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Abstract

In various situations requiring empirical model building from highly multivar-

iate measurements, modelling based on partial least squares regression (PLSR)

may often provide efficient low-dimensional model solutions. In unsupervised

situations, the same may be true for principal component analysis (PCA). In

both cases, however, it is also of interest to identify subsets of the measured

variables useful for obtaining sparser but still comparable models without sig-

nificant loss of information and performance. In the present paper, we propose

a voting approach for sparse overall maximisation of variance analogous to

PCA and a similar alternative for deriving sparse regression models influenced

closely related to the PLSR method. Both cases yield pivoting strategies for a

modified Gram–Schmidt process and its corresponding (partial) QR-

factorisation of the underlying data matrix to manage the variable selection

process. The proposed methods include score and loading plot possibilities that

are acknowledged for providing efficient interpretations of the related PCA

and PLS models in chemometric applications.
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1 | INTRODUCTION

For highly multivariate datasets with a large number of measured variables, it is often attractive to reduce the data
space dimensionality to obtain simpler and more interpretable models. For unsupervised problems, principal compo-
nent analysis (PCA)1–4 is probably the best known and most widely used dimension-reducing technique for such
purposes. For supervised problems, principal component regression (PCR) and variants of partial least squares
regression5–8 (PLSR) are among the most popular choices.

It follows from the Eckart–Young theorem9 that retaining the A principal components (PCs) with the largest associ-
ated variance produces the A-subset of linear combinations (of the p original variables being measured) which best
approximates the full dataset. The latter means that for each fixed dimension A< p, no other subspace selection alterna-
tive is capable of accounting for more information in terms of explained variance than the associated dominant PCA
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subspace. However, as stated by McCabe10: ‘… interpretation of the results and possible subsequent data collection with
further analysis still involves all of the variables’. This is because each PC is a linear combination of all the original p
variables. Hence, dimensionality reduction in terms of PCA does not provide a real reduction of complexity with respect
to the original variables.

There have been many different approaches to improving the interpretability of PCA components. One approach is
sparse PCA11 that uses the lasso12 to obtain sparseness in components, but these models are also problematic.13 With
sparse PCA, interpretability is improved by imposing sparseness on the loadings, but one still considers linear combina-
tions of variables. Many other methods using the lasso for sparseness have been developed; see, for example, previous
studies14–16 for a review of some recent developments. Another approach to the problem of interpretability of PCA is
due to Krzanowski.17 Krzanowski criticised the use of only eigenvalues (of the covariance or correlation matrix) to
select variables, as such criteria do not necessarily preserve relevant group structure in the data. The solution suggested
by Krzanowski was to apply PCA to both the full data matrix and the matrix with only the selected variables, followed
by using the norm of the residual after a Procrustes analysis on the two sets of scores (truncated to the estimated dimen-
sion of the data set) as a measure of the quality of the approximation. In practice this may require an extensive and
computationally expensive search. This approach has been developed further since; see, for example, Guo et al18 and
Wang and Gehan.19 Other approaches for enhancing interpretability of PCA include a probabilistic approach to vari-
able selection,20 using entropy optimisation principles,21 as well as various forms of clustering.22,23 See also previous
studies24–29 for reviews of various variable selection methods relevant to the present context.

McCabe10 suggested the concept of principal variables (PVs) as subsets of the original variables that for a given size
(A) account for as much variance as possible in terms of the original dataset. In a later publication Cadima et al30 noted
that ‘The complete search, among all A-variable subsets, of a subset which optimises a given criterion, is a task which
quickly becomes infeasible even for moderately sized dataset (unless A when compared with p is very small or very
large)’. Thus, the overwhelming combinatorial nature of an exhaustive variable subset investigation calls for heuristic
alternatives that are computationally feasible.

Our approach is based on considering PCA as an iterative voting process to select orthogonal directions maximising
the explained variance, where in every step each direction gets a vote. We suggest a selection procedure for identifying
PVs by restricting the variance-maximisation (voting) process of PCA to only consider the individual column vectors of
the data matrix. In the suggested approach, the variables are selected sequentially according to the variance-
maximisation criterion, resulting in an efficient greedy algorithm doing a locally optimal selection in each step. The
selected variables will, as illustrated in the examples, often explain a similar amount of variance in the data as is
explained by the associated PCA components.

The suggested variable selection procedure is straight forward to expand to regression problems, appearing as a uni-
fied approach to variable selection for both unsupervised and supervised problems. In the latter case, the method selects
variables according to a combination of variance maximisation and correlations with the response. The predictions of
the resulting models are directly comparable to the predictions obtained by PCR and PLSR.

Both alternatives are based on relatively simple and intuitive variable selection criteria and provide appropriate infor-
mation for generating scores and loading plots of the type much used for model interpretations in chemometric applications
of PCA and PLSR. By using the selected variables to model the full variable set, we also obtain a set of regression coeffi-
cients useful for describing, understanding, and plotting the relationships between the selected and unselected variables.

