
Citation: Babatunde, A.N.;

Ogundokun, R.O.; Adeoye, L.B.;

Misra, S. Software Defect Prediction

Using Dagging Meta-Learner-Based

Classifiers. Mathematics 2023, 11, 2714.

https://doi.org/10.3390/

math11122714

Academic Editors: Rafael Pastor,

Bruno Domenech and Marc Juanpera

Received: 5 May 2023

Revised: 5 June 2023

Accepted: 13 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Software Defect Prediction Using Dagging
Meta-Learner-Based Classifiers
Akinbowale Nathaniel Babatunde 1, Roseline Oluwaseun Ogundokun 2,3 , Latifat Bukola Adeoye 4

and Sanjay Misra 5,*

1 Department of Computer Science, Kwara State University, Ilorin 241103, Nigeria;
akinbowale.babatunde@kwasu.edu.ng

2 Department of Multimedia Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania;
rosogu@ktu.lt or ogundokun.roseline@lmu.edu.ng

3 Department of Computer Science, Landmark University, Omu Aran 251103, Nigeria
4 Department of Computer Science, University of Ilorin, Ilorin 240003, Nigeria; adeoye.lb@unilorin.edu.ng
5 Department of Applied Data Science, Institute of Energy Technology, 1777 Halden, Norway
* Correspondence: sanjay.misra@ife.no

Abstract: To guarantee that software does not fail, software quality assurance (SQA) teams play a
critical part in the software development procedure. As a result, prioritizing SQA activities is a crucial
stage in SQA. Software defect prediction (SDP) is a procedure for recognizing high-risk software
components and determining the influence of software measurements on the likelihood of software
modules failure. There is a continuous need for sophisticated and better SDP models. Therefore, this
study proposed the use of dagging-based and baseline classifiers to predict software defects. The
efficacy of the dagging-based SDP model for forecasting software defects was examined in this study.
The models employed were naïve Bayes (NB), decision tree (DT), and k-nearest neighbor (kNN), and
these models were used on nine NASA datasets. Findings from the experimental results indicated
the superiority of SDP models based on dagging meta-learner. Dagging-based models significantly
outperformed experimented baseline classifiers built on accuracy, the area under the curve (AUC),
F-measure, and precision-recall curve (PRC) values. Specifically, dagging-based NB, DT, and kNN
models had +6.62%, +3.26%, and +4.14% increments in average accuracy value over baseline NB,
DT, and kNN models. Therefore, it can be concluded that the dagging meta-learner can advance the
recognition performances of SDP methods and should be considered for SDP processes.

Keywords: classification algorithm; defect prediction; software quality assurance; dagging meta-learner

MSC: 68Txx; 68T01

1. Introduction

A structured method is employed in programming and software development in
software engineering to enhance quality, time, and budget efficiency, including guarantee-
ing a structured software system [1–3]. The software procedure, similarly, recognized as
the software method, is a series of organized activities that result in software conception.
These tasks could comprise developing software from scratch or modifying a prevailing
one [4]. The following actions must be included in any software development process.
The first is the software specification, which outlines the program’s core functionality and
the limitations surrounding them. The second step is to design and create the software.
Third, software verification and validation: the program must fulfill client requirements
and correspond to its specifications. Finally, software evolution and maintenance involve
changing the program to suit changing consumer and market desires [5]. They include
sub-events, such as requirement authentication, architectural strategy, testing, and sup-
portive events, such as configuration and modification administration, quality guarantee,

Mathematics 2023, 11, 2714. https://doi.org/10.3390/math11122714 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122714
https://doi.org/10.3390/math11122714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2592-2824
https://doi.org/10.3390/math11122714
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122714?type=check_update&version=1

Mathematics 2023, 11, 2714 2 of 18

and project administration [6–8]. Other actions involve providing new technological tools,
following best practices, and standardizing processes. A process, therefore, comprises the
development description, which contains the following products: pre- and post-condition:
the condition must be factual before and after the activity, the result of an action, and roles:
the duties of the persons participating in the process [4].

A software flaw is any error or defectiveness in a software product or software de-
velopment (SD), often known as a fault or bug [9–11]. Software defect prediction is one
of the most practical tasks in the testing process, which recognizes the segments that
are problem-predisposed to and need rigorous testing [12–14]. This allows experiment
resources to be utilized more effectively while adhering to restrictions. Software defect
prediction is beneficial during testing since it is not always possible to foresee the problem
modules. Various difficulties, as well as the usage of faulty prediction models, obstruct
smooth functioning [15–17].

It is essential to determine the software’s defectiveness to organize testing operations
since it is conceivable to concentrate further on the flaw-prone modules with the most
mistakes. As a result, the testing process takes less time and effort, and the project’s overall
cost is reduced [18,19]. Software defect prediction models aim to forecast quality aspects,
such as whether an element is susceptible to failure. Approaches for detecting flaw-prone
software elements aid resource preparation and development, including cost elusion via
efficient authentication [20,21]. These approaches may be employed to forecast the response
variable: a module’s class (e.g., flaw-prone or non-flaw-prone) or a quality factor (e.g.,
the number of flaws). To forecast software flaws, statistical tools, machine learning (ML)
methods, and soft computing procedures are often utilized [22–25].

As a classification task, SDP may be considered as a supervised binary classification
delinquent [26]. Software segments are labeled as faulty or non-defective and are repre-
sented by software metrics [27–29]. To train flaw analysts, historical data tables are created
with one column containing a Boolean value for “flaws found” (i.e., reliant variable) and
other columns describing software features concerning software measurement (i.e., inde-
pendent variables) [30]. Grounded on a training set of data encompassing occurrence (or
instances) whose class membership is recognized, binary classification in machine learning
identifies which set of classes (sub-populations) a novel remark fits into [31]. Therefore, this
research proposes the deployment of dagging meta-learner on classification algorithms for
SDP processes. An experiment was designed to examine the efficacy of dagging-based SDP
models for identifying software defects. Dagging-based and baseline classifiers, including
NB, DT, and kNN, were utilized on nine NASA datasets. The following is the contribution
of the study:

i. Deployment of dagging meta-learners on classification algorithms.
ii. Dagging-based and baseline classifiers, such as NB, DT, and kNN were applied to

nine NASA datasets.
iii. Use of an AUC, F-measure, and PRC value for system evaluation.

The remaining sections of this article are structured as follows: Section 2 offered the
related literature on defect predictors that researchers have examined. Section 3 discussed
the proposed system and the evaluation carried out to check the system’s performance.
The result obtained from the implementation and discussion on the results is presented in
Section 4. Section 5 concludes the article and suggests upcoming works.

2. Related Works

Machine learning and deep learning have been used in different domains for opti-
mization, scheduling, etc. [32–35]. Even though several defect prognosticators exist in the
literature, few comprehensive benchmarking studies exist. Comparing the defect predictors’
accuracy is crucial since the findings of one technique are seldom consistent across multiple
datasets [36]. This is due to several factors. First, early defect prediction research relied on a
limited number of datasets. Furthermore, since the performance metrics employed in each
study differed, comparing them was challenging. Consequently, thorough benchmarking

Mathematics 2023, 11, 2714 3 of 18

studies are usually appreciated to determine which defect prediction approaches offer the
most accurate results.

