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ABSTRACT 
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Demolition waste is produced when buildings or other infrastructure approach the end of their 
life and are demolished. To support the objectives of circular economy and financial interests, 
demolition waste can be processed to produce recycled aggregates and by-products using 
crushing and screening equipment. Due to the nature and components of the demolition waste, 
the crushing and screening process is subject to different disturbances, which can compromise 
the efficiency of operation along with other negative effects. 

Directions for future development of the machinery for processing demolition waste have 
sparked the need to research the possibility of the equipment achieving a level of awareness on 
the state of the process. Ultimately, the crushing and screening plant could detect the problematic 
process state in an early phase and avoid serious consequences that might result from for 
example a total blockage of the machine. 

This thesis researches the subject with several methods. A literature review was done to 
collect information on the subject and to get familiar with different approaches used elsewhere in 
the industry. An interview study was conducted to gather existing knowledge about the demolition 
waste crushing process and different failure types that may occur during the process. Information 
from these two phases were used to build understanding on monitoring the crushing and 
screening process. Finally, an empirical part of the study was carried out, consisting of a 
measurement campaign on a real-world process, and a failure case -based analysis for the 
measurement data. 

As a result from the interview study and follow-up analysis, an overview of the demolition waste 
crushing process and its possible failure modes was formed. The scope of the thesis was limited 
to track-driven impactor crushing plants, and the results and analysis maintained this focus as 
well. A total of 11 failure modes were identified, along with their possible causes, root causes and 
effects on the process. 

The measurement campaign was planned with objectives derived from the scope of this thesis 
as well as interests within a wider scope. Three working days of plant operation were captured 
using data acquisition equipment and microphones, accelerometers, existing signals on the 
control system of the plant, as well as additional mechanical sensors. The data was analysed on 
a failure case -based approach, utilizing all information gathered in the previous phases. 

Results of the analysis indicate that detecting anomalies from the crushing process can be 
done using data from audio-, vibration-, and other domains, but performance greatly depends on 
the type of process failure and the nature of associated phenomena, also being dependent on 
correct sensor selection and placement. Different data types were demonstrated to be useful in 
the analysis, but the overall picture is governed by variability in the process and possible ways it 
can fail. In the literature, modern deep learning -based methods were suggested as a solution to 
combat the complexity, but they could not be included in the scope of this work. 
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Purkujätettä syntyy, kun rakennuksia tai muuta infrastruktuuria puretaan niiden tultua 
käyttöikänsä päähän. Purkujätettä voidaan kiertotalouden tavoitteisiin vastaamiseksi ja 
taloudellisista syistä hyödyntää tuottamalla siitä kierrätettyä kiviainesta murskaus- ja 
seulontalaitteilla. Purkujätteen luonnostaan sisältämien ainesosien vuoksi sen murskaus- ja 
seulontaprosessi on häiriöherkkä, aiheuttaen mahdollisia negatiivisia vaikutuksia, kuten ongelmia 
tuotannon tehokkuudelle. 

Purkujätteen murskauslaitteiden tulevaisuutta pohdittaessa esille tulee tarve tutkia 
mahdollisuutta, että koneet kykenisivät valvomaan oman prosessinsa tilaa. Tämän kaltainen 
ominaisuus mahdollistaisi toiminnan, jossa murskaus- ja seulontalaitteet tunnistaisivat 
prosessissa kehittyvän ongelmatilanteen aikaisessa vaiheessa ja kykenisivät toimenpiteillään 
välttämään ongelmatilanteesta mahdollisesti aiheutuvat vakavat seuraukset, kuten koko laitoksen 
tukkeutumisen. 

Tässä diplomityössä aihetta tutkitaan usealla tutkimusmenetelmällä. Kirjallisuuskatsauksessa 
kerätään tietoa aiheesta, sekä tutustutaan teollisuudessa käytössä oleviin menettelytapoihin. 
Työn osana järjestetyssä haastattelututkimuksessa kootaan purkujätteen murskausprosessista 
ja sen aikana esiintyvistä ongelmatilanteista olemassa olevaa tietoa. Näiden vaiheiden aikana 
kerätyn tiedon perusteella pyritään rakentamaan ymmärrystä purkujätteen murskausprosessin 
valvonnasta. Lopuksi tutkimuksessa toteutetaan käytännön osuus, joka koostuu todellisen 
murskausprosessin toimintaa tarkastelevasta mittausjaksosta, sekä ongelmatilannetapausten 
pohjalta tehdystä mittausdatan analyysistä. 

 Haastattelututkimuksen ja siitä kerätyn aineiston analyysin perusteella työssä muodostettiin 
kokonaiskuva purkujätteen murskausprosessista ja sen mahdollisista vikatilanteista. Työssä 
aiheen käsittely rajattiin koskemaan tela-alustaisia impaktorilaitoksia, ja myös tulokset keskittyvät 
tähän konetyyppiin. Kaikkiaan 11 prosessin vikatilannetta syineen, juurisyineen ja vaikutuksineen 
tunnistettiin haastatteluaineiston perusteella. 

Mittausjakso suunniteltiin tämän työn vaatimusten, sekä muiden tavoitteiden pohjalta. 
Mittausjaksossa kerättiin ääni-, värähtely- ohjausjärjestelmä-, sekä muuta anturidataa kolmen 
työpäivän ajalta koneen aidosta käyttötilanteesta. Dataa käsiteltiin yksittäisiin 
vikatilannetapauksiin perustuvalla lähestymistavalla kaikkea aiemmissa vaiheissa kerättyä tietoa 
hyödyntäen. 

Analyysin tulokset viittaavat siihen, että erilaisia murskausprosessin häiriötilanteita voidaan 
tunnistaa sekä ääni-, värähtely-, sekä muuntyyppiseen dataan perustuen, mutta tehtävästä 
suoriutuminen riippuu vahvasti ongelmatilanteen tyypistä ja siihen liittyvistä ilmiöistä, ollen myös 
riippuvainen sopivasta anturityypistä ja anturin oikeasta paikasta. Ongelmatapauksia 
analysoimalla voidaan todeta käytettyjen erilaisten datatyyppien olevan hyödyllisiä, mutta 
kokonaiskuvaa hallitsee sekä prosessin, että ongelmatilanteiden vaihtelevuus. Kirjallisuudessa 
monimutkaisuuden ratkaisuksi esitetään moderneja syväoppimiseen perustuvia menetelmiä, 
mutta niiden tutkimista ei voitu sisällyttää tämän työn rajaukseen.  

 
 
 
Avainsanat: Purkujäte, kiviainekset, prosessin valvonta, poikkeamien tunnistus, vikatilanteen 

tunnistus ja diagnosointi, vaaka-akselinen impaktorimurskain 
 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 
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1. INTRODUCTION 

The Finnish Innovation Fund Sitra (2023) describes the megatrends of 2023 with five 

themes: nature, people, power, technology and economy. The global ecological 

sustainability crisis is one of the factors connecting these themes together, and the role 

of technology, digital world and data is also expanding to strike more and more people, 

fields and subjects. European Commission (2022a) also connects the two in their 2022 

strategic foresight report, for example by mentioning the role of digital technologies in 

achieving climate neutrality and reducing pollution. Smarter systems come with the cost 

of increased complexity, but meeting the growing demands is often only possible by 

harnessing the power of digital solutions. This leads to improving the current systems in 

terms of energy efficiency, reliability and level of automation. 

The modern world relies heavily on human-built infrastructure. Roads, railways, bridges 

and other structures enable transportation of people and goods. Buildings and other 

facilities are built to provide space for life, work and free time. The structural backbone 

for these are in many cases stone-based aggregates, whether it is the primary material 

for concrete or asphalt, railway ballast or material for building foundation for structures. 

Aggregates are produced from different raw materials using heavy equipment such as 

different crushers and screens. 

While more and more infrastructure is built, nothing lasts forever and some of the old 

buildings and other structures must be demolished for various purposes. While building 

new infrastructure requires aggregate production, demolishing the old structures is 

connected to everything mentioned before with recycling crushing. By processing the 

demolition waste using crushing and screening equipment, the need for locating the 

demolition waste on a landfill disappears, while recycled aggregate is produced along 

with secondary process output streams such as ferromagnetic materials used for 

reinforcing the demolished structures. Recycled aggregate can replace the one 

manufactured from virgin raw material in some applications, depending on the 

regulations and test results of the product. 

The demolition waste crushing process can be carried out with few types of different 

equipment, including different crushers, screens and other bulk material handling 

equipment. The focus of this thesis is put on a mobile impactor crushing plant. The plant 
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consists of several process components, and can produce recycled aggregate 

independently. An example of a such crushing plant is shown in Figure 1.  

 

  A mobile horizontal impactor crushing plant with a screen (Metso 
Outotec, 2022c) 

 

Characteristics of the mobile demolition waste crushing process are discussed later, but 

the process is known to be vulnerable and one of the most difficult of all aggregate 

production processes. Processing the heterogenic demolition waste is not straight-

forward and comes with several possible ways of things going wrong. As the process is 

naturally subject to disturbances, or anomalies, efficient operation of the plant is 

threatened, resulting in various higher-level problems. First, unreliability of the process 

might act as a deterrent, slowing down the wider adoption of the recycling crushing 

process. This causes a negative impact for sustainability development and harms the 

manufacturer of the plant. If the process is operated despite the risk, every interruption 

in the operation harms the company operating the machine with lost profit, increases 

unnecessary manual work, might pose safety threats to the personnel, and decreases 

the energy efficiency of operation. 

Along with the trends in circular economy and digitalization, key drivers for increasing 

the amount of recycling are regulations. In the area of European Union, 70 percent of 

non-hazardous construction and demolition waste by weight should be recycled and 

used in a suitable application (European Commission, 2022b). 
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1.1 Research problem, objectives, and methods 

With the presented background, a need arises to research the possibility of harnessing 

digital technology to monitor the recycling crushing process. In the current state, the plant 

operation must be very carefully monitored by the operators, often requiring ground 

personnel that are ready to act and alert others upon an anomalous event. Some of the 

anomaly events are very serious. For example, an event blocking the material flow inside 

the plant might take less than a minute to develop, and result in up to 8 hours of manual 

work to resolve. With possible future development direction of even more enclosed 

machines with weakened possibility for visual monitoring of the process state, digital 

process monitoring solutions could act as an assist for the operators to convey 

information about the state of the machine and process. These solutions could possibly 

also simultaneously monitor the machine condition and predict possible component 

failures before their escalation. 

As the development for such system is in an early phase, this thesis conducts a feasibility 

study on the subject with a broad problem-setting. The research questions for the work 

are formed as follows: 

1. What are the typical process anomalies in the demolition waste recycling 

crushing process? 

2. How can data analysis of the plant control system data be utilized in detecting 

these anomalies? 

3. How can audio signal analysis be utilized in detecting these anomalies? 

4. How can vibration signal analysis be utilized in detecting these anomalies? 

As the research questions show, the work revolves around the knowledge of the possible 

anomalies in the demolition waste recycling crushing process. This information is 

considered to exist in the company, at least to a certain extent, but is scattered around 

in the organization. To build a foundation to the research, interviews are conducted to 

investigate the demolition waste crushing process and its anomalies in a more 

systematic way. 

The three remaining research questions include a massive selection of scientific fields 

and methods from signal processing and machine learning to a dedicated field studying 

fault detection and diagnosis. Literature review is done to gather information about the 

subject, provide theoretical answers to the research questions, and to prepare for the 

empirical part of the work. A big part of the thesis is a practical study in demolition waste 

crushing field conditions. A measurement campaign is conducted to collect data that is 
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later processed and analysed to get a practical view on the problem, and to answer the 

research questions from empirical point of view. The measurement campaign is partially 

formed by the research questions and includes a wide range of measured quantities. 

The existing control system of the plant provides some data and information about the 

state of the process, but this data is augmented with additional mechanical 

measurements, as well as vibration- and audio measurements. One of the research 

interests is to investigate the possibilities of audio measurement in terms of monitoring 

the process. Other interests for utilizing the data from the measurement campaign exist 

as well, and the needs are considered in the implementation phase of the 

measurements. 

1.2 Thesis structure 

The structure of the thesis is divided into four parts. The first part consists of chapters 2 

and 3. Chapter 2 builds the background by reviewing existing research and key concepts 

in the area of fault detection and diagnosis and monitoring of industrial processes, as 

well as explaining theoretical concepts found later in the work. Chapter 3 describes the 

demolition waste recycling crushing process, which is considered in this work, and builds 

understanding on the working principle of the mobile impactor crushing plant. 

With the background knowledge on the subject, the second part addresses the first 

research question, and is presented in chapter 4. Planning, execution, and results of the 

interview study are shown, and based on the interview results, the process anomalies 

are analysed in terms of their causes, actual root causes and effects on the machine 

operation. 

Chapter 5 presents the third part of the thesis, the measurement campaign. 

Measurements were done on an actual operational machine in real conditions, which 

provides both advantages and disadvantages. In this chapter, the planning of the 

measurements is described, followed by description of the application, measurement 

hardware and actual measurement implementation. 

Finally, chapter 6 presents the analysis of the data collected in previous part of the work. 

Knowledge gathered during the work is harnessed, and three anomaly cases are 

selected to be analysed. The results are presented in a way to build a general picture on 

what can be done in terms of possible anomaly detection system, and on the other hand 

what are the challenges for developing such a system. 

After the main parts of the work, conclusion wraps up the findings and combines the 

observations made throughout the process. 
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1.3 Target company 

The target company of the thesis is Metso Corporation, previously known as Metso 

Outotec and Metso Minerals. Metso is a global company in aggregate- and mining 

business, and a major manufacturer of aggregate production equipment. The company 

is headquartered in Finland, present in over 45 countries and employs over 16 000 

people. Metso states sustainability as their strategic priority and promises to support the 

transition towards a world with less carbon dioxide emissions and more safety. Later in 

this work the company is referenced to as target company.  
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2. INDUSTRIAL PROCESS MONITORING 

Industrial processes include an extensive collection of different operations, utilizing one 

or more steps to modify bulk material or individual items, refining them, and adding value. 

A process might encompass multiple steps, which can sometimes be defined as their 

own sub-processes, depending on the scope of examination. In the aggregate production 

industry, a process might include several steps, such as extracting raw material from the 

bedrock with explosives, primary crushing, secondary crushing, tertiary crushing, and 

screening. Depending on the application, each of the steps could be defined as an 

individual process, as for example the chain may be built up of several individual and 

independent machines, which are working together to produce the final product. Another 

example of an aggregate production process includes one crushing stage and one 

screening stage and is contained in a single mobile unit. The machine in the scope of 

this work belongs in the latter category. 

It is somewhat self-evident that such processes benefit from problem-free operation. 

Disturbances might cause a degradation in the quality of the product, loss of precious 

production capacity, or require additional work from the operators. More severe problems 

could damage the equipment used, or in the worst case, harm the people. If anomalous 

behaviour can be detected, many of these situations can be avoided. 

The scientific field studying industrial process monitoring is often referenced to as Fault 

Detection and Diagnosis (FDD). As Abid et al. (2021) state, FDD has traditionally only 

been applied in safety-critical processes, but the growing demands for productivity and 

operational reliability are acting as driving forces to extend the monitoring to a broader 

range of equipment or systems. 

In this chapter, process monitoring is researched through a literature review. The subject 

is very broad, and thus it is not reasonable to address it comprehensively in the scope 

of this thesis. The focus is limited to overview of the subject and concepts relevant in this 

work.  

2.1 Importance of system knowledge 

When developing fault detection and diagnosis for any given process, the first step is to 

obtain so-called a priori knowledge about the system (Abid et al., 2021). This knowledge 

includes information about system representation and redundancy as well as types of 
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faults and malfunctions and can be described to contain detailed knowledge about the 

nature and dynamics of the system or process. 

System representation describes a way in which the system or process is modelled or 

somehow shown in an abstract form to help in understanding the behaviour of the 

system. System knowledge can be presented in explicit or implicit form. For example, if 

a system can be easily described in a form of a mathematical or empirical model, the 

system representation can be stated to be explicit. Implicit forms of system 

representation include graphical approaches, artificial neural networks or expert systems 

consisting of different rules and heuristics. The representation of the system also is a big 

part in deciding the class of realizable fault detection methods for the system. (Abid et 

al., 2021) 

Another important factor when considering FDD development is system redundancy. 

System redundancy is directly linked to the reliability of the operations of the system and 

can be created in different forms. Abid et al. divide the system redundancy into 

categories, which are physical redundancy, analytical redundancy and software 

redundancy or structural redundancy. If the system is physically redundant, it might 

contain additional components working in parallel and providing a backup in case of 

malfunction. Analytical redundancy includes relationship constraints and functional 

dependence among system variables, providing an inconsistency check between 

expected and actual behaviour of the system. Structural or software redundancy refers 

to having multiple strategies for the same function, working in parallel or being 

dynamically activatable to counteract any malfunction in the system. (Abid et al., 2021) 

Finally, fault and malfunction types of the system should be considered. Types of 

possible malfunctions depend on the system in question, and the scope of the FDD 

system being developed. The faults can be classified to different classes based on the 

type of fault, or nature and dynamics of the faults. Different fault types can be for example 

software- and hardware faults. Classification based on the dynamics of the faults may 

include classifying the faults as transient, intermittent, incipient, and permanent faults, 

which describe in which way the fault emerges or is detectable. (Abid et al., 2021)  

 

2.2 Process data collection 

Some form of collected information is a prerequisite to process state monitoring and fault 

detection. Depending on the process and its level of instrumentation, a number of 

parameters is typically measured and used for different purposes even without any fault 
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detection systems. Data collection for fault detection purposes is carried out in similar 

way to any process instrumentation, and typically, FDD setup uses a variety of different 

sensors such as current, voltage, temperature, pressure, position, force, vibration, et 

cetera (Abid et al., 2021). 

In this sub-chapter, process data collection is addressed, with focus on the system and 

process in question. 

2.2.1 Process data collection in general 

Many of the industrial processes involve handling of individual items, bulk material, 

liquids, or gases. As a result, the processes naturally contain measurable physical 

quantities. A large variety of different sensors are used to convert these quantities into 

analogue or digital signals. Fraden (2016, p. 9) presents different stimuli that can be 

measured, and the main categories are: 

1. Acoustic 

2. Biological 

3. Chemical 

4. Electric 

5. Magnetic 

6. Optical 

7. Mechanical 

8. Radiation 

9. Thermal and 

10. Other 

 

Each category is further divided into sub-categories, and as the variety of the categories 

demonstrates, almost everything can be measured. 