The structure of the paper is as follows. In Section 2, we describe the two variable selection algorithms in detail
including some computational aspects. We also present and compare the theoretical properties of the suggested
methods with Höskuldsson's PVs31 (unsupervised selection) and the CovSel method of Roger et al.32 (supervised selec-
tion). In Section 3, we apply the methods to two datasets that have been selected to demonstrate the various aspects of
information content obtained by the two algorithms. We also discuss the stability in the resulting variable selections of
both methods. Finally, in Section 4, we discuss further possible modifications regarding tailoring of the suggested
methodology to an extended set of scenarios.

2 | THEORY

In the following, we assume that the columns of an ðn�pÞ data matrix X, representing the measurements of p≥ 2 vari-
ables for n distinct samples, and the associated response vector y of dimension ðn�1Þ are all centred (or standardised,
if appropriate).
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2.1 | The pivoted modified Gram–Schmidt (pMGS) process and QR-factorisation

The proposed voting principles for variable selection to be described below are combined with pMGS process.33,34 The
purpose of pMGS is to obtain an orthogonal basis for the column space of a data matrix X for some associated problem
to be solved.

A completed pMGS process results in a QR-factorisation

XW¼QR, ð1Þ

where W denotes a ðp�pÞ-permutation matrix, the columns of the matrix Q span an orthogonal basis for the column
space of X, and R is an upper triangular matrix of corresponding size with diagonal elements of decreasing absolute
values. The permutation matrix W results from interchanging the rows of the ðp�pÞ-identity matrix I and represents
the ranking (or selection) order of the columns (and corresponding variables) in the data matrix X.

Traditionally, the pivoting in QR-factorisation is obtained by comparing the L2-norms of the (deflated) X-columns
with selection of the column (variable) corresponding to the largest (residual) norm. The permutation matrix W in (1)
is obviously sparse and orthogonal (WW0 ¼W0W¼ I as the inverse of a permutation matrix is its transpose, where 0

denotes matrix transpose). Right multiplication by W0 in Equation (1) therefore yields the following factorisation of

X¼QRW0: ð2Þ

The structural similarity between the factorisation in Equation (2) and the singular value decomposition (SVD) X¼
USV0 presented in Equation (3), with associated comments, should be noted. The major differences between the two
are (i) the upper triangular R versus the diagonal S (i.e., a special case of an upper triangular matrix), (ii) the sparsity of
the orthogonal matrix W versus the generally non-sparse orthogonal matrix V, and (iii) the columns of V represent a
basis for the row space of X whereas the columns of W obviously form a basis for ℝp.

2.2 | PCA and its voting process for PV selection (PVS)

2.2.1 | PCA as a voting process

PCA works by compressing the information content of a data matrix X with measurements on p variables into an
A-dimensional subspace (A≤ p) spanned by orthogonal linear combinations of the original variable measurements. The
coefficients in the linear combinations (the loading vectors) coincide with the eigenvectors of the covariance matrix
associated with X and with the right singular (column) vectors in V resulting from the SVD

X¼USV0: ð3Þ

In (3), the columns of both U¼ ½u1u2 :::un� and V¼ ½v1v2 :::vp� are mutually orthogonal, and S is n�p and diagonal
in the sense that it is all zeros outside the diagonal elements s11 ≥ s22 ≥…≥ srr (the singular values), where r¼minðn,pÞ
is the rank of X. (Below, we will suppress the double indexing and refer to the singular values as si, 1≤ i≤ r.) The initial
A column vectors of XV are referred to as the first A PC scores

XVA ¼UASA, ð4Þ

where VA and UA represent the first A columns of V and U, respectively, and SA is the initial A�A submatrix of S.
The score vectors in (4) represent a set of n-dimensional orthogonal basis vectors for the correspondingly dominant

A-dimensional column subspace of X in terms of overall empirical X-variance. According to the Eckart–Young
theorem,9

X≈UASAV0
A ð5Þ

is the best possible rank A approximation of X in both the Frobenius and the spectral norm.
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Regarding the column space ColðXÞ of X¼ ½x1x2 :::xp�, a simple algebraic manipulation shows that for any candidate
unit vector q�ColðXÞ⊆ℝn, the amount of empirical X-variance projecting onto the direction of q is given by the qua-
dratic form

vXðqÞ ¼def 1n
Xp

i¼1

ðq0xiÞ2 ¼ 1
n
q0XX0q¼ 1

n
q0USV0VS0U0q¼ 1

n

Xr

j¼1

s2j ðq0ujÞ2: ð6Þ

By considering the value vXðqÞ as the ‘X-votes’ for the direction of q, we can rank any set of candidate vectors from
ColðXÞ in terms of the resulting votes obtained by plugging their associated unit vectors one-by-one into vXð�Þ.

From inspection of the right-hand side in Equation (6), it follows that the maximum value of vXð�Þ over all possible
unit vectors is obtained for the dominant left singular vector u1 resulting in the value vXðu1Þ¼ s21

n . By imposing orthogo-
nality constraints w.r.t. the dominant left singular vectors u1,…,uk�1, vXð�Þ is obviously maximised by vXðukÞ¼ s2k

n , where
uk is the kth column of the left singular vectors in U.

