

Master’s Thesis 2023 30 ECTS

Faculty of Science and Technology

Computer Vision for Fish

Monitoring: Challenges and

Possibilities

Mikal Breiteig

MSc Data Science

Preface

This thesis finalizes my master’s degree at the Norwegian University of Life Science (NMBU).
The work on this thesis started in January 2023 and the entire experience has been enriching,
educational, and memorable.

First and foremost, I would like to express my heartfelt appreciation to my supervisor, Prof.
Kristian Liland, and my co-supervisors, PhD. Lars Erik Solberg and PhD. Santhosh Kumaran.
Their guidance, expertise, and unwavering support throughout the entire process have been
invaluable in shaping the outcome of this thesis. Additionally, I would also like to express my
deep appreciation to Jens Kristian Røed Holmboe for the engaging discussions that have been
a great source of motivation.

Furthermore, I would like to express my sincere gratitude to Christopher Noble for his generous
provision of the dataset from the ”FASTWELL” and ”INSIGHT” research projects financially
supported by the Research Council of Norway. The invaluable contribution of this dataset has
played a significant role in the successful execution of this thesis.

Finally, I would like to thank my family and friends for their unwavering support and encour-
agement. These years at NMBU have been an unforgettable experience, and I am grateful for
everyone who has contributed to making it so.

Mikal Breiteig

Ås, May 15, 2023

Abstract

This master’s thesis focuses on the evaluation and exploration of detection and tracking algo-
rithms for fish in a dense underwater environment. The primary objectives were to achieve
precise and accurate fish detection and to track fish over an extended period. The thesis ex-
plores the performance of two object detection algorithms, YOLOv4 and YOLOv8, as well as
their integration with the DeepSORT tracking algorithm. The algorithms were trained and
evaluated using a dataset collected from a densely populated underwater fish tank. The dataset
was manually annotated using bounding box annotation techniques to accurately label the ob-
jects of interest.

The results demonstrated the effectiveness of both YOLOv4 and YOLOv8 in detecting fish in
densely populated environments. However, YOLOv8 achieved a significantly higher mAP50-95
score, indicating better localization and detection accuracy. It proved more adept at precisely
locating the position of detected fish, leading to improved overall detection performance.

In terms of fish tracking the combination of DeepSORT and YOLOv8 showed the best overall
performance, as evidenced by higher MOTA and IDF1 scores, and lower MOTP scores. How-
ever, tracking individual fish over extended periods presented challenges due to occlusions and
rapid trajectory changes, leading to a high number of identity switches.

By evaluating and exploring the effectiveness of detection and tracking algorithms, this the-
sis contributes to the advancement of fish monitoring techniques in aquaculture. The findings
provide valuable insights into the performance of YOLOv4 and YOLOv8 and the potential of
DeepSORT for accurate and reliable fish detection and tracking. The results and methodolo-
gies presented in this study lay the groundwork for further research and development in the
field, aiming to enhance fish welfare, optimize resource management, and improve efficiency in
aquaculture practices.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Structure of the thesis . 3

2 Theory 4
2.1 Deep Learning Theory . 5

2.1.1 The Perceptron . 5
2.1.2 Multi-Layer Neural Network . 5
2.1.3 Optimization: Backpropagation and Gradient Descent 7
2.1.4 Convolutional Neural Network (CNN) . 8
2.1.5 Transfer Learning . 11

2.2 Object Detection and YOLOv4 and YOLOv8 Detectors 11
2.2.1 Object Detection: An Overview . 11
2.2.2 YOLOv4: Architecture and Features . 13
2.2.3 YOLOv8: Architecture and Features . 15

2.3 Object Tracking and DeepSORT . 18
2.3.1 Object Tracking: An Overview . 18
2.3.2 Object Tracking with DeepSORT . 19

2.4 Evaluation Metrics . 21
2.4.1 Metrics for Object Detection . 21
2.4.2 Metrics for Object Tracking . 23

3 Method 26
3.1 Software and Hardware . 27
3.2 Dataset . 27
3.3 Data Annotation . 28

3.3.1 Guideline for annotation . 30
3.3.2 YOLO data format . 31

3.4 YOLOv4 . 32
3.4.1 YOLOv4 Model Training . 32

3.5 YOLOv8 . 33
3.5.1 YOLOv8 Model Training . 33

3.6 DeepSORT . 33
3.6.1 Hyperparameters in DeepSORT . 34

3.7 Evaluation using MOTMetrics . 34

iv

CONTENTS CONTENTS

4 Results 36
4.1 Quantitative Analysis . 36

4.1.1 Quantitative Analysis of Detection Performance 36
4.1.2 Quantitative Analysis of Tracking Performance 38

4.2 Qualitative Analysis . 41
4.2.1 Qualitative Analysis of Detection Performance 41
4.2.2 Qualitative Analysis of Tracking Performance 42

5 Discussion 48
5.1 Future Work . 50

6 Conclusion 53

A Requirements 58
A.1 YOLOv4 Requirements . 58
A.2 YOLOv8 requirement . 58
A.3 DeepSORT Requirements . 59

B Default Hyperparameters for YOLOv4 60

C Default Hyperparameters for YOLOv8 61

D Default Hyperparameters for DeepSORT 62

E Modify DeepSORT code 63

F MOTMetrics code 64

G YOLOv8 Data Augmentation 66

H Detections: Differences in Localization 68

v

List of Figures

2.1 Overview of Artificial intelligence hierarchy. 4
2.2 The architecture of Rosenlatts Perceptron. Input signals, along with their re-

spective weights, contribute to a weighted sum that is subsequently directed to
an activation function (f). Figure inspired by Raschka [17]. 5

2.3 The figure illustrates the structure of a Multi-Layer Perceptron (MLP) neural
network. The particular MLP consists of an input layer, a hidden layer, and an
output layer. Each layer contains a set of units that are connected to units in
the previous and following layers. The units in the hidden and output layers
calculate the weighted sum that is passed to an activation function, transforming
the input data. The weights between the units in each layer are adjusted during
the training process to optimize the network’s performance on a specific task. . . 6

2.4 Sigmoid and ReLU activation functions and their derivatives. The derivatives
are useful during backpropagation. 7

2.5 Illustration of the backpropagation process, where predictions from the output
layer are compared to ground truth labels using a loss function, resulting in error
scores that guide the subsequent update of model weights to minimize prediction
errors. 7

2.6 The figure illustrates a CNN used on an image. It consists of multiple layers,
including convolutional layers, pooling layers, and fully connected layers. Figure
inspired by Raschka [17]. 9

2.7 A convolutional operation with a 3x3 input feature map with padding. The filter
matrix has dimension 3x3 and uses a stride of 2 to return a feature map with
dimension 2x2. 9

2.8 Max pooling with a 2x2 filter and stride of 2. Figure inspired by Saravia [27]. . . 10
2.9 The figure shows an example of a non-sequential connection. 11
2.10 The provided illustration depicts the contrast between two approaches for object

detection, namely anchor-based and anchor-free. The true boundary of the object
is represented with a red rectangle, while the green rectangle represents the pre-
defined anchor. Moreover, the blue lines indicate the deviations. Figure inspired
by [36]. 12

2.11 The figure illustrates YOLOv4 architecture with CSPDarknet53 as Backbone,
PANet as the Neck, and three detection heads. 13

2.12 The figures display a comparison between the frame before and after annotation.
The annotated bounding boxes are represented by solid lines, while the dotted
lines indicate occluded objects. 14

2.13 The architecture of YOLOv8 object detector created by the GitHub user RangeK-
ing. 16

2.14 The figure illustrates the SiLu activation function and its derivative. 17

vi

LIST OF FIGURES LIST OF FIGURES

2.15 Visual representation of tracking-by-detection using DeepSORT as the object
tracking algorithm. The detections obtained for each frame are used as input to
the tracking part of the tracking algorithm, which performs data association and
creates trajectories for the detected objects. 18

2.16 The figure illustrates the Kalman filter utilizing the Mahalanobis distance. The
Kalman filter is used in DeepSORT to estimate the state of the tracked objects
by incorporating both the current detection and the historical motion information. 20

2.17 The Deep Appearance descriptor utilizes the cosine distance to measure the sim-
ilarity between the detection and tracks. 20

2.18 DeepSORT combines the Kalman filter and the appearance descriptor to con-
struct an assignment problem. 21

2.19 Definition of IOU. 21
2.20 The figure illustrates the relationship between the IOU threshold and the true

positive (TP), false positive (FP), and false negative (FN) detections. The de-
tections are evaluated using a confidence threshold of 0.5. 22

3.1 Illustration of the technical workflow of this thesis. 26
3.2 The figures depict raw data from Channel 6 and Channel 3, illustrating the

differences in the environmental conditions between the two channels. 29
3.3 The figures display a comparison between the frame before and after annotation.

