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ABSTRACT
Recommendation algorithms are widely used nowadays, especially
in scenarios of information overload (i.e., when users have too
many options to choose from), due to their ability to suggest po-
tentially relevant items to users in a personalized fashion. Users,
nevertheless, might be considered as separated in groups according
to sensitive attributes, such as age, gender or nationality, and the
recommendation process might be biased towards one of these
groups. If observed, this bias has to be mitigated actively, or it can
propagate and be amplified over time. Here, we consider a rele-
vant difference of recommendation quality among groups as unfair,
and we argue that this difference should be maintained as low as
possible. We propose a framework named F2VAE for mitigating
user-oriented unfairness in recommender systems. The framework
is based on Variational Autoencoders (VAE) and it introduces two
extra terms in VAE’s standard loss function, one associated to fair
representation and another one associated to fair recommendation.
The conflicting objectives associated to these terms are discussed
in details in a series of experiments considering the bias associated
to the users’ nationality in a music consumption dataset. We recall
recent works proposed for generating fair representations in the
context of classification, and we adapt one of these methods to the
recommendation task. F2VAE was able to increase the precision
by approximately 1% while reducing the unfairness by 21% when
compared to standard VAE.
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1 INTRODUCTION
Recommender systems are personalized systems that were pro-
posed for helping users navigating in large collections of items
hosted typically online. Different from search engines, which re-
trieve the best possible results for a given query, recommenders
are trained with historical user/item interactions information, and
produce a list of potential relevant items for each user separately.
These personalized systems are widespread in the internet nowa-
days and can been seen in several contexts, from job seeking to
music streaming platforms.

The most popular approach applied by recommender systems,
named Collaborative Filtering (CF), associates each user with a con-
sumption profile, containing all items with which they interacted
in the past. Similar profiles are assumed as indicating similarity of
preferences, and are used as a resource for calculating suggestions
to a target user. It can happen that user profiles are biased towards

one specific user attribute considered sensitive, e.g., gender, age,
nationality. For instance, we can imagine users from a certain age
range being interested in a specific category of products, or users
from one specific country listening mostly to certain artists. In
situations like these, user profiles from one specific group can be
biased for containing specific consumption patterns, and this can
naturally happen in any recommendation scenario.

A problematic situation, however, would be the one in which
worse recommendation results were systematically delivered to a
specific group of users. We can imagine, as an example, a situation
in which users from all countries are predominantly satisfied with
the suggestions provided by a recommendation algorithm, except
from one country, whose users are never satisfied. In this work, we
assume a difference in recommendation quality that is frequently
observed in a given scenario as systematic, and we consider a situa-
tion like this as unfair. More specifically, we argue that, ideally, the
quality of recommendation results should vary as less as possible
among groups of users.

The topic of fairness in algorithmic systems have been exten-
sively discussed in classification [6, 8], ranking [1, 3, 22] and rec-
ommendation [17, 21, 24, 25] domains. Among the ones dedicated
to measuring and mitigating unfairness from recommendation re-
sults, some consider the perspective from the items being recom-
mended [24], some consider the perspective from the users [11, 16],
and some consider both [5, 19]. In this work, we are interested
in recommendation situations where users are considered as be-
longing to groups, like in [16], but instead of considering a binary
attribute, we expand the notion of unfairness to any attribute that
can be separated in categories.

In situations where user profiles1 contain or can be associated to
any sensitive attribute, an auxiliary and neutral representation (i.e.,
a fair representation) might be needed [13, 15, 20, 23]. The main idea
here is to calculate a representation for a user profile containing the
maximum of information associated with attributes considered non
sensitive, while suppressing any potential proxy to any attribute
considered sensitive. We adapt one fair representations technique
to the task of recommendation, and we discuss to what extent fair
representations imply fairness in the recommendation results.

