

Arttu Ylikotila

UNCERTAINTY IN SOFTWARE
DEVELOPMENT

A threat and a possibility

Faculty of Information Technology and Communication Sciences
M. Sc. Thesis

June 2023

ABSTRACT

Arttu Ylikotila: Uncertainty in software development – a threat and a possibility
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Computer Sciences
June 2023

Uncertainty is a pervasive and inevitable phenomenon in software development. It affects most

if not all stakeholders in software projects in different ways. Mostly uncertainty is seen as a risk

or threat that is one of the causes behind the failures of software projects. But there are also

possibilities or opportunities that can be found from uncertainty.

Uncertainty has been researched in academia, but not often from the viewpoint of software de-

velopment. Understanding the causes and effects of uncertainty is needed to be able to mitigate

the negative and to increase the positive aspects. Understanding the subject may also help in

coping with the effects of inevitable uncertainties. This thesis explores the subject by conducting

a literature review. The aim of this work is to increase understanding of causes and effects of

uncertainty and how uncertainty can be managed in software development projects.

This thesis discusses different types and sources of uncertainty that affect software development

projects. The type represents what the uncertainty is about, and the source represents what

causes the uncertainty. The presented types include for example requirements, stakeholders,

and situation. The examined sources contain ambiguity, complexity, and lack of trust among other

things. The effects of uncertainty on development projects and individual developers are dis-

cussed as well. The effects on projects include for example delays in schedule, decreased prod-

uct quality, and poor estimates, while the effects on developers include stress, feelings of inade-

quacy, or increased motivation among other things. Discussion of uncertainty management is

divided into reducing uncertainty and coping with uncertainty. The former can be achieved for

example by maintaining continuous and direct communication with stakeholders and by doing the

development of the project in short, repeated iterations that builds the project in small steps.

Coping with uncertainty can be facilitated by high autonomy of the team and trust between project

members among other things. Also, the suitability of different software development processes

in relation to uncertainty are discussed with the conclusion being that project type is a major factor

in what software development process should be used.

Keywords and terms: uncertainty, software development, threat, risk, possibility, opportunity,

cause, effect

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

Contents

1 Introduction ... 1

2 Software development and uncertainty ... 4

2.1 Software development 4

2.2 Uncertainty 5

3 Types and sources of uncertainty ... 8

4 Effects of uncertainty .. 20

4.1 Effects on project 20

4.2 Effects on developers 21

5 Managing uncertainty ... 23

5.1 Reducing uncertainty 23

5.2 Coping with uncertainty 27

6 Uncertainty and software development processes .. 29

6.1 Traditional software development 29

6.2 Agile software development 31

6.3 Processes in relation to uncertainty 32

7 Summary .. 35

References ... 37

-1-

1 Introduction

It is common for software development projects to fail [Wang and Liu 2006]. Exceeding

the project budget or not being able to deliver all the features agreed in contract are com-

mon and even total failures happen way too often [Böhle et al. 2016]. According to

Hughes and others [2017], more than half of software development projects are not suc-

cessful, but the success rates are improving slowly [Hughes et al. 2017].

One of the reasons for software development project failures is uncertainty [Na et al.

2004; Sillitti et al. 2005; Ibrahim et al. 2009; Dönmez and Grote 2015]. Uncertainty is

ubiquitous [Hillson 2002; Laplante and Neill 2005; Dönmez and Grote 2018; Madsen

2007] and unavoidable [De Meyer et al. 2002; Na et al. 2004; Ibrahim et al. 2009; Letier

et al. 2014; Dönmez and Grote 2015; Ubayashi et al. 2019] part of software development.

While uncertainty in projects is mostly seen as a threat, uncertainty can also enable op-

portunities by e.g., acting as a driver for creativity and innovation [Dönmez and Grote

2013].

There are many sources of uncertainty [Hillson 2002] and they can affect software devel-

opment in many different ways [Dönmez and Grote 2018]. Among the many sources are

e.g., requirement specifications [Laplante and Neill 2005], design [Ibrahim et al. 2009],

limited availability of information [Madsen 2007], changing requirements [Ubayashi et

al. 2019] and unexpected events [Dönmez and Grote 2013]. Some of the effects of uncer-

tainty include delaying or blocking action [Lipshitz and Strauss 1997], increasing the dif-

ficulty of estimating the time and effort needed to complete project [Jiang et al. 2009],

unnecessary work [Taipalus et al. 2020], and causing stress [Greco and Roger 2003] as

well as anxiety [Carleton 2016] to developers. Uncertainty has also positive effects like

being a source of motivation [Taipalus et al. 2020], enabling evolution [Perminova et al.

2008] and innovation [Dönmez and Grote 2018].

Managing uncertainty in software development projects is important [Laplante and Neill

2005] and associated with success of projects [Hillson 2002], but many project managers

have difficulties in handling it [De Meyer et al. 2002]. The two prevalent ways of man-

aging uncertainty are minimizing uncertainty and coping with uncertainty [Dönmez and

Grote 2018]. Minimizing uncertainty is done by increasing control and eliminating as

many sources of uncertainty as possible [Dönmez and Grote 2018]. Full control over un-

certainty or eliminating all sources of uncertainty is usually not possible [Dönmez and

Grote 2018] and therefore other strategies are needed as well. Coping with uncertainty

requires flexibility and has no standardized procedures [Dönmez and Grote 2018].

Traditionally software projects have been managed with plan-driven development pro-

cesses like the waterfall model, but during recent decades alternative Agile methodologies

-2-

have been increasing their popularity as the preferred management method [Taipalus et

al. 2020]. Agile approach to software development enables developers to respond to un-

certainty and unexpected events by being flexible and responsive [Dönmez and Grote

2018], but Agile methods are not suitable in all projects [Cockburn and Highsmith 2001]

and some Agile customs can lead to increasing uncertainties [Aitken and Ilango 2013].

Project management has previously been extensively studied [Taipalus et al. 2020], but

uncertainty as a concept has not received much attention [Madsen 2007] in this context.

Most of the research on topic has been written from the viewpoint of project manager,

which leads to too narrow view of the phenomenon, since uncertainty affects all of the

stakeholders in software development projects [Taipalus et al. 2020]. Uncertainty is a

complex issue [Perminova et al. 2008] and in order to understand it, it has to be viewed

from as many angles as possible [Madsen 2007]. Understanding the sources of uncer-

tainty is required [Marinho et al. 2014], but it is not enough for full picture. Understanding

how humans feel and act when facing uncertainty is also required, since software devel-

opment projects are conducted by humans.

The focus of this thesis is uncertainty in the context of software development. The topic

is explored using a literary review. Since there is a lack of studies focused especially on

uncertainty in software development, studies from other disciplines are used as well in

cases where studies have enough similarities to the context of software development.

Slightly multidisciplinary approach is used to find information on how uncertainty affects

humans from the perspective of psychology. The purpose of this thesis is to increase the

understanding of uncertainty in software development from many angles, because under-

standing is essential for reducing the negative effects and increasing the positive aspects

of the phenomenon.

The literature review was conducted by first doing searches in the following databases:

ScienceDirect, Scopus, IEEE Xplore, and SpringerLink. Additional searches were per-

formed with Andor search service. The search strings used were “uncertainty AND "soft-

ware development" AND (threat OR risk OR possibility)” and “uncertainty AND "soft-

ware engineering" AND (threat OR risk OR possibility)”. The search results were

screened by reading first the title and keywords and based on them, the abstract was read

if the content of the study seemed to be relevant. If also the abstract was considered to be

relevant, the study was selected for a closer look. After it seemed that the search had

reached a saturation point where no more relevant studies were found, the search in the

databases was stopped. The initial amount of retrieved relevant studies was not satisfac-

tory and therefore the references from the relevant studies were followed to find more

studies relevant to the topic.

-3-

The content of the found studies was evaluated based on whether the study was about

uncertainty in software development from any perspective or if the topic of the study was

about uncertainty and the study had enough similarities with the context of software de-

velopment. The similarities accepted included for example if the context was project man-

agement in some other industry with similar qualities to project management in software

development, or if the topic was for example decision making, which is central to soft-

ware development. Some studies from psychology that related to effects of uncertainty

were included as well. In total 41 studies discussing uncertainty or related effects were

found and included in the literature review. Also, studies discussing software develop-

ment processes were retrieved for background information.

The selected studies were analysed from the point of view of the research questions of

this thesis and the data found was organized to support a meaningful presentation of the

findings. The research questions this work seeks answers to are as follows:

RQ1: What causes uncertainty in software development?

RQ2: What are the effects of uncertainty in software development?

RQ3: How uncertainty can be managed in software development?

RQ4: How suitable are different software development processes in relation to uncer-

tainty?

In the Chapter 2 the key concepts of the thesis are defined. Chapter 3 describes the types

and sources of uncertainty found in the literature. Chapter 4 explains what kind of effects

uncertainty can have on the software development project and the developers of the pro-

ject. Chapter 5 discusses how uncertainty can be managed according to literature. Chapter

6 gives an overview of two software development processes and how suitable they are in

relation to uncertainty. Finally, the Chapter 7 summarizes contents of the thesis.

-4-

2 Software development and uncertainty

In order to establish the context for this thesis, the key concepts of the topic are described

and defined in this chapter.

2.1 Software development

Software development is activity that is aimed at creating, improving, or maintaining dif-

ferent kinds of computer programs. At its core software development is about problem

solving [Aitken and Ilango 2013] and decision making [Ibrahim et al. 2009]. Software

development is a complex task [Na et al. 2004; Clarke and O’Connor 2012; Letier et al.

2014] that typically requires collaboration between people with diverse skills [Na et al.

2004; Jun et al. 2011] and different kinds of stakeholders [Whitaker 2009, p. 52].

