectrograms extracted at the sth scale of VGGish-ish.

3.2 Vision-based Conditional Cross-modal Autoregressive Sampler
The sampler (transformer) is trained to sample a sequence of the codebook indices given a
set of visual features. These should match the indices formed by the codebook encoder for
the original audio. The conditional prediction of the next token can be formulated as a ma-
chine translation task and modeled by the vanilla Encoder-Decoder transformer architecture
[62]. Alternatively, the problem can be defined in terms of language modeling, that is often
approached with a Decoder-only transformer such as GPT [47]. In this paper, we employ a
variant of GPT-2 [48] inspired by its success in autoregressive image synthesis [10, 17].

As outlined in Fig. 2, the sampling starts with the extraction of a sequence of features
F̂ = { f̂i}N

i=1 ⊂RDr+Do formed from a stack of RGB and optical flow frames F = { f r
i , f o

i }N
i=1.
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The sequence of features F̂ is obtained by applying a frame-wise feature extractor H that
consists of two pretrained models (for RGB and flow modalities) such that F̂ =H(F). Given
a sequence of previously generated codebook indices ŝ< j = (ŝ1, ŝ2, . . . , ŝ j−1) along with the
features F̂ , an autoregressive step for the transformer M is defined by

p
(
s j|ŝ< j, F̂

)
= M

(
[F̂ : ŝ< j]

)
, (4)

where [:] is a stacking operation and p
(
s j|ŝ< j, F̂

)
∈ [0,1]nz is a probability distribution over

all codebook indices. The next codebook index ŝ j is sampled from the multinomial distri-
bution with weights provided by p. The sampling is initialized at j = 1 and primed only
with the input features F̂ . Once j = F ′ ·T ′, the sampling stops. The sequence of predicted
codebook indices Ŝ = {ŝ j}F ′·T ′

j=1 is used to lookup the codebook Z so that, after unflattening,

the codebook representation ẑq ∈ RF ′×T ′×nz is formed. The transformer is trained with a
typical cross-entropy loss, comparing the predicted codebook indices to those obtained from
the ground truth spectrogram. Finally, given the codebook representation ẑq, we decode a
spectrogram x̂F using the decoder G pretrained during the codebook training stage (Sec. 3.1).

We note the importance of unflattening the sequence into a 2D form in a column-major
way, precisely as shown in the middle part of Fig. 2, opposed to the row-major approach used
for image synthesis [10, 17]. Employing the row-major unflatteting during training restricts
model applications as it would correspond to reconstructing the lower frequencies given the
higher ones. Specifically, we found that a model trained this way produces poor samples
when prompted with a few seconds of real audio.

3.3 Spectrogram Vocoder

During the final stage, a waveform ŵ is reconstructed from the decoded spectrogram using
the pretrained vocoder V . Natural candidates for such vocoding are the Griffin-Lim algo-
rithm [23] and WaveNet (used in prior work [11]). The Griffin-Lim procedure is fast, easy
to implement, and it handles the diversity of an open-domain dataset. However, it produces
low-fidelity results when operating on mel-spectrograms. In contrast, WaveNet provides
high-quality results but remains to be relatively slow on test-time (25 mins per 10-sec sam-
ple on a GPU). For these reasons, we employ MelGAN [32] that is a non-autoregressive
approach to reconstruct a waveform and, therefore, takes only 2 secs per sample on a CPU,
while still achieving decent quality. Since MelGAN is originally trained for speech or music
data, the pretrained models cannot be used in our open-domain scenario. Therefore, we train
a MelGAN on the open-domain dataset (VGGSound).

3.4 Automatic Quality Assessment of Spectrogram-based Synthesis

Fidelity Our goal is to automatically evaluate both the fidelity and relevance of the gen-
erated samples. In the image generation domain, ImageNet pretrained InceptionV3 [56] is
often used to form an opinion on the fidelity of the generated samples. Specifically, Incep-
tion Score [53] hypotheses low entropy in conditional label distribution and high entropy
on a marginal probability distribution for high-fidelity and diverse samples. More consistent
evaluation results were achieved by computing Fréchet Distance between the distributions of
pre-classification layer’s features of InceptionV3 between fake and real samples (FID) [27].
Considering the domain gap between spectrograms and RGB images, we adapt the Inception
architecture for a spectrogram input size and train the model on the VGGSound dataset.
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Trained on Evaluated on FID↓ MKL↓

