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Chasing the bird: 3D acoustic tracking of aerial flight displays 
with a minimal planar microphone array
Guillaume Dutilleuxa, Brett K. Sandercockb and John Atle Kålåsb

aDepartment of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway; 
bDepartment of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway

ABSTRACT
Tracking the flight patterns of birds and bats in three-dimensional 
space is central to key questions in evolutionary ecology but 
remains a difficult technical challenge. For example, complex aerial 
flight displays are common among birds breeding in open habitats, 
but information on flight performance is limited. Here, we demon
strate the feasibility of using a large ground-based 4-microphone 
planar array to track the aerial flight displays of the cryptic Jack 
Snipe Lymnocryptes minimus. The main element of male display 
flights resembles a galloping horse at a distance. Under conditions 
of sufficient signal-to-noise ratio and of vertical alignment with the 
microphone array, we successfully tracked male snipe in 3D space 
for up to 25 seconds with a total flight path of 280 m. The ’gallop’ 
phase of male snipe dropped from ca. 141 to 64 m above ground at 
an average velocity of 77 km/h and up to 92 km/h. Our project is 
one of the first applications of bioacoustics to measure 3D flight 
paths of birds under field conditions, and our results were consis
tent with our visual observations. Our microphone array and post- 
processing workflow provides a standardised protocol that could 
be used to collect comparative data on birds with complex aerial 
flight displays.
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1. Introduction

Animal movements have traditionally been studied in a two-dimensional plane but 
effective methods for tracking in three-dimensions are necessary to understand the 
diving behaviour of fish and marine mammals in an aquatic environment, burrowing 
or arboreal species of reptiles and mammals, and the flight patterns of bats and birds 
(Cooper et al. 2014; Koblitz 2018; Aspillaga et al. 2019). For example, complex aerial 
flight displays to attract mates are a common feature of the social systems of waders, 
hummingbirds and songbirds (Figuerola 1999; Mikula et al. 2022; Wilcox et al. 2022). 
Aerobatic males often have higher mating success (Mather and Robertson 1992; Grønstøl  
1996; Blomqvist et al. 1997) and selection for agility in aerial displays is one of the main 
hypotheses proposed to explain the evolution of female-biased sexual size dimorphism in 
birds (Székely et al. 2007). The flight performance of birds and bats under field conditions 
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is relevant to key questions in evolutionary ecology, but the collection of detailed 
information on movements has proven to be a difficult technical challenge. Studies of 
aerial flight displays have often focused on the frequency and duration of displays (Møller  
1991; Hedenström and Alerstam 1996; Lanctot et al. 2000) but have been unable to 
directly measure the length of the flight path, flight speed or turning radius.

Existing methods for animal tracking are not adequate for investigating the complex 
aerial flight displays of birds. Radar studies have provided valuable information on bird 
movement patterns, but it can be difficult to identify individual species (Hedenström and 
Alerstam 1996; Gauthreaux and Belser 2003). New methods for laser remote sensing with 
LIDAR systems are promising for both tracking and identification of flying animals 
(Jansson et al. 2017; Malmqvist et al. 2018). High-speed stereo cameras can be used to 
reconstruct flight trajectories but work best at relatively small spatial scales (Henningsson 
et al. 2010; Prinsloo et al. 2021). Optical rangefinders are effective for estimating flight 
speed, height and orientation at larger spatial scales, but require visual tracking of the 
target and work best for straight-line flights (Hedenström 1995; Stantial and Cohen 2015; 
Borkenhagen et al. 2017). New classes of GPS tags with altimeters and accelerometers 
allow tracking of 3D movements but then require capture and individual tagging, are 
restricted to use with large-bodied birds, and estimates of altitude are often highly biased 
(Bouten et al. 2013; Péron et al. 2020). Bioacoustic localisation of animals with micro
phone arrays provides a promising alternative because methods allow for species identi
fication, can be deployed at large spatial scales for any type of flight pattern, and do not 
require individual tagging to track free-living individuals under natural conditions 
(Rhinehart et al. 2020).