In a typical case software development consists of four activities: gathering the require-

ments, analysing the problem that will be solved, designing the solution for the problem,

and implementing the solution [Aitken and Ilango 2013]. All the requirements are not

always known at the start of the project [Whitaker 2009, p. 249]. Instead, more is learned

about the project during the development and therefore the requirements are not stable

[Sillitti et al. 2005]. The design decisions in software development are highly complex,

since they often involve multiple interrelated decisions that may be conflicting, hard to

define and hard to compare [Letier et al. 2014]. Making these decisions with absolute

certainty is not possible in most cases [Ibrahim et al. 2009].

Software development has similarities with other engineering disciplines, but there are

differences as well. Engineering processes can be either defined or empirical [Williams

and Cockburn 2003]. A defined process is one that can be done with predefined actions

and following these actions will always produce the same result [Williams and Cockburn

2003]. Manufacturing a car is an example of a defined process. Software development

inherently contains too much change during the development, that predefined actions will

most likely not achieve the desired outcome, hence software development is an empirical

process [Williams and Cockburn 2003].

Software development is usually done as a project. Most of the projects have some typical

characteristics. For example, they have a specific purpose aiming at a specific result, they

are temporary i.e., they have a defined start and end, and they can be progressively de-

veloped in steps [Whitaker 2009, p. 49]. Software projects especially are often about cre-

ating something novel, which might not be done again in future [Bannerman 2008]. Be-

cause of this one-off nature, learning from past patterns is not always possible in software

development [Bannerman 2008].

-5-

There are differences between software development projects and some of the projects

have only a few uncertainties, while most of them have several different types of uncer-

tainties [De Meyer et al. 2002]. Depending on the characteristics of the project, the un-

certainties and their level vary [Marinho et al. 2014]. For example, innovation projects

tend to have a higher level of uncertainties and a higher probability of failure [Marinho

et al. 2014]. Additionally, the uncertainties of the project change and develop during the

project life cycle [Atkinson et al. 2006]. Especially in the beginning of the project, there

are lots of uncertainties since definitions are still vague and many decisions are likely to

change during the project [Marinho et al. 2014].

2.2 Uncertainty

Ironically, the term uncertainty is abstract [Ubayashi et al. 2019] and ambiguous, and

therefore it is uncertain in itself. There are multiple conceptualizations of uncertainty

[Lipshitz and Strauss 1997] in the literature and there is no consensus about exact defini-

tion of uncertainty in the context of software development [Ibrahim et al. 2009]. Uncer-

tainty has many facets [Madsen 2007], and it has been studied in multiple disciplines

including at least economics, engineering, and psychology [Saunders et al. 2015]. The

term uncertainty can mean different things depending on who is using the term [Ibrahim

et al. 2009; Lipshitz and Strauss 1997], but the definitions usually share at least the aspect

of incomplete information or doubt [Dönmez and Grote 2018] in one way or another.

The most common definition of uncertainty found in this literary review was shared in

eight studies with slight differences in details. They defined uncertainty as lack of infor-

mation or knowledge [Atkinson et al. 2006; Ibrahim et al. 2009; Axelsson 2011; Letier

et al. 2014; Marinho et al. 2014; Mehta et al. 2014; Grote 2015; Dönmez and Grote 2018]

to make a decision [Ibrahim et al. 2009; Axelsson 2011], or about the consequences of

alternatives [Letier et al. 2014], or to predict the project outcomes [Mehta et al. 2014].

Marinho and others [2014] added to their definition the inability to predict the probability

that an event would happen. Grote [2015] included ambiguous information to their defi-

nition. Dönmez and Grote [2018] specified, that they mean lack of information in respect

to the information that is required.

Three studies had partly interrelated definitions of uncertainty. Madsen [2007] defined

uncertainty as “perceived level of not knowing the appropriate course of action and/or its

outcome at a given point in time”. In partly similar vein, among the multiple definitions

presented by Perminova and others [2008], was a definition of uncertainty from perspec-

tive of psychology as “a state of mind characterized by a conscious lack of knowledge

about the outcomes of an event”. Lipshitz and Strauss [1997] defined uncertainty as “a

sense of doubt” in the context of action, which partly overlaps with the definition by

Madsen [2007].

-6-

Howell and others [2010] defined uncertainty simply as “lack of certainty”. They included

in their wide definition “probabilistic or undefined outcomes” and also “ambiguity and

lack of clarity over situational parameters”.

One clearly distinct definition of uncertainty was presented by Taipalus and others

[2020]. In their definition uncertainty is “an emotion caused by ambiguity”. Ambiguity

can be caused by multiple sources and when the level of ambiguity reaches a certain sub-

jective threshold, it will cause uncertainty [Taipalus et al. 2020].

Perminova and others [2008] described multiple definitions of uncertainty from different

disciplines found from literature, but the definition of their own was “a context for risks

as events having a negative impact on the project’s outcomes, or opportunities, as events

that have beneficial impact on project performance”.

As can be seen from the above definitions, the term uncertainty is not self-explanatory

[Perminova et al. 2008] and it is equivocal in itself. Ambiguity is a term often mentioned

in association with uncertainty. Ambiguity refers to possibility of multiple different in-

terpretations, which is linked to confusion and lack of understanding [Atkinson et al.

2006]. Notable aspect of confusion is that it may originate from lack of information as

well as from abundance of information, especially if there are conflicting meanings or

undifferentiated alternatives [Lipshitz and Strauss 1997]. This is contradicting with de-

fining uncertainty simply as lack of information.

Risk is another term that is often associated with uncertainty. These two terms have even

been used interchangeably [Taipalus et al. 2020] in literature, but they are distinct terms

[Laplante and Neill 2005; Perminova et al. 2008; Axelsson 2011; Taipalus et al. 2020]

that have fundamental differences [Dönmez and Grote 2018; Taipalus et al. 2020]. Risk

in software projects is commonly understood as exposure to factors that present a threat

to the outcomes of the project [Bannerman 2008] and threat is defined as an event with

negative consequences [Whitaker 2009, p. 111; Johansen et al. 2014; Dönmez and Grote

2018]. Hence, the traditional view of risk is negative [Hillson 2002]. Uncertainties, on

the other hand, can also have positive outcomes [Perminova et al. 2008; Lechler et al.

2012; Dönmez and Grote 2018; Taipalus et al. 2020] or they can be neutral [Martinsuo et

al. 2014].

Another important distinction between risk and uncertainty is the amount of knowledge

regarding the probabilities [Perminova et al. 2008] and the possibility to prepare for them

beforehand [Taipalus et al. 2020]. For example, Lechler and others [2012] define uncer-

tainties as unknown-unknowns and risks as known-unknowns. The important distinction

here is that known-unknowns have been identified to possibly exist, but unknown-un-

knowns are not even identified [Geraldi et al. 2010]. The former can be predicted, and its

-7-

occurrence may be estimated, while the latter cannot be prepared for and cannot be esti-

mated with any confidence [Taipalus et al. 2020].

One suggestion in the literature has been that uncertainty is an umbrella term, that in-

cludes risk and opportunity as two distinct varieties [Hillson 2002; Perminova et al.

2008]. In this line of thought, the risk is an uncertainty with negative effect and oppor-

tunity is an uncertainty with positive effect [Hillson 2002]. Therefore, risk and oppor-

tunity could be seen as an outcome or consequence of uncertainty or uncertain events

[Perminova et al. 2008] instead of being direct aspects of uncertainty itself.

-8-

3 Types and sources of uncertainty

It is common in studies, that uncertainty is discussed as a singleton or that only one type

of uncertainty is considered, instead of examining many different types of uncertainties

[Dönmez and Grote 2018]. But it is important to recognize different uncertainty types

since uncertainty has multiple facets [Madsen 2007] and different types of uncertainties

may need to be approached with various strategies [Dönmez and Grote 2018]. The most

common type of uncertainty found in literature is requirements uncertainty [Dönmez and

Grote 2018] and many studies concentrate solely on that. Other frequently discussed types

include for example stakeholders [Ward and Chapman 2008], environmental uncertainty

[Marinho et al. 2015], technological uncertainty [Lechler et al. 2012] and uncertainty in

estimates [Atkinson et al. 2006].

Categorizing the uncertainties is necessary in order to distinguish between different kinds

of uncertainties. There are many ways of categorizing the uncertainties in the literature

[Dönmez and Grote 2018] and some of them are not compatible with each other because

of fundamental differences in their approaches. This thesis uses a categorization that is

similar to the classification of Lipshitz and Strauss [1997], where the uncertainties are

categorized according to their type and their source. Type represents broadly what the

uncertainty is about, and the source represents what is the cause of the uncertainty. This

classification is simple, yet expressive enough to make it possible to differentiate uncer-

tainties from each other in a meaningful way.

Next an overview of the uncertainty types and sources found in the literature is given

categorized according to the approach of this thesis where applicable.

Lipshitz and Strauss [1997] discuss uncertainty and decision makers. Since their context

differs from this thesis, their results are not entirely in line with the content of this work.

But since the software development is essentially about making decisions, the results of

Lipshitz and Strauss [1997] are also relevant in the context of this thesis. The classifica-

tion of Lipshitz and Strauss [1997] is not exactly the same as the one used in this work,

even if both the approaches share the same idea. Therefore, the uncertainties in their study

are organized to better suit the categorization method of this thesis and shown in Table 1.

The type of uncertainty “situation” in the table means the decision makers uncertainty

about the situation they are. The “role” refers to uncertainty about the role of the decision

maker. The type “outcome” is concerned with the possible outcomes of decisions of the

decision maker.

-9-

Table 1. Conceptualizations of uncertainty [Lipshitz and Strauss 1997] adapted to the classifica-

tion of this thesis.