The annotated bounding boxes are represented by solid lines, while the dotted
lines indicate occluded objects. 29

3.4 Images illustrating examples from the annotation guideline. 30
3.5 Figure (a) displays the individual frames and Figure (b) shows the corresponding

text files on YOLO format. 31
3.6 The folder structure output from RoboFlow. To ensure accurate matching of

bounding box annotations with their respective images during training and vali-
dation, it is important that each image file has a corresponding text file with the
same filename. 31

3.7 For a tracking-by-detection algorithm, a detection algorithm is required to detect
objects before the DeepSORT tracking stage assigns unique identities to each
detected object. 34

3.8 The figure illustrates an evaluation between a ground truth file from the ground
truth folder and a corresponding frame from the output DeepSORT folder. . . . 35

4.1 The training loss and validation loss curves for YOLOv4 and YOLOv8 are de-
picted in Figure (a) and Figure (b), respectively. 37

4.2 The mAP50 and mAP50-95 scores for YOLOv4 and YOLOv8 are shown in Figure
(a) and Figure (b), respectively. 38

4.3 Figure (a) shows the ground truth annotation for frame 3 in Channel 3, while
Figures (b) and (c) display the output from DeepSORT using YOLOv4 and
YOLOv8, respectively. 42

4.4 Figure (a-c) depicts instances where occlusion handling in tracking with YOLOv4
failed, resulting in inaccurate track associations. In Figure (d-f), similar chal-
lenges are observed in occlusion handling with YOLOv8. 43

4.5 In (a-c) the tracking with YOLOv4 demonstrates the correct re-assignment of the
occluded fish to the identity 36. Likewise, in (d-f), the tracking with YOLOv8
successfully maintains the identity 38 for the fish after it undergoes occlusion. . . 44

4.6 (a-c) highlights the multiple identity switches experienced by YOLOv4, indicating
a less consistent performance in maintaining object identities, while Figure (d-f)
illustrates YOLOv8’s successful preservation of the fish’s identity (identity 303)
during the occlusion period . 45

vii

LIST OF FIGURES LIST OF FIGURES

4.7 Figure (a-c) illustrates several identity switches for the fish with an initial identity
of 41 when using DeepSORT with YOLOv4. In contrast, Figure (d-f) shows that
the fish successfully retains its identity as 30 when DeepSORT is combined with
YOLOv8. 46

4.8 Figures (a-c) depict three instances of identity switches for the fish initially as-
signed identity 75 during tracking with DeepSORT and YOLOv4. Figures (d-f)
illustrate a shift in identity during a trajectory change for fish 89, using Deep-
SORT integrated with YOLOv8. 47

G.1 Illustration of data augmentation in the training process. 66
G.2 Illustration of data augmentation in the training process. 67

H.1 Ground truth vs. YOLOv4 vs YOLOv8. The bounding boxes are highlighted for
more visibility. 68

H.2 Ground truth vs. YOLOv4 vs YOLOv8. 69
H.3 Ground truth vs. YOLOv4 vs YOLOv8. 69
H.4 Ground truth vs. YOLOv4 vs YOLOv8. 69

viii

List of Tables

2.1 Confusion Matrix . 22

3.1 While training the detectors, the Google Colab Pro version was employed, uti-
lizing the Tesla A100-SXM4-40GB. However, for inference, the standard Google
Colab with Tesla T4 was used to avoid exhausting the limits of the Pro version. . 27

3.2 The table presents a summary of the video channels and their corresponding
durations used in this study. The first 35 seconds of Channel 6 were utilized as
training (875 frames) and the subsequent 5 seconds were utilized as a validation
set (125 frames). The remaining 10-second segment from the same channel was
used as a test set, comprising 250 frames. Additionally, a 10-second video from
Channel 3 was employed as a second test set, containing another 250 frames. . . 28

4.1 The table presents the detection metrics for the validation set during training,
and the two previously unseen test sets during inference. 38

4.2 Tracking performance using DeepSORT combined with YOLOv4 and YOLOv8
on video data from Channel 3 and Channel 6 using default parameters. 39

4.3 Tuning the hyperparameters to optimize the DeepSORT tracking algorithm uti-
lizing YOLOV4 on the Channel 3 test set was carried out with the default hy-
perparameter performance as the reference point. The percentage indicates the
change in performance relative to the reference point. 40

4.4 Tuning the hyperparameters to optimize the DeepSORT algorithm utilizing YOLOv8
on the Channel 3 test set was conducted with the default hyperparameter per-
formance as the reference point. 40

5.1 The table illustrates the performance differences between ByteTrack and Deep-
SORT utilize the same YOLOv8 object detector. 50

A.1 YOLOv4 requirements to run training process. 58
A.2 YOLOv8-packages used during model training. 58
A.3 Requirements for running inference with DeepSORT. 59

B.1 YOLOv4 and its default hyperparameters during training. 60

C.1 YOLOv8 and its default hyperparameters during training. 61

D.1 DeepSORT and its default hyperparameters. 62

ix

Chapter 1
Introduction

1.1 Background

Ethical and humane treatment of fish has become increasingly important to customers in recent
years, as noted by Conte [1] and Aas-Hansen et al. [2]. Customers are gradually looking for
seafood produced in a sustainable and responsible way, which has increased focus on making
sure that fish farming methods adhere to these values. Consumers are calling for more industry
transparency as they become more conscious of the ethical and environmental effects of seafood
production [1] [3]. By placing a higher priority on fish welfare and ethical practices the aquacul-
ture industry can meet the needs of consumers while also advancing sustainability and ethical
fish production.

The pursuit of ethical fish production is not solely driven by customers; it is also aligned with
the United Nations’ sustainability goal of “Life Below Water” The objective of this goal is to
preserve and utilize the oceans, seas, and marine resources in a responsible manner [4]. By
prioritizing fish welfare in aquaculture, the industry can promote sustainable and responsible
fish production that supports this global goal.

Farming fish in an ethical and humane manner is widely recognized as a lucrative business [2].
Thus, enhancing the welfare of fish in aquaculture also has economic implications. Implement-
ing effective and humane farming practices can reduce stress and makes the fish less vulnerable
to diseases, resulting in a positive impact on the fish’s overall health and well-being [5]. Con-
sequently, they require fewer medications and treatments, exhibit improved growth rates, and
yield a better quality product [5]. Prioritizing animal health can therefore result in increased
revenue, expanded market opportunities, and an improved reputation for the industry. As a
result, improving fish welfare is also a sound economic investment, and it is a crucial step for
achieving sustainable and responsible fish production that supports the UN’s sustainability goal.

The success story of fish farming in Norway is recognized as an impressive achievement in the
aquaculture industry. The Norwegian government enacted the “Dyrevelferdsloven” Act to gov-
ern animal welfare in the country, which includes all types of farmed fish [6]. The Norwegian
Food Authority (Mattilsynet) is responsible for overseeing the proper and humane treatment
of fish and other aquatic animals in accordance with the act. In their published report “Fiske-
helserapporten 2021”, the Norwegian Veterinary Institute (Veterinærinstituttet) stated that
the “dødfisk” (fish mortality) metric, which measures fish mortality during farming, is the most
commonly reported and utilized welfare indicator in the industry [6]. However, measuring and
documenting the progress of fish welfare improvement is a complex task, and it is important to
realize that the concept of welfare extends beyond simply preventing fish from dying. Hence,

1

there is a need to explore further indicators that can provide insight into fish welfare during the
farming process, thus enabling a more comprehensive understanding of the overall health and
well-being of the fish.

In 2018, Noble et al. [7] published a handbook to assist farmers in evaluating fish welfare. The
handbook covers various indicators categorized into two groups: animal-based indicators and
environment-based indicators. Animal-based indicators include appetite, behavior, growth, and
diseases, while environment-based indicators include water quality and lighting, among oth-
ers[7]. The mortality rate indicator referred to earlier falls under the category of animal-based
indicators. While some indicators can be visually observed, others require human intervention.
Today, many farmers use underwater cameras to manually observe the behavior of fish through
video, but this method can be inefficient and prone to inaccuracies due to limited visibility,
fish occlusion, and the time-consuming nature of the process. Additionally, extracting objective
information from these observations can be challenging due to the subjective nature of human
interpretation.

In recent years, artificial intelligence has made significant advancements in computer vision,
a field of study enabling computers to learn from visual data. This progress opens up the
possibility of leveraging this technology to increase fish welfare by monitoring individual fish
and how they interact with the environment. Utilizing computer vision can facilitate the real-
time collection and analysis of numerous welfare indicators, hence, providing valuable insight
into fish welfare. As the industry moves towards greater sustainability and efficiency, enhancing
the level of autonomy will be crucial. To observe and monitor farmed fish, deep-learning-based
computer vision techniques offer significant potential, as evidenced by previous research in the
field. As discussed by Yang et al. [8], various computer vision techniques can be used to aid in
fish species classification [9], counting [10] [11], and behavioral analysis [12] among others.

1.2 Problem Statement

Nofima, a leading Norwegian research institute for food and aquaculture, is exploring the po-
tential of using computer vision to assess fish welfare without altering the environment. This
technology has the potential to provide non-invasive, real-time monitoring of fish behavior and
welfare, allowing farmers to make informed decisions on fish health. It is important to note
that not all operational welfare indicators can be feasibly assessed using video alone. How-
ever, behavioral indicators can be effectively measured using computer vision technology, as
fish behavior is closely tied to their overall welfare. For example, swimming patterns, feeding
behaviors, and social interactions can all provide valuable insight into fish welfare. By analyzing
these behavioral indicators, farmers can detect any abnormal responses to the environment and
potential health issues.

By minimizing disturbance to the fish, this technology could improve the accuracy and relia-
bility of welfare assessment. Such insights into fish welfare can be leveraged to develop more
effective strategies for achieving optimal living conditions, leading to more efficient and sustain-
able fish farming practices. While still in its early stages of use in aquaculture, the potential of
computer vision technology to enhance fish welfare cannot be overlooked.

