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Abstract: Here, I review thermal influences on metabolic rates and aerobic scope; growth; adult
body size; and reproductive and behavioural traits, such as tendency and timing of the migration of
salmonid fishes. A thermal window bounded by the upper and lower incipient lethal temperatures
(UILT and LILT) determines where salmonids can survive. For most salmonids, LILT is close to 0 and
UILT is between 20 and 30 ◦C. UILT and LILT are influenced by the acclimation temperature. Thermal
tolerance is affected by fish size and ambient oxygen content, which decreases with increasing
temperature. Standard metabolic rate (SMR), the energy required to maintain essential functions,
increases with temperature, whereas maximum metabolic rate (MMR) increases with temperature
until reaching a peak (pejus). Then, it decreases gradually to zero, i.e., the upper critical limit (TCrit).
Aerobic scope (AS = MMR-SMR) reaches its maximum at the pejus temperature. Metabolic rates
and aerobic scope can be modified by temperatures that the fish experiences during embryogenesis
and possibly also as larvae and young fry. At maximum feeding, maximum growth increases to
a point at or below the pejus temperature. The optimum temperature for growth decreases with
reduced food intake and increased body size. As for metabolic rate, the growth rate is influenced by
the temperature during embryonic development. In a warmer climate, adult body size is expected to
decrease chiefly because of a younger age at maturity. Parental fish retained at a higher temperature
during maturation produce larger eggs, and this change in egg size may also be transferred to
next-generation offspring. Furthermore, embryogenesis in warmer water leads to larger gonad and
egg sizes at maturity. Water temperature influences locomotion, foraging and migratory activity. In a
warmer climate, juveniles migrate to the sea earlier in spring. In addition, higher embryo temperature
leads to delayed return of adult salmon from the ocean. Thus, temperature affects life history traits of
salmonid fishes, partly as a direct effect on metabolic rates and food consumption and partly induced
as a phenotypically plastic effect. The phenotypically plastic response may preadapt offspring to
perform better in the expected future thermal environment.

Keywords: adaptive developmental programming; behaviour; climate; life history traits; metabolism;
Salmonidae; temperature

Key Contribution: This paper summarizes the literature on how water temperature—via influences
on metabolic rates and growth—affects life history traits of salmonid fishes. In addition, temperature
during embryogenesis and early life of the organisms may have phenotypically plastic knock-on
effects on these traits through epigenetic mechanisms such as DNA methylation.

1. Introduction

The global climate is gradually becoming more variable and warmer. Mean surface
temperature has increased by ca. 1 ◦C during the last 100 years and is expected to increase
even faster towards 2100 [1,2]. Climate change is one of the reasons why animal populations
decline, and local extinctions occur at the warmest part of their distribution areas [3]. Fish
are vulnerable to temperature increases because their body temperature varies with that
of the surrounding water, and the oxygen content in water is low and decreases when
the water becomes warmer [4]. Higher temperatures also have sublethal effects, such as
changes in biochemical reactions in the body and ecological traits such as growth, body
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size, age at maturity and behaviour [5]. Many of the ecological changes in species are linked
to changes in life history and behavioural traits. Herein, I review how water temperature
affects these traits of salmonid fishes.

Salmonidae, with subfamilies Coregoninae (freshwater whitefishes), Thymallinae
(graylings), and Salmoninae (trout, salmon, charr, lenoks, and taimens), are globally dis-
tributed in fresh water and as anadromous fish migrating in sea water [6]. This is an
important fish family not only economically but also culturally and ecologically [7]. These
species provide food for millions of people, as well as recreation and sport, and they play
key roles in ecosystem functioning and health [8,9]. However, many salmonid species are
in decline because of a multitude of human-induced pressures including climate warm-
ing [10–13]. For instance, brown trout (Salmo trutta L., 1759) has been in strong decline in
southern Europe because of climate warming and an increased prevalence of extremely
warm events [14–16]. Many other salmonids also show strong climate-associated declines,
such as chinook salmon (Oncorhynchus tshawytscha Walbaum, 1792) [17], bull trout (Salveli-
nus confluentus Suckley, 1859) [18], Arctic charr (Salvelinus alpinus L., 1759) [19] and Atlantic
salmon (Salmo salar L., 1759) [20,21].

Climate warming concerns Salmonidae because they are cold water species with high
oxygen demands. Oxygen has low solubility in water, and dissolved O2 content in fully
saturated water decreases by approximately 2% per 1◦C increase in temperature within
the thermal niche of salmonids [22]. The species become stressed when the temperature
increases above their normal thermal niche and go extinct if temperatures increase too
quickly or too much [23]. The optimal temperatures for growth of the juveniles of most
species are around 15 ◦C, and thermal stress and death occur between 20 and 30 ◦C (Table 1).

Table 1. Thermal sensitivity of selected salmonids. Optimal temperature for growth, upper crit-
ical maximum temperature at which death is almost instantaneous and upper incipient critical
temperature over which the juveniles do not feed and eventually die with sources of reference.