The use of microphone arrays to localise sound-producing animals has a long history 
(Magyar et al. 1978), and different geometrical configurations of microphones or of 
microphone arrays have been used to address a range of questions in ecology and 
evolution (Blumstein et al. 2011; Rhinehart et al. 2020; Verreycken et al. 2021). Signals 
from the different microphones must be synchronised if the locations of vocalising 
animals are triangulated from time differences of arrival for sounds. The most straight
forward solution is to use cables to connect multiple microphones to a multi-channel 
recorder. Distant observation points in large microphone arrays can be synchronised 
either with wireless connections or by combining several small arrays with local storage 
and by using angle or arrival (Ali et al. 2009). Most applications of bioacoustic methods 
have focused on locating animals in a horizontal plane (Mennill et al. 2012; Wilson and 
Bayne 2018; Matsubayashi et al. 2022) but a few authors have used sounds to locate 
animals in three dimensions (Stepanian et al. 2016; Gayk and Mennill 2020; Verreycken 
et al. 2021). For example, Stepanian et al. (2016) deployed a 6-microphone array on three  
> 9.14-metre poles in an equilateral triangle with 20 m vertices (0.05 ha) and showed that 
the array could locate controlled sound sources up to 130 m above ground. Similarly, 
Gayk and Mennill (2020) deployed an 8-microphone array on four > 7.1-metre poles in 
a square with 25 m vertices (0.06 ha) and accuracy was < 5 m when locating birds from 
their calls. In both studies, microphones were placed in a bucket to minimise ground 
reflections. More recently, Matsubayashi et al. (2023) used a single compact 16- 
microphone array on a tripod and used a robot audition system to study courtship flights 
of Latham’s Snipe Gallinago hardwickii, which successfully provided estimates of azi
muth and elevation but not the 3D coordinates of bird positions.
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The only examples of three-dimensional flight path from bioacoustic methods are for 
bats in the laboratory (Verreycken et al. 2021) and in the field (Grodzinski et al. 2009; 
Koblitz 2018). Bats are good candidates for bioacoustic tracking because they regularly 
use sonar to navigate during flight but a disadvantage is that the high frequency sounds 
attenuate rapidly in air. Thus, the active space of sound transmission is limited, and the 
detection range of compact microphone arrays is restricted as well. Nevertheless 
(Grodzinski et al. 2009), obtained flight paths for Pipistrellus kuhlii with travel distances 
over 31 m and durations up to 6 sec by using time-of-arrival differences between eight 
microphones arranged as two symmetrical stars in two arrays placed on tripods.

The objective of our project was to conduct a field test for the potential of acoustic 
sampling of flight trajectories with a minimal array of four low-self-noise microphones 
connected by cables to a single high-quality multi-channel recorder. We successfully 
estimated the 3D flight path and components of flight performance for the aerial flight 
display of a poorly known species of wader: the Jack Snipe Lymnocryptes minimus. The 
Jack Snipe is one of a suite of migratory waders that are characteristic of open mires in the 
taiga wetlands of northern Eurasia (Järvinen et al. 1978; Cramp and Simmons 1983; Van 
Gils et al. 2020), including Common Snipe Gallinago gallinago, Broad-billed Sandpipers 
Calidris falcinellus and Spotted Redshank Tringa erythropus. Many of these species of 
waders are difficult to observe and monitor in the mire habitats but have characteristic 
aerial flight displays during the pre-laying period (Armstrong and Westall 1953; Sutton  
1981; Svensson 1987). For example, the aerial flight display of male Jack Snipe includes 
three discrete stages: an ascending phase without vocalisations where the bird climbs in 
altitude for ~1 minute, a diving phase where the bird drops steeply and produces 
a characteristic ‘galloping’ vocalisation that lasts for ~15 seconds, and a final hovering 
phase with short ‘grunt’ calls that lasts for ~10 seconds (Olivier 2007, Authors pers. obs.). 
The galloping vocalisation is expressed continuously during the diving phase, whereas 
the grunt calls are repeated a few times during the hovering phase. During a complete 
display flight, the ascending and diving phases can be repeated multiple times such that 
the galloping vocalisation is repeated at ~ 1–2 minute intervals (Nilsson and Nilsson  
1978). We have deployed automatic audio recorders to conduct acoustic monitoring of 
waders at Kautokeino in northern Norway since 2016, and found that Jack Snipe was 
quite active at some of our recording locations. However, the acoustic flight displays of 
the males were not completely captured due to significant self-noise from the micro
phones and limitations of audio hardware associated with cost-effective automatic 
recording devices (Darras et al. 2020). Conventional acoustic monitoring with non- 
synchronised recording channels is of limited use for studying flight behaviour, the 
kinematics of flight, or the active space of vocalisations.

Our paper is organised as follows. First, we describe our field procedures and the setup 
of a 4-microphone array that we deployed to record acoustic flight displays of Jack Snipe 
(Section 2). Second, we developed a workflow for post-processing sound recordings with 
two steps for manual annotation of multichannel recordings and then extraction of a 3D 
movement track, which was formulated as a non-linear optimisation problem. Third, we 
demonstrate that our method can be successfully used to collect quantitative data on the 
aerial flight displays of birds. We present examples of flight paths and ground tracks, and 
estimates of flight parameters, such as the distance covered during the galloping phase 
and the flight speed at the start of this phase (Section 3). Finally, we provide 
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recommendations for future field studies, including methodological considerations for 
flush-mounted microphones, planar array topology and micrometeorology, viable alter
natives to manual annotation of sound recordings, and potential applications with other 
species of birds (Section 4).