Building upon the potential of computer vision technology in aquaculture, the primary aim of
this thesis is to identify and track fish in a dense aquatic environment over an extended period.
This project may be part of a larger effort to utilize artificial intelligence for real-time event
detection in fish tanks, such as attacks, flights, flashes, or bites. However, the specific goals of
this project thesis will be focusing on achieving the following objectives sequentially:

Page 2 of 70

1. Detect individual fish in a dense aquatic environment with high precision and accuracy
utilizing computer vision.

2. Track individual fish over an extended period based on computer vision in the same dense
environment.

From a computer vision perspective, the primary difficulty in detecting and tracking fish in a
dense environment lies in the complex and dynamic nature of fish behavior. Fish can exhibit
unpredictable movement patterns, sudden changes in direction, and visual obstruction of other
fish, which can make it challenging for object detection algorithms to accurately identify and
track. Furthermore, the appearance of fish can vary based on factors such as lighting, water
quality, and camera placement, which can affect the performance of the algorithms.

In this preliminary attempt to employ computer vision technology for detecting and tracking
fish, Nofima does not have a sufficient foundation to select a specific threshold. Therefore,
the primary aim of this thesis is to attain precise object detection accuracy and to achieve
long-duration tracking, while acknowledging that the requisite level of performance may vary
based on the environment. To detect fish, the object detection algorithms YOLOv4 [13] and
YOLOv8 [14] have been selected. To track fish over an extended period, these algorithms will be
integrated with the DeepSORT [15] algorithm, recognized for its high accuracy in multi-object
tracking (MOT). The outcomes of the algorithms will be presented and contrasted in Chapter 4.

The datasets used in this thesis were generously provided by Christopher Noble at Nofima,
and consist of between 30 and 40 salmon. These datasets were collected in 2021 and the video
frames from the datasets were analyzed using the aforementioned computer vision algorithms,
which will be further detailed in subsequent chapters. The dataset is concurrently being used in
another master’s thesis to explore computer vision applications using Detectron2 and YOLOV8
as detectors and ByteTrack [16] as the tracking algorithm. The choice to use this particular
dataset allows for a direct comparison of our findings, enabling a deeper understanding of the
challenges and potential solutions in computer vision used in aquatic settings.

Furthermore, the main contribution of this master’s thesis lies in the exploration and evalua-
tion of the performance of algorithms in the context of detecting and tracking fish in a dense
environment. Due to a lack of open knowledge in this application, this research endeavors to
bridge the gap by thoroughly examining the feasibility of employing computer vision for such a
task. This thesis serves as a foundation for further research on the unique challenge presented
by detecting and tracking fish and contributes to the goal of improving fish welfare.

1.3 Structure of the thesis

The structure of the following chapters is as follows. Chapter 2 provides an overview of the
theoretical background relevant to this thesis. Chapter 3 presents the methodology used during
object detection and object tracking. Chapter 4 presents and compares the results. Chapter 5
discusses these results and suggests future work. The results are summarized and concluded in
Chapter 6.

Page 3 of 70

Chapter 2
Theory

Machine learning, a branch of artificial intelligence, aims to create algorithms that enable com-
puters to learn without being explicitly programmed. Such self-learning algorithms that utilize
data to derive knowledge are employed to enhance performance during prediction [17]. Machine
learning can be categorized into three main categories: supervised learning, unsupervised learn-
ing, and reinforcement learning [17]. Supervised learning is the focus of this thesis and aims to
train a model that can make accurate predictions on new and unseen data [17]. To achieve this,
labeled training data is utilized through a data annotation process. Accurate data annotation
is essential to secure a generalized model on unseen data. The training process of a supervised
learning algorithm uses feedback to iteratively adjust the model’s parameters to minimize the
difference between the predicted output and the ground truth of the training data.

Figure 2.1: Overview of Artificial intelligence hierarchy.

Deep Learning, a branch of machine learning, utilizes artificial neural networks (ANNs) to an-
alyze data and make predictions [17]. The fundamental idea behind ANNs is based on how
the human brain functions to solve complex problems [17]. Due to the recent advancements in
computing infrastructure and the availability of large amounts of training data, deep learning
has become increasingly popular. These advancements have led to significant breakthroughs
in various domains, including natural language processing, speech recognition, and computer
vision.

In light of these advancements, this chapter aims to establish a theoretical framework that
serves as a foundation for this thesis. To achieve this, the chapter delves into the fundamental

4

concepts related to deep learning. Furthermore, it provides an overview of the inner workings
of the YOLOv4 and YOLOv8 object detection algorithms, as well as the DeepSORT tracking
algorithm. Finally, the chapter outlines the evaluation metrics that will be utilized to assess
the performance of the models in the context of fish detection and tracking.

2.1 Deep Learning Theory

2.1.1 The Perceptron

In 1958, Frank Rosenblatt introduced the concept of the Perceptron, an advancement of the
earlier McCulloch-Pitts (MCP) neuron model [18]. The MCP neuron was an initial endeavor to
comprehend the biological brain’s functionality with the objective of developing artificial intel-
ligence [19]. Building upon the foundation laid by the MCP neuron, the Perceptron is designed
to learn from a set of examples and adapt its weights in order to minimize the discrepancy
between its predicted output and the actual ground truth output.

Figure 2.2: The architecture of Rosenlatts Perceptron. Input signals, along with their respective
weights, contribute to a weighted sum that is subsequently directed to an activation function
(f). Figure inspired by Raschka [17].

As stated in the article by Rosenblatt, the fundamental requirement for the Perceptron is its
capacity to recognize patterns that display considerable similarities or are connected through
experimental evidence. This mechanism resembles the psychological concepts of “association”
and “stimulus generalization” [18]. The Perceptron must be capable of recognizing the “same”
object despite changes in orientation, size, color, or transformation, as well as against diverse
backgrounds [18]. Today, such neurons hold a vital position in the field of deep learning, as they
serve as the foundational building blocks for constructing ANNs that can effectively process and
learn from vast amounts of data. ANNs have become a key technology in a wide range of fields,
and ongoing research continues to push the boundaries of what is possible with this powerful
technology.

2.1.2 Multi-Layer Neural Network

In ANNs, a neuron is referred to as a unit or a node. A single layer in the network consists of
several of these units receiving the same input, but are differentiated by their weights. Indi-
vidually, each unit has limited efficacy, producing only a single numerical value [20]. However,
the true power of the system emerges when multiple units are combined into a single layer,

Page 5 of 70

as exemplified by the Multi-Layer Perceptron (MLP) illustrated in Figure 2.3. The MLP is a
type of fully-connected ANN that utilizes the concept of aggregating units into layers. It repre-
sents the basic architecture of a neural network with an input layer, at least one hidden layer,
and an output layer. If the MLP contains multiple hidden layers it is referred to as a deep ANN.

Figure 2.3: The figure illustrates the structure of a Multi-Layer Perceptron (MLP) neural
network. The particular MLP consists of an input layer, a hidden layer, and an output layer.
Each layer contains a set of units that are connected to units in the previous and following
layers. The units in the hidden and output layers calculate the weighted sum that is passed to
an activation function, transforming the input data. The weights between the units in each layer
are adjusted during the training process to optimize the network’s performance on a specific
task.

In a neural network, the input signals get processed through the network to form a predic-
tion. The weighted sum for each unit is computed, with the following equation illustrating the
calculation for the first unit in the hidden layer, denoted as zh1 :

zh1 = x1 · wh
1,1 + x2 · wh

2,1 + x3 · wh
3,1 + bh1 (2.1)

The term zh1 denotes the weighted sum associated with neuron, while bh1 represents the corre-
sponding bias. Inside the neuron, a non-linear activation function typically controls the cal-
culated weighted sum. The inclusion of the bias term in the activation function allows for
horizontal shifting, providing the model with greater flexibility to capture diverse patterns and
relationships in the data [21]. The activation function takes the weighted sum as its input and
computes its value accordingly:

ah1 = ϕ(zh1) (2.2)

Various activation functions can be employed depending on the specific scenario and the desired
properties of the network. Figure 2.4 illustrates the graphical representation of Sigmoid and
ReLu activation functions, along with their corresponding derivatives [22].

Page 6 of 70

Figure 2.4: Sigmoid and ReLU activation functions and their derivatives. The derivatives are
useful during backpropagation.

2.1.3 Optimization: Backpropagation and Gradient Descent

Figure 2.5: Illustration of the backpropagation process, where predictions from the output layer
are compared to ground truth labels using a loss function, resulting in error scores that guide
the subsequent update of model weights to minimize prediction errors.