2.2.2 | Heuristic PVS by variance voting

To obtain a subset of PVs, one can restrict the PCA-voting function in (6) to consider the problem of maximising the
voting function vð�Þ over the p normalised X-columns zi ¼ xi=kxik for 1≤ i≤ p. The variable associated with the maxi-
mum v-value is selected, and in the case of a tie the tied variable with lowest index is selected.

Evaluation and selection of subsequent variables are constrained by ignoring the voting contributions in the direc-
tions of the previously selected variables. Technically, this requirement is dealt with by deflation of the data matrix X
with respect to the variable/column just selected before repeating the process until an appropriate subset of variables is
obtained.

The following algorithm describes the required steps for implementing the PVS votings to select A≤ r PVs from the
(centred) data matrix X of size n�p and rank r. A MATLAB implementation of the algorithm is given in Appendix A,
and the algorithm is illustrated in Figure 1.

FIGURE 1 Flow chart for the PVS algorithm.
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1. Centre X by subtracting its p column means.
2. Compute the ‘economy version’ SVD of X¼UrSrV0

r , required for the voting function (6) to be used in Step 4(b).
3. Initialise the ‘bookkeeping’ set of selections iA ¼; and let a¼ 1.
4. For a≤A, find the ath PV by:

a. Calculate direction vectors zi ¼ xi=kxik for i� f1,…,pg ∖ iA.
b. Calculate the votes vðziÞ for each vector from the step above.
c. Identify the index ia associated with the largest ‘voting’ value in 4(b).
d. Define qa ¼ zia . Calculate the qa-coordinates pa �ℝp of each X-column: p0

a ¼q0
aX and set wa ¼ eia �ℝp, where

eia is the iath column of the p�p identity matrix (the iath standard basis vector). Update the set of selections
iA¼ iA[fiag.

e. Deflate X with respect to the direction of the chosen variable:
X :¼X�qap

0
a (the modified Gram–Schmidt step).

f. Set a¼ aþ1 and repeat 4.
5. Set QA ¼ ½q1q2 :::qA�, PA ¼ ½p1p2 :::pA�, WA ¼ ½ ~WAJA� where ~WA ¼ ½w1w2 :::wA� and JA is the reduced matrix

obtained by eliminating from the p�p identity matrix all columns corresponding to the completed selection
iA¼fi1, i2, :::, iAg.

Note that X0QA ¼PA is the matrix of X-loadings associated with the orthogonal columns of QA that spans the same
subspace as the selected variables X ~WA. The A�p-matrix RA ¼P0

AWA is rectangular and in upper triangular form
(everything below the diagonal is zero), where the permutation matrix WA acts on the columns of P0

A, and the ath
selected variable is identified by the non-zero element in the ath column of WA. The associated PVS of A< r variables
results in a partial and pivoted QR-factorisation of the column permuted data matrix:

XWA ≈QAQ
0
AXWA ¼QAP

0
AWA ¼QARA: ð7Þ

Right multiplication with W0
A in Equation (7) yields a rank A approximation of the original X analogous to (5),

that is,

X≈QAP
0
A ¼QARAW0

A: ð8Þ

Note that the latter approximation includes an exact reproduction of the selected X-columns specified by the indices
in iA, that is, the first A columns of (7) yield the exact pivoted QR-factorisation of the submatrix

X ~WA ¼QA
~RA, ð9Þ

associated with the selected PVs. The square upper triangular ~RA denotes the first A columns of RA. As the left-hand
side of Equation (9) consists of the A selected variables in X according to the selection order, the right-hand side simply
gives the QR-factorisation of this matrix. Right multiplication with ~R

�1
A results in an expression for the orthogonal basis

of the column space of the X-columns selected by PVS:

QA ¼X ~WA ~R
�1
A : ð10Þ

The approximation given in Equation (8) is in exact arithmetic equivalent to the approximation obtained by
regressing each variable in the data set on the variables selected by the PVS algorithm. The associated regression coeffi-
cients CA to model the full X matrix from the selected PVs X ~WA are given by the least squares solution with respect to
CA of X≈ ðX ~WAÞCA ¼ðQA

~RAÞCA, that is, the minimiser of

kðX ~WAÞCA�Xk2 ¼kðQA
~RAÞCA�Xk2, ð11Þ

with respect to CA:

ĈA¼ ~R
�1
A Q0

AX¼ ~R
�1
A P0

A: ð12Þ
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2.2.3 | Plotting tools for model interpretations

The PVS method(s) yields plotting possibilities similar to those of PCA and PLS models. The score plots of a PVS model
are obtained as scatter plots based on selected pairs (or triples) of the first few columns in the QA matrix. The loading
plots obtained by plotting the columns of the PA-matrix provide an effective visualisation of the relationships between
the selected variable directions in QA and the original X-data (as PA ¼X0QA). To explore the relationships between the
A selected (principal) variables X ~WA and the complete set of variables in X, one can consider visualisation of the ĈA

regression coefficients in a fashion similar to the PA-loadings. Note that while the scores are orthonormal, this is not
the case for the loadings. To our knowledge, this is the case for all variable selection methods where there is correlation
between the selected variables. The loadings are non-orthogonal, but are in the row space of X . The non-orthogonality
of the loadings may in some cases make interpretation difficult.35