2. Materials and methods

2.1. Study area and recording sessions

Two recording sessions were conducted in Kautokeino, Finnmark, Norway, in June 2022. 
Two locations were selected based on successful detections of birds in field surveys 
completed by the authors in previous years. The mire complexes are typical breeding 
habitats for Jack Snipe. Continuous audio recordings were collected at location 2 
(Figure 1) from June, 15th at 17:56 to June 16th at 10:32, and at location 1 (Figure 1) 
from June, 16th at 16:25 to June, 17th at 04:04. Temperature data were compiled from the 
nearest weather station at Kautokeino (Station SN93700; Norwegian Meteorological 
Institute). During the two recording periods, air temperatures ranged between 3°C and 

Figure 1. Overview of the recording sites at Location 1 Ráigeluovttajeaggi and Location 2 
Suvdošjohka, west of Kautokeino, Finnmark, Norway. Map from Norgeskart.No. Drawings of micro
phone arrays are not to scale.
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9°C. Wind speed was measured at the start of each recording period at 1.5 m height with 
a handheld anemometer (Windmate type WM100) and was always less than 2 m/s.

Our intention was to place three microphones at the vertices of an equilateral triangle 
and a fourth microphone at the centroid, but this configuration could not be achieved in 
practice because of field conditions and the presence of shrubs, flower patches, and 
standing water. The actual geometry of the microphone array was an approximation of 
the equilateral triangle (Figure 2) and had a footprint of about 1 ha. We expected the 
arrays to capture the flight patterns of male Jack Snipe because the detectable range for 
their distinctive vocalisations is ca. 1 km, but the ceiling for the display-flights is usually 
150–250 m in height (Nilsson and Nilsson 1978; Cramp and Simmons 1983; Olivier  
2007).

The geodetic coordinates of the microphones were measured with a handheld GPS 
receiver (Garmin GPSmap 65). The absolute uncertainty on the horizontal position 
reported by the GPS was within 5 m at 95%. In our uncertainty analysis of the estimation 
of the retrieved 3D flight path, we used empirical statistical distributions of latitude and 
longitude estimates provided by GPS receivers (Specht 2021) where the standard devia
tion is lower for the latitude than for the longitude. Both parameters were represented as 
Gaussian random deviates in our simulations. Since the terrain encompassed by the 
triangle and the surrounding areas were essentially flat and horizontal with deviations 
below 0.5 m, the altitude was not measured, and we considered that the microphones 
were all at the same altitude.

2.2. Recording acoustic flight displays

In Kautokeino, the ground underlying the ’palsa’ mire complexes where Jack Snipe breed 
is often permafrost. Access to the breeding sites by car or all-terrain vehicles is impossible 
and all equipment must be carried by hand over unstable ground so that the amount of 
equipment should be minimised. Moreover, the frozen ground makes it difficult to 

Figure 2. Configurations of the microphone arrays for location 1 (left, 1.04 ha) and location 2 (right, 
0.95 ha). UTM coordinates of M4 were 34W 7672543N 565518E at location 1 and 34W 7664445N 
573421E at location 2.
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anchor the equipment with pegs and poles in the ground. Buckets are an efficient 
measure against ground reflections but are likely to cause significant distortion of the 
received signals and to reduce the aperture of the sensors. Another constraint of our 
experiment was the goal to capture the complete dive and hovering phases of the flight 
display, starting at 50–250 m above the ground (Cramp and Simmons 1983; Olivier  
2007). Therefore, our focus was on maximising the signal-to-noise ratio and the ampli
tude of the received signal. The combination of features led us to set up an array that was 
different from designs used in previous field studies (Stepanian et al. 2016; Gayk and 
Mennill 2020; Verreycken et al. 2021).

The microphones were not installed on a pole or tripod, but were instead flush 
mounted on a heavy-coated marine plywood plate that was placed on the ground 
(Figure 3). The reflective coating of the plate and its dimensions 50 × 70 cm comply 
with the requirement of the ISO 1996–2 standard for the measurement of sound pressure 
levels ISO (2017) at a building façade. Our configuration eliminates the so-called comb 
filter effect in the recordings (Hartmann 1997) where the interference is caused by the 
delay between the direct sound and the reflection from the ground. Moreover, in a flush- 
mounted configuration, a 6 dB increase is observed in the strength of the signal because 
the direct and the reflected sound have the same amplitude and the same phase (Kinsler 
et al. 2000). According to the ISO1996–2 standard, the 6 dB increase due to flush- 
mounting holds up to 4 kHz. Furthermore, our flush-mounted configuration minimised 
wind-induced noise in the microphone versus the microphone deployed on the tripod.