Species
Optimal

Temperature for
Growth (◦C)

Upper Critical
Maximum

Temperature (◦C)

Upper Incipient Critical
Temperature (◦C) References

Atlantic salmon Salmo salar 16–20 28–33 27 [24,25]

Brown trout Salmo trutta 13–17 26–30 22–25 [25–28]

Rainbow trout Oncorhynchus
mykiss (Walbaum, 1792) 15–19 30 24–27 [29–32]

Chinook salmon Oncorhynchus
tshawytscha 15–19 29 25 [33]

Sockeye salmon Oncorhynchus
nerka (Walbaum, 1759) 15 23–26 [34,35]

Cutthroat trout Oncorhynchus
clarkia (Richardson, 1836) 13–14 28 19–25 [29,36,37]

Coho salmon Oncorhynchus kisutch
(Walbaum, 1792) 12–15 29 25–26 [33,38]

Chum salmon Oncorhynchus keta
(Walbaum, 1792) 12–14 32–34 22–24 [33,38,39]

Brook trout Salvelinus fontinalis
(Mitchill, 1814) 12–16 28–31 25 [36,40–42]

Arctic charr Salvelinus alpinus (L.) 14–17 26–27 22–23 [25,43,44]

Whitespotted charr Salvelinus
leucomaenis (Pallas, 1814) 26–28 [45]

Lake trout Salvelinus namaycush
(Walbaum, 1792) 12 28–29 24 [46–49]



Fishes 2023, 8, 337 3 of 20

Table 1. Cont.

Species
Optimal

Temperature for
Growth (◦C)

Upper Critical
Maximum

Temperature (◦C)

Upper Incipient Critical
Temperature (◦C) References

Bull trout Salvelinus confluentus 12–16 25–29 21 [41,42,44]

Dolly varden Salvelinus malma
(Walbaum, 1792) 22–23 [45]

European grayling Thymallus
thymallus (L., 1759) 17 21 [50]

Arctic grayling Thymallus arcticus
(Pallas, 1776) 29 23–25 [51,52]

Individuals have a limited ability to face thermal stress and adjust to rapidly changing
temperature. Consequently, populations may decline, extirpate, or even go extinct when
the climate changes quickly [53–56]. Fish are ectotherms, and their metabolic and devel-
opmental rates, as well as behaviour, are strongly affected by their ambient temperature.
However, owing to heritability and phenotypic plasticity, vulnerability varies among in-
dividuals and populations [57]. Variations in genetic structure, composition and function
influence the capacity of individuals and populations to endure warmer conditions [55,58],
and individual variations in thermal tolerance have important implications for the vulner-
ability to both short-term extreme heat waves and long-term, gradual warming [53]. In
addition, thermal sensitivity varies ontogenetically. Young, highly oxygen-requiring stages
are more sensitive to warming than older stages [59]. Furthermore, the rate of change in
body temperature is inversely related to the mass of the fish, making small salmonids more
susceptible to variations in water temperature than larger conspecifics [60]. Embryos are
also more sensitive to thermal stress than advanced stages because of their rapid formation
of tissues, structures, and organs [61].

Thermal limits increase with increasing acclimation temperature but only to a certain
point. For instance, the upper incipient critical temperature (cf. Table 1) of brown trout
increases from 20 to 25 ◦C as the acclimation temperature increases from 0 to 18 ◦C, but
it does not increase any further at higher acclimation temperatures [60]. The incipient
critical temperature defines a tolerance zone that is stressful, but the fish can stay alive for
a considerable length of time in even warmer water. However, outside the tolerance zone,
the thermal stress is lethal. The upper critical maximum temperature is the temperature at
which death is almost instantaneous, i.e., the limit of the critical range.

Phenotypic plasticity can buffer against the immediate impacts of thermal stress and
reduce the sensitivity of individuals [3]. Phenotypic plasticity may develop as a knock-
on effect, which is the ability of a genotype to later express alternative phenotypes in
response to environmental differences [46]. Knock-on effects consist of cues or imprints
experienced in a sensitive phase, transferred as a parental effect, or induced early in life,
which change developmental rates, activities, or resource use [62]. Salmonids appear to be
sensitive to environmental knock-on effects during embryogenesis or at the alevin stage,
with later effects on morphology, life history, physiology, and behaviour. This plasticity
may be an epigenetic effect [62]. Epigenetic effects are transcriptional regulators of DNA.
Methylations of CpG sites in DNA sequences are the most extensively studied mechanism
of epigenetic effects in ecology [63]. Methylation of CpG sites in regulatory regions of DNA
downregulates genetic expression, and demethylation upregulates genetic expressions [64].
Other epigenetic mechanisms include histone modifications and microRNA, which alter the
transcriptional capacities of genomes [63]. However, little is known about how phenotypic
plasticity is genetically or epigenetically regulated.

Herein, I review thermal influences on metabolic rates; aerobic scope; growth; adult
body size; and reproductive and behavioural traits such as tendency and timing of migra-
tion of salmonid fishes. Many examples from studies of brown trout and Atlantic salmon
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are included. These fishes have been used for scientific studies for more than 100 years, but
examples are also available from other genera and species. My view is that temperature acts
as a controller of these traits by governing the metabolic rate. There are both maximum and
minimum temperatures outside which the metabolic rate is no longer sufficient to maintain
life of the fish. I provide examples of direct thermal effects and how the temperature during
early life stages causes phenotypic changes later.

2. Metabolic Rates and Aerobic Scope

Metabolic rates, which are the sum of all energy-yielding processes, vary with temper-
ature and reflect the energetic cost of living [65,66]. The standard metabolic rate (SMR) is a
measure of the energy required to maintain essential functions, such as breathing and blood
circulation. SMR increases approximately proportionally with water temperature [67] and
decreases with increasing body mass. Mass-specific SMR declines as a negative power
function of body mass as organisms grow to maturity [68]. SMR should be measured in
unfed and not growing fish, as both digestion of food and growth use energy, which may
influence metabolic measurements [69]. For shorter time intervals, such as weeks or a
few months, the mass-specific SMR of a salmonid is stable and repeatable and may hold
even under variable thermal conditions [66,70]. For instance, McCarthy [71] demonstrated
the stability of SMR by correlating the mass-specific SMR of individual Atlantic salmon
measured 5 and 22 weeks after first feeding (June and October, respectively). This stabil-
ity makes SMR a useful measurement when considering physiological traits underlying
organismal performance [66].