2.2.4 | Equivalence of PVS and Cadima and Jolliffe's RM-criterion

The PVS variable selection strategy presented here is mathematically equivalent to Cadima and Jolliffe's RM-
criterion,30,36 which is also equivalent to the second of McCabe's four criteria10 when the variable selection is done
greedily. Their criterion is the maximisation of the correlation between the (centred) data matrix and its projection onto
the column space of a subset of its columns. By letting HK denote the projection matrix onto a subset of K columns
from the data matrix, Cadima and Jolliffe,36 p. 68 states:

The maximisation of corrðX,HKXÞ therefore selects the k-variable subset that maximises the same criterion
(variance) as PCA, though here we are restricted to subsets of the observed variables rather than the subsets
of all linear combination of those variables.

Hence, the PVS variable selection strategy is equivalent to the RM-criterion when the variable selection is done
greedily. The advantage of the above PVS algorithm is that it is a computationally efficient method for implementing
the RM-criterion and, as demonstrated in the examples, the selected variables are directly comparable to the PCs scores
in the amount of explained variance. The variable subsets selected by PVS are not necessarily optimal, and different var-
iable subsets may be obtained using methods such as simulated annealing and genetic algorithms, as emphasised in
Cadima et al.30 The RM-criterion only applies to unsupervised problems, and below, we will later discuss how the ideas
of PVS can be adjusted to obtain useful selections also for supervised problems. The PVS criterion is also similar to Wei
and Billings37 and Whitley et al,38 but they consider explained correlation rather than variance. Puggini and McLoone39

consider the same criterion as PVS, but the algorithm used to obtain the variables is different.

2.2.5 | Höskuldsson's PVs—Discussion and comparison with PVS

In the examples, we have included a comparison between PVS and a variable selection method by Höskuldsson.31 The
latter method is briefly reviewed here. Höskuldsson31 suggests a slightly different variable selection criterion where var-
iables are selected according to

arg max
i¼1,…,p

ðx01xiÞ2þðx02xiÞ2þ…þðx0pxiÞ2
h i

: ð13Þ

After selecting a variable, the matrix X is deflated w.r.t. the chosen variable before the next variable is selected.
This variable selection procedure is similar but not equivalent to the PVS algorithm suggested in the present work.

As there is no normalisation of the selected direction in Höskuldsson's criterion, the selected variables depend not only
on the direction (which PVS does) but also on the size of the numbers in the matrix. Hence, PVS is better at picking out
hidden correlations in the data, as a column with relatively small norm that is correlated with other columns can poten-
tially explain more of the variance in the data than the column with the largest norm. Furthermore, as we will see in
the examples, it appears that Höskuldsson's criterion may be more affected by random noise.
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2.3 | PLSR and an associated voting process for selecting principal regression variables
(PRVs)

2.3.1 | PLSR

PLSR5–7 represents an alternative data compression strategy resembling PCA that also takes into consideration the mea-
sured responses in the dimension reduction process. The goal of PLSR is to achieve good linear modelling of the
responses from low-dimensional linear combinations of the predictors. PLS regression is therefore much used to handle
situations where the number of measured predictors is considerably larger than the number of measured samples
(p�n).

Similar to PCA, PLS can be considered as a ‘voting’ process working by repeated maximisation of the overall covari-
ance between the (deflated) predictors (X-columns) and the associated (deflated) n-dimensional response vector y. The
extraction of A PLS components results in the matrix product identity

XWA,PLS ¼TA,PLSBA,PLS, ð14Þ

where the normalised n-dimensional column vectors of TA,PLS are orthogonal, the normalised p-dimensional column
vectors of WA,PLS (the non-sparse loading weights) are also orthogonal, and BA,PLS is A�A upper bidiagonal (yet
another special case of an upper triangular matrix).

From PA,PLS ¼X0TA,PLS (known as the PLS loadings), the matrix BA,PLS is given by BA,PLS ¼P0
A,PLSWA,PLS. Unless

there is some subspace of the column space of X that is exactly orthogonal to the response vector y, the maximum pos-
sible number of PLS components is equal to the rank (r) of X.

In PLS, the first column ðwPLSÞ of WA,PLS is the normalised version of the vector X0y and the corresponding first col-
umn tPLS of TA,PLS is the normalised version of the associated vector XwPLS that solves the covariance-maximisation
problem. After computing the residual X and y by the deflation steps X :¼X� tPLSðt0PLSXÞ and y :¼ y� tPLSðt0PLSyÞ,
respectively, the covariance-maximisation process is repeated to extract the subsequent A�1 components to be
accounted for by the columns of WA,PLS and TA,PLS. The implementation of this process is known as the NIPALS algo-
rithm5 for PLS regression. Alternative and faster PLS regression algorithms7 giving the factorisations in Equation (14)
are also available, but the variable selection process described below will include deflation steps similar to those just
described.