Figure 3. Flush-mounted microphone with windscreen on an ISO 1996–2-compatible ground plate.
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Four pre-polarised 1/2-inch measurement microphones were used in combination 
with constant current preamplifiers. For the points at the vertices of the triangle, 
a combination of a Bruel & Kjær (B&K, Naerum, Denmark) type 4964 infrasound 
capsule and a B&K 2671 preamplifier was used. For the centroid, a B&K 4189 class 
I IEC (2013) microphone capsule was combined with a B&K 2671 preamplifier. The use 
of different microphones and of infrasound models was due to the availability of sensors 
in our laboratory at the time of the experiment and did not compromise our results. In 
particular, the upper cut-off frequency of the infrasound capsules is well above the 
maximum frequency of the bird sounds that were recorded. Protection against wind 
was provided by 9 cm spherical wind screens cut in half, in addition to flush-mounting 
(Figure 3).

A single audio recorder was used to collect the signals delivered by the recorders. 
At location 1, a multichannel audio recorder (Sound Devices, Reedsburg, 
Wisconsin, USA, type MixPre6) was used until 21:27 in June, 16th. Afterwards, 
this recorder was replaced by a Head Acoustics (Herzogenrath, Germany) 
SQuadriga III class-I-compliant portable measurement system. At location 2, the 
recorder used was the MixPre6 used at location 1. Long coaxial cables were used to 
transfer both the power supply and the signals between the microphones and the 
recorder. Connection via cables guaranteed the perfect synchronisation of the 
signals. Indeed, since electricity travels at 65.9% of the speed of light, with the 
RG58 cable lengths used in our experiments, the propagation delays caused by the 
cables are much shorter than the sampling period of 20 microseconds that corre
sponds to the sampling frequency of 48 kHz. The signals were recorded in 24 bits 
PCM format at 48 kHz and stored either as WAV files with the MixPre6 or as the 
proprietary HDF files with the SQuadriga III. In the latter case, the files were later 
converted to WAV for post-processing.

2.3. Annotating sound spectrograms

An Audacity Sound Editor (Audacity Team release 3.2) was used to annotate the 
recordings displayed as spectrograms (2048 points, Hann window, 50% overlap). For 
each audio recording of the acoustic flight display of a male Jack Snipe, where the 
complete so-called “galloping phase” (GP) was visible in the spectrogram of each of the 
4 channels, a single label file was populated with standardised annotations. The annota
tion was carried out by hand by the first author. The annotated features were the most 
energetic notes. The first channel to be annotated was that of the first arrival at the 
beginning of the GP. The marker was typically placed at the beginning of the note. The 
general annotation pattern is [1 − 4][bme][a−z]{1,2} according to the POSIX syntax of 
regular expressions (ISO/IEC/IEEE 2009). The first number on the left specifies the 
channel. In the second block b stands for beginning, m for middle i.e. GP and e for end 
(Figures 4 and 5). The last block consists of one or two lowercase letters. As an example, 
the 3rd (resp. 28th) label in chronological order for GP in channel 3 is 3mc (resp. 3mab). 
With this naming convention, a single label file can be used to identify the different 
occurrences of the same note in the different channels. When exporting the label track to 
a text file, Audacity generates one row per marker with the instant in seconds reported to 
5 decimal places and the label.
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2.4. Signal processing

A homogeneous atmospheric layer was assumed between the height where birds were 
being tracked and the microphones at ground level. The sound speed c was then 
calculated from the air temperature T close to the ground. Considering the large 
distances between the microphones and between the source and the microphones, the 
occasional phase mismatch between measurement channels that are never perfectly 
identical was deemed to be negligible.

The 3D coordinates of the bird with respect to the centre of the microphone array 
were obtained using time differences of arrival (TDOA) (Li et al. 2016). If kS(x,y,z) is the 
unknown position of the source corresponding to label k from the manual annotation, 
using the notation d S

k;Mi
� �

for the Euclidean distance between kS and microphone Mi, 
the following optimisation problem was defined as: 

kti;mod ¼
1

c Tð Þ d kS;Mi
� �

� d kS;M4
� �� �

"i 2 1; 2; 3f g (1) 

Figure 4. Typical spectrogram of one dive cycle of the acoustic flight display of a male Jack Snipe 
L. minimus illustrating the three discrete phases: beginning phase at the start, galloping vocalization 
produced during the dive phase, and the grunt sounds produced during a hovering phase after 
completion of the dive.

Figure 5. Close-up of 3 repetitions (rectangles) of the rhythmic pattern of the galloping phase of the 
flight display shown in Figure 4. The ellipses delineate the song features that were annotated. 
The second ellipse from the left shows a double note that was repeated 3 times in this song fragment.

8 G. DUTILLEUX ET AL.



kS ¼ argmax
kx;ky;kzð Þ

Xi¼3

i¼1
kti;mod kx; ky; kz

� �
� kti;meas

� �2
þ p kz
� �

 !