We propose a framework for mitigating user-oriented unfair-
ness based on Variational Autoencoders (VAE) [10]. VAEs were
demonstrated as powerful methods for large scale recommenda-
tions [12], that apply an encoder/decoder neural network architec-
ture: user/item interaction data is presented in the input, converted

1User profile and user attributes are used interchangeably here. The reader should notice,
however, that in many applications users are considered as a list of their attributes
(e.g., age, name, zip code, etc.), and in a recommendation scenario users are usually
considered as binary lists indicating the items with which they interacted in the past.
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to low-dimensional embedding (latent factors), and expanded back
to its original dimension. The output is compared with the input,
an error is measured, and parameters are adjusted using backpropa-
gation [18]. Latent factors are considered as representations of the
input data, to which fair representation techniques are applied.

Our contributions are:
• We adapt a method proposed in the domain of fair classifi-
cation to the task of recommendation. The original method
was designed for generating fair representations, and we
analyze to which extent both objectives, representation and
recommendation, are correlated.

• We propose a new loss function that is responsible for miti-
gating user bias, here understood as unfairness, from latent
factor recommendation models.

• We propose a framework that combines fair representation
and fair recommendation results in a single loss function,
and we analyze how these objectives are conflicting during
the training process.

This work is structured as follows. We start with a review of
previous works on the topics of fairness-aware recommendation
algorithms, and fair representations, in Section 2. In Section 3, a
short description of VAE’s assumptions and loss function terms
are presented. User-oriented fairness in a recommendation task
is formalized in Section 4. The framework for mitigating user un-
fairness is presented in Section 5, together with some intuition on
how different objectives can conflict with each other. Experiments
preparation and results are presented, respectively, in Sections 6
and 7. We make some final remarks and conclusions in Section 8.

2 RELATEDWORK
2.1 Fairness in Recommendation
Many metrics and methods were already proposed for measur-
ing and mitigating unfairness in the context of recommendation
systems. Some works consider the perspective from the items be-
ing recommended [24], some consider the perspective from the
users [11, 16], and some consider both [5, 19].

A tensor factorization method is proposed in [24], that is capable
of isolating and suppressing sensitive user attributes during the
recommendation process. MADr (Mean Average Difference - rating)
is the absolute difference between mean ratings of different groups,
assuming users separated in two groups. Our notion of fairness is
similar to the one proposed here, except that we are interested in
attributes that can assume several values, instead of just two.

It is worth mentioning that items, as well as users, might be
separated in groups, according to some of specific features. Uneven
distributions of groups of items among groups of users (e.g. peo-
ple for a certain age range who watch mostly scifi movies) can be
also considered unfair [19]. BS (Dataset Bias), BR (Recommenda-
tion Bias) and BD (Bias Disparity) were suggested for measuring
this differences, assuming categories of items and protected users
groups.

Users might be separated in groups based on the their level of
interaction with the recommender system, and the suggestions
offered to these groups might be biased, according to [11]. Uneven
recommendation results might be also offered to users considered as
male or female [16]. The authors submitted several recommendation

algorithms to the task of recommending music to users, and they
evaluated the fairness in the results provided by these methods
considering users as male or female. An unfair recommendation
result is considered as the one that varies among user groups, and
they demonstrate how biased these algorithms can be. The dataset
applied here is also presented as contribution in that same work.

2.2 Fair Representation
Learning Fair Representations (LFR) [23] discusses fair representa-
tion in the context of classification, proposes a loss function combin-
ing demographic parity, the error measured in the reconstruction
of the input data, and classification accuracy.

In [15] the authors were inspired by three fairness metrics pro-
posed previously in the literature: demographic parity, equalized
odds, and equal opportunity. The main aim is to mitigate unfair
prediction results by learning fair representation of the input data.
An adversarial objective is provided for each metric and the model
is optimized according to these objectives.

Considering also the situation of fair classification, [7] presents
an approach for learning flexible representations that minimize the
capability of an adversarial critic. The authors propose Adversarial
Learned Fair Representations (ALFR), and test their solution in sit-
uations of making decisions free from discrimination by removing
private information from images. An stochastic gradient alternate
min-max optimizer is proposed to ensure that little or no informa-
tion about the sensitive variable is present in the representation.
The results obtained reflect the method’s ability to provide discrim-
inant free representations for standard classification problems.