2.3.2 | Selection of PRVs by variance multiplication voting

The fundamental idea of PLS is to favour directions (linear combinations) q in the X-variable columns that
simultaneously captures both dominant X- and y-variance. A voting function candidate for this purpose can
be obtained by multiplying together the empirical X- and y-variances that are simultaneously accounted for in the
q-direction, that is,

vyregðqÞ¼
1
n2

q0XX0q �q0yy0q¼ vXðqÞ � vyðqÞ, ð15Þ

where vyð�Þ is analogous to the PVS-voting function defined in Equation (6). The corresponding pseudo-algorithm for
implementing the PRV voting principle is obtained by making only three minor modifications of the proposed PVS
algorithm in Section 2.2.2:

• Step 1: Centre the response y as well as the data matrix X.
• Step 4(b): Replace vXðziÞ by the voting function vyregðziÞ.
• Step 4(e): Extend the step to include the deflation of y :¼ y�qaðq0

ayÞ.

The regression coefficients are obtained by regressing the response onto the selected variables. A MATLAB imple-
mentation of the PRV algorithm is given in Appendix A. This modified algorithm also allows for an approximation to
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the data matrix X from XWA as described for PVS. Loading and score plots are obtained in the same way as with
PVS—the only difference is in the selected variables described by WA. The suggested criterion is similar to the one con-
sidered by Billings and Wei,40 but their criterion selects variables that maximise correlation with the response without
considering the explained X-variance.

2.3.3 | CovSel—Description and comparison with PRV

In the examples below, we compare PRV with the variable selection method known as CovSel.32 CovSel also works
with multiple responses, but in this paper, we only consider univariate problems. As both CovSel and PRV are methods
inspired by PLS, CovSel is a natural benchmark for PRV. Further, the differences between the two methods are useful
for illustrating the properties of PRV.

At each iteration, CovSel selects the variable maximising the covariance with the response and more precisely
maximises

arg max
i¼1,…,p

ðx0iyÞ2, ð16Þ

followed by a deflation of the predictor matrix with respect to the selected variable.
Although CovSel and PRV are quite similar, the differences in the variable selection criterion may have a large

impact on some datasets. To understand the differences between the two variable selection methods, we rewrite both
criteria slightly to make the comparison easier. The CovSel criterion can be written as

arg max
i¼1,…,p

ðkyk � cosðθiÞÞ2 � kxik2 ¼ arg max
i¼1,…,p

cos2ðθiÞ � ðx0ixiÞ2, ð17Þ

where θi is the angle between y and xi. The PRV criterion can be written as

arg max
i¼1,…,p

ðkyk � cosðθiÞÞ2 �
Xr

j¼1

ðsj � cosðϕijÞÞ2 ¼ arg max
i¼1,…,p

cos2ðθiÞ �
Xr

j¼1

ðsj � cosðϕijÞÞ2, ð18Þ

where θi again is the angle between y and xi and ϕij is the angle between xi and the jth PC. By comparing (17) and (18),
we see that CovSel favours variables that are both highly correlated with the response and have high norm, whereas
PRV prefers variables that are both highly correlated with the response and highly correlated with PCs with larger (rela-
tive to the other) singular values.

The deflation in CovSel causes a large reduction in the norm of any remaining variables that are highly correlated
to the selected variable. Hence, CovSel will typically not choose multiple highly correlated variables. There is a similar
effect in PRV, but since PRV maximises a weighted sum of squared correlations with the PCs, it is not as sensitive to
the reductions in norm caused by deflations as CovSel is.

An alternative view to the difference between the PRV and CovSel is that, subject to correlation with the response,
CovSel identifies variables explaining local variance (as CovSel considers each variable in isolation without looking at
the total explained variance in the data), whereas PRV identifies variables capturing global variance (as PRV con-
siders the total explained variance in the data by each variable). A consequence of this difference is that CovSel is typ-
ically more stable in the variable selections than PRV. When the collected data are from a single distribution, the
variances in isolated variables are less likely to be affected by small disturbances in the training set, and hence,
CovSel will generally select variables more consistently. For dataset with highly correlated variables, there may be
numerous correlated variables explaining approximately the same fraction of the total variance in the data, and
hence, PRV will be more sensitive to such disturbances in the training data. As demonstrated in the examples below,
PRV and CovSel are both useful alternatives, and the choice of method depends on properties of the data set subject
to analysis.
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3 | EXAMPLES

3.1 | Datasets

3.1.1 | Beer data

The data set consists of 60 NIR spectra of beer41 and is shown in Figure 2A. Wavelengths were measured in 2 nm inter-
vals from 400 to 2250 nm giving measurements for a total of 926 wavelengths. The response variable is the amount of
real extract concentration, which is useful for determining the ability of yeast to ferment alcohol. From the plot of the
spectra we see that the region from about 1400 to 2250 nm is particularly noisy, and this is partly because of water.41

See also Andersen and Bro42 for an analysis of the data set in a variable selection context.