(2) 

where ti,mod is the modelled TDOA for microphone i ∈{1,2,3}, ti,meas is the measured 
TDOA for microphone i, and 

p zð Þ ¼ f 0 if z � 0
z2otherwise (3) 

is a penalty term to prevent the optimisation algorithm from exploring negative altitudes 
that are mathematically acceptable because of the symmetry of the problem but are 
physically impossible for an aerial flight display. The measured TDOA were easily 
obtained from the label file made in Audacity that provided the arrival time of each 
note for each microphone. The non-linear optimisation problem (2) was solved repeat
edly for all k using the Nelder-Mead optimisation algorithm (Nelder and Mead 1965). 
Whatever the value for k, we used (x, y, z)=(0, 0, 50) as an initial guess for kS. The steps 
generated a series of points kS that formed a 3D path from the first feature of the acoustic 
display that is labelled on each of the 4 tracks to the last one that satisfies the same 
condition. The raw path included small offsets due to random variation in the point 
estimates. For further analyses of the flight speed and the estimation of the distance 
travelled, the raw path was replaced with a smoothed line estimated by a polynomial fit 
Mfit(t).

The different steps outlined in this section for reconstructing the flight path were 
implemented in Julia version 1.8 as a flexible programming language (Bezanson et al.  
2017), with functions of the packages Optimisation version 3.10 and CurveFit ver
sion 0.5.0.

2.5. Assessing the accuracy of the 3D flight track

The accuracy of the 3D flight tracking system was evaluated by simulating errors in the 
positions of the different microphones in our planar array. Taking the coordinates 
displayed on site by the GPS receiver as a reference, under the assumptions made 
above (Section 2.1), errors on the horizontal positions of the 4 microphones were 
introduced before computing the flight track by sampling two centred Gaussian random 
deviates, one for latitude and one for longitude. These steps were repeated 1000 times 
before so that the corresponding standard deviations of the space coordinates could be 
computed.

3. Results

3.1. Data collected

In total, 33 acoustic flight displays were collected during the two sessions of field recordings, 
19 at location 1 and 15 at location 2. The complete galloping phase was present on the 4 
channels for 17 displays at location 1 and 6 at location 2. We observed two males displaying at 
the same time at both locations but different males were easy to distinguish because their 
distances from the microphones varied and the song elements did not overlap in our sound 
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recordings. However, background noise from leaves rustling in the wind can be occasionally 
heard in the recordings at both locations. At location 2, additional sound from a distant 
stream was present in the recordings. Therefore, especially for location 2, the background 
noise proved too strong to allow annotation of the 4 tracks in a reliable way for more than 3 of 
the recorded displays. For location 1, the dropout rate was slightly lower with 6 displays that 
could be annotated. To make matters worse, the ground track of the aerial flight display was 
often located outside the footprint of the area encompassed by the microphone array for 
a significant part of the flight display. Poor coverage caused divergence of the optimisation 
routine and led to estimates of non-physical heights of flight. Such heights could be either 0 m 
or arbitrarily high values. As a consequence, flight tracking could be successfully completed 
for two acoustic flight displays recorded at location 1 and one at location 2. At location 1, one 
flight display occurred in almost ideal conditions with little background noise and with 
a flight track almost perfectly within the area encompassed by the array. Here, it was possible 
to annotate each of the 4 audio tracks over 25 seconds. The total duration of the flight display 
was significantly longer than the galloping phase (�x = 11.7 s, σ = 1.06 s, n = 23).

3.2. Flight path

Kinematic parameters were successfully determined from smoothed flight paths from 3 
successful recordings of the acoustic flight displays of male Jack Snipe (Table 1). The flight 
path that corresponds to the first row of Table 1 is presented in Figure 6. For these 3 displays, 
the flight path during the galloping phase consists of a steep dive followed by two sharp turns 
(Figure 6). The corresponding ground track is shown in Figure 7, and the space coordinates 
as a function of time in Figure 8. In Figures 6 and 7, a twelfth degree polynomial was fitted to 
the raw flight path to obtain a smooth path. The effect of errors in the coordinates of the 
microphones were simulated by bootstrapping. The effect of simulated spatial errors on the 
microphone position was mostly visible on the vertical coordinate (Figure 8).

4. Discussion

4.1. Flight pattern

The flight path revealed by analysing the acoustic signals received on the ground was 
consistent with previous reports of display flights for Jack Snipe (Olivier 2007) and with 
our visual observations of birds in flight during fieldwork at other sites and years. The flight 
pattern that was described for the galloping phase was observed at both locations 1 and 2. Our 
two study locations were more than 10 km apart. Therefore, we are confident that the flight 
displays recorded here were performed by at least two different male snipe. Thus, we expect 
our new data for the flight pattern to be representative of the aerial flight display for Jack 
Snipe.