VGGSound VGGSound 1.0 0.8
VGGSound VAS 3.2 0.7
VAS VAS 6.0 1.0

Playing Jembe (VGGSound) Ambulance Siren (VGGSound)

Dog (VAS) Baby (VAS) Gun (VAS) Cough (VAS)

Table 1: Spectrogram VQGAN shows strong reconstruction ability on hold-out sets
of VGGSound and VAS. Metrics are Melception-based FID and mean MKL. On the top-
right: ground truth reconstruction results for two classes are shown for a model trained on
VGGSound. The bottom triplets show a comparison of VGGSound-trained and VAS-trained
models on four classes from VAS. Adobe Reader can be used to listen for reconstructions.
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Relevance Since Inception Score and FID metrics rely on dataset-level distributions, they
are not suitable to assess the conditional content synthesis. To this end, we propose a metric,
called MKL, that individually compares the distances between output distributions of fake
and real audio associated with a condition (e.g. frames from a video). As the distance mea-
sure, we rely on KL-divergence and use the Melception classifier to build the distributions.

4 Experiments
VGGSound and VAS Datasets VAS dataset [11] consists of 12.5k ∼6.73-second clips
for 8 classes: Dog, Fireworks, Drum, Baby, Gun, Sneeze, Cough, Hammer. We follow the
same train-test splitting procedure as [11] for a fair comparison. VGGSound dataset [7]
consists of ∼200k+ 10-second clips from YouTube spanning 309 classes with audio-visual
correspondence. The classes can be grouped as people, sports, nature, home, tools, vehicles,
music, etc. VGGSound is substantially larger, but less curated than VAS due to the automatic
collecting procedure. We managed to download ∼190k clips from the dataset as some of the
videos were removed from YouTube. Our split is similar to the original with the exception
that the train part is further split into train and validation. The validation split is formed to
match the same number of videos per class as in the test set. As a result, we have 156.5k
clips in the train, 19.1k in the validation, and 14.5k in the test sets. This splitting strategy is
used across all training procedures including Melception, MelGAN, and VGGish-ish. To the
best of our knowledge, we are the first to use the VGGSound dataset for sound synthesis.

Metrics The proposed model is evaluated in quantitative and qualitative studies. In quan-
titative evaluation, we rely on Melception-based metrics, namely MKL (averaged across the
dataset) and FID for relevance and fidelity evaluation (as defined in Sec. 3.4).

Details We extract log mel-spectrograms of size 80× 848 and 212 visual features with
dimension Dr =Do = 1024 from ∼9.8-second videos before training. The codebook encoder
and decoder are generic 2D Conv stacks with two extra attention layers before ẑ and after
zq. The downsampling and upsampling operations are parametrized. The variant of GPT-2
has 24 layers. Visual features and codebook indices are embedded to match the transformer
dimension (1024). Training requires at least one 12GB GPU. See more in the supplementary.
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Generated Sample Class (VGGSound):
   dog barking 0.79

