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Smart meter-driven remote auditing of buildings, as an alternative to the labor-intensive on-site visits, permits 
large-scale and rapid identification of buildings with low energy performance. The existing literature has mainly 
focused on electricity meters’ data from a rather small set of buildings and efforts have often not been made 
to facilitate the models’ physical interpretability. Accordingly, the present work focuses on the implementation 
and optimization of ML-based pipelines for building characterization (by use type (A), performance class (B), and 
operation group (C)) employing hourly electrical and chilled-water consumption data. Utilizing the Building Data 
Genome Project II dataset (with data from 1636 buildings), feature generation, feature selection, and pipeline 
optimization steps are performed for each pipeline. Results demonstrate that performing the latter two steps 
improves the model’s accuracy (5.3%, 2.9%, and 3.9% for pipelines A, B, and C compared to a benchmark 
model), while notably reduces the number of utilized features (94.7%, 88.3%, 89.4%), enhancing the models’ 
interpretability. Furthermore, adding features extracted from chilled-water consumption data boosts the accuracy 
(with respect to baseline) for the second subset by 12.4%, 13.5%, and 7.2%, while decreasing the feature count 
by 97.2%, 96.4%, and 96.5%, respectively.

1. Introduction

Building sector is regarded as a major energy-consumer with be-

ing responsible for about one third of the total global final energy use 
[1]. This energy consumption is divided almost equally between resi-

dential and non-residential (commercial) buildings. On the other hand, 
buildings account for approximately 25% of the global greenhouse gas 
emissions, which can make them a key player in the battle against cli-

mate change [2]. To realize the set targets in addressing climate change, 
building-related emissions have attempted to be controlled through a 
variety of strategies such as renovation and retrofitting. In this regard, 
the number of established initiatives, incentives, and regulations has 
been growing to reduce the energy demand of existing and new build-

ings on national and international levels.

From a more practical point of view, the significant electricity con-

sumption of buildings negatively impacts the grid. It has been shown 
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that residential and commercial buildings account for respectively 50% 
and 25% of total demand at peak hours [3]. Electrical grids face chal-

lenges in the form of higher variance in the peak load and overall de-

mand, which in turn lead to congestion in the transmission network and 
increase in the energy prices. In order to meet the demand during peak 
times, operation of less energy-efficient power plants with higher car-

bon emissions becomes an unavoidable solution [4]. Therefore, many 
strides have been made in recent years to enhance the electrical grid 
and pertinent technologies by focusing on digital communication, data 
collection, and managerial shifts towards smarter decision-making ap-

proaches. These innovations are meant to usher a more intelligent use of 
electricity and increase the efficacy of power production and consump-

tion [5]. Another outcome of the paradigm shift in grid management is 
a surge in smart meter deployment over recent years, which has made 
the hourly total building electricity consumption data widely available.
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Load profiles that can be retrieved from smart meter data [6] show 
the variations in the building usage, including the timing (temporal 
trend) and level of intensity (load ratio) of energy consumption. Em-

ploying these profiles, different studies can be conducted with focuses 
on portfolio analysis, retrofitting and/or commissioning. Building per-

formance analysis and commissioning pave the way to notable energy-

saving opportunities [7], reductions in emissions, and cuts in the op-

erating costs of buildings [8]. In this context, a few works have been 
focused on employing machine learning-based analysis of smart meter 
data for disaggregating [9] the consumption of the buildings’ HVAC sys-

tems [10,11], which is a key step in analyzing the performance of these 
units.

Another application of applying machine learning-based method to 
smart meter data is the estimation of energy performance of the build-

ings (remote auditing). Remote auditing of buildings permits rapid iden-

tification of buildings with lower performance. Implementing energy 
efficiency-related interventions in such buildings guarantees a higher 
impact in terms of the achieved overall energy saving. Furthermore, as 
these buildings have higher vulnerability to climate change and extreme 
climate events [12], improving their performance notably enhances the 
resilience of the urban energy systems [13]. In this context, Miller [14]

proposed a machine learning-based methodology that utilized a rigor-

ous feature generation procedure, employing smart meter data (Build-

ing Data Genome Project dataset [15]), to assess the buildings’ use type, 
performance grade, and the corresponding operation group. Najafi et 
al. [16], considering the same data set and estimation objectives as in 
Miller’s work [14], applied multiple feature selection procedures, which 
significantly decreased the number of required features while keeping 
the models as accurate or even improving their prediction capability 
[16]. However, in these works, only the electricity meter data was ex-

ploited, while as more and more smart meters are installed globally and 
building owners and utility companies try to better understand usage 
patterns, the availability of data from meters other than electricity has 
increased. Furthermore, most studies utilized a relatively small dataset 
of buildings’ electrical meter data, while a larger dataset (Building Data 
Genome Project 2 [17] that also includes other meters) has recently 
become available. Noteworthy that none of the previous studies con-

ducted in this area has attempted to optimize the employed machine 
learning-based estimation pipelines.

Motivated by the mentioned research gaps, in the present work, 
using Building Data Genome Project 2 dataset [17], machine learning-

based pipelines are implemented and optimized while employing A) 
the features (proposed in [14]) generated from electrical consumption 
data and B) those extracted from a combination of both electrical and 
chilled water (CW) demand data. As a result, two different subsets of 
the dataset are considered: subset A includes all the buildings for which 
electrical consumption data is available; subset B instead comprises of 
the buildings with both electrical and CW consumption data. Accord-

ingly, after performing the data cleaning step, subset A includes 1494 
buildings, for which the feature generation procedure results in 374 
features. Subset B instead involves 748 features generated from the elec-

trical and CW consumption data of 374 buildings (as both consumption 
data is available for fewer buildings). While considering the building 
use type, performance class, and operation group as estimation targets 
and utilizing the above-mentioned subsets, the feature selection and al-

gorithm optimization steps are implemented for each pipeline. Hence, 
the contributions of this paper, with respect to the related literature, 
can be summarized as:

• Performing building classification based on usage, performance 
class and operation strategy for a large dataset including over 1494 
buildings with two years of hourly electricity consumption data

• Evaluation of different machine learning classifiers and feature se-

lection algorithms for building classification

• Addition of chilled water meter data to electricity data, and assess-

ing its impact on the performance achieved for different classifica-

tion targets

• Extraction of the optimal pipeline (algorithm and the correspond-

ing tuning parameters) for each target

• Investigating the physical phenomenon behind each added feature 
to facilitate physical interpretability of the pipelines

The dataset and classification objectives are introduced in section 2. 
The overall methodology as well as a description of the extracted fea-

tures is then presented in section 3. Section 3 also discusses the utilized 
ML algorithms, the metrics used for model performance assessment, 
and the developed feature selection techniques. Section 4 represents the 
findings of the feature selection step and the corresponding discussions 
accompanied by an observation of physical interpretations of remaining 
chosen features. Lastly, section 5 provides several concluding remarks 
on the basis of the obtained results.

2. Case study

This work utilizes publicly available data from the Building Data 
Genome Project 2 [17]. The current version of the database consists of 
data collected from 1,636 non-residential buildings in hourly frequency 
for 2016 and 2017. This database is created utilizing data obtained from 
a variety of meters: electricity, steam, chilled water, hot water, water, 
irrigation, solar, and gas. The hourly format provides a suitable gran-

ularity while making analytical techniques based on weekly, monthly 
and annual trends possible. Each meter’s dataset is accompanied by a 
metadata that includes the area of the building and its primary use type, 
and the corresponding local weather file [17]. Figs. 1 and 2 show the 
consumption profile for electricity and chilled water meters in a sample 
building from the dataset.

2.1. Prediction targets

This study explores three classification criteria: building principal 
use type, performance class, and operation group. The first two are the 
same as those taken into account in Miller’s work [18], while a more 
recent study [16] altered the last criterion to produce more evenly dis-

tributed courses.

• Principal Building Use: Principal function for which the build-

ing was originally designed. Initially, the dataset had 13 types of 
primary space usage, which were combined into seven categories, 
namely, education, office, residential, public assembly, public ser-

vices, parking/industrial, and others. For this classification task, 
features representative of in-class specificity (that belong to the 
group) generated from Jmotif package were put aside in order to 
evade data leakage issue.