Different categories and physical quantities have different properties. Temperature, 

hydraulic system pressure, rotational velocity, or similar variables are often non-periodic 

and biased, especially if the process has a steady or relatively steady state. Certain 

quantities are measured as oscillating signals with no DC-bias. For example, vibration 

signal is measured with accelerometers, and the output of the accelerometer oscillates 

around zero, while the information content of the signal is divided along a broad 

frequency spectrum. Both types of data can be collected with similar methods, but when 

any high-frequency phenomena are involved, factors like sample rate, aliasing and 

possible data transfer method performance must be carefully considered.  
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2.2.2 Control system data collection 

Controller Area Network (CAN) bus is a widely used electronic communication bus that 

is defined by the ISO 11898 standards. The CAN bus network consists of different nodes, 

which are connected to the bus. All nodes in the CAN bus are subject to all the 

communication happening in the bus, making the CAN bus a broadcast type bus. 

(Kvaser, 2022) 

The CAN protocol defines several types of physical layers for the implementation of the 

CAN bus hardware. The most common type of these layers is defined in the ISO 11898-

2, consisting of a balanced, two-wire signalling scheme. The two-wire physical 

implementation allows the bus to be relatively tolerant to electromagnetic disturbances, 

as the signal is transmitted as a voltage differential between the two wires, and the wiring 

is carried out in a twisted pair configuration. CAN protocol also defines several ways of 

detecting errors in the communication, increasing the reliability of the transmission. 

(Kvaser, 2022) 

All communication in the CAN bus is based on messages, which are sent to the bus by 

a node, and received by every node connected to the bus. The messages are short, with 

maximum utility load of 94 bits, and are transmitted with a priority. The priority of the 

messages is used to resolve possible conflicts in a situation where two nodes start the 

transmission to an idle bus at almost the same time. In this situation, the node sending 

a lower priority message will stop the transmission when it recognizes a higher-priority 

message being sent simultaneously. While single messages are short and contain a 

small amount of data, the CAN bus supports transmission speeds of up to 1 Mbit / 

second. (Kvaser, 2022) 

Modern vehicles and mobile working machinery include an increasing number of 

sensors, electronically controlled actuators, human interfaces, and many other forms of 

automation hardware. Due to the increasing complexity, using a bus type communication 

has become standard practice among the manufacturers, as every different device can 

be connected to the bus as nodes, and individual wiring for different functions is not 

needed. CAN protocol has established a stable position as the go-to bus communication 

protocol between the automation components in mobile machinery and vehicles. 

Mobile crushing and screening plants manufactured by the target company also utilize 

CAN bus as their communication protocol. The main CAN bus of the mineral processing 

plants carries the information produced and used by the automation system of the plant. 

As a result of the CAN bus being broadcast -type, messages transmitted through the bus 

can be monitored by connecting a CAN-compatible device to the bus. 
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Monitoring the CAN bus of the plant is an easy way of acquiring several measurement- 

and control signals that are directly or indirectly linked to the operation of the machine. 

The main principle of the CAN bus being a prioritized control system communication 

protocol limits and directs the types of data on the bus. The bus has a defined speed and 

capacity, and the number of messages must stay below the overloading limit of the bus. 

Signals closely connected to the automation of the core functions are typically sent to 

the bus with a fixed interval, but the capacity of the bus and the large number of signals 

limits this interval. Due to these limitations, certain types of raw data can be effectively 

sent through the can bus, but other data types are not applicable to be transmitted 

through the CAN bus. 

Signals transmittable through the CAN bus include signals from relatively slowly 

changing phenomena. Physical quantities such as temperatures, rotational velocities or 

material levels do not typically include usable high-frequency content, and the capacity 

of the CAN bus communication allows for comprehensive monitoring of these quantities. 

Borderline cases include quantities such as mechanical power or hydraulic system 

pressure. Information about these phenomena is mostly used based on the low-

frequency components of these signals. However, depending on the application, these 

signals could carry useful information through their higher-frequency components. These 

components cannot be directly transmitted through the CAN bus. 

Some of phenomena, such as mechanical vibration and sound, naturally have their 

information content distributed over a broad range of frequencies. With the limited 

capacity of the CAN bus, these signals cannot be transferred using the bus, and 

therefore require specialized hardware for signal acquisition or processing. 

2.2.3 Vibration data collection 

Vibration is defined as “oscillation about an equilibrium point” (Kutz, 2013, p. 367), and 

is present in exceptionally wide range of different physical systems and applications 

across a myriad of domains. In general, vibration can originate from many different 

sources, and therefore vibration data can be used for various purposes. Kutz (2013, 

p.368) lists possible use cases for vibration measurements, and states that one 

application for vibration measurements is determining the dynamic response of a 

machine from forces generated during operation. Other notable applications include 

monitoring the condition of the machine components, such as identifying damaged or 

unbalanced shafts, faulty bearings or gears, and loose mechanical parts (Kutz, 2013, 

p.368). 
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Vibration of a structure is commonly measured using an accelerometer. Accelerometer 

is a type of sensor that utilizes some form of spring-mass system, which is attached to 

the housing of the sensor. The operating principle of accelerometers is based on the 

relative displacement between the mass of the spring-mass system and the housing of 

the accelerometer. When the sensor is exposed to acceleration resulting from the sensor 

being fixed to the vibrating surface, a dynamic force is applied on the mass, resulting in 

displacement of the mass from its equilibrium point. Different accelerometer types utilize 

different methods for measuring the relative displacement of the mass, and the types 

have differences in frequency range, sensitivity, and measurement resolution. Three 

basic types of accelerometers are piezoelectric, piezoresistive and capacitive 

accelerometers. Different ways of mounting the accelerometer to the vibrating surface 

may be utilized, including threaded mounting, different adhesives, or magnetic mounting. 

The measurement performance may be limited by the mounting method, as for example 

weaker magnetic mounting can limit the available frequency range. In very light 

structures, the mass of the accelerometer might also disturb the results and should be 

taken into account. (Kutz, 2013, p. 398 - 400) 

Vibration measurements are used widely for different diagnostics and monitoring 

purposes. For example, Mohd Ghazali and Rahiman (2021) review several different 

approaches in the literature, where vibration measurements and different techniques for 

data analysis have been used for condition monitoring of different machinery. As a 

different example, Klaick et al. (2018) have carried out a study on using vibration 

measurements and feature extraction1 along with a classification method to monitor the 

process of rock drilling. The results indicated substantial potential in using vibration and 

extracted features in tool wear monitoring in the mentioned study. 

2.2.4 Audio data collection 

Sound pressure is defined as “small deviations of pressure from the ambient generated 

by sound waves” (Kutz, 2013, p. 436). The pressure deviations are often generated by 

a vibrating object or other sound source. When the sound-producing surface is vibrating, 

the surface produces condensations and rarefactions in the density of the air or other 

medium, and the local lower- and higher-density areas form the sound waves in the air 

or any other medium that is surrounding the sound source. An illustration of the sound 

pressure and corresponding density fluctuations is shown in Figure 2. 

 
 
1 Discussed in chapter 2.3.2  
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  Principle of sound pressure. Sound wave is shown as the sinusoidal 
wave and corresponding particle density is illustrated above. 

 

Sound pressure is measured with a sensor called a microphone. Microphones exist in 

many different forms and are commonly found for example in consumer electronics. For 

scientific sound pressure measurement applications, special measurement microphones 

are used. Measurement microphones can be divided into free-field- , pressure- and 

random-incidence microphones, depending on the application they are designed for 

(GRAS, 2023a). The purpose of measurement microphones is to provide accurate sound 

pressure data, which can be collected and used for research purposes. The measured 

pressure data is a representation of the sound wave propagation across the point of 

measurement. Different measurement microphone types are available, and the selection 

criteria depends on the application and other measurement hardware. 

In addition to vibration measurements, acoustic data collection and analysis can also be 

utilized in different monitoring purposes. Ubhayaratne et al. (2017) conducted a study on 

sheet metal stamping process monitoring in terms of tool wear using audio 

measurements and signal processing, and the results indicate that audio signals were 

significantly useful in the application. Another study was conducted, where audio 

measurements with accompanying signal processing and machine learning were used 

for metal additive manufacturing process monitoring with promising results (Hossain and 

Taheri, 2021). 
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2.3 Data analysis methods 

Detecting abnormal states of a certain process has been widely studied. In the recent 

years, several reviews have been published, presenting the development in the area of 

fault detection in different systems. (Park et al., 2020; Abid et al., 2021; Calabrese et al., 

2022; Divya et al., 2022). In addition to fault detection, the term “anomaly detection” 

appears in the literature (Erhan et al., 2021; Schmidl et al., 2022). With anomaly 

detection, Erhan et al. (2021) references to “identifying data patterns that deviate 

remarkably from the expected behaviour”, which indicates that the term anomaly 

detection refers to a more wide range of different systems and anomalies. Similar 

methods are discussed in both contexts, and there is no clear boundary between the 

two.  

Another term related to the subject is novelty detection, which is defined by Pimentel et 

al. (2014) as “the task of recognizing that test data differ in some respect from the data 

that are available during training”. Faults and failure detection in complex industrial 

systems is one application domain linked to novelty detection. Pimentel et al. (2014) also 

states that the complexity of modern high-integrity systems leads to a situation where all 

abnormalities of a certain system cannot be determined before they appear, and that 

novelty detection offers a possible solution to this problem.  

2.3.1 Overview of fault detection methods 

Fault detection can be carried out with a large variety of techniques. Schmidl et al. (2022) 

express the general variety of approaches in time series anomaly detection as being 

remarkably high, and states that all of the approaches display individual strengths and 

weaknesses, making the selection of algorithm extremely difficult for a given anomaly 

detection task. Abid et al (2021) describe the variety of FDD techniques as wide, and 

state that a lot of work has been done recently for fault detection development. 

The division of different approaches in fault detection and anomaly detection does not 

appear perfectly unanimous in the literature. In their review Erhan et al. (2021) address 

anomaly detection in sensor systems and divide anomaly detection techniques into 

conventional and data-driven techniques. The conventional techniques consist of sub-

categories, which are statistical, spectral, time series analysis, signal processing and 

information theory. Data-driven techniques include supervised, semi-supervised and 

unsupervised methods, as well as deep- and reinforcement learning. Wang et al. (2022) 

classify fault diagnosis methods into three main categories, which are analytical 

methods, data-driven methods and knowledge-based methods. A major difference is that 

Wang et al. (2022) define statistical analysis to belong under the data-driven category. 
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Schmidl et al. (2022) divide 158 time series anomaly detection methods into seven 

categories, which are classic machine learning, signal analysis, stochastic learning, 

statistics, outlier detection, data mining and deep learning. The classification proposed 

by Wang et al. (2022) is shown in Figure 3. It is notable that only a small fraction of 

available methods can be shown like this. 
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  One classification of different fault diagnosis methods (Wang et al., 
2022 p. 2) 
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Analytical methods are based on an analytical model that has been constructed from the 

system under investigation. Physical characteristics and first principles of the system are 

often used in defining the analytical model. This means utilizing deep analytical 

knowledge about the system in question to for example estimate the system state. 

Analytical fault detection methods are stated as being relatively simple, and their use 

cases often are related to less complex systems. (Wang et al., 2022 p. 2-3) The 

availability of a mathematical model associated with the system is very crucial when 

utilizing this methodology (Satyam et al., 2022), and in addition to the physical 

characteristics and first principles, system identification techniques can be applied in 

order to produce the model. 

Knowledge-based methods are used without an accurate mathematical or analytical 

model and rely on empirical knowledge of the process. Expert experience and historical 

data of the system is employed to construct different rules for fault detection. However, 

gathering the knowledge and experience can be in some cases considered time-

consuming and even difficult. (Wang et al., 2022 p. 2-3) As mentioned in the chapter 2.1, 

FDD development for any given system should start with collecting a priori knowledge 

about the system in question. Understanding the possibilities of the system 

representation will set the limits for using any methods that utilize an analytical or 

empirical model. 

While the other two categories utilize data alongside a mathematical or empirical model 

or rule set, data-driven fault detection establishes a data model between the input and 

desired output and utilizes different techniques to extract the hidden information 

contained in the data (Wang et al., 2022 p. 2-3). Data-driven methods can also be 

described to compensate the absence of an underlying mathematical model by the 

availability of large amounts of data and using the data to learn useful information (Erhan 

et al., 2021). With analytical methods being best suited to systems with low complexity 

and knowledge-based methods often requiring extensive experience, data-driven 

methods are utilized with complex systems that are difficult to model analytically, and 

when knowledge-based methods cannot be applied. 

Wang et al. (2022) divide data-driven methods into three sub-categories. The first 

category includes methods utilizing signal processing. Different types of signals such as 

sound, images, or outcomes of monitored physical processes can be handled with signal 

processing methods. Erhan et al. (2021) mention de-noising and different transforms 

being useful in detecting anomalies. Transforms include Fourier transform, which is a 

common method that converts the time-domain signal into frequency domain, after which 

the distribution of the frequency components in the signal can be reviewed. Wavelet-
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based approaches are another form of signal processing that have been used in anomaly 

detection (Erhan et al., 2021). 

Another sub-category is called statistical analysis, which is split even further into 

multivariate and univariate statistics. Statistical methods assume that the data points 

follow some statistical model, and any deviation from the model is considered an 

anomaly (Erhan et al., 2021). The term “univariate statistics” is used, when a single 

variable is considered, while multivariate statistics is used for methods employing 

multiple variables to differentiate the normal operational state from faulty one. Several 

methods are based on the principal component analysis (PCA). PCA-based methods are 

commonly found in the FDD literature, and are sometimes classified as spectral 

techniques, as Erhan et al (2021) demonstrate. 

The final sub-category under data-driven methods is artificial intelligence. This term 

references to machines being able to perform tasks, which were previously classified as 

human-like, such as understanding human language or producing it. Many methods can 

be used to build such intelligent machines, and the technology is rapidly developing and 

evolving. One field in artificial intelligence is machine learning, in which data is used to 

teach computers using different algorithms and techniques, and eventually the computer 

learns to behave according to the training data. Some of the major methods in artificial 

intelligence and machine learning are different neural networks, which are often 

mentioned in the context of fault detection and diagnosis.  

2.3.2 Feature extraction and dimensionality reduction 

As demonstrated in the previous chapter, data can be used in a multitude of ways for the 

purpose of fault detection. While some methods may utilize the data in the raw form as 

it is measured, several techniques utilize different ways to condense or refine the 

information available from the raw data and then use the condensed information in 

decision-making. 

Zheng (2018) defines a feature as “a numeric representation of an aspect of raw data”, 

found in the context of machine learning between data and models. Feature engineering 

on the other hand is “the process of transforming data into features that better represent 

the underlying problem” (Ozdemir, 2018), while feature extraction is used as a somewhat 

interchangeable term to feature engineering. Features can be extracted from the raw 

data either manually or automatically, and doing so has the ultimate goal of identifying 

the most discriminating characteristics in signals, which can later be used for training 

machine learning models (MathWorks, 2023). 
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Features can vary from very simple statistical features, such as minimum or maximum, 

to features calculated for example with very sophisticated signal processing techniques. 

Next, the mathematical representations of few selected features are shown, building the 

foundation for the analysis done in the scope of this thesis work. 

When assumed discrete measured data 𝑥(𝒕) with a length of 𝑁, mean of the data can be 

calculated as shown in formula 2.1. 

�̅� =
1

𝑁
∑ 𝑥𝑡

𝑁

𝑡=1

(2.1) 

Standard deviation of the data can be calculated using formula 2.2. 
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Another measure of dispersion, variance, can be calculated as shown in formula 2.3. 
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Skewness describes the asymmetry of the probability distribution of the data and can be 

calculated as shown in formula 2.4. 
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Kurtosis is a measure of the so-called “tailedness” of the data probability distribution and 

is calculated with formula 2.5. 

kurtosis(𝑥) =
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(2.5) 

Root mean square (RMS) is used to represent the average power of a signal and can be 

calculated from the data with formula 2.6.  

RMS(𝑥) = √
1

𝑁
∑ 𝑥𝑡

2

𝑁

𝑡=1

(2.6) 

As mentioned in chapter 2.2.1, some of the measured quantities have their useful 

information spread along a broad frequency spectrum, and using the time domain 

features such as the ones shown previously is not sufficient for representing the 
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information in a concise form. To extract information from the frequency distribution, the 

data can be transformed to frequency domain with the principle of the Fourier transform. 

When the measurements are done using digital equipment, the signals are in discrete 

form, and therefore a discrete Fourier transform (DFT) is used for the domain 

transformation. DFT can be obtained from the signal as shown in formula 2.7, and is 

commonly computed with the efficient fast Fourier transform (FFT) -algorithm. A related 

transform is the short time Fourier transform (STFT), in which the frequency spectrum is 

obtained for local, short sections of the signal. While calculating the DFT results in the 

frequency spectrum of the entire signal length, a discrete-time STFT results in time-

frequency -domain representation of the signal, which can later be shown in the form of 

a spectrogram or similar plot, where time and frequency are represented on the 2-

dimensional coordinate axes, and the amplitude is shown as colour intensity, or height 

in a waterfall-type plots.  

𝑋(𝑘) = ∑ 𝑥𝑛e−ⅈ2𝜋
𝑘
𝑁

𝑛

𝑁−1

𝑛=0

(2.7) 

From the frequency domain representation of the signal, a normalized magnitude 

spectrum can be calculated using formula 2.8, where 𝒦+ denotes the positive frequency 

indices. 

�̃�(𝑘) =
|𝑋(𝑘)|

∑ |𝑋(𝑘)|𝑘𝜖𝒦+

(2.8) 

Using the normalized magnitude spectrum, spectral centroid can be calculated using 

formula 2.9. The spectral centroid describes the centroid of the frequency distribution.  

𝐶𝑓 = ∑ 𝑘�̃�(𝑘)

𝑘𝜖𝒦+

(2.9) 

The bandwidth of the frequency spectrum can be described with spectral spread, which 

can be calculated with formula 2.10. The value increases if the frequency distribution is 

wide around the centroid and decreases if the frequencies in the signal are located 

narrowly around the centroid.  

𝑆𝑓
2 = ∑ (𝑘 − 𝐶𝑓)

2
�̃�(𝑘)

𝑘𝜖𝒦+

(2.10) 

Many other features can be calculated from measured signals. For example, Sharma et 

al. (2020) review a huge variety of different features that can be extracted from audio 

signals. One example is spectral flatness, which describes how even the frequency 

spectrum is. This feature is defined e.g. by Dubonov (2004), and the definition is omitted 
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here. Another example is a feature called zero crossing rate, which is a measure of the 

signal zero-crossings during the reviewed period. For audio signals, mel frequency 

cepstral coefficients are often mentioned. They are also mentioned by Sharma et al. 