An ANN process input signals to generate a prediction, which is then evaluated against the
ground truth using a loss function. An optimization strategy is applied to fine-tune the network’s
parameters, ultimately improving prediction accuracy. The error or loss associated with the
output layer can be expressed as:

δ[out] = a[out] − y = Ŷ − y (2.3)

where a(out) is the activation signal of the output layer and y is the ground truth. Backpropa-
gation is an optimization technique that efficiently adjusts a network’s parameters (weights and
biases) to minimize loss by leveraging the error vector, δ[out]. It utilizes the widely used gradient
descent optimization algorithm to refine the parameters and decrease the loss. Backpropaga-
tion is a technique for computing the negative gradient of the loss function, which measures
the difference between the predicted and ground truth values [23]. The chain rule displayed
in Equation 2.4, a fundamental principle in calculus, is used to calculate the partial derivative
of the loss function with respect to each parameter. In backpropagation, this is achieved by

Page 7 of 70

multiplying a series of partial derivatives to propagate errors back through the network to the
input layer. This allows for efficient parameter updates and improves the performance of the
ANN.

d

dx
[f(g(x))] =

df

dg
· dg
dx

(2.4)

During each iteration of the data, called an epoch, the δ[out] is used to propagate the error
back through the network and compute the gradients concerning each parameter. As seen in
Equation 2.5, the magnitude of each parameter’s adjustment is scaled by a learning rate (η),
which controls the step size of the update at each iteration. The “J” in the equation represents
the loss function.

w := w +∆w,where ∆w = −ηJ(w) (2.5)

Referring to Figure 2.5, the partial derivative of the weight associated with the a
[h2]
1 node (red

line) can be calculated as follows:

∂

∂w
[out]
1,1

J(W) = a
[h2]
1 δ

[out]
1 (2.6)

where δ
[out]
1 is the error term for the output node. The parameters are then iteratively adjusted

from the output layer toward the input layer, passing through each hidden layer, to improve
the prediction. This process continues until the model converges to an optimal solution.

The principles of backpropagation are employed in numerous forms of ANNs. In the following
section, we will introduce a particular type of neural network inspired by the human brain,
known as Convolutional Neural Networks (CNNs). These networks excel at processing images
and videos, making them ideal for computer vision tasks.

2.1.4 Convolutional Neural Network (CNN)

As humans, our perceptual faculties enable us to understand the three-dimensional world in
which we exist. This capability stems from the seamless interaction between our eyes and brain,
which work collaboratively to understand visual information. In the field of computer vision, this
phenomenon is replicated using deep learning and ANNs, which aim to mimic the cooperative
behavior of the human visual system. With the advancement of computing technology, computer
vision is now capable of handling and analyzing extensive visual data. This technology finds
its use in several areas, including autonomous driving [24], security systems [25], and medical
imaging [26].

One of the most influential developments in deep learning for computer vision has been the
introduction of Convolutional Neural Networks (CNNs). CNNs are a family of models that
stems from the way the human visual cortex recognizes objects [17]. It is a type of ANN and is
particularly proficient at performing image analysis tasks with high accuracy. The benefits of
CNNs include their ability to recognize patterns regardless of their location in the image, due
to their translation invariance, and to efficiently learn complex and abstract visual concepts
through the use of spatial hierarchies of patterns [21]. Unlike MLP, which relies on fully con-
nected layers where each unit in a layer connects to all the units in the adjacent layers, CNNs

Page 8 of 70

are constructed using a combination of convolutional, pooling, and fully connected layers, as
seen in Figure 2.6.

Figure 2.6: The figure illustrates a CNN used on an image. It consists of multiple layers,
including convolutional layers, pooling layers, and fully connected layers. Figure inspired by
Raschka [17].

Convolutional Layer

A convolutional layer is a fundamental component in CNNs used for processing input signals,
such as images or videos. In these networks, the initial layers focus on extracting low-level
features, such as edges and blobs, which are subsequently integrated into higher-level features
through the successive convolutional layers [17]. In Convolution 2D, a set of filters with dimen-
sions of 3x3 or greater is applied to the input feature map. Activation occurs by moving the
adjustable-weight filter across the input, calculating the dot product between the filter and each
input’s local section, and subsequently applying a non-linear activation function.

In Figure 2.7, the process of performing a 2D convolution between an input matrix X3x3 and a
filter matrix W3x3 is illustrated. The convolution is carried out with a padding of p=(1,1) and
a stride s=(2,2). Padding involves appending rows and/or columns of pixels, usually with zero
values, to the input feature map to maintain the image’s spatial resolution during convolutional
operations. The stride refers to the step size by which the filter moves across the input feature
map during convolutional operations. A larger stride results in a smaller output feature map
and vice versa. Conversely, a stride of 2 causes the filter to skip one position in each step,
reducing the output’s spatial dimensions and increasing computational efficiency at the cost of
potentially losing some local information.

Figure 2.7: A convolutional operation with a 3x3 input feature map with padding. The filter
matrix has dimension 3x3 and uses a stride of 2 to return a feature map with dimension 2x2.

The output value for the upper-left cell of the output matrix is calculated by taking the dot
product of the corresponding elements of the input matrix and the filter matrix and summing
the results. In this case, the calculation is done as follows:

Page 9 of 70

5.5 = (0 · 0.2 + 0 · 0.3 + 0 · 0.2) + (0 · 0.7 + 1 · 0.3 + 3 · 0.9) + (0 · 0.4 + 5 · 0.5 + 0 · 0.6)

Pooling Layer (Sub-sampling)

The pooling layer in CNNs performs downsampling of the input feature map, similar to the
convolutional layer with stride, with the aim of decreasing its spatial dimensionality, increasing
computational efficiency, and expanding the receptive field. Max pooling is the most common
pooling method in CNNs, where a filter without weights is used to extract the maximum value
over the filter area, as seen in Figure 2.8. This method helps retain the most salient feature
within each local region of the feature map, in addition to reducing the spatial dimension [17].

Figure 2.8: Max pooling with a 2x2 filter and stride of 2. Figure inspired by Saravia [27].

Batch Normalization

Batch Normalization facilitates faster and more stable training during the learning process of
deep ANNs [17]. In essence, Batch Normalization is an approach designed to enhance the
training of ANNs by stabilizing the distributions of inputs across layers [28]. The technique is
implemented through the use of four parameters, namely gamma (γ), beta (β), moving mean
(µ), and moving variance (σ2). Gamma scales the normalized value, while beta shifts the nor-
malized value. The moving mean is the mean of the current batch, a subset of the training
data, used to normalize the batch while the moving variance is the variance of the current
batch used for normalization. The main advantage of batch normalization is the improvement
of gradient propagation, which is similar to residual connections explained below, allowing for
deeper networks to be created.

Non-sequential Layer

Non-sequential layers have been shown to be effective in improving the performance of deep
ANNs, particularly in image recognition tasks [29]. In a sequential network, the output of one
layer acts as input to the next layer in a linear fashion. However, in a non-sequential neural
network, the connections between various layers can be complex, allowing for more flexible and
powerful architecture.

Residual connection, seen in Figure 2.9, is a type of non-sequential layer that is commonly used
in CNNs. It is a shortcut connection that bypasses one or more convolutional layers, allowing
the network to keep information from earlier layers and avoid the problem of the vanishing
gradient [30]. A residual block is another type of non-sequential layer that contains one or more

Page 10 of 70

residual connections, providing a shortcut path for the gradient to flow back to earlier layers
during backpropagation.

Figure 2.9: The figure shows an example of a non-sequential connection.

2.1.5 Transfer Learning

While CNNs have proven to be highly effective in extracting features and learning complex
patterns from images and videos, training these networks from scratch is computationally ex-
pensive, time-consuming, and requires a large amount of available data [28]. This challenge has
given rise to the concept of transfer learning, a technique that enables the reduction of training
time by using the knowledge gained from pre-trained models to accelerate the learning process.
This approach is especially beneficial for deep ANNs, which can require significant time and
computational resources to train. A pre-trained model has been trained on a large, diverse,
and publicly accessible dataset, enabling it to recognize low-level features. Subsequently, the
network can be fine-tuned on a custom dataset to learn more complex features, thereby enhanc-
ing its overall performance. The use of transfer learning can significantly reduce the amount of
training time required for deep networks used in object detection tasks, while simultaneously
enhancing the model’s performance [31].

2.2 Object Detection and YOLOv4 and YOLOv8 Detectors

In this section, we will explore object detection as a method within the domain of computer
vision, and present two prominent object detectors: YOLOv4 and YOLOv8. A thorough exam-
ination of their architectural design and components will be provided to enhance comprehension
of their efficacy in detecting fish within densely populated fish environments.

2.2.1 Object Detection: An Overview

Object detection is a technique that aims to recognize and locate different objects within an
image or video and assign them to specific classes or categories, such as people, buildings, or
vehicles [23]. Object detection has gained significant popularity in recent years due to the
breakthroughs achieved by ANNs. Specifically, methods leveraging CNNs have gained substan-
tial traction and have demonstrated their effectiveness in object detection [32] [33] [34].

Region-based and single-shot methods represent the two primary approaches to object detec-
tion. Region-based methods, such as the R-CNN family [32], involves a two-stage process, where
the first stage generates object proposals, and the second stage classifies these proposals using
CNNs. Although these methods have demonstrated high accuracy in object detection tasks
[33], they often suffer from computational inefficiency and slower processing times [35]. Unlike
regional-based, single-shot methods such as YOLO aim to predict both class probabilities and
bounding box coordinates in one go as data passes through the CNN. This makes them faster
and better adapted for applications that require real-time processing [35]. As a result, the

Page 11 of 70

single-shot method has been chosen as the focus of this thesis.

Single-shot detection algorithms can be divided into two subclasses: anchor-based and anchor-
free. Both subclasses aim to predict class probabilities and bounding box coordinates in a single
pass through the CNN. The difference between the two methods lies in how they handle the
selection and placement of bounding boxes.