A Graph-Based approach for Fair Representation (FairGO) is pre-
sented in [20]. The method is informed with a sensitive feature set,
it takes the user and item embeddings from any recommendation
models as input, and it learns a filter space to obfuscate any sensi-
tive information in the sensitive attribute set. The bias is reduced
and the recommendation accuracy is maintained, considered as an
important goal in fair representation learning.

3 BACKGROUND
VAE. Variational Autoencoders (VAE) are derived from inference

models [10] and can be considered as a dimensionality reduction
technique, due to its encoder/decoder architecture. VAEs usually
assume a Gaussian latent space z (𝑝 (z) = N(𝜇, 𝜎)), and the encoded
version of input x is expressed as 𝑝 (z|x). The latent variables are
decoded back, trying to approximate as much as possible the input
x, expressed as 𝑝 (x|z).

VAE’s loss function combines two terms, one corresponding to
the accuracy of input reconstruction, and another for the proxim-
ity between the encoded and a Gaussian prior distributions. The
accuracy in the specific objective of reconstruction the input is
measured as:

𝐸𝜃 = E[log𝑝𝜃 (x|z)] (1)

The encoder parameters, which will be optimized during the
training process, are denoted as 𝜃 . 𝐸𝜃 generates negative values
when 𝑝𝜃 (x|z) is lower than 1, and in many cases 𝐸𝜃 is presented
with a negative sign and submitted to a minimization process. We
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maintain a positive sign for the sake of presentation, as the target
of a maximization process.

A small divergence between 𝑞(z|x) and 𝑝 (z) encourages latent
variables to be learnd as Gaussian distributions. The proximity
between both distributions act as a regularization factor and can
measured with Kullback-Leibner divergence:

𝐷𝜙 = 𝐷𝐾𝐿 (𝑞𝜙 (z|x) | |𝑝 (z)) (2)
The decoder parameters will also be optimized during the train-

ing process, and are denoted as 𝜙 . When encouraged to learn the
first term (𝐸𝜃 ), the model basically adjusts its predictions to the
ground truth data, through 𝑝 (x|z); and when to the second term
(𝐷𝜙 ) is given more weight, the model approximates a Gaussian dis-
tribution to the one observed in the data, using the Kullback-Leibler
divergence.

That said, the parameters are learned according to:

max
𝜃

min
𝜙
𝐿𝜃,𝜙 = 𝐸𝜃 + 𝐷𝜙 (3)

The performance of VAEmodels depend on the expressiveness of
the inferencemodel, and a good balance between both objectives, 𝐸𝜃
and 𝐷𝜙 , will determine its capacity of approximating the decoded
version of the latent variables to the original input.

𝛽-VAE. A variation of VAE was proposed in the context of disen-
tangled representations, assuming that the data generated according
to 𝑝𝜃 (x|z) is generated from a fixed number of independent factors.
Disentangled representations are defined in [2] as: a representation
where a change in one dimension corresponds to a change in one
factor of variation, while being relatively invariant to changes in
other factors.

The main idea in 𝛽-VAE is to encourage z components to be inde-
pendent, and one possible strategy for obtaining this is upweighting
the KL-divergence term in VAE’s loss function. We assume a pa-
rameter 𝛽 > 1 multiplying 𝐷𝜙 to a certain extent [9], expressed
as:

max
𝜃

min
𝜙
𝐿𝜃,𝜙 = 𝐸𝜃 + 𝛽 · 𝐷𝜙 (4)

𝛽-VAEs were already explored in the context of recommenda-
tion [12], but instead of encouraging the independence of z factors,
the authors are proposing to set 𝛽 values lower than 1, in order to
reduce regularization in the latent space. The authors reported that
setting 𝛽 equals to 1 would interfere in the learning process of the
recommender, lowering its overall performance.