    dog bow-wow 0.17
    cap gun shooting 0.03

    fox barking 0.01

Generated Sample Class (VGGSound):
       female speech, woman speaking 0.99

    child speech, kid speaking 0.00
    people whispering 0.00

    eating with cutlery 0.00

female 
speech, 
woman 
speaking 
– VGGSound

dog
– VAS

Generated Sample Class (VGGSound):
       fireworks banging 0.96

    lighting firecrackers 0.04
    skateboarding 0.00

    machine gun shooting 0.00

fireworks
– VAS

Trained on 
VAS 

to sample from 
VGGSound 

codebook

Trained on 
VGGSound

to sample from 
VGGSound 

codebook

Trained on 
VAS 

to sample from 
VAS

codebook

Figure 4: Samples produced by conditional cross-modal sampler are relevant and have
high fidelity. The top row shows results of a model trained on VGGSound to sample from a
VGGSound codebook (“from VGGSound for VGGSound”), the middle is “from VGGSound
for VAS”, the bottom is: “from VAS to VAS”. An “opinion” of Melception is on the right.
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4.1 Results
Reconstruction with Spectrogram VQGAN When compared to ground truth spectro-
grams, the reconstructions are expected to have high fidelity (low FID) and to be relevant
(low mean MKL). Tab. 1 contains quantitative and qualitative results produced by our Spec-
trogram VQGAN (Sec. 3.1). The results imply high fidelity and relevance on a variety of
classes from both VGGSound (test) and VAS (validation) datasets. Notably, the performance
of the VGGSound-pretrained codebook is better than of the VAS-pretrained codebook even
when applied on the VAS validation set due to larger and more diverse data seen during
training. The implementation details and more examples are provided in the Supplementary.
Moreover, in Tab. 2 we show the results of the ablation study on the impact of losses on
reconstruction quality. In particular, the absence of the adversarial loss results in signifi-
cant blurriness (which agrees with the findings in [17]) in reconstructed spectrograms and
expected substantial downgrade in metrics.
Visually-Guided Sound Generation We benchmark the visually-guided sound generation
qualitatively and quantitatively using three different settings: a) trained the transformer on
VGGSound to sample from the VGGSound codebook, b) trained on VAS with the VGGSound
codebook, and c) trained on VAS with the VAS codebook. Fig. 4 shows a few examples
obtained with different settings along with the “opinion” of the Melception classifier on the
generated sample label and in Tab. 3, we compare a different number of priming features
including sampling without a condition (No Feats), which can be seen as the upper-bound
on the relevance metric (mean MKL). The quantitative results are provided for two sets of
ImageNet-pretrained features: BN-Inception (RGB + flow) and ResNet-50 (RGB).
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GAN LPAPS FID↓ MKL↓

130.4 9.6
✔ 1.4 1.1
✔ ✔ 1.0 0.8

Table 2: Adversarial and
perceptual losses improve
reconstruction results on
the VGGSound test set.

Condition FID↓ MKL↓ FID↓ MKL↓ FID↓ MKL↓ /↓

No Feats 13.5 9.7 33.7 9.6 28.7 9.2 7.7

R
es

N
et 1 Feat 11.5 7.3 26.5 6.7 25.1 6.3 7.7

5 Feats 11.3 7.0 22.3 6.5 20.9 6.1 7.9
212 Feats 10.5 6.9 20.8 6.2 22.6 5.8 11.8

In
ce

pt
io

n 1 Feat 8.6 7.7 38.6 7.3 25.1 6.6 7.7
5 Feats 9.4 7.0 29.1 6.9 24.8 6.2 7.9

212 Feats 9.6 6.8 20.5 6.0 25.4 5.9 11.8

Codebook VGGSound VGGSound VAS
Sampling for VGGSound VAS VAS

Setting (a) (b) (c)

Table 3: The number of features is an important
factor for relevance and sampling speed on both
datasets. Fidelity and relevance are measured by
FID and mean MKL, speed is in seconds to gener-
ate a ∼10-second audio sample.

Ground Truth OursRegNet

ba
by

 (V
A

S)
gu

n 
(V

A
S)

Params FID↓ MKL↓ /↓

Ours (b) 379M 20.5 6.0 12
Ours (c) 377M 25.4 5.9 12

RegNet [11] 8×105M 78.8 5.7 1500
Ours (b) + cls 379M 20.2 5.7 12
Ours (c) + cls 377M 24.9 5.5 12

Table 4: Compared to state-of-the-
art, our model generates higher fi-
delity samples faster and with sim-
ilar relevance w/ and w/o providing
the class label. RegNet size is multi-
plied by the num. of classes in VAS.
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○ Play Me

○ Play Me

○ Play Me

We observe that: 1) In general, the more features from a corresponding video are used,
the better the result in terms of relevance. However, there is a trade-off imposed by the sam-
pling speed which decreases with the size of the conditioning. 2) A large gap (log-scale) in
mean MKL between visual and “empty” conditioning suggests the importance of visual con-
ditioning in producing relevant samples. 3) When the sampler and codebook are trained on
the same dataset—settings (a) and (c)—the fidelity remains on a similar level if visual con-
ditioning is used. This suggests that it is easier for the model to learn “features-codebook”
(visual-audio) correspondence even from just a few features. However, if trained on different
datasets (b), the sampler benefits from more visual information. 4) Both BN-Inception and
ResNet-50 features achieve comparable performance, with BN-Inception being slightly bet-
ter on VGGSound and with longer conditioning in each setting. Notably, the ResNet-50 fea-
tures are RGB-only which significantly eases practical applications. We attribute the small
difference between the RGB+flow features and RGB-only features to the fact that ResNet-
50 is a stronger architecture than BN-Inception on the ImageNet benchmark [3]. See the
technical details, more examples, ablations, and human studies in Supplementary Material.