(a) Anchor-based detection predicting the off-
set based on a predefined box.

(b) Anchor-free detection where the method es-
timates the offset of a point to its boundaries.

Figure 2.10: The provided illustration depicts the contrast between two approaches for object
detection, namely anchor-based and anchor-free. The true boundary of the object is represented
with a red rectangle, while the green rectangle represents the pre-defined anchor. Moreover, the
blue lines indicate the deviations. Figure inspired by [36].

Anchor-based object detection, as depicted in Figure 2.10a, is a widely used approach that
improves upon the traditional sliding window technique [37]. In anchor-based detection, the
network predicts a fixed set of bounding box anchors with predefined aspect ratios and scales,
called anchor boxes [36]. These anchors act as reference boxes, which the network then adjusts
to fit the object’s shape and location. One disadvantage of anchor-based detection is that it
requires a large number of anchors to be generated, which can be computationally expensive
and time-consuming.

In contrast, anchor-free detection, as depicted in Figure 2.10b, eliminates the need for prede-
fined anchors by directly regressing to the object’s location and size [36]. This approach is more
computationally efficient than anchor-based detection because it does not require the genera-
tion and selection of anchors. Anchor-free detection has gained significant popularity in recent
years, with methods like CenterNet [38] achieving state-of-the-art performance in object detec-
tion tasks. The recently introduced YOLOv8 model also incorporates an anchor-free approach
to object detection.

Despite the significant advancement in object detection techniques in recent years, challenges
identified by Shakik et al. [39] in 2014 still exist today. Some of the primary challenges include
handling scale variation, where objects may appear in different sizes; aspect ratio variation,
where objects may have diverse shapes and orientations; occlusion, where parts of the objects
may be hidden or overlapped by other objects; and background clutter, where objects may
blend in with or be confused by other elements in the scene.

In the following sections, we will explore the object detectors YOLOv4 and YOLOv8, and delve

Page 12 of 70

into their architecture and components to understand their performance in detecting fish in a
high-density fish environment.

2.2.2 YOLOv4: Architecture and Features

YOLOv4 [13], released in April 2020, is the fourth iteration of the popular You Only Look
Once (YOLO) series of object detection models. YOLOv4 introduces notable enhancements
compared to its earlier versions, including increased accuracy, speed, and overall efficiency,
positioning it as a strong option for tasks requiring real-time object detection. The architecture
of the anchor-based YOLOv4 algorithm consists of three parts: Backbone, Neck, and Head.

Figure 2.11: The figure illustrates YOLOv4 architecture with CSPDarknet53 as Backbone,
PANet as the Neck, and three detection heads.

The Backbone

The Backbone is used for feature extraction and YOLOv4 utilizes CSPDarknet53 [40] which
is an adaptation of the Darknet53 [41] backbone employed in YOLOv3. Darknet53 is based
on DenseNet design [42], a design to alleviate the vanishing gradient problem. CSPDarknet53
integrates the advanced learning capabilities of the Cross-Stage Partial Network (CSPNet) [40]
into the Darknet53 architecture. The CSP connections, a type of non-sequential connection
(Section 2.1.4), are fused into the Backbone of the architecture to improve information and
gradient flow during both forward and backward passes. This integration enables the network
to learn and utilize more complex features and correlations between them.

CSRDarknet53 comprises five residual blocks, called CSP blocks, with a total of 53 convolu-
tional layers, each accompanied by a batch normalization layer (Section 2.1.4). The model is
pre-trained (Section 2.1.5) on the ImageNet dataset [43]. The backbone leverages the Mish
activation function [44], which resembles ReLU but offers a smoother transition near zero and

Page 13 of 70

a non-zero derivative at zero, as seen in Figure 2.12a.

(a) Mish activation and its gradient. (b) Leaky ReLu activation and its gradient.

Figure 2.12: The figures display a comparison between the frame before and after annotation.
The annotated bounding boxes are represented by solid lines, while the dotted lines indicate
occluded objects.

The Neck

The Neck of YOLOv4 is comprised of Spatial Pyramid Pooling (SPP) [45] and Path Aggrega-
tion Network (PANet) [46]. In the SPP process, the feature layer undergoes three convolutions
initially following a max pooling (Section 2.1.4) using various filter sizes (5x5, 9x9, 13x13).
The pooling results are then concatenated and further convolved three times. The objective
of SPP is to enable the network to manage input images of varying sizes and extract features
that are invariant to scale and aspect ratio. After the SPP block, the PANet processes the
feature layers by convolving and up-sampling them, effectively doubling their height and width.
It then concatenates the convoluted and up-sampled feature layers with those obtained from
CSPDarknet53 to achieve feature fusion. Following this, the network performs downsampling,
which compresses the height and width of the layers. Lastly, it stacks these layers with previous
ones to accomplish further feature fusion. PANet enables the network to utilize information
from both lower-level and higher-level features, enhancing its accuracy in object detection tasks.
Whilst the Backbone of YOLOV4 uses Mish as an activation function, the Neck uses the Leaky
ReLU function seen in Figure 2.12b [47].

The Head

The Head of YOLOv4 can make detections by using the features extracted earlier in the net-
work. As seen in Figure 2.11, YOLOv4 uses three detection heads operating at different scales
- large, medium, and small - to capture objects of various sizes. The detection heads in the
model have the task of making predictions about various attributes of the objects, including
their class, bounding box coordinates, and objectness score. To aid in this process, each detec-
tion head relies on a set of anchor boxes. These anchor boxes supply crucial insights that enable
the model to better understand the form and dimensions of the objects it aims to detect.

The input image is first divided into a grid of cells, with each cell corresponding to a specific
region of the image. Within each cell, there are nine pre-defined anchor boxes that have specific
aspect ratios and scales. These anchor boxes are used to predict the object’s class, location,
and size within that cell. The prediction process involves calculating the confidence score for
each anchor box, which represents the likelihood of an object being present in that location [13].
The highest-scoring anchor box is selected as the one responsible for detecting the object within

Page 14 of 70

that cell. This approach allows the YOLOv4 model to efficiently detect objects of various sizes
and shapes.

During the inference process in YOLOv4, an input image is resized to a fixed size (e.g., 416x416
pixels) while maintaining its aspect ratio. The image gets passed through the Backbone where
it extracts hierarchical feature maps. These feature maps are passed to the Neck, generating
three feature maps of different scales to facilitate the detection of objects of varying sizes. Each
of these feature maps is fed into a corresponding detection head, which are convolutional layers
that predict class probabilities, bounding box coordinates, and objectness scores for each grid
cell in the feature map. To obtain the final bounding box coordinates, the predicted offsets and
scales are decoded with respect to predefined anchor boxes.

Predictions with low confidence are eliminated using a confidence threshold based on Intersection
over Union (IOU), measuring the overlap between the predicted bounding box and the round
truth bounding box (Section 2.4). The model retains only those bounding boxes with an IOU
exceeding the specified threshold. Subsequently, the remaining bounding boxes undergo Non-
Maximum Suppression (NMS) [48], an algorithm that effectively removes overlapping boxes. It
involves sorting the bounding boxes based on their confidence scores and iteratively removing
boxes with high overlap until only the most confident prediction is retained [23]. The NMS
process comprises the following steps:

1. Eliminate all bounding boxes that have predictions with probability less than a particular
threshold. This threshold, called the confidence score, can be customized, and a bounding
box will only be preserved if the prediction probability is above this threshold.

2. Analyze the remaining boxes, and pick the box with the highest probability.

3. Calculate the IOU for the remaining boxes that predict the same class, which measures
the degree of overlap between them. If two boxes have high overlap and predict the same
class, they are averaged together. Averaging these boxes means that their coordinates
(i.e., x, y, width, and height) are combined into a single bounding box that represents the
object more accurately.

4. Eliminate any box with an IOU value lower than a specific threshold (NMS threshold).
Typically, the NMS threshold is 0.5, but it can be adjusted to produce fewer or more
bounding boxes.

The final output of the YOLOv4 algorithm consists of bounding boxes, class labels, and confi-
dence scores, which together represent the detected objects, their locations, and their respective
classes within the input image. YOLOv4 leverages multi-scale feature representation using a
combination of its backbone CSPDarknet53, PANet, and SPP module, enabling the detection
of objects with varying sizes and shapes. The application of thresholding and NMS ensures that
the resulting detections have high confidence and minimal overlapping boxes.

2.2.3 YOLOv8: Architecture and Features

The YOLOv8 model is a recent addition to the family of YOLO models and was introduced
in 2023 by Ultralytics, a computer vision company responsible for YOLOv5. At present time,
YOLOv8 is yet to be fully documented or described in the literature, hence, it remains rela-
tively unexplored in academic circles, with no official publications or detailed descriptions of

Page 15 of 70

the model’s inner workings currently available by Ultralytics. However, the team has expressed
an interest in releasing such a paper in the near future, but at the current time, they focus
on incorporating new features into the YOLOv8 framework. Notwithstanding the lack of an
official publication, the development team has received a significant level of interest from the
community. Indeed, the community has been actively engaging with the Ultralytics team to
better understand the model, underscoring the potential utility of YOLOv8. A visual represen-
tation of the YOLOv8 architecture, confirmed by one of the YOLOv8 developers on GitHub
issues [49], is presented in Figure 2.13.