(2020). Similar features can be used for vibration signals (Mohd Ghazali and Rahiman, 

2021), and the variety of different options is huge in vibration features as well. 

Dimensionality reduction is a concept in machine learning, used for reducing the number 

of variables or features (Han et al., 2023 p. 71). In machine learning, the technique can 

be used as a part of the pipeline to reduce the number of features or variables while 

retaining most of the variance in the data, improving the performance or effectiveness of 

classification. Several linear and non-linear dimensionality reduction methods exist, and 

one of the most widely used methods is principal component analysis (PCA). With the 

PCA being a linear method, it cannot capture nonlinear relationships between the 

features or variables, and different non-linear methods have been developed, including 

non-linear PCA variations. One non-linear dimensionality reduction algorithm is called t-

distributed stochastic neighbour embedding (t-SNE) (Maaten and Hinton, 2008), and 

according to Han et al. (2023, p. 76), it has been widely used for example for projecting 

the multi-dimensional representation produced by various deep learning models to a two- 

or three-dimensional space for the purpose of visualization. 

The scope of this thesis does not include designing or testing classifiers or implementing 

any deep learning models, but rather focuses on the foundational elements of fault 

detection and process monitoring. The t-SNE algorithm has been stated to be one of the 

best tools for visualizing multi-dimensional data in two-dimensional scatter plots (Kruiger 

et al., 2017), and is used for the purpose in this work. 
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3. CONSTRUCTION AND DEMOLITION WASTE 
CRUSHING PROCESS 

Ministry of the Environment in Finland (2018) defines Construction and Demolition Waste 

(CDW) simply as waste produced in construction or demolition operations. CDW can be 

produced in several different site types, such as different demolition sites, renovation 

sites and road building or refurbishment sites (Struková and Sičáková, 2016).  

Increased landfill costs and growing amount of construction waste, along with new 

legislation and current trends, are encouraging the use of recycling equipment to produce 

recycled aggregates from the raw materials. The products of CDW recycling can be used 

for example for road construction, embankments, foundations and bulk fills, and they 

also have other uses. (Metso Outotec, 2022a) 

Metso Outotec (2022a) divides aggregate recycling into four categories: 

1. Concrete recycling 

2. Asphalt recycling 

3. Soil recycling 

4. Slag recycling 

In this thesis, the scope of study is concrete-based building demolition waste recycling, 

which can be placed into the concrete recycling -category. In addition to concrete, 

construction and demolition waste typically contains other materials as well, including 

bricks, wood, glass, metals, and plastic (European Commission, 2022b), and even 

though the focus is in concrete recycling, many of the other material types exist in the 

demolition waste as well. 

In this chapter, the crushing process of demolition waste is described. Different 

components are discussed, and system representation for fault detection purposes is 

addressed. 

3.1 Process description 

The description of the demolition waste recycling crushing process is based on the 

working principle of a mobile impactor crushing and screening plant, manufactured by 

the target company. An illustration of the plant with the process material flow is shown in 
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Figure 4. The main components are also numbered roughly in the order the material flow 

interacts with them.  

 

  General illustration of a mobile impactor crushing plant operating 
principle (Modified from: Viilo, 2011) 

 

The flow of material begins from a component called vibrating feeder, which is marked 

in the figure with a position number 1. Commonly, an excavator supplies the feed 

material to the hopper of the feeder, after which it is fed into the crusher (pos. 2). The 

finest fraction of the feed material bypasses the crusher and is either directed to a side 

conveyor, exiting the process, or forwarded towards the later process stages.  

Size reduction of the feed material happens in the crusher, which can be called as “the 

heart of the process”. The crushing plant is equipped with a Horizontal Shaft Impactor 

(HSI) -crusher (Metso Outotec, 2022b). After the crushing phase, material is dropped or 

thrown downwards onto the bottom-most component of the process (pos. 3), a vibrating 

conveyor, which is equipped with wear parts to withstand the abrasive effect of falling 

material. The conveyor is located between the mobile crushing plant’s tracks and 

forwards the material using vibrating motion. 

From the vibrating conveyor, the material is transferred onto the main conveyor, which 

is marked with a position number 4. The purpose of the main conveyor is to move the 

material forwards in the process, and to lift the material up to enable the functionality of 

the next component (pos. 6), the screen. While travelling on the main conveyor, the 

material flows under the cross belt magnetic separator (pos. 5), which has an important 

role in the demolition waste crushing process. The magnetic separator removes any iron 

or other metals that are attracted by the magnetic field from the material flow on the belt 

of the main conveyor and expels them from the process using its own conveyor belt. 

After the main conveyor, the material flows through the screen. The screen splits the 

material flow into two fractions, one of which is the final product and the other contains 
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oversized parts of the material flow. Final product is fed through the screening media 

onto the product conveyor (pos. 7), and the oversized part is conveyed to the return 

conveyor (pos. 8), which forms a closed loop by returning the material fraction to the feed 

hopper. 

3.2 Process components 

Feeder is a significant component of any crushing process, as it controls the amount of 

feed material entering the crusher. If the feeder is not working or controlled correctly, 

excess material can be supplied to the crusher. Especially in the case of an impactor 

crushing plant, overloading the crusher can cause problems as the power available to 

the crusher is limited, leading to reduced capacity, or even stalling of the crusher. The 

operation of the feeder is based on a vibrator unit attached to the body of the feeder, 

which is suspended on springs. The vibration trajectory of the feeder is designed to move 

the feed material towards the crusher. The discharge end of the feeder includes grizzly 

bars, which allow the finest fraction of feed material to avoid being fed into the crusher. 

Feeder is equipped with hydraulically folding sides, which increase the feed hopper 

capacity to allow for intermittent feed material supply with an excavator. 

Material size is reduced in the HSI -type crusher. An HSI crusher is based on a large 

high-inertia rotor with blow bars attached to it. The rotor of the crusher spins (clockwise 

direction in the Figure 4), which causes the feed material to hit the blow bars and be 

accelerated towards the breaker plates found on the inside of the crusher frame. When 

the material impacts with the breaker plates, it is crushed by the inertial force of the rapid 

deceleration. Internal structure of the crusher is further explained by Figure 5, where the 

material is fed from the right, and the rotor spins in an anti-clockwise direction. Metso 

Outotec (2022a) rates the impact crusher as ideal for soft concrete and asphalt recycling, 

well suited for slag recycling and usable for hard concrete recycling. Another crusher 

type for recycling applications is the jaw crusher, which is better for hard concrete and 

slag applications (Metso Outotec, 2022a). As the structure of the crusher is subject to 

abrasive material flow and high-energy impacts, certain parts wear down in normal 

operation. Blow bars, breaker plates and the inside linings of the crusher are designed 

as wear parts, being easily replaceable and withstanding the harsh conditions optimally. 

The position of the breaker plate(s) is adjustable, and the adjustment value is called the 

setting of the crusher. The crusher setting is one of the factors determining the particle 

size distribution of the crushed material. 
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  Horizontal shaft impactor crusher. Model with two breaker plates 
shown (Metso Outotec, 2022d) 

 

A vibrating conveyor below the crusher is the first component that is in contact with the 

freshly crushed material. The vibrating pan -type conveyor has the same working 

principle with the feeder and uses vibrating motion to transfer material forward. The 

vibrating conveyor receives the material flow from the crusher and is subject to high-

velocity particles which are accelerated towards the conveyor by the crusher rotor. The 

use of a vibrating conveyor allows the main conveyor to be located away from the path 

of the high-velocity particles from the crusher, while the material flow path is kept as wide 

and smooth as possible. Crushing plants with other crusher types, such as jaw crushers, 

do not include the vibrating conveyors as the crusher product does not pose a danger to 

the main conveyor belt. 

The mobile crushing plant utilizes several belt conveyors to transfer material and 

increase its elevation. The conveyors utilize a reinforced rubber belt running at a velocity 

of roughly 2 m/s to transfer the material. Most conveyors have a straight path of material 

flow, but some conveyors utilize a curved structure. The conveyor belt can have a plain 

surface, or it can include cleats, which  are used to aid the material flow with steep 

conveyor angles. As the angle of the conveyor is increased, the probability of material 

rollback on the conveyor is increased.  

Magnetic separation allows the removal of ferromagnetic material such as concrete rebar 

made of steel from the material stream. This is important in concrete recycling, as 
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demolition waste often contains rebar-reinforced concrete. The mobile impactor plant 

considered is equipped with a cross-belt, self-cleaning magnetic separator, which utilizes 

its own belt conveyor to remove magnetically attracted material and to discard it from the 

process. The belt of the magnetic separator includes the cleats to ensure that the 

material picked up by the magnet is effectively removed from the magnetic field by the 

belt. 

A vibrating screen is a component used to separate the material flow into different size 

fractions. The vibrating motion of a screen is typically produced by eccentric mass -based 

vibrators, which operate around 700 to 1000 RPM and produce a circular vibrating 

motion in the entire screen deck. The vibrational motion causes the material to be 

screened to develop a fluid-like state, in which the particle size classification becomes 

possible. Stratification is a process which causes the large-sized particles to reach the 

top of the material, allowing the smaller particles to move through the gaps, reaching the 

screening media. When in contact with the screening media such as a wire mesh, the 

particles either pass the media or continue as retained product, according to separation 

probability theory. (Viilo, 2011, chapter 4, p.1-26) Many of the aggregates production 

applications benefit from a fixed end-product maximum size, and this can be achieved 

by using a screen instead of only relying on the crusher setting in determining the product 

size distribution. Vibrating screens are used in recycling crushing applications as well for 

this very reason. 

The product passing the screen is finished and conveyed to the final product stockpile. 

Screens can be configured in multiple ways, but in the case under review, a closed-loop 

configuration is used, as described earlier. The return path of the material utilizes two 

belt conveyors and one more process component, an air separator, often called 

“windshifter”. The windshifter applies a directed flow of air to the material flow falling from 

one belt conveyor to another, separating most of the lighter materials, such as plastic, 

insulation materials or wood, and discarding them from the return path of the process. 

In addition to the main process components, the crushing plant is also equipped with a 

variety of different components to enable the plant to function as an independent unit. 

An important part of the machine is the power unit, which is an industrial diesel engine. 

The plant also includes different means for power transmission, such as electrical and 

hydraulic systems. 
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3.3 System representation and redundancy 

As stated in chapter 2.1, the first step of FDD development is to obtain a priori knowledge 

about the system in question. This can be done in an explicit or implicit manner. The 

recycling crushing process is a non-stationary, dynamic process with several aspects of 

randomness, which makes explicit modelling of the entire process difficult. Randomness 

in the process is introduced mostly from the material flow and external factors such as 

the effects of weather. In the application of a mobile recycling crushing process, the feed 

material is fed into the machine commonly with an excavator. In theory, the material flow 

is stabilized in the feeder, but in reality, different sizes, shapes and types of feed material 

produce a random, intermittent material flow to the crusher. When moving forwards in 

the process, the material flow is stabilized and the output flow is relatively stable, but the 

final product flow does also include variation. 

However, certain principles exist in the process, which can be modelled. Some of these 

principles are balancing between the boundary of explicit and implicit system 

representations. An example of a principle like this is that if the loading of the crusher is 

stabilized at a low value, the system is most likely in an idle state. If the crusher loading 

suddenly increases from this low, stable value, material is most likely fed into the crusher, 

and loadings of the different conveyors should respond in few seconds, after the material 

flow makes its way through the crushing plant. Similarly, crusher power draw falling to 

the stable low value should result in all conveyor power draws decreasing to their 

respective idle values as well.  

The redundancy of the recycling crushing process is somewhat limited. With each of the 

process components consuming a significant amount of available space in the mobile 

mineral processing plant, it is not possible or economically feasible to implement physical 

redundancy in the form of additional core components. The material flow inside the 

machine must travel along the single path, and every component contributing to the 

material flow manipulation must be functioning to prevent faults in the process. Physical 

redundancy could be implemented in auxiliary equipment such as sensors and smaller 

actuators, but as the main objective of the FDD research in this system is detecting the 

anomalies related to the material flow, redundancy of these smaller parts of the system 

is left outside of the scope. Earlier in this chapter, an example was given on how the 

process can in some ways be modelled. This example can be linked to system 

redundancy as well, as control rules could be implemented based on a model like this. 

In the mentioned example, the conveyor power draw not increasing would indicate a 

problem with the process, as either the crusher would be drawing power without 

producing output material, or the flow of material would be blocked at some point. 
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4. CRUSHING PROCESS CHARACTERISTICS 

The first research question of this thesis was set to investigate the typical process 

anomalies in the construction and demolition waste crushing process. Different things 

caused by several factors can go wrong, and the effects vary from almost unnoticeable 

to severe harm either to the machine itself or the process operation. In the target 

company, a lot of information exists on the subject, but the information is scattered 

among different departments and people. To answer the research question and to 

provide a solid background for the case study measurements, company internal 

interviews were used to collect information on the CDW crushing process. The focus of 

the interviews was on the anomalies and problems, but the normal state and typical 

characteristics were addressed as well. 

In this chapter, the preparation, execution, and results of the interviews are covered. In 

the results, normal process characteristics are described first, followed by a short 

comparison of CDW recycling process against other crushing processes. After 

establishing the normal process state, interview results are combined with general 

knowledge of the process and its components, and common process anomalies are 

presented, along with their possible causes and effects on the process and machine 

operation.   

4.1 Interview study 

To build a solid understanding on mobile impactor crushing plant machines and the 

process characteristics in both normal operation and during anomalous events, a 

company internal interview study was planned and conducted as a part of the thesis. 

The goal of the interview study was to prepare for the case study measurements as well 

as for processing the measurement data by collecting existing knowledge about the 

process. 

The planning of the interview study included selecting the interviewees and forming the 

questions. Interviews were planned to be conducted in semi-structured form, giving the 

interviewees freedom to introduce their views and opinions as their knowledge on the 

subject was broader when compared to the interviewer. However, questions were used 

to direct the conversation towards the subject, and to control the scope of the discussion. 

Questions were planned to be broad and encourage the interviewees to bring out their 

own opinions on the subject. Interests in this research study could not be defined very 
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accurately, as practically all information was valuable. The focus of the questions was 

on the anomalous events, and follow-up questions were asked during the interview, 

when an interesting topic was brought up by an interviewee. The planned questions are 

shown in Table 1. 

 Questions for the interviews. 

Question 

number Interview question 

1 
Describe the characteristics of the CDW crushing process in its normal 

state. 

2 
How does the CDW crushing process compare to other crushing 

processes? 

3 
What are the known anomalies / problems in the CDW crushing process? 

How do these events differ from the normal state?2  

4 
Going through each process component, what are the problems expected 

to happen within the component?3 

5 What is the most important problem in the CDW crushing process? 

6 
Are there any other factors that are risking the normal operation of the 

CDW crushing process? 

 

As mentioned earlier, the questions were only used to guide the discussion, and not 

every question was asked in every interview. During the interviews, the expertise and 

area of knowledge of each interviewee was considered, and the discussion was naturally 

focused on those topics. This approach was chosen to gather a wide range of ideas and 

different opinions without spending too much time on the interviews. Additionally, the 

durations for the interviews were limited to around 1 hour and 30 minutes, and 

 
 
2 The second part of the question was added to spark discussion on the possible sound-, 

vibration- and other phenomena, which could possibly be observed during the case study 
measurements. 

3 This question differs from number 3 to remind the interviewees not to focus on a single 
component only, such as the crusher. If anomalies throughout the machine were brought up by 
the interviewee, this question was not asked at all.  



29 
 

systematically going through every question would have probably resulted in narrower 

range of material to be collected. 

The interviewees were selected by using internal knowledge in the company to 

determine the persons who were expected to have the most knowledge on the subject, 

and who were available in the given time range. Interviewee selection was defined to 

cover the company local factory engineering and technical support. Interviews that took 

place are shown in Table 2. Interviewees with the same interview number were 

interviewed in the same occasion, and the answers were not differentiated from each 

other. 

 

 Interviewees in the study. 

Interviewee 

number 

Interview 

number Interviewee position Main area of expertise 

1 1 Product Support Manager Users’ point of view, global 

outlook 

2 2 Chief Engineer Design aspects of mobile 

impactors 

3 3 Process Owner, former 

Chief Engineer 

Deep knowledge of the 

mobile impactors 

4 3 Chief Engineer Design aspects of mobile 

impactors 

5 4 Test Engineer Practical experience 

6 4 Test Engineer Practical experience 

 

The answers of the interviewees were collected during the interview by making notes, 

and by writing them up immediately after the interviews, supplementing the notes with 

observations. After all the interviews were completed, a single document was compiled, 

summarizing the key findings from the interviews. The summary included roughly seven 

A4 pages of text and contains a wide variety of information about the CDW crushing 

process and mobile impactor equipment. Furthermore, an FMEA (Failure Mode and 

Effects Analysis) -related approach was used to form a table of identified process failures 
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or anomalous events. Interview results and analysis are described in the following 

chapters, and the relevant parts of the interview summary are shown in Appendix A. 

4.2 Normal process characteristics 

Even though the focus of the interviews was set on the anomalous events in the process, 

information was collected on the normal state of the process as well. Building a clear 

picture of the characteristics and phenomena happening in the normal process operation 

state helps to build the important system knowledge for initial fault detection development 

and the case study. 

As with all mobile aggregate production processes, the general conditions of the CDW 

recycling crushing process can be described as harsh. Many of the process components, 

such as the feeder and the screen, are based on utilizing vibration, and this influences 

the conditions at least in vibration and audio domains. Vibrating machinery naturally 

produces vibrations, which are transferred to the steel frame of the plant and other 

components, interfering with each other. Other types of vibration sources are also 

present all over the process and the machine. The feed material is dropped onto the feed 

hopper from variable height, delivering impact-type loads to the feeder, vibrating the 

entire plant structure. The working principle of the crusher relies on using the energy of 

feed material impacts to crush the larger particles, producing very different types of 

vibration depending on the feed material. Noise is also generated by different 

phenomena across the process. Some of the energy from rock impacts and material flow 

in general is transferred to audible sound, and some components of the process, such 

as the vibrating conveyor and the screen produce considerable noise even without 

material. The power unit of the mobile crushing plant cannot be left out either, as the 

diesel engine exhaust noise and noise produced by the powerful cooling fan of the 

engine are significant as well. With the machine operators having to rely on hearing 

protection, sound produced by different parts of the process is typically loud. In addition 

to noise and vibration, dust increases the harshness of the process as well. Dust is 

produced from crushing the feed material, and material handling causes the existing dust 

to become airborne. The level of dust particle concentration depends greatly on the 

application. In general, the harsh conditions are caused by a combination of different 

factors and must be considered when working with the process with FDD development 

not being an exception. 

As a part of the system knowledge, variability of the process is an important factor to 

acknowledge when discussing process fault detection. According to the interview study, 
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main contributing factors introducing variability in the process are the feed material and 

operator actions. 

Demolition waste, the feed material of the process, cannot be strictly defined, as it 

contains different types of material in different ratios from application to another. The 

building or structure that has been demolished greatly affects the composition of the 

CDW. The interviewees described the feed material composition with different terms, but 

the main consensus was that the feed material can include virtually anything. Some of 

the interviewees brought up that the feed material can be relatively “good” in some 

applications, referring to the absence of any especially problematic components, but it is 

very possible that in the next application the plant is fed with very miscellaneous material. 

In the ideal situation, demolition waste consists of reasonable-sized concrete chunks, 

with the reinforcing rebar pieces cut to under 1 meter in length. As stated by the 

interviewees, this is often not the reality, and the plants are fed with oversized chunks of 

concrete and steel reinforcements or structures. Other foreign objects include other 

metallic materials along with the expected concrete rebar, electric cables or wires, 

structural steel wires and a variety of lighter materials such as pieces of tarpaulin. 

According to the interviewees, the base material can also be different from concrete, 

such as material mostly containing bricks and glass. These materials are lighter and 

easier to crush, even to a point of lowering the power draw of the crusher dramatically 

from typical crushing process power draw. 

These factors result in a scale of different feed material compositions with varying 

properties. The hardness and toughness of the base material, proportion of metallic, non-

crushable materials, proportion of light materials, feed material size distribution and even 

the moisture content of the feed material are significant factors affecting in the state of 

the crushing process in general. Tougher material requires more energy to be crushed, 

increasing the power consumption of the crusher. Different feed material size 

distributions produce different conditions in terms of material bypassing the crusher, the 

power draw and operation of the crusher, and the operation of the screen and return 

conveyors. The amount and quality of steel rebar and other foreign objects directly 

affects the frequency of problems caused by these objects. 

In addition to high variability in the feed material, the operators of the crushing plant were 

stated as being significant sources of non-stationarity in the recycling crushing process. 

The automation system of the crushing plant controls the operation of different 

components in the plant, but the operator still has a large role in running the process. 

The decisions of the operator include the configuration of the machine, pre-processing 
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and manual manipulation of the feed material, rate of feeding the machine, along with 

other factors as well, such as special measures to prevent a certain problem. 

The configuration of the crushing plant can differ from application to another. According 

to the interviewees, most recycling crushing applications utilize a vibrating screen to 

produce end-product with calibrated size distribution, but the machines can also be 

operated without the screen and therefore in an open-loop configuration. The type and 

size of the screening media are also configurable by the plant operators. In addition to 

the main vibrating screen, the preliminary screening part of the vibrating feeder can be 

equipped with different screening media, or even be completely blocked, resulting in 

different process conditions in terms of the material flow bypassing the crusher. In the 

interviews, an example case of this was discussed. Crusher bypass is also affected by 

the decision whether the conveyor for fine fraction is used or not. The setting of the 

crusher also affects the process state, as it has a direct effect on the size distribution of 

the material, especially between the crusher and the screen, and on the return 

conveyors. Use of the airflow-based light fraction separator removes light materials from 

the return flow, and if the separator is not used, light uncrushable materials may build up 

on the closed loop. Configuration of the machine can also change because of a failure, 

wear, or some operational phenomena in some of the process components. For 

example, a worn conveyor belt or build-up of sticky material can cause the process state 

to change. 

Operator behaviour can also be connected to the feed material causing variability in the 

process. Plant operators can manually manipulate or discard some of the feed material, 

if they estimate it being problematic. Operators can also supply the feed material 

cautiously, for example when assessing that the risk for material flow obstruction is high. 

By feeding the plant intermittently, operators can ensure that there are no blockages or 

other problems before continuing with the feeding process. A major enabling factor for 

these actions is that the mobile impactor crushing plant is often being fed by an excavator 

from a stockpile, rather than being fed by the product conveyor of another machine.  

With the mobile impactor crushing plants operating in an outdoor environment, the 

environmental factors are also significant. The ambient temperature and relative 

humidity influence several components and phenomena. Low temperatures can cause 

stiffness in conveyor belts and increased hydraulic fluid viscosity, while high temperature 

increases the need of cooling, for example increasing the noise and airflow of the power 

unit cooling fan. High relative humidity in the cold and other weather phenomena can 

contribute to the development of environmental conditions, where ice is formed in the 

structures, or the moisture in the feed material causes it to freeze and build up on the 
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structures of the plant. In above-freezing temperatures, rain increases the feed material 

moisture content, which can cause the material to stick to plant structures. 

It can be concluded that the demolition waste crushing process is far from stationary, 

even when operating in normal conditions. An expected process state does not exist as 

the operator actions, variations in feed material and different environmental conditions 

introduce variability in the process. According to the interviewees, even the normal state 

of the demolition waste crushing process is interrupted relatively often, with interruptions 

happening on an hourly basis. 

4.3 Comparison to other crushing processes 

Many different crushing processes exist to produce different sized aggregates, reduce 

the size of ore in mining applications or enable the recycling of materials such as slag. 

Different crusher types are used for different needs and the auxiliary equipment are 

arranged to suit the needs of a particular application. 

Some crushing processes take place in stationary plants. Stationary crushing processes 

are built in locations with a continuous need for material size reduction and larger scale 

operations. When comparing the mobile CDW crushing process to any stationary 

process, the sources for variation are much more pronounced in the mobile applications. 

The basic principle of mobile crushing plants is the ability to move the plant quickly from 

one location (and feed material) to another, which introduces several variation sources. 

Even among the mobile crushing plants, the demolition waste crushing process stands 

out as a special case. Regular aggregate production processes might be designed for 

producing an end product of certain type from similar feed material, and therefore be run 

in relatively stable conditions. Even if the feed material or other process parameters are 

changed, the change might be less dramatic than a switch from one demolition waste 

type to another, and in regular aggregate production processes the feed material does 

not include a variety of unexpected and challenging objects and materials. Regular rock 

crushing processes have also been established to function with a low frequency of 

interruptions during decades of development and can be said to be more reliable than 

the newer demolition waste crushing process. 

As stated by the interviewees, other recycling processes, such as asphalt crushing, can 

be relatively similar to the CDW crushing process. However, it was also stated that the 

problems are often process-specific, as for example the recycling crushing process for 

asphalt comes with its own challenges. 
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Overall, the mobile demolition waste crushing process can be said to be among, if not 

the most challenging of different common crushing processes. The feed material is very 

heterogenic and varies greatly from one site to another. The mobility of the crushing plant 

introduces its own challenges, and events that would be classified as unexpected in other 

processes, become expected and everyday occurrences when the demolition waste 

crushing process is considered. 

4.4 Common anomaly types and phenomena 

As concluded, the CDW crushing process is variable and non-stationary, with several 

factors contributing to the changing conditions. Feed material can greatly differ from 

application to another, and different machine configurations, ways of operating the 

machine and environmental conditions ensure that finding similar applications is rare. 

From this, an assumption is made that the anomalous events also vary from application 

to another, and very different failure modes for the process exist. 

In the interview study, focus was set on the anomalous events in the CDW crushing 

process. While the detailed opinions of the interviewees differed from each other, a clear 

and common consensus was that pre-processing of the feed material is one of, if not the 

most important thing in preventing process anomalies and affecting their quality and 

quantity. This means that the crushing plant is fed with reasonable-sized material, and 

that for example the rebar pieces in the feed material have been cut to short enough 

length. 

The anomalous events discovered in the interview study were collected to a table, after 

which they were analysed. The goal was to build a solid background on the subject, and 

to answer the research question addressing the possible CDW recycling crushing 

process anomalies. The information from the interviews was condensed down to a total 

of 11 identified anomalous events which have different causes and effects on the 

crushing plant operation. The collected anomalous events are shown in Table 3. 
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 Identified CDW crushing process anomalies and involved components. 

 Identified problem Involved component(s) 

1 
Pile-up of rebar / similar objects 
inside the machine 

Crusher, lower pan feeder, main 
conveyor, magnetic separator 

2 Rebar jammed in conveyor structure Main conveyor, rest of the process 

3 
Product conveyor overload from 
sudden increase of fine fraction 

Product conveyor 

4 
Feeder blocked by rebar / similar 
object 

Feeder / pre-screen 

5 Vibrating screen media clogged Screen 

6 
Large metal objects stuck to 
magnetic separator 

Magnetic separator 

7 Main conveyor speed decreased4 Main conveyor 

8 Bypass chute blocked Bypass chute 

9 
Breaker plate jammed in withdrawn 
position 

Crusher, return conveyors 

10 
Rebar / cable wrapped around the 
rotor 

Crusher 

11 Loose parts in vibrating components 
Feeder, lower pan feeder, vibrating 
screen 

 

As can be seen from the table, rebar or other non-crushable objects account for several 

process failure modes. From the interview results it can be concluded that rebar getting 

jammed in different parts of the machine can cause anomalies all over the process and 

the machine. Otherwise, the variety of different problems is wide, and many of the 

process components are involved. As the identified anomalies are spread both in terms 

of anomaly type and physical location, no clear areas of focus can be formed. 

 
 
4 Only applies to machines with a hydraulically driven main conveyor. 
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4.5 Reasons for process malfunctions 

After establishing the most common identified anomalous events in the CDW crushing 

process, the possible causes of the faults were analysed. Some of the information used 

in the analysis was collected from the interviews, and general knowledge of the process 

and mobile crushing plants was used to estimate the direct causes for each process 

anomaly. The causes for each process anomaly are shown in Table 4. 

 Possible causes for identified anomalies. 

  Identified problem Possible cause(s) 

1 
Pile-up of rebar / similar inside 
the machine 

Rebar pieces get tangled to each other, 
forming a "ball", which is jammed under the 
power unit or near the magnetic separator 

2 
Rebar jammed in conveyor 
structure 

Rebar pieces randomly end up in the 
rollers or structure of the conveyor 

3 
Product conveyor overload from 
sudden increase of fine fraction 

Large fraction of fines in the feed material 

4 Feeder blocked by rebar / similar 
Shape of steel pieces results in them 
getting stuck in the feeder / pre-screen 

5 Vibrating screen media clogged 
Shape of certain pieces within the material 
flow results in them getting stuck on the 
screening media 

6 
Large metal objects stuck to 
magnetic separator 

Heavy metal objects are pulled towards the 
magnetic separator with a great force 

7 Main conveyor speed decreased 
Conveyor is overloaded with heavy 
material flow 

8 Bypass chute blocked 
Rebar / other steel pieces get jammed in 
the bypass chute 

9 
Breaker plate jammed in 
withdrawn position 

Cause unknown 
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  Identified problem Possible cause(s) 

10 
Rebar / cable wrapped around 
the rotor 

Long uncrushable objects get bent and 
eventually wrapped around the crusher 
rotor 

11 
Loose parts in vibrating 
components 

Normal operation can cause parts to 
become loose 

 

Causes shown here aim to assess the different process phenomena, which are directly 

responsible for any given anomalous event. The estimated causes strive for answering 

the question how an anomaly happens and help in building the overall picture on the 

failure modes of the process. 

After the possible causes were assessed, the event chain leading to anomalous events 

was analysed in the form of root cause analysis, again to build understanding on the 

events. With the root causes, the question of why a given problem occurs, is pondered. 

The root causes for each identified problem are shown in Table 5. 

 Derived root causes for identified process anomalies. 

  Identified problem Derived root cause(s) 

1 
Pile-up of rebar / similar inside 
the machine 

Rebar in feed material, not enough space 
above the conveyors 

2 
Rebar jammed in conveyor 
structure 

Rebar in feed material, conveyor structure 
not protected well enough, area above 
conveyor not smooth enough 

3 
Product conveyor overload from 
sudden increase of fine fraction 

Plant is fed with material that has a high 
percentage of fines 

4 
Feeder blocked by rebar / 
similar 

Feeder / pre-screen structure not optimal for 
bypassing fines and not collecting metal 
objects, rebar in feed material 

5 Vibrating screen media clogged 

Some of the feed material is not crushed and 
cannot be picked up by the magnetic 
separator, ending up on the screen deck and 
clogging it 
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  Identified problem Derived root cause(s) 

6 
Large metal objects stuck to 
magnetic separator 

Plant is fed with too large and heavy metallic 
objects; magnetic separator is not designed 
for such loads 

7 
Main conveyor speed 
decreased 

Plant is fed with material that does not load 
the crusher enough to limit the capacity, 
overloading the conveyor 

8 Bypass chute blocked 

Pre-screen design allows the metallic objects 
to enter the bypass chute, bypass chute 
design promotes objects getting jammed 
(converging?) 

9 
Breaker plate jammed in 
withdrawn position 

Crusher is overloaded with tough feed 
material, causing the breaker plate to be 
forced to the withdrawn position 

10 
Rebar / cable wrapped around 
the rotor 

Plant is fed with out-of-specification feed 
material (too long rebar / wire / cable) 

11 
Loose parts in vibrating 
components 

Vibration exposes different joints to 
disassembling themselves or materials to 
failure due to fatigue 

 

Most of the derived root causes are somehow connected to the feed material, and the 

importance of pre-processing the feed material, and operator responsibility is even 

further strengthened by the root cause analysis results. According to the estimated root 

causes, feeding the plant with material it is not designed to handle is the root cause of 

most of the identified anomalies. 

When assessing the results, a question on the design principles of the plant is naturally 

raised. If the mobile crushing plant is designed for CDW recycling processes, it should 

be able to handle the typical feed material without developing blockages or other 

anomalies in the process. However, designing a machine that fulfils all the other 

requirements while being able to handle the most difficult feed material is definitely not 

an easy task. According to the root causes derived from the interview results, future 

design considerations should include ensuring that the path of the material flow is as 

smooth as possible and has enough space for larger-than-expected objects. According 

to the interviewees, this has been the development path in the history, but the importance 

of such design principles is still high.   
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4.6 Effects on the machine operation 

Different process anomalies have a different effect on the operation of the mobile 

crushing plant. The effects on the machine operation were analysed in a similar way to 

the causes and are shown in Table 6. 

To assess the severity of each identified anomaly, a severity rating was assigned on a 

3-point scale (Mild – Moderate - Severe). If the identified fault is of a cumulative type, 

this is mentioned as well. The ratings from mild to severe are established to illustrate 

how different anomalies have different consequences and require different actions to 

resolve. A mild anomaly does not necessarily require halting the production immediately, 

and it might eventually clear itself, or on the other hand develop into a worse problem. 

Moderate anomalies require the production to be halted temporarily and actions to be 

taken, but the machine is not damaged, and manual work required to resolve the event 

is not very big. Severe anomalies either involve serious damage to the machine, 

significant loss of production time and require repairs or manual work, such as clearing 

up a machine blockage to be conducted. According to the interviewees, a severely 

blocked mobile crushing plant takes somewhere around 8 hours of manual labour to 

clear up, which is an extremely unwanted scenario. 

As expected, the wide variety of different anomalous events can lead to very different 

effects on the machine operation, and effects vary from total blockage of the machine to 

very little disturbance in the operation of the plant. Some of the anomalous events include 

damage to the machine, and some can be very easily resolved. The worst anomaly types 

possess a risk for total blockage of the machine, and every possible action should be 

taken to minimize the risk for these anomaly types in every stage of the machine design.  
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 Estimated effects of anomalies on the crushing plant operation 

  Identified problem Effect(s) Severity 

1 
Pile-up of rebar / similar 
inside the machine 

Obstruction of material flow, total 
blockage of the entire machine 

Severe 

2 
Rebar jammed in 
conveyor structure 

Possible damage to the conveyor belt 
Moderate / 
severe 

3 
Product conveyor 
overload from sudden 
increase of fine fraction 

Conveyor possibly slowing down as a 
result of overload 

Mild, severe 
if persistent 

4 
Feeder blocked by rebar 
/ similar 

Decreased performance of the pre-
screen and in bad cases the feeder 

Mild, 
cumulative 

5 
Vibrating screen media 
clogged 

Decreased performance of the 
vibrating screen 

Mild, 
cumulative 

6 
Large metal objects 
stuck to magnetic 
separator 

Magnetic separator discharge belt 
stops moving if the magnetic force 
pulling on the metal object generates 
too much friction for the belt 

Moderate 

7 
Main conveyor speed 
decreased 

Total blockage of the entire machine if 
material flow not reduced 

Mild, severe 
if persistent 

8 Bypass chute blocked 

Fine material not bypassed if the chute 
is completely blocked → decreased 
production and unnecessary crusher 
load / energy consumption 

Moderate 

9 
Breaker plate jammed in 
withdrawn position 

Oversized material is passed through 
the crusher → can cause blockages in 
return conveyors and possibly 
decrease product quality 

Moderate 

10 
Rebar / cable wrapped 
around the rotor 

Reduced performance if happens in 
excess. In small quantities not very 
harmful 

Mild 

11 
Loose parts in vibrating 
components 

Reduced performance or equipment 
damage 

Moderate, 
cumulative 
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5. MEASUREMENT PLANNING AND 
IMPLEMENTATION 

To perform the case study for evaluating the feasibility of monitoring the construction and 

demolition waste crushing process, a measurement period was conducted in a real-world 

application on a customer site. 

This chapter presents the measurement implementation and application as well as 

describes the workflow of conducting the data collection from the field. The scope of the 

measurements extends beyond the scope of this thesis, and designing the 

measurements is a subject of its own. Therefore, the design process for the 

measurement period is not discussed in-depth in this document. 

5.1 Measurement planning and objectives 

The CDW crushing process and crushing processes in general involve a variety of 

components and equipment. Even when the subject is narrowed down to the scope of 

this thesis, a mobile impactor crushing plant, the system in question is a complex 

machine with different subsystems working together to fulfil the requirements of a given 

material processing task. 

As discussed in the chapter 4, the variety of possible anomalies and problems is also 

wide. Any of the process components cannot explicitly be stated to be “problem-free”, 

and due to the unpredictable nature of the process, even determining the most common 

anomalies is a difficult task, greatly depending on the application-specific factors. 