Comparison with the state-of-the-art In Tab. 4, we compare our model to RegNet [11],
which is currently the strongest baseline in generating relevant sounds for a visual sequence.
For a fair comparison, we employ the same data preprocessing for audio and visual features
as in RegNet [11]. We use the settings (b) & (c) (see Tab. 3) with 212 features in the condi-
tion, which is similar to the RegNet input. Since RegNet limits the sampling space explicitly
by training a separate model for each class, it is difficult to fairly compare relevance with our
model that is trained on all classes. To mitigate this to some extent, we include a class label
into the transformer conditioning sequence allowing the model to learn to separate parameter
subspaces for all 8 classes. The results suggest that our model produces higher quality spec-
trograms than RegNet, which is also supported by the lower FID scores. Moreover, RegNet
uses two times more parameters. See more examples in the Supplementary Material.
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4.2 Qualitative Analysis of the Model Properties
We conduct a human study by single-handedly inspecting over 2k samples for test-set videos
of the VGGSound dataset. Despite the biasedness of the study, we believe that the results are
worth reporting. The samples are drawn for a random class and using the model trained on
the VGGSound dataset with the VGGSound codebook (the setting (a), 5 Feats, see Sec. 4.1).
We divide our observations into three parts: general properties of the model, problems
with data preprocessing, and dataset-related issues (see supplementary).
General Properties of the Model The proposed model supports multiple classes and, es-
pecially with some patience budget, generates relevant audio for the majority of classes in the
VGGSound. The mistakes are not rare, but they are often associated with a poor audio-visual
correspondence in the video or because the model generates a sound of another musical in-
strument instead of the specific one (e.g., violin instead of cello – both are string instruments).
However, the generation of a sample that belongs to a completely different class group is a
rare event, e.g., for a bird singing video the model will not generate an audio appropriate for
indoor sports activities. We also observed, for classes such as zebra braying, cat purring,
pig oinking, bee, wasp, etc. buzzing, cattle mooing, alarm clock ringing, the model struggles
to produce a relevant sample possibly due to the unobservable source of the signal (e.g., the
flies are flying around the camera pointed to a tree and the flies are never captured but heard).

The model may confuse visually similar sounds, e.g., people whistling, singing, talking,
whispering, burping, etc. Also, if a video shows a close-up of hands, e.g., machine sewing,
the model may generate a sound of keyboard typing or computer mouse clicking. We also
found that an ASMR setup (Autonomous Sensory Meridian Response) enforces the model
to produce clean sounds similar to ASMR but often of a different class. The model struggles
to differentiate different types of birds (e.g., swallow chickadee, pheasant, etc) or hitting
instruments (e.g., bongo, timbales, timpani, steelpan, etc), yet it tends to produce the sounds
of a similar class from, e.g., another bird or instrument. These properties are expected from
a model trained on a relatively noisy dataset with a vague separation between classes.
Data Preprocessing Issues After transformation into the mel-scale spectrogram, the au-
dio signal loses the phase and a range of essential frequencies to differentiate sounds from
some classes. For instance, by transforming the waveform into mel-scale spectrogram and
back, we observed that the sound of cat caterwauling became indiscernible from person sob-
bing, crying, or dog howling classes. Although the speech segments are recognizable, the
words are indecipherable. To this end, the model can be trained directly on top of the STFT
spectrograms at the cost of efficiency during sampling, however.

5 Conclusion
We introduced a new efficient approach for multi-class visually-guided sound generation,
which operates on spectrograms and relies on a prior in a form of a codebook representa-
tion. To train the prior, we proposed a new perceptual loss (LPAPS) which is based on a
general-purpose classifier (VGGish-ish). This loss allows the model to learn to reconstruct
higher-fidelity spectrograms from a small-scale representation. In addition, a novel auto-
matic evaluation procedure is outlined to estimate both fidelity and relevance of generated
spectrograms with a new family of metrics based on the Melception classifier. Our experi-
ments on small- and large-scale datasets show the power and efficiency of our model in both
quantitative and qualitative studies compared to the state-of-the-art.
Acknowledgments Funding for this research was provided by the Academy of Finland projects 327910
& 324346. We also acknowledge CSC – IT Center for Science, Finland, for computational resources.
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