Figure 2.13: The architecture of YOLOv8 object detector created by the GitHub user RangeK-
ing.

Given the absence of an official publication, a comprehensive investigation has been conducted
into the YOLOv8 model’s repository and the available information to document its novel fea-
tures. This analysis aims to provide a thorough understanding of the model’s unique charac-
teristics, despite the lack of an official publication or detailed description of its inner workings.
Consistent with the architecture of YOLOv4, YOLOv8 comprises three primary sections: the
Backbone, Neck, and Head.

The Backbone

The Backbone of YOLOv8, similar to YOLOv4, is responsible for extracting relevant features
from the input data. YOLOv8 uses a modified version of the CSPDarknet53 network presented
in Section 2.2.2 used in both YOLOv4 and YOLOv5. In YOLOv8, all convolutional operations
in the network utilize the Sigmoid Linear Unit (SiLu) activation function as seen in Figure 2.14,

Page 16 of 70

in contrast to YOLOv4 using Mish and LeakyReLU activation functions. In the backbone of
YOLOv8, the four CSP layer (also known as ”C2f”) is associated with a skip connection, a type
of non-sequential connection, in the figure. The use of non-sequential connections is a funda-
mental design choice in the CSPDarknet53 backbone. It helps preserve important features and
gradients as they pass through the network, ultimately contributing to improved performance
in object detection.

Figure 2.14: The figure illustrates the SiLu activation function and its derivative.

The Neck

The Neck section of YOLOv8 is responsible for merging the features extracted by the Back-
bone and increasing their resolution. The YOLOv8 uses an SPPF (SPP-Fast) module, which
produces results comparable to the SPP introduced in Section 2.2.2. However, it requires fewer
floating-point operations (FLOPs), which is why it is labeled ”Fast” or “F”. This reduction in
FLOPs allows the algorithm to consume fewer computational resources.

Furthermore, YOLOv8 uses PANet which includes several upsampling layers to increase the
spatial resolution of the feature maps and concatenation operations to combine feature maps
generated by the Backbone and the Neck. It also includes additional convolutional layers to
refine the features and extract object-specific information. In YOLOv8, the PANet is modified
by incorporating the CSPNet strategy, as depicted in the figure. By introducing CSP into the
neck the YOLOv8 can obtain more abundant gradient flow information while ensuring a lighter
architecture [40].

The Head

Finally, the Head section of YOLOv8 is dedicated to predicting bounding boxes and object
classes within an image. The YOLOv8 head employs an array of convolutional layers and de-
coupling structures to efficiently and accurately recognize objects in the image. It carries out
the detection task by processing feature maps generated by the Backbone and the Neck. The
Head is characterized by a decoupled design, in which classification and regression tasks are
processed independently. This arrangement enables each branch to concentrate on its specific
task, thereby enhancing the model’s overall performance [50]. The head processes feature maps
using a sequence of convolutional layers, followed by a linear layer for predicting bounding boxes
and class probabilities.

Page 17 of 70

It is important to note that YOLOv8 is an anchor-free model that employs a novel approach to
object detection. Contrasting with YOLOv4, which predicts an object’s center coordinates and
offsets from anchor boxes, YOLOv8 directly predicts the object’s center coordinates without
the use of anchor boxes. This eliminates the need to calculate the offset with respect to the
anchor box, thereby reducing the number of box predictions. As a result, the new method used
in YOLOv8 significantly speeds up the complex inference step of NMS.

2.3 Object Tracking and DeepSORT

2.3.1 Object Tracking: An Overview

A tracking-by-detection tracking algorithm, illustrated in Figure 2.15, comprises a dual-process
approach. Firstly, an object detection algorithm (e.g., YOLOv4) generates bounding boxes
enclosing the objects of interest within individual frames. Secondly, the tracking algorithm con-
ducts data association across consecutive frames to create trajectories for effectively tracking
the identified objects. In recent years, deep learning-based computer vision techniques have
demonstrated substantial enhancements in object-tracking performance [51]. These deep learn-
ing methods can capture more intricate representations of an object’s appearance and motion,
resulting in better tracking performance.

Figure 2.15: Visual representation of tracking-by-detection using DeepSORT as the object
tracking algorithm. The detections obtained for each frame are used as input to the tracking
part of the tracking algorithm, which performs data association and creates trajectories for the
detected objects.

There are several challenges to object tracking, including scale variation, motion blur, occlusion,
and object appearance changes. To overcome these challenges, object tracking algorithms often
use a combination of motion models, appearance models, and data association methods. Motion
models describe how objects move in the scene and can be used to predict the location of the
object in the next frame. Appearance models describe the visual appearance of the object and
can be used to identify the object in different frames, even if the object’s appearance changes
due to occlusion or illumination changes. Data association methods are used to link object
detections across frames, enabling the creation of object trajectories.

Page 18 of 70

2.3.2 Object Tracking with DeepSORT

DeepSORT (Simple Online Realtime Tracker with a Deep Association Metric) [15] serves as an
extension of the SORT (Simple Online Realtime Tracking) [52] tracking algorithm. One of the
limitations of the SORT algorithm was the high number of track switches during object tracking
in dense scenarios. The DeepSORT algorithm tries to address this limitation by incorporating
a Deep Association Metric that uses a learned feature representation of each object to associate
the object across frames. The algorithm has been shown to be effective in handling complex
tracking scenarios, such as occlusion, and can track multiple objects in real-time [15].

During the inference process, an object detection algorithm (such as YOLOv4 or YOLOv8) is
employed to identify objects of interest within video frames, generating bounding boxes, class
labels, and confidence scores for each detected object. Subsequently, DeepSORT computes a
cost matrix, which is derived from appearance features (obtained via a deep ANN), spatial
distance (obtained through the Kalman filter), or a combination thereof. The cost matrix’s
rows correspond to detected objects, while columns represent predicted tracks. The Hungar-
ian algorithm is then utilized to ascertain the optimal assignment, minimizing the overall cost
(distance) between detected objects and predicted tracks. Moreover, the associated tracks are
updated with relevant detection information. All unmatched detections are placed in a list of
tentative detections and monitored for a predetermined number of frames before the assignment
of a new track. In the case of unmatched tracks, they are marked as unmatched and removed
from the tracking list following a specified number of consecutive missed detections. Finally,
the updated tracking information, encompassing object identities, bounding boxes, and class
labels, is returned for visualization or further processing.

Kalman Filter

The Kalman filter estimates the current frame’s location and motion of an object based on its
position and movement in the preceding frame. This takes the form of an eight-dimensional vec-
tor, (x, y, a, h, vx, vy, va, vh) [15]. This vector comprises the bounding box’s central coordinates
(x, y), the aspect ratio a, height h, and their corresponding velocities in the image coordinates
[15]. DeepSORT utilizes the bounding box coordinates (x, y, a, h) as immediate observations of
the object state.

Each track in DeepSORT is associated with a counter that increments during Kalman filter
prediction and resets to zero upon successful association with a measurement. Tracks surpass-
ing a predefined maximum age, the hyperparameter “max age”, are considered to have exited
the footage, leading to their deletion [15]. New track hypotheses are created for detections
unassociated with existing tracks. During the initial three frames (which is a hyperparameter),
these newly created tracks are categorized as tentative, with the expectation that suitable mea-
surement associations will be made at each frame. Any tracks that do not successfully associate
with a measurement within their initial three frames are subsequently deleted.

As illustrated in Figure 2.16, the Kalman filter utilizes the Mahalanobis distance as a metric to
evaluate the discrepancy between the predicted Kalman state of an object and the new detec-
tions in the current frame, which enables the effective linkage of a track with a corresponding
detection.

Page 19 of 70

Figure 2.16: The figure illustrates the Kalman filter utilizing the Mahalanobis distance. The
Kalman filter is used in DeepSORT to estimate the state of the tracked objects by incorporating
both the current detection and the historical motion information.

Deep Appearance Descriptor

Beyond the use of the Kalman filter, DeepSORT incorporates an additional metric into the
assignment problem to tackle issues related to occlusion and track switches [15]. In DeepSORT,
the Deep Appearance Descriptor computes an appearance descriptor for each bounding box
detection, generating distinctive features of the identified objects. It employs a CNN pre-
trained on an extensive person re-identification dataset [53], encompassing more than 1,100,000
images featuring 1,261 distinct objects. It quantifies the dissimilarity between two vectors by
determining the cosine of the angle between them, assessing their similarity based on the vectors’
orientation rather than their magnitude.

Figure 2.17: The Deep Appearance descriptor utilizes the cosine distance to measure the simi-
larity between the detection and tracks.

The Hungarian Algorithm

To construct the association problem solvable by the Hungarian algorithm [54], the motion
predictions from the Kalman filter and the appearance descriptor from the Deep Appearance
Descriptor are combined into a cost matrix [15], as illustrated in Figure 2.18.

Page 20 of 70

Figure 2.18: DeepSORT combines the Kalman filter and the appearance descriptor to construct
an assignment problem.

The Hungarian algorithm, by utilizing the cost matrix, effectively tackles the data association
challenge. This problem involves associating detected objects in the current frame with the pre-
dicted tracks from previous frames, with the constraint that each detection can only be assigned
to a single track, and vice versa. The algorithm computes the optimal assignment that mini-
mizes the total cost, considering both motion-based and appearance-based information. This
robust assignment process contributes to the overall effectiveness of the DeepSORT algorithm
in real-world tracking scenarios, ensuring that the tracker can adapt to changing conditions and
maintain a reliable association between detected objects and their corresponding tracks.

2.4 Evaluation Metrics

In this section, an overview of the criteria employed for selecting the object detection models
will be provided. Additionally, a comprehensive discussion of the various metrics utilized for
assessing the performance of the tracking algorithms will be presented.

2.4.1 Metrics for Object Detection

Intersection over Union (IOU)

The Intersection over Union (IOU) is a widely used metric for classifying predicted bound-
ing boxes. It measures the overlap between the predicted bounding box and the ground-truth
bounding box by calculating the ratio of their intersection to their union. The IOU is scale-
invariant, which means that it can be used to evaluate detection accuracy regardless of the size
of the objects being detected [55].

Figure 2.19: Definition of IOU.

Page 21 of 70

Mean Average Precision (mAP)

The mean average precision (mAP) is typically utilized as a metric for assessing the performance
of object detection models [56]. The mAP calculates the average precision (AP) for all classes
in a multi-class problem. To comprehend the mAP metric, it is essential to understand three
key concepts: precision, recall, and the aforementioned IOU.

Table 2.1: Confusion Matrix

Predicted Positive Predicted Negative

Real Positive True Positive (TP) False Negative (FN)
Real Negative False Positive (FP) True Negative (TN)

From the confusion matrix displayed in Table 2.1, precision and recall can be derived [57]. The
precision (Equation 2.7) measures the accuracy of the model’s predictions, that is, in the context
of object detection, it indicates the fraction of the predicted bounding boxes that were correctly
predicted based on the IOU threshold. The recall (Equation 2.8) measures the accuracy of
positive predictions, meaning it quantifies the fraction of accurately predicted bounding boxes
relative to all actual bounding boxes.

Precision =
TP

TP + FP
(2.7)

Recall =
TP

TP + FN
(2.8)

Figure 2.20 illustrates the relationship between the IOU threshold and the true positive (TP),
false positive (FP), and false negative (FN) detections with a confidence threshold of 0.5. In
object detection, a TP detection occurs when the IOU is above the threshold, indicating a suc-
cessful detection. Conversely, a detection with an IOU below 0.5 is considered an FP, indicating
a false detection. If an object is not detected at all, it is classified as a FN. These thresholds play
a crucial role in evaluating the precision and recall of the object detection model. Achieving
an appropriate balance between precision and recall is essential for accurate and reliable object
detection.

Figure 2.20: The figure illustrates the relationship between the IOU threshold and the true
positive (TP), false positive (FP), and false negative (FN) detections. The detections are
evaluated using a confidence threshold of 0.5.

To calculate the mAP value, a precision-recall (PR) curve must be generated[58]. This is accom-
plished by having the model generate a set of predictions for the test data, which includes the
class labels, confidence scores, and bounding box coordinates for each detected object. Next,

Page 22 of 70

an IOU threshold is chosen for the confidence score, and the predictions above this threshold
are considered TP. By varying the confidence score threshold, a set of precision-recall pairs is
generated, which can be plotted on a graph to form a PR curve. The area under the PR curve
(AUC) provides a single scalar value that summarizes the overall performance of the model.
Higher AUC values indicate better model performance [57]. The formula for AP is provided
below:

AP =

n∑
k=1

P (k)×∆r(k) (2.9)

The equation calculates the AP by summing the product of precision (P (k)) and the difference
in recall levels (∆r(k)) for each data point k, up to the total number of data points n. In
this thesis, we will use the term mAP instead of AP for consistency, even though our problem
focuses on a single-class problem.

mAP50-95

In addition to the commonly used mAP50 object detection metric, the mAP50-95 is also a note-
worthy evaluation metric. It measures the mAP of examples across a range of IOU thresholds,
spanning from 0.5 to 0.95 with a stride of 0.05 [59]. This metric provides a more comprehen-
sive assessment of an object detection algorithm’s performance, as it takes into account various
levels of overlap between the predicted bounding boxes and the ground truth annotations. By
evaluating the detection performance at multiple IOU thresholds, the mAP50-95 metric offers
a deeper understanding of the algorithm’s ability to accurately and precisely localize objects
within the scene.

2.4.2 Metrics for Object Tracking

The effectiveness of the DeepSORT tracking algorithm is evaluated using several metrics pro-
vided by the MOTMetrics library, as described in Section 3.7. As seen in Equation 2.10, the
IOU hyperparameter used in MOTMetrics is inverse to the IOU threshold used for detection.
Therefore, an IOU of 0 indicates perfect overlap between bounding boxes, while an IOU of 1
implies no overlap between them.

IOU = 1− Area of Intersection

Area of union
(2.10)

Multi-Object Tracking Accuracy (MOTA)

When using datasets with a high number of objects, occlusion, and identity switches between
objects can occur, making it challenging to accurately track objects. To address these issues, it
is important to use a performance metric that considers these factors. In the field of computer
vision for multi-object tracking (MOT), Multi-Object Tracking Accuracy (MOTA) is a widely
used metric for such tasks [60]. The formula for MOTA is given by Equation 2.11, where T
represents the total number of frames in an image stream. Within each frame t in the set
of all frames T , the number of FP is denoted as FPt, the number of FN is denoted as FNt,
the number of identity switches is denoted as IDSWt, and the total number of ground truth
detections is denoted as GTt.

Page 23 of 70

MOTA =

[
1−

∑T
t=1(FPt + FNt + IDSWt)∑T

t=1GTt

]
· 100% (2.11)

MOTA values span from -∞ to 1, with 1 signifying high accuracy, while MOTA values near
zero or lower indicate poor accuracy. In tracking evaluation, MOTA is usually used in conjunc-
tion with other metrics to provide a more comprehensive evaluation, such as Multiple Object
Tracking Precision (MOTP).

Multi-Object Tracking Precision (MOTP)

MOTP is a metric used to evaluate the localization accuracy of an algorithm in MOT, seen in
Equation 2.12.

MOTP =

[∑
t,i dt,i∑
t ct

]
· 100% (2.12)

where dt,i is the error of the detected bounding box positions for matches objects averaged
over the number of matches, ct, in frame “t” and match “i”. In essence, MOTP calculates the
average distance between the predicted and ground truth bounding boxes, where a lower MOTP
indicates a better detection accuracy [61]. The MOTP values range from 0 to 1, where a value
near zero indicates high precision. To clarify, if the ground truth and predicted bounding box
overlap perfectly (IOU=1), the distance (1-IOU) becomes 0, resulting in a MOTP value of zero,
indicating accurate bounding box localization.

Identification F1 (IDF1)

Whilst MOTA and MOTP are built on matching at a detection level, the MOTMetrics library
also contains identity metrics emphasizing the data association aspect of tracking. One such
identity metric is the Identity F1 (IDF1) metric seen in Equation 2.15. This metric evaluates
the tracker’s ability to maintain correct target identities over time, rather than assessing the
frequency of mismatches. The IDF1 metric combines identity-based precision (IDP) shown in
Equation 2.13 and identity-based recall (IDR) shown in Equation 2.14 [62].

To calculate IDP, IDR, and IDF1, the library defines a new set of detection matches: Identity
True Positives (IDTPs), Identity False Positives (IDFPs), and Identity False Negatives (IDFNs).
IDTPs correspond to matches (TPs) that occur in the intersecting portion of matched predicted
and ground truth trajectories. IDFPs consist of the leftover predicted detections (FPs) originat-
ing from the non-intersecting parts of matched trajectories as well as from the trajectories that
remain unmatched. Similarly, IDFNs comprise the remaining ground truth detections (FNs).

Whilst the IDP measures the fraction of ground truth detections that are correctly assigned
to a unique identity, the IDR measures the proportion of ground truth detections that are
correctly identified by the tracking model [62]. The higher the IDF1 score, the better the
tracking algorithm is at maintaining the correct identities of objects throughout the video. The
definition of IDP, IDR, and IDF1 are as follows:

IDP =
IDTP

IDTP + IDFP
(2.13)

IDR =
IDTP

IDTP + IDFN
(2.14)

Page 24 of 70

IDF1 =
2 · IDTP

2 · IDTP + IDFP + IDFN
(2.15)

Other Evaluation Metrics

In addition to the three previously mentioned metrics, several other evaluation measures have
been employed to assess the performance of tracking models:

• Identity switches (IDSW): Scalar that counts the number of times the DeepSORT
tracker switches the identity label of the same object in the ground truth data during
the tracking process. This metric is used to evaluate the performance of the DeepSORT
tracking algorithm with respect to maintaining consistent object identities over time. A
higher number of switches indicates that the algorithm is struggling to maintain accurate
object identities.

• Mostly tracked (MT): Calculates the number of objects that are tracked more than
80% of its lifespan.

• Partially tracked (PT): Calculates the number of objects that are tracked between
20% and 80% of its lifespan.

• Mostly lost (MS): Calculates the number of objects that are tracked less than 20% of
its lifespan.