3.1.2 | Raman spectra of pork adipose tissue

The data set consists of 77 Raman spectra of pork adipose tissue.43,44 Raman intensity was measured in intervals of
0.6 cm�1, and after truncation, the included wavenumbers are in the range 819.6–3099 cm�1. The data set contains
responses for saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA),
and the iodine value. Here, we only include the results for the PRV modelling of iodine. Prior to analysis, the data were
pre-processed using EMSC pre-processing45 with degree 6 polynomial correction and interferent correction, as done in
Liland et al.44 For the reference spectrum in the EMSC pre-processing the first right singular vector of the data set
(or training set when appropriate) was used. The pre-processed spectra are shown in Figure 3A. For inspection of the
raw data, see Liland et al.44

3.2 | Unsupervised

3.2.1 | Methodology (unsupervised)

For unsupervised problems, we compare PVS with PCA and Höskuldsson's PV. We use the full datasets, and for the
spectroscopic data, we also compare the variables selected with the regression variants of the methods to illustrate how
the inclusion of a response affects the variable selection.

3.2.2 | Beer data

Figure 2C shows explained variance as a function of the number of components (PCA) and variables (PVS and
Höskuldsson's PV). We see that the variance explained by PVS closely matches the variance explained by PCA, and
hence, it is possible to obtain a lower dimensional model comparable in explained variance to PCA by selecting a hand-
ful of variables instead of using linear combinations of all the variables.

Höskuldsson's PV does not explain as much of the variance in the data as PCA and PVS, which is a conse-
quence of the difference between the two variable selection criteria. This can also be seen in Figure 2G where the
first five variables selected by PVS and Höskuldsson's PV are shown. Two of the first five variables selected by
Höskuldsson's criterion are in the noisy part of the data (notably, the first three variables selected are not from
the noisy part of the data), whereas none of the first five variables selected by PVS are from that part of the
spectra.

Of the first 10 variables selected, Höskuldsson's criterion selects six from the noisy part of the spectra, and PVS
selects three variables from the noisy part of the spectra.

For exploring some of the differences in the variables selected by the unsupervised (PVS and Höskuldsson's method)
and supervised (PRV and CovSel) approaches, the first five variables selected by the different methods applied to the
whole data set are shown in Figure 2G,H.

SKOGHOLT ET AL. 9 of 19
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Figure 2B shows the approximation obtained by regressing the data set on the first five variables selected by PVS.
Note that a regularising effect is exhibited in the noisy part of the spectra in the approximation. Figure 2C shows the
associated regression coefficients for each of the selected variables.

The PVS scores and loadings, that is, the first columns in the QA-matrix and PA-matrix, respectively, are given in
Figure 2E,F, respectively. Figure 2E also includes PCA scores for comparison, and we see that the PVS scores are very
similar to the PCA scores. This is a consequence of PVS capturing approximately the same variance as PCA with two
variables as shown in Figure 2C.

FIGURE 2 (A) Plot of the raw NIR spectra. (B) Rank 5 approximation to the spectra using PVS variables. (C) Plot of the cumulative

explained X-variance as a function of the number of components (PCA) and variables (PVS and Höskuldsson's PV). (D) Plot of the

regression coefficients obtained when regressing the full data set on the selected variables. (E) Score plot of the data with scores from PCA

and PVS. The pairwise differences between the PCA and PVS scores are also shown to illustrate the similarities between the two sets of

scores. (F) Loading plot for the first five variables selected by PVS. (G) The first five variables selected by PVS and Höskuldsson's PV. (H) The

first five variables selected by PRV and CovSel for the whole data set.
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3.2.3 | Raman data

Figure 3C shows the explained variance as a function of the number of components for PCA, PVS, and Höskuldsson's
PV. For the first five components, PVS explains more of the total variance than Höskuldsson's PV, but notably for
exactly six and seven components, it is the other way around. Although PVS typically will explain more variance than
Höskuldsson's PV (with the same number of variables), PVS (like Höskuldsson's PV) is a greedy algorithm and will not

FIGURE 3 (A) Plot of the pre-processed Raman data. (B) Rank 5 approximation to the spectra using PVS variables. (C) Plot of the

cumulative explained X-variance as a function of the number of components (PCA) and variables (PVS and Höskuldsson's PV). (D) Plot of

the regression coefficients obtained when regressing the full data set on the selected variables. (E) Score plot of the data with scores from

PCA and PVS. The pairwise differences between the PCA and PVS scores are also shown to illustrate the similarities between the two sets of

scores. (F) Loading plot for the first five variables selected by PVS. (G) The first five variables selected by PVS and Höskuldsson's PV. (H) The

first five variables selected by PRV and CovSel for the whole data set.
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necessarily find a global optimum for the explained variance. The first five variables selected for the data set for
Höskuldsson's PV and PVS are shown in Figure 3G, and the first five variables selected with CovSel and PRV are shown
in Figure 3H.

Note that in both the unsupervised and the supervised case, PVS/PRV select at least one variable from a flat part of
the spectra that do not appear to be particularly relevant for prediction. These variables are favoured by PVS/PRV
because they explain a significant amount of total variance in the data, even though the variance of each variable is
small. Moreover, it is worthwhile to note that the approximation of the data set using the PVS variables, shown in
Figure 3B, clearly reproduces some useless (in terms of prediction) variation in the spectra (approximately between
1800 and 2600 cm�1). Figure 3E,F shows the PVS scores and loading plots, respectively. As with the beer data, we see
that the score plot obtained by PVS is very similar to the score plot by PCA.