The maximum metabolic rate (MMR) is the maximum rate of oxygen consumption
that fish can achieve and use to oxidize matter for ATP generation without accumulating
oxygen debt. MMR increases with temperature until reaching a peak called the pejus
temperature; then, it decreases gradually to zero, which is known as the upper critical
limit (TCrit) [60,72]. Pejus temperature corresponds to the point at which individuals
start to lose individual performance capacity. At TCrit, the survival of fish is time-limited,
and they live in a passive state [3]. The difference between the maximum and standard
metabolic rates is called the aerobic scope (AS = MMR-SMR) [72]. AS corresponds to the
highest level of energy available for activity. Individuals with higher aerobic scope are
better able to take advantages of high food abundance [66] and have improved locomotor
ability [73], boldness and competitive dominance, as well as increased levels of territorial
aggression [74]. The optimal temperature of a species or population is the temperature
resulting in the highest AS and determines their capacity to carry out functions such
as foraging, growth, competition, patrolling, immune reactions, and predator defence.
As these activities are temperature-dependent and influence spatial distributions and
phenology of populations, they are important in contexts of climate change [75,76].

Fish can only survive for long periods of time within temperature ranges where AS
is positive. The upper thermal limit is set by the physiological limits of aerobic capacity.
Thermal limit diversity among populations with different adaptive histories is likely a
result of adaptations in aerobic capacity to different environmental temperature regimes.
Thus, thermal tolerance may vary among populations within species as a response to past
selection. The ability to cope with global warming is determined by the upper thermal
tolerance limit, and populations exposed to high temperatures over their evolutionary
history exhibit higher thermal tolerance than conspecific populations developed under
colder thermal regimes [77]. For instance, Eliason et al. [78] reported that sockeye salmon
(Oncorhynchus nerka) in the Fraser River that experienced more challenging migratory
environments have greater AS than those with less arduous migrations and that variations
in AS are consistent with the historic river temperature ranges for each local population.
Thus, thermal adaptation appears to occur at a local scale, with population-specific thermal
limits set by physiological limitations in aerobic performance.

Variable environmental conditions influence metabolic rates. Oligney-Hébert et al. [79]
compared the metabolic rates of juvenile Atlantic salmon from two rivers with different
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thermal regimes and acclimated the fish to either 15 or 20 ◦C and constant (±0.5 ◦C) or
diel fluctuating (±2.5 ◦C) water temperature. Fluctuating temperature at 15 ± 2.5 ◦C did
not influence SMR relative to stable temperature (15 ± 0.5 ◦C). However, diel temperature
fluctuation at 20 ± 2.5 ◦C increased the SMR of Atlantic salmon from the warmer river by
33.7% and in the colder river by 8 % compared with the same fish acclimated to a constant
temperature of 20 ± 0.5 ◦C. Thus, the mean temperature to which the juveniles is exposed
may affect their responses to diel temperature fluctuation, and this response may vary
between populations originating from rivers with different natural thermal regimes.

On the other hand, intraspecific variations in AS need not be caused by genetic
differences. Instead, this may be a phenotypically plastic response induced by previously
experienced differences in thermal climate [80]. For instance, Cook et al. [81] reported that
temperatures experienced by brook trout (Salvelinus fontinalis) embryos affected body mass
and routine metabolic rates as free-swimming fry. Furthermore, prehatching temperature
influenced the metabolic rate of brown trout. Durtsche et al. [82] found that the SMR, MMR
and AS of young brown trout (parr) were reduced when incubated as embryos in 3◦C
warmer water. This result is consistent with the counter-gradient variation hypothesis
(CGV), according to which phenotypic variation—in this case, variation in metabolic
rates—is inversely related to thermal conditions experienced by the organisms in early
life [83]. This hypothesis was originally proposed in relation to altitudinal or latitudinal
gradients [84]. Thus, the temperature experienced when the fish develop within the
eggshell may preadapt individuals to life in either colder or warmer temperatures. Trout
experiencing cold environments as embryos prepare for life in a cold environment and
have higher metabolic rates at the same temperature than those that developed in warmer
water. Accordingly, those that develop in cold water compensate for negative effects of
low temperatures. A warm early environment favours low metabolic rates later, enabling
fishes to conserve energy in an otherwise costly environment. Thus, direct environmental
influences counteract inherited differences among natural populations growing up under
different thermal conditions through a process of thermal plasticity. There may also be
sensitive periods later in life during which SMR is programmed. For instance, Álvarez
et al. [85] found a negative correlation between the temperature experienced by brown
trout fry during the first 2 months after yolk resorption and SMR later. Thus, exposure
to low temperatures at an early stage in life increases the temperature-dependent SMR.
Such an early influence on metabolic rate has consequences for later growth, feeding and
locomotor activity.

3. Growth

The aerobic scope represents the capacity of organisms to concurrently supply oxygen
and energy for swimming, food digestion, absorption, assimilation (specific dynamic action
SDA) and growth. High energy intake leads to faster growth, although SDA also increases
with higher SMR food consumption and assimilation [86,87]. Typically, increased growth is
advantageous because it protects against gape-limited predators and increases competitive
ability and reproductive capacity [88]. However, a cost of faster growth may be reduced
life span. There is still little information about how individual fish share their resources
between these functions and restrict meal sizes to maximize growth and minimize the
probability of death.