Type of uncertainty Source of uncertainty

Situation Complete lack of information

Partially lacking information

Unreliable information

Inadequate understanding owing to equiv-

ocal information

Inadequate understanding owing to nov-

elty

Inadequate understanding owing to insta-

bility

Role Complete lack of information

Inadequate understanding owing to equiv-

ocal information

Inadequate understanding owing to nov-

elty

Conflict among alternatives owing to in-

compatible role demands

Outcomes Complete lack of information

Partially lacking information

Conflict among alternatives owing to

equally attractive outcomes

Sillitti and others [2005] are concerned solely with changing requirements and the related

uncertainty. They classify these requirement uncertainties to external and internal with

the distinction that the former cannot be controlled by the customer or the development

team, while the latter can be controlled or managed by them. The categorization is similar

to the one used in this thesis, but still fundamentally different, since it is concerned with

only one type of uncertainty, that is divided in two distinct varieties that have their own

sources. Those requirement uncertainties are shown in Table 2.

-10-

Table 2. Uncertainties in requirements [Sillitti et al. 2005].

Requirements variability Source

External Changes in technology

Changes in regulations

Changes in company factors, such as cor-

porate politics, marketing plans, financial

conditions

Internal Limited knowledge of the application do-

main

Customer’s initial uncertainty. The cus-

tomer is not able to define a complete set

of requirements at the beginning of the

project

Relational and communication problems

among the subjects involved in a project

Another set of uncertainty sources related to requirements is presented by Moynihan

[2000]. Their sources are “attributes of the application”, “attributes of the users”, “attrib-

utes of the analysts/developers” and “wider aspects of the organization”. In addition to

sources, they give some examples of these sources. According to Moynihan [2000], these

sources are common to many definitions of requirements uncertainty. Many of these

sources can also be seen to relate to other uncertainty types identified in different studies

and not only the requirements uncertainty. The sources are shown in Table 3 adapted to

the categorization of this work so that their sources are converted to types of uncertainty

and examples are converted to sources of uncertainty. While the classification between

the works differs, the main content remains the same.

-11-

Table 3. Requirements uncertainty sources [Moynihan 2000] using the classification of this work.

Type of uncertainty Source of uncertainty

Attributes of the application Complexity

Stability

Novelty

Level of change involved

Attributes of the users Number (amount of)

Previous computer experience

Diversity of their needs

Their understanding of the application

Attributes of the analysts/developers Knowledge of the application

Knowledge of the business

Wider aspects of the organisation Any unhelpful `politics' etc.

A wider perspective to uncertainty sources is offered by Saunders and others [2015], who

explore determinants of uncertainty from the point of view of project managers in civil-

nuclear and aerospace projects. Their context differs from the context of this thesis and

their determinants are not strictly the same as sources of uncertainty as in this thesis, but

there is a significant overlap. Saunders and others [2015] group their determinants of un-

certainty around six different themes that they call perspectives, and the determinants are

the actual sources of uncertainty. Environmental perspective refers to uncertainties com-

ing from external factors like regulation or markets. Individual perspective is concerned

with uncertainty sources felt by an individual actor. The complexity perspective consists

of uncertainty sources coming from attributes of the product or technology for example.

Information perspective refers to missing information and lack of understanding and such.

Temporal perspective is about changes in uncertainties during the progress of the project.

Capability perspective centres primarily around the capabilities of the project team and

organization. Summary of these determinants is shown in Table 4.

-12-

Table 4. Determinants of uncertainty [Saunders et al. 2015].

Perspective Determinants of uncertainty

Environmental Political, Economic, Social, Technological,

Legal and Environmental influences

Stakeholder demands

Market and Industry

Institutional norms & decision making

Regulatory framework

Individual Psychological profile

Internal state of mind

Bounded rationality

Fallacy of rational decision making

Complexity Size of project

Product Requirements

Diversity of actors

Technology choices

Nature of supply chain

Information Lack of information, knowledge, understand-

ing of cause and effect relationships

Estimating ability

Clarity of project objectives

Temporal Lifecycle state

Project tempo & timescale

Turbulence

Organisational priority of the project

Capability Skills/expertise of project team

Project management maturity of the organi-

zation

Resource availability at project and industry

level

Supply chain capability

Ward and Chapman [2003] argue that project risk management could be enhanced by

focusing on uncertainty rather than risk. Their context is not software development, but

-13-

rather project management in general. Despite the differences in their context and the

context of this thesis, there are enough similarities for the uncertainties mentioned to be

relevant to this thesis. Ward and Chapman [2003] categorize the uncertainties in different

way than this thesis, but they are compatible with the classification used here. Their

causes of uncertainties are classified into five areas, namely “variability associated with

estimates”, “basis of estimates”, “design and logistics”, “objectives and priorities”, and

“relationships between project parties”. These areas of uncertainty contain different

causes of uncertainty. The uncertainties found in their work are adapted to the categori-

zation used in this work and shown in Table 5.

Table 5. Causes of uncertainty [Ward and Chapman 2003] adapted to classification of this thesis.

Type of uncertainty Source of uncertainty

Variability associated with estimates Lack of a clear specification of what is re-

quired

Novelty, lack or experience of this partic-

ular activity

Complexity in terms of the number of in-

fluencing factors and inter-dependencies

between these factors

Limited analysis of the processes involved

in the activity

Possible occurrence of particular events or

conditions

Uncertainty about the basis of estimates Subjective estimates

Uncertainty about design and logistics Nature of the project deliverable

Process for producing deliverable

Uncertainty about objectives and priori-

ties

Project objectives

Relative priorities between objectives

Acceptable trade-offs

Uncertainty about fundamental relation-

ships between project parties

Specification of responsibilities

Perceptions of roles and responsibilities

Communication across interfaces

Capability of parties

Contractual conditions and their effects

Mechanisms for coordination and control

-14-

Lechler and others [2012] discuss uncertainties and opportunities in project management.

They identify multiple sources of uncertainties across different kinds of projects. Some

of the projects are software development projects, but not all of them. Nonetheless, most

if not all of the sources are still relevant also in the context of this thesis. Lechler and

others [2012] classified their identified sources of uncertainties to six different categories:

“contextual turbulences”, “stakeholders”, “technological uncertainties”, “organizational

uncertainties”, “project uncertainty”, and “malpractice”. Here the contextual turbulences

refer to external changes that can impact the project. Stakeholder uncertainty can arise for

example from customer induced changes. Technological uncertainty relates to issues with

technology. Organizational uncertainty can arise for example from a corporate merger

that causes unexpected changes to project teams. Project uncertainty refers for example

to complexities within a particular project. Malpractice relates to absence of project man-

agement standards for example. Uncertainty sources of Lechler and others [2012] are

shown in Table 6 using the categorization of the authors.

Table 6. Sources of uncertainties [Lechler et al. 2012].

Uncertainty categories Uncertainty sources

Contextual turbulences External legal context

External market context (dynamic)

Regulatory uncertainty

Stakeholder uncertainty Customer-induced changes/contracts/di-

verse needs

Inability of the vendor or contractor

Inexperienced project manager, subcon-

tractor, or outside designers

Unknown project ownership

Contractor-customer relations

False assumptions about capabilities of

contractor

Technological uncertainty Technical issues

Tight technical specifications

Organizational uncertainty Organizational changes

Incompatibility of management system

Project uncertainty Unknown complexity

Malpractice Self-induced uncertainty

-15-

Martinsuo and others [2014] propose a framework on uncertainties and their management

in project portfolios. They identify three distinct types of uncertainties that are further

divided into different uncertainty sources. The categorization they use seems to be the

same or at least very similar to the classification used in this thesis. Their context is not

software development, but rather project portfolios and mostly in other kinds of industries

than software. Despite the differences, there is a distinct overlap between these works.

The uncertainty types identified by Martinsuo and others [2014] are “environmental un-

certainty”, “organizational complexity” and “single project uncertainties”. Environmental

uncertainties are mostly dealing with society or markets like for example changes in leg-

islation, developments in markets, or competitors launching new products. Organizational

complexity is about interproject relations like resource allocation, project prioritization,

or changing organizational structures. Singe project uncertainty relates to schedules, tech-

nical problems, scope of the project and changes in the scope. Table 7 presents a summary

of the uncertainties identified by Martinsuo and others [2014] with examples of the un-

certainties.

-16-

Table 7. Summary of the uncertainties and their examples [Martinsuo et al. 2014].

Type of uncertainty Source of uncertainty Examples

Environment Society Legal developments, regula-

tions, safety, global econ-

omy downturn

Markets Customers, market develop-

ment, price erosion, difficul-

ties to estimate project busi-

ness impact

Industry Competitors, technological

development

Organizational complexity People Organizational structure,

technology push, function

interaction, strategy

Company Organizational structure,

technology push, function

interaction, strategy

Inter-project relations Resource allocation, project

scheduling, project priorities

Single projects Evaluation The business impact of one

project, failure, learning

from single projects, goal

complexity

Project characteristics Special and large customer

supply projects, product de-

velopment site relocation de-

cision

Scope Product features, component

features, platform-develop-

ment

Cost Project budget, product cost

Schedule Project duration

-17-

Dönmez and Grote [2013] present different types of uncertainties in software develop-

ment and how agile teams manage the uncertainties. The classification of uncertainties

they use is in essence the same that is used in this thesis. They have four different cate-

gories that are “resource uncertainties”, “requirements uncertainties”, “task uncertain-

ties”, and “output uncertainties”. Resource uncertainties has sources like technological

artefacts, infrastructure, and human resources. Requirements uncertainties include for ex-

ample lack of details, ambiguous information, and unexpected changes. Task uncertain-

ties relate to sources like missing knowledge about the scope of task or not knowing the

optimal solution. Output uncertainties include for example the amount of accomplishable

work, time required for the task, or quality of the product. Categorized uncertainties are

shown in Table 8.