In their study, Xie et al. [37] use a multi-granularity neighbor residual network
(MGNRN) to create an anomaly detection strategy for time-series data. They first es-
tablish a neighbor-based input matrix by considering multi-granularity neighborhood
characteristics and build a neighbor input vector with a sliding time window for each data
sample. Second, they use multi-granularity time windows to calculate the sample’s linear
and nonlinear neighbor characteristics. Finally, they anticipate the sample’s anomalous
probability by combining the linear neighborhood residual with the nonlinear residual. The
precision and F1-metrics demonstrate the multi-granularity neighbor residual network’s
efficacy in improving the accuracy of anomalous detection, and the experiments support
these claims.

Khurma et al. [38] proposed an island BMFO (IsBMFO) model. They presented an
efficient binary form of MFO (BMFO). IsBMFO separates the population’s solutions into
islands, which are sub-populations. Each island is handled separately with a BMFO version.
After a specific sum of iterations, a migration step was carried out to trade solutions across
islands, increasing the algorithm’s diversity power. The suggested strategy was evaluated
using twenty-one publicly available software datasets. The trials indicated that employing
IsBMFO as feature selection (FS) enhances the classification results. With an average G-
mean of 78 percent, IsBMFO with SVM was deduced to be the best model for the SDP issue
among the further analyzed techniques.

In a stringent CPDP environment, Malhotra, Khan, and Khera [39] developed a testing
approach based on six distinct neural networks (NNs) on a dataset, including 20 softwares
from the PROMISE repository. The optimum design was then compared with three sug-
gested CPDP approaches that span a wide variety of circumstances. They discovered that
the modest NN with dropout layers (NN-SD) was accomplished superlatively and statisti-
cally considered superior to the CPDP approaches when compared with other approaches
throughout their investigation. The AUC for receiver operating characteristics (ROC)
was employed as the performance measure. The Friedman chi-squared and Wilcoxon
signed-rank tests were used to assess statistical implications.

To lower the impact of the class imbalance dataset, Jin [40] developed a unique
distance-measure learning built on cost-sensitive learning (CSL), which is used with the
large distribution machine (LDM) to replace the standard kernel function. Furthermore,
the enhancement and enrichment of LDM based on CSL were investigated, with the
improved LDM serving as the SDP model, dubbed CS-ILDM. The projected CS-ILDM
was then employed with five publicly accessible datasets from NASA’s Metrics Data
Program repository (NASA MDPR), and its performance is similar to that of competing
SDP approaches. The experimental findings show that the suggested CS-ILDM has high
recognition performance, can lower the misprediction rate, and eliminate the influence of
sample class imbalance.

Wang et al. [41] proposed an SDP system built on LASSO-SVM. The issue of most SDP
models having low prediction accuracy was discussed in their work. A support vector
machine technique and a least absolute value compression (LAVC), and a selection process
are combined in an SDP model. First, the FS capability of the LAVC and selection technique
was employed to minimize the dimension of the original dataset and non-SDP data were
deleted. Then, utilizing the constraint optimization capability of the cross-validation tech-
nique, the optimum SVM value was determined. SVM’s nonlinear computing capability
completed the SDP. The recall rate was 78.04 percent, and the F-metric was 72.72 percent.
The accuracy of simulation results was 93.25 percent and 66.67 percent. The findings re-
vealed that the suggested defect prediction model outperforms the classic defect prediction
model’s prediction accuracy and speed.

Kumar and Shankar [42] created a Mamdani fuzzy logic-based software defect predic-
tion model that predicted software faults using classic membership functions (Triangular,
Trapezoidal, etc.) and a domain expert’s unique membership function. They used a basic

Mathematics 2023, 11, 2714 4 of 18

Takagi–Sugeno model to enhance the Mamdani system and achieve better results. The
plan assessed fuzzy logic models using standard regression models, such as multiple linear
regression and random forest regression.

Akintola et al. [43] considered the impact of filter FS (FFS) on SDP classifiers. Ten NASA
datasets (MW1, MC1, MC2, PC1, PC2, PC3, PC4, KC1, KC2, KC3), FFS algorithms including
principal component analysis (PCA), filter subset evaluation (FSE), and correlation feature
selection (CFF) subset evaluation including machine learning (ML) classification algorithms,
such as NB, DT J48, MLP, and kNN were categorized using classifiers that had been carefully
chosen based on their properties. According to their findings, feature selection methods
can improve the performance of learning algorithms in SDP by eliminating immaterial or
redundant features from the data ahead of the classification procedure. Nonetheless, the
limitation of this study is that they only looked at filter-based feature selection, which is
not the only type of feature selection.

Ranveer and Hiray [44] summarized malware detection (MD) methods founded on
the stationary, active, and hybrid executable investigation. A comparative analysis of
characteristics was offered, illuminating their impact on the system’s performance. They
discovered that using a suitable feature extraction strategy may result in high accuracy and
an actual positive rate (TPR). Although op-code and portable executable (PE) capabilities
improve the speed and accuracy of a malware detection system, false positives are still a
problem. The suggested malware categorization algorithms should be able to cope with
many daily new malware variants while maintaining system performance and accuracy in
real time. However, the authors did not explore FS methods since the feature extraction
technique would have changed the dataset’s depiction.

Laradji et al. [45] explored multiple FS strategies for SDP. They found that picking a few
high-quality features resulted in a substantially better AUC than using a more significant
number of features. They similarly demonstrated the effectiveness of ensemble learning (EL)
on datasets with unbalanced duplicated features. They suggested the utilization of a two-
variant EL classifier. Experiments on six datasets revealed that greedy forward selection
(GFS) significantly performed better than correlation-based forward (CBF) selection.

Additionally, we showed the efficacy of utilizing an average probability ensemble
(APE) made up of seven properly designed learners, which outperformed traditional
approaches, such as weighted SVMs and RF. Finally, the improved form of the suggested
method, which coupled APE with GFS, achieved better AUC values for all datasets, which
were near 1.0 in the case of the MC1, PC4, and PC2 datasets. However, for feature selection,
the researchers only evaluated GFS and CBF, which is insufficient for a universal outcome.

He et al. [46] published empirical research on how a prognosticator founded on a
reduced measured set was created and utilized for both with-in-project defect prediction
(WPDP) and cross-project defect prediction (CPDP). The findings showed that the prog-
nosticator created with a reduced measured set functioned well and that the suggested
predictor and other benchmark predictors had no significant differences. The minimal
metric subset was considered excellent based on the unique criteria for complexity, gen-
eralization, and accuracy since it may deliver good results in various circumstances and
was independent of classifiers. In conclusion, their findings demonstrated that a more
straightforward measure proposed for flaw forecast is realistic and valuable. A forecasting
method built using a minimal subset of software measurement may deliver acceptable
results. The investigators solely looked at feature selection filter approaches, with wrapper
and hybrid FS being shown to be superior to the filter technique. The summary of the
related works is shown in Table 1.

Mathematics 2023, 11, 2714 5 of 18

Table 1. Summary of related works.

Authors Methods Evaluation Measures Gaps

Xie et al. [37] Multi-granularity neighbor
residual network (MGNRN) F1-metrics and precision

The study did not consider
semantic correlations of time

stamps in the whole dataset to
capture the global relevant

features for the sample.

Khurma et al. [38] Island BMFO (IsBMFO) Average G-mean = 78%
IsBMFO as feature selection

(FS) enhances the
classification results.

Malhotra et al. [39] 6 NNs
AUC, Friedman chi-squared

test, and the Wilcoxon
signed-rank test

Statistical significance
was evaluated.

Jin [40] LDM based on CSL

The study can lower the
misprediction rate and

eliminate the influence of
sample class imbalance.

Wang et al. [41] LASSO-SVM

The recall rate was 78.04
percent, and the F-metric was
72.72 percent. The accuracy of
simulation results was 93.25
percent and 66.67 percent.