Like AS, growth rate and food consumption increase with temperature to a maximum
point (optimal temperature for growth (TOpt)) at which oxygen availability starts limiting
a further increase and the growth rate starts to decline [24,68]. The optimal temperature
depends on the oxygen content in the water. For individual fish, TOpt is reduced if the
water is not fully saturated and increased if the water is supersaturated [89]. Temperature-
dependent reaction norms for growth and food consumption are maximized at approxi-
mately the same temperature [24], and the maximum point decreases with decreasing food
consumption [90,91]. Therefore, maximum growth of brown trout is reached at 13 ◦C for
invertebrate and pellet feeding and 16 ◦C for fish feeding on conspecifics [26,27].
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There are small differences in TOpt among salmonid species, and all have relatively
low thermal tolerances associated with their high oxygen requirements (Table 1). Typically,
the optimal temperature for growth is round 15 ◦C and is lowest in lake trout (12 ◦C) and
highest in Atlantic salmon (16–20 ◦C). There are intraspecific variations in thermal perfor-
mance among studies, which may be partly due to methodological variation across studies,
such as variation in size of test fish, acclimation temperature, oxygen content in water and
other stressful conditions [89]. In addition, there may be some genetic variation in thermal
performance [92,93]; however, when experimental conditions are similar, intraspecific vari-
ation in thermal performance is small. Debes et al. [94] investigated population differences
and within-population genetic variation and plasticity in thermal performance traits of
Atlantic salmon reared under common-garden conditions and found heritability for growth,
condition and CTMax. However, with increasing acclimation temperature, differences in
the heritability of CTMax diminished. CTMax and body size were negatively correlated at
the genetic and phenotypic levels, and there was indirect evidence of a positive correlation
between maximum growth and thermal performance breadth for growth. Thus, population
differences in thermal performance and plasticity may represent a genetic resource, in
addition to the within-population genetic variance, to facilitate thermal adaptation.

Optimal temperature for growth decreases with increasing fish size [73,95]. Therefore,
in lakes and at sea, large individuals often tend to live deeper and in colder water than
smaller conspecifics [95,96], and small individuals may show increased growth at the
same temperature as larger conspecifics experience negative growth because of lower
individual optimal temperature [97]. The effect of rearing temperature on the relationship
between growth and the metabolic rate of brown trout was studied by Archer et al. [98].
For 15 months, they kept study groups in either cold water ranging between 5.9 ◦C and
16.4 ◦C or in 1.8 ◦C warmer water (7.9–18.2 ◦C). They found that SMR was positively
related to growth in the cool water but negatively related to growth in the warmer water.
The opposite patterns were found for MMR and growth associations (positive in warm
and negative in the cool regime). Mean SMR but not MMR was lower in warm regimes
within both populations. Thus, there appears to be a phenotypic plastic reaction in the
relationship between growth and metabolic rate depending on the thermal regime of
the fish. Furthermore, a study by Finstad and Jonsson [99] demonstrated that embryo
temperature had a knock-on effect on the growth of young Atlantic salmon. Young juveniles
(parr) grew faster at the optimal temperature when the eggs were incubated in 7.2 ± 0.6 SD
instead of 2.6 ◦C ± 0.4 SD water. A higher temperature during egg incubation also increases
smolt size at 1 year of age and size at maturity at 2 years of age in Atlantic salmon, but
it showed no effect on mass specific growth at sea after smolting [100,101] (Appendix A).
Higher egg incubation temperature appeared to stimulate the fish to feed more at 1 year of
age and therefore grow faster as young juveniles; however, this growth effect in the salmon
disappeared after smolting.

Although the optimal temperature for growth declines with increasing body size, em-
bryos, and alevins, which are very small, have narrower thermal limits and are more vulner-
able to high temperatures than larger fish. Early life stages are highly oxygen-demanding,
and high temperatures may have a negative effect on cellular functions through thermally
induced oxygen diffusion limitation [102]. In addition, cell proliferation, migration, dif-
ferentiation, and apoptosis (programmed cell death) are adversely affected by elevated
embryo temperature. In particular, the development of the central nervous system and
the notochord is highly susceptible to high temperatures [103]. The development of the
notochord is thermally sensitive because of effects on the sheath cells [104]. These cells
accumulate misfolded protein at elevated temperatures, leading to structural failure of the
notochord and other anatomic defects in the embryo, causing malformations and death.
Thus, both oxygen limitations and malformations during foetal development are causes of
the high temperature sensitivity of embryos and larvae.

There are inherited differences in reaction norms of temperature-dependent growth
among conspecific populations of Atlantic salmon, brown trout and Arctic charr [24,27,43]
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that may also hold for other salmonid species. Juveniles from large-sized, late-maturing
salmonids grow better at the same temperature than those from populations of small-sized,
late-maturing conspecifics. Growth differences possibly reflect different personalities of
the fish, as offspring of large, late-maturing fish also feed more at the same temperature
than those from populations of earlier-maturing conspecifics [24]. The optimal temperature
for growth is similar among Norwegian populations of Atlantic salmon, although the
thermal regimes of the rivers vary. Thus, differences in maximum growth among conspe-
cific populations appear to reflect habitat differences rather than differences in thermal
regimes [43,105,106].