Table 1. Kinematic parameters of the galloping phase of 3 acoustic flight displays of L. minimus. 
H means height above ground in m, L is the total distance in m travelled between start and stop of 
galloping phase, v is the flight velocity in km/h.

Location Date Time Hstart Hstop L vstart vstop �v

1A 17.06 03:24 143 64 289 91 55 81
1A 17.06 03:28 152 57 254 81 52 70
2 16.06 02:24 127 70 198 92 65 79
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Figure 6. 3D view of an acoustic flight display.

Figure 7. Ground track of the acoustic flight display shown in Figure 6.
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4.2. Active space

The likely function of aerial flight displays is to attract mates, both in songbirds (Møller  
1991; Mather and Robertson 1992; Hedenström and Alerstam 1996) and waders 
(Grønstøl 1996; Blomqvist et al. 1997; Lanctot et al. 2000). Male Jack Snipe will likely 
start flight displays at heights such that their vocalisations can be detected by females 
resting on the ground. Neglecting directivity effects and in a homogeneous atmosphere, 
the sound pressure level Lp on the ground will take its maximum value Lp? at the 
intersection O with the ground of the vertical line passing by the bird. At the start of 
the flight display, considering typical intensity discrimination thresholds in birds 
(Dooling et al. 2000) a reasonable assumption is that the call will be detectable on the 
ground provided that Lp � Lp? � 3 dB. Based on Table 1, the average start height for the 
galloping phase was 141 m. Assuming spherical spreading, this height corresponds to 
a maximum distance of 199 m from the bird, and implies that the beginning of the 
galloping phase would be detectable within a circle of radius 141 m centred on O. 
A radius of 141 m corresponds to an area of ca. 6.2 ha. If one further assumes that the 
source level is constant across the galloping phase and one follows the same approach, at 
the end of the galloping phase the ground area where the call would be detectable 
amounts to ca. 11 ha. For comparison, visual estimates of the active space used for flight 
displays of male Jack Snipe have been 10–20 ha at heights of 100–250+ m with a total 
flight path of 0.5–1.5 km (Olivier 2007).

Figure 8. Estimation of uncertainties on the flight path shown in Figure 6, owing to errors on 
microphone horizontal positions caused by uncertainties inherent to the GPS system. For each 
space coordinate x,y and z, the solid line corresponds the flight path shown in fig. 6, using the 
coordinates read on the GPS, whereas the ribbon corresponds to ± 1 σ for 1000 flight paths where the 
four microphone positions were sampled from Gaussian random deviates that reflect the uncertainty 
on latitude and longitude when measured with GPS according to (Specht 2021).
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4.3. Flush-mounted microphone

To our knowledge, our study is the first time data from a microphone mounted on 
a ground plate has been published in a bioacoustics context. The use of a flush-mounted 
microphone was effective because it led to much clearer and stronger signals due to: (1) 
an absence of echoes in an open landscape without obstacles where reflections arrive only 
from the ground, and (2) constructive interferences between the direct and reflected 
sound.

A ground-based microphone configuration could have some potential drawbacks. The 
microphones were more exposed to potential damage from animals living on the ground, 
from rodents that could cut cables by gnawing or ungulates that might step on the 
microphone or drag them away. A microphone on the ground is also potentially more 
exposed to precipitation and dew. Therefore, such a configuration is mostly relevant for 
short-term measurements when weather conditions are good and the microphone array 
can be attended. Moreover, it is not ideal to record sound produced close to the ground as 
the ground effect will be stronger in that case (Embleton 1996). Furthermore, the 6 dB 
gain only holds for an angle of incidence that is low enough with respect to the vertical. 
Care must also be taken of the frequencies of interest as the wavelengths should remain 
large with respect to the diameter of the microphone membrane. These two conditions 
were always satisfied in our field study.

4.4. Array topology and extension

An extended planar horizontal microphone array can deliver plausible results that are 
unaffected by errors in the position of the sensors, but it is not an optimal configuration if 
an accurate vertical localisation of the sound source is desired. For our study site with 
open mires in Finnmark, it was the only reasonable choice given the absence of tall trees, 
a lack of firm ground, difficulties with site access and a limited budget. Improving the 
vertical accuracy would have required a high mast to make a difference. While the 
uncertainties in the coordinates of the 4 microphones were acceptable when considering 
the large distances between them, the use of differential GPS would have been beneficial 
to the overall uncertainty in the estimation of the flight path.