• Performance Class: Performance class is determined on the ba-

sis of per-area normalized consumption. Buildings are divided into 
three categories of low, medium and high consumption perfor-

mance class. For this target, all features that are directly resultant 
of consumption are removed.

• General Operation Strategy: Differentiates between buildings 
from different sites since buildings from the same site are most 
probably operated with the same strategies. In order to prevent 
data leakage in this classification task, features that are indicative 
of sensitivity to weather conditions are removed from the data.

Table 1 shows the types of features that were generated for the clas-

sification tasks, as well as a brief explanation for each type. A more 
thorough explanation of each type with examples is given in section 3.

Finally, it should be noted that in order to make sure a machine 
learning model can perform well on real world data, the dataset needs 
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Fig. 1. An example of the electricity load profile for one of the buildings provided in the Genome Project 2 dataset.

Fig. 2. An example of the chilled water load profile for one of the buildings provided in the Genome Project 2 dataset.

Table 1

Main types of extracted features used for building characterization.

Feature Category Description

Statistics-based
Applying fundamental statistical functions

to time series data, such as mean, median,

minimum, maximum and standard deviation

Regression-based
Models developed for predicting, determining

output parameters and attributes

Pattern-based
Extraction of recurring patterns on different

time scales from the time series data

to be broken down into train, validation and test subsets. The train-

ing and validation subsets are used for training and assessing the model 
and tuning the hyper-parameters of the algorithms. The test subset is 
instead held out until final optimal pipelines have been identified and 
it is then used to assess their performance for unseen data. In this work, 
20% of the data has been set aside as the test subset, while the remain-

der constitutes the training and validation subsets. A cross-validation 
procedure with 5 folds (which utilizes 20 percent of the remaining data 

as the training set in each fold) is then used to choose the training and 
validation sets iteratively in order to avoid over-fitting.

2.2. Prediction subsets

Two subsets are considered as follows:

• Subset A: All buildings for which electrical consumption data is 
available. This includes 1494 buildings for which the feature gen-

eration procedure resulted in 374 features.

• Subset B: Buildings with both electrical and chilled water con-

sumption data. It involves 748 features generated from the elec-

trical and chilled water consumption data of 374 buildings.

3. Overall methodology

The overall methodology followed in the present work is illustrated 
in Fig. 3 in a simplified manner, demonstrating the procedures taken, 
as well as the steps within each procedure. In the subsequent sections, 
a detailed explanation of each step is provided.
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Fig. 3. Visual representation of the methodology of this work.

3.1. Data pre-processing

3.1.1. Meter data cleaning
For large datasets, it is commonly the case that data was gathered 

from a bevy of different sources. This can make handling the dataset 
more difficult as there could be many inconsistencies in the dataset 
regarding semantics, referencing systems, accuracy of measurements, 
frequency of measurements and availability of data from each source 
[19]. The building genome 2 dataset was gathered from 19 sites across 
the globe, making it critical to perform a thorough data cleaning and 
pre-processing step before using the data for feature generation. A few 
issues were observed in the data that need to be dealt with, namely:

– A group of buildings, of about 135, have mostly zero electricity 
consumption up to mid-march of 2016, then they start to show reason-

able data points.

– Majority of buildings demonstrate false data encapsulated within 
many zero-consumption recordings. These happen at the beginning of 
recording period and are usually intertwined with the previous point.

– Due to faulty instruments, extraordinary incidents and/or simply 
errors in recording data, there are NAN (Not a Number) values in the 
dataset, which need to be corrected.

– Following the same logic, there are also sharp peaks and drops 
within the consumption profiles that should be trimmed away as they 
are simply outliers.

– In order to correctly train the models, there needs to be a minimum 
number of data points; therefore, the buildings which have less data 
points than this threshold value should be removed.

Besides these issues, we need to set a standard of quality for the 
data that we have in order to see which buildings we can be used and 
which ones are of sub-par quality. Thus, two parameters were defined: 
max-nans (maximum share of NAN values in the building data) and 
max-zero (maximum share of zeros in the building data). These two 
parameters were set to be 0.05 and 0.1 respectively. To illustrate the 
benefit of data cleaning, before- and after-cleaning plots for a sample 
building (id: Panther-education-Jerome), are given in Fig. 4.

This procedure was applied to the data from all meters. After the 
cleaning procedure, 1494 buildings remain for which electricity meter 
data is available. This applies to 397 buildings with chilled water, 248 
with steam, 59 with hot water, 59 with gas, 28 with water, a single 
building with solar and no buildings with irrigation data.

Since ML models work in a promising way while being provided 
with a large group of samples, a meter of desire would be one that 
encompasses data from a large variety of buildings. Consequently, elec-

tricity and chilled water meter data were chosen to be studied, since the 

number of buildings for which both electricity and chilled water data 
is available is 374, much greater than that for other possible combina-

tions.

3.1.2. Weather data cleaning
The only shortcoming of the Genome 2 dataset compared to its pre-

decessor is the weather data, where there are fewer features and some 
of these included features have more than half of their data points as 
null.

3.1.3. Metadata cleaning
The metadata file contains a large array of characteristics for each 

building, among which the most important parameter that requires at-

tention is the primary space usage. Initially, there are 13 groups of 
building usage types. This high-resolution breakdown of building usage 
types causes some usage groups to have very few samples compared 
to the more prominent groups (such as education and office building). 
This, in turn, would inflict damage on the models while performing 
the classification tasks. Therefore, usage types were narrowed down to 
education, office, lodging/residential, entertainment/public assembly, 
industrial/parking, and other. This regrouping process is demonstrated 
in Fig. 5.

3.2. Feature generation

3.2.1. Statistical features
In this sub-section, a brief description of the generated features that 

have been proposed by Miller [14] for building classification employing 
smart meter data is provided.

Basic Temporal Statistics: A large number of features can be ex-

tracted from time-series data according to basic statistical information 
such as mean, min, max, standard deviation, and variance (standard 
deviation squared). Mean and variance are computed using equations 1 
and 2:

𝜇 = 1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 (1)

𝜎2 =
∑𝑁

𝑖=1 (𝑥𝑖 − 𝜇)2

𝑛
(2)

These statistical features are derived for different time ranges, such 
as daily, monthly, summer and winter (seasonal) and annual. Most of 
these features were meant to be extracted from the VISDOM package in 
R language, but due to incompatibility issues, the authors developed the 
same functionality in Python. A group of metrics are determined to look 
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Fig. 4. Effect of Data Cleaning: Upper) Raw Data and Lower) Cleaned Data.

Fig. 5. Original Use types available in the dataset and their combinations that 
derive the use types in the current work.

into buildings’ behavior at every hour. The majority of these features 
simply show the mean demand at each hour. Also, a few features are 
employed to find the hours of peak consumption in the 10% hottest 
days and the 10% coldest days of the year. Finally, a group of metrics 
are developed exclusively for January and August due to the greater 
cooling and heating demands in these months. [14]

Ratio Based Statistics: In these metrics, ratios are derived from dif-

ferent combinations of the indicators calculated in the previous section. 
The rationale behind this approach is that the features are being in a 
way normalized, which makes comparisons between buildings easier 
and more accurate. The most prominent of these features are (1) nor-

malized consumption per area and (2) the daily load ratio, which is the 
ratio of minimum to maximum consumption on a daily basis. [14]

Spearman Rank Order Correlation Coefficient: The Spearman 
rank order coefficient, ranging between -1 and +1, reflects the degree 
of connection between a building’s consumption and the weather. A 
cooling sensitive building is the one for which there is a strong positive 
association between consumption and temperature. Similarly, in case of 
substantially negative association of the latter parameters, the building 
is heating sensitive. [14]

3.2.2. Regression-model features
By using the output of performance prediction models, one can ex-

tract a building’s quasi-physical behavior. Several common prediction 
models, mostly specific to electricity consumption, were used to create 
this subset of features.