As a result, planning the first measurement setup for process monitoring research cannot 

be easily reasoned. For the measurement period planning, common knowledge of typical 

applications and educated guesses were used to determine the required sensors and 

other measurement setup. The results presented in the chapter 4 were also referenced 

to estimate the most potential parts of the process for anomaly occurrence. The 

unpredictable nature of the problematic components was addressed by aiming to build 

the measurement setup to cover as much of the process as possible, given the limitations 

in available measurement hardware, budget, and other general factors, such as 

schedule, and the fact that the measurement period was conducted on a customer site. 

Actions on the site had to be arranged not to cause excessive machine downtime or 

disturb the operation of the machine. 
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The measurement period included many different objectives, with some of them 

addressing the requirements of the research in this thesis, while others included data 

collection for different research interests as well. The main objective concerning this 

thesis was to record CDW crushing process anomalies using several different data types. 

In the early planning of the measurements, it was decided that the measurements would 

be implemented as continuous. In practice, this means that no trigger conditions would 

be established, and the hardware would be running and collecting data continuously 

regardless of the process state or any other factors. As a natural consequence, this 

results in a relatively large amount of normal process data being captured. Triggering of 

the measurements was evaluated as being problematic due to the nature of some 

process anomalies. As described in chapter 4.4, even the identified process anomalies 

include events which do not necessarily have immediate effects, which build up over 

time, or which cannot be observed by operators or other personnel working in the 

proximity of the machine. Therefore, it was evaluated that no reliable trigger condition 

would exist in the measured signals or anywhere else in the machine. Manual triggering 

would also have been challenging due to the same reasons. Additionally, manual 

triggering would have required some form of interaction with the measurement setup, 

which would not necessarily have been realizable given the limitations mentioned earlier. 

The decision of implementing the measurements as continuous raised the need for 

identifying the regions of interest from the continuous measurement data. As the variety 

of possible process anomalies was estimated as being large and the objective of the 

research was to investigate the possibility of automatic anomaly detection, it was clear 

that the state of the machine and the process had to be manually observed throughout 

the measurement period. The plan was to conduct the measurements in a way that when 

the measurement hardware is running, a person is continuously observing the process 

and making notes of the process and machine state, as well as other observations on 

factors that might influence the results of the study. Observations were designed to be 

incorporated with the actual measurement data in the later phase, requiring accurate 

time synchronization between the data collection and manual observations. 

After the fundamental idea of the measurement period was established, measurement 

targets were selected. Different research interests affected the decisions for the 

quantities being measured, but the focus was to support the process monitoring study. 

A wide range of different measured quantities was chosen, as arranging a measurement 

case always requires preparation work, and using the available hardware, it was 

relatively easy to add different quantities.  
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In the planning phase, the research interests covered three categories, which are: 

1. Mechanical quantities and existing control system data, 

2. Audio and 

3. Acceleration. 

The first category includes process-related data already available on the CAN bus of the 

machine, as well as other mechanical quantities, such as conveyor power draw. The 

purpose of the category is to capture the state of the process components in the plant in 

the form of data that can be measured directly, and which mostly already exists in the 

automation bus. Measured quantities selected for this category are shown in Table 7. 
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 Measured mechanical quantities. 

Number Quantity Data source 

1 Product conveyor hydraulic pressure CAN bus 

2 Crusher power CAN bus 

3 Crusher power target CAN bus 

4 Crusher speed CAN bus 

5 Hydraulic pump 1 pressure CAN bus 

6 Hydraulic pump 2 pressure CAN bus 

7 Feeder control percentage CAN bus 

8 Diesel engine RPM CAN bus 

9 Diesel engine load percentage CAN bus 

10 Product conveyor belt velocity CAN bus 

11 Hydraulic oil temperature CAN bus 

12 Diesel engine coolant temperature CAN bus 

13 Engine charge air temperature CAN bus 

14 Engine cooler fan control value CAN bus 

15 Main conveyor electric power Power transducer 

16 Vibrating conveyor hydraulic pressure Pressure sensor 

17 Return conveyor hydraulic pressure Pressure sensor 

 

Illustrative locations of the location-specific quantities are shown in Figure 6. The shown 

locations describe the location of the physical phenomena, sensor locations were 

different to the ones shown. 
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  Locations of physical measured quantities (Modified from: Viilo, 
2011) 

 

Audio category consisted of process sound measurements. Three audio channels were 

selected to be used, and the microphone locations were chosen to include most of the 

process, with research interests outside of this study as well. Audio measurement 

channels are shown in Table 8. 

 

 Channels and sensor locations for audio measurement 

Channel Sensor location 

Microphone 1 Magnetic separator 

Microphone 2 Light mast 

Microphone 3 Vibrating conveyor / by-pass chute 

 

Microphone locations are shown in Figure 7. 
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  Microphone measurement locations (Modified from: Viilo, 2011) 

 

In the acceleration category, simple acceleration measurements were included. 

Acceleration data was measured to supplement other measurements, and on the other 

hand was not planned to comprehensively cover the entire process. Vibration channels 

are shown in Table 9. 

 

 Channels and sensor locations for acceleration measurement 

Channel Sensor location 

Acceleration 1 Main conveyor frame 

Acceleration 2 Magnetic separator frame 

Acceleration 3 Machine main frame 

 

Accelerometer locations are shown in Figure 8. 

 

  Acceleration sensor locations (Modified from: Viilo, 2011) 
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5.2 Description of the application 

As mentioned in the chapter 4.2, crushing processes in general, including CDW recycling 

crushing process, have a large amount of variation. Recycling crushing processes 

especially can be very different from one another, and the biggest factors in defining the 

process are feed material and final product from the crusher.  

Before the measurement period, requirements were set to define a suitable process for 

the task of investigating the feasibility of process monitoring and anomaly detection. The 

scope was limited to CDW crushing processes, which can be stated to be the most 

vulnerable in terms of process anomalies. Requirements included the use of an available 

crushing plant, and a suitable mobile impactor crushing and screening plant was selected 

to be used in the measurements. The individual machine used in the measurements is 

a prototype machine, having several differences compared to a serial production unit. 

With the machine being selected, available applications were narrowed down to the 

applications of the plant in question, and the first suitable application was selected. 

Suitability of the application was evaluated based on expertise and experience of typical 

CDW crushing processes inside the company. 

The selected application was a demolition site of a school building. Previously, the school 

building was demolished with an excavator and other required machinery, and the 

demolition waste was temporarily stored in a stockpile. A contractor was responsible of 

using the mentioned mobile impactor crushing and screening plant to process the entire 

former school building, crushing the feed material to an output size distribution of 0 – 90 

mm. The crushing was performed in a single phase, meaning that the machine in 

question was the only piece of crushing and screening equipment in contact with the 

material, and no secondary- or tertiary crushing phases or external screening equipment 

were used. In the Figure 9, the crushing plant is shown on the measurement site. 

 

 



48 
 

 

  The mobile crushing plant used in the measurements. The feeder 
is located on the right and material flows from right to left.  

 

The operation of the plant was carried out in a typical way. The contractor used an 

excavator for feeding the plant from the stockpile, and a wheel loader to relocate the 

product from the product stockpile to a larger one. As the work progressed, the plant was 

periodically track-driven towards the shrinking feed stockpile. The contractor was an 

experienced demolition service provider and operated the plant professionally. Special 

care was paid to feeding the plant, as the excavator operator wanted to prevent objects 

that could cause damage from entering the crusher. It was known that the feed material 

stockpile included very large natural stones, and as a special mention, large steel 

counterbalance weights from the lifts of the demolished building.  

Feed material plays an important role of forming the typical characteristics of a crushing 

process. In this application, the feed material presented a one example of construction 

and demolition waste from a Finnish school building. The feed material could be 

described as easy for the crusher, as the crusher power draw was evaluated to be 

relatively low. The proportion of fine material was high, which on its own can result in low 

crusher power draw. In addition to the fine fraction, the feed material was composed of 

bricks, different sized pieces of concrete and different sized natural stones, containing 

also different types of uncrushable material, such as different sized rebar pieces, wood 

pieces, lengths of electric wire and small amounts of other materials. Defining an 

accurate size distribution for the feed material would have required tests, and a more 

extensive evaluation of the feed material quality is therefore passed in this context. 
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Illustration of the demolition waste used as the feed material in the measurement 

application is shown in Figure 10 and Figure 11. 

 

   Demolition waste used as feed material, size 10 glove for 
rough size reference. 
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 Feed material included different rocks, concrete, bricks, and other 
materials. 

The mobile crushing plant can be configured in multiple ways for different applications 

and needs. In this application, the contractor responsible for crusher operation had 

decided not to use the side conveyor of the crushing plant. With the side conveyor being 

disabled, fine material passing through the pre-screen was directed to bypass the 

crusher and forwarded towards the later stages of the process with the crusher product. 

Other configuration choices of the plant included using the plant in closed-loop mode by 

having a screening media in use. The screening media used was a 110 mm wire mesh, 

directing oversized material to the return conveyor and eventually back in the crusher. 

Output of the crushing plant could be divided to three parts. The main output material 

flow is naturally the crushed aggregate. The product in this application was described 

with the size distribution of 0 to 90 mm. With the feed material including different types 

of uncrushables, two different by-product streams are produced as well. 

The more significant by-product stream is separated from the material flow by the 

magnetic separator. Consisting of rebar and other forms of ferromagnetic materials, this 

stream is discharged out of the side of the crushing plant, and in this application, 

collected to a portable open steel container, which is emptied periodically by the machine 

operator crew. The amount of separated metal required the container to be emptied 

several times during a typical working day. An illustration of the metallic material by-

product stream is shown in Figure 12. 
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 Metallic by-product stream separated by the magnetic separator. 

 

Another by-product stream is produced by the so-called “Windshifter”, an airflow-based 

light fraction separator located in the material flow to the return conveyor on the side of 

the plant opposite to the magnetic separator discharge. The contents of this by-product 

stream included wood pieces, electric wire, insulation materials and other relatively light 

objects which were not passed through the screening media. An example of this by-

product stream is shown in Figure 13. This stream was also collected in an open steel 

container, similar to the one used with ferromagnetic by-product stream.  
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 Light fraction by-product stream from the windshifter 

 

As practically every demolition site differs from one another in terms of feed material and 

other conditions, evaluating the typicality of the site is not straight-forward. The 

application in question represented an example of a Finnish demolition waste recycling 

contract, and there were no clear factors making the application stand out from a typical 

CDW crushing application. Possibly the most notable factor was the rather big proportion 

of fine material in the feed, and the feed material being generally easy to crush. An 

example of a different process could have the feed material include less fines, more and 

larger chunks of concrete and less bricks. The chunks of concrete could possibly also 

include more rebar strongly embedded in them, causing a less perfect separation of 

metallic materials from the crushables. This typical characteristic of concrete recycling 

processes was missing on the measurement application. 

5.3 Measurement hardware 

To collect multi-domain process data from a mobile crushing and screening plant, several 

components of measurement hardware are required. Information from only the CAN bus 

of the plant can be recorded relatively easily, but as the goal of the measurements was 

to utilize different domains for data collection, a more advanced system was required. 
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In this sub-chapter, the measurement hardware used is described, ranging from the main 

component, the data acquisition system, to the sensors and other hardware used to 

collect the different types of data. Selection of the measurement hardware was mainly 

done by utilizing measurement hardware already available in the company. For the 

microphones, a short description of the sensor selection process is included, as they 

were specifically ordered for this project.  

5.3.1 Data acquisition hardware 

The core of the entire data collection system was a modular Q.brixx XL data acquisition 

(DAQ) system made by Gantner Instruments. The system includes a modular structure, 

which allows customization of the DAQ unit for different needs. In the modular structure, 

one module is a controller, providing interfaces for system configuration, data storage 

and other system-wide needs, while actual sensors are connected to different 

measurement modules. A wide selection of measurement modules is available, including 

different general-purpose modules, acceleration modules, special strain gage modules 

and many others. (Gantner Instruments, 2023) 

The configuration used for the measurements was available in the company and was 

suitable for the measurements without major changes. To ensure the measurement 

hardware performance with high sample rates, measurement module data buses were 

reviewed and set according to manufacturer recommendations. The software 

configuration of the DAQ system was also reviewed and set according to 

recommendations before the measurement period. These actions were made, because 

the DAQ system was previously known not to perform optimally with high sample rates 

before the physical and software configuration changes were made. General structure 

of the modular system with individual modules is shown in Table 10. 
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 Data acquisition system modules 

Module function Model 

Controller, interface Q.brixx-X station T 

IEPE sensor module (microphones) Q.brixx-XL A111 BNC 

IEPE sensor module (accelerometers) Q.brixx-XL A111 BNC 

General purpose analog measurement Q.brixx-XL A107 

General purpose analog measurement Q.brixx-XL A108 

General purpose analog measurement Q.brixx-XL A108 

 

The modular DAQ hardware during planning phase testing is shown in Figure 14. The 

first module from the top is the controller module, and modules are in the order of Table 

10. 
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 Gantner Instruments data acquisition system used in the 
measurements during office environment testing. 

 

With the presented configuration of the modular DAQ system, connecting all the required 

sensors was possible. Additionally, the CAN bus of the plant could be connected to the 

controller module of the system, enabling the recording of the defined signals in the CAN 

bus. Powering the system was also possible by connecting the DAQ system to the 24 V 

DC power available in the crushing plant. 

The DAQ system offers a variety of possibilities for storing the measured data, and in 

this case, a USB memory stick was used. After each measurement day, the files were 

transferred from the mass storage media to a computer. 

The data acquisition system supports sample rates up to 100 kHz with the IEPE 

measurement modules. Sample rates were chosen for each measurement quantity 

group, and the selection was based on experience from other measurements. A sample 

rate of 40 000 Hz was selected for the audio signals, enabling analysis in the frequency 

domain up to 20 kHz. For the accelerometers a sample rate of 10 000 Hz was used, and 
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for all the other quantities, a sample rate of 500 Hz was selected. The signals collected 

from the CAN bus were updating noticeably slower than the selected sample rate and 

were therefore repeated in the raw data between their respective updates by the DAQ 

system. 

5.3.2 Microphones 

One of the interests for the measurement period was to record the sound of the process 

from different points. Several options exist for audio recording, but for example using 

individual recorders would have been challenging. Therefore, a requirement was set in 

the planning phase of the measurements, that the existing DAQ system should be used 

for audio recording. Using the data acquisition system to record the audio data would 

result in the audio data automatically being time-synchronized with all the other 

measurements and would open the possibility for using the audio data to calculate sound 

pressure levels of each microphone location. 

The existing data acquisition system supported the use of IEPE -type sensors with BNC-

type connectors. This condition rendered IEPE-compatible measurement microphones 

as a suitable sensor type for the audio measurements. As no such hardware was 

available in the company, possible options were reviewed, and a suitable model was 

selected. The selected measurement microphone model was 146AE constant current 

power free-field measurement microphone made by GRAS. The 146AE microphone was 

selected after comparing the specifications of few available options. The most important 

criterion for the microphone selection was the resistance to rough environmental 

conditions, such as low temperature, dust, water and vibrations or shocks. However, 

good overall quality was also required to capture accurate data for different uses. The 

specifications of the selected microphone model are shown in Table 11. 
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 GRAS 146AE Microphone specifications 

Property Value 

Frequency range 3,15 Hz – 20 kHz (± 2 dB) 

Sensitivity 50 mV / Pa 

Dynamic range 18 dB(A) – 133 dB 

Response Free field 

IP rating  IP 67 

 

5.3.3 Accelerometers 

Collecting vibration data from the process has several uses, and collecting some 

vibration data was included in the research interests in this work as well. For vibration 

sensors, 622A01 accelerometers made by IMI sensors were used. Specifications of the 

accelerometers are shown in Table 12.  

 

 IMI Sensors 622A01 Accelerometer specifications 

Property Value 

Frequency range 0,58 Hz – 4000 Hz 

Sensitivity 100 mV / G 

Resonant frequency 20 kHz 

Type Piezoelectric 

IP rating  IP 68 

Mounting Magnetic 
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5.3.4 Other hardware 

In addition to microphones and accelerometers, other sensor types were used to 

complement the data available from the CAN bus of the plant as well. 

For the measurement of the main conveyor power, a Carlo Gavazzi CPT-DIN “Advanced 

version” electrical power transducer was used. The power transducer measures the 

power draw of the conveyor driven by 3-phase induction motors by calculating the AC 

power from voltages and currents of the motor. The power transducer was mounted in 

an electrical cabinet of the crushing plant and the signal was fed to the DAQ system as 

a standard 4 – 20 mA current signal. The power transducer is shown in Figure 15. 

 

 

 Carlo Gavazzi CPT-DIN power transducer installed in the crushing 
plant. 

 

To measure the hydraulic pressures, 600 bar pressure sensors were used. Hydraulic 

pressures were measured near the main hydraulic manifold of the crushing plant, as test 

couplings were conveniently available in the actuator pressure lines near the manifold. 

With this arrangement, pressure losses in the hydraulic lines are not considered, but the 

goal of the measurements was to mainly monitor the change in pressure values and did 

not require the absolutely correct actuator pressure values to be recorded. Thereby, 

performing the measurements from the manifold was stated to be sufficient. The return 

conveyor hydraulic pressure sensor is shown in Figure 16. 
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 Pressure sensor on the return conveyor pressure line 

 

To ensure that the measurement period was well documented in terms of the process, 

two cameras were included in the measurement setup. After a review of options, GoPro 

HERO 9 Black -model action cameras were chosen to be mounted on the crushing plant.  

5.4 Implementation of the field measurements 

After the measurement planning and hardware selection, the equipment described in the 

previous chapter was installed on the crushing plant. In this sub-chapter, the hardware 

installation and actual measurement period is described. 

5.4.1 Hardware installation 

At the time of the initial phase of this work, the target of the measurements, a mobile 

crushing plant (Metso Lokotrack® LT1213SE™), was under a scheduled modification 

round at the target company factory. As the round was nearing completion and the first 

application of the machine was confirmed to suit the needs of this study, the 

measurement hardware was installed on the plant. By performing the installation at the 

factory, process downtime caused by the measurements was minimized. 

The core component of the measurement hardware, the DAQ system, was mounted to 

the side of the crushing plant inside a suitable electric cabinet. The cabinet protected the 

data acquisition equipment and necessary electrical connections. For instance, a 24 V 

DC rail was established to provide electrical power from the crushing plant to the DAQ 
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hardware, pressure sensors and the cameras used. The cabinet mounted on the plant 

is shown in Figure 17. 

 

 

 Electric cabinet for the data acquisition hardware mounted on the 
side of the crushing plant. 

 

After mounting the electric cabinet, wires for sensors and other needs were installed on 

the machine. The CAN bus of the machine was accessed from an electric cabinet of the 

plant by connecting a custom-made cable between the main user interface module of 

the plant and its connection to the bus, providing the CAN H and CAN L wires to be 

connected to the DAQ hardware. The main conveyor power transducer signal was also 

accessed from the same electric cabinet. A cable for these was installed between the 

two electric cabinets and connections were made to enable data logging. Connection to 

the 24 V DC power was made by installing a special cable on the machine, connecting 

to a 24 V outlet on the operating panel of the crushing plant and delivering the power to 

the DAQ cabinet. Acceleration-, microphone-, and pressure sensor cables were installed 

on the plant and connected to the data logger. 

After installing the cables, sensors were added to the locations shown in chapter 5.1. 

Most of the sensors were installed at the factory and installations were finished at the 

measurement site. Uniaxial accelerometers were mounted to their locations with their 

magnetic bases, and all three locations provided a good, flat surface for the magnetic 
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sensor attachment. The installation of the pressure sensors was relatively straight-

forward, and they were connected to the pressure lines of the target actuators. 

When mounting the measurement microphones to the crushing plant, the effect of 

vibration was considered. According to the manufacturer, vibrations especially in the 

direction of the microphone diaphragm normal axis should be avoided, and the 

microphone should not be mounted directly on a vibrating surface (GRAS, 2023b). The 

frame of the mobile crushing plant and its other components are known to be vibrating 

surfaces, and therefore shock mounts for the microphones were used. The microphone 

mounts were custom-made in the factory and consisted of a fibre-reinforced rubber hose 

and general hose clamps or zip ties. The mounting of the microphone was evaluated to 

be very effective in dampening movement induced to the mount by hand, softly and 

gently returning to its equilibrium position. Thus, the mount was considered to provide 

significant vibration damping compared to directly mounting the microphone to the frame. 

Despite the manufacturer recommendation of avoiding vibrations, the microphones are 

stated to have a low sensitivity to vibrations, and therefore the mounting was considered 

to be sufficient for the application. To suppress the effect of wind and to provide additional 

protection from the environment, windscreens were used with the microphones. 

Mounting of the microphones is shown in Figure 18 and Figure 19. 

 

 

 Mounting of the vibrating feeder microphone without windscreen. 
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 Mounting of the light mast microphone with windscreen attached. 

 

Finally, with all sensors, cables, and DAQ equipment installed on the machine, the two 

cameras were mounted on the crushing plant. GoPro adhesive flat surface mounts were 

used, along with various GoPro mounting hardware to point the cameras towards their 

targets. 24 V DC power from the DAQ hardware cabinet rail was supplied to the proximity 

of the cameras using a power cable, and the voltage was stepped down to the USB 

(Universal Serial Bus) standard 5 V using suitable converters. The 5 V USB power could 

be used for powering the cameras from the crushing plant. Water- and dustproof 

hardware was used with the cameras to allow external power without losing the water 

and dust resistance. The voltage converters were protected from the harsh environment 

for the duration of the measurements.  

5.4.2 Measurements during the crushing process 

After the entire measurement setup was installed, the actual measurement period was 

started. The duration of the measurement period was three days, during which the 

measurement hardware was running, and the process was observed manually. 

The goal of the manual process observation was to produce data with timestamps, 

augmenting the actual measurement data to allow different analyses to be performed 

after the field measurement period, and to track the uncontrollable field conditions as 

accurately as possible. An Android application called “TimeStamp” was used to 

conveniently add notes with accurate time reference in the field conditions. In addition to 

accurate time references with notes, the information collected to the application could be 
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exported in various machine-readable formats including Comma-Separated Values 

(.CSV) -file, and JavaScript Object Notation (.json) -file. To prepare for the measurement 

period, certain pre-set notes were defined in the application, including process start and 

stop events, and events for normal process operation. These were used to mark events 

which were expected to be repeated several times during the measurement period. 

Normal operation notes were added as the machine was running normally without any 

disturbances. This was done to strengthen the understanding of the measurement data 

in the processing phase. The Android application user interface with example notes and 

timestamps is shown in Figure 20. 

 

 Screenshot of the TimeStamp -Android application used for 
timestamped notes during the field measurements. 

During the first measurement day, last sensor installations were made, and the data 

acquisition system was started. The system performance was observed by inspecting 

the data after a while of operation, and some problems were solved that emerged with 

the measurement setup. After the first measurement day, all the measurement hardware 

was working as expected, and the day was followed by two full measurement days. 

Some minor challenges were faced during the measurements, including a corrupted or 

damaged microSD -card on one of the cameras. 
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Process anomalies were expected to happen during the measurement period, and that 

was the case. By analysing the 152 notes made during the measurement period, a total 

of 11 individual anomalous events were identified. The anomalies are shown in Table 

13.   

 

 Process anomalies during the measurement period in the order of 
appearance. 

  Anomaly description Effects 

1 
Rebar buildup on the magnetic 
separator discharge chute 

No major effects on the process (Mild) 

2 Screen oversize conveyor jammed 
Operator intervention was required to 
clear the blockage, no major loss in 
production time (Moderate) 

3 

Magnetic separator electric magnet 
function failed, resulting in rebar 
pieces ending up on the screen deck 
and blocking the screen 

Blocked screen filled up with material, 
requiring process shutdown and few 
hours of manual work to clear the 
blockage (Moderate / severe) 

4 
Rebar pieces between the magnetic 
separator belt and frame - audible on 
the site and in the recording 

No major effects on the process - rebar 
was removed during the next break (Mild) 

5 

Magnetic separator belt jammed. A 
wear part broke away from under the 
crusher and ended up being wedged 
between the main conveyor and the 
magnetic separator 

Process automatically shut down. 
Removing the wedged part was quick, but 
replacing the damaged wear part resulted 
in a few hours of process downtime 
(Moderate / severe) 

6 
Minor damage in the main conveyor 
belt 

No major effects on the process (Mild) 

7 Screen oversize conveyor jammed 

Operator intervention was required to 
clear the blockage, after which the same 
object momentarily blocked the return 
conveyor. No major loss in production 
time (Moderate) 

8 
Rebar pieces found from between the 
main conveyor frame and belt. 

No major effects on the process (Mild) 
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  Anomaly description Effects 

9 Screen oversize conveyor jammed 
Operator intervention was required to 
clear the blockage, no major loss in 
production time (Moderate) 

10 Screen deck cleaned of rebar pieces 

Screen deck had cumulatively collected 
various uncrushable objects, which were 
removed. Removal happens roughly once 
per day in this application (Mild, 
cumulative) 

11 

Rebar piece wedged between the 
main conveyor and the magnetic 
separator belt, jamming the magnetic 
separator 

Process automatically shut down; 
operator intervention was required to 
remove the wedged piece. No major loss 
in production time (Moderate) 

 

As with the possible anomalies identified in chapter 4.4, the variety in the observed 

anomalies is wide as well. Some of the events, such as the screen getting blocked 

because of a magnetic separator malfunction, required the process to be stopped 

completely, and several hours of work to be conducted to resolve the problem and return 

the machine to operating condition. On the other hand, events like rebar build-up on the 

main conveyor structure or the magnetic separator did not cause any noticeable 

disturbances in the process and were resolved during the next natural break in the 

operation of the plant. The anomalies are classified on the same scale as presented in 

chapter 4.6. As stated in the chapter 4.2, it is normal for a CDW crushing process to have 

anomalies happening on an hourly basis. This was the case during the measurement 

period as well. 

In general, most of the observed anomalies did not have serious consequences. Two 

events were classified between moderate and severe as they caused several hours of 

process downtime. However, both events were related to prototype testing of different 

components in the machine, which might have increased the risk for anomalies of these 

types. 

As expected, some of the anomalies happened during a very quick timeframe, while 

others either developed slowly or were mild enough that the process was not required to 

be stopped. When researching the subject, different approaches must be utilized for 

different anomaly types, as for example applying quantitative methods to nearly 

instantaneous events like sudden conveyor blockages can be challenging. On the other 
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hand, longer presence of an anomaly allows for quantitative comparison between the 

anomalous and healthy process states. 

A common theme among the anomaly events shown in Table 13 is the interference 

between processed material or the process component itself, and a powered part of a 

process component. Jammed or damaged conveyors, blocked screen or parts wedged 

between powered parts of components all somehow obstruct the normal operation of the 

component, resulting in problems of various severity. Therefore, a single common 

measurable quantity in all the anomalies shown in the table except the number 1 is the 

power draw of the component associated with the problem. During this measurement 

campaign, power draws of every component were not measured as the research 

interests covered many other quantities as well. However, the conclusion from the three 

days of process observation is that nearly all observed anomalies could influence the 

power draw of their related components, and accurately measuring and analysing the 

power draw of every process component in different failure cases could be a good way 

to further research the topic. 

 



67 
 

6. FAULT DETECTION FROM RECYCLING 
CRUSHING PROCESS 

After the measurement period, processing phase of the data was carried out. As the 

collected data set included several anomaly types with their own special characteristics, 

the entire measurement period could not be utilized in the scope of this work. In this 

chapter, the processing phase of the measurement data is described, and results from 

three anomaly cases are presented. As analysing all anomalies during the measurement 

period would be very time-consuming, two promising cases were selected, and they were 

accompanied by third case, which was the most commonly occurring failure mode during 

the measurement period. 

6.1 Measurement data processing 

When performing analysis on any given data, majority of the time spent goes to preparing 

the data and arranging it to a format from which different analyses are possible 

(Rattenbury, 2017). The work done in the scope of this thesis was not an exception, and 

a significant amount of time was required to prepare the measurement data in a way that 

different anomaly cases could be analysed. 

As the measurement period was conducted in a real-world application and not in a 

controlled environment, the data relevant in the scope of this work was buried in the 

middle of irrelevant data from the normal crushing plant operation. The observations 

described in chapter 5.4.2 were designed to combat this, and developing an efficient 

workflow to combine the notes and measurement data was evaluated as being important. 

The main idea was to be able to inspect the notes quickly and efficiently along the 

measurement data, so that the anomalous events could quickly be located. 

As the notes were made on a smartphone which could not easily be connected to the 

DAQ system, the time synchronization was an important factor in the successful 

workflow. The DAQ system time was synchronized with online-updated time before the 

measurement period, and the smartphone time was automatically updated from the 

internet by the operating system. Time synchronization accuracy requirement was 

evaluated to being rather loose, as the notes were made manually. The DAQ system 

time was estimated to match the near-exact time within few seconds, and this was 

evaluated to be sufficient for the application. The virtual data loggers in the DAQ system 
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were synchronized with each other within the system, ensuring that all the measured 

quantities were time-synced. 

For processing the measurement data, Python 3.10.0 and several libraries were used. 

Libraries included Pandas and NumPy for general data processing and numerical 

computing, Plotly for data visualization and tsflex for feature extraction. As all the 

processing was done on a local machine, special consideration was put to performance 

of operations to allow for rapid testing and prototyping of different approaches in the 

analysis phase. Jupyter Notebook was used for performing the actual analysis, enabling 

the use of Python and different libraries in a notebook-type user interface with code- and 

markdown cells that could be executed separately. 

As a part of the work, a toolkit was developed in Python to perform various tasks related 

to preparing and analysing the data. The most important features included transforming 

the data from the output format of the DAQ system to fast and efficient feather files and 

reading the measurement data within an arbitrary timespan that could easily be selected. 

Additionally, features were developed to enable fast and efficient visualization of any 

given range of data. A feature was also developed to incorporate the notes taken during 

the field measurements into the raw visualized measurement data. An example of 

visualized data from the mechanical quantities measurement along with the notes is 

shown in Figure 21. Notes have been plotted as circular markers in the bottom part of 

the figure. When performing the analysis, the notes were accessible from the interactive 

and zoomable figure window by hovering them with a mouse. This way, the event time 

and description for the hovered event were shown. Notes were color-coded in the data 

processing phase to easily differentiate between different note types (anomaly / 

interesting event, normal state, other). In the figure, three distinct operation periods are 

visible, divided by two breaks in operation of the plant. The operation periods include 

sections of plant idle, with the equipment running without feed material. During the 

breaks, the measurement hardware was running, but the process or entire plant was 

shut down.  
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 Example of mechanical data visualization – one day of 
measurement data is shown. 

 

By manually inspecting the interactive and zoomable high-performance plot of the 

measured mechanical quantities with the time-stamped notes, a good overview of the 

process state conveyed by the measured quantities could be established at any given 

moment during the measurement period. To support the awareness of the process state, 

videos from the machine input and output material flows could be referenced, as they 

contained the time-sync information as well. 

Due to the nature of vibration- and audio data, visualizing and analysing the time-domain 

signals brings little value in evaluating their usefulness in process monitoring and 

anomaly detection. Therefore, a time-series feature extraction approach was used to 

condense the information from the oscillating zero-mean signals. Feature extraction was 

done using a Python library called tsflex (Van Der Donckt et al., 2022), which allows for 

very flexible calculation of features and is tailored for time series data. The scope of the 

work was to build knowledge on the fault detection subject from ground up, and therefore 

relatively basic features were used. The implementation of analysis was done in a way 

that allows easy and efficient further development regarding the feature extraction, and 
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therefore builds a solid foundation for further research using more advanced methods. 

The statistical and spectral features used in the analyses are shown in Table 14, and the 

features were calculated using several Python libraries utilizing formulas shown in 

chapter 2.3.2. 

 Features used in analysis 

  Feature 

1 Minimum 

2 Maximum 

3 Mean 

4 Standard deviation 

5 Variance 

6 Skewness 

7 Kurtosis 

8 Zero crossing rate 

9 Root mean square 

10 Spectral centroid 

11 Spectral flatness 

12 Spectral bandwidth 

 

Selected features include statistical features to describe the signals on a very general 

level, and spectral features to extract information from the frequency domain. One of the 

hypotheses set before the research work was that the frequency domain representation 

of audio (or vibration) signal will change in the presence of an anomaly. For example, if 

the anomaly would include two metallic objects in sliding contact, the high-pitched sound 

produced was expected to shift the spectral centroid from the value of normal process 

condition. 

6.2 Anomaly case 1 analysis – rebar in magnetic separator 

The first selected anomaly case included a component which was assumed to be among 

the most problematic ones – the magnetic separator. During the measurement period, 

an observation was made that some rebar pieces had made their way between the belt 

and frame of the magnetic separator. An unusual sound was observable with human 

senses from the vicinity of the plant, and an assumption was made that the source of the 
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sound was the magnetic separator. As the unusual sound was observed, the plant was 

running normally, and the situation was evaluated as non-critical, and the machine 

operation continued until next break. During the break, the magnetic separator was 

inspected, and several rebar pieces were found wedged between the belt and the frame 

of the magnetic separator. The rebar pieces were removed during the break, and 

machine operation continued normally. The magnetic separator and location of the 

anomaly is shown in Figure 22. 

 

 

 Magnetic separator. Rebar pieces were jammed between the 
frame (blue) and the belt and found their way along the entire circumference of 
the belt. Jammed rebar is not visible in this picture, and the gap between the 

frame and belt is illustrated with arrows. 

 

To illustrate the effect of the anomaly, spectrogram was used to present the audio signal 

in time-frequency domain. In Figure 23, normal process operation is shown on the left, 

while signal where the fault is present is shown on the right. The fault can be observed 

from the intermittent and steady pattern of impact-like high frequency events that have 

appeared in the time-frequency representation of the signal when compared to the 

normal process state. The intermittent pattern can be traced down to the design of the 

magnetic separator belt. The belt includes cleats to aid the removal of metallic objects 

picked up by the magnetic separator. In this case, some of the rebar pieces interfered 

with the cleats, and the intermittent sound was produced as a result. 
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 Spectrograms from normal machine operation and during the fault. 
Microphone 1 is used. 

 

While the spectrogram can be used for visualizing the change in frequency signature of 

the signal, it does not provide any quantitative measures which could be used in 

evaluating the possible effectiveness of fault detection using audio data. For this 

purpose, feature extraction method described previously was applied to the anomaly 

case. General process data visualization, similar to one shown in Figure 21, was utilized 

to find sections of machine operation where the process was run continuously. The notes 

from manual process observation were utilized, and one section with duration of 20 

minutes was used to represent the faulty operation. For comparison, 5 different sections 

were selected to represent the normal operation, having a total duration of 1 hour and 

11 minutes. The features were calculated with a window length of 5 seconds and stride 

of 5 seconds, essentially dividing the signal sections into 5-second non-overlapping 
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parts. The window length of 5 seconds was selected based on the principle that the 

possible fault detection system should be relatively fast to prevent more serious failures 

from happening. On the other hand, the phenomenon in this case was evaluated to be 

detectable from few seconds of signal due to its relatively fast, intermittent nature. Longer 

window length could have provided more accuracy at the cost of response time. 

As the number of features was relatively low, analysing the calculated features was 

possible without further processing. While performing the case study, the response of 

different features was analysed by plotting the features against each other in the form of 

scatter graphs. In Figure 24, an example visualization of three features is shown. In this 

example, spectral centroid, zero crossing rate and spectral bandwidth were selected as 

the analysed features, placed on the x-, y-, and color axes respectively. As can be seen 

from the figure, the faulty and normal 5-second samples form two clear clusters, which 

means that the fault presence has a relatively strong influence on features on both x- 

and y-axes. The spectral bandwidth indicated on the color axis is also contributing to 

differentiating the two states from each other, and from the relatively smooth gradient 

along the x-axis, it can be visually approximated that the spectral bandwidth and spectral 

centroid features have a somewhat strong positive correlation in this case. 

The features shown in the figure behave expectedly. From the spectrograms in Figure 

23 it can be concluded that the presence of an anomaly increases the energy in the 

higher frequencies when compared to the normal crushing process, and the response of 

the visualized features follows this. As most of the energy in the crushing process audio 

signal is found in the lower frequencies (visually 0 – 500 Hz), adding energy in the higher 

frequency range (visually 3 – 20 kHz) is expected to shift the spectral centroid towards 

the higher frequencies. The zero crossing rate (ZCR) describes the amount of zero-level 

crossings in the raw time-domain signal in a given time range, and has been widely used 

for several applications including spectral estimation (Kathirvel et al., 2011). The 

increase in higher frequency content is expected to increase the ZCR, which is exactly 

what happens. With the spectral bandwidth or spectral spread describing the spread of 

the frequency content around the centroid, it is also expected to increase when frequency 

content is added far from the area of most energy in the frequency domain. 
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 Spectral centroid, zero crossing rate and spectral bandwidth 
visualized for the anomaly in the magnetic separator. 

 

To further analyse the effect of the audio phenomenon produced by the anomaly, the 

information captured by the features was visualized with the t-distributed stochastic 

neighbour embedding (t-SNE) -algorithm. The result of the visualization is shown in 

Figure 25. By viewing the features independently, it was already concluded that the faulty 

and normal states are differentiable, but the t-SNE -algorithm further sharpens this 

conclusion by forming two separate clusters with no overlap. A single 5-second sample 

has ended up in the same cluster as the faulty ones, but generally the result clearly 

indicates the difference between the process states. 
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 t-SNE -visualization for all calculated features from the magnetic 
separator anomaly audio signal.  

 

As the magnetic separator was considered as one of the most likely components for 

anomaly occurrence, an accelerometer was located on the frame of the magnetic 

separator during the measurement period. This anomaly case was partly selected, 

because the effectiveness of using the vibration signal can be compared to the audio 

signal. A similar feature extraction workflow was carried out for the vibration data from 

the accelerometer, and the results are visualized with the t-SNE algorithm and shown in 

Figure 26. As the figure shows, vibration data clearly differentiates the normal and 

anomalous process states, with the nonlinear dimensionality reduction algorithm 

producing two very clearly separated clusters.  
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 t-SNE visualization for all calculated features from the magnetic 
separator anomaly vibration signal. 

 

Overall, the rebar pieces jammed between the magnetic separator frame and belt 

produce phenomena that are detectable relatively easily. Both vibration and audio 

signals could be used in detecting an anomaly of this type, and the t-SNE results indicate 

that it should be possible to implement the detection with very good accuracy, as the 

faulty and normal states can be differentiated using relatively simple features. However, 

it is crucial to understand that the variety of anomaly types is huge and even if the failure 

mode is limited to the same mechanism as seen here (rebar between the magnetic 

separator frame and belt), the audio- and vibration phenomena might greatly differ from 

one case to another. In the form of a practical example, this failure case could happen 

in a way that the rebar pieces would not be interfering with the cleats in the belt, and 

therefore the possible sound produced would most probably be different, if there were 

any sound phenomena at all. The same thinking can be applied to the vibration data as 

well, as in this case the major change in vibration signature was due to the impact-type 

interference, which is very likely to produce vibrations which significantly differ from the 

normal process state.  
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6.3 Anomaly case 2 analysis – damaged main conveyor belt 

The second anomaly case was selected as it was easily noticeable when first exploring 

the data, and persistent in nature, enabling the use of quantitative methods. 

The disturbance occurred on one of the process components that were mentioned 

several times when collecting information on the typical process anomalies, the main 

conveyor. At a point during the measurement period, a small failure was noticed on the 

belt of the main conveyor. The belt failure is shown in Figure 27. 

 

 

 Main conveyor belt failure. The view is from the discharge area of 
the magnetic separator. 

 

When exploring the data, presence of the failure is clear. The failure had emerged 

between the measurement sections of two days, and the event leading to the failure was 

therefore not witnessed or captured. The failure appears in the data as distinct spikes in 

the electrical power draw of the conveyor. Time domain representations of normal 

conveyor idle and conveyor idle with the fault are shown in Figure 28.  
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 Main conveyor power draw during plant idle and during crushing – 
with and without the failure. 

 

While the time-domain representation effectively visualizes the anomaly, calculating a 

set of features from the signals can be used for evaluating the possibility of automated 

fault detection. As can be seen from the time-domain representation, detecting an 

anomaly of this type during the conveyor no-load condition could be implemented by 

monitoring the relationship between peaks in the power draw against the mean of the 

signal, but it must be noted that again the anomaly types can greatly differ and produce 

different signatures. The previously mentioned feature set was calculated and visualized 

with the t-SNE -algorithm, and the results are shown in Figure 29. As expected, the figure 

shows a clear difference between the faulty and normal states when the conveyor is 

running without material, but with this feature set, loading the conveyor immediately 

causes confusion in the detection. This is illustrated by the t-SNE algorithm not being 

able to form clear clusters which are separated. The result with loaded conveyor shows 

a certain degree of difference between the states as most of the signal samples are 

clustered in their own groups, but it appears that developing reliable detection for this 

fault type under conveyor load would require more suitable approaches. 
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 t-SNE visualizations for normal conveyor load and conveyor idle 
from the calculated features 

 

Generally, the damaged conveyor belt appears to be a detectable fault type. With the 

presented approach, faulty state could be differentiated clearly when looking at the 

conveyor power draw under no-load operating condition. As the phenomenon is 

produced by the ripped part of the conveyor belt getting caught somewhere in the 

structure of the conveyor, the detection performance for such fault will greatly depend on 

the way in which the belt fails. If the conveyor belt would have got damaged in a way that 

the damaged part was completely removed from the belt, the effect on the conveyor 

power draw could have been much less pronounced.  
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6.4 Anomaly case 3 analysis – blocked screen oversize 
conveyor 

While the previous anomaly cases were chosen as they were noted to be promising in 

terms of successful detection from various measured quantities, the third anomaly case 

was selected to showcase a completely different anomaly event. As can be seen from 

the Table 13, the screen oversize conveyor getting blocked was the most common failure 

mode in the process and is therefore selected to be analysed. 

The size of the impactor crusher product follows a probability distribution, and while 

majority of the crusher product falls in the “normal” si e category, occasionally the output 

material flow might contain particles that are much larger than the typical maximum size. 

This can be caused by the breaker plates of the crusher withdrawing from their normal 

position due to excessive load, allowing the larger particles to pass through the crusher, 

or a piece of feed material might find a slot between the rotor blow bars, and be forwarded 

through the crusher without getting crushed. When a large particle makes its way through 

the crusher and rest of the plant, it ends up on the screen oversize conveyor, if a 

screening media is used. Due to the design of the oversize conveyor and surrounding 

structures, the particle may get wedged between the conveyor and the plant frame, 

causing a conveyor blockage. This process failure mode was witnessed three times 

during the measurement period. An example of such blockage is shown in Figure 30. 

 

 

 Relatively large natural stone jammed between the oversize 
conveyor and plant frame, preventing conveyor operation. 
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The nature of this anomaly differs from the two previous ones. The anomalies discussed 

previously caused an effect on the process but did not force it to stop. This means that 

the anomalous state was present for a significant amount of time, and detecting the 

presence of the anomaly could be analysed by comparing the anomalous process state 

to a normal one. In this case, the problem appeared very quickly, and clearly cannot exist 

while the process is running, as the blocked conveyor would result in quickly spreading 

problems across the plant. 

As a section of anomalous process state cannot be defined and the exact time of event 

is hard to determine, the analysis of this failure type is limited to qualitative methods. To 

investigate the possibility of detecting this anomaly type using the measurement setup 

shown, all data types were manually analysed. As the first method, the time-domain 

representations of the control system data and other mechanical quantities were 

inspected. An illustration of one of the three failure events is shown in Figure 31. 
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 Mechanical signals during the conveyor blockage event. Operators 
noticed the situation and shut down the feeder (marked with 1), halting the 

material flow in the plant. After operator intervention, the blockage was cleared, 
and the return conveyor was temporarily blocked, resulting in high hydraulic 

pressure (marked with 2). Values are normalized to fit the same graph. 

 

By analysing the event based on the data shown in the figure, it can be stated that the 

formation of the failure event cannot be easily seen from the data. The variation in almost 

all measured parameters is significant during the 4 minutes of normal operation shown 

in the figure, and from the experience gained during this work, the behaviour is very 

similar to any other normal process operation. The first indication of the failure event is 

the feeder control percentage switching to 0, which is done by manual control input from 

the operators. All three instances of this failure mode were thoroughly analysed in the 

same way, and no other indications were found. The result is expected, as the oversize 

conveyor operation was not included in the measurements. The closest measured 

quantity was the hydraulic pressure of the return conveyor, which is fed by the oversize 

conveyor. In theory, the power draw and therefore hydraulic pressure of the return 

conveyor should decrease to an idle value when the oversize conveyor is blocked, but 

due to the design of the return conveyor, this is not the case. A confirmation for this was 
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found on the data, as during one measurement day the hydraulic pressure of the return 

conveyor increased significantly every time it was left operating without material. 

In addition to the control system and other mechanical data, the vibration- and audio 

measurements were also inspected. A spectrogram representation of the audio signal of 

the microphone closest to the oversize conveyor is shown in Figure 32. Several factors 

about the process are interpretable from the spectrogram, but no evidence of early 

indications of oversize conveyor blockage are found. The spectrogram reveals 

information such as the feeder shutdown (Several frequency components attenuated a 

bit after 4:10 mark), the diesel engine cooling fan control (frequency component going 

up and down a little above the dominating frequency component around 130 Hz), 

component RPM fluctuations (waviness of several frequency components), crusher 

operation (majority of short wide frequency-range events) and others. Different 

phenomena can be further highlighted by changing the parameters for the spectrogram.  
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 Spectrogram representation of the conveyor blockage event. The 
timespan corresponds to the previous graph, and the feeder is shut down a bit 

after the 4:10 mark. 

 

The vibration signal of the plant frame was also manually analysed in time- and 

frequency domains, but the results are very similar to the audio data – blockage of the 

oversize conveyor is so quiet and unintrusive event that the possible associated audio- 

and vibration phenomena are too weak to be easily noticed. This conclusion is supported 

by observations with human senses, as the event was hard to notice on the site with no 

visual confirmation. The audio data was also reviewed by listening to it, and while the 

audio recordings carry a very good quality auditory representation of the process, the 

oversize conveyor blockage cannot be heard from the recordings. 
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7. CONCLUSIONS 

In this work, a feasibility study was conducted to research the possibility of monitoring 

the demolition waste recycling crushing process with mobile impactor crushing plants. 

The research problem and therefore research questions were formed to allow a wide 

variety of possibilities for the execution of the research. During the progress, different 

constraints narrowed down the scope, which eventually converged to the final form. 

As stated in the first research question, a clear objective was to gather information about 

the construction and demolition waste crushing process, and especially on the process 

anomalies. In the literature review, it was found out that thorough understanding of the 

system in question is very important when developing model- or knowledge-based fault 

detection for any system, and the research question was therefore set very well. The 

interview study provided an overview on the information inside the company, and solid 

summary was built based on the results. The most significant findings included 11 failure 

modes, describing different ways in which the crushing process can fail. After the 

interviews, the failure modes were further analysed, and knowledge on their causes and 

effects was built. Additionally, the interviews yielded information on the normal operation 

of the crushing process, which again is important system knowledge. One of the common 

messages from the interviewees was that processes are different from one another, and 

it must be noted that the 11 identified failure modes do not necessarily convey a 

comprehensive understanding of how the process can fail. Based on the experience 

gained during the work, the characteristics of a certain recycling crushing process can 

accurately be determined only by getting familiar with the process and forming an all-

embracing representation might lead to inaccuracies. 

Implementing the measurement period was not explicitly defined in the research 

questions but it was still an important part of the work. In the planning phase, many 

questions regarding the measurement campaign were still open, and the success of the 

campaign could not be guaranteed, as it could not be carried out in a controlled 

environment. However, the measurement period ended up being very successful, and 

the objectives set for the measurements were met, in terms of this thesis and other 

targets. The success of the measurement campaign was a result of a suitable machine, 

application, and the appearance of a variety of anomalies during the measurement 

period, as well as good performance of the DAQ equipment and other hardware, such 

as the selected microphones. 
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The remaining research questions were answered theoretically in the literature review, 

as well as empirically with the analysis of data collected during the measurement 

campaign. The only concept connecting the results and answers is variability. In the 

literature review, it became clear that the field is widely studied, and almost a limitless 

selection of approaches and methods have been developed and tested, and there is no 

universal way of monitoring different processes. Knowledge-based systems and 

mathematical models were addressed as often being hard to build, especially when 

considering complex processes, and often the proposed solution was to build data-driven 

models using modern deep learning techniques, and possibly combine them with 

accurate expert knowledge of the process in question. The research questions from 

number 2 to 4 were set to find out how analysing data of different types can be utilized 

in detecting the anomalies discovered in the first research question. A variety analytical, 

knowledge-based, and data-driven approaches were discovered and shown in the 

literature review, addressing different types of data. An exhaustive theoretical answer 

would require a lot more work. 

The data from the measurement campaign was used to analyse three different anomaly 

cases to test few approaches in practice. Approaches included signal processing 

techniques, traditional time-domain visualizations, as well as concepts from the machine 

learning discipline. Feature extraction was performed to demonstrate how audio- and 

vibration data can be transformed to computer-interpretable form using relatively simple 

and efficient statistical and spectral features. The feasibility of anomaly detection was 

evaluated by analysing the behaviour of time-series signals, the time-frequency 

representations, or by visualizing the information captured by the computed features in 

two dimensions using the t-SNE dimensionality reduction algorithm. According to the 

analysis, detection for certain failure modes can be developed using audio- or vibration 

data, but the nature of the anomaly plays a huge role in what is possible. Example of a 

possible case is shown in anomaly case 1. Other data types, such as process component 

actuator electrical power draw, can also be useful for anomaly detection, as 

demonstrated by the anomaly case 2. Anomaly case number 3 demonstrates, how 

different failure modes require very different approaches, and in this example, detection 

of the event could not be implemented. 

The results of the failure case -based data analysis provide empirical answers to the 

research questions 2 – 4. The second research question considers the use of plant 

control system data in detecting process anomalies. The results from anomaly case 2 

showcase the potential of utilizing actuator power draw measurement. While the main 

conveyor power draw was in this case measured directly and not via the control system, 
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similar results could be achieved if the power draw measurement was added to the CAN 

bus. To address the third research question on audio signal analysis, anomaly detection 

was demonstrated in the results of anomaly case 1. The first anomaly case was also 

used to demonstrate the usefulness of vibration signal, which was considered in the 

research question 4. An important factor in the analysis for all cases was the clear big 

picture, which was formed using all available data types as well as metadata and made 

the analysis of failure cases possible based on individual signals.  

Overall, monitoring a demolition waste crushing process can be stated to be a complex 

task. The variability of the normal state of the process as well as the possible anomalies 

creates an environment, where the system should be able to adapt to different “operating 

points” of the process and determine the normal system state on the fly. The system 

should also be able to distinguish a range of possible anomalies and to separate them 

from the normal process events, some of which are very random in nature. Approach for 

development of such system could first focus on only a few known failure modes, which 

would reduce the complexity. This would require additional research to investigate the 

area of focus and associated phenomena, after which the approach could be further 

defined in terms of what is measured and how the data is analysed. Another proposed 

approach could be the electrical power draw measurement of every process component, 

and development of a fault detection system based on them. This is suggested as nearly 

all anomalies faced during the measurement campaign had an association with the 

power draw of some process component. Based on previous experience, this approach 

would include its own challenges as well, but research on the subject could at least 

provide more insights on the challenging topic. 

The business of aggregate production and therefore the development of associated 

machinery is based on effective processes. The demolition waste crushing process is 

relatively prone to different disturbances, and every way of preventing these problems 

results in substantial improvement to the operation of the processing plants. Direct 

benefits are easy to see in financial and ecological aspects, as less process downtime 

results in less wasted resources. However, an important and possibly even understated 

aspect is the increased user-friendliness of the machines. In the current state, operator 

intervention is regularly required as process anomalies lead to different levels of 

malfunctions. Manual intervention is known to often be an annoying task, which might 

pose even more significant cascade effects than initially expected. If operators get 

frustrated with the problematic process, possible consequences might range from loss 

of trust towards the machines to neglecting safety precautions, which is obviously far 

from desirable. Therefore, developing means for reducing process interruptions can be 
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reasoned from multiple perspectives. While the findings made in this work support the 

theory that such system can be built at least to some extent, further research and 

development of a process monitoring system is justified. 

   

 



89 
 

REFERENCES  

Abid, A., Khan, M.T. and Iqbal, J. (2021) ‘A review on fault detection and diagnosis 
techniques  basics and beyond’, The Artificial Intelligence Review, 54(5), pp. 3639–3664. 
Available at: https://doi.org/10.1007/s10462-020-09934-2. 

 alabrese, F., Regattieri, A., Bortolini, M. and Gali ia, F.G. (2022) ‘Data-Driven Fault 
Detection and Diagnosis: Challenges and Opportunities in Real-World Scenarios’, 
Applied Sciences, 12(18), p. 9212. Available at: https://doi.org/10.3390/app12189212. 

Divya, D., Marath, B. and Santosh Kumar, M.B. (2022) ‘Review of fault detection 
techniques for predictive maintenance’, Journal of quality in maintenance engineering 
[Preprint]. Available at: https://doi.org/10.1108/JQME-10-2020-0107. 

Dubnov, S. (200 ) ‘Generali ation of spectral flatness measure for non-Gaussian linear 
processes’, IEEE signal processing letters, 11(8), pp. 698–701. Available at: 
https://doi.org/10.1109/LSP.2004.831663. 

Erhan, L. et al. (2021) ‘Smart anomaly detection in sensor systems  A multi-perspective 
review’, Information fusion, 67, pp. 64–79. Available at: 
https://doi.org/10.1016/j.inffus.2020.10.001. 

European Commission (2022a) 2022 Strategic Foresight Report. Available at: 
https://commission.europa.eu/strategy-and-policy/strategic-planning/strategic-
foresight/2022-strategic-foresight-report_en (Accessed: 9 May 2023). 

European Commission (2022b) Construction and demolition waste. Available at: 
https://environment.ec.europa.eu/topics/waste-and-recycling/construction-and-
demolition-waste_en (Accessed: 16 November 2022). 

Fraden, J. (2016) Handbook of Modern Sensors. Cham: Springer International 
Publishing. Available at: https://doi.org/10.1007/978-3-319-19303-8. 

Gantner Instruments (2023) brixx - Gantner Instruments, brixx - Gantner Instruments. 
Available at: https://www.gantner-instruments.com/products/brixx/ (Accessed: 6 April 
2023). 

GRAS (2023a) G.R.A.S. Selection Guide for Microphones and Preamplifiers. Available 
at: https://www.ni.com/fi-fi/shop/data-acquisition/sensor-fundamentals/measuring-
sound-with-microphones/g-r-a-s--selection-guide-for-microphones-and-
preamplifiers.html (Accessed: 4 May 2023). 

GRAS (202 b) ‘Mounting of the 1 6AE - E-mail conversation (Accessed: 1 January 
202 )’. 

Han, J., Pei, J. and Tong, H. (2023) Data Mining Concepts and Techniques (4th Edition). 
Elsevier. Available at: https://app.knovel.com/hotlink/toc/id:kpDMCTE007/data-mining-
concepts/data-mining-concepts. 

Hossain, M.S. and Taheri, H. (2021) ‘In-situ process monitoring for metal additive 
manufacturing through acoustic techniques using wavelet and convolutional neural 
network (   )’, International journal of advanced manufacturing technology, 116(11–
12), pp. 3473–3488. Available at: https://doi.org/10.1007/s00170-021-07721-z. 



90 
 

Kathirvel, P., Sabarimalai Manikandan, M., Senthilkumar, S. and Soman, K.P. (2011) 
‘ oise robust  erocrossing rate computation for audio signal classification’, in 3rd 
International Conference on Trendz in Information Sciences & Computing (TISC2011). 
3rd International Conference on Trendz in Information Sciences & Computing 
(TISC2011), pp. 65–69. Available at: https://doi.org/10.1109/TISC.2011.6169086. 

Klaic, M., Murat, Z., Staroveski, T. and Bre ak, D. (201 ) ‘Tool wear monitoring in rock 
drilling applications using vibration signals’, Wear, 408–409, pp. 222–227. Available at: 
https://doi.org/10.1016/j.wear.2018.05.012. 

Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S. and Telea, A.C. 
(201 ) ‘Graph Layouts by t-S E’, Computer graphics forum, 36(3), pp. 283–294. 
Available at: https://doi.org/10.1111/cgf.13187. 

Kutz, M. (2013) Handbook of Measurement in Science and Engineering, Volume 1. 
Somerset, UNITED STATES: John Wiley & Sons, Incorporated. Available at: 
http://ebookcentral.proquest.com/lib/tampere/detail.action?docID=4187156 (Accessed: 
4 May 2023). 

Kvaser (2022) Controller Area Network (CAN BUS) Protocol, Kvaser. Available at: 
https://www.kvaser.com/can-protocol-tutorial/ (Accessed: 12 December 2022). 

Maaten, L. van der and Hinton, G. (200 ) ‘Visuali ing Data using t-S E’, Journal of 
Machine Learning Research, 9(86), pp. 2579–2605. 

MathWorks (2023) Feature Extraction. Available at: 
https://se.mathworks.com/discovery/feature-extraction.html (Accessed: 25 April 2023). 

Metso Outotec (2022a) ‘Brochure, recycled aggregates’. Available at  
https://www.mogroup.com/globalassets/aggregates/brochure-recycled-aggregates-
4373-11-21-en-agg-midres.pdf (Accessed: 16 November 2022). 

Metso Outotec (2022b) Lokotrack® LT1213TM & LT1213STM mobile HSI crusher, Metso 
Outotec. Available at: https://www.mogroup.com/portfolio/lokotrack-lt-series/lokotrack-
lt1213-mobile-hsi-crusher/ (Accessed: 17 November 2022). 

Metso Outotec (2022c) Metso Outotec Media Portal. Available at: 
https://qbank.mogroup.com/search/?overriddenDefaultFilters=languages&overriddenLa
nguages=all&query=lt1213s (Accessed: 10 October 2022). 

Metso Outotec (2022d) Nordberg® NP SeriesTM impact crushers, Metso Outotec. 
Available at: https://www.mogroup.com/portfolio/nordberg-np-series/ (Accessed: 16 
November 2022). 

Ministry of the Environment, Finland (201 ) ‘Jätedirektiivin rakennusalaa koskevat 
muutokset’,    ovember. 

Mohd Gha ali, M.H. and Rahiman, W. (2021) ‘Vibration Analysis for Machine Monitoring 
and Diagnosis  A Systematic Review’, Shock and Vibration, 2021, p. e9469318. 
Available at: https://doi.org/10.1155/2021/9469318. 

Ozdemir, S. (2018) Feature Engineering Made Easy. 1st edition. Packt Publishing. 

Park, Y.-J., Fan, S.-K.S. and Hsu, C.-Y. (2020) ‘A Review on Fault Detection and 
Process Diagnostics in Industrial Processes’, Processes, 8(9), p. 1123. Available at: 
https://doi.org/10.3390/pr8091123. 



91 
 

Pimentel, M.A.F.,  lifton, D.A.,  lifton, L. and Tarassenko, L. (201 ) ‘A review of novelty 
detection’, Signal Processing, 99, pp. 215–249. Available at: 
https://doi.org/10.1016/j.sigpro.2013.12.026. 

Rattenbury, T. (2017) Principles of data wrangling: practical techniques for data 
preparation. First edtion. Beijing, [ hina  O’Reilly. 

Satyam, P., Turnbull, R., Khodadad, D. and Löfstrand, M. (2022) ‘A Vibration Based 
Automatic Fault Detection Scheme for Drilling Process Using Type-2 Fu  y Logic’, 
Algorithms, 15(8), pp. 284-. Available at: https://doi.org/10.3390/a15080284. 

Schmidl, S., Wenig, P. and Papenbrock, T. (2022) ‘Anomaly detection in time series  a 
comprehensive evaluation’, Proceedings of the VLDB Endowment, 15(9), pp. 1779–
1797. Available at: https://doi.org/10.14778/3538598.3538602. 

Sharma, G., Umapathy, K. and Krishnan, S. (2020) ‘Trends in audio signal feature 
extraction methods’, Applied acoustics, 158, pp. 107020-. Available at: 
https://doi.org/10.1016/j.apacoust.2019.107020. 

Sitra (2023) Megatrends 2023, Sitra. Available at: 
https://www.sitra.fi/en/publications/megatrends-2023/ (Accessed: 9 May 2023). 

Struková, Z. and Sičáková, A. (2016) ‘ onstruction and Demolition Waste Management’, 
p. 46. 

Ubhayaratne, I., Pereira, M.P., Xiang, Y. and Rolfe, B.F. (201 ) ‘Audio signal analysis 
for tool wear monitoring in sheet metal stamping’, Mechanical Systems and Signal 
Processing, 85, pp. 809–826. Available at: https://doi.org/10.1016/j.ymssp.2016.09.014. 

Van Der Donckt, Jonas, Van Der Donckt, Jeroen, Deprost, E. and Van Hoecke, S. (2022) 
‘tsflex  Flexible time series processing & feature extraction’, SoftwareX, 17, p. 100971. 
Available at: https://doi.org/10.1016/j.softx.2021.100971. 

Viilo, K. (2011) Crushing and Screening Handbook. Fifth Edition. Metso. Available at: 
https://metso-
my.sharepoint.com/personal/sudarshan_martins_mogroup_com/_layouts/15/onedrive.a
spx?id=%2Fpersonal%2Fsudarshan%5Fmartins%5Fmogroup%5Fcom%2FDocuments
%2FReferences%2Fcrushing%20and%20screening%20Handbook%5FFifthEdition%5
F2011%2Epdf&parent=%2Fpersonal%2Fsudarshan%5Fmartins%5Fmogroup%5Fcom
%2FDocuments%2FReferences (Accessed: 16 November 2022). 

Wang, J., Zhou, J. and Chen, X. (2022) Data-Driven Fault Detection and Reasoning for 
Industrial Monitoring. Singapore, SINGAPORE: Springer. Available at: 
http://ebookcentral.proquest.com/lib/tampere/detail.action?docID=6840160 (Accessed: 
18 November 2022). 

Zheng, A. (2018) Feature engineering for machine learning: principles and techniques 
for data scientists. First edition. Beijing  O’Reilly. 



92 
 

APPENDIX A: NORMAL OPERATION AND 
ANOMALIES OF RECYCLING CRUSHING 
PROCESS WITH MOBILE IMPACTORS – 
INTERVIEW SUMMARY 

Feed material 

• Pre-processing/pulverizing the feed material is key to successful recycling 

crushing processes. The feed material must be something that the crusher has 

an ability to process: the machine should not be fed with oversize feed material, 

included rebar pieces and other metal parts must be cut to short enough length, 

etc. 

• The feed material may contain a lot of metallic parts. This is described  “The 

magnetic separator by-product stream value can almost match the fuel costs of 

operating the machine.” 

• The feed material is very heterogenous, and the crusher is fed “a bit of 

everything.” 

a. For example: oversize particles, steel rebar and other metals that are too 

large, etc. 

b. Even if the feed material was only concrete and nothing else, different 

types of concrete exist with different properties. 

• Crushing the steel rebar -reinforced concrete is the most challenging of all 

recycling crushing processes. 

• As an example: in one country, where a lot of recycling crushing is done, feed 

material can be “very good” [in terms of problem-free process]. On the other hand, 

the next feed stockpile can include “anything”. 

• Some of the most common objects in the feed material are [in addition to 

concrete/bricks/other]: 

a. Steel rebar and other metallic materials 

b. Pieces of electric wire 

c. Pieces of steel wire rope 

d. Lighter material such as tarpaulin etc. 

e. Insulation material, floor matting, etc. 

f. Structural foundation piles, natural stones 

• Steel rebar in the feed material are typically embedded inside pieces of concrete 

either fully or partly. 

a. A small chunk of concrete with a hook-shaped piece of rebar embedded 

in it catches itself to the machine structures easily. 

i. These are both found in the feed material and formed by the 

crusher. 

b. Return conveyor structure is often a place where these get caught. 

• An example: In one application, old, large grain silos were demolished and 

crushed. The material included plenty of steel rebar among the concrete. On 

another site nearby, brick- and glass material from building demolition was 

crushed, and the material did not include any tougher parts. 
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• With very light feed materials such as the mentioned brick- and glass material, a 

problem can be that the machine cannot be fed with enough material to achieve 

the full capacity/potential of the plant. In this case, the capacity is higher when 

compared to strong materials, while the machine could perform even better. 

a. When crushing asphalt, the limiting factor is the capacity of the screen. 

b. Insulation materials are often well separated from the feed material. 

c. If wire rope is included in the feed material, it is usually not very 

problematic. 

 

Normal state of the recycling crushing process 

• The process can either stay in a relatively steady state or change from a state to 

another very heavily. Fully depends on the operator of the machine, 

environmental and other conditions and on the overall type of work being 

conducted. 

a. For example  with “clean” feed material, the recycling crushing process 

can be problem-free and stable. On the other hand, the feed material 

might include almost anything, depending on several factors. 

b. One thing affecting the process state is the setting of the crusher. 

i. Adjusted both when switching from one product size distribution 

to another, and when compensating for the worn blow bars. 

c. Different configurations of the feeder and pre-screen have an effect on 

the process. 

i. An example is a known customer that sometimes operates their 

machine with the pre-screen completely blocked with a blanking 

plate. 

d. Process state is changed by the side conveyor being either in use or 

bypassed. 

e. If the process is run in an open-loop -configuration, the state differs from 

normal, closed-loop operation. 

f. Crusher rotational velocity can be changed at least in some machines, 

this is another factor which can alter the state of the process. 

• Even in normal state, the recycling crushing process has a lot of interruptions. 

The process can be interrupted more than once per two hours. [This is 

significantly more than “normal” crushing processes, for example normal rock 

crushing] 

• Sometimes the process operators try to maximize the capacity of the crushing 

plant, and sometimes the machine is run more carefully. 

• The process is very variable: 

a. One factor comes from the feed material. 

b. Another factor causing variability is the way the plant is fed. Operator 

actions have an effect on the material which ends up in the machine, the 

pace of feeding, idle periods, etc. 

• One of the sources for process variations is the crushed product. The product 

has multiple effects on the configuration of the machine. The wanted product is 

driven by the market demand and therefore depends on the area where the 

machine is operated. 
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Process anomalies in mobile impactor plants 

• Rebar pieces find their ways to every possible spot in the main conveyor and 

other conveyors as well. If the rebar pieces end up in the idle rollers or other 

critical places, the formation of a problem begins. 

• [One of] The most common anomaly with mobile impactor plants: 

a. A pile-up of steel rebar or similar material is formed inside the plant, 

ending up on the main conveyor, under the plant power unit. 

b. The pile-up might remain inside the plant, rolling around in the material 

stream, collecting more and more steel rebar. 

c. If the situation further escalates, the pile-up might block the material flow 

inside the plant completely, resulting in a very serious blockage and 

roughly 8 hours of manual work to resolve the blockage. 

d. The pile-up might also get transferred forwards, ending up under the 

magnetic separator. 

i. If the magnetic separator is light, it might be able to rise, allowing 

the pile-up to be pushed out of the process by the magnetic 

separator belt. 

ii. If the magnetic separator is heavy, it cannot rise, and forces the 

pile-up to stay between the magnetic separator and the main 

conveyor. This blocks the material flow on the conveyor, and the 

blockage quickly accumulates material inside the plant. 

iii. The conveyor might also be overloaded, losing speed and 

eventually leading to similar blockage. 

• Another description of the situation mentioned above: The pile-up is “born” under 

the crusher rotor, slowly collecting pieces of rebar. The pile-up is kept from 

moving forwards by the crusher rotor. 

a. The vibrating conveyor after the crusher cannot move the pile-up forwards 

very fast, and the rotor pushes it back on every rotation. 

b. New rebar pieces can join the pile-up, making it bigger. 

c. Finally, the pile-up gets moving in the process, and causes a blockage in 

places mentioned above. The blockage of the entire machine happens 

very fast, and the aftermath is a day’s work. 

d. The pile-up is often removed using oxy-acetylene cutting or angle 

grinders. 

• Sometimes a lot of fine material is passed through the pre-screen. 

a. If this stream is directed towards the end of the process and the side 

conveyor is not in use, the screen might suddenly receive a lot of fine 

material. 

b. The fine material goes through the screening media, and might overload 

the product conveyor, even causing a blockage. 

c. Maybe one third of the feed material can bypass the crusher. 

• The feeder can be blocked. 

a. The pre-screen can collect rebar pieces, requiring regular manual work to 

remove. 

• Screening media can get blocked. 

a. This is not the most serious problem. 
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• Large enough steel pieces can get stuck to the magnetic separator by the 

magnetic force. 

a. Results in the magnetic separator belt to stop moving and requires 

manual work to resolve. 

• Conveyors (especially hydraulic) can lose speed under heavy load. 

a. Solved by pausing the feeding intermittently. 

• Bypass chute can get blocked. 

a. In certain conditions, material freezes to the edges of the chute, and 

eventually the chute gets completely blocked. 

b. This can be seen from the increased fine fraction on the feeder and on 

the pre-screen. 

c. Not very common, applications exist where this does not happen. 

• A big problem is the crusher breaker plate getting jammed in the withdrawn 

position. 

a. When the breaker plate is withdrawn due to hard loading (as designed), 

it does not necessarily return to its original position. 

b. The breaker plate might stay in this position for a longer time, requiring 

manual work to fix. 

c. When the breaker plate is in its withdrawn position, oversize material ends 

up through the crusher, and might end up blocking the screen oversize 

conveyor. 

d. Oversize rocks might cause problems in other parts of the process as 

well: between the magnetic separator and main conveyor, roll backwards 

on the return conveyor or get stuck in the return conveyor structure. 

e. Even normal withdrawal of the breaker plate might cause the same 

effects. The change in the crusher product size distribution can be big, as 

the breaker plate can move up to 100 mm. 

f. Several mentions of oversize conveyor and return conveyor jamming due 

to this phenomenon. 

g. Example: A customer has installed a camera on the return conveyor, from 

which the oversized material can be observed. 

• On the feeder, rebar and other metals going through the pre-screen media is 

always bad, and they cause problems either on the pre-screen or the bypass 

chute. 

a. Especially problematic if the excavator operator cannot see to the pre-

screen, as the problem build-up cannot be monitored. 

• Long rebar/metal pieces and wires can be wrapped around the crusher rotor. 

a. In mobile impactors, more space exists between the rotor and wear plates 

on the sides of the crusher. 

b. Not very common 

• Screening media collects light materials, such as tarpaulin etc. 

a. These do not typically cause very serious problems. 

b. The magnetic separator mostly removes ferromagnetic objects. 

• Conveyor structure around the magnetic separator collects rebar pieces. 

a. In the worst case, this results in a destroyed conveyor belt. 

 

Process phenomena, sounds, etc: 
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• Different process states produce different sounds, this is clear. 

a. Frequency content of the process audio signature changes 

b. Example: amount of material on the feeder affects the sound produced by 

the feeder. 

c. Intermittent material flow produces different sounds in the process than 

steady flow. 

d. Example: The vibrating conveyor can act almost like a drumhead, reacting 

to variations of the material flow. 

i. Large metal objects can probably be heard from the material 

stream. 

e. Example: at least the type of the steel object, angle of impact and size 

influence the sound produced when the object travels through the 

crusher. The same is true for the vibrating conveyor. 

i. Plastic deformations of the metallic objects absorb energy and 

therefore less sound is produced. 

ii. When an object hits the top of the crusher chamber, sound is 

produced. 

• When a conveyor is jammed, the hydraulic pressure or electric power most 

probably reacts. 

• Breaker plates withdrawing can be heard with human senses. 

a. Especially true for the breaker plates returning to their normal position. 

• The screening media becoming loose can be heard. 

• Screening media becoming blocked can possibly be detected from the sound of 

the screen. 

• In general, loose joints in the vibrating equipment are detectable by sound. 

• Objects wrapped around the crusher rotor might also produce sound. 

• Steel pile-up getting jammed under the power unit might result in vibrations, as 

the pile-up can rotate around while being pushed by the conveyor. 

a. This can also be heard with human senses. 

b. The sound can be described as “scratching”, and the mechanism for 

sound production is not well known. However, the sound might be a result 

of the rebar pile-up lifting other steel pieces up from the material flow and 

making them scratch the structures. These pieces do not get attached to 

the pile-up, and rather keep going forward in the process. 

• Foreign objects on the screening media can significantly alter the sound 

produced by the screen. 

• Steel wire around the crusher main bearings has sometimes been found out as 

the reason for weird sounds from the machine. 

• Several sounds appear and fade away all the time during the process. 

 

Asphalt as feed material 

• In the case of asphalt recycling the bitumen dust is problematic 

a. Sticky dust blocks the engine radiator. A customer regularly removes the 

radiator, cleaning it separately. 

• Asphalt is crushed with impactor plants using a wide setting in a way that the 

rocks in the asphalt do not break but the structure of the asphalt is broken. 