3.3 | Supervised

3.3.1 | Methodology (supervised)

In the following examples, we compare PRV with results obtained by PCR, PLS, and CovSel. To compare the different
variable selection methods, the following methodology was applied: The data set was randomly divided into 5000 train/
validation/test splits. Fifty per cent of the data was used for training, 25% for validation, and the remaining 25% for test-
ing. For each data split, the models were trained on the training set, and the number of components of the model used
for the test set was the model with the lowest RMSE on the validation set. For PRV and CovSel, the selected variables
were used as predictor variables in ordinary least squares regression.

For the beer data, models were built both on the full data set and after truncating the spectra to wavelengths in the
range 800–1400 nm. The latter truncation contains the interval that is relevant for prediction41,42 and avoids the irrele-
vant for prediction41,42 systematic variation in the 400–800 nm range and the noisy region of the spectra.

For the Raman data, the interferent was estimated with the difference of two spectra with similar value for the
response, as done in Liland et al.44 This difference spectrum was added to the EMSC model, and the projection of the
spectra onto this subspace was removed from the remaining spectra. To avoid data leakage, the two spectra used to esti-
mate the interferent were removed from the data set, and the pre-processing model was calculated only from the train-
ing set for each data split.

3.3.2 | Results—Beer data

From Table 1, we see that the average RMSEP on the whole spectra is by far lowest for PRV. PRV also has the lowest
standard deviation of RMSEP indicating little sensitivity to the train/validation/test set split, whereas the other methods
appear to be more sensitive to the data split.

PRV mostly avoids the noisy region, and this appears to be the reason why the PRV models are better. This is
supported by the results for the truncated spectra also given in Table 1. By truncating the spectra to the relevant region,
all methods give better models, and the standard deviation of RMSEP is much lower indicating that all methods have
some problems with the uninteresting parts of the spectra. The histogram in Figure 4, showing the first five variables

TABLE 1 Beer: Summary of results across all training test set splits for full spectra and spectra truncated to the region 800–1400 nm.

Cov PRV PLS PCR

Average number of variables/components (full spectra) 3.6 8.2 7.4 24.4

Average number of variables/components (trunc. spectra) 7.1 7.4 6.4 14.4

Average RMSEP (full spectra) 0.55 0.35 0.88 0.89

Average RMSEP (trunc. spectra) 0.33 0.20 0.21 0.22

Standard deviation of RMSEP (full spectra) 0.55 0.20 0.39 0.40

Standard deviation of RMSEP (trunc. spectra) 0.09 0.06 0.06 0.05
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selected by CovSel and PRV across all datasets, also gives a clear indication of why PRV works better than CovSel on
the beer data set. The most commonly selected variable by CovSel is (for almost all data splits) from the part of the spec-
tra relevant for prediction (according to Nørgaard et al41 and Andersen and Bro42), but the other four variables are typi-
cally from either the noisy part of the spectrum or the region containing the systematic variation that is not relevant for
prediction of the response. This is a consequence of the CovSel criterion as discussed in Section 2.3.3.

In the noisy part of the spectrum, there will be some spurious correlations with the response, and the noise also cau-
ses the variables in this part of the spectrum to have fairly large norm/variance. As CovSel maximises the product of
the squared correlation with the response and the norm of a variable, it seems clear that CovSel will select variables
from the noisy part of the spectrum. For the beer data set, PRV is able to avoid this area of the spectrum as the PCs cov-
ering the variation in the noisy part of the spectra correspond to smaller singular values and hence are weighted down
by the PRV criterion.

3.3.3 | Results—Raman data

From Table 2, we see that for the full spectra, on average, PLS and PCR have the lowest RMSEP, followed by CovSel
and then PRV. Although the differences in the RMSEP averages are smaller than 1 SE error of RMSEP, it does seem to

FIGURE 4 Beer data—Histogram indicating the number of times a variable is selected among the first five variables for CovSel (top)

and PRV (bottom). The part of the spectrum relevant for prediction of the response is 800–1400 nm.

TABLE 2 Raman data: Summary of results across all training test set splits.