Based on the theory of TDOA for source localisation, four microphones are the 
absolute minimum in order to avoid the occurrence of dual solutions in 2D (Schmidt  
1972). For the same reasons, in 3D the absolute minimum is 5 microphones (Spiesberger  
2001; Spencer 2007). The microphone array we used here meets these requirements in 
2D, in the plane defined by the ground. In 3D, while the microphone count is too low by 
one unit, only solutions in the upper half space are of interest and the penalty term 
defined by Equation 3 prevents solutions that result in estimates of negative altitudes. 
Therefore, the absolute minimum of sensors for 3D localisation is four microphones as 
well for our horizontal flush-mounted star array.

Even with 100 metres from each vertex of the triangle to its centroid, the ca. 1.0 ha area 
encompassed was relatively small compared to the space covered by a male Jack Snipe 
during their flight displays. The usable recordings were a small subset of our data because 
the flight track was at the margins of the array in a majority of recordings, a situation 
where the accuracy of localisation deteriorates rapidly and often leads to invalid altitudes. 
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Examples for this are visible on the vertical z coordinate in Figure 8 between 7 and 10  
seconds, and also after 17 seconds. Here, the greater uncertainty corresponds to the 
period when the bird’s acoustic flight display was moving outside the area encompassed 
by the microphone array, as shown in Figure 7. Location 2 was also less suitable because 
of a relatively high level of background noise.

With longer recording periods and a better selection of locations, it would have been 
possible to collect more recordings. Longer deployment periods would have increased the 
risk of exposing microphones to adverse weather. It would therefore be desirable to 
deploy more microphones to cover a larger area. A larger array would require the use of 
more than one recorder to limit the total cable length. Unless a signal were shared 
between two recorders, some types of synchronisation such as time stamps delivered 
by a GNSS receiver would be necessary. In our case, a need for synchronisation would 
rule out the Sound Devices MixPre6, while the SQuadriga III has a built-in GNSS 
receiver.

4.5. Signal processing

Manual annotation could be time consuming since the number of relevant acoustic 
features annotated can reach up to 66 elements for the galloping phase alone, and 
annotations must be performed separately for each of the 4 channels. One option 
would be to annotate a subset of the song elements, such as only the double notes of 
the galloping phase of the flight display (Figure 5) without compromising the accuracy of 
flight tracking.

Automating the annotation process should be feasible using classical image segmenta
tion techniques such as binarization, thresholding and connected components 
(Castleman 1979), at least when the signal-to-noise ratio is high enough. In our field 
study, automating the annotation was not worth the extra effort because the number of 
acoustic flight displays that could be analysed was relatively small.

Whatever annotation technique is used, it would be interesting to apply Kalman 
filtering when estimating the flight path (Kalman 1960). The use of such filtering is 
efficient for modelling consecutive points and is likely to lead to a more accurate and less 
noisy flight path. Due to a lower degree of random errors in the flight path, polynomial 
fitting may become unnecessary.

4.6. Micrometeorology

Ground topography and wind or temperature gradients in the atmosphere can affect 
sound propagation in natural environments (Embleton 1996). In our field study, we 
deployed microphones on flat ground in the mires and restricted our analyses to 
recordings without background noise when wind conditions were still. Assuming a flat 
horizontal ground, a rule of thumb is that the effect of atmospheric refraction on sound 
propagation is modest when 

zs þ zr

D
� 0:1 (4) 
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where zs is the source altitude, zr is the receiver altitude and D is the horizontal distance 
between the source and receiver (ISO 2017, see (Embleton 1996) for more details about 
sound propagation outdoors). In our case, zs ϵ [50,150] m for the bird, zr = 0 for all the 
microphones and D ≤200 m. Therefore the condition defined in Equation 4 was always 
met. This suggests that potential temperature gradients could be neglected. The flight 
tracking procedure used here assumed indeed a homogeneous atmosphere. The assump
tion was reasonable for our field recordings because the geometrical criterion described 
above was satisfied. It is, however, not certain whether this rule of thumb applies to other 
aspects of sound propagation than attenuation.

While there was little wind at both locations during the two recording sessions, cloud 
cover was not monitored, and the temperature drop observed on the second night 
suggests that a moderate temperature inversion might have developed. In the event of 
a temperature inversion, the time differences of arrival recorded would correspond to 
propagation along curved paths between S and the microphones Mi. As a consequence, 
the heights above ground obtained under the assumption of a homogeneous atmosphere 
and thereby straight paths would be slightly overestimated. Assessing the vertical sound 
speed gradient would be worthwhile to evaluate whether the sound propagation condi
tions would deviate significantly from a homogeneous atmosphere and significant atmo
spheric refraction would occur because then it would be necessary to consider curved 
propagation paths between the bird and the microphones (Embleton 1996). Quantifying 
turbulence would also be quite useful because low turbulence means less degradation of 
the vocalisations occurs during sound propagation.