4. Adult Size

According to the temperature–size rule for ectotherms, individuals maintained at a
lower temperature grow more slowly but become larger at sexual maturity than those
maintained at a higher temperature [107]. This is at least partly because age at maturity
is growth-dependent, and slower growth means delayed maturation [108–110]. However,
this does not necessarily mean that those that live in warm water are smaller in mean size
than those from colder environments. This depends on the difference in annual length
increment at the two temperatures and the fraction of the population that mature younger
in the warmer water. Experimentally, Jonsson et al. [109,110] showed that the probability
of that Atlantic salmon attained maturity for the first time during their second year in
sea water increased with increasing growth rate during the last winter before maturation.
Increased summer temperature had no additional effect. Atlantic salmon reared at elevated
temperature attained maturity at a larger body mass and exhibited higher mass–length
ratios than those of similar age reared in colder water. Temperature functions similarly
to the accelerator of a motor, and higher temperatures induce faster growth if the oxygen
supply is sufficient, i.e., below the pejus temperature.

Faster growth requires increased energetic assimilation, and recent findings indicate
poorer feeding opportunities of Atlantic salmon in the North Atlantic Ocean resulting
in poorer survival, reduced production, and smaller size for their age. However, size at
maturity may, on average, be larger in many rivers because the fish attain maturity at an
older age because of poorer growth [111,112]. Pacific salmon along the west coast of North
America, on the other hand, mature younger with decreased production because of ocean
warming, as found in large-scale investigations in Alaska [113,114]. The same declining
trends hold for chinook, chum, coho and sockeye salmon. Because of the smaller fish size
and reduced production, the effect is reduced nutrient transport from the ocean to rivers
and riparian and terrestrial ecosystems [115,116], reduced fisheries value and fewer meals
for rural people [114].

Polymorphism with sympatric morphs of different sizes occurs in several salmonids,
such as brown trout [117], Sevan trout (Salmo ischchan Kessler, 1877) [118], Arctic charr [119]
and freshwater whitefish (Coregonus spp.) [120]. Sympatric phenotypes often occur in pairs,
exhibiting a large and a small adult morphotype of the same species [121,122]; however,
in some systems, there are more than two sympatric forms. Sevan trout in Lake Sevan,
Armenia [118] and Arctic charr in Lake Thingvallavatn, Iceland, exhibit four sympatric
morphotypes [118,123]. The morph variation is partly inherited [121], and in several cases,
clear genetic foundations of morph differentiation have been demonstrated, along with
divergent life histories [120,124]. However, differences in egg incubation temperature may
also influence phenotypic differentiation.

Two forms of European whitefish (Coregonus lavaretus) segregate vertically in Traunsee,
Austria. The forms exhibit different metabolic adaptations and behavioural preferences
for different temperatures [125]. In the lake, the two forms diverge by incubating embryos
at either 2 ◦C or 6 ◦C, i.e., the typical temperature during embryogenesis of the two.
Offspring of the two forms were reared and subjected to similar thermal conditions after
hatching. The offspring differentiated in muscle growth and body size depending on the
egg temperature; offspring incubated as eggs in 2 ◦C water grew larger than those incubated
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at 6 ◦C, regardless of whether their parents were large or small whitefish. The experiment
also revealed that muscle hypertrophy (increased fibre size) and hyperplasia (increased
fibre number) were affected by the thermal histories. Immunolabeling showed that the
cellular mechanisms leading to increased growth after cold incubation were increased
proliferation and reduced differentiation rates of muscle precursor cells, most probably
associated with epigenetic differences. Thermal plasticity possibly arises from changes in
physiological and endocrinological pathways, in which epigenetic regulation is likely to
play an essential role [126].

Many salmonids are anadromous in addition to having freshwater living forms. This
is, for instance, observed in sockeye salmon, Arctic charr, brown trout and masu salmon
(Oncorhynchus masou Brevoort, 1856). For masu salmon, Morita et al. [127] showed that
these alternative tactics were associated with temperature gradients. The occurrence of
mature resident males increased, and the proportion of immature migrant males decreased
with increasing temperature in Japanese rivers. They suggested that the change in the ratio
of anadromous to freshwater resident males resulted from improved growth opportunities
in warmer water. According to Morán and Pérez-Figueroa [128], resident and anadromous
male Atlantic salmon differ in DNA methylation, although they are genetically similar.
Earlier maturation and freshwater residency may be mediated by epigenetic processes
rather than by genetic differences between young fish. How these differences develop is
still obscure.

5. Reproductive Traits

Reproductive processes of fish are affected by the environmental temperature. Mod-
erate thermal variation affects endocrine functions and either advance or retard game-
togenesis and maturation. Above-normal temperatures may have deleterious effects on
reproductive functions, and low temperatures can arrest the maturation process. For
instance, in Atlantic salmon females, exposure to elevated temperatures during gameto-
genesis may impair both gonadal steroid synthesis and hepatic vitellogenin production,
alter hepatic oestrogen receptor dynamics and ultimately result in reduced maternal in-
vestment and gamete viability [129]. High temperatures during maturation also impair
gonadal steroidogenesis and delay or inhibit the preovulatory shift from production of
androgens to maturation-inducing steroids. Similar effects are observed in rainbow trout
and Arctic charr [129]. In Atlantic salmon, higher temperature may increase maturation of
male parr [130,131], although in another study, Baum et al. [132] observed no effect of high
temperature on parr maturation. In male Arctic charr and rainbow trout, high temperatures
can inhibit spermiation (maturation-inducing steroids [129]), and it is reasonable to assume
that the same effect also holds for other salmonid species.