Table 8. Types and sources of uncertainties [Dönmez and Grote 2013].

Type of uncertainty Source of uncertainty

Resource uncertainties Availability of process artefacts

Quality of input

Availability of human resources

Duration for new team members to

become productive

Requirements uncertainties Lack of details about demanded function-

ality

Ambiguous information

Unexpected requirement changes

Task uncertainties Quality of a problem solution

Unexpected difficulties

Task sequence or process uncertainty

Output uncertainties Time required to accomplish a task

Amount of accomplishable work

Project status

Quality of the product

In their later work Dönmez and Grote [2018] explore the same topic and they present

almost the same types and sources of uncertainties again. The difference in the presenta-

-18-

tion is that they have decided to remove the type “Output uncertainties”, the sources “Du-

ration for new team members to become productive” and “Project status” and organized

the remaining sources somewhat differently into the remaining types.

Taipalus and others [2020] discuss causes, effects, and coping mechanism of uncertainty

in software development. They use a taxonomy of three levels to categorize the causes of

uncertainties, which is fundamentally different from the classification used in this thesis.

The highest level in their taxonomy has three items: “causes stemming from within the

development organization”, “causes stemming from the client organization”, and “causes

stemming from outside the involved organizations”. The middle level is another catego-

rization that has eight items, which all belong to one of the categories above them. Items

in the middle level are “personal matters”, “inefficient conventions”, “organizational pa-

thoses”, “lack of interdisciplinary knowledge”, “lack of problem understanding”, “con-

flicts of interest”, “technical considerations”, and “causes outside the scope of influence”.

Personal matters include causes lack of trust in e.g., developers own abilities, fear for e.g.,

asking for help, and personal problems outside work. Inefficient conventions contain for

example problems in communication due to large team size or unsuitable communication

channels or differences in personal working methods. Organizational pathoses include

themes like inconsistent resource allocation or inability to handle failure on organiza-

tional level. Lack of interdisciplinary knowledge relates to problems where the client and

the developers can’t understand each other. Lack of problem understanding refers to in-

complete requirements and lack of commitment from the client. Conflicts of interest can

arise from situations where the people making decisions on the client side are those who

use the product the least or when different clients have conflicting requirements for the

product. Technical considerations relate to for example evaluation of different technolo-

gies and new, complex enterprise architectures where the new systems have to be inte-

grated. Causes outside the scope of influence are factors that the development or client

organization cannot prevent like for example changes in business or legislative environ-

ments, international clients operating in different legislative environments or problems

with acquiring suitable workforce.

The lowest level contains 24 items or themes in total that all belong to one of the middle

level categories in the taxonomy. This lowest level could be comparable with how the

“source of uncertainty” category is used in this thesis. The causes of uncertainty discussed

by Taipalus and others [2020] are shown in the Table 9 using the taxonomy of three levels

they used in their work.

-19-

Table 9. Summary of the causes of uncertainty [Taipalus et al. 2020].

Causes stemming from

within the development

organization

Personal matters Lack of trust

Fear

Personal problems outside work

Inefficient conventions Large team size

Lack of knowledge concerning

roles

Unsuitable communication chan-

nels

Different personal working

methods

Agile methods

Incompetence

Organizational pathoses Inconsistent resource allocation

Organizational complexities

Failure handling

Causes stemming from

the client organization

Lack of interdiscipli-

nary knowledge

Client does not understand soft-

ware

Team does not understand the

business domain

Lack of problem under-

standing

Lacking initial requirements

New features arise

Lack of commitment from the

client

Conflicts of interest Authority-involvement discrep-

ancy

Prioritization

Causes stemming from

outside the organiza-

tions

Technical considera-

tions

Complex technical environments

Technology evaluation

Causes outside the

scope of influence

Changes in surrounding environ-

ments

Complexities in surrounding en-

vironments

Lack of suitable workforce

-20-

4 Effects of uncertainty

Uncertainty can have various effects for projects ranging from a total disaster to a positive

surprise [Hillson 2002]. The effects of uncertainty are not limited only to project and its

objectives, but instead the effects have an impact on everyone on the project [Taipalus et

al. 2020]. Even if uncertainties can have both positive and negative effects, the potential

opportunities are often neglected [Böhle et al. 2016], because project managers usually

concentrate almost entirely on the negative effects of uncertainty [Hillson 2002]. The

opportunities presented by uncertainty could be beneficial to project value if identified

and exploited [Lechler et al. 2012].

The following two sections present both the negative and positive effects of uncertainty

on the project and on the developers according to the literature.

4.1 Effects on project

The accumulated negative effects of uncertainties in software development projects in-

clude delays in schedule, higher cost, lower product quality and disappointed customers

[Ibrahim et al. 2009]. Uncertainty can also lead to toxic working culture, which can create

misunderstandings and lack of trust [Taipalus et al. 2020], which are both additional

sources of uncertainty themselves. This effect of creating other uncertainties is one rather

typical attribute of uncertainties.

Requirement uncertainty can create delays, budget overruns [Na et al. 2004] and increase

the difficulty of predicting the time and effort needed in the project [Jiang et al. 2009].

Inadequate requirements are also associated with creeping user requirements, that can

cause project overruns, decreased product quality and issues with team morale [Whitaker

2009, p. 161]. Ambiguous requirements may lead to rework, confusion, wasted time and

difficulties in testing the produced features [Whitaker 2009, p. 161].

Ambiguous or inconsistent requirements and frequent changes also increase the difficulty

of understanding the scope of the project and the requirements [Jiang et al. 2009], which

can lead, among other things, to gold plating i.e., creating something more than was nec-

essary [Whitaker 2009, p. 84]. Volatile requirements and disagreements between stake-

holders about the requirements make it harder to agree about the project objectives, scope,

and evaluation metrics, which can lead to difficulties in estimating the schedule and cost

[Jiang et al. 2009]. The direct consequences of the poor estimates include difficulty to

allocate resources correctly, schedule pressure and unrealistic expectations [Jiang et al.

2009].

On the positive side, requirements uncertainty may increase process performance by pro-

moting more interaction between users and creating more learning opportunities [Na et

al. 2004]. Embracing the uncertainty enables exploration and divergent thinking, which

-21-

can create new ideas [Grote 2015]. Uncertainty enhances innovation and can be a seedbed

for creativity [Taipalus et al. 2020]. Also, according to Taipalus and others [2020], new

business domains and technical environments may keep team members vigilant for new

solutions and challenge the current ones.

Lechler and others [2012] identified four categories of opportunities related to uncer-

tainty: technology opportunity, implementation process opportunity, project business op-

portunity and future project business opportunity. Technology opportunity can be for ex-

ample a technical innovation or alternative technology. Implementation process oppor-

tunity could be a new standard process like common build process that can be used in

multiple projects to improve efficiency. Project business opportunity can refer to early

market penetration or new market solution for example. Future project opportunities can

create value that spans broader than the current project like new contracts or gaining

knowledge that is useful in future projects as well. [Lechler et al. 2012]

4.2 Effects on developers

Software developers are stressed workers [Ostberg et al. 2020] and there is evidence that

supports uncertainty being a powerful stressor [Greco and Roger 2003]. It can also cause

fear and anxiety [Carleton 2016]. The effects of stress in short term include concentration

problems and increased error rate, in long term stress may cause dissatisfaction, resigna-

tion, and depression among other things [Ostberg et al. 2020]. Stress is also negatively

associated with software developers’ performance [Rezvani and Khosravi 2019] and high

stress may eventually result in burnout [Sonnentag et al. 1994]. On team level, stress can

have adverse effects on morale and motivation, communication, and cooperation, which

can consequently lead to lower software quality [Ostberg et al. 2020].

According to Taipalus and others [2020], a common effect of uncertainty is dysphoria

i.e., a mental state of unease. In addition to unhealthy amounts of stress, developers may

feel dissatisfied with their implemented solutions, since sometimes there is no certainty

if the solution is a good one or not. The inability to ensure high quality of the work can

also cause feelings of inadequacy, that affects the ability to perform. [Taipalus et al. 2020]

If the uncertainty level is too high, the individual software developer may experience

general reduction in job and cognitive performance as well as reality distortion. Reduction

in job performance may include for example resistance to change, confrontational behav-

iour or social withdrawal. Cognitive performance reduction can include for example ina-

bility to concentrate in the moment or on all the relevant information. Reality distortion

may happen in very critical, high uncertainty situations when actors are unable to con-

centrate, start to over-generalize and lose their objectivity as well as sense of proportion.

[Madsen 2007]

-22-

When the uncertainty level is too high, a group of software developers may engage in

groupthink or competitive rivalry. In such a situation, a well-integrated group is more

likely to unite and engage in groupthink, while inchoate groups might disintegrate and

resort to competitive rivalry within their group or with some other group. [Madsen 2007]

Despite the negative effects of too much uncertainty, some amount of uncertainty is per-

fectly natural and can act as a driver for software developer in search of alternative ap-

proaches, novelty, and change [Madsen 2007]. Uncertainty can be perceived as positive,

if the context is controllable and predictable enough to enable the individual to either cope

with or make sense of the uncertainty [Carleton 2016].

Possibility of self-improvement is a commonly recognized positive effect of uncertainty.

It encourages to learn new technologies, improve working methods, and help social bond-

ing with team members. Uncertainty can also improve motivation, because working with

diverse projects in different business domains and creating novel systems keeps the work

interesting. [Taipalus et al. 2020]

If the level of uncertainty is right, the work is enjoyable, and the developers can concen-

trate in the moment and on all the relevant information. They can pay attention to and

undertake constructive conversations that may help to make sense and take control of the

situation. With appropriate level of uncertainty, a group of developers may co-operate

towards the task goals by employing collaborative critical inquiry and evaluation of al-

ternatives. [Madsen 2007]

-23-

5 Managing uncertainty

Uncertainty management is not about removing all the uncertainties in software develop-

ment projects [Dönmez and Grote 2013]. In practice, completely removing all uncertain-

ties would be costly [Ibrahim et al. 2009] and practically impossible [Perminova et al.

2008]. Eliminating all the uncertainties could also be counterproductive since uncertain-

ties can turn into opportunities [Dönmez and Grote 2018].

Traditional risk management can help with uncertainty management by reducing some of

the uncertainties in a project. Risk management and uncertainty management should be

seen as two distinct, complementary processes [Marinho et al. 2018]. They should both

be incorporated to all decisions and evaluations made during the project [Jaafari 2001]

and they should cover the whole life cycle of project [Ward and Chapman 2008]. Risk

management practice is not discussed here in further detail because it is outside the scope

of this work.

When dealing with uncertainty, the success and practicality of a plan-oriented action is

limited [Böhle et al. 2016]. Keeping the options of the project open is recommended,

since forecasting the future is not possible with any certainty [Jaafari 2001]. No plan will

ever be perfect, and changes might be required during the project [Ibrahim et al. 2009].

Uncertainty management requires the ability to be flexible and keep focus in the project

objectives, while accepting the existence of uncertainty and lack of definitive answers

[Saunders et al. 2015]. Identifying the uncertainties is important part of the process, be-

cause not all of them are critical [Perminova et al. 2008] and different uncertainty types

require distinct approaches in managing them [Dönmez and Grote 2018].

According to Dönmez and Grote [2018], the two prevalent uncertainty management prac-

tices are minimizing the uncertainty and coping with uncertainties. Goal of minimizing

the uncertainty is to remove those uncertainties that can be removed in order to gain more

control. Coping with the uncertainties on the other hand, accepts that uncertainties are

inevitable and aims to manage uncertainty flexibly. Coping approach is at least partly ad-

hoc activity, that has no standards to follow. [Dönmez and Grote 2018]

The following two sections discuss different ways of reducing the uncertainty and coping

with uncertainty according to the literature.

5.1 Reducing uncertainty

There are various strategies and actions that can reduce different uncertainties in software

development projects. At the beginning of the project, the project should be analysed and

characterized to identify relevant uncertainties and the most appropriate management

model should be then selected according to the project type [Marinho et al. 2018]. Dif-

ferent types of techniques that can be used in finding threats and opportunities in the

-24-

project include brainstorming, expert interviews i.e., Delphi method, situation map and

checklists of typical uncertainties [Johansen et al. 2014]. The checklists are problematic

though, because the projects and their scope are so diverse, that no checklist will ever be

comprehensive enough. Using checklist as a starting point that is adapted to the project

context is recommended [Bannerman 2008].

Stakeholders are a major source of uncertainty in projects [Ward and Chapman 2008] and

they should be identified early along with their interests to find those that can affect the

project positively or negatively [Marinho et al. 2018]. Expectations of stakeholders

should be managed in a way that they will be tolerant to changes [Marinho et al. 2015],

as they are likely to happen. The communication with the stakeholders is very important

and it should be continuous during the project [Jiang et al. 2009]. There is a risk of mis-

understandings due to different backgrounds of developers and stakeholders and in order

to accomplish clarity, agreement and to evade misunderstandings, a shared terminology

concepts should be established [Jiang et al. 2009].

Direct and open communication between the developers and users will help to decrease

uncertainty in the requirements [Jiang et al. 2009]. To clarify the requirements, they can

also be gathered from an existing system, inspecting user activities, or uncovered by ex-

perimenting with prototypes for example [Jiang et al. 2009]. If the stakeholders can’t

agree on requirements, one strategy to achieve self-protection could be going bureaucratic

and insist writing everything down in great detail [Moynihan 2000].

Uncertainty associated with changing requirements can be mitigated by doing the devel-

opment in short cyclical phases that makes it possible to refine the project in steps and to

react to changes as they occur [Dönmez and Grote 2018]. The incremental way of build-

ing the project can ensure better adaptability [Moynihan 2000] and as an additional ben-

efit, there are less uncertainties that have to be dealt with at the same time [Axelsson

2011]. Small individual task sizes can help with uncertainties related with the tasks and

simultaneously improve estimations concerning them [Dönmez and Grote 2018].

Uncertainty in decisions can be reduced by getting more information before doing deci-

sions or postpone uncertain decisions until more knowledge will be available [Lipshitz

and Strauss 1997]. It should be noted though, that getting more information can also in-

crease the uncertainty [Grote 2015] when the information is for example ambiguous or

conflicting [Lipshitz and Strauss 1997]. There is also the problem that sometimes the

information might be misleading or even false [Mehta et al. 2014]. Finding the infor-

mation is only the first part, then the developers have to make sense of the information

[Mehta et al. 2014] in order to gain benefit from the information. Acquiring and analysing

the information comes with a cost [Axelsson 2011] and the found information may have

low value [Letier et al. 2014], which can lead to net benefit of the action to be negative.

-25-

Lessons learned and information acquired during past projects can be very useful in mak-

ing estimations about the current project and in reducing the overall uncertainty [Atkinson

et al. 2006], but the knowledge gained during the project may be lost after the project

finishes [Perminova et al. 2008]. Despite the importance of past data, organizations do

not always collect the data, or its availability is too limited to make it useful [Atkinson et

al. 2006]. Investing in proper knowledge management and sharing can be beneficial for

the success rates of projects.

Dönmez and Grote [2018] found ten practices that are used to manage uncertainty by

agile software development teams. They organized their findings in four groups of prin-

ciples where practices within the group share common characteristics. The principles are

“uncertainty anticipation”, “information accrual”, “solution inspection”, and “role-based

coordination”. The ten practices found by Dönmez and Grote [2018] are “incorporating

uncertainty in plans”, “developing vigilance”, “incremental feedback”, “team based task

analysis”, “knowledge sharing”, “prototyping”, “creating alternatives, “creating func-

tional roles, “stakeholder integration, and “task switching”. These principles and practices

are shown in Table 10 with more detailed descriptions of each practice. The practices

partly overlap and supplement uncertainty reducing actions discussed above.

-26-

Table 10. Uncertainty management practices [Dönmez and Grote 2018].

Principle Practice Description

Uncertainty

anticipation

1. Incorporating uncer-

tainty in plans

Acknowledging that changes will occur,

teams try to anticipate and focus on product

requirements least expected to change, yet

remain flexible to adapt their plans.

2. Developing vigilance Team members strive to remain alert to op-

portunities that present themselves.

Information

accrual

3. Incremental feedback Team members frequently collect feedback

from colleagues and external project stake-

holders.

4. Team based task analy-

sis

Team members collectively analyze re-

quirements before they create and plan

tasks.

5. Knowledge sharing Knowledge management structures are es-

tablished to manage resource uncertainty.

Solution in-

spection

6. Prototyping Preliminary versions of the final product

foster discussions on functionality and indi-

cate the quality of different possible solu-

tions.

7. Creating alternatives Developers strive to explore several solu-

tions in parallel to determine which best fits

customer expectations.

Role-based

coordina-

tion

8. Creating functional

roles

Team member roles are created temporally

in order to handle unexpected events effi-

ciently.

9. Stakeholder integration Teams value close collaboration with sup-

pliers and clients and design decision struc-

tures accordingly.

10. Task switching Teams aim to create structures that permit

developers to flexibly distribute tasks to

freed resources.

-27-

5.2 Coping with uncertainty

While multiple different strategies and practices for reducing uncertainty in software de-

velopment projects can be found in the literature, the methods for coping with uncertainty

are by far fewer [Dönmez and Grote 2018]. The approaches found in this literature review

can be roughly categorized in approaches for project manager and those of individual

developers.

Marinho and others [2014] state that while project managers can try to reduce the uncer-

tainty, it will never be a complete success. Unexpected situations will arise during the

project and there are four strategies available that can be used to cope with the uncertainty.

Suppression is aimed at minimizing the impact of unexpected situation so that the project

can be steered back to the initial plan. Adapt is to accept some level of uncertainty and to

be ready to react and contain the impacts of unexpected events if needed. Detour aims to

divert away from the areas of uncertainty, but most of the time this is not an available

option. Not all uncertainties can be avoided, or the action might just introduce more un-

certainties. Reorient is a complete overhaul of the project objectives and should be used

only if it is the only option. [Marinho et al. 2014]

High degree of freedom of the project team is connected to better handling of unexpected

events while micromanagement and tight control by higher hierarchical levels does the

opposite [Geraldi et al. 2010]. Trust between the project stakeholders increases the team

cohesion and more cohesive teams can perform better with uncertainties [Marinho et al.

2018]. Trusting the skills and understanding of other team members can in itself also

facilitate better success when facing uncertainty [Geraldi et al. 2010].

Taipalus and others [2020] identified four mechanisms that can be used to cope with un-

certainty in software development: “change in attitude”, “emphasizing roles”, “openness

in communication”, and “involvement with the client”. Some of these mechanisms can

be actualized by project management or the organization and others by individual devel-

opers. These uncertainty coping mechanisms are shown in Table 11 with examples that

give further details of the coping mechanisms.

-28-

Table 11. Uncertainty coping mechanisms [Taipalus et al. 2020].

Coping mechanism Example

Change in attitude Accept uncertainty as an integral element in software devel-

opment and that learning new technologies etc. is a contin-

uous process when working with software.

Organizations should support developers to experiment and

be tolerant to resulting inevitable failures. The failures could

be taken as lessons learned if handled properly.

Emphasizing roles Developers need to know who they can ask help in technical

or managerial problems.

Developers should know their role in the organization and

the roles of other people related to their work.

Distribution of responsibilities should be clear within team.

Organization should make it clear to the client that the de-

velopers are experts in software development and the client

is the expert in their own business domain.

Openness in communi-

cation

Trust is important in software development and open admit-

ting of possible problems, uncertainties or failures increases

the trust with the client and within the development team.

Finding out problems that have been left untold decreases

the trust between project parties.

Involvement with the

client

Active participation of the client during the whole project

life cycle can prevent unnecessary work and psychological

problems.

Developers and the client should invest time in the initial

requirements analysis and the client should also describe

their business domain thoroughly enough that the develop-

ers understand the reason for the needed features.

The end-users should be involved with the development in

activities like acceptance testing or participatory design.

-29-

6 Uncertainty and software development processes

There are a lot of differences between software development projects, and they should be

characterized properly based on their attributes so that the correct management method

can be chosen [Marinho et al. 2018]. Type and amount of uncertainty is one such attribute

[De Meyer et al. 2002]. Another important factor to consider when choosing management

approach and structure for project is how critical the project is [Howell et al. 2010].

Two commonly compared distinct software development processes are waterfall software

methodology and agile software methodology [Aitken and Ilango 2013]. Waterfall ap-

proach is usually today referred to as the traditional or plan-driven software development

process. It is said to originate from Winston Royce’s publication from 1970 [Clarke and

O’Connor 2012]. Agile methodology is based on Agile Manifesto that was published in

2001 and has since made a considerable change to how software development is done

today [Dingsøyr et al. 2012].

Comparing these two alternative approaches of software development management is

somewhat of a straw-man comparison [Aitken and Ilango 2013]. In reality, it is common

for software development projects to use elements from both of these methodologies and

pure adaptations of these approaches are rare in practice. Projects that are managed with

a plan-driven process usually use also iterative and incremental workflows [Aitken and

Ilango 2013], which are defining features of Agile methods. According to Aitken and

Ilango [2013], projects managed with Agile process may also use some elements usually

addressed to the waterfall approach.

Even though the comparison of waterfall process and Agile process is somewhat prob-

lematic, that is the approach used in this thesis. As project teams tend to use elements

from both methodologies, they should both be understood. In the following sections an

overview of both of these software development processes is given first, and finally these

processes are discussed in relation to uncertainty.

6.1 Traditional software development

Traditional software development process is specifically characterized by doing most of

the planning and design work in the start of the project and then proceeding with sequen-

tially completed steps that tend to be large independent parts of the project. The approach

is linear and predictable [Gemino et al. 2021]. The purpose of emphasizing the upfront

collecting of requirements and planning is to anticipate and avoid surprises [Howell et al.

2010] so that the process can be done in steps that are completed in a rigid manner from

start to finish one at a time. The sequential flow of the steps in waterfall method is shown

in Figure 1 as presented by Whitaker [2009, p. 252]. There is a slight overlap between the

steps in time, but generally the steps are flowing from previous to the next one in a manner

similar to a waterfall [Whitaker 2009, p. 252].

-30-

Figure 1. Waterfall software methodology flow [Whitaker 2009, p. 252].

In addition to heavy upfront planning and sequential workflow there are also other typical

characteristics in traditional software development process. These are shown in Table 12

according to Whitaker [2009, p. 251].

Table 12. Characteristics of waterfall software methodology [Whitaker 2009, p. 251].

Feature Description

Specifications Exactly defined and lots of them.

Schedules Made with precise delivery dates.

Sequence of events One process following another in linear manner.

Adaptability to changes Rigid and not adaptable.

Understandability Easy to understand even without technical background.

Usefulness to the team Not very useful, but management may like it.

Customer involvement Usually at or near the end of project.

-31-

6.2 Agile software development

Agile software development is a more modern, fundamentally different development

methodology than waterfall approach. Agile way of working originates from the year

2001 when the Agile Manifesto was released by a group of developers, who wanted to

improve how software was developed. Agile Manifesto highlights a set of four values,

that should be the guiding principle in developing software: “individuals and interactions

over processes and tools, working software over comprehensive documentation, customer

collaboration over contract negotiation, and responding to change over following a plan”

[Beck et al. 2001]. In addition to the four core values, the manifesto declared twelve

principles that should be followed including welcoming change in requirements, frequent

and constant delivery of working software, and preferring face-to-face communication

[Beck et al. 2001].

Agile Manifesto defines the values and principles quite broadly and different people can

interpret them in various ways [Aitken and Ilango 2013]. After the publication of the

manifesto there has been multiple different methodologies that are more or less based on

Agile Manifesto [Dingsøyr et al. 2012]. Some of these methodologies include eXtreme

Programming aka XP, Scrum, Crystal Methods, and Feature Driven Development aka

FDD [Dingsøyr et al. 2012]. These methodologies have gained wide popularity amongst

the software developers and changed the industry along the way [Eloranta et al. 2016].

Particularly Scrum has become extremely popular [Eloranta et al. 2016].

When compared to traditional software development, agile has completely different ap-

proach to change: the former abhors the change while agile embraces the change [Sillitti

et al. 2005]. The work is divided in multiple short iterations, where every iteration goes

through about the same steps that are included in the waterfall process [Whitaker 2009,

p. 256] and the project progresses step by step towards a more complete product. Itera-

tions are typically between two to four weeks long and at the end of each iteration, a

working version of the software should be released if possible [Whitaker 2009, pp. 256-

257]. Requirements are gathered in all iterations, which allows the customers to specify

their needs more accurately as the work progresses and more is understood about the

project [Sillitti et al. 2005]. Customers are kept close to the development team to be able

to get direct feedback from them [Dingsøyr et al. 2012], which can help shaping the pro-

ject further towards the goal [Whitaker 2009, p. 256]. The architecture of the project is

kept as flexible as possible by creating first only the minimum architecture needed to

implement the current requirements and delaying the binding architectural decisions until

more is known when possible [Sillitti et al. 2005].

According to Cockburn and Highsmith [2001], agile development might not be suitable

for all teams. Agile software development is best suited for co-located teams with no more

-32-

than 50 people at maximum [Williams and Cockburn 2003]. Teams need to have mutual

trust and respect, and they must be able to deal with ambiguity [Cockburn and Highsmith

2001]. The projects developed by agile teams would better not be life-critical [Williams

and Cockburn 2003]. Organization culture may also turn out to be a problem causing a

failure in adopting agile principles [Cockburn and Highsmith 2001]. Organizational skills

are important for individual developers working with agile methods and because of this,

developers with poor organizational skills may experience severe problems when work-

ing in agile environment [Venkatesh et al. 2020].

Since Scrum is the most popular Agile method at the moment [Hoda et al. 2018], it will

be described in further detail. It should be noted though, that companies usually do not

follow all practices of Scrum to the letter, but instead they use the ideas and practices that

fit them the best [Eloranta et al. 2016]. This approach is known as ScrumBut [Eloranta et

al. 2016].

The teams in Scrum should be cross-functional and self-organized. In practice this means

that teams should have all the needed expertise to build the software products and that

teams members coordinate their work by themselves. There are only three distinct roles

in Scrum teams: Product owner, Scrum master and the developers. Product owner is the

representative of the customer and manages the so-called Product Backlog. Scrum master

is responsible for mentoring the team, removing any obstacles slowing the team down

and ensures that the Scrum process is followed. Developers are responsible for develop-

ing the project. [Eloranta et al. 2016]

The project developed using Scrum is divided into Sprints, which are short iterations last-

ing usually from two to four weeks. Project requirements are collected in Product Backlog

as Product Backlog Items. In one Sprint, a set of Product Backlog Items are chosen to be

implemented during that Sprint. The chosen items are transformed into a task list, which

forms a plan for implementing the chosen Product Backlog Items. The items on the list

are called Sprint Backlog Items and the list itself is called Sprint Backlog. During the

Sprint these Sprint Backlog Items are implemented. The team have a short meeting daily

which is called Daily Scrum. Ideally after the Sprint, a working version of the product

can be delivered to the customer. After the Sprint is finished, two meetings are held.

Sprint review is a meeting where the improvements implemented during Sprint are shown

to key stakeholders to gather feedback. Retrospective is a meeting where the team to dis-

cusses how the working process could be improved and what could be done better in

future. [Eloranta et al. 2016]

6.3 Processes in relation to uncertainty

The literature discusses surprisingly little how suitable different software development

processes are in relation to uncertainty, considering that development processes have such

-33-

fundamental differences between them. There seems to be a consensus that major factors

in suitability of the development process are the type and characteristics of the project.

When the level of uncertainty in the project is high, the recommendation is to not use the

waterfall approach [Moynihan 2000]. The difficulties in using the waterfall methodology

might increase considerably if the project has long timespan in addition to high level of

uncertainty [Johansen et al. 2014].

The projects tend to range from those that have clear and precisive goals at the beginning

to those that have ill-defined purposes and stakeholders may disagree with the goals or

have different expectations about the end product [Atkinson et al. 2006]. In a typical

project the uncertainty is at its highest at the beginning and will gradually get lower as

the project progresses, but in projects developed in changing environments and with high

complexity the uncertainty may stay on high levels for the whole duration of the project

[Jaafari 2001].

If the level of uncertainty in project is low, the planning and control approach works well

[Jun et al. 2011] and with high levels of uncertainty the role of flexibility and learning is

emphasised, and planning is less effective [De Meyer et al. 2002]. Obviously in innova-

tion projects the need for flexibility is high, while projects involving risk for human life

or environment the need for control is of paramount importance [Grote 2015].

Flexibility is needed for managing uncertainties and unexpected events [Dönmez and

Grote 2013], while stability is required for control [Grote 2015]. While at first glance

these attributes might seem to exclude each other, they might actually support each other

in some cases and they both offer distinct advantages [Grote 2015]. Use of routines and

standards create stability and increase control and predictability, which consequently re-

duces the uncertainties involved, while flexibility helps in learning and adapting to situa-

tions with uncertainty [Grote 2015]. Both flexibility and stability are needed in projects

and a correct balance between them is important for succeeding in managing the uncer-

tainties [Dönmez and Grote 2013].

The problems with relying too much on plans made in the early phase of the project are

clear. Unexpected events are bound to happen eventually and coping with them is simply

not possible by calculating them beforehand or managing them with sticking to the plan

[Böhle et al. 2016]. The plans are made with assumptions about variety of things and with

increased uncertainty these assumptions are farther from the actual reality [Howell et al.

2010]. Precise early planning is often not an option, since usually the projects contain

initial unknown variables, knowledge needed for crucial decisions might not be available

or situations may change during the course of the project [Jaafari 2001].

The agile approach to executing the development in short iterations helps to address these

problems. When the plans and the project are created gradually step-by-step during the

-34-

iterations, the information needed for decisions is easier to get at the right time and the

inherent flexibility of the process helps to react to unexpected changes. The tendency to

break the project into small tasks and get continuous feedback from the customer also

supports in managing the uncertainty [Dönmez and Grote 2018]. Including the user expert

as part of the development team enables rapid feedback on advancements and at the same

time, this makes it easier to notice if the developers have misunderstood requests or if

some of the user requests are not truly working as intended [Cockburn and Highsmith

2001].

In general sense agile software development is better suited to managing uncertainty than

traditional software development, but the uncertainty management in agile approaches is

indirect and passive [Dönmez and Grote 2018]. Better understanding of uncertainty and

deliberate managing of it could increase the success of dealing with uncertainty. It should

be kept in mind though, that some aspects of agile might also increase the uncertainty like

high levels of autonomy related to self-organizing teams [Aitken and Ilango 2013] and

the strive to embrace the change.

In some projects the traditional software development might still be the better choice.

When the project requires strict control, stability and adherence to standards, regulations

etc., the waterfall-style project management delivers these qualities. Waterfall approach

has some obvious flaws though, like the inability to react properly to unexpected changes

and the difficulty to create a foolproof plan at the start of the project when many relevant

variables are still unknown.

-35-

7 Summary

It is common for software development projects to not succeed as intended and one of the

reasons for this is uncertainty. Uncertainty is an inherent, ever-present phenomenon in

software development that has many types and sources and affects all stakeholders in the

projects. In most cases, uncertainty is seen solely as a threat, but sometimes it can also be

a possibility.

This thesis explored the concept of uncertainty in the context of software development by

conducting a literary review on the topic. Due to lack of academic papers focused espe-

cially on uncertainty in the context of software development, some studies are used from

other disciplines as well. The purpose of this thesis was to develop deeper understanding

of uncertainty by examining causes, effects and managing options of uncertainty, and

how suitable different software development processes are in relation to uncertainty.

Definition of the term uncertainty is elusive and ambiguous, hence there is no consensus

about the exact definition of uncertainty. As a concept it is multifaceted and it can mean

different things depending on who uses the term, but most studies define uncertainty as

lack of information or knowledge with slight variations in deeper details. Also concepts

of ambiguity, sense of doubt, and unexpected events are linked to uncertainty. Term risk

has been commonly associated with uncertainty, but they are distinct concepts that have

similarities but are fundamentally different.

Uncertainty has different types and sources, which should be recognized since different

uncertainties require different approaches. To distinguish these from each other, a cate-

gorization is necessary. This thesis used a classification where type represents broadly

what the uncertainty is about, and the source represents what is causing the uncertainty.

Some of the uncertainty types included for example requirements, situation, variability,

and technology. The sources of uncertainty included complexity, ambiguity, lack of trust

and lack of information for example.

Effects of uncertainty are wide ranging, and they have impact on all stakeholders of the

project. Those effects may be positive or negative, but most of the time the positive effects

are ignored. Negative effects on the development projects include for example delays in

schedule, budget overruns, decreased product quality, wasted time and poor estimates.

Positive effects on the project can be for example innovation and new solutions. Devel-

opment can also lead to components that can be used in multiple projects to improve

efficiency. On the individual developers the negative effects of uncertainty include stress

and dysphoria, feelings of inadequacy and reduction in cognitive performance for exam-

ple. The positive effects of uncertainty on individual developer can be like possibility of

self-improvement and motivation.

-36-

Uncertainty management is divided into reducing uncertainty and coping with uncer-

tainty. Removing all uncertainties is practically impossible, and it would not be recom-

mended anyway, since the uncertainties can also turn into opportunities. There are many

ways to reduce the uncertainty and the approach depends on the type of uncertainty. For

example, uncertainty related to stakeholders can be reduced by maintaining direct and

continuous communication with them during the project and making sure that the devel-

opers and stakeholders have a shared terminology to evade misunderstandings. Uncer-

tainty related to changing requirements can be reduced by dividing the development of

the project to short cyclical iterations, where the project is completed step by step gradu-

ally progressing towards the completed project. Coping with uncertainty is easier when

the development team has high degree of autonomy, and they trust in each other. Mech-

anisms that facilitate coping with uncertainty are for example change in attitude and em-

phasizing roles.

When considering the suitability of a software development process in relation to uncer-

tainty, major influencing factors are the type and characteristics of the project. If the level

of uncertainty is low or the project is dealing with a life-critical product, then traditional

software development process might be a good choice. When the level of uncertainty is

high, then the use of agile software development process is recommended. Traditional

software development process offers stability and control but lacks in ability to respond

to changes. Agile software development process offers flexibility and ability to respond

to changes among other things, but at the same time may the process increase uncertain-

ties due to some aspects of the methodology.

This thesis has limitations related to the research method, source material used, and the

subject itself. A more in-depth systematic literature review could give more robust results,

but it was not considered a possibility for this work because of the fuzziness involved

with the topic and the lack of studies exploring exactly the same context. Since the amount

of studies concentrated on uncertainty in the context of software development is limited,

this narrows the viewpoint and the depth of this literary review. Another significant lim-

itation relates to the definition of the term uncertainty. Since there is no consensus of the

exact definition, it causes the whole subject to be confusing to a degree.

More research on the subject is needed. Some directions for the future research could

include defining the term uncertainty with more confidence and creating a solid classifi-

cation scheme for different types and sources of uncertainty. From the context of software

development, the psychological side of uncertainty should be researched more for the

sake of finding more coping methods for the inevitable uncertainty.

-37-

References

Aitken, A., & Ilango, V. (2013). A comparative analysis of traditional software engineer-

ing and agile software development. In: 2013 46th Hawaii International Confer-

ence on System Sciences, 4751–4760. https://doi.org/10.1109/HICSS.2013.31

Atkinson, R., Crawford, L., & Ward, S. (2006). Fundamental uncertainties in projects

and the scope of project management. International Journal of Project Manage-

ment, 24(8), 687–698. Scopus. https://doi.org/10.1016/j.ijproman.2006.09.011

Axelsson, J. (2011). On how to deal with uncertainty when architecting embedded soft-

ware and systems. In: I. Crnkovic, V. Gruhn, & M. Book (Eds.), Software Archi-

tecture (pp. 199–202). Springer. https://doi.org/10.1007/978-3-642-23798-0_20

Bannerman, P. L. (2008). Risk and risk management in software projects: A reassess-

ment. Journal of Systems and Software, 81(12), 2118–2133.

https://doi.org/10.1016/j.jss.2008.03.059

Beck, K., Beedle, M., Bennekum, A. van, Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor,

S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for Agile Soft-

ware Development. http://agilemanifesto.org/

Böhle, F., Heidling, E., & Schoper, Y. (2016). A new orientation to deal with uncertainty

in projects. International Journal of Project Management, 34(7), 1384–1392. Sco-

pus. https://doi.org/10.1016/j.ijproman.2015.11.002

Carleton, R. N. (2016). Into the unknown: A review and synthesis of contemporary mod-

els involving uncertainty. Journal of Anxiety Disorders, 39, 30–43.

https://doi.org/10.1016/j.janxdis.2016.02.007

Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the software

development process: Towards a comprehensive reference framework. Information

and Software Technology, 54(5), 433–447.

https://doi.org/10.1016/j.infsof.2011.12.003

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor.

Computer, 34(11), 131–133. https://doi.org/10.1109/2.963450

De Meyer, A., Loch, C. H., & Pich, M. T. (2002). Managing project uncertainty: From

variation to chaos. MIT Sloan Management Review, 43(2), 60–67.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile method-

ologies: Towards explaining agile software development. Journal of Systems and

Software, 85(6), 1213–1221. Scopus. https://doi.org/10.1016/j.jss.2012.02.033

Dönmez, D., & Grote, G. (2013). The practice of not knowing for sure: How agile teams

manage uncertainties. Lecture Notes in Business Information Processing, 149, 61–

75. Scopus. https://doi.org/10.1007/978-3-642-38314-4_5

-38-

Dönmez, D., & Grote, G. (2015). The two faces of uncertainty: Threat vs Opportunity

management in agile software development. Lecture Notes in Business Information

Processing, 212, 193–198. Scopus. https://doi.org/10.1007/978-3-319-18612-2_16

Dönmez, D., & Grote, G. (2018). Two sides of the same coin – how agile software de-

velopment teams approach uncertainty as threats and opportunities. Information

and Software Technology, 93, 94–111. https://doi.org/10.1016/j.infsof.2017.08.015

Eloranta, V.-P., Koskimies, K., & Mikkonen, T. (2016). Exploring ScrumBut—An em-

pirical study of Scrum anti-patterns. Information and Software Technology, 74,

194–203. Scopus. https://doi.org/10.1016/j.infsof.2015.12.003

Gemino, A., Horner Reich, B., & Serrador, P. M. (2021). Agile, traditional, and hybrid

approaches to project success: Is hybrid a poor second choice? Project Management

Journal, 52(2), 161–175. Scopus. https://doi.org/10.1177/8756972820973082

Geraldi, J. G., Lee-Kelley, L., & Kutsch, E. (2010). The Titanic sunk, so what? Project

manager response to unexpected events. International Journal of Project Manage-

ment, 28(6), 547–558. https://doi.org/10.1016/j.ijproman.2009.10.008

Greco, V., & Roger, D. (2003). Uncertainty, stress, and health. Personality and Individual

Differences, 34(6), 1057–1068. https://doi.org/10.1016/S0191-8869(02)00091-0

Grote, G. (2015). Promoting safety by increasing uncertainty – Implications for risk man-

agement. Safety Science, 71, 71–79. https://doi.org/10.1016/j.ssci.2014.02.010

Hillson, D. (2002). Extending the risk process to manage opportunities. International

Journal of Project Management, 20(3), 235–240. Scopus.

https://doi.org/10.1016/S0263-7863(01)00074-6

Hoda, R., Salleh, N., & Grundy, J. (2018). The Rise and evolution of agile software de-

velopment. IEEE Software, 35(5), 58–63.

https://doi.org/10.1109/MS.2018.290111318

Howell, D., Windahl, C., & Seidel, R. (2010). A project contingency framework based

on uncertainty and its consequences. International Journal of Project Management,

28(3), 256–264. https://doi.org/10.1016/j.ijproman.2009.06.002

Hughes, D. L., Rana, N. P., & Simintiras, A. C. (2017). The changing landscape of IS

project failure: An examination of the key factors. Journal of Enterprise Infor-

mation Management, 30(1), 142–165. https://doi.org/10.1108/JEIM-01-2016-0029

Ibrahim, H., Far, B. H., Eberlein, A., & Daradkeh, Y. (2009). Uncertainty management

in software engineering: Past, present, and future. In: 2009 Canadian Conference

on Electrical and Computer Engineering, 7–12.

https://doi.org/10.1109/CCECE.2009.5090081

Jaafari, A. (2001). Management of risks, uncertainties and opportunities on projects:

Time for a fundamental shift. International Journal of Project Management, 19(2),

89–101. https://doi.org/10.1016/S0263-7863(99)00047-2

-39-

Jiang, J. J., Klein, G., Wu, S. P. J., & Liang, T. P. (2009). The relation of requirements

uncertainty and stakeholder perception gaps to project management performance.

Journal of Systems and Software, 82(5), 801–808.

https://doi.org/10.1016/j.jss.2008.11.833

Johansen, A., Halvorsen, S. B., Haddadic, A., & Langlo, J. A. (2014). Uncertainty man-

agement – A methodological framework beyond “The Six W’s”. Procedia - Social

and Behavioral Sciences, 119, 566–575.

https://doi.org/10.1016/j.sbspro.2014.03.063

Jun, L., Qiuzhen, W., & Qingguo, M. (2011). The effects of project uncertainty and risk

management on IS development project performance: A vendor perspective. Inter-

national Journal of Project Management, 29(7), 923–933.

https://doi.org/10.1016/j.ijproman.2010.11.002

Laplante, P. A., & Neill, C. J. (2005). Uncertainty: A meta-property of software. In: 29th

Annual IEEE/NASA Software Engineering Workshop, 228–233.

https://doi.org/10.1109/SEW.2005.48

Lechler, T. G., Edington, B. H., & Gao, T. (2012). Challenging classic project manage-

ment: Turning project uncertainties into business opportunities. Project Manage-

ment Journal, 43(6), 59–69. Scopus. https://doi.org/10.1002/pmj.21304

Letier, E., Stefan, D., & Barr, E. T. (2014). Uncertainty, risk, and information value in

software requirements and architecture. In: Proceedings of the 36th International

Conference on Software Engineering (ICSE 2014), 883–894. Scopus.

https://doi.org/10.1145/2568225.2568239

Lipshitz, R., & Strauss, O. (1997). Coping with uncertainty: A naturalistic decision-mak-

ing analysis. Organizational Behavior and Human Decision Processes, 69(2), 149–

163. https://doi.org/10.1006/obhd.1997.2679

Madsen, S. (2007). Conceptualising the causes and consequences of uncertainty in IS

development organisations and projects. In: Proceedings of the 15th European Con-

ference on Information Systems (ECIS) 2007. 855–864.

Marinho, M., Sampaio, S., Luna, A., Lima, T., & Moura, H. (2015). Dealing with uncer-

tainties in software project management. In: 2015 IEEE International Conference

on Computer and Information Technology; Ubiquitous Computing and Communi-

cations; Dependable, Autonomic and Secure Computing; Pervasive Intelligence

and Computing, 889–894.

https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.133

Marinho, M., Sampaio, S., & Moura, H. (2014). Uncertainties in software projects man-

agement. In: 2014 XL Latin American Computing Conference (CLEI), 1–10.

https://doi.org/10.1109/CLEI.2014.6965153

-40-

Marinho, M., Sampaio, S., & Moura, H. (2018). Managing uncertainty in software pro-

jects. Innovations in Systems and Software Engineering, 14(3), 157–181. Scopus.

https://doi.org/10.1007/s11334-017-0297-y

Martinsuo, M., Korhonen, T., & Laine, T. (2014). Identifying, framing and managing

uncertainties in project portfolios. International Journal of Project Management,

32(5), 732–746. Scopus. https://doi.org/10.1016/j.ijproman.2014.01.014

Mehta, N., Hall, D., & Byrd, T. (2014). Information technology and knowledge in soft-

ware development teams: The role of project uncertainty. Information & Manage-

ment, 51(4), 417–429. https://doi.org/10.1016/j.im.2014.02.007

Moynihan, T. (2000). Coping with ‘requirements-uncertainty’: The theories-of-action of

experienced IS/software project managers. Journal of Systems and Software, 53(2),

99–109. https://doi.org/10.1016/S0164-1212(00)00049-2

Na, K.-S., Li, X., Simpson, J. T., & Kim, K.-Y. (2004). Uncertainty profile and software

project performance: A cross-national comparison. Journal of Systems and Soft-

ware, 70(1), 155–163. https://doi.org/10.1016/S0164-1212(03)00014-1

Ostberg, J.-P., Graziotin, D., Wagner, S., & Derntl, B. (2020). A methodology for psy-

cho-biological assessment of stress in software engineering. PeerJ Computer Sci-

ence. https://doi.org/10.7717/peerj-cs.286

Perminova, O., Gustafsson, M., & Wikström, K. (2008). Defining uncertainty in projects

– a new perspective. International Journal of Project Management, 26(1), 73–79.

https://doi.org/10.1016/j.ijproman.2007.08.005

Rezvani, A., & Khosravi, P. (2019). Emotional intelligence: The key to mitigating stress

and fostering trust among software developers working on information system pro-

jects. International Journal of Information Management, 48, 139–150.

https://doi.org/10.1016/j.ijinfomgt.2019.02.007

Saunders, F. C., Gale, A. W., & Sherry, A. H. (2015). Conceptualising uncertainty in

safety-critical projects: A practitioner perspective. International Journal of Project

Management, 33(2), 467–478. https://doi.org/10.1016/j.ijproman.2014.09.002

Sillitti, A., Ceschi, M., Russo, B., & Succi, G. (2005). Managing uncertainty in require-

ments: A survey in documentation-driven and agile companies. In: 11th IEEE In-

ternational Software Metrics Symposium (METRICS’05), 10–17.

https://doi.org/10.1109/METRICS.2005.29

Sonnentag, S., Brodbeck, F. C., Heinbokel, T., & Stolte, W. (1994). Stressor-burnout

relationship in software development teams. Journal of Occupational & Organiza-

tional Psychology, 67(4), 327–341. https://doi.org/10.1111/j.2044-

8325.1994.tb00571.x

-41-

Taipalus, T., Seppänen, V., & Pirhonen, M. (2020). Uncertainty in information system

development: Causes, effects, and coping mechanisms. Journal of Systems and

Software, 168, 110655. https://doi.org/10.1016/j.jss.2020.110655

Ubayashi, N., Kamei, Y., & Sato, R. (2019). Modular programming and reasoning for

living with uncertainty. In: M. van Sinderen & L. A. Maciaszek (Eds.), Software

Technologies (pp. 220–244). Springer International Publishing.

https://doi.org/10.1007/978-3-030-29157-0_10

Venkatesh, V., Thong, J. Y. L., Chan, F. K. Y., Hoehle, H., & Spohrer, K. (2020). How

agile software development methods reduce work exhaustion: Insights on role per-

ceptions and organizational skills. Information Systems Journal, 30(4), 733–761.

Scopus. https://doi.org/10.1111/isj.12282

Wang, Q. Z., & Liu, J. (2006). Project uncertainty, management practice and project per-

formance: An empirical analysis on customized information systems development

projects. In: 2006 IEEE International Engineering Management Conference, 341–

345. https://doi.org/10.1109/IEMC.2006.4279882

Ward, S., & Chapman, C. (2003). Transforming project risk management into project

uncertainty management. International Journal of Project Management, 21(2), 97–

105. https://doi.org/10.1016/S0263-7863(01)00080-1

Ward, S., & Chapman, C. (2008). Stakeholders and uncertainty management in projects.

Construction Management and Economics, 26(6), 563–577.

https://doi.org/10.1080/01446190801998708

Whitaker, K. (2009). Principles of Software Development Leadership: Applying Project

Management Principles to Agile Software Development. Course Technology, 2009.

Williams, L., & Cockburn, A. (2003). Agile software development: It’s about feedback

and change. Computer, 36(6), 39–43. https://doi.org/10.1109/MC.2003.1204373