Cov PRV PLS PCR

Average number of variables/components (full spectra) 5.9 5.0 4.9 12.9

Average number of variables/components (trunc. to intervals around peaks) 6.6 5.4 5.0 11.8

Average number of variables/components (trunc. to eight variables) 4.2 3.0 4.0 4.9

Average RMSEP (full spectra) 1.12 1.22 1.03 1.03

Average RMSEP (trunc. to intervals around peaks) 1.11 1.26 1.05 1.04

Average RMSEP (trunc. to eight variables) 1.12 1.03 1.08 1.08

Standard deviation of RMSEP (full spectra) 0.37 0.41 0.38 0.38

Standard deviation of RMSEP (trunc. to intervals around peaks) 0.38 0.43 0.39 0.38

Standard deviation of RMSEP (trunc. to eight variables) 0.39 0.40 0.40 0.40

Note: In the interval truncation, the spectra are truncated to intervals around peaks, and for the truncation to eight variables, the functional group frequencies

from Olsen et al43 is used.
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be the case that the CovSel models are better than the PRV models as CovSel generally selects more chemically relevant
variables than PRV. The histograms in Figure 5 show the first five variables selected by PRV and CovSel across all
dataset splits. As with the beer data, CovSel is much more stable in the variable selection than PRV, which selects a
much wider variety of variables in the spectra. This is also the case for both the beer data and the Raman data with PVS
(more variety in the selected variables) and Höskuldsson's PVs (more stable in the selected variables relative to PVS).
The four largest peaks in the top histogram in Figure 5 are close to peaks in the data that are relevant for the prediction
of iodine values, but this is only the case for the two largest peaks in the histogram for PRV. Rerunning the analysis all-
owing PRV to use a maximum of two variables gives almost the same average RMSEP (1.23), supporting the fact that
PRV mostly selects two variables that are relevant for prediction. Inspection of the variables selected shows that PRV
selects several variables outside of the peaks in the data. The reason for this is that although the variance in each such
variable is small, the total X-variance in all these variables combined is quite large, and as part of the PRV criterion is
to maximise the total variance explained in the data it is more susceptible to selecting such variables. CovSel does not
have this issue as it looks at each variable in isolation rather than the total explained variance. Hence, the advantage
PRV has over CovSel for the beer data set is a disadvantage for PRV for this data set. From Table 2, we see that the best
results for PRV are obtained by truncating the spectra to the eight functional group frequencies shown in fig. 1 in Olsen
et al.43

Investigations with other data set indicate that CovSel in general has better prediction results on Raman data than
PRV. It should also be noted that the results are highly dependent on the pre-processing of the data, making any gen-
eral conclusions difficult.

4 | DISCUSSION AND CONCLUSION

In applications where sparseness and interpretations are important, it may be useful to consider PVS and PRV as alter-
natives to PCA and PLSR. Similar to PCA/PLSR, PVS/PRV also provides directions spanning large amounts of X-
and/or y-variance, and associated score plots, with the obvious advantage of addressing pairs of selected variables
rather than pairs of more complex linear combinations including all the available variables. Both PVS and PRV are
based on intuitive choices of optimisation criteria, and by using a greedy approach to the variable selection, both
methods are efficient to implement for practical applications. These methods should also be considered as useful for
data exploration independent of the variables included in some final resulting model. The sparser models may also
make the requirements for future data collection simpler/cheaper. As long as the required selections of variables in
number are similar to the number of components selected by PCR or PLS, this can also contribute to making issues
regarding model interpretations correspondingly simpler.

FIGURE 5 Raman data—Histogram indicating the number of times a variable is selected among the first five variables for CovSel (top)

and PRV (bottom).
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For regression problems, we consider both CovSel and PRV as interesting alternatives, where (prior) domain knowl-
edge may be helpful in deciding the choice of method that is more likely to provide the better variable selection. For
spectroscopic data of the types described in Section 3, the choice of method may also depend on the choice of pre-
processing and truncation (if any) of the measured spectra. For data with local regions containing ‘high’ noise, such as
the beer data, applications of PRV seem to work well without any truncation of the spectral region, in contrast to
CovSel where removal of the noisy parts of the spectra seems to be a requirement. For data sets similar to the Raman
data examples where the local presence of noise seems to be low, but adds up to a significant amount of total variance,
the choice of method is more likely to be the opposite. In the case of spectroscopic data with a presence of wavelength
shift issues, it may be safer to avoid variable selection, and in this case, non-sparse methods such as PCR and PLS may
give more robust models. Further, for non-sparse methods using linear combinations of all variables, there is typically
some noise cancelling of normally distributed noise. This is lost with variable selection methods. At the same time, as
PVS and PRV select variables maximising the total explained variance in the data, these methods should have some
robustness to this type of noise in the data.

It should be noted that the PRV criterion in Equation (15) gives the same weight to the X- and y-variance. In some
situations, it may be useful to introduce some alternative weighing of the two variance terms, in a fashion similar to the
Powered PLS.46 This can be done by considering powers of the two voting terms and replacing the criterion of (15) by a
criterion of the form vXðqÞ

1�α
α � vyðqÞ

α
1�α. Within this formulation, the choice α¼ 1

2 corresponds to the PRV criterion, and
for other choices of α, we may obtain more emphasis on one of the two variance terms in the associated voting function
alternative.

Although classification problems have not been considered in this paper, both PVS and PRV can also be applied to
such problems in the same fashion as described for the CovSel32 method by first using PVS or PRV for the variable
selection and then using the selected variables as inputs for the chosen classification method.

Several modifications and extensions of PRV are obviously possible. Although we have suggested using all
PCs/singular values in the voting functions, it is straightforward to eliminate certain (undesired) PCs from a voting
function if it is clear from domain knowledge that the variances of some PCs for some reason are irrelevant or
misleading.
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