Load-shape Features: In order to estimate consumption, identify 
anomalies, and assess the impact of demand response, the domain of 
electrical load prediction based on form and trends observed in elec-

trical loads was established. Using the cooling and heating-degree days 
to normalize monthly consumption is the most common method in this 
category. Several methods have been developed, including neural net-

works, ARIMA models, and others. In contrast to more modern and so-

phisticated methods, here, simple methods have applied owing to their 
ease of use and simplicity. A regression model offers several measures 
that show how effectively a meter adheres to common assumptions for 
the production of temporal features. For instance, if measurements and 
projections agree well, the underlying behavior of the building’s ener-

getic systems is accurately documented. If not, a phenomenon that is 
not yet understood needs to be captured using a different model or fea-

ture. In this study, a modern, condensed load prediction technique is 
chosen to generate temporal features that determine whether the elec-

trical measurement is merely a function of scheduling for the day of the 
week. The aforementioned model was created by Matthieu et al., and it 
was primarily used to evaluate electrical demand response [20] [14].

Change-Point Model Regression: A modeling approach that ac-

counts for weather characteristics and its impact on the performance. It 
is possible to approximate how much energy is utilized for HVAC pur-

poses by interpreting the outcomes of these models. This type of model 
is an offspring of PRISM method and has been widely utilized. This 
model is developed using daily consumption and outdoor dry-bulb air 
temperature in a multivariate, piece-wise manner. In the present work, 
the Open Meter Python library is used to develop these models [21]

[14].

Trend Decomposition and Seasonality: Regardless of source of 
data collection, time series data tend to demonstrate similar behavior. 
As a consequence, we can apply the same feature extraction techniques 
employed in the social sciences or finance for the data at hand. The 
common aim between all these techniques is decomposing the data into 
several basic components which capture the data’s true nature [22]. 
As an instance, building electricity data, collected through smart me-

ters, usually exhibits cycles in a weekly time scale. The way buildings 
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are utilized by their inhabitants on a weekly basis has a relatively pre-

dictable pattern. A very common example is the way occupants come 
into work on weekdays at a certain hour and leave the office for home 
at a set time. Weekends are unoccupied periods in which there is prac-

tically no activity.

Another element that is typical of temporal data is trends. Increases 
or decreases in consumption over the long term that commonly do not 
adhere to any specific pattern are referred to as trends. Compared to 
seasonality, trends are typically caused by less predictable variables, 
and they frequently result from outside influences. Trends in building 
energy use appear as slow changes in consumption, taking place gradu-

ally from a few weeks to a few months. Changes in occupancy and user 
behavior, as well as HVAC system deterioration, are typically the causes 
of trends.

The seasonal-trend decomposition method is utilized to capture 
these aspects. The model works by first aggregating daily input data, 
and then subtracting the cooling and heating constituents derived from 
change point models in order to weather-normalize the data. This pro-

cedure is carried out to dampen the effect of weather conditions in trend 
decomposition. The seasonal, trend, and irregular components are ex-

tracted via the STL package originally developed for the R programming 
language [23] [14].

3.2.3. Pattern-based features
The goal of these features is to assign values to each building’s con-

sistency in usage over different time windows as well as analyzing 
whether or not certain building types exhibit behaviors that could be 
used to help predict corresponding metadata. Motifs and discords are 
the two most important concepts in temporal feature mining. A motif 
is a typical pattern that takes place with a regular frequency [24]. On 
the other hand, a discord is an unusual pattern within a dataset that 
identifies infrequent behavior. [25] [14]

Diurnal Pattern Extraction: The Dayfilter procedure uses 24 hour 
sliding window periods to extract motifs and discords from raw meter 
data. The Symbolic Aggregate Approximation (SAX) time-series data 
representation is used in this approach [26]. Time-series data are dis-

cretized by the SAX process, which changes temporal data into string 
type data. This methodology is utilized by numerous text mining and 
visualization methods. Diurnal pattern frequency, which measures the 
quantity of motifs obtained from a specific meter, is the major feature 
recovered by this technique in the current work. [14]

Pattern Specificity: SAX could be used to identify the patterns that 
best characterize each building use type. Such information is gathered 
with SAX-VSM process developed by Senin and Malinchik, originally 
developed for text mining. Pattern specificity is a measure of how well 
a building matches its peers of the same use type [27] [14].

Long-term Pattern Consistency: This concept is based on how un-

stable a building’s electrical usage is over a long time period, such as 
a year. If a building experiences large changes in steady-state perfor-

mance throughout the course of its data, it is referred to as volatile. 
This work quantifies the difference between these behaviors using a no-

tion developed by Miller, known as breakout detection [28]. To process 
their time-series data, Twitter created a R programming tool. In a re-

search by James et al., the specifics of this package are described [29].

3.3. Classification machine learning algorithms

Machine Learning is the collection of numerous algorithms used to 
enable a computer to find patterns within data [30]. Among different 
categories of machine learning problems, the present work falls under 
the supervised learning [31], in which the estimation target is available 
(data is labeled). Furthermore, as the estimation targets are categorical 
variables, within the supervised learning category, it is considered a 
classification problem, in which ML algorithms make a prediction based 
on the likeliness of newly input data to fall within one of the established 
categories [32].

Logistic Regression: A supervised ML algorithm used for classifica-

tion problems is one of two types. Logistic regression employs a logistic 
function as shown in equation (3). Instead of outputs being either 0 or 1, 
logistic regression yields results within the range, having a probability 
as the output. A well-optimized implementation of logistic regression 
is included in Scikit-learn and supports multi-class classification tasks 
[33]. The presupposition that the dependent and independent variables 
have a linear relationship is the main drawback of logistic regression.

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛= 1
1 + 𝑒−𝑥

(3)

Naive Bayes: Based on Bayes’ Theorem, Naive Bayes evaluates the 
conditional probability based on prior knowledge and the simplifying 
assumption that each feature is independent from others. Bayes’ theo-

rem puts forward the following relationship for a class variable y and 
dependent feature vector 𝑥1 through 𝑥𝑛:

𝑃 (𝑦|𝑥1, ..., 𝑥𝑛) =
𝑃 (𝑦)𝑃 (𝑥1, ..., 𝑥𝑛|𝑦)

𝑃 (𝑥1, ..., 𝑥𝑛)
(4)

Despite the independence assumption being a strong one, naive 
Bayes classifiers are beneficial in a variety of situations, amongst them 
spam filtering and document classification. They only require small 
amounts of training data to estimate the required parameters. In com-

parison to more complex techniques, naive Bayes classifiers can be 
rather quick [34].

K-Nearest Neighbors (KNN): This approach works by locating a 
user-defined number of training datapoints that are physically closest to 
the new data point and then predicting the class or label based on those 
samples. The number of samples can be fixed (k-nearest neighbors) or 
can alter depending on the density of nearby points. The distance can be 
freely chosen. The most common choice is standard Euclidean distance. 
Due to the fact that neighbors based methods keep all of the train-

ing data, they are referred to as non-generalizing ML methods. Nearest 
neighbors works well in a variety of classification and regression prob-

lems, including recommendation systems. Since it is non-parametric, it 
frequently works in classification scenarios where the decision bound-

ary is highly erratic [35].

Support Vector Machines (SVM): In this method, data points 
are taken to be n-dimensional vectors, and it is desired to determine 
whether one can separate such points with a (n-1)(n-1)-dimensional 
hyperplane. There exist many hyper-planes capable of classifying the 
data. A reasonable choice is one that results in the largest distance be-

tween the two classes [36]. SVM is an accurate algorithm with low 
certainty, therefore requiring cross validation to tune hyper-parameters. 
It is widely used in cancer research and handwriting classification [37].

Decision Trees and Random Forests (RF): Decision Trees are a 
non-parametric supervised learning method applied both for classifica-

tion and regression tasks. By inferring straightforward decision rules 
resulting from the data features, the goal is to develop a model that 
predicts the value of a target. In this method, a tree is considered a 
piece-wise approximation [38], or more simply a flowchart, separat-

ing data points into two similar categories at each step from the tree’s 
base or trunk to its extrema, also known as leaves, where the categories 
become more similar. Random forests use the concept of collective in-

telligence by building a group of decision trees independent from one 
another. Each decision tree is a simple predictor, but the outcomes are 
aggregated into one. This should be closer to the actual outcome in the-

ory. Random forests have the drawback of being more challenging to 
interpret compared to a single tree. Additionally, they take longer to 
construct since the construction and evaluation of each tree in a ran-

dom forest is performed independently [39]. Considering 𝑇𝑖(𝑥) a single 
tree constructed on the basis of a subset of input features [40] and the 
bootstrapped samples [41], the tree can be mathematically expressed 
as:

𝑓𝐶
𝑅𝐹

(x) = 1
𝐶

𝑇∑
𝑖=1

𝑇𝑖(x) (5)
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in which 𝐶 is the tree count and 𝑥 is the input variable in vector form 
[41].