Furthermore, both egg size and fecundity tend to increase with female body size.
Thus, in a warmer climate with smaller females, egg sizes decrease. On the other hand,
egg size is larger for similarly sized conspecifics spawning in warmer streams [133–135].
The transformation from yolk to tissue is less effective under warmer conditions. Large
eggs are also favourable under poorer oxygen conditions [136]. Thus, increased egg size
may give offspring an adaptive benefit in a warmer climate and should be favoured by
natural selection. This is probably the reason why the egg size of salmonids decreases with
increasing latitude and altitude [133,135,137,138]. Egg size differences appear to diminish
when fish from different populations are reared under common thermal conditions, show-
ing that this trait is phenotypically plastic [133]. Furthermore, egg size is influenced by the
temperature that females experience during their own embryogenesis. A higher incubation
temperature stimulates females to produce larger eggs as a phenotypically plastic knock-on
effect [139,140]. Total ovary mass but not fecundity increases with incubation temperature
years earlier. Male gonad mass is also larger in fish incubated in warmer water.

Females retained in warmer water during maturation produce larger eggs. There is
also a transgenerational effect of temperature on egg size. Experimentally, Jonsson and
Jonsson [140] exhibited that the mass of eggs produced by next-generation females was
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larger when their mothers experienced warmer water during the last two months of egg
maturation relative to similar fish that experienced unheated water. This is possibly caused
by an epigenetic modification of the parental fish. In brook trout, using whole-genome
bisulphite sequencing, Venney et al. [141] found 188 differentially methylated DNA regions
due to parental maturation temperature. Stable intergenerational inheritance of DNA
methylation may transfer the epigenetic states to offspring, priming them for a warming
environment. This has implications regarding the role of intergenerational epigenetic
inheritance in response to climate change.

6. Behavioural Traits

Temperature influences fish behaviour, such as swimming activity and foraging,
exploratory behaviour, prey capture and predator avoidance [142,143].

The timing of smolt migration, i.e., when young anadromous salmonids migrate from
fresh water to the sea, occurs coincidentally with environmental changes such as increasing
temperature and day length in spring. The warmer the water is and faster the temperature
increase, the earlier in the season the smolts migrate downstream and out to sea [144–146].
Earlier outmigration from a warmer river appears to decrease smolt size and increase the
mortality of the fish, as found for brown trout and Atlantic salmon [147–149]. Thus, the body
size at migration is influenced by river temperature, with smaller smolts in warmer rivers,
as found for brown trout along the Norwegian coast [150]. However, river temperature
may not be the only factor that influences smolt size. Smolts are selected to survive in sea
water [151]. As the ionic stress in sea water increases with decreasing temperature, smolts
entering colder seas should be relatively large, as observed in anadromous brown trout
in Europe [152]. There is evidence that reduced survival is associated with earlier smolt
migration, as found for brown trout and Atlantic salmon in Norway [147,148].

During the spawning migration, high temperatures may lead to anaerobic locomo-
tion, energy losses and prespawning mortality [153–155]. River-dwelling salmonids may
avoid high temperatures by entering cooler water (thermal refuging) to maintain a body
temperature close to optimal levels and minimize energetic costs associated with high
temperature [156–159]. Thermal refuges include cold water tributaries, groundwater seeps,
deep pools, and cold alcoves [159–162]. This holds for both juveniles and adults of various
species and at both low and high latitudes [163,164]. In addition, salmonids experienc-
ing suboptimal temperature during migration may reduce energy use by burst-and-coast
swimming [165]. Burst-and-coast swimming, whereby bursts of fast swimming are in cyclic
alternation with phases of coasting and the body is kept straight and motionless, can be
an energetically advantageous behaviour. It allows the fish to gain fast swimming speeds
during short bursts while preventing the effects of fatigue by allowing metabolic recovery
of muscle fibres during the coast phases [166].

Higher temperature may also affect salmonid spawning migrations. These fish feed
little or not at all during the migration [167,168], as they rely on endogenous energy stores
to fuel the migration back to their home river and spawning sites and the development
of sexual characters and reproduction [165]. Adipose tissue reserves are the primary
source of energy used for upriver migration and gonad production [169], and protein from
muscular tissue fuels the development of secondary sexual characters and metabolism
during spawning activities [170]. Migratory energy costs increase with temperature and
reduce the capacity of the fish to recover from exhaustive exercises [171].

Temperature may also influence where in the ocean the salmon feed. During warmer
summers, Atlantic salmon in the Baltic Sea fed closer to their home river in the Gulf of
Bothnia, while in colder summers, they fed farther south in the Baltic Main Basin [172].
Furthermore, the temperature influences the timing of the return migration. Elevated
water temperature may induce either earlier [173,174] or later arrival in the spawning
area [175]. Salmon may migrate outside the peak summer temperatures [175] and respond
to suboptimal water temperatures by delaying migration in cool thermal refuges [176–178].
In addition, temperatures during embryogenesis may influence phenological decisions
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such as when to return from the ocean and spawn in rivers. Jonsson and Jonsson [179]
released groups of juvenile Atlantic salmon (smolts) produced from eggs incubated at either
ambient (~4 ◦C) or 3 ◦C warmer water temperature. After hatching, both experimental
groups were reared under similar thermal conditions until smolting and released. The
fish migrated concurrently to the sea as juveniles, and after feeding in the ocean for one
or two years, they returned to the experimental river for spawning. Atlantic salmon that
were developed from eggs incubated in warmer water returned from the sea ca. 2 weeks
later in the summer/autumn than adults of the same age developed from colder eggs. The
later return was independent of the body size of the juveniles at outmigration and similar
for offspring of three different tested populations. Hence, thermal conditions during early
development appeared to prepare the offspring, when adult, to return for spawning later in
the year. Later return to a warmer (or earlier return to a colder) river may be advantageous
both because metabolic rates are higher in warmer water, reducing the reserve energy used
during migration and spawning faster, but also because egg incubation time decreases
with increasing temperature, so the fish may spawn later under warmer conditions. The
mechanism driving this phenotypic plastic response has not been investigated but may be
linked to the maturation process.