Page 25 of 70

Chapter 3
Method

This chapter delves into the datasets utilized in this thesis, providing an overview of the data
annotation and pre-processing procedures, including guidelines for various annotation scenar-
ios. Furthermore, the chapter details the implementation of the two object detection algorithms
and their integration with DeepSORT. Both detectors were trained on the same training set
(Channel 6) and tested on two different test sets (Channel 3 and Channel 6). The models were
implemented using the Python programming language, and the implementation was conducted
on the Google Colaboratory platform. Furthermore, the chapter addresses the challenges faced
during the process and the approaches adopted to overcome them.

Figure 3.1: Illustration of the technical workflow of this thesis.

Figure 3.1 displays the technical workflow used in this thesis. It began with the acquisition of
three distinct sets of data: a 40-second training set from Channel 6, a 10-second test set from
Channel 6, and a 10-second test set from Channel 3. Each of these sets was manually annotated
by a company named LabelYourData. The 40-second training data was subsequently utilized
to train the detectors. The output of the detectors comprised the trained weights, which were
then provided as input to the DeepSORT tracker, alongside the test sets in video format (.mp4).
The text files generated from DeepSORT, in addition to the ground truth text files, were then
utilized to calculate the performance metrics of the tracking algorithm.

26

3.1 Software and Hardware

The Google Collaboratory Pro environment provided access to powerful computational re-
sources, including GPUs, which significantly accelerated the training and evaluation processes.
Google Collaborator is a cloud-based service developed by Google that provides users with a
collaborative platform for coding and data analysis. The service is based on an IPython ker-
nel, which allows users to run code and execute commands in a Python environment. The
service is widely used in data science, machine learning, and other fields that involve coding
and data analysis. The efficiency of training the detectors was further increased by utilizing
the Professional version of Collaboratory (Google Colab Pro). This version provides additional
features and resources such as increased GPU and RAM allocation, as seen in Table 3.1, which
significantly improved the speed during model training of the detector algorithms.

Table 3.1: While training the detectors, the Google Colab Pro version was employed, utilizing
the Tesla A100-SXM4-40GB. However, for inference, the standard Google Colab with Tesla T4
was used to avoid exhausting the limits of the Pro version.

Training/Inference System GPU name RAM

Model Training Google Colab Pro TESLA A100-SXM4-40GB 40GB

Inference Google Colab TESLA T4 16GB

3.2 Dataset

The datasets used in this thesis are provided by Christopher Noble at Nofima. There were six
channels or videos provided to us in this thesis. In the context of this study, the term “channel”
refers to separate video feeds or sources, not to be mistaken with color channels (Red, Green,
Blue) typically associated with digital image processing. The channels were provided in .mp4
format and captured using an underwater camera, each with a duration ranging from three to
six minutes. Unfortunately, a significant portion of the videos proved to be challenging to use
in this thesis, as some of the fish were positioned directly in front of the lens, obscuring the view
of all other fish. Nevertheless, as seen from Table 3.2, a 40-second segment from Channel 6 was
selected as a training set, with the initial 35 seconds designated for training and the following 5
seconds for validation. The choice to use continuous 35-second footage for training was driven
by the absence of a basis for selecting footage from multiple intervals within the channel. The
chosen 40-second video featured fish movement across the frames, ensuring an adequate level of
data variability for training purposes.

Moreover, two 10-second videos were extracted as test sets: one from the same channel (Chan-
nel 6) and another from Channel 3. The test set from Channel 3 was chosen to assess the
models’ generalization capabilities since it originated from a different fish tank. This ensured
that the models were not overfitting to the training data from Channel 6 and could effectively
generalize to previously unseen data. The inclusion of this additional test set allowed for a more
comprehensive evaluation of the models’ performance, bolstering confidence in their ability to
accurately detect and track fish in various environments.

Page 27 of 70

Table 3.2: The table presents a summary of the video channels and their corresponding durations
used in this study. The first 35 seconds of Channel 6 were utilized as training (875 frames) and
the subsequent 5 seconds were utilized as a validation set (125 frames). The remaining 10-second
segment from the same channel was used as a test set, comprising 250 frames. Additionally,
a 10-second video from Channel 3 was employed as a second test set, containing another 250
frames.

Video Channel Data split Duration Number of Frames

Channel 6 Train 35s 875

Channel 6 Validation 5s 125

Channel 6 Test 10s 250

Channel 3 Test 10s 250

The dataset used in this thesis was recorded using an underwater camera that captures 25
frames per second with a resolution of 720 pixels in width and 576 pixels in height. Figure 3.2
displays the environment present in Channel 6 and Channel 3, respectively. Both the extracted
frames show environments full of fish, which underscores the relevance of the challenges high-
lighted in Section 2.2 by Shakik et al.

A higher number of fish present in a frame leads to more opportunities for objects to be oc-
cluded. Occlusion can affect the performance of the algorithm as it can lead to more identity
switches during object tracking. Given that fish exhibit high mobility and possess the ability
to move in any direction in their environment, accurately tracking their trajectories presents a
considerable challenge. In addition to the high number of fish, several other factors may impact
the performance of the detection and tracking algorithms. These factors encompass variations
in lighting conditions, water turbidity, and fish behavior.

In both channels, the environments exhibit darker regions where the fish and the background
closely resemble each other, posing possible challenges for the algorithms in accurately dis-
tinguishing between them. Moreover, it’s essential to acknowledge that the data quality is
relatively low, which is a significant factor when considering the necessity for precise detection
and tracking. These factors collectively contribute to the complexity of the objectives, necessi-
tating the development of robust and adaptable algorithms to ensure precise object detection
and tracking in underwater environments.

3.3 Data Annotation

The datasets were initially not intended for computer vision applications. Therefore, to enable
the algorithms used in this study to comprehend the raw data, it was necessary to manually
annotate all the 1500 frames presented in Table 3.2. Data annotation, also known as labeling,
involves the process of identifying and marking relevant objects within the data that are useful
for the algorithms to learn. In the context of this thesis, data annotation specifically refers to
the identification and labeling of all fish present in the training, validation, and test sets. Vari-
ous annotation techniques were explored, with bounding box annotation emerging as the most
practical option. As illustrated in Figure 3.3b, bounding box annotation involves enclosing the
object of interest within a rectangular box to indicate its position and size.

Manually annotating all objects in the datasets used in this thesis would have been a labor-
intensive process, demanding considerable effort and diverting focus from object detection and

Page 28 of 70

(a) Raw data from Channel 6. (b) Raw data from Channel 3.

Figure 3.2: The figures depict raw data from Channel 6 and Channel 3, illustrating the differ-
ences in the environmental conditions between the two channels.

tracking to data annotation. To tackle this challenge, the annotation task was outsourced with
financial support from Nofima and the Faculty of Science and Technology at NMBU. The anno-
tation service, LabelYourData, utilized the Computer Vision Annotation Tool (CVAT) [63] for
the annotation process. CVAT is known for its user-friendly, efficient, and intuitive interface,
making it a suitable tool for the annotation task.

A key feature of CVAT is its interpolation capability which automatically calculates linear
changes in the size and position of bounding boxes between two frames. This functionality
removes the need for making minor adjustments for each frame, thus accelerating the annota-
tion process. As LabelYourData utilized interpolation, the allocated funds were sufficient to
label all the data presented in Table 3.2. Outsourcing the annotation task proved essential in
optimizing the use of time and resources, enabling us to concentrate on the primary objectives
of this thesis, namely the detection and tracking of fish.

(a) Raw data provided by Christopher Noble. (b) Bounding box annotation.

Figure 3.3: The figures display a comparison between the frame before and after annotation.
The annotated bounding boxes are represented by solid lines, while the dotted lines indicate
occluded objects.

Page 29 of 70

3.3.1 Guideline for annotation

As previously noted, the datasets are densely populated and include multiple different scenarios
during annotation. Moreover, the provided videos only capture a section of the fish tanks,
causing fish to continuously enter and leave the frame. Since the quality of annotations influences
the performance of detection and tracking algorithms, it is essential to ensure consistent and
accurate labeling of the data. Consequently, an annotation guideline was prepared to serve as
instructions for LabelYourData during the labeling process, with the aim of minimizing errors
and achieving high-quality annotations. The guidelines included the following points:

• A new track ID was assigned to every fish that enters or re-enters the frame.

• A fish should be annotated only when it is distinctly visible.

• If a fish is fully occluded, it should not be annotated.

• If a fish is partially occluded, it should be annotated with an occluded bounding box, as
shown in Figure 3.5a.

• When more than 50% of the fish is visible, it is advised to annotate the visible part of the
fish with a normal bounding box, as seen in Figure 3.4d. For instance, if the largest part
of the front section of the fish is in-frame, this part should be annotated with a normal
bounding box.

(a) Occluded fish annotated using an occluded
bounding box.

(b) The fish is no longer occluded, hence anno-
tated using a normal bounding box.

(c) The fish entering the frame is not visible
enough for annotation.

(d) The same fish is visible, permitting a stan-
dard bounding box annotation.

Figure 3.4: Images illustrating examples from the annotation guideline.

Page 30 of 70

3.3.2 YOLO data format

Following the completion of the annotation process by LabelYourData, CVAT generated two
types of outputs: the extracted video frames and a COCO JSON file. The JSON file contained
properties such as ”image id”, ”class id”, ”occluded”, and ”bbox”, which included the x and
y coordinates of the bounding box’s center, as well as its height and width (x, y, width, and
height). However, since YOLO detection algorithms do not support the COCO JSON format,
it was necessary to convert the annotated data into the correct format. The Roboflow platