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Abstract 10 

Over recent decades, many Mediterranean and Ponto-Caspian aquatic invertebrate species have 11 

dispersed northwards and established as non-native species in colder regions. We hypothesized 12 

that these species have cold-tolerant traits, which facilitate dispersal into colder climates. 13 

Thanks to these traits, Southern European aquatic species are able to cross biogeographic 14 

boundaries. 15 

We downloaded the list of all alien invertebrate species that were fully aquatic (i.e. lacking 16 

terrestrial adults) from the GRIIS database and picked out those Mediterranean and Ponto-17 

Caspian species that have undergone northwards range expansion. We identified traits that may 18 

facilitate dispersal to colder climates including: small size; capacity for behavioural 19 

thermoregulation; feeding habit (omnivorous, filter-feeders, food generalists); quiescence and 20 

dormancy (or diapause); freezing avoidance (presence of cryoprotectants), tolerance to low 21 

temperatures or eurythermicity, active dispersal and enhanced reproduction. We statistically 22 

tested the null hypotheses that Mediterranean and Ponto-Caspian alien aquatic invertebrate 23 

species that dispersed into the north have all of these traits. We used contingency tables 24 

populated with raw frequency data with χ2 - tests and assessed statistical significance at α of 25 

0.05. 26 
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We identified 95 Mediterranean and Ponto-Caspian alien aquatic invertebrate species that have 27 

shown northwards range extension, 10 (10%) of which were of Mediterranean origin and 85 28 

(90%) of Ponto-Caspian origin. We found that this northwards dispersal from Southern Europe 29 

is mainly limited to a few groups of aquatic invertebrates: small crustaceans, molluscs, 30 

cnidarians and annelids. Ability to go to diapause, hibernation or resting period, temperature 31 

tolerance and small size were the traits most commonly shared by these organisms. 32 

We conclude that Mediterranean and Ponto-Caspian aquatic invertebrate species showing 33 

northwards range expansion have cold-tolerant strategies. The traits analysed can favour the 34 

establishment of the species. 35 

 36 

Key words: alien species, climate change, cold environment, cold-tolerant survival strategies, 37 

range expansion 38 

 39 

1. Introduction 40 

Dispersal ability and the ability to successfully establish in new areas influence the range 41 

expansion of organisms (Lester et al. 2007). It is generally accepted that the dispersal process 42 

comprises several successive stages, namely transport, introduction, establishment, and spread 43 

(Briski et al. 2018). Propagule pressure is often a major predictor of the establishment of alien 44 

organisms (Lockwood et al. 2005; Hayes and Barry 2008; Johnston et al. 2009; Briski et al. 45 

2018). 46 

In addition to the need to be transported from their original ecosystems to new ones, alien 47 

species have to overcome several barriers (including manmade) to increase their range. A 48 

species’ intrinsic characteristics, for example being an r-strategist, may favour success, but it 49 

has to cope with the full range of new local variability (e.g. climate, physico-chemical and biotic 50 

factors) (e.g. Blackburn et al. 2011). Their success will depend on the match between their 51 
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physiological requirements and the ecological characteristics of the system being invaded. 52 

Cold-tolerant traits and resilience strategies (e.g. freezing avoidance and capacity for 53 

behavioural thermoregulation) facilitate northern expansion/establishment and are fundamental 54 

to cold adaptation (e.g. Lencioni 2004; Wertheim et al. 2005; Gergs and Rothhaupt 2008; 55 

Beermann et al. 2015). 56 

A newly established species may have significant negative effects on the recipient 57 

ecosystem, although the probability of a species turning truly invasive is up for debate (Jeschke 58 

and Pyšek 2018), but is likely to exceed the well-known “tens rule” suggested by Williamson 59 

(1996). 60 

The climatic areas of Europe can be divided into six broad types: polar, boreal, temperate 61 

continental, temperate transitional, temperate oceanic and Mediterranean (Schneider et al. 62 

2013). The southern edges of Europe, in the Mediterranean climatic zone, being buffered by 63 

the sea, are characterized by hot and dry summers and mild winters, and the annual temperature 64 

range here is relatively small. Moving north, we encounter the temperate (divided into oceanic, 65 

transitional and continental) and the boreal zones, followed by the polar zone. It is these 66 

temperate and boreal zones that are of interest to this study, being the recipient areas for 67 

migrants with cold-tolerant survival strategies from Southern Europe. These two climatic zones 68 

are characterized by colder temperatures and greater temperature variation when compared to 69 

the Mediterranean zone. 70 

Herein, when we talk about the Ponto-Caspian region, we are referring to a large area that 71 

includes the Black, Caspian and Azov Seas. In turn, the Mediterranean region includes the 72 

Mediterranean Sea that is bounded by several European countries as well as by many countries 73 

located in Africa and Asia. These two regions are considered extremely important as past and 74 

future donor hotspots of aquatic invertebrate species moving to Northern Europe. 75 
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Previous studies have reported poleward movement of e.g. terrestrial plants (Groom 76 

2013; Lenoir and Svenning 2015), birds (Bradley et al. 1999), butterflies (Wilson et al. 2005) 77 

and fishes (Perry et al. 2005) in Europe. There are also papers addressing the effects of climate 78 

changes in some invertebrate distribution ranges at local (e.g. Bruno et al. 2019), national (e.g. 79 

Vittoz et al. 2013) and international scales (e.g. Heino et al. 2009). Many species retreated from 80 

areas that became too warm and expanded into colder areas (Sunday et al. 2012). Odonata have 81 

especially experienced significant northward expansion within Europe due to climate change 82 

(e.g. Hickling et al. 2006; Heino et al. 2009; Grewe et al. 2013; Lancaster et al. 2015, 2017; 83 

Dudaniec et al. 2018; Carbonell et al. 2021). However, northwards expansion has usually been 84 

described in the context of native species (Urban 2020). Northwards movements are also 85 

happening with alien aquatic invertebrates. However, this is relatively new area of research that 86 

requires more attention. 87 

Recently, many alien aquatic species of Mediterranean and Ponto-Caspian origin have 88 

dispersed northwards and become established (e.g. Dobrzycka-Krahel and Medina-Villar 2020; 89 

Kemp et al. 2020) as a result of human-mediated dispersal (HMD). One such species is the 90 

isopod Proasellus coxalis, which increased its range in Northern Europe (including 91 

Scandinavia) after spreading from the Mediterranean region using the network of waterways 92 

followed by a probable jump as a stow-away with live fish bait (Spikkeland et al. 2013; Kemp 93 

et al. 2020 and references therein). Many Ponto-Caspian species have also gradually dispersed 94 

from the Black Sea–Caspian Sea region northwards over Europe (Milbrink and Timm 2001; 95 

Dobrzycka-Krahel et al. 2013) using the dense network of man-made waterways, which offered 96 

new migration pathways (Galil et al. 2007). Due to such a developed and complex systems of 97 

waterways, aquatic alien species can reach the recipient ecosystems either through active 98 

movement, drift, and / or as a result of shipping through ballast water discharge and hull fouling 99 

(Bij de Vaate et al. 2002; Galil et al. 2007; Leuven et al. 2009; Keller et al. 2011; Gallardo and 100 
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Aldridge 2015; Kemp et al. 2020). Moreover, shipping routes around the world have given 101 

frequent opportunities for numerous alien species to disperse (Carlton and Geller 1993). These 102 

Southern European aquatic species are able to cross biogeographic boundaries. The species that 103 

successfully establish are often those from environmentally heterogeneous ecosystems and 104 

capable of habitat selection and avoidance of less favourable zones, such as the Mediterranean 105 

shrimp Atyaephyra desmarestii (Vera-Vera et al. 2019). 106 

There is no common set of characteristics or universal traits shared by all alien species. 107 

Rather, different trait combinations can be successful, depending on the new home of the 108 

species. Also, various trait combinations can prove beneficial and provide different ways to 109 

establish successfully (Heger et al. 2015). Having said this, there are factors that favour some 110 

species over others, such as an ability to survive long-distance dispersal (e.g. in ballast water 111 

tanks) and to establish in an area with wide-ranging environmental conditions (Ricciardi and 112 

Rasmussen 1998). In addition, r-selected species are usually seen as having a higher probability 113 

of spreading than K-selected species. The failure of alien species to establish most often results 114 

from their inability to overcome the ‘‘environmental resistance’’ of the receiving ecosystem, 115 

caused by, for example, adverse temperature conditions and the biological pressures of the 116 

native community. 117 

 Many recent studies have looked at species dispersal (e.g. Hickling et al. 2006; Travis 118 

et al. 2013; Osland et al. 2021), but the species traits that help facilitate dispersal to different 119 

climate zones are important and are worthy of a more detailed analysis. The focus of this paper 120 

are the Mediterranean and Ponto-Caspian, alien, fully aquatic invertebrate species i.e. lacking 121 

the terrestrial stages and long-distance flight capacity of, for example, the Odonata (May 2013). 122 

These fully aquatic species have relatively poorly documented behaviour, adaptive significance 123 

and ecology of migration, even though they show northwards expansion and are able to 124 

establish populations in colder areas outside their original range.  The aim of the present paper 125 
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is to examine the role of morphological, behavioural and physiological traits of these species 126 

and how these underpin their successful northwards range expansion and establishment. We 127 

discuss the processes and consequences of northwards range expansion, topics which have had 128 

limited treatment in the literature thus far. There are some important questions concerning the 129 

mechanisms and adaptations for determining the success of the northwards expansion of such 130 

species: (1) what are the traits of species naturally living in warmer climate which facilitate 131 

dispersal into colder climates? and (2) what kinds of cold-tolerant strategies prevail among 132 

Mediterranean and Ponto-Caspian alien aquatic invertebrate species spreading into the north? 133 

 134 

2. Approach 135 

On 21 April of 2021, we downloaded the list of all aquatic invertebrate species from the 136 

database GRIIS (2021) (Global Register of Introduced and Invasive Species) which presents 137 

validated and verified national checklists of introduced (alien) and invasive alien species at the 138 

country, territory and associated island level. GRIIS provides significant support for national 139 

governments to identify and prioritise alien species, establishing both national and global 140 

baselines (Pagad et al. 2018). We searched the origin of the species in the literature and in GBIF 141 

(2021) (Global Biodiversity Information Facility) and identified aquatic Mediterranean and 142 

Ponto-Caspian species that have undergone northwards expansion – that dispersed into the 143 

north outside their original regions. Based on literature published since 1926, searching the 144 

terms “cold tolerance traits”, “cold adaptation”, “freeze tolerance”, we looked for the biological 145 

traits that have allowed the expansion of these species northwards, to colder areas (based on 146 

Lencioni 2004, with modifications) (Table 1), using Science Direct (2021); Scopus (2021); Web 147 

of Science (2021). We also used the DISPERSE database (Sarremejane et al. 2020) to search 148 

dispersal and reproductive traits. We statistically tested the null hypothesis that the proportions 149 

of each of the cold-tolerant traits in Mediterranean and Ponto-Caspian alien aquatic invertebrate 150 
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species each are fully distributed among Mediterranean and Ponto-Caspian species and we also 151 

tested affinity between these species from the two geographical regions. We used contingency 152 

tables populated with raw frequency data with χ2 - tests and assessed statistical significance at 153 

α of 0.05. These analyses were carried out using the STATISTICA 13.1 PL program (StatSoft). 154 

 155 

Table 1 Traits of aquatic invertebrate species that enable northwards range expansion and can 156 

tolerate cold conditions (based on Lencioni 2004, with modifications) 157 

Traits Trait 

modalities 

Score Description of properties 

Morphological    

Normal adult size small  

(<1 cm) or 

small-

medium (1-

6 cm) 

(criteria 

based on 

Kun et al. 

2019) 

1 

 

Body size determines metabolic rate and all 

organism processes (Rio and Karasov 2010). 

Reduction in size has several advantages: a lower 

requirement for food in habitats where it is limited; 

a faster growth rate and development; greater 

availability of sheltered microhabitats for 

protection during winter (Lencioni 2004).  

Small sized animals can warm up quickly to 

ambient temperature. They can also live in large 

groups for protection, e.g. gammarids and isopods 

live in aggregations for long time periods 

(Wertheim et al. 2005; Beermann et al. 2015). 

 medium-

large  

(1-6 cm) or 

large (>10 

cm) 

(criteria 

based on 

Kun et al. 

2019) 

0 

 

 

Behavioural    

Capacity for 

behavioural 

thermoregulation 

 

 1 

 

Migration to unfrozen habitats by aquatic 

invertebrates helps to avoid the hazards of freezing 

(Lencioni 2004). Habitat selection includes the 

ability to avoid iced/cold habitats, e.g. migration of 

species to other water columns, choosing a refuge 

(e.g. vegetation, rocks, sand, and backwater 

zones). Escape is a normal response of a mobile 

organism to stressful conditions (e.g. in the case of 

crustaceans). In contrast, non-mobile species 

cannot escape. 

No capacity for 

behavioural 

thermoregulation 

 

 0 
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Feeding habit 

(omnivorous, 

filter-feeders, 

food generalist 

organisms) 

 

 1 

 

Adaptation to changing environmental 

temperatures through animals varying diet during 

temporal changes in food availability. Utilization 

of organic matter is also beneficial (Gergs and 

Rothhaupt 2008). 

Food specialists  0 

 

 

Physiological 

and biochemical 

   

Diapause or 

resting period 

 1 

 

Quiescence and dormancy (or diapause) are traits 

having a strong reduction of the metabolic rate 

helping to overcome adverse conditions (Lencioni 

2004), e.g. hibernation and aestivation in molluscs 

(Lal Hora 1926), and diapause in crustaceans 

(Hairston and Cáceres 1996), cocoon production 

in annelids (Rossi et al. 2016). 

No mechanisms 

of diapause or 

resting period 

 0 

 

 

    

Freezing 

avoidance: 

presence of  
cryoprotectants 

 

 1 

 

Production of cryoprotectants at lower 

temperatures decreases metabolism (Gismondi et 

al. 2012). Cold tolerance is linked to 

osmoregulatory function (Gerber and Overgaard 

2018). Content of different organic substances and 

ions may help in cold tolerance, including raising 

the osmotic concentrations of a body. 

No or limited 

ability for 

production of  
cryoprotectants  

 

 0 

 

 

Tolerance of low 

temperatures or 

eurythermicity 

 1 

 

Freezing tolerance and adaptation to low 

temperatures are crucial (Lencioni 2004). 

 

No tolerance of 

low temperatures 

or no 

eurythermicity 

 

Dispersal 

 

aquatic active 

(from the 

DISPERSE 

database) 

 

Aquatic passive 

(from the 

DISPERSE 

database) 

 

 

 0 

 

 

 

 

 

 

 

1 

 

 

 

 

0 

 

 

 

 

 

 

 

 

 

 

 

Dispersal as the unidirectional movement of 

individuals from one location to another (Bohonak 

and Jenkins 2003). 
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Reproduction 

 

Potential number 

of reproductive 

cycles per year 1 

or >1 (from the 

DISPERSE 

database) 

 

Potential number 

of reproductive 

cycles per year <1 

(from the 

DISPERSE 

database) 

 

 

1 

 

 

 

 

 

 

0 

 

Reproduction means sexual and asexual 

production of offspring providing for the 

continued existence of a species (Britannica 2022). 

 158 

 159 

 160 

Fig. 1 Location of the Mediterranean and Ponto-Caspian regions  161 
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3. Results 162 

 163 

3.1. Mediterranean and Ponto-Caspian alien aquatic invertebrate species characterised 164 

by northwards expansion 165 

The biogeographical regions highlighted here which are donors of aquatic invertebrates (Fig. 166 

1) are situated in relatively warm climate zones. The percentage share of different groups of 167 

cold-tolerant Mediterranean and Ponto-Caspian alien aquatic invertebrate species expanding 168 

northwards into colder areas, are presented in Fig. 2. Mediterranean and Ponto-Caspian alien 169 

aquatic invertebrate species characterized by northwards dispersal are given in Tables 2 and 3 170 

(small crustaceans, molluscs, cnidarians and annelids). 171 

 172 

3.2. Mediterranean and Ponto-Caspian alien aquatic invertebrate species are well adapted 173 

to life in the northern latitudes 174 

The Mediterranean species examined here (Table 2) were all characterized by the ability to go 175 

into diapause, resting stage or hibernation, had feeding habits which included omnivorous, 176 

filter-feeding or food generalist strategies, presence of cryoprotectants and high reproductive 177 

capacity. Small size, temperature tolerance and capacity for behavioural thermoregulation were 178 

observed in 9 (90%) of these Mediterranean species. Active dispersal was observed in 7 (70% 179 

of them). More details are given in Supplementary material. 180 

All of the included Ponto-Caspian species (Table 3) had small size, temperature tolerance and 181 

were able to go into diapause, hibernation or resting period. These cold-tolerant strategies 182 

prevail among the Ponto-Caspian species and facilitate their dispersal into the north. 77 Ponto-183 

Caspian species (90.58%) were omnivorous, filter-feeders or food generalists. 72 (84.70%) of 184 

Ponto-Caspian species were able to produce cryoprotectants. 72 species (84.70%) had the 185 
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ability to select habitat. Active dispersal was observed in 76 species (89.41%) of Ponto-Caspian 186 

species and enhanced reproduction in 82 species (96.47%). 187 

Trait combinations within the pool of all species, facilitating northwards expansion were: ability 188 

to go to diapause, hibernation or resting period (100%), wide temperature tolerance (98.95%) 189 

and small size (98.95%). And also important were: enhanced reproduction (97.89%), generalist 190 

feeding habit (93.44%), dispersal (88.42%), presence of cryoprotectants (86.32%) and habitat 191 

selection (85.26%). 192 

The distribution of traits among Mediterranean and Ponto-Caspian species is presented in Fig. 193 

3. 194 

There were no significant statistical differences between the frequency of traits among tested 195 

species and expected frequency (100%), so we assumed the null hypothesis that Mediterranean 196 

and Ponto-Caspian aquatic invertebrate species dispersing into the north have cold-tolerant 197 

traits. We obtained for Mediterranean species χ2=12.00, df=7, p=0.100563 and for Ponto-198 

Caspian species χ2=6.813371, df=7, p=0.448569 at α of 0.05. 199 

We statistically tested affinity between the Mediterranean and Ponto-Caspian species at α of 200 

0.05 which was statistically not significant (we obtained χ2=10.41574, df=7, p=0.166217). 201 
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 202 

Fig. 2 Percentage share of different groups of cold-tolerant Mediterranean and Ponto-203 

Caspian species that are expanding northwards 204 

 205 

 206 
Fig. 3 Distribution of cold-tolerant traits among Mediterranean and Ponto-Caspian 207 

species that disperse into the north 208 
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Table 2 Mediterranean aquatic invertebrate species that are characterized by northwards extension and can 209 

tolerate cold conditions (based on GRIIS, WORMS and literature search) 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

A-Austria, B-Belgium, Ca-Canada, C-Croatia, CR-Czech Republic, D-Denmark, F-France, G-Germany, Gr-Greece, I-225 

Italy, Ir-Ireland, L-Luxemburg, Ne-Netherlands, N-Norway, P-Poland, Po-Portugal, Sp-Spain, S-Sweden, Sw-226 

Switzerland, UK-United Kingdom, US-United States, U-Ukraine. 227 

* Proasellus meridianus is thought to originate in western rather than southern Europe (and be spreading east and north), 228 

but could still be considered as a Mediterranean species as its supposed native range includes Portugal and Spain. 229 

230 

Species Taxonomic position 

(Order) 

Northern range Impact 

Aporrhais pespelecani 

(Linnaeus, 1758) 

Littorinimorpha F, N, Sp, U No 

Atyaephyra desmarestii  

(Millet, 1831) 

Decapoda A, B, C, CR, F, G, Gr, I, L, Ne, P, Po, Sp, Sw No 

Brachynotus sexdentatus  

(Risso, 1827) 

Decapoda F, Sp, UK No 

Echinogammarus berilloni  

(Catta, 1878) 

Amphipoda B, F, G, L, Ne, Sp, Sw 

 

No 

Gammarus pulex  

(Linnaeus, 1758) 

Amphipoda B, F, G, Ir, Ne, S, UK Yes  

(Ir)  

Gammarus roeselii  

Gervais, 1835 

Amphipoda A, B, F, G, I, Ne, P No 

Mytilus galloprovincialis 

Lamarck, 1819 

Mytilidae Ca, F, Ir, UK, US No 

Proasellus coxalis 

(Dollfus, 1892) 

Isopoda B, CR, D, F, G, I, N, Ne, S, Sw 

 

No 

Proasellus meridianus* 

(Racovitza, 1919) 

Isopoda 

 

B, D, F, G, I, N, Ne, Po, S, Sp, Sw 

 

No 

Tritia corniculum  

(Olivi, 1792) 

Neogastropoda F, I, Po, Sp No 
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Table 3 Ponto-Caspian aquatic invertebrate species that are characterized by northwards extension and can tolerate cold conditions (based 231 

on GRIIS, WORMS and literature search)  232 
 233 
 234 

Species Taxonomic position  

(Order) 

Northern range Impact 

Abra segmentum 

(Récluz, 1843) 

Cardiida Az No 

Amathillina cristata  

G.O.Sars, 1894 

Amphipoda Hu, U Yes 

(U) 

Amathillina pusilla  

G.O.Sars, 1896 

Amphipoda U Yes 

(U) 

Blackfordia virginica  

Mayer, 1910 

Leptothecata 

 

Bu, Fr, Ne, Po, Ro, U, US 

 

Yes  

(Ro) 

Cardiophilus marisnigrae  

Miloslawskaya, 1931 

Amphipoda Hu No 

Caspiobdella fadejewi  

(Epshtein, 1961) 

Rhynchobdellida A, B, Fr, G, Ne, P, R, Sw 

 

No 

Caspiocuma campylaspoides  

(G.O. Sars, 1897) 

Cumacea Hu, Mo 

 

No 

Cercopagis pengoi  

(Ostroumov, 1891)  

Onychopoda Ca, D, E, G, La, Li, P, R, RK, Ro, S, US 

 

Yes 

(La, Li, P, R) 

Chaetogammarus placidus 

(G.O.Sars, 1896) 

Amphipoda Hu No 

Chaetogammarus warpachowskyi 

Sars, 1897 

Amphipoda Hu, Li, U, UK 

 

No 

Chelicorophium chelicorne 

(G.O.Sars, 1895) 

Amphipoda Hu, U, UK Yes  

(U) 

Chelicorophium curvispinum  

(G.O. Sars, 1895) 

Amphipoda A, B, Be, BH, C, CR, E, Fr, G, Hu, I, L, La, 

Li, Ne, P, R, Se, Slo, Sw, U, UK 
Yes 

(B, BH, G, Hu, Ne, P, R, Se, Sw, U) 

Chelicorophium maeoticum 

(Sowinsky, 1898) 

Amphipoda Hu, Mo, U Yes  

(U) 

Chelicorophium mucronatum 

(G.O.Sars, 1895) 

Amphipoda Hu, U Yes  

(U) 

Chelicorophium nobile  

(G.O.Sars, 1895) 

Amphipoda Hu, U Yes  

(U) 

Chelicorophium robustum 

(G.O.Sars, 1895) 

Amphipoda B, Fr, G, Hu, Ne, Slo, U 

 

Yes  

(Hu) 
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Chelicorophium sowinskyi 

(Martynov, 1924) 

Amphipoda Hu, Ne, R Yes  

(Hu) 

Compactogammarus compactus 

(G.O.Sars, 1895) 

Amphipoda Hu No 

Cordylophora caspia 

(Pallas, 1771) 

Anthoathecata A, Be, D, F, G, L, Li, N, P, Pa, Po, R, S, Sp,  

UK 
Yes  

(Li, P, Po, R, UK) 

Cornigerius bicornis  

(Zernov, 1901) 

Onychopoda U No 

Cornigerius lacustris  

(Spandl, 1923) 

Onychopoda  U No 

Cornigerius maeoticus  

(Pengo, 1879) 

Onychopoda  R, S, U 

 

No 

Dikerogammarus bispinosus  

Martynov, 1925 

Amphipoda A, C, Fr, Hu, Slo 

 

Yes 

(Hu) 

Dikerogammarus haemobaphes  

(Eichwald, 1841) 

Amphipoda A, B, Be, C, Fr, G, Hu, P, R, Slo, Sw, UK 

 

Yes 

(Hu, UK) 

Dikerogammarus villosus  

(Sowinsky, 1894) 

Amphipoda A, B, Be, C, CR, F, Fr, G, Hu, P, R, Se, Slo, 

Sp, Sw, UK 

Yes 

(B, F, G, Hu, P, Se, Sw, UK) 

Dreissena polymorpha 

(Pallas, 1771) 

Myida A, B, Be, Bu, C, Ca, CR, D, E, F, Fr, G, Gr, 

Hu, I, La, Li, Ne, P, Po, R, RK, S, Se, Sl, Sp, 

Sw, U, UK, US 

Yes 

(B, Bu, C, Ca, CR, D, F, Fr, G, Hu, I, La, Li, 

Ne, P, Se, Sl, Sp, UK, US) 

Dreissena rostriformis 

(Deshayes, 1838) 

Myida Fr No 

Dreissena rostriformis bugensis  

Andrusov 1897 

Myida Bu, Ca, G, Hu, Mo, Ne, Po, R, RM, Ro, S, U, 

UK, US 

 

Yes 

(Bu, Ca, Hu, Mo, Ne, Ro, S, U, UK) 

Echinogammarus ischnus  

syn. Chaetogammarus ichnus 

(Stebbing, 1899) 

Amphipoda A, B, Fr, G, Hu, Li, Ne, P, Slo, Sw, U, UK 

 

Yes 

(Hu) 

Echinogammarus trichiatus 

(Martynov, 1932)   

Amphipoda A, Be, G, Hu, Ne, P, Slo, Sw Yes 

(Hu, Ne) 

Echinogammarus warpachowskyi 

 (G.O.Sars, 1894) 

Amphipoda S Yes 

(S) 

Ectinosoma abrau  

(Krichagin, 1877) 

Harpacticoida U No 

Euxinia sarsi  

(Sowinsky, 1898) 

Amphipoda Hu No 

Euxinipyrgula lincta  Littorinimorpha U No 
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(Milaschewitsch, 1908) 

Euxinia weidemanni  

(G.O.Sars, 1896) 

Amphipoda Hu No 

Evadne anonyx  

G.O. Sars, 1897 

Onychopoda F, P, S No 

Hemimysis anomala  

G.O. Sars, 1907 

Mysida A, Be, C, F, Fr, G, Hu, I, Li, P, RM, S, Se, 

Slo, Sw, U, UK 
Yes 

(Hu, I, Li, Sw, UK) 

Heterocope appendiculata  

Sars G.O., 1863 

Calanoida U No 

Heterocope caspia  

Sars G.O., 1897 

Calanoida U No 

Hypania invalida 

(Grube, 1860) 

Terebellida A, B, Be, G, P, R, Se, Sw, U, UK 

 

Yes  

(G, UK) 

Hypaniola kowalewskii  

(Grimm in Annenkova, 1927) 

Terebellida R, U No 

Hypanis colorata 

(Eichwald, 1829) 

Cardiida U No 

Hypanis fragilis  

(Milaschevitch, 1908) 

Cardiida U No 

Hypanis glabra 

(Ostroumoff, 1905) 

Cardiida U Yes  

(U) 

Hypanis pontica 

Eichwald, 1838 

Cardiida U No 

Iphigenella acanthopoda  

G.O.Sars, 1896 

Amphipoda Hu No 

Isochaetides michaelseni  

(Lastockin, 1937) 

Tubificida E No 

Jaera istri  

Veuille, 1979 

Isopoda A, B, C, Fr, G, Ne, P, Sw  

 

No 

Jaera sarsi  

Valkanov, 1936 

Isopoda Fr, Hu, P, Slo, U Yes 

(Hu) 

Katamysis warpachowskyi  

G. O. Sars, 1893 

Mysida A, Cr, Hu, RM, Se, Slo, U 

 

Yes  

(Hu) 

Kuzmelina kusnezowi  

(Sowinsky, 1894) 

Amphipoda U Yes 

(U) 

Lanceogammarus andrussowi  

(G.O.Sars, 1896) 

Amphipoda Hu, U Yes  

(U) 

Limnomysis benedeni  Mysida A, B, Be, C, Fr, G, Hu, Li, Slo, Sw, Uz Yes 
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Czerniavsky, 1882 (B, Hu, Li)  

Lithoglyphus naticoides   

(C.Pfeiffer, 1828) 

Littorinimorpha B, Be, Fr, G, Hu, Li, P, R, S, Se, U 

 

Yes  

(B, Hu, Se) 

Niphargogammarus intermedius 

(Carausu, 1943) 

Amphipoda Hu No 

Niphargoides corpulentus  

G.O.Sars, 1895 

Amphipoda Hu No 

Niphargus hrabei  

S.Karaman, 1932 

Amphipoda A No 

Obesogammarus crassus  

(Sars G.O., 1894) 

Amphipoda B, G, Li, P, R 

 

Yes 

(B, Li) 

Obesogammarus obesus 

(G.O. Sars, 1894)  

Amphipoda A, B, C, G, Hu, Ne, R, Slo, U 

 

Yes 

(Hu, U) 

Paramysis lacustris  

(Czerniavsky, 1882) 

Mysida Li, R Yes 

(Li) 

Paraniphargoides motasi  

(Carausu, 1943) 

Amphipoda Hu No 

Pontogammarus abbreviatus  

(Sars G.O., 1894) 

Amphipoda R No 

Pontogammarus aestuarius 

 (Derzhavin, 1924) 

Amphipoda Hu No 

Pontogammarus borceae  

Carausu, 1943 

Amphipoda Hu No 

Pontogammarus maeoticus  

(Sovinskij, 1894) 

Amphipoda Hu, U Yes  

(U) 

Pontogammarus robustoides  

(Sars, 1894) 

Amphipoda B, F, G, Li, P, R Yes 

 (Li, P, R) 

Potamothrix bavaricus 

(Oschmann, 1913) 

Tubificida B No 

Potamothrix bedoti 

(Piguet, 1913) 

Tubificida B, F No 

Potamothrix hammoniensis  

(Michaelsen, 1901) 

Tubificida P No 

Potamothrix heuscheri 

(Bretscher, 1900) 

Tubificida F, R, S No 

 

Potamothrix moldaviensis 

Vejdovský & Mrázek, 1903 

Tubificida B, I, P, S No 

Potamothrix vejdovskyi Tubificida Be, I, P, R, S No 
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(Hrabe, 1941) 

Psammoryctides moravicus  

(Hrabe, 1934) 

Tubificida, 

 

Be, E, P No 

Shablogammarus chablensis  

(Carausu, 1943) 

Amphipoda Hu No 

Shablogammarus subnudus  

(G.O.Sars, 1896) 

Amphipoda Hu, U Yes  

(U) 

Stenogammarus carausui  

Derzhavin & Pjatakova, 1962 

Amphipoda Hu, U No 

Stenogammarus compressus  

(Sars G.O., 1894) 

Amphipoda Hu No 

Stenogammarus macrurus 

(Sars, 1894) 

Amphipoda Hu No 

Stenogammarus similis  

(Sars, 1894) 

Amphipoda Hu No 

Tubifex newaensis  

(Michaelsen, 1903) 

Tubificida B, E, U No 

Tubificoides diazi  

Brinkhurst & Baker, 1979 

Tubificida 

 

US Yes  

(US) 

Turcogammarus aralensis  

(Uljanin, 1875) 

Amphipoda U Yes 

 (U) 

Uroniphargoides spinicaudatus  

(Carausu, 1943) 

Amphipoda Hu No 

Viviparus acerosus 

(Bourguignat, 1862) 

Architaenioglossa G No 

Yogmelina limana  

 Karaman & Barnard, 1979 

Amphipoda Hu No 

 235 
A-Austria,  Az-Azerbaijan, B-Belarus, Be-Belgium, BH-Bosnia and Hercegovina, Bu-Bulgaria, Ca-Canada, C-Croatia, CR-Czech 236 

Republic, D-Denmark, E-Estonia, F-Finland, Fr-France, G-Germany, Gr-Greece, Hu-Hungary, Ir-Ireland, I-Italy, La-Latvia, Li- 237 

Lithuania, L-Luxemburg, Mo-Moldova, N- Norway, Ne-Netherlands, P-Poland, Po-Portugal, RK-Republic of Korea, Ro-Romania, R-238 

Russian Federation, Se-Serbia, Slo-Slovakia, Sl-Slovenia, Sp-Spain, S-Sweden, Sw-Switzerland,  UK-United Kingdom, US-United 239 

States, U-Ukraine, Uz-Uzbekistan. 240 
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4. Discussion 241 

4.1. Mediterranean species 242 

Currently, Mediterranean alien aquatic invertebrate species are relatively rare in 243 

introduced areas and are classed as “no impact” rather than invasive (Table 2). We examined 244 

10 Mediterranean species that are on the way to the north and found that seven species (70%) 245 

are crustaceans and three species (30%) are molluscs. 246 

Atyaephyra desmarestii is not considered a threat to native fauna and inhabits rivers, 247 

canals, lakes, and impoundments (Grabowski et al. 2005). The amphipod Gammarus roeselii 248 

occurs in rivers of slow current, lakes, and artificial canals but does not exhibit a high invasive 249 

potential (Jażdżewski and Roux 1988; Jażdżewski and Konopacka 1995; Grabowski et al. 250 

2007). The decapod Brachynotus sexdentatus lives on substrates of mud and sand (Ateş 1999). 251 

Echinogammarus berilloni is currently observed in the running waters of Central Europe, 252 

thanks to the dense network of waterways (Pinkster 1993; Schmidt-Drewello et al. 2016). 253 

Gammarus pulex is common e.g. in a Rhine tributary in Germany (Kley and Maier 2015), and 254 

in smaller rivers in France (Chovet and Lecureuil 1994; Piscart et al. 2007). Proasellus coxalis 255 

inhabits both freshwater (e.g. in Rhine River, Germany) and brackish water (e.g. in the German 256 

part of the Szczecin Lagoon) (Wittfoth and Zettler 2013). Proasellus meridianus is spreading 257 

along rivers and inhabits slow-flowing waters (Von Vaupel Klein and Schram 2000; Gherardi 258 

2007). Both Proasellus species have also made an overseas hop to Scandinavia (Kemp et al. 259 

2020). The gastropod Aporrhais pespelecani lives on the surface of the mud (Perron 1978). The 260 

Mediterranean mussel Mytilus galloprovincialis spreads to new locations through ballast water 261 

and through its use in aquaculture (GISD 2021). Tritia corniculum is a small gastropod species 262 

spreading most probably via shipping (Crocetta et al. 2020). 263 

Some of the above mentioned species (e.g. G. roeselii and P. coxalis) are present in the 264 

Baltic Sea estuaries (Meßner and Zettler 2018). 265 
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4.2. Ponto-Caspian species 266 

We identified 85 species of Ponto-Caspian origin on the way to the north (Table 3). Ponto-267 

Caspian alien aquatic invertebrate species in introduced areas are often invasive newcomers 268 

with known “impacts” confirmed in many places (GRIIS 2021). Among them 60 (70%) are 269 

crustaceans, 11 (13%) molluscs, 13 (15%) annelids, and 2 (2%) cnidarians (Fig. 2). The Ponto-270 

Caspian region is home to a spectacular diversity of crustaceans (Cristescu et al. 2003), which 271 

are common newcomers worldwide (e.g. Bielecka et al. 2014; Dobrzycka-Krahel and Graca 272 

2018; Pauli and Briski 2018; GLANSIS 2021). Ponto-Caspian crustacean species currently 273 

inhabit near shore zones of freshwater and / or brackish ecosystems. Ponto-Caspian molluscs 274 

are also common worldwide (Pauli and Briski 2018; GLANSIS 2021), especially Dreissena 275 

polymorpha. 276 

 277 

4.3. Temperature as an important environmental factor for the establishment of species 278 

in new areas  279 

Temperature is probably the most important environmental factor influencing the performance 280 

of species, especially for ectotherms which are the majority of species on Earth (Jiménez-281 

Valverde and Lobo 2011). Aquatic invertebrates are poikilotherms, i.e., animals lacking the 282 

power of thermal regulation. Thus, the central temperature of these animals passively undergoes 283 

the thermic fluctuations in the environment. It is therefore unsurprising that tolerance to wide 284 

temperature variations tends to be a characteristic of successfully established alien species 285 

(Grabowski et al. 2007). 286 

Temperature is very important from an ecological point of view and all organisms require a 287 

certain temperature or range of temperatures to carry on their metabolic processes. Low 288 

temperatures decrease the rate of biochemical reactions and consequently reduce the organisms' 289 

metabolism (Boscolo-Galazzo et al. 2018). Very high temperatures denature enzymes and 290 
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destroy their activity (Ahnoff et al. 2015). Somewhere between these extremes, organisms will 291 

find their optimal temperatures for living. 292 

The wide thermal preferences and high resistance to extreme temperatures of Mediterranean 293 

and Ponto-Caspian species listed in Tables 2 and 3 (Kititsyna 1980; Jażdżewski and Konopacka 294 

1990; Iwanyzki and McCauley 1992; Pinkster 1993; Aladin 1995; Spidle et al. 1995; 295 

Gorokhova et al. 2000; Pöckl et al. 2003; Wijnhoven et al. 2003; Romanenko et al. 2014) will 296 

have helped their establishment. 297 

In the coastal waters in northern latitudes, water temperatures range between 0°C in winter and 298 

>20°C in summer. Consequently, most of the species, listed in Tables 2 and 3, would have a 299 

potentially very wide geographic distribution if temperature was the only factor limiting their 300 

occurrence. 301 

Ecophysiological constraints prevent species from occupying the entirety of abiotic 302 

gradients present in nature and restrict them to just a portion lying between their tolerance 303 

limits, beyond which they cannot survive (Arribas et al. 2019). These environmental restrictions 304 

are the first factor that demarcates the geographic regions that a species can inhabit. Alien 305 

species are more able to survive if they are introduced to areas with climatic conditions that are 306 

similar to those in their native range, with temperature being a key factor for survival, growth 307 

and reproduction (Walther et al. 2009). Climatic warming will extend the potential ranges of 308 

many species, accelerating the establishment process and will favour species moving from 309 

southern to northern latitudes in Europe (Dobrzycka-Krahel and Medina-Villar 2020), in search 310 

of more favorable thermal conditions compared with those existing in the original area. 311 

 312 

4.4. Preadaptation in the native area 313 

Although the current climate of Northern Europe may appear to be a barrier, many species 314 

originating from Southern Europe are primed for range expansion, due to preadaptation in their 315 
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native, original areas. For a species to increase its range, it must arrive in a new location and 316 

survive to reproduce. Having a wide range of environmental tolerances helps a species to both 317 

survive the journey and thrive on arrival. It appears that, due to the complex geological history 318 

of the Mediterranean and Ponto-Caspian areas, much of their aquatic fauna is tolerant to a wider 319 

than usual range of environmental parameters and thereby “pre-adapted” to potential new 320 

environments. The Mediterranean Sea has a complex paleogeography and heterogeneous 321 

environment, making it particularly diverse on the world-scale and with a high proportion of 322 

endemic species (Bianchi and Morri 2000; Reid and Orlova 2002; Coll et al. 2010; Fanelli et 323 

al. 2021). It comprises just 0.32% of the volume of the world’s oceans but contains between 4 324 

and 18% of all macroscopic marine species of which almost 25% are endemic (Bianchi and 325 

Morri 2000). The Mediterranean basin, itself made up of different seas, each with their own 326 

characteristics, has had, over millions of years, changing connections and temperature and 327 

species arrival from many different bioregions, leading to its current high diversity (Bianchi 328 

and Morri 2000; WWF/IUCN 2004; Patarnello et al. 2007). 329 

For example, the success of A. desmarestii in establishing populations in new aquatic 330 

environments is very likely due to its euryeocious and eurythermic characteristics as mentioned 331 

by several researchers (0-21ºC, Redeke 1936; 4-30ºC, Packa Tchissambou 1979; 5-30°C, 332 

Descouturelle 1980; 6.3-24.8ºC, Fidalgo 1985; 2-27°C, Meurisse-Génin et al. 1985; 5-34°C, 333 

Ferreira et al. 2002). Over millions of years, the Ponto-Caspian area has also been home to a 334 

shifting complex of lakes and seas, varying both spatially and temporally, in terms of 335 

parameters such as salinity, temperature, volume, and connectedness. Indeed, species of Ponto-336 

Caspian origin are highly over-represented in the list of non-native aquatic species already 337 

successfully established in North America and Northern Europe (Reid and Orlova 2002). Cold-338 

tolerant survival strategies noted in some Mediterranean and Ponto-Caspian species include 339 

morphological, behavioural, physiological and biochemical adaptations. Physiological studies 340 
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of Ponto-Caspian taxa confirm their ability to survive under variable conditions. For example, 341 

Maazouzi et al. (2011) compared the temperature tolerance of Dikerogammarus villosus and G. 342 

pulex and found that although G. pulex could actually survive at higher temperatures and across 343 

a wider temperature range (5) 10-20 (30) °C, compared to 5-15 (25) °C (numbers in brackets = 344 

extreme limits), D. villosus had a higher body glycogen content and lower basal metabolic rate. 345 

This may be interpreted as an adaptation to unpredictable and challenging environments and 346 

given that Maazouzi et al. (2011) found that D. villosus was more comfortable than G. pulex at 347 

lower temperatures, the northwards spread of D. villosus is likely to continue apace. 348 

Of nearly 100 alien aquatic invertebrate species that have shown northwards range extension, 349 

the vast majority (90%) were Ponto-Caspian in origin rather than Mediterranean. This could be 350 

because the Mediterranean region differs more from northern regions than the Ponto-Caspian 351 

area and / or because the Ponto-Caspian area has a greater diversity of potential migratory 352 

species. 353 

 354 

4.5. Morphological traits 355 

Morphological adaptations may include reduction in size. Size is a centrally important 356 

trait which influences all aspects of an organism’s physiology and relation to its environment. 357 

Smaller organisms need less food than larger ones so small size is beneficial in environments 358 

where food is limited (Lencioni 2004). Temperature affects metabolic rate and reduction in size 359 

can be energetically beneficial to organisms. Animals of small size are able to warm up quickly 360 

to ambient temperature. They may also gain protection by living in large groups, e.g. gammarids 361 

and isopods live in aggregations for long time periods (e.g. Wertheim et al. 2005; Beermann et 362 

al. 2015; How Animals Survive in Cold Conditions. Science of the Cold 2021). Smaller 363 

organisms can grow faster, reproduce earlier and more quickly, which may enhance success in 364 

colder climates. The high reproductive performance may help to explain the high impact of 365 



24 

 

some new species in invaded ecosystems as well. The potential for reproduction at relatively 366 

low temperatures increases the probability of species survival. Some non-native invasive 367 

species begin to reproduce at smaller sizes, e.g. in P. meridianus overwintering females become 368 

mature at about 3 mm and begin to reproduce early. Therefore small P. meridianus females 369 

mature at lower temperatures than those of indigenous Asellus aquaticus and this will give 370 

impetus to the spring reproductive output of the former (Chambers 1977), although they found 371 

that reproductive output of the two species across the season was similar. Ovigerous females of 372 

G. roeselii were sampled from the Pielach River in the mild winter of 1986–87 (Pöckl 1993). 373 

Some eggs of G. roeselii developed successfully in the laboratory at a constant temperature of 374 

4C (Pöckl and Humpesch 1990). 375 

 376 

4.6. Behavioural traits 377 

Behavioural adaptations include feeding habits and habitat selection. Survival, growth 378 

and reproductive success of invertebrates depends on the quantity and nutritional quality of 379 

their food sources (e.g. Basen et al. 2011). Studies of several non-native invasive gammarids, 380 

e.g. D. villosus (Mayer et al. 2008), E. berilloni (Mayer et al. 2012), and G. roeselii (Mayer et 381 

al. 2009) demonstrated that these species were able to feed on a wide variety of food sources. 382 

This adaptability to take advantage of whatever food is available increases the chances of 383 

survival in new or changing environments. 384 

Utilization of organic matter, an important and readily available food source in aquatic 385 

environments, is beneficial for the zebra mussel D. polymorpha as well as for many non-386 

indigenous amphipods e.g. D. villosus, G. roeselii, and others (Gergs and Rothhaupt 2008). 387 

The freshwater shrimp A. desmarestii is a detritivore decapod that consumes a variety of 388 

foods, such as microalgae, microcrustaceans, mud, fecal pellets, carcasses and plant detritus 389 

(Margalef 1953; Fidalgo 1985; Fidalgo and Gerhardt 2003; Duarte et al. 2012). In this species 390 
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the micromorphology of the mandibles is particularly suited to the consumption of these types 391 

of foods (Huguet 2015). The high feeding plasticity of A. desmarestii gives it an important role 392 

in energy transfer at different trophic levels of the grazing and detrital food chains. Moreover 393 

this freshwater shrimp also represents an important food item for many fish species (García-394 

Berthou and Moreno-Amich 2000a, b). 395 

Another important trait in colder conditions is freezing avoidance. During the coldest 396 

parts of the year, under surface-ice in reservoirs, some aquatic invertebrates are able to avoid 397 

unfavorable conditions by habitat selection and / or by migration to different habitats. For 398 

example, gammarids, including Ponto-Caspian species, can move from shallow, 399 

environmentally unstable areas to central bottom sediments with more constant conditions 400 

(Poznańska et al. 2009). 401 

 402 

4.7. Physiological and biochemical traits 403 

Physiological adaptations can include the ability to greatly reduce the metabolic rate and 404 

enter to diapause. In unfavorable conditions (e.g. in low temperatures and / or in short-day 405 

photoperiods) some crustaceans may enter diapause and resting periods (Sutcliffe 1993) and 406 

can therefore resist unfavorable conditions. This phenomenon may alter reproduction and 407 

dispersal capability. Prolonged diapause is more common among small crustaceans than among 408 

larger ones. It occurs in Malacostraca, including the decapods, euphausids, amphipods, isopods, 409 

and also Branchiopoda such as the cladocerans, conchostracans, anostracans, and notostracans, 410 

and the Maxillopoda (e.g. copepods, ostracods), which increases fitness in a temporally varying 411 

environment (Hairston and Cáceres 1996). 412 

Physiological and biochemical adaptations to cold may include cold avoidance or cold 413 

tolerance. At lower temperatures some animals produce cryoprotectants and have lowered 414 
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metabolism e.g. G. roeselii (Gismondi et al. 2012). Reproducing females of e.g. gammarids 415 

accumulate and store lipids as the ovaries mature (Sutcliffe 1993). 416 

For some species, changing ambient temperatures and modification of hydrological 417 

cycles can be important drivers boosting their dispersal into new areas. Usually, r-selected 418 

species rather than k-selected species have a higher probability of expanding their distribution. 419 

Another factor that can determine the successful expansion of species into new areas is 420 

euryoeciousness, i.e., their ability to tolerate wide range to environmental conditions (Ricciardi 421 

and Rasmussen 1998), especially eurythermicity which indicates wide tolerance of temperature. 422 

Alien species are also characterized by high fecundity, early maturity and elevated 423 

reproductive rate (large numbers of generations per year), which facilitate establishment in new 424 

areas (Kley and Maier 2003). 425 

Most organisms do not occupy all of their potential area in terms of environmental 426 

conditions due to limitations to their dispersal ability. In fact, organisms may reach a new area 427 

through passive or active transport, but many of them do not succeed to establish in the 428 

receiving ecosystem due to abiotic or biotic reasons (such as competition and predation). 429 

Passive or active transport is important to overcome different barriers as well as to colonize 430 

other water bodies or colonize and re-colonize streams after drought events that will be more 431 

frequent in a climate change scenario (Banha and Anastácio 2012). However, in other cases, if 432 

they are transported outside their normal range, they may survive, reproduce and spread. 433 

Dispersion of organisms can represent a response to cope with scarcity of food resources, 434 

changes in local ecological conditions (e.g. pollution, eutrophication) or climate change (e.g. 435 

warming, drought events). 436 

 437 

  438 
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5. Conclusions 439 

The dispersal of species into new geographical areas may be connected with risk of their 440 

disappearance in a considerable part of their original ranges due to climate change (Abeli et al. 441 

2018; Bolotov et al. 2018). Therefore, it is possible that many cold-tolerant Mediterranean and 442 

Ponto-Caspian taxa may shift from one environment to another and decrease in abundance or 443 

disappear from their native range. Some of this movement northwards may then be viewed as 444 

both inevitable and even desirable, but a significant number of Ponto-Caspian species in 445 

particular have behaved invasively in their new areas leading to profound ecosystem change 446 

and destabilisation. 447 

This work focuses on human-mediated northwards range expansion, both in the sense 448 

that a warming climate will enable southern pre-adapted, cold-tolerant species to move 449 

northwards, as well as the human role in helping the organisms to disperse through waterways 450 

joined by canals and by shipping. The topic of movement of alien species under climate change 451 

is a relatively new area of research that requires more attention. These species movements will 452 

have economic, health and conservation consequences. 453 
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