4.7. Potential for tracking aerial flight displays

The microphone array used in our field study had a footprint of 1 ha at ground level but 
was effective for tracking flight paths of birds at heights up to 150 m. We recorded 
nocturnal birds under low light levels and successfully measured flight speeds up to 93  
km/h with rapid changes in direction. Thus, our bioacoustic method has great potential 
for a broad range of applications with other study systems. The microphone array, 
annotation of recordings, and signal processing provide a standardised protocol that 
could be used to collect comparative data on the flight displays of other species of snipe 
including Common Snipe Gallinago gallinago (Sutton 1981; Hoodless et al. 2006), Pintail 
Snipe G. stenura (Sutton 1981; Byrkjedal 1990), Latham’s Snipe (Ida 1995; Matsubayashi 
et al. 2023), Swinhoe’s Snipe G. megala (Morozov 2004) and Subantarctic snipe 
Coenocorypha spp (Miskelly 1990; Miskelly et al. 2006). Our method could also be used 
to investigate other species of waders that breed in the same taiga mires and also have 
aerial flight displays, including Whimbrel Numenius phaeopus, Broad-billed Sandpipers, 
and Spotted Redshanks Tringa erythropus (Armstrong and Westall 1953; Skeel 1978; 
Svensson 1987). Aerial flight displays are common among songbirds in open habitats 
(Mikula et al. 2022), and Bluethroats Luscinia svecica, Meadow Pipits Anthus pratensis, 
and Skylarks Alauda arvensis would be good candidates for 3D flight tracking with their 
complex flight displays and rich repertoires of song elements (Armstrong and Westall  
1953; Merilä and Sorjonen 1994; Hedenström 1995).

We anticipate several challenges in applying our bioacoustic method to other bird 
species. The acoustic flight tracking presented here is perhaps best-suited to species like 
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Jack Snipe and Latham’s Snipe that produce sounds continuously during the different 
phases of their flight displays (Matsubayashi et al. 2023, this study). For species that 
vocalise continuously in flight but at lower heights, planar microphone arrays deployed 
on the ground could be used but with shorter distances among microphones. Some 
species of birds are silent during ascent but produce vocalisations or mechanical sounds 
only during the descent phase of the song flight, including Common Snipe and Lapland 
Buntings Calcarius lapponicus (Byrkjedal et al. 2016). In such cases, a potential issue is to 
identify and to label a significant number of one-to-one correspondences across the 
recording channels, but our method could still be used to measure part of the flight 
display. Eurasian Golden Plover Pluvialis apricaria and Eurasian Woodcock Scolopax 
rusticola produce intermittent sounds during their display flights (Byrkjedal and 
Thompson 1998; Bristow et al. 2023). A widely spaced array of microphones could be 
used to measure a sequence of discrete positions but not the continuous flight paths. The 
same approach would also apply to raptors that follow thermals during sunny days and 
vocalise sporadically, with the additional issue of atmospheric turbulence that may make 
it more difficult to use TDOA to triangulate positions. A final challenge will be to 
estimate separate flight paths for different individuals if multiple birds are recorded 
simultaneously. Male Jack Snipe primarily have solitary display, but identifying indivi
duals will be especially challenging for birds that fly together in tight groups, as is the case 
with ‘screaming parties’ of Common Swifts Apus apus (Henningsson et al. 2010).

5. Conclusions

Our bioacoustic method was designed to be a minimal planar array of only 4 micro
phones mounted on ground plates. We have successfully demonstrated that it is possible 
to track the 3D flight path of a male Jack Snipe for up to 25 seconds and a total flight 
distance greater than 280 m. Furthermore, the continuous estimation of positions during 
this part of their aerial flight display also allowed us to measure the instantaneous or 
average flight speed. To our knowledge, our results are the first report of the 3D flight 
path of a bird obtained in the field from acoustic measurements. Moreover, here it was 
possible to follow the totality of the acoustic flight display. Our results provide new 
estimates of the duration of song elements and travelled distances that appear to be much 
greater than any published data on animal flight obtained from acoustic signals picked- 
up by ground-borne sensors.

A horizontal array configuration is not optimal for vertical accuracy, but our results 
suggest that the third dimension can be resolved with confidence by this kind of array. 
This approach will benefit from the wider availability of more accurate positioning 
techniques like differential GPS. For attended short-term recording sessions, the benefits 
of the ground plate approach include (1) a shorter deployment time compared to setting 
up poles with guy lines, (2) stronger and (3) anechoic signals due to the superposition of 
the real and the image source, and (4) less sensitivity to disturbance from wind and other 
sources of ambient noise.

Acoustic-based 3D flight tracking provides a valuable new approach for systematic 
investigations of the aerial flight displays of snipe but could also be applied to field studies 
of other waders, hummingbirds, raptors and songbirds that vocalise or produce mechan
ical sounds during flight.
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