At high latitudes, climate change leads to higher winter temperatures when the eggs
of autumn-spawned salmonids develop within their gravel beds [88]. Recent investigations
have exhibited that temperature during embryogenesis affects the behaviour of young
brown trout. Exposing the fertilized eggs to 1.5–2–5 ◦C warmer water reduced activity level
of the young juveniles after hatching [180]. It is difficult to predict the overall consequences
on fitness of this response to warmer egg incubation temperature, as the activity of their
ectothermic predators and prey may also change [181]. Nevertheless, the results of this
and previous studies [82,182] suggest that juvenile brown trout in a warmer climate have
lower metabolic rates and aerobic scopes are less active, with similar consequences across
migratory and non-migratory phenotypes.

Temperature during egg incubation influences later river emigration. Jonsson and
Greenberg [182] showed that the proportion of warm-incubated brown trout released in
the River Imsa, Norway, moved downstream towards the sea to a greater extent than
those incubated as embryos in colder water. Most of the emigrants moved downstream
in the autumn. The cold-incubated offspring possibly had a higher metabolic rate and
kept their position at low temperature in the fast-flowing river, while more of the warm-
incubated fish moved downstream towards the sea. A similar difference was observed
with respect to whether the parents were anadromous or lacustrine adfluvial phenotypes
or crosses between the two. Thus, the difference in emigration regarding embryonic
temperature was phenotypically plastic and may be associated with an epigenetic effect of
the thermal conditions during early development. However, the outmigration ratios varied
between offspring of geographically isolated populations, suggesting that there are genetic
divergences in this trait among populations.

7. Discussion

Temperature has a pervasive and direct effect on biochemical and physiological func-
tions of ectotherms and a strong influence on life history traits. Temperature regulates
metabolism and aerobic scope, growth, body size, gonadal size, behavioural locomotion
and phenological patterns. Variations in thermal responses are caused by inherited dif-
ferences, such as that of metabolic rates. Auer et al. [66] measured SMR, MMR and AS of
juvenile brown trout and observed that metabolic rates were repeatable over time periods
of months, even under changing thermal conditions. The among-individual differences in
metabolism appear to have fitness-related effects and be related to individual differences in
growth, body mass, reproduction, survival, behaviour, and phenology. Thus, temperature
plays an important role in determining evolutionary trajectories of species [183,184].

In addition to the direct phenotypic effect of temperature, recent research suggests
that embryo and larval temperature or the temperature experienced by parents may affect
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life history traits. Although not extensively investigated, these latter findings indicate that
past temperatures may prepare offspring for conditions that they may encounter later in
life. Some of these effects, such as that on growth, appear to be strongest early in life [100],
whereas others, such as that on migration, may also influence the phenology of adults [141].
These latter knock-on effects have been demonstrated for Atlantic salmon and brown trout,
and effects on growth have also been demonstrated for other species, for instance, common
carp (Cyprinus carpio L., 1759) [185], haddock (Melanogrammus aeglefinus L., 1759) [186]
and Senegalese sole (Solea senegalensis Kaup, 1858) [187]. However, population-specific
variations are expected, although scarcely investigated [188].

There are also transgenerational effects of temperature. For instance, the temperature
during egg maturation prior to fertilization influences egg size, gonad size and the amount
of energy available for the offspring after hatching. These thermal effects are transferred
to the next-generation offspring of Atlantic salmon [140] and may positively affect early
juvenile growth in a warmer climate [189,190]. Knock-on effects of previous temperature
appear to parallel changes observed among conspecific populations living under different
thermal regimes. These effects reduce phenotypic differences among individuals experi-
encing different climatic conditions, as explained in the subchapter “Metabolic rates and
aerobic scope”. However, there is an urgent need for further research on transgenerational,
thermal effects on the ecology of fishes and the mechanism by which they are transferred
from parents to offspring.

Phenotypic plasticity in thermal response appears to be initiated by influences expe-
rienced during a sensitive period, although the consequences may be long-lasting after
the sensitive period has ended [139,191]. Such processes initiated by early priming are
referred to as adaptive developmental plasticity [192]. Typically, thermal conditions during
early development or at a parental phase may have effects that change developmental
trajectories, which may be helpful later in life [62]. The influences stimulate genotypes
to express different phenotypes in response to thermal differences during early devel-
opment [193,194]. For instance, knock-on effects that are initiated by cues or imprints
experienced in individuals’ early life, transferred as a parental effect, or induced at embryo
or larval stages may affect developmental trajectories, activities, and resource allocations
within an organism’s life span [62]. The effects may be short-term or long-term and pre-
pare individuals for conditions that they may encounter later, thereby buffering otherwise
detrimental effects of environmental change [195–197]. Such parental or early thermal
effects should be advantageous when parents or early environments provide a reliable
forecast about the thermal climate that offspring may encounter later [198–200]. Like local
adaptation [201], developmental knock-on effects should evolve through natural selection
in responses to the environments to which offspring are repeatedly and consistently ex-
posed over evolutionary time, whereas responses to novel or atypical environments may
be maladaptive [202,203]. The latter is likely to occur in response to extreme temperatures
and severe temperature variation. However, at present, there is no quantitative study
demonstrating how beneficial such early programming of salmonids is.