The findings revealed that the
suggested defect prediction

model outperforms the classic
defect prediction model’s

prediction accuracy
and speed.

Kumar and Shankar [42] Mamdani fuzzy logic Not specified

They used a basic
Takagi–Sugeno model to

enhance the Mamdani system
and achieve better results.

Akintola et al. [43]

Principal component analysis
(PCA), filter subset evaluation

(FSE), correlation feature
selection (CFF) subset, NB, DT

J48, MLP, and kNN

Not specified

According to their findings,
feature selection methods can
improve the performance of

learning algorithms in SDP by
eliminating immaterial or

redundant features from the
data ahead of the

classification procedure.

Ranveer and Hiray [44] TPR

They discovered that using a
suitable feature extraction
strategy may result in high

accuracy and an actual
positive rate (TPR).

Laradji, Alshayeb,
and Ghouti [45]

Greedy forward selection
(GFS), ensemble learning (EL),
average probability ensemble

(APE), correlation-based
forward (CBF)

AUC

The improved form of the
suggested approach, which

coupled APE with GFS,
achieved better AUC values
for all datasets, which were

near 1.0 in the case of the
MC1, PC4, and PC2 datasets.

He et al. [46]

With-in project defect
prediction (WPDP) and cross

project defect prediction
(CPDP)

Accuracy, complexity

The findings showed that the
prognosticator created with a

reduced measured set
functioned well and that the

suggested predictor and other
benchmark predictors had no

significant differences.

Mathematics 2023, 11, 2714 6 of 18

From the literature reviews discussed above, it is evident that several researchers
have proposed and developed many approaches and techniques for SDP. Many have used
techniques, such as ML, DM, etc. Many of these researches have low accuracy, precision,
F-measure, and AUC ROC values. It was also discovered that many researchers did not
even evaluate performance measures, such as AUC ROC values and F-measures. However,
there is a continuous and imperative need to research and develop more accurate and
sophisticated SDP models or methods, which led to the motivation behind this proposed
study. In this study, we proposed the use of four performance measures to evaluate the
system performance: Classification accuracy, precision, F-measure, and AUC ROC values.

3. Materials and Methods

This section discusses materials, like datasets, and methods, such as algorithms. This
suggested system aims to examine and evaluate the impact of various wrapper feature
selections (way of feature selection) on classifier performance for software fault detection.
Decision tree (J48), naïve Bayes (NB), and k-nearest neighbor are the classifiers (kNN). All
algorithms will be implemented by creating a route to the WEKA (Waikato Environment
for Knowledge Analysis) API in the Eclipse IDE. Eclipse software was used to implement
the method in this study. The experiment compares single classifiers versus dagging-based
classifiers for software fault prediction using ANP. The datasets and experimental design
are presented in this section. Nine public-domain software fault datasets were collected
from NASA’s MDP repository for this investigation. These nine public domain faults are
PC1, PC3, PC4, PC5, CM1, KC1, KC3, MC2, and MW1. Each dataset was analyzed using
10-fold cross-validation, in which the dataset was divided into ten subsets, nine of which
were used to train the classifier, and one subset was used to test the model generated by the
classifier. A classifier’s efficiency may be measured in a variety of ways. Accuracy, the area
under the curve (AUC), and F-measure scores will all be assessed in this investigation [47].
The NASA MDP dataset used for the experimental analysis in this study was obtained
from NASA MDP software defect datasets (figshare.com. Accessed on 17 June 2021).

3.1. Data Description

The National Aeronautics and Space Administration (NASA) Facility Metrics Data
Program (MDP) repository contributed nine public-domain software defect datasets for
this investigation. The following are short summaries of the MDP datasets, and the dataset
attributes description is shown in Table 2.

1. PC1: This collection contains flight software from a decommissioned earth-orbiting
satellite. It comprises 40 kilobytes of C code, 1107 modules, and 22 characteristics.

2. PC2: This dataset comes from flight software from a decommissioned earth-orbiting
spacecraft. It comprises 40 kilobytes of C code, 1107 modules, and 22 characteristics.

3. PC3: This collection contains flight software from a presently active earth-orbiting
satellite. It includes 1563 instances and 40 KLOC of C code.

4. PC4: This collection contains flight software from a presently active earth-orbiting
satellite. It has 36 kilobytes of C code and 1458 modules.

5. CM1: This dataset comes from a research tool with around 20 kilo-source lines of code
written in C code (KLOC). Overall, there are 498 occurrences and 22 characteristics.

6. MC2: This dataset has 161 occurrences and 40 characteristics.
7. MW1: This dataset is approximately a zero-gravity combustion research developed in

C code with 8 KLOC and 403 modules.
8. KC1: This dataset comprises a C++-based stowage administration system for achiev-

ing and handing out data. Overall, there are 2109 instances and 22 characteristics.
9. KC3: This dataset is approximately the satellite metadata group, handing out, and

dissemination. There are 458 instances and the it is inscribed in Java with 18 KLOC,
40 characteristics, and 18 KLOC.

figshare.com

Mathematics 2023, 11, 2714 7 of 18

Table 2. Dataset attributes description.

S/N Attribute Name Type

1 iv(g) Numeric

2 Loc Numeric

3 N Numeric

4 ev(g) Numeric

5 V Numeric

6 E Numeric

7 D Numeric

8 B Numeric

9 L Numeric

10 I Numeric

11 T Numeric

12 ExecutableLoc Numeric

13 lOCode Numeric

14 lOBlank Numeric

15 uniq_Opnd Numeric

16 lOComment Numeric

17 branchCount Numeric

18 uniq_Op Numeric

19 total_Opnd Numeric

20 uniq_Opnd Numeric

21 total_Op Numeric

22 IOCodeAndComment Numeric

23 Halstead level Numeric

24 Call pairs Numeric

25 Halstead vocabulary Numeric

26 Halstead error Numeric

27 Defects categorical

28 Condition count Numeric

29 Design density Numeric

30 Edge count Numeric

31 node count Numeric

32 Maintenance severity Numeric

33 Cyclomatic density Numeric

34 Design complexity Numeric

35 Modified condition count Numeric

36 Decision density Numeric

37 Formal parameters Numeric

3.2. Proposed Models Implemented

Three classifiers were proposed in this study, and they include naïve Bayes (NB),
decision tree (DT), and k-nearest neighbor (kNN). They are popular machine learning

Mathematics 2023, 11, 2714 8 of 18

algorithms used in various domains, including software defect prediction. These three
models are discussed as follows:

3.2.1. Decision Tree (DT)

Decision trees are a categorization technique for organizing data [48,49]. The decision
tree learns how the attribute vectors act in different situations. As described by Sandeep
and Sharath [49], a decision tree is a graph in which each internal node represents a choice,
and each child node represents the potential outcomes of that decision. The pathways
from the tree’s root to its leaves represent the problem’s solutions. The tree-building and
tree-pruning stages of the DT classification method are necessary. When generating a tree,
data are partitioned recursively until each item has a single class label; when pruning, the
created tree is reduced in size to avoid overfitting and boost its accuracy from the bottom
up [49,50], see Algorithm 1.

Algorithm 1: Decision Tree (DT)

1. if D contains only training examples of the same class cj ε C then
2. make T a leaf node labeled with class cj
3. else if A = null then
4. make T a leaf node labeled with cj, which is the most frequent class in D
5 else //D contains examples of a mixture of classes. We select a single attribute
6. // to partition D into subsets in order that each subgroup is purer
7. po = impurityEval-1(D);
8. for each attribute A1ε {A1, A2,, Ak} perform
9. pi = impurityEval-1(D);
10. end
11. Select Agε {A1, A2,, Ak} that gives the biggest impurity reduction,
12. if po – pg < threshold then //Ag does not reduce impurity po
13. Make T a leaf node labeled with cj, the most frequent class in D
14. else
15. Make T a decision node on Ag.
16. Let the possible values of V be v1, v2,, vm.
Partition D into m disjoint Subsets D1, D2,, Dm based on m values of Ag.
17. for each Djin {D1, D2,, Dm } perform
18. If Dj is not null then
19. Create a branch (edge) node Tj for vj as a child node of T;
20. DecisionTree (Dj, A-{Ag}, Tj) // Ag is removed
21. end
22. end
23. end
24. end
Decision tree Algorithm [51]

3.2.2. K-Nearest Neighbor (KNN)

Similarity-based instance classification is the goal of instance base learner (IBL) or
k-nearest neighbor classification [49]. The function is merely approximated locally, and
all computation is delayed until classification in this lazily-learned approach [49]. The
majority of an object’s neighbors determine its classification. Since K is always positive,
the neighbors are picked from a pool of items whose labels are already known. To assign
a class to a new data point, the k-nearest neighbors of that point in the training data are
consulted [52,53]. The approach may be used to target functions with continuous or actual
values [49], see Algorithm 2.

Mathematics 2023, 11, 2714 9 of 18

Algorithm 2: K-Nearest Neighbor

BEGIN
Input:
Build the training dataset Di = { (X1, C1), . . . , (XN, CN)}
X = (X1, . . . , XN) new instance to be classified
For each labeled instance (Xi, Ci), perform
If X has an unknown system call, then
X is abnormal;
else then
For each process, Dj in training data perform
calculate Sim(X, Dj);
if Sim(X, Dj) == 1.0 then
X is normal and exit;
Order Sim(X, Di) from Lowest to highest, (i = 1, . . . , N);
Find K biggest scores of Sim(X, D);
Select the K nearest instances to X: DKX;
Assign to x the most frequent class in DKX;
Calculate Sim_Avg for k-nearest neighbors;
If Sim_Avg > threshold then
X is normal;
else then
X is abnormal;
END
kNN Algorithm [54]

3.2.3. Naïve Bayes (NB)

The naïve Bayes algorithm is both a probabilistic classifier and a statistical classifi-
cation technique; it determines a set of probabilities based on a dataset’s frequency and
combinations of values. Based on the Bayes theorem, this approach treats each attribute
as independent of the value of the class variable [55,56]. It relies on the assumption of
an underlying probabilistic model and provides a logical means of capturing uncertainty
employing calculated probabilities. Moreover, it helps with both diagnosis and forecasting.
Naïve Bayes is based on the Thomas Bayes (1702–1761) theorem and works best when
the input space has many dimensions. In addition, naïve Bayes models employ the maxi-
mum likelihood for parameter estimation. Despite its oversimplified assumptions, naïve
Bayes routinely outperforms more sophisticated machine learning algorithms in complex
real-world settings.

3.2.4. Waikato Environment for Knowledge Analysis (WEKA)

To provide academics with simple access to cutting-edge machine learning methods,
the Waikato Environment for Knowledge Analysis (WEKA) was developed. In 1992,
when the project began, there was a wide selection of languages, systems, and data types
supported by learning algorithms. Compiling learning schemes for comparison research
across many datasets was an intimidating endeavor. In addition to a collection of learning
algorithms, WEKA was designed to serve as a framework in which researchers may test
and deploy novel algorithms without worrying about the underlying mechanisms required
to manipulate data or evaluate the efficacy of proposed solutions [57,58].

The algorithms were implemented in Eclipse by building a path to WEKA (Waikato
Environment for Knowledge Analysis) API library on Eclipse. WEKA is an open-source
Java software that includes a collection of several machine learning algorithms for data
analysis. The algorithms can be applied directly to a dataset or called from your Java code
(the technique used in this project). Moreover, WEKA contains tools for performing data
preprocessing, classification, association, regression, and visualization.

Mathematics 2023, 11, 2714 10 of 18

3.3. Motivations for Using the Proposed Models

The reasons for using these models for SDP are as follows:
Naïve Bayes, a probabilistic classifier, works on the feature independence assumption.

It works effectively on massive datasets and requires little computer resources. When
working with textual data, such as source code metrics or defect descriptions, NB excels
due to its ability to cope with high-dimensional feature spaces. Due to the probabilistic
nature of the algorithm, it can make accurate predictions quickly.

Decision trees are flexible models that may be easily understood and used for numeri-
cal and categorical information. They have the potential to capture intricate interrelation-
ships between characteristics. DT is helpful for software defect prediction since they lighten
the crucial aspects and how they affect the forecast. The resultant tree structure is simple to
understand and relay to relevant parties, facilitating decision-making and troubleshooting.

Instances are sorted into groups using the k-nearest neighbor non-parametric approach
based on their spatial closeness to other groups in the feature space. There is no implicit
data distribution assumption. When software faults cluster in the same geographical area,
kNN is an appropriate method for defect prediction. It can create accurate predictions
based on closest neighbors by accurately capturing the similarity between occurrences.
KNN is particularly flexible in that it can process data with both numerical and categorical
characteristics.

A combination logic used the best features of all three models. The three models’
predictions were integrated using dagging learning, which improved the total performance.

3.4. Proposed Architecture

The study’s proposed architecture is shown in Figure 1. The methodology established
is designed to experimentally evaluate and validate the efficacy of the offered approaches.
The experimental framework is applied to nine NASA software defect datasets, and SDP
models are created using K-fold (k = 10) cross-validation (CV). Due to its ability to construct
phishing models with low bias and variance, the K-fold CV is preferred [59]. Furthermore,
with the CV approach, each instance from a dataset is repeatedly utilized for training and
testing. The CV approach is explained in detail in [60,61]. With faulty datasets based
on a 10-fold CV, the suggested approaches and basic classifiers (NB, DT, and kNN) are
trained and evaluated. The created SDP models’ prediction performance is assessed and
examined. The suggested approaches are implemented using WEKA machine learning
tools and libraries [57].

Figure 1. Experimental framework.

Mathematics 2023, 11, 2714 11 of 18

4. Results and Discussion

This study seeks to investigate the effect of wrapper feature selection methods on
heterogeneous classifiers in SDP. This experiment was carried out by implementing the
WEKA library using Eclipse IDE. This chapter presents the results generated after carrying
out the research work. The tools (Eclipse and WEKA Library) used in carrying out this
project work are open-source tools, and they can run on both Windows and Linux Operating
Systems, a system with a minimum of 50 Gigabyte Hard Disk, and finally, a system with a
minimum of 2 Gigabyte RAM (memory).

Tables 3–6 demonstrate the average prediction performance outcomes of experimented
SDP models used over nine datasets, each divided into train and test datasets. Each table
illustrates the results of the dagging-based classifiers and baseline classifiers.

Table 3 displays the accuracy values of a particular heterogeneous classifier and proposed
dagging-based classifiers over nine SDP datasets. Table 3 shows some observations: Con-
cerning accuracy, the dagging-based classifiers are better than baseline classifiers. In particular,
Dagging_NB had an average accuracy value of 0.838%, which is superior to baseline NB
(0.749%) by +11.1%. Moreover, Dagging_DT recorded an average accuracy value of 83.44%,
which is +3.9% better than the baseline DT (0.803%). Dagging_KNN (0.832%) had a superior
average accuracy value over baseline kNN (0.792%) by +5.1%. Based on the preceding
experimental results, it can be deduced that dagging meta-learner-based classification can
improve the prediction accuracy values of SDP models. Figure 2 presents a graphical
representation of the average accuracy values of experimented SDP models in this study.

Table 3. Accuracy values of dagging-based classifiers and baseline classifiers.

AUC NB Dagging_NB DT Dagging_DT kNN Dagging_kNN

CM1 0.645 0.708 0.570 0.596 0.521 0.611

KC1 0.681 0.669 0.604 0.681 0.633 0.679

KC3 0.662 0.702 0.653 0.645 0.539 0.623

MC2 0.707 0.684 0.589 0.708 0.653 0.706

MW1 0.778 0.753 0.503 0.771 0.607 0.722

PC1 0.791 0.786 0.598 0.767 0.679 0.785

PC3 0.749 0.785 0.591 0.782 0.603 0.753

PC4 0.814 0.816 0.789 0.897 0.7 0.844

PC5 0.719 0.699 0.673 0.765 0.667 0.764

Average 0.727 0.734 0.619 0.735 0.622 0.721

Table 4. AUC values of dagging-based classifiers and baseline classifiers.

AUC NB Dagging_NB DT Dagging_DT kNN Dagging_kNN

CM1 0.645 0.708 0.570 0.596 0.521 0.611

KC1 0.681 0.669 0.604 0.681 0.633 0.679

KC3 0.662 0.702 0.653 0.645 0.539 0.623

MC2 0.707 0.684 0.589 0.708 0.653 0.706

MW1 0.778 0.753 0.503 0.771 0.607 0.722

PC1 0.791 0.786 0.598 0.767 0.679 0.785

PC3 0.749 0.785 0.591 0.782 0.603 0.753

PC4 0.814 0.816 0.789 0.897 0.7 0.844

PC5 0.719 0.699 0.673 0.765 0.667 0.764

Average 0.727 0.734 0.619 0.735 0.622 0.721

Mathematics 2023, 11, 2714 12 of 18

Table 5. F-measure values of dagging-based classifiers and baseline classifiers.

F-Measure NB Dagging_NB DT Dagging_DT KNN Dagging_KNN

CM1 0.816 0.806 0.802 0.815 0.782 0.815

KC1 0.718 0.723 0.717 0.714 0.727 0.715

KC3 0.785 0.755 0.783 0.747 0.708 0.763

MC2 0.672 0.702 0.608 0.69 0.704 0.632

MW1 0.842 0.947 0.896 0.869 0.845 0.890

PC1 0.894 0.892 0.901 0.888 0.906 0.887

PC3 0.485 0.777 0.839 0.839 0.843 0.836

PC4 0.841 0.837 0.869 0.856 0.857 0.840

PC5 0.704 0.717 0.737 0.734 0.741 0.738

Average 0.751 0.795 0.795 0.795 0.790 0.791

Table 6. Precision-recall curve values of dagging-based classifiers and baseline classifiers.

PRC NB Dagging_NB DT Dagging_DT KNN Dagging_KNN

CM1 0.825 0.850 0.790 0.808 0.781 0.818

KC1 0.741 0.733 0.670 0.743 0.691 0.730

KC3 0.777 0.802 0.763 0.767 0.713 0.757

MC2 0.718 0.690 0.601 0.712 0.643 0.728

MW1 0.893 0.891 0.824 0.900 0.843 0.887

PC1 0.918 0.921 0.861 0.909 0.888 0.911

PC3 0.861 0.885 0.796 0.882 0.813 0.863

PC4 0.882 0.896 0.861 0.920 0.828 0.894

PC5 0.761 0.756 0.698 0.791 0.700 0.797

Average 0.820 0.825 0.763 0.826 0.767 0.821

Figure 2. A graphical representation of experimental results based on average accuracy values.

Mathematics 2023, 11, 2714 13 of 18

Concerning AUC values, Table 4 presents the AUC values of dagging-based classifiers
and baseline classifiers. Similar to the accuracy values, dagging-based SDP models have
superior AUC values than models based on baseline (NB, DT, kNN) classifiers. Specifically,
Dagging_NB had an average AUC value of 0.785, which is superior to baseline NB (0.727)
by +7.98%. Furthermore, Dagging_DT recorded an average AUC value of 0.78, which is
+26% better than the baseline DT (0.619). Dagging_KNN (0.777) had a superior average
accuracy value over baseline kNN (0.622) by +24.9%. Correspondingly, it can be observed
that dagging-based classification further improved the AUC values of SDP models. In
addition, SDP models based on dagging had AUC values close to 1, namely, SDP models
based on dagging have a high ability to predict defects and are not subject to change. This
observation further strengthens the findings from Table 3, namely, SDP models based on
dagging are a good fit. Figure 3 presents a graphical representation of the average AUC
values of dagging-based classifiers and baseline SDP models.

Figure 3. A graphical representation of experimental results based on average AUC values.

In terms of F-measure values, Table 5 shows the F-measure values of dagging-based
classifiers and baseline classifiers. Moreover, similar to the initial results in Tables 3 and 4,
dagging-based SDP models have better F-measure values than models based on baseline
(NB, DT, kNN) classifiers. Specifically, Dagging_NB had an average F-measure value of
0.805, which is superior to baseline NB (0.751) by +7.19%. Moreover, Dagging_DT recorded
an average AUC value of 0.808, which is +1.64% better than baseline DT (0.795). Dag-
ging_KNN (0.790) had a superior average accuracy value over baseline kNN (0.807) by
+2.15%. Correspondingly, it can be observed that dagging meta-learner classifier further
enhanced the F-measure values of SDP models. This observation further strengthens and
agrees with the findings from Tables 3 and 4. Similarly, Figure 4 presents a graphical repre-
sentation of the average AUC values of dagging meta-learner and baseline SDP models.

Finally, Table 6 presents the precision-recall curve (PRC) values of the baseline and
projected dagging-based classifiers. The PRC value is built on the precision and recall
values of the developed SDP models. It recaps the trade-off between the TPR and the
positive prognostic rate for various probability thresholds in a predictive model. It can
also be deduced from Table 6 that SDP models founded on dagging meta-learner classifiers
are better than baseline classifiers, in particular. Dagging_NB had an average accuracy
value of 0.853, which is superior to baseline NB (0.820) by +4.02%. Moreover, Dagging_DT
recorded an average accuracy value of 0.847, which was +11.1% better than baseline DT
(0.763). Dagging_KNN (0.847) had a greater average F-measure rate over baseline kNN

Mathematics 2023, 11, 2714 14 of 18

(0.767) by +10.43%. Based on these investigational outcomes, it can be discovered that SDP
models founded on dagging meta-learner classifiers are superior to SDP models based on
baseline classifiers. A graphical representation of the PRC values is presented in Figure 5.

Figure 4. A graphical representation of experimental results based on average F-measure values.

Figure 5. A graphical representation of experimental results based on average PRC values.

Compared to baseline classifiers, the high and better prediction performance of dag-
ging meta-learner-based SDP models on the analyzed datasets indicates their corresponding
small risk of misprediction of software flaws. Furthermore, the suggested approaches are
extra resilient and robust to prejudices in the examined datasets (class imbalance and
high dimensionality) than the baseline classifiers, as seen by the high AUC values of dag-
ging meta-learner-based SDP models (NB, DT, and kNN). In particular, the suggested
approaches outperform baseline classifiers in predicting software defects due to class
imbalance and high-dimensionality issues that might be present in software defect datasets.

5. Threats to Validity

A number of the constraints encountered during the present investigation, such as
those seen in earlier studies, are as follows: Validity is threatened by two categories of risks.
The risk to external validity and the chance to internal validity. Threats to external validity
are seen to be more significant than risks to internal validity. The degree to which inferences
may be formed between independent and dependent variables poses a threat to internal
validity [40]. It is possible that the data are not cumulative, and there is a gap between the
numbers that must be handled. External validity risks are connected to the generalizability

Mathematics 2023, 11, 2714 15 of 18

of the anticipated models. The findings presented in this research were achieved using
the open-source program WEKA tool, and thus may not be relevant to other systems. In
particular, the operating environment determines the efficiency of dependability prediction
models. However, the dataset is not significantly large. These risks may be reduced by
performing more replicated experiments across several platforms. Ultimately, despite all
of these limitations and restrictions, the results of our study provide direction for further
research into the influence of prior failure datasets on software reliability prediction using
machine learning methods.

6. Conclusions and Future Work

Software businesses must concentrate their limited SQA resources on software seg-
ments (such as source code files) that are probably problematic. Statistical or machine
learning classification approaches are used to train defect forecasting methods to recognize
fault-prone software segments. ML algorithms have varying levels of efficiency, which
might vary depending on the performance measurements used and the conditions.

This study aimed to observe how successful dagging meta-learner-based SDP models
predict software defect problems. Dagging-based classifiers and baseline classifiers, such
as NB, DT, and kNN were used on nine NASA datasets. The experimental findings
revealed that SDP models were built on dagging meta-learner beat-tested baseline classifiers
regarding accuracy, AUC, F-measure, and PRC values. Dagging_NB had an average
accuracy value of 83.75%, which is superior to baseline NB (74.93%) by +11.06%. Moreover,
Dagging_DT recorded an average accuracy value of 83.44%, which is +3.91% better than
the baseline DT (80.30%). Dagging_KNN (83.24%) had a superior average accuracy value
over baseline kNN (79.17%) by +5.14%.

Similarly, Dagging_NB had an average AUC value of 0.785, which is superior to
baseline NB (0.727) by +7.98%. Moreover, Dagging_DT recorded an average AUC value
of 0.78, which is +26% better than baseline DT (0.619). Dagging_KNN (0.777) had a
superior average accuracy value over baseline kNN (0.622) by +24.9%. Correspondingly,
Dagging_NB had an average F-measure value of 0.805, which is superior to baseline NB
(0.751) by +7.19%. Furthermore, Dagging_DT recorded an average AUC value of 0.808,
which is +1.64% better than baseline DT (0.795). Dagging_KNN (0.790) had a superior
average accuracy value over baseline kNN (0.807) by +2.15%.

Finally, it was observed that Dagging_NB had an average accuracy value of 0.853,
which is superior to baseline NB (0.820) by +4.02%. Moreover, Dagging_DT recorded
an average accuracy value of 0.847, which was +11.1% better than baseline DT (0.763).
Dagging_KNN (0.847) had a greater average F-measure rate over baseline kNN (0.767) by
+10.43%. Therefore, it can be concluded that since dagging meta-learner outperformed
baseline classifiers in terms of accuracy, AUC, F-measure, and PRC values, it may be used to
improve SDP model prediction performance and should be considered for SDP procedures.

In the future, more effective SDP approaches or processes can be developed by im-
plementing deep learning algorithms, optimization algorithms, or even dimensionality-
reduction algorithms. Several datasets can be gathered and validated by employing nu-
merous other ML techniques for defect forecasting. More research is planned to integrate
the abovementioned models with different machine learning approaches to produce pre-
diction models that can forecast software dependability more correctly and with fewer
accuracy errors.

Furthermore, we proposed the examination of recent emerging domains, such as
tabu search with simulated annealing for solving a location–protection–disruption in hub
network, dark-side avoidance of mobile applications with data biases elimination in the
socio-cyber world, etc., in which recent methods, such as tabu search and anomaly detection
will be researched in future research. Some other ML models, such as XGBoost, AdaBoost,
and LightGBM, are proposed to be implemented in the future.

Mathematics 2023, 11, 2714 16 of 18

Author Contributions: Conceptualization, A.N.B., L.B.A. and S.M.; methodology, A.N.B., L.B.A.
and S.M.; software, L.B.A.; validation, R.O.O. and S.M.; formal analysis, R.O.O.; investigation, S.M.;
resources, L.B.A.; data curation, A.N.B. and L.B.A.; writing—original draft preparation, L.B.A.;
writing—review and editing, R.O.O. and S.M.; visualization, R.O.O. and L.B.A.; supervision, S.M.,
A.N.B. and R.O.O.; project administration, A.N.B. and R.O.O.; funding acquisition, S.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset used for this study is available online at NASA MDP
Software Defect Datasets (figshare.com. Accessed on 17 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, H.; Zhu, Y.; Yin, M.; Yin, G.; Xie, L. Multimodal Fusion Convolutional Neural Network With Cross-Attention Mechanism for

Internal Defect Detection of Magnetic Tile. IEEE Access 2022, 10, 60876–60886. [CrossRef]
2. Song, Y.; Xin, R.; Chen, P.; Zhang, R.; Chen, J.; Zhao, Z. Identifying performance anomalies in fluctuating cloud environments: A

robust correlative-GNN-based explainable approach. Future Gener. Comput. Syst. 2023, 145, 77–86. [CrossRef]
3. Chen, H.; Xiong, Y.; Li, S.; Song, Z.; Hu, Z.; Liu, F. Multi-Sensor Data Driven with PARAFAC-IPSO-PNN for Identification of

Mechanical Nonstationary Multi-Fault Mode. Machines 2022, 10, 155. [CrossRef]
4. Braude, E.J.; Bernstein, M.E. Software Engineering: Modern Approaches; Waveland Press: Long Grove, IL, USA, 2016.
5. Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. Agile software development methods: Review and analysis. arXiv 2017,

arXiv:1709.08439.
6. Liu, X.; Li, Z.; Fu, X.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. Monitoring House Vacancy Dynamics in The Pearl River Delta Region: A

Method Based on NPP-VIIRS Night-Time Light Remote Sensing Images. Land 2023, 12, 831. [CrossRef]
7. Lu, S.; Ding, Y.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Multiscale Feature Extraction Fusion of Image Text in VQA. Int. J. Comput.

Intell. Syst. 2023, 16, 54. [CrossRef]
8. Liu, X.; He, J.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. A Scenario-Generic Neural Machine Translation Data Augmentation Method.

Electronics 2023, 12, 2320. [CrossRef]
9. Kumar, L.; Dastidar, T.G.; Murthy Neti, L.B.; Satapathy, S.M.; Misra, S.; Kocher, V.; Padmanabhuni, S. Deep-Learning Approach

with DeepXplore for Software Defect Severity Level Prediction. In International Conference on Computational Science and Its
Applications; Springer: Cham, Switzerland, 2021; pp. 398–410.

10. Choeikiwong, T.; Vateekul, P. Software defect prediction in imbalanced data sets using unbiased support vector machine. In
Information Science and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 923–931.

11. Kumar, L.; Misra, S.; Rath, S.K. An empirical analysis of the effectiveness of software metrics and fault prediction model for
identifying faulty classes. Comput. Stand. Interfaces 2017, 53, 1–32. [CrossRef]

12. Anand, A.; Agarwal, M.; Tamura, Y.; Yamada, S. Economic impact of software patching and optimal release scheduling. Qual.
Reliab. Eng. Int. 2017, 33, 149–157. [CrossRef]

13. Lv, Z.; Kumar, N. Software defined solutions for sensors in 6G/IoE. Comput. Commun. 2020, 153, 42–47. [CrossRef]
14. Guo, F.; Zhou, W.; Lu, Q.; Zhang, C. Path extension similarity link prediction method based on matrix algebra in directed

networks. Comput. Commun. 2022, 187, 83–92. [CrossRef]
15. Ullah, N. A method for predicting open-source software residual defects. Softw. Qual. J. 2015, 23, 55–76. [CrossRef]
16. Chen, H.; Liu, M.; Chen, Y.; Li, S.; Miao, Y. Nonlinear Lamb Wave for Structural Incipient Defect Detection with Sequential

Probabilistic Ratio Test. Secur. Commun. Netw. 2022, 2022, 9851533. [CrossRef]
17. Huang, N.; Chen, Q.; Cai, G.; Xu, D.; Zhang, L.; Zhao, W. Fault Diagnosis of Bearing in Wind Turbine Gearbox Under Actual

Operating Conditions Driven by Limited Data With Noise Labels. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [CrossRef]
18. Jimoh, R.; Balogun, A.; Bajeh, A.; Ajayi, S. A PROMETHEE based evaluation of software defect predictors. J. Comput. Sci. Its Appl.

2018, 25, 106–119.
19. Mao, Y.; Zhu, Y.; Tang, Z.; Chen, Z. A Novel Airspace Planning Algorithm for Cooperative Target Localization. Electronics 2022,

11, 2950. [CrossRef]
20. Ren, Y.; Jiang, H.; Ji, N.; Yu, H. TBSM: A traffic burst-sensitive model for short-term prediction under special events. Knowl.-Based

Syst. 2022, 240, 108120. [CrossRef]
21. Zhang, J.; Liu, Y.; Li, Z.; Lu, Y. Forecast-Assisted Service Function Chain Dynamic Deployment for SDN/NFV-Enabled Cloud

Management Systems. IEEE Syst. J. 2023, 1–12. [CrossRef]
22. Agarwal, S.; Tomar, D. Prediction of software defects using twin support vector machine. In Proceedings of the 2014 International

Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 1–2 March 2014.
23. Malhotra, R.; Sharma, A. Analyzing Machine Learning Techniques for Fault Prediction Using Web Applications. J. Inf. Process.

Syst. 2018, 14, 751–770.

figshare.com
https://doi.org/10.1109/ACCESS.2022.3180725
https://doi.org/10.1016/j.future.2023.03.020
https://doi.org/10.3390/machines10020155
https://doi.org/10.3390/land12040831
https://doi.org/10.1007/s44196-023-00233-6
https://doi.org/10.3390/electronics12102320
https://doi.org/10.1016/j.csi.2017.02.003
https://doi.org/10.1002/qre.1997
https://doi.org/10.1016/j.comcom.2020.01.060
https://doi.org/10.1016/j.comcom.2022.02.002
https://doi.org/10.1007/s11219-014-9229-3
https://doi.org/10.1155/2022/9851533
https://doi.org/10.1109/TIM.2020.3025396
https://doi.org/10.3390/electronics11182950
https://doi.org/10.1016/j.knosys.2022.108120
https://doi.org/10.1109/JSYST.2023.3263865

Mathematics 2023, 11, 2714 17 of 18

24. Garg, H. A Brief Analysis of Soft Computing Techniques in Software Fault Prediction. In Proceedings of the 2021 5th International
Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 22–23 October 2021; IEEE: New York, NY,
USA, 2021; pp. 1–7.

25. Cheng, B.; Zhu, D.; Zhao, S.; Chen, J. Situation-Aware IoT Service Coordination Using the Event-Driven SOA Paradigm. IEEE
Trans. Netw. Serv. Manag. 2016, 13, 349–361. [CrossRef]

26. Okutan, A.; Yıldız, O.T. Software defect prediction using Bayesian networks. Empir. Softw. Eng. 2014, 19, 154–181. [CrossRef]
27. Xiong, S.; Li, B.; Zhu, S. DCGNN: A single-stage 3D object detection network based on density clustering and graph neural

network. Complex Intell. Syst. 2022, 9, 3399–3408. [CrossRef]
28. Wang, B.; Zhang, Y.; Zhang, W. A Composite Adaptive Fault-Tolerant Attitude Control for a Quadrotor UAV with Multiple

Uncertainties. J. Syst. Sci. Complex. 2020, 35, 81–104. [CrossRef]
29. Tan, X.; Lin, J.; Xu, K.; Chen, P.; Ma, L.; Lau, R.W. Mirror Detection With the Visual Chirality Cue. IEEE Trans. Pattern Anal. Mach.

Intell. 2023, 45, 3492–3504. [CrossRef] [PubMed]
30. Zemmal, N.; Azizi, N.; Sellami, M.; Zenakhra, D.; Cheriguene, S.; Dey, N.; Ashour, A.S. Robust feature selection algorithm based

on transductive SVM wrapper and genetic algorithm: Application on computer-aided glaucoma classification. Int. J. Intell. Syst.
Technol. Appl. 2018, 17, 310–346. [CrossRef]

31. Chang, R.; Shen, X.; Wang, B.; Xu, Q. A novel method for software defect prediction in the context of big data. In Proceedings of
the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 10–12 March 2017; IEEE: New York,
NY, USA, 2017; pp. 100–104.

32. Yan, A.; Li, Z.; Cui, J.; Huang, Z.; Ni, T.; Girard, P.; Wen, X. LDAVPM: A Latch Design and Algorithm-based Verification Protected
against Multiple-Node-Upsets in Harsh Radiation Environments. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2022,
2022, 2069–2073. [CrossRef]

33. Lu, C.; Zheng, J.; Yin, L.; Wang, R. An improved iterated greedy algorithm for the distributed hybrid flowshop scheduling
problem. Eng. Optim. 2023, 2023, 1–13. [CrossRef]

34. Li, B.; Tan, Y.; Wu, A.; Duan, G. A distributionally robust optimization based method for stochastic model predictive control.
IEEE Trans. Autom. Control. 2021, 67, 5762–5776. [CrossRef]

35. Lyu, W.; Wang, Z. Global classical solutions for a class of reaction-diffusion system with density-suppressed motility. Electron.
Res. Arch. 2022, 30, 995–1015. [CrossRef]

36. Ghotra, B.; McIntosh, S.; Hassan, A.E. Revisiting the impact of classification techniques on the performance of defect prediction
models. In Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, Italy,
16–24 May 2015; IEEE: New York, NY, USA, 2015; Volume 1, pp. 789–800.

37. Xie, H.; Hao, C.; Li, J.; Li, M.; Luo, P.; Zhu, J. Anomaly Detection For Time Se-ries Data Based on Multi-granularity Neighbor
Residual Network. Int. J. Cogn. Comput. Eng. 2022, 3, 180–187.

38. Khurma, R.A.; Alsawalqah, H.; Aljarah, I.; Elaziz, M.A.; Damaševičius, R. An Enhanced Evolutionary Software Defect Prediction
Method Using Island Moth Flame Optimization. Mathematics 2021, 9, 1722. [CrossRef]

39. Malhotra, R.; Aggarwal, D.; Garg, P. Application of Random Vector Functional Link Network for Software Defect Prediction. In
International Conference on Emerging Trends and Technologies on Intelligent Systems; Springer: Singapore, 2021; pp. 127–143.

40. Jin, C. Software defect prediction model based on distance metric learning. Soft Comput. 2021, 25, 447–461. [CrossRef]
41. Wang, K.; Liu, L.; Yuan, C.; Wang, Z. Software defect prediction model based on LASSO–SVM. Neural Comput. Appl. 2021,

33, 8249–8259. [CrossRef]
42. Kumar, K.S.M. Software Defect Prediction with Fuzzy Logic. Ph.D. Thesis, Auburn University, Auburn, Alabama, 2020.
43. Akintola, A.G.; Balogun, A.O.; Lafenwa-Balogun, F.B.; Mojeed, H.A. Comparative Analysis of Selected Heterogeneous Classifiers

for Software Defects Prediction Using Filter-Based Feature Selection Methods. FUOYE J. Eng. Technol. 2018, 3, 134–137. [CrossRef]
44. Ranveer, S.; Hiray, S. Comparative analysis of feature extraction methods of malware detection. Int. J. Comput. Appl. 2015,

120, 1–7. [CrossRef]
45. Laradji, I.H.; Alshayeb, M.; Ghouti, L. Software defect prediction using ensemble learning on selected features. Inf. Softw. Technol.

2015, 58, 388–402. [CrossRef]
46. He, P.; Li, B.; Liu, X.; Chen, J.; Ma, Y. An empirical study on software defect prediction with a simplified metric set. Inf. Softw.

Technol. 2015, 59, 170–190. [CrossRef]
47. Ogundokun, R.O.; Awotunde, J.B.; Sadiku, P.; Adeniyi, E.A.; Abiodun, M.; Dauda, O.I. An Enhanced Intrusion Detection System

using Particle Swarm Optimization Feature Extraction Technique. Procedia Comput. Sci. 2021, 193, 504–512. [CrossRef]
48. Kaur, G.; Chhabra, A. Improved J48 classification algorithm for the prediction of diabetes. Int. J. Comput. Appl. 2014, 98, 13–17.

[CrossRef]
49. Patra, S.K.; Prasad, C.S.C.S. A Survey of Different Classification Techniques and Their Comparison Using Mc Nemar’s Test. Ph.D.

Thesis, National Institute of Technology, Rourkela, India, 2013.
50. Ogundokun, R.O.; Misra, S.; Ogundokun, O.E.; Oluranti, J.; Maskeliunas, R. Machine learning classification based techniques for

fraud discovery in credit card datasets. In Applied Informatics, Proceedings of the Fourth International Conference, ICAI 2021, Buenos
Aires, Argentina, 28–30 October 2021; Springer: Cham, Switzerland, 2021; pp. 26–38.

https://doi.org/10.1109/TNSM.2016.2541171
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1007/s40747-022-00926-z
https://doi.org/10.1007/s11424-022-1030-y
https://doi.org/10.1109/TPAMI.2022.3181030
https://www.ncbi.nlm.nih.gov/pubmed/35687623
https://doi.org/10.1504/IJISTA.2018.094018
https://doi.org/10.1109/TCAD.2022.3213212
https://doi.org/10.1080/0305215X.2023.2198768
https://doi.org/10.1109/TAC.2021.3124750
https://doi.org/10.3934/era.2022052
https://doi.org/10.3390/math9151722
https://doi.org/10.1007/s00500-020-05159-1
https://doi.org/10.1007/s00521-020-04960-1
https://doi.org/10.46792/fuoyejet.v3i1.178
https://doi.org/10.5120/21220-3960
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1016/j.infsof.2014.11.006
https://doi.org/10.1016/j.procs.2021.10.052
https://doi.org/10.5120/17314-7433

Mathematics 2023, 11, 2714 18 of 18

51. Croce, P.R.; Júnior, R.G.D.S.V.; da Hora, H.R.M.; de Assis Rangel, J.J. South America Energy Matrix: A Decision Tree Approach.
Available online: https://www.researchgate.net/profile/Paulo-Rossi-3/publication/346577865_SOUTH_AMERICA_ENERGY_
MATRIX_A_DECISION_TREE_APPROACH/links/5fc84835a6fdcc697bd79c07/SOUTH-AMERICA-ENERGY-MATRIX-A-
DECISION-TREE-APPROACH.pdf (accessed on 17 June 2021).

52. Ogundokun, R.O.; Arowolo, M.O.; Misra, S.; Damasevicius, R. An Efficient Blockchain-Based IoT System Using Improved KNN
Machine Learning Classifier. In Blockchain Based Internet of Things; Springer: Singapore, 2022; pp. 171–180.

53. Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN model-based approach in classification. In On the Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE, Proceedings of the OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2003, Catania, Sicily, Italy, 3–7 November 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 986–996.

54. Liao, Y.; Vemuri, V.R. Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 2002, 21, 439–448. [CrossRef]
55. Gbadamosi, B.; Ogundokun, R.O.; Adeniyi, E.A.; Misra, S.; Stephens, N.F. Medical Data Analysis for IoT-Based Datasets in the

Cloud Using Naïve Bayes Classifier for Prediction of Heart Disease. In New Frontiers in Cloud Computing and Internet of Things;
Springer: Cham, Switzerland, 2022; pp. 365–386.

56. Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714.
57. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM

SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
58. Oladele, T.O.; Ogundokun, R.O.; Kayode, A.A.; Adegun, A.A.; Adebiyi, M.O. Application of data mining algorithms for feature

selection and prediction of diabetic retinopathy. In Computational Science and Its Applications–ICCSA 2019, Proceedings of the 19th
International Conference, Saint Petersburg, Russia, 1–4 July 2019; Proceedings, Part V 19; Springer: Cham, Switzerland, 2019; pp.
716–730.

59. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Hashim, A.S. Performance analysis of feature selection methods in software defect
prediction: A search method approach. Appl. Sci. 2019, 9, 2764. [CrossRef]

60. Arlot, S.; Lerasle, M. Choice of V for V-fold cross-validation in least-squares density estimation. J. Mach. Learn. Res. 2016,
17, 7256–7305.

61. Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In
Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February
2016; IEEE: New York, NY, USA, 2016; pp. 78–83.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.researchgate.net/profile/Paulo-Rossi-3/publication/346577865_SOUTH_AMERICA_ENERGY_MATRIX_A_DECISION_TREE_APPROACH/links/5fc84835a6fdcc697bd79c07/SOUTH-AMERICA-ENERGY-MATRIX-A-DECISION-TREE-APPROACH.pdf
https://www.researchgate.net/profile/Paulo-Rossi-3/publication/346577865_SOUTH_AMERICA_ENERGY_MATRIX_A_DECISION_TREE_APPROACH/links/5fc84835a6fdcc697bd79c07/SOUTH-AMERICA-ENERGY-MATRIX-A-DECISION-TREE-APPROACH.pdf
https://www.researchgate.net/profile/Paulo-Rossi-3/publication/346577865_SOUTH_AMERICA_ENERGY_MATRIX_A_DECISION_TREE_APPROACH/links/5fc84835a6fdcc697bd79c07/SOUTH-AMERICA-ENERGY-MATRIX-A-DECISION-TREE-APPROACH.pdf
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.3390/app9132764

	Introduction
	Related Works
	Materials and Methods
	Data Description
	Proposed Models Implemented
	Decision Tree (DT)
	K-Nearest Neighbor (KNN)
	Naïve Bayes (NB)
	Waikato Environment for Knowledge Analysis (WEKA)

	Motivations for Using the Proposed Models
	Proposed Architecture

	Results and Discussion
	Threats to Validity
	Conclusions and Future Work
	References