In this same work, the latent representation of a single user (z𝑢 )
is transformed by a nonlinear function 𝑓 (·) ∈ R𝐼 , to produce a
probability distribution 𝜋 (z𝑢 ) over 𝑁 items, and the log-likelihood
is given by:

log𝑝 (x𝑢 |z𝑢 ) =
𝑁∑
𝑖=0

𝑥𝑢𝑖 log𝜋𝑖 (z𝑢 ) (5)

4 USER-ORIENTED FAIRNESS IN
RECOMMENDATION

In the Collaborative Filtering (CF) scenario, user preferences are
typically represented by a rating matrix containing information

of how many times each user interacted with each item. Formally,
assume a dataset of items, 𝑖 ∈ 𝐼 , available to users, 𝑢 ∈ 𝑈 , and a
matrix R ∈ N |𝑈 |× |𝐼 | containing a numerical value (feedback) for
each (user-item) pair, where user interacted at some point with item.
User profiles are usually assumed as the rows of the rating matrix
(x𝑢 ).

We assume that users are associated to sensitive attributes. 𝑆
contains potential values for a sensitive attribute 𝑠 , for example
𝑆 = {𝑚𝑎𝑙𝑒, 𝑓 𝑒𝑚𝑎𝑙𝑒}, and𝑈𝑠 refers to all users associated to sensitive
attribute 𝑠 . We also assume F (𝑢) as a function for measuring the
quality in the recommendation results for user 𝑢, i.e., the score
given by user 𝑢 to the items suggested to him/her.

We assume 𝜃 and 𝜙 as the parameters of a recommendation
model, as mentioned in Section 3, and we want to maximize:

max
𝜃,𝜙

∑
𝑢∈𝑈

F (𝑢) (6)

The recommendation results, however, will vary among groups
of users, and we want to ensure that the difference between rec-
ommendation results has the lowest difference possible. Thus, we
want to minimize:

min
𝜃,𝜙

∑
𝑠𝑖 ∈𝑆

∑
𝑠 𝑗 ∈𝑆

|F (𝑈𝑠𝑖 ) − F (𝑈𝑠 𝑗 ) | (7)

More specifically, we assume a recommender implemented as
two consecutive neural networks, 𝑓𝜃 (·) and 𝑓𝜙 (·), the first one
is responsible for mapping the input (x) to a lower-dimensional
latent space (z), and the second one is responsible for decoding this
variable back to its original dimension (x̂). Parameters 𝜙 and 𝜃 are
adjusted in order to approximate as much as possible the output
and the input. The recommendation process can be summarized
as encoding the input with 𝑓𝜃 (x) → z, and decoding z back with
𝑓𝜙 (z) → x̂.

5 FAIR REPRESENTATION AND FAIR
RECOMMENDATION VARIATIONAL
AUTOENCODERS

We now present ALFR-VAE, FaiRVAE, and F2VAE, dedicated respec-
tively to fair representation, fair recommendation and a combina-
tions of both. ALFR-VAE is inspired in Adversarial Learned Fair
Representations (ALFR) [7], originally proposed for reducing dis-
crimination associated to a binary user attribute in the context of
fair classification. We have adapted the idea to categorical sensitive
attributes, and to the context of recommender systems. FaiRVAE
aggregates a new term for measuring the bias in the recommenda-
tion results, and it is focused on mitigating systematic differences
between recommendation results offered to different user groups.
F2VAE combines the two terms associated to the two objectives, re-
ducing unfairness in representation and in recommendation results
according to one single loss function. This method was designed
according to an intuition that fair representations do not necessar-
ily imply in fair recommendation results. User profiles are being
neutralized from the perspective of a certain sensitive attribute, and
the differences between accuracy observed for groups of users are
being reduced at the same time.
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Figure 1: The general scheme of a F2VAE recommender net-
work.

ALFR-VAE. is inspired in Adversarial Learned Fair Representa-
tions (ALFR) [7], originally proposed in the context of fair classi-
fication. ALFR quantifies how discriminative the representation
is considering a binary sensitive attribute, and proposes a binary
log-loss for measuring the bias. We are also interested in how dis-
criminative z is for the prediction task, but using the categorical
log-loss of a classifier network trained to predict 𝑠 from z. The clas-
sifier has its parameters adjusted together with the recommender’s,
and its accuracy is calculated with:

𝐶𝜃 (z, 𝑠) = −E
[ 𝑁∑
𝑖=1

𝑠 · log(𝑃𝑟𝑒𝑑𝑖 (z))
]

(8)

We consider the classifier parameters also as 𝜃 , N classes of a
sensitive attribute, and 𝑃𝑟𝑒𝑑𝑖 as the Softmax probability for 𝑖𝑡ℎ class.
The new fairness-aware recommendation loss function is given by:

max
𝜃

min
𝜙
𝐿𝜃,𝜙 = 𝐸𝜃 + 𝐷𝜙 +𝐶𝜃 (9)

The main idea here is to increase the classification loss, in order
to reduce as much information as possible of a specific sensitive
attribute.

FaiRVAE. A systematic difference between accuracy in the rec-
ommendation results delivered to different groups of users is con-
sidered here as unfair. We recall that users are separated in groups
according to attributes considered sensitives (i.e., gender, nation-
ality, age) and we want to ensure that, at each training step, big
differences of reconstruction accuracy are neutralized.

In Fair Recommendation VAE (FaiRVAE), we aggregate a new
term for mitigating user bias in the recommendation results, ex-
pressed as:

𝐹𝜙 (𝑢) =
��� 1
|𝑈𝑠 |

∑
𝑐∈𝑈𝑠

E[log 𝑝𝜃 (x𝑐 |z𝑐 )]

− 1
|𝑈 |

∑
𝑢∈𝑈
E[log 𝑝𝜃 (x𝑢 |z𝑢 )]

��� (10)

where 𝑠 is the sensitive attribute to which user 𝑢 is associated to.
The final loss function can be expressed as:

max
𝜃

min
𝜙
𝐿𝜃,𝜙 = 𝐸𝜃 + 𝐷𝜙 + 𝐹𝜙 (11)

F2VAE. In Fair Representation and Recommendation via Varia-
tional Autoencoders (F2VAE), we aggregate all terms in a single
loss function. The potential issue in this process is that if any of
these objectives is conflicting with another, then the optimization
process might not converge.

The final loss function is expressed as:

max
𝜃

min
𝜙
𝐿𝜃,𝜙 = 𝐸𝜃 + 𝛽 · 𝐷𝜙 + 𝛾 ·𝐶𝜃 + 𝜏 · 𝐹𝜙 (12)

where 𝐸𝜃 is the proximity between input and output, that needs to
be maximized; 𝐷𝜙 is the divergence between the inner representa-
tion and the approximate distribution, that need to be minimized;
𝐶𝜙 is the prediction error measured for the classifier that tries to
guess the sensitive attribute, that needs to be maximized; and 𝐹𝜙 is
the user unfairness, that needs to be minimized. A general scheme
is presented in Figure 1.

We included two new hyperparameters, 𝛾 and 𝜏 , for controlling
the strength of each new term, associated to fair representations and
fair recommendation results respectively. The main intuition that
led to this loss function is that neither latent space regularization
leads necessarily to fair representation, nor fair representation leads
necessarily to fair recommendations results. Moreover, gathering
all these terms together would increase the chances that the model
weights will be adjusted to achieve one single objective: mitigate
unfairness associated to users’ sensitive attributes.

6 EXPERIMENTAL SETUP
6.1 Data Preparation
We elected LFM-2b dataset [16] to be used in our experiments. The
dataset contains music listening habits extracted from LastFM2

platform, and is, to our knowledge, the only dataset available for
recommendation experiments that is substantially big and that
contains demographic (gender, nationality and age) information
associated to users. Not all users provided their demographic infor-
mation, and then, we started by filtering the ones who provided
gender, nationality and age information. We ended with 40,374
users in total.

We removed duplicated records, i.e. user/track events happening
more than once, for obtaining binary associations between users
and tracks. We removed also users with less than 10 interactions,
and tracks with less than 100 interactions, considered as not having
enough interaction data. We ended with 40,374 users, 767,304 tracks
and 171,381,362 listening events.

2https://www.last.fm/

https://www.last.fm/
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Figure 2: (Top) The number of users associated to each coun-
try in a LFM-2b subset. (Bottom) The number of interactions
associated to each country in the same subset.