The mechanisms involved in thermal plasticity have not been extensively investigated.
However, DNA methylation is sensitive to thermal climate [204] and may be involved.
Polar fishes show higher DNA methylation levels than temperate fishes, and Antarctic
icefishes (Channichthyidae) have the highest DNA methylation level on record. There is an
inverse relationship between DNA methylation and body temperature when maintained
over evolutionary time. DNA methylation links thermal conditions to subsequent changes
in genetic expressions [205], but the response differs among iso-genetic lines, as shown for
rainbow trout].

There are also examples from other fish families suggesting effects of temperature on
DNA methylation. For instance, Atlantic cod (Gadus morhua L., 1759) embryos exposed to
a 4 ◦C increase in temperature exhibited changes in the expression of genes involved in
one carbon pathway [206]. Furthermore, higher temperature affected the DNA methylome
of a coral reef fish (Acanthochromis polyacanthus; Bleeker, 1855) and influenced phenotypic



Fishes 2023, 8, 337 12 of 20

plasticity, which enabled some populations to maintain their performance under thermal
stress [207]. Anistadiadi et al. [208] exposed European sea bass (Dicentrarchus labrax L.,
1759) larvae to periods of moderate temperature increases. The authors found that a 2 ◦C
increase in temperature changed global DNA methylation and the expression of ecologically
relevant genes related to stress response, muscle development and organ formation. DNA
methylation changes were more pronounced in larvae previously acclimated to a different
temperature.

Both in early and later life, temperature change may lead to DNA methylation. Beemel-
manns et al. [209] challenged Atlantic salmon post smolts with increasing temperatures
from 12 to 20 ◦C. They reported that exposure to high temperature affected the methylation
of CpG sites. There were distinct CpG methylation profiles for different treatment groups,
indicating that each environmental condition may induce different epigenetic signatures.

8. Future Research

Little is known about how temperature influences distributions of salmonid species.
Finstad et al. [210] hypothesized that differences in temperature-dependent growth effi-
ciencies were a main reason for differences in distributional patterns of brown trout and
Arctic charr. Their thermal optima are similar, but Arctic charr outcompete brown trout
in cold and ultraoligotrophic lakes and rivers because they have twice as high growth
efficiency in cold water. Little is known about the degree to which a similar effect may
influence distributional patterns of other salmonids. They all have similar thermal niches,
but differences in metabolic rates and growth efficiencies may still exist. Such knowledge is
important in understanding geographical distributions, immigration, and local extinction
of species.

Some studies indicate intraspecific variation in thermal growth performance. However,
as many factors influence the results of growth experiments, such as light conditions, fish
size, food rations, acclimatization temperature, early temperature, stressful environmental
conditions and parental temperature during egg development, experimental results may
be difficult to compare [29,90,99,100]. Because experimental results differ [60,78,93], there
is a need to reveal how much of the variation in thermal performance is due to phenotypic
plasticity and how much is because of additive genetic variation.

Research supports the hypothesis that thermal conditions early in life affect life his-
tories of organisms. It is important to identify to what degree developmental plasticity is
adaptive. Influences encountered by organisms long before experiments start can affect
the results. If not considered, this may lead to incorrect interpretations of trait differences.
One may believe that observed differences are genetically adapted, while they may be an
early environmental effect. Such misinterpretation may lead to incorrect decisions when
managing populations under climate change.

Epigenetics appear to be central in the understanding of how the early thermal envi-
ronment affects the development of phenotypes. There are examples suggesting a role of
epigenetics in developmental plasticity. However, the field of epigenetics is still young, and
I expect that many new studies soon will be performed to better understand how environ-
mental temperature influences the ecology of salmonid fishes. Studies using whole-genome
approaches should be performed, as such studies may reveal new relationships between
phenotypes and epigenetic determinants.

There is strong evidence supporting the hypothesis that thermal cues experienced
at an early stage in life can affect the development of organisms, with consequences for
life in environments encountered at a later stage. However, at present, there is little if
any knowledge about energetic costs involved in thermal plasticity and whether thermal
plasticity is adaptive and affects fitness. Such tests are needed, as populations’ responses in
changing environments are critical to their persistence. Their capacity to exhibit adaptive
plasticity to a warmer climate may determine their future success.
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9. Conclusions

Temperature has pervasive effects on growth, life history and behavioural traits of
salmonid fishes. This is caused by a direct effect on metabolic rates and food consumption.
Intraspecific genetic variability in these thermal effects needs further investigation. In
addition, there is an indirect, phenotypically plastic effect induced by temperature during
embryogenesis and early life, as well as possibly by temperatures experienced by mothers
during maturation. This phenotypically plastic response may preadapt offspring to perform
better in anticipated future thermal environments. An epigenetic mechanism such as
DNA methylation may be responsible for the phenotypic effect. Future research should
investigate this and other possible epigenetic mechanisms and how they may influence
fitness and induce alternative phenotypes.
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Appendix A

Smolting

Smolting is a preparatory physiological adaptation process that occurs in spring prior
to the seaward migration of anadromous salmonids. The young fish become slimmer,
with a more streamlined body with darker back, more silvery flanks and a whiter belly.
Physiologically, the Na+,K+-ATPase activity and salinity tolerance increase, as do the
density of visual pigment porphyropsin in the retinae of the eyes. On the other hand,
the fat density of the muscle tissue decreases, and the activities of metabolic enzymes
change. These changes precede downstream migration and prepare the fish for marine life
in pelagic waters.
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