In this study, a Random Forest classification algorithm is used as 
the benchmark model for classification tasks. It’s performance is evalu-

ated using average scores of a 5-fold cross validation as well as directly 
using a 20% training set to produce confusion matrices and other indi-

cators. In order to make sure that the entire dataset is taken into account 
when assessing the effect of adding or removing features, cross valida-

tion scores are primarily used throughout the feature selection step.

Gradient Boosting: Simple model averages are the basis of com-

mon ensemble approaches such as random forests. The class of boosting 
methods is founded upon a different, constructive strategy. In this con-

text, the term “boosting” refers to the sequential addition of new models 
to the ensemble. Taking into consideration the error of the entire en-

semble that has been learned so far, a new weak, base-learner model is 
trained at each iteration. Gradient boosting machines, or GBMs, through 
iteration fit new models during the learning process to produce a more 
accurate estimation of the target variable. The main concept is to con-

figure the new base-learners to be maximally correlated with the asso-

ciated ensemble’s loss function’s negative gradient. The loss functions 
used can be chosen at will [42]. [43]

Artificial Neural Networks (ANN): These models mimic the learn-

ing process of the human brain, and are specially suited for non-linear 
problems, each neural network is composed of nodes, where given an 
input to the node, a function is applied to the input, resulting an output 
which is subsequently communicated to the next nodes via connecting 
links and through applied weights. Every ANN is composed of input, 
output and hidden layers, where the input and output layers are com-

posed of the features and targets of the problem. The hidden layer 
can be structured with varying depth (layer count) and width (neu-

ron count within layer). Neural Networks have major functionality in 
pattern recognition such as image processing applications. [44]

3.4. Feature selection

Feature selection is a strategy to select the most significant subset of 
features [45] for the development of a robust ML model. In this process, 
redundant features, those with high correlations amongst themselves, 
and those not contributing to the model’s outcome improvement are 
removed, thus decreasing the computational cost of the model and in-

creasing the efficiency. In general, four steps are taken in this process: 
(1) subset generation; (2) subset evaluation; (3) stopping criteria; and 
(4) validation. Subsets are chosen in step 1 based on the search strat-

egy. In general, approach depends on the nature and method of the 
search. Step 2 is influenced by a number of evaluation factors, including 
distance, dependency, and consistency. Step 3 establishes the stopping 
criteria: once the error is smaller than the imposed or chosen value, the 
search must be finished. Step 4 validates the selected attributes using a 
variety of cutting-edge AI/ML algorithms [46].

One can divide the different types of feature selection into two main 
categories of wrapper and filter methods. These methods are most typi-

cally supervised and their performance is evaluated based on the results 
from an out-standing subset of data being fed into the model. Wrapper 
feature selection methods construct a large number of models using dif-

ferent subsets of input features, then select the features that produce the 
model with the highest performance score based on a particular metric. 
Although these methods can be computationally expensive, they are not 
concerned with the variable types. Wrapper methods compare several 
models using steps that add or remove predictors in order to find the 
ideal mixture that will maximize model performance [47].

Filter methods employ statistical techniques to evaluate the relation-

ships among pairs of input and target variable, then these scores are 
used as grounds for selecting which input variables to use in the model. 
A third group of feature selection methods can be discussed that are 
known as intrinsic. This takes place automatically as part of the mod-

Table 2

Coefficients utilized in the Custom method for feature selection.

Electricity Only Electricity + CW

Use Type RF Importance RF Importance

Performance Class Mutual Information RF Importance

Operation Group RF Importance Mutual Information

els training [48]. The feature selection algorithms used in this work are 
listed below [49]:

Recursive Feature Elimination with Cross-Validation (RFECV):

Selects features by continuously choosing more and more compact sub-

sets of features, utilizing an external estimator that assigns weights to 
features. The importance of each feature is determined through any par-

ticular attribute after the estimator has first been trained on the initial, 
complete set of features [50]. The least crucial features are then re-

moved from the list of features. Once the desired number of features to 
select has been reached, the procedure is iteratively replicated on the 
final set. To determine the ideal number of features, RFECV applies RFE 
in a cross-validation loop. [51]

Univariate Selection: A method for selecting the best feature subset 
based on univariate statistical tests. It can be viewed as a pre-processing 
step to an estimator. Approaches enclosed within this method include:

• SelectKBest keeps only a number of features with the highest scores, 
specified as k by the user;

• SelectPercentile keeps only a percentage of highest scoring features, 
specified by the user;

• Typical statistical tests such as SelectFpr, SelectFdr and SelectFwe
respectively used for false positive rate, false discovery rate and 
family wise error;

• GenericUnivariateSelect chooses the highest-performing strategy 
combined with hyper-parameter search among the previously men-

tioned methods.

These objects take inputs in the form of a scoring function which 
can vary depending on the nature of the ML problem. These include: 
𝑓 _𝑐𝑙𝑎𝑠𝑠𝑖𝑓 , ANOVA F-values, 𝑐ℎ𝑖2, etc.

Select from Model: A meta-transformer that can be used with any 
estimator that assigns each feature a certain amount of weight via an 
attribute or through a callable importance-getter after fitting. If the cor-

responding importance of the feature values falls below the specified 
threshold parameter, the features are removed as being unimportant. 
There are built-in arguments for finding a threshold using a string argu-

ment in addition to specifying the threshold numerically [16,52].

Variance Threshold: A simplistic strategy of feature selection. It 
works by removing all those features whose variance falls below a cer-

tain threshold. By default, it eliminates all zero-variance or constant 
value features. [49]

Custom Feature Selection Method proposed by [16]: In this 
method, first, mutual information coefficients are used to sort the fea-

tures. Next, beginning with the features with the highest correlation, the 
loop adds a new feature to the set, only in the case that it leads to an 
improvement either in accuracy or the F1 score. The use of cross valida-

tion ensures that the selected feature is important for the entire dataset 
and not only for the selected portion where testing is being performed. 
Different correlation coefficients are used: RF feature importance, Pear-

son correlation, permutation importance and mutual information. The 
coefficients chosen for the final pipeline in each approach and for each 
target are brought in Table 2.

3.5. Pipeline optimization

The algorithm optimization step has been performed by employing 
the tree-based Pipeline Optimization Tool (TPOT) [53], which is an 
auto-ML tool that helps finding the optimal pipeline for an ML task [54]. 
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It is built on the Scikit learn library and follows its API closely. TPOT 
uses a genetic search algorithm [55] to fine-tune hyper-parameters and 
model ensembles [56] by trying a pipeline, evaluating its performance, 
and randomly changing parts of the pipeline in search of better algo-

rithms [53].

3.6. Model evaluation and metrics

3.6.1. Metrics
There are multiple metrics used to assess the performance of an ML 

model. Those used in this work are brought below with corresponding 
relationships.

Mean Absolute Error (MAE): A measure of error that is determined 
by averaging absolute errors. For n examples, for each value y and its 
prediction 𝑦̂, MAE is defined as:∑𝐷

𝑖=1 |𝑦𝑖 − 𝑦̂|
𝑛

(6)

One downside of MAE, as observed in this work, is that if the true value 
to be predicted is zero, the error will become infinity which is non-ideal 
in feature selection and running the model [57].

Root square of Mean Squared Error (RMSE): Another important 
metric, defined as follows:

𝑅𝑀𝑆𝐸 =
√

1
𝑛
Σ𝑛

𝑖=1

(
𝑦𝑖 − 𝑦𝑖)2 (7)

Accuracy: When computing accuracy in multi-class classification, 
accuracy is simply the fraction of correct classifications

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
(8)

Precision: Attempts to determine what percentage of positive iden-

tifications were accurate. The following is a definition of precision: [58]

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(9)

Recall: Attempts to respond to the question: What percentage of 
actual positives were correctly identified? Mathematically, recall is de-

fined as follows [58]

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(10)

F1 Score: The F1 score is a harmonic mean of precision and recall, 
with the best and worst values corresponding to 1 and 0 respectively. 
Precision and recall both contribute equally in terms of percentage to 
the F1 score. F1 score is defined as:

𝐹1 = 2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(11)

In the multi-class and multi-label case, the above formula would be 
the average of the F1 score of each class with weighting depending on 
the average parameter. In this way, F1 score can be a measure of the 
models performance. [59]

Cross-Validation: A resampling technique that tests and trains a 
model on various iterations using various subsets of the data. Cross-

validation is commonplace in prediction tasks, where one seeks to gauge 
how accurately a predictive model will function in real-world scenarios. 
In a prediction problem, a model is usually trained on a set of known 
datapoints (training dataset), and tested against an unknown subset of 
the data.

Averages: Since there are multiple classes for the model to predict, 
each class is assigned a separate score following the definitions ex-

plained previously. In the end however, only one result is desired from 
the entire model which is why three averaging methods are considered 
here. Macro Averaging is the most straightforward method, simply cal-

culating the arithmetic mean of all classes with no assigned weights. 
Weighted average, as the name suggests, is calculated by assigning a 

weight to each class based on the number of its members. Finally, Mi-

cro Average is determined as follows:

𝑇𝑃

𝑇𝑃 + 0.5 ∗ (𝐹𝑃 + 𝐹𝑁)
(12)

Upon closer inspection, the reader can recognize that this is the same 
as accuracy, found for the entire database [60].

3.6.2. Correlation coefficients
Spearman Correlation: A non-parametric way to measure rank 

correlation is with Spearman’s rank correlation coefficient. Unlike Pear-

son’s correlation which searches for linear relationships, Spearman’s 
correlation assesses how well a relationship between two variables can 
be described by a monotonic function (which may or may not be lin-

ear). Each variable must be a perfect monotone function of the other 
to have a perfect Spearman correlation of +1 or -1. If all n ranks are 
distinct integers, it can be computed using eq. (13) [61]:

𝑟𝑠 = 1 −
6
∑

𝑑2
𝑖

𝑛(𝑛2 − 1)
(13)

RF Feature Importance: After a Random Forest model is fitted on 
training data, it is possible to retrieve its calculated coefficients using 
the 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠_ attribute. Such coefficients are representative 
of how well a particular variable can predict the targets and allows 
the user to understand which features are most representative of each 
objective.

Feature importance is calculated using equation (14). Summation of 
the importances of the j-th nodes 𝑛𝑖𝑗 on which 𝑋𝑖 is split, divided by 
all nodes’ importances, and then averaged over all 𝑇 trees in the forest 
yields the importance of input feature 𝑋𝑖 for predicting 𝑌 [62].

𝐼𝑚𝑝(𝑋𝑖) =
1
𝑇

∑
𝑡∈𝑎𝑙𝑙𝑇 𝑟𝑒𝑒𝑠

∑
𝑗∈𝑛𝑜𝑑𝑒𝑆𝑝𝑙𝑖𝑡𝑂𝑛𝑋𝑖

𝑛𝑖𝑗∑
𝑘∈𝑎𝑙𝑙𝑁𝑜𝑑𝑒𝑠 𝑛𝑖𝑘

(14)

4. Results and discussions

In this section, the considered subsets of the dataset (set of buildings 
with available electrical consumption data along with those for which 
both electrical and chilled water data are available) are first presented. 
Next, a comparison is made in order to identify the most promising 
state-of-the-art ML algorithm, for both subsets, to be utilized as the 
benchmark model. Subsequently, for each subset, feature selection re-

sults are presented and discussed. The most suitable pipeline, identified 
in the pipeline optimization step, is then presented and the correspond-

ing performance is compared with the one offered by the benchmark 
algorithm. Finally, physical interpretations of the selected features are 
sought and discussed.

4.1. Considered subsets and the performance of state-of-the-art ML 
algorithms

As was previously pointed out, pipelines are implemented and op-

timized while employing A) the features generated from electrical con-

sumption data and B) those extracted from a combination of both 
electrical and chilled water demand data. Accordingly, two different 
subsets of the dataset are considered: subset A includes all the buildings 
for which electrical consumption data is available; Subset B instead in-

volves the buildings with both electrical and CW consumption data. 
After performing the data cleaning step, subset A includes 1494 build-

ings, for which the feature generation procedure results in 374 features. 
Subset B instead involves 748 features generated from the electrical and 
CW consumption data of 374 buildings (as both consumption data are 
available for fewer buildings).

As the first step, the performance of pipelines developed employing 
a selection of commonly utilized (state-of-the-art) ML algorithms (de-
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Fig. 6. Weighted F1 score of different ML classification methods for a) subset of data utilizing only electricity-based features (Subset A), and b) subset of data 
utilizing both Chilled water and electricity-based features (Subset B).

scribed in section 3) is investigated in order to identify the most promis-

ing classifier and obtain a benchmark accuracy. Among the initially 
considered set of classification algorithms, Naive Bayes and K-Nearest 
classifiers performed poorly compared to the rest of the classifiers and 
were thus not brought in subsequent figures. Accordingly, the accu-

racy and F1-weighted score (both of which are determined employing a 
5-fold cross-validation procedure) obtained employing Random Forest 
(RF), Gradient Boosting (GB), Logistic Regression (LR), Support Vector 
Classifier (SVC) and Artificial Neural Networks (ANN), while providing 
all extracted features for subsets A and B, are assessed. The obtained 
results reported in Fig. 6, demonstrate that the Random Forest (RF) 
classifier performs consistently well across all targets and over both 
subsets. Therefore, this classifier is chosen as the benchmark algorithm 
to create a baseline model for both subsets. In addition, the RF classi-

fier is also employed as the model in the implemented feature selection 
procedures.

4.2. Pipelines with features generated from only electrical consumption 
data (subset A)

4.2.1. Feature selection and algorithm optimization results
While considering subset A and employing the features generated 

from the electrical consumption data, different feature selection pro-

cedures (using RF as the model) are implemented and the resulting 
performance, in terms of accuracy and F1 score along with the number 
of selected features, is compared. As illustrated in Fig. 7, for building 
use classification, the custom method proposed by Najafi et al. [16]

achieves an elevated accuracy and F1 score while reducing the required 
features by 95%. For the performance class and operation group classi-

fication instead, the recursive feature elimination (RFE) method offers 
a slightly better performance compared to the custom method, but it 
chooses a higher number of features (leading to an increase in the 
model’s complexity and computational cost). Accordingly, the custom 
method [16] has been chosen as the most suitable feature selection al-
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Fig. 7. Comparison of feature selection methods and classification targets.

gorithm for all classification targets and the resulting selected features 
are considered in the next step.

It is thus observed that performing the selected custom feature se-

lection method [16], compared to the initial pipeline with all features, 
notably reduces the number of employed features (from 339 to 18 for 
the use type classification, from 221 to 26 for performance class esti-

mation, and from 331 to 35 for estimating the operation group), while 
it even marginally improves the achieved accuracy (and weighted F1 
score) for all of the considered targets (as also reported in Table 3). 
The resulting notable reduction not only decreases the model’s com-

plexity (dimensionality) and computational cost, but it also facilitates 
the physical interpretation of the selected feature (discussed in the next 

sub-section). It is noteworthy that the employed custom feature selec-

tion method [16] utilizes Mutual Information Coefficients for use type 
and operating group classification, while applying Random Forest Im-

portance coefficients for performance class estimation.

In order to assess the performance of the identified pipeline for an 
unseen dataset (which has not been used in the feature selection proce-

dure), the corresponding estimation performance over the test set has 
also been investigated. Table 3 represents the obtained accuracy over 
both the validation (determined using 5-fold cross-validation over the 
training set) and the test sets. It is observed that the RF model fed 
with selected features not only slightly improves the validation accu-

racy (and weighted F1 score) but also does not result in any significant 
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Table 3

Validation (Val.) and Test Weighted F1 Score as well as Accuracy for Pipelines studied in Subset A.

Target

Random forest-based pipeline 
with Electricity-based features

Random forest-based pipeline with 
selected electricity-based features

Optimal pipeline with selected 
electricity-based features

F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test

Use Case 0.567 0.666 0.588 0.652 0.597 0.644 0.617 0.632 0.597 0.644 0.617 0.632

Performance Class 0.602 0.604 0.602 0.605 0.611 0.616 0.612 0.615 0.620 0.622 0.621 0.622

Operation Group 0.821 0.780 0.828 0.773 0.835 0.800 0.842 0.793 0.852 0.842 0.860 0.819

decrement in the obtained performance over the test set (it has resulted 
in a marginal reduction for the use case estimation while it has even 
slightly improved the accuracy obtained for the performance class and 
operation group estimation). Accordingly, it is demonstrated that per-

forming the feature selection procedure has not resulted in over-fitting 
to the training data and the selected features have been demonstrated 
to be a promising subset also for previously unseen (in the feature se-

lection process) data.

In the next step, while employing the selected features, the pipeline 
optimization step is performed using a GA-based tool [63], in which (for 
each estimation target) the most promising pre-processing step(s), ML 
algorithm, and the corresponding tuning parameters that result in the 
highest performance (validation weighted F1 score determined using 
5-fold cross-validation over the training set) are identified. The per-

formance of the identified optimal pipeline for each estimation target 
over the test set is also assessed. As demonstrated in Table 3, the pre-

viously utilized RF algorithm is still selected as the most promising 
algorithm for use type estimation. For performance class and opera-

tion group targets instead, other pipelines resulting in higher validation 
weighted F1 scores are identified. The details of these pipelines, both 
of which employ Gradient Boosting classifier with different tuning pa-

rameters and pre-processing steps, are reported in Appendix B (that 
includes Tables B.1, B.2, and B.3 for the pipelines, in which use type, 
performance class, and operation group are considered as the estimation 
targets respectively). Finally, these two identified optimal pipelines (as 
represented in Table 3) are also shown to be able to achieve higher per-

formance (compared to the RF model with selected features) over the 
test set, which demonstrates that the algorithm optimization procedure 
has not resulted in over-fitting to the training dataset.

4.2.2. Physical interpretation
As was previously pointed out, a feature selection procedure that 

lowers the number of utilized features facilitates the physical interpre-

tation of the obtained results. Accordingly, for each considered classifi-

cation target, the contribution of each feature to the achieved accuracy 
is reported. Next, physical/logical reasoning that can explain the influ-

ence of each parameter (for each classification target) is provided.

Use Type: Table 4 presents the relative improvement and achieved 
F1 score and accuracy metrics, with the addition of each feature (among 
those chosen in the feature selection process suggested by [16]), in 
the order of selection. As is evident from Table 4, the majority of fea-

tures relevant to classification based of the use type, belong to the STL 
and Visdom packages, which represent the seasonality and trend de-

composition as well as a range of statistical operations over variable 
time-frames, respectively.

The majority of the features chosen for this classification target per-

tain to the magnitude and trends of consumption within the buildings. 
Evidently, industrial buildings would have a larger consumption com-

pared to parkings, classrooms, and offices. On the other hand, it makes 
sense to utilize the trends in weekly, monthly, and seasonal windows to 
classify buildings. For instance, education buildings have much lower 
attendance during summer, which results in a seasonal decrease in their 
consumption, while office buildings experience this in a much shorter 
duration of holidays. Some of the features with the largest contribution 
to the achieved accuracy will be provided below together with a brief 

description of their definition as well as the logic behind their influence 
on the classification peformance.

consumpstats_maxHOD indicates the hour of the day at which the 
mean consumption of a building is at its peak. Buildings with different 
uses tend to have different periods of peak loads. As an example, of-

fice buildings typically experience peak load in the morning, while for 
schools it might fall on lunch break or class change time. Meanwhile, 
for residential buildings, the peak demand generally takes place in the 
evening when residents are using the facilities.

consumpstats_kw90: Represents the 90th percentile of each build-

ing’s consumption, demonstrating sustained high consumption. End-

consumers such as air conditioners could contribute to a higher sus-

tained load in residential buildings, while industrial buildings typically 
include types of equipment with a notable consumption.

stlweeklypattern_thur_mean, stlweeklypattern_sat_mean, stlweeklypat-
tern_sun_mean, stlweeklypattern_fri_mean: These features are derived from 
the stl package, and are good indicators of occupancy behavior within 
each building type. For instance, offices tend to be occupied during 
the weekdays, while residential buildings are mostly occupied during 
weekends and weeknights.

stats_monthlySlope_8: Indicates the variation between consumption in 
September and August. With the start of the academic year in Septem-

ber, this feature is very useful in differentiating academic buildings from 
other ones. Moreover, the start of the academic year induces changes 
in the consumption patterns within other types of buildings, which are 
captured by this and other features.

stats_min_day_pct: indicates the percentage of days, in which the tem-

perature was lower than that of the day with minimum consumption. 
Such a feature is able to capture the efficacy of a building’s HVAC sys-

tem, therefore possibly be able to differentiate between an office and 
an entertainment venue. On the other hand, the variations pertaining 
to the requirements of temperature settings (e.g. commonly utilized set-

points) within different types of buildings.

Performance Class: Classification accuracy is fairly promising for 
buildings with either high or low consumption levels, whereas the ones 
in the intermediate class are often mis-classified. This behavior is due 
to the very similar distribution of values for the features for this target. 
Table 5 depicts the effect of adding each feature on boosting the ac-

curacy and F1 score. Features that are directly related to consumption 
were excluded from this classification to prevent data leakage. Overall, 
the majority of features that were selected are representative of load di-

versity in the form of ratios and patterns. The majority of features were 
derived from Visdom and Jmotif packages, with the former providing 
general overview-level data and statistics and the latter providing infor-

mation about the similarity and deviations of each building from others 
with the same functionality. The impact of this feature on the accuracy 
of buildings’ classification by performance class can be attributed to the 
fact that industrial buildings’ consumption is mostly high and relatively 
uniform from the latter perspective. Similar to the previous case, the 
most significant features are provided below:

weekdays_meanvs95_std: Represents the standard deviation of the ra-

tio of 95th percentile of consumption against the mean. It captures the 
volatility of consumption during the working days and is useful in dis-

tinguishing offices from other buildings where consumption may vary 
heavily.
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Table 4

Relative improvement and achieved Weighted F1 score and Accuracy, following the addition of each feature for Building Use Type - Subset A (Buildings with on
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meanvs95_std: Same as the previous feature but for all days. It can 
distinguish between buildings with low (office buildings) and high (in-

dustrial or public buildings) variance in consumption.

loadshape_mape_interval_daytime: This feature calculates the mean ab-

solute percentage error between the consumption profile of a single 
building and that of the average of all buildings, thus helping in identi-

fying buildings with unique load profiles, whether due to deviations in 
activities from the norm, or due to malfunctions in the energy systems.

all_meanvsmax_std: A high consumption would result in a lessening 
effect on the variations in the usage. This feature, which evaluates 
the variance in the minimum daily consumption, is able to predict 
low/intermediate consuming buildings due to the fact that they would 
have higher variances in their consumption. The selection of (multiple) 
breakout features can be explained in the same way.

Operation Group: Regarding the last classification criterion, as pre-

sented in Table 6, features are selected across multiple packages, such as 
Day filter, Visdom, STL, and EE meter, all contributing information that 
is helpful in distinguishing buildings from different climates and opera-

tion strategies. The most influential features are El_dayfilterfreq_3_2h_min
and minId. The former is a pattern-based feature. In fact, about half of 
the features selected (for this classification target) are pattern-based, 
which is attributable to these features’ ability to differentiate between 
operating strategies over different time windows. The latter indicates 
the date with the least electrical consumption of the building. Buildings 
that have the same date for their minima are more likely to be from the 
same sites and these minima happening due to holidays, plant interven-

tion, and/or weather-related events (Which would typically take place 
across all buildings with similar operating strategies). Other impacting 
features include:

stats_monthlySlope_11 represents the ratio of consumption in Decem-

ber to November. This reveals the changes to building consumption 
due to a combination of holidays and beginning of winter. It should 
be noted that other monthly slopes are also selected in this feature 
selection process, such as El_stats_monthlySlope_2, stats_monthlySlope_8
and stats_monthlySlope_12. These features represent the changes in con-

sumption in the beginning of spring, autumn and new year, which are 
all parameters that are likely to group buildings consumption profiles 
based on the management policies implemented in them.

consumpstats_daily_kw_var: This feature represents the variance of 
daily electricity consumption. Buildings with standard schedules, effi-

cient HVAC systems and optimized control systems tend to have lower 
variance in consumption, as opposed to those with less sophisticated 
equipment and strategies. Therefore, such a feature could be useful in 
differentiating between various operation strategies.

Thanks to the procedures implemented in the present study, the 
achieved performance for all targets is in the same range as the ones 
reported by the pioneering study in this field [14] while considering 
a dataset with significantly higher heterogeneity (in terms of building 
use type and operating site). It should also be pointed out that the max-

imum of classification accuracy that can be achieved for these pipelines 
is not limited by the type of the employed algorithm or feature engi-

neering processes, but rather by the notably challenging nature of the 
problem (estimating buildings’ use type, performance class, and oper-

ation group while being only provided with smart meter data and not 
other information about the building).

4.3. Pipelines with features extracted from electrical and chilled water 
consumption data (subset B)

In the present section, the performance of the ML-based pipelines 
while being fed with the features extracted from electrical and chilled 
water consumption data (over subset B which includes the buildings for 
which both sets of consumption data are available) are represented. In 
order to create a baseline for subset B, the performance of the bench-

mark model (i.e., RF) over this subset while being provided with all the 
features that are only extracted from the electrical consumption is as-

sessed. Next, the accuracy offered by the RF model while being provided 
with all features extracted from both electrical and CW is determined. 
Table 7 reports the obtained performances, which reveals that adding 
the features extracted from the chilled water consumption data, while 
attempting to estimate the use case and operating group, increases the 
classification performance of the RF algorithm (fed by all features). On 
the other hand, it marginally worsens the accuracy achieved for per-

formance class estimation. The latter observation can be attributed to 
the negative impact of the noise created by adding unnecessary fea-

tures (extracted from CW data) that is then evaded by performing the 
feature selection procedure (reported in the next sub-section). This is a 
further proof that increasing the sheer amount of data is not necessarily 
helpful in obtaining better solutions and requires proper data handling 
procedures.

4.3.1. Feature selection and algorithm optimization results
Fig. 8 illustrates the achieved performance indices of different fea-

ture selection procedures (while employing RF algorithms) along with 
the resulting number of selected features while employing the features 
extracted from both electrical and CW data (using subset B). Similar 
to the case of subset A, it is shown that the custom feature selection 
method (proposed by [16]), results in the highest (validation) metrics 
for use type and performance class estimation. For the operation group 
instead, it offers a slightly lower performance compared to the RFE 
method though it requires a lower number of features. Thus, the cus-

tom method [16] (similar to the case of subset A) is chosen as the most 
suitable feature selection procedure.

As demonstrated in Fig. 8, applying the chosen feature selection sub-

stantially reduces the number of employed features (from 678 to 18 for 
the use type estimation, from 441 to 16 for performance class classi-

fication, and from 574 to 20 for estimating the operation group). An 
interesting observation to be noted is that, as the features extracted 
from CW provide additional information that was not offered by those 
generated from electrical data, the final number of features selected 
from the features extracted from both types of consumption is lower 
than those chosen from the features that were selected only from elec-

trical data.

Furthermore, as reported in Table 7, performing the feature se-

lection, while leading to a significant reduction in the dimensionality 
(complexity) of the model, also causes a slight improvement in the 
achieved validation accuracy (identified using 5-fold cross validation 
over the training set) for all of the considered classification targets. 
As previously mentioned, it specifically compensates the previously 
observed reduction in the accuracy achieved for performance class 
estimation (which was created owing to the noise of unnecessary fea-

tures extracted from the CW data). The determined performance of the 
pipeline with selected features over the test set (reported in Table 7) 
shows an improvement compared to the one achieved by the pipeline 
provided with all features, confirming that the over-fitting issue has 
been evaded.

Finally, performing the algorithm optimization step, while employ-

ing the chosen set of features, results in identifying ML-based pipelines 
that offer a slightly higher validation accuracy. Taking into account the 
improvement that is achieved also for the test set (represented in Ta-

ble 7), it is demonstrated that these pipelines offer higher performance 
also for previously unseen data. Appendix C (that includes Tables C.1, 
C.2, and C.3 for the pipelines, in which use type, performance class, 
and operation group are considered as the estimation targets respec-

tively) reports the pre-processing step and the identified optimal tuning 
parameters of the RF algorithm that are used in these pipelines.

4.3.2. Physical interpretation
For this subset, the focus is on determining which, if any, features 

are added to the feature selection process that are relevant to Chilled 
Water consumption. These features are denoted with a CW in the be-

ginning of their names.
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Relative improvement and achieved Weighted F1 score and Accuracy, following the addition of each feature for Building Performance Class - Subset A (Building
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Table 6

Relative improvement and achieved Weighted F1 score and Accuracy, following the addition of each feature for Building Operating Group - Subset A (Buildings
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Table 7

Validation (Val.) and Test Weighted F1 Score as well as Accuracy for Pipelines studied in Subset B.

Target

Random Forest-based pipeline 
with Electricity-based features

Random Forest-based pipeline 
with all available features

Random forest-based pipeline 
with selected features

Optimal pipeline with 
selected features

F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test

Use case 0.568 0.630 0.619 0.573 0.600 0.650 0.649 0.587 0.646 0.653 0.686 0.613 0.661 0.666 0.696 0.627

Performance Class 0.539 0.591 0.548 0.587 0.524 0.517 0.535 0.507 0.606 0.590 0.612 0.587 0.618 0.604 0.622 0.600

Operation Group 0.857 0.877 0.870 0.867 0.913 0.909 0.923 0.907 0.921 0.909 0.930 0.907 0.924 0.926 0.933 0.920
16

Fig. 8. Comparison of feature selection methods and classification targets.
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Relative improvement and achieved Weighted F1 score and Accuracy, following the addition of each feature for Building Use Case - Subset B (Buildings with bo
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Relative improvement and achieved Weighted F1 score and Accuracy, following the addition of each feature for Building Performance Class - Subset B (Building
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Table 10

Relative improvement and achieved Weighted F1 score and Accuracy, following the addition of each feature for Building Operating Group - Subset B (Buildings 
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Use Type: Table 8 demonstrates the relative improvement and the 
overall achieved F1 score and accuracy with the addition of each fea-

ture. About half of all features selected are STL features, most of which 
are weekly patterns for different days of the week. Overall, the features 
selected after addition of chilled water data, are quite similar to those 
selected for only electricity-based features, with the advantage of less 
features being necessary due to the addition of chilled water based fea-

tures. In this context important features include:

stlweeklypattern_fri_mean: represents the mean trend of chilled water 
consumption on Fridays. this feature is a promising indicator of end-of-

the week cooling loads and helps differentiate buildings such as public 
environments and malls which experience a surge of visitors on Fridays. 
stlweeklypattern_sat_mean: similar to the previous feature, this feature 
utilizes the STL library to determine mean consumption of chilled wa-

ter on Saturdays. This could be beneficial in the case of distinguishing 
residential buildings, which have higher cooling loads in the weekends, 
compared to other types of buildings.

dayfiltereq_7_4h_max: the maximum weekly chilled-water consump-

tion based on 4-hour long windows. As the peak cooling load demand is 
different between each building, this feature could be taken advantage 
of for the classification of buildings based on functionality.

Performance Class: For this target, only one feature was selected 
from chilled water features, while the rest are mostly derived from Vis-

dom and Jmotif packages, similarly to patterns observed for the subset 
with only electricity-based features. Table 9 demonstrates the improve-

ment (in the F1 score and accuracy) that is achieved by adding of each 
feature along with the corresponding overall obtained value.

weekend_meanvs95_min is an indicator of the variance of the ratio of 95th 
percentile of chilled water consumption to the mean during weekends. 
Buildings with higher performance, tend to have more sophisticated 
HVAC systems, leading to a less overall variation.