We did not want to restrict our experiments to attributes contain-
ing binary or continuous values, and we decided to user nationality
as a sensitive attribute. We maintained the labels of countries as-
sociated with more than 500 users (shown in the top of Figure 2),
and the remaining countries were grouped together in a single
category. In the end, we had 18 possible values for the nationality.
We measured also the number of interactions associated to each
country for checking any correlation between recommendation
accuracy and number of interactions.

The recommenders were implemented using Pytorch3, and the
network architecture was inspired in [12], but with layers with
higher dimensions: [767, 303 −→ 2000 −→ 200 −→ 2000 −→ 767, 303].
In the case of ALFR-VAE, a linear layer is added to the network
architecture, with dimensions [200 −→ 18], corresponding to the
classifier indicated in Figure 1, named adversarial classifier. The
latent variable calculated for each user profile is submitted to the
classifier, that is trained to predict the corresponding user national-
ity. But in fact, the classification loss is being maximized, and the
recommender will then be encouraged to build latent representa-
tions that are independent of this specific attribute value4.

All models were trained for 100 epochs, and performance and
fairness metrics were measured at every epoch applied to the data
split separated for validation. The batch size was set to 500, within
which 𝐹𝜙 (Equation 10) was calculated. The learning rate was set to
1e-4, and it decreases by a factor of 0.1 in epochs 50 and 75. The KL
divergence factor was gradually introduce during the training, as

3https://pytorch.org/
4The source code for reproducing the experiments is available at https://github.com/
rcaborges/F2VAE

proposed in [12], with the help of an annealing factor. The idea is to
start with a low 𝛽 value so the model has time to learn its weights
according to its accuracy term, before applying regularization.

After all models were already trained, a new classifier (auxil-
iary classifier) was designed for classifying latent variables in their
original category, i.e. user nationality. The intuition in here is that
unbiased latent representations would lead to low classification ac-
curacy, because of not containing information about that category.
A Multi Layer Perceptron (MLP) was implemented with dimensions
[18 −→ 500 −→ 18].

We calculated a latent representation for all users in the dataset.
80% of them are separated for training the classifier, and 20% for
testing. In order to make an unbiased classifier, we selected the
country with the smallest number of users, which in this case was
Norway with 500 users, and we elected 500 random users from each
of the 18 countries. The MLP was trained to predict the country of
a certain user given its embedding as an input. All classifiers were
trained for 100 epoch, and for 5 consecutive times. The average
accuracy is presented together with its variance as final results.

6.2 Formalization
Users 𝑈 are split into train/validation/test subsets. Each user is
represented as a profile containing the set of tracks they listened to,
and a corresponding sensitive attribute, in this case their nationality.
The profiles are also split into query and ground truth subsets.
When requested with a query, the recommender retrieves a set of
suggested tracks 𝑁 = {𝑛1, 𝑛2, . . .}, ordered by relevance, which are
compared with a set of target tracks𝑇 (the ground truth); these are
used in the computation of the performance metrics defined below.
Within this process, an inner representation z is generated for each
user, as the result of an encoding process.

6.3 Metrics
The LFM-2b dataset provides substantially large user profiles (i.e.
users who listened to a big number of tracks), possibly because of
the big time span comprehended in the user/track interaction data.
Normalizing the number of right predictions by the total number of
missing tracks then, also known as recall, provided extremely low
values. Precision, on the other hand, measures the proportion of
relevant items that were presented by the algorithm normalized by
the length of the presented list. Precision seemed a more reasonable
metric for this specific dataset.

Precision at K (PREC@K)measures the relative number of correct
predictions in the first 𝐾 ranked suggestions:

𝑃𝑅𝐸𝐶@𝐾 =
1
𝐾

𝐾∑
𝑘=1
I[𝑛𝑘 ∈ 𝑇 ], (13)

where I is an indicator function, 𝑛𝑘 the item ranked in position 𝑘 .
Unfairness at K (UFAIR@K) is calculated as the summation of

the differences between PREC@K measured for all pairs of user
groups. The results is normalized by the number of comparisons,
according to:

https://pytorch.org/
https://github.com/rcaborges/F2VAE
https://github.com/rcaborges/F2VAE
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𝑈𝐹𝐴𝐼𝑅@𝐾 =
1

𝑛 ×𝑚

|𝐶 |∑
𝑛=1

|𝐶 |∑
𝑚=1

��� 1
|𝐶𝑛 |

∑
𝑢∈𝐶𝑛

𝑃𝑅𝐸𝐶@𝐾 (𝑢)

− 1
|𝐶𝑚 |

∑
𝑢∈𝐶𝑚

𝑃𝑅𝐸𝐶@𝐾 (𝑢)
���, (14)

where 𝐶 is a set containing all countries in the dataset, and 𝐶𝑛 is
the subset of users associated to nationality 𝑐 ∈ 𝐶 .

The amount of information of 𝑠 contained in z is measured with
cross-entropy (Equation 8). We differentiate the classifiers applied
in ALFR-VAE and the one designed for measuring fairness in repre-
sentations by naming the former one as adversarial and the latter
auxiliary.

7 EXPERIMENTAL RESULTS
We now present the results of the experiments in two steps, first
we evaluate the efficiency of the method to generate fair represen-
tations of users in the dataset, and then we calculate its capacity
of removing nationality bias in recommendation results and the
impact in recommendation quality. We report results for 𝐾 equals
to 1, 10 and 20 in order to have a better understanding of the effects
of our method within a range of positions in the ranked results.

7.1 VAE x 𝛽-VAE
We tested 𝛽 values higher and lower than 1, the parameter was set
respectively to 10, and to 0.5. The higher the value assumed by 𝛽 , the
stronger regularization is applied on the latent variables . Stronger
regularization meaning, in this case, that these latent variables are
being modeled more accurately as normal distributions.

Latent variables generated by models trained with three different
𝛽 values were submitted to the task of sensitive attribute predic-
tion. The task was designed to measure to what extent these inner
representations can be considered fair. There is a clear correlation
between 𝛽 values and unfairness in the inner representations, re-
flected in auxiliary classification accuracy results shown in Table 1.
In this experiment, higher accuracy values indicate a higher chance
of latent variables being associated with users’ sensitive attribute.

The impact on recommendation and fairness metrics can be also
seen in Table 1. Stronger regularization, i.e. higher 𝛽 values, lead
to higher accuracy in the recommendation results, according to
precision measured for three values of 𝐾 . But it leads also to higher
unfairness in the recommendation results. The lowest values for
unfairness were observed for standard VAE, with 𝛽 equals to 1.

7.2 VAE x ALFR-VAE
It seemed reasonable to assume that reducing mutual information
between sensitive attributes and the latent variable during the train-
ing process, would lead to fairer recommendation results. But our
results showed that this is not necessarily the case. Instead, increas-
ing the parameter 𝛾 , responsible for encouraging the adversarial
classifier to neutralize the latent representation, led to more accu-
rate recommendation results. The hyperparameter 𝛾 was set equals
to 5, and 10, for encouraging mutual information reduction.

It is worth remembering the intuition behind the adversarial
classifier and parameter 𝛾 . Latent factor models usually map the
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Figure 3: Adversarial loss and KL divergence measured for
ALFR-VAE with different values of 𝛾 .

input data in a reduced space, latent space, before expanding this
representation back to its original dimension. A regularization fac-
tor applied by these models, here assumed as𝐷𝜙 , improves learning
convergence by approximating the latent space distribution to nor-
mal distributions. This regularization has an interesting property of
encouraging independence between latent components, to a certain
extent when these components would be even associated to seman-
tic properties contained in the input data [14]. But encouraging
independence can potentially increase unfairness, for example, if
one latent component is closely associated to users’ nationality, and
then, to this component could be given more emphasis because of
its relevance in the recommendation task.

An adversarial classifier is added to this model to encourage that
the minimum information from users’ sensitive attribute, in this
case their nationality, is propagated to the decoder. The mutual
information between nationality and latent representations is being
minimized, through cross entropy loss, and it can happen that the
two objectives, mutual information and distribution divergence
minimization, are conflicting with each other.

In Figure 3 the reader can see the evolution of adversarial classi-
fication loss and KL divergence measured for the validation data
split at each consecutive training epoch. Parameter 𝛽 is maintained
fixed equals to 1, and parameter 𝛾 is set to 5, and 10. It is evident
how both objectives are conflicting, and that for higher values of
𝛾 , the KL divergence measured for the latent variables increases
significantly.

ALFR-VAE was responsible for the best precision results, and
the worst bias measurements (Table1). The auxiliary classification
loss, proposed for measuring how predictive latent representations
are in the task of predicting the corresponding users’ nationality,
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also increased for higher 𝛾 values. User representations got more
biased when more strength was given to the adversarial classifier
loss term.

7.3 VAE x FaiRVAE
FaiRVAE methods, on the other hand, were responsible for the best
results measured for unfairness, i.e. the highest fairness. The same
methods however, were also responsible for the lowest precision
results, as seen in Table1.

Setting hyperparameter 𝜏 with values higher then 1 led to di-
vergence in the optimization process, and then we tested setting it
with values lower than 1. Higher values of 𝜏 generated fairer repre-
sentations, whereas lowest values generated fairer precision results.
In the case when precision is higher, for 𝐾 = 1, user unfairness
was substantially reduced, by around 0.26% if compared to standard
VAE, and by around 35% if compared with ALFR-VAE. In this same
configuration, the precision result was reduced by approximately
12% taking the standard VAE as a reference.

7.4 F2VAE
Our main aim in this study is to provide users with relevant and
fair recommendation results. We assume a fair situation as the one
where users are being treated similarly, regardless of their attributes
considered sensitive. In this study we considered nationality as the
attribute according to which users were gathered in 18 groups.

Moreover, providing users with fair suggestions is not enough:
the overall quality of results needs to be maintained as high as
possible. In other words, a fairness-aware recommender would
ideally provide users with the best recommendation results while
ensuring that no one is being discriminated because of any attribute
considered sensitive.

With F2VAE we were able to increase the recommendation qual-
ity while reducing unfairness. We compared the results with the
original VAE model, and, in the case where 𝐾 = 1, F2VAE was able
to increase the precision in approximately 1% while reducing the
unfairness by 21%. As one can see in Table 1.

Figure 4 shows the average PREC@1 calculated for each coun-
try, for methods ALFR-VAE and F2VAE. One can notice some ad-
justments made by the F2VAE to provide fairer recommendation
results. AU had its average precision increased while SE, which had
the highest precision, was penalized and got closer to the average
among countries.

One common phenomenon observed in recommendation sys-
tems, usually named popularity bias [4], refers to the fact that more
active users generate more interaction data and end up being of-
fered with more accurate results. According to this idea, one could
argue that more accurate recommendation results are expected in
the case of users originating from countries associated to higher
number of interactions (Figure 2). But the results calculated for each
country show that higher accuracy results were actually obtained
for countries associated to low number of interactions, such as IT
and SE; and that low accuracy results were calculated for countries
associated to a big number of interactions, such as US and UK.
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Figure 4: The average PREC@1 measured for each country.
In the first row applying ALFR-VAE and in the second row
applying F2VAE.

8 CONCLUSIONS
We have proposed a method for mitigating bias in recommenda-
tion systems associated to users’ nationality, considered here as a
categorical sensitive attribute. The method can be also applied to
any other kind of attribute, for example gender or age, as long as
these attributes can be expressed in categories.

The combination of standard VAE framework with two new
terms, one dedicated to fair representation and another one dedi-
cated to fair recommendation, led to positive results. The proposed
method was able to increase the precision in approximately 1%
while reducing the unfairness by 21% when compared to standard
VAE.

In our experiments, fair representations did not lead necessarily
to fairness in the recommendation results. Instead, reducing the
variance among groups of users within training batches turned out
to reduce the unfairness in the recommendation results. Moreover,
reducing the mutual information between latent variables and sen-
sitive attributes led to an increase of recommendation accuracy and
unfair latent representations.

As future works, we are planning to apply the same method
to another sensitive attributes, i.e. gender and age, and we are
also planning to consider combinations of two or more attributes,
known as subgroups.
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