Operation Group: The highest increase in the achieved accuracy, 
by adding the chilled water based features, is observed for this target; 
therefore, it was expected to observe more features from this group be-

ing selected. This holds true as more than half of selected features are in-

deed based on chilled water consumption. Table 10 shows the improve-

ment that is obtained in the F1 score and accuracy with the addition 
of each feature along with the corresponding overall achieved value. 
all_minvsmax_max determines the highest disparity between daily min-

imum and maximum consumption for each building all_meanvs95_max
calculates the same but for the ratio between mean consumption and 
the 95th percentile of consumption. The higher these numbers are, the 
more discrepancy in weather in the corresponding site exists, which 
separates the minimum and maximum consumption in a single day. On 
the other hand, as the number reaches zero, it could either mean that 
there is no cooling load to begin with or that the load is constant during 
the entire day (which helps differentiating between different sites).

stats_monthlySlope_3 and CW_stats_monthlySlope_9 show the ratio of the 
cooling loads in April to May and October to September, respectively. 
These are suitable variables to determine the slope of the cooling load 
being disabled and enabled, respectively.

normalizedcons_std: represents the normalized standard deviation of 
chilled water consumption of buildings. Normalization helps enable the 
comparison of buildings with different sizes or cooling loads. Buildings 
with the same operation strategy tend to have similar variance in this 
regard.

consumpstats_max_HOD: represents the hour of the day at which 
chilled water consumption is maximum, thus representing the hour of 
the day most typically associated with the peak demand. Buildings from 
the same zone and operation strategy, tend to have similar outside tem-

perature and occupancy patterns, thus this is a useful feature to distin-

guish between different operation strategies. hourlystats_HOD_mean_06 
and hourlystats_HOD_mean_04 are also selected for this classification 
target, following the same logic.

5. Conclusion

In the present work, following a number of feature generation 
methodologies proposed in the literature, a pipeline development and 
optimization procedure was implemented for smart meter-based esti-

mation of buildings’ use type, performance class, and operation strat-

egy. Using the Building Data Genome 2 dataset, after performing pre-

processing and extensive feature generation step, feature selection (to 
reduce model’s dimensionality) and algorithm optimization procedures 
were performed. In the first part of the work, the pipeline was imple-

mented on a subset of 1494 buildings from the dataset, which includes 
electricity consumption’s recordings. Obtained results confirmed the ef-

ficacy of the developed pipeline, leading to 2.9-5.3% improvements in 
accuracy for the three classification targets, while reducing the number 
of employed features by more than 88%. The second subset of buildings, 
for which both chilled water meter data and electricity consumption 
were available, demonstrated similar trends with even higher gains in 
the model’s accuracy (between 7.2% and 13.5%) after employing the 
developed ML-based pipelines. It was thus demonstrated that the ad-

dition of chilled water consumption-based features yields significant 
improvements in model’s accuracy (before and after the feature selec-

tion process). Moreover, as could be expected, pipeline optimization 
brings about (even if marginal) improvements in the achieved accuracy 
of each pipeline.

Furthermore, the impact of adding each feature on the overall mod-

el’s accuracy was investigated. This analysis facilitated uncovering the 
mechanisms through which the ML model predicts the target vari-

ables and permitted the corresponding physical/logical interpretation. 
It was demonstrated that, to differentiate between different buildings’ 
use cases, features based on the maximum consumption’s hourly and 
weekly patterns for Thursday through Sunday are of the highest im-

portance since they contain schedule-centric information. In the case 
of classification based on performance class, features containing in-

formation about how closely a building’s consumption resembles that 
of its own past or others with similar functions (such information is 
represented by the features from the Jmotif package), were proved to 
be the most influential ones. On the other hand, regarding the opera-

tion group’s classification, it was shown that about half of the selected 
features are pattern-based, which can be attributed to these features’ 
ability to differentiate between operating strategies over different time 
windows. Another key finding of present work was that the addition 
of secondary meter data, e.g. chilled water here, enables the model to 
work with fewer features, as these secondary meter features provide the 
pipelines with additional information.
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Appendix A. Online repository of the implemented procedures

The utilized processed dataset, the obtained optimal sets of features (for each considered target), the implemented feature selection procedures, 
along with the optimal pipelines are provided in an online repository (Link).

Appendix B. Identified optimal ML-based pipelines for subset A

Table B.1

Characteristics of determined optimal pipeline for Subset A - Use case classification target.

Optimal Pipeline Step Arguments Definitions Values

Step 1 (Only Step):

RandomForestClassifier
class_weight Weight associated with classes in the form {class_label:weight} balanced

n_estimators The number of trees in the forest 150

Table B.2

Characteristics of determined optimal pipeline for Subset A - Performance class classification target.

Optimal Pipeline Step Arguments Definitions Values

Step 1 (Only Step):

RandomForestClassifier
bootstrap Whether bootstrap samples are used when building trees True

criterion The function to measure the quality of a split entropy

max_features The number of features to consider when looking for the best split 0.2

min_samples_leaf The minimum number of samples required to be at a leaf node 3

min_sample_split The minimum number of samples required to split an internal node 9

n_estimator The number of trees in the forest 100

Table B.3

Characteristics of determined optimal pipeline for Subset A - Operating group classification target.

Optimal Pipeline Step Arguments Definitions Values

Step 1:

FunctionTransformer
– – –

Step 2:

OneHotEncoder
minimum_fraction Minimum fraction of numerical features to get boolean values 0.15

sparse Will return sparse matrix if set True else will return an array False

threshold Thresholds numerical features to get boolean values 10

Step 3:

FunctionTransformer
– – –

Step 4:

GradientBoosting Classifier
learning_rate Shrinks the contribution of each tree by this factor 0.1

max_depth The maximum depth of the individual regression estimators 6

max_features The number of features to consider when looking for the best split 0.1

min_samples_leaf The minimum number of samples required to be at a leaf node 17

min_samples_split The minimum number of samples required to split a node 13

n_estimators The number of boosting stages to perform 100

subsample The fraction of samples to be used for fitting the individual base learners 0.95

Appendix C. Identified Optimal ML-based Pipelines for subset B

Table C.1

Characteristics of determined optimal pipeline for Subset B - Use case classification target.

Optimal Pipeline Step Arguments Definitions Values

Step 1:

MaxAbsScaler
– – –

Step 2:

OneHotEncoder
minimum_fraction Minimum fraction of numerical features to get boolean values 0.15

sparse Will return sparse matrix if set True else will return an array False

threshold Thresholds numerical features to get boolean values 10

Step 3:

RandomForest

Classifier

bootstrap Whether bootstrap samples are used when building trees False

criterion The function to measure the quality of a split gini

max_features The number of features to consider when looking for the best split 0.3

min_samples_leaf The minimum number of samples required to be at a leaf node 1

min_samples_split The minimum number of samples required to split an internal node 18

n_estimators The number of trees in the forest 100

https://github.com/DataOptimaLab/BuildingClassifcation_DeterminationOfOptimalFeatureSet
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Table C.2

Characteristics of determined optimal pipeline for Subset B - Performance class classification target.

Optimal Pipeline Step Arguments Definitions Values

Step 1:

FastICA
tol The tolerance at which the un-mixing is considered to have converged 0.55

Step 2:

SelectFromModel

estimator = ExtraTrees

Classifier

criterion The function to measure the quality of a split gini

max_features The number of features to consider when looking for the best split 0.95

n_estimators The number of trees in the forest 100

threshold The threshold value to use for feature selection 0.95

Step 3:

RandomForestClassifier
bootstrap Whether bootstrap samples are used when building trees False

criterion The function to measure the quality of a split entropy

max_features The number of features to consider when looking for the best split 0.35

min_samples_leaf The minimum number of samples required to be at a leaf node 4

min_sample_split The minimum number of samples required to split an internal node 5

n_estimator The number of trees in the forest 100

Table C.3

Characteristics of determined optimal pipeline for Subset B - Operating group classification target.

Optimal Pipeline Step Arguments Definitions Values

Step 1:

FunctionTransformer
– – –

Step 2:

RandomForestClassifier
class_weight Weights associated with classes in the form {class_label:weight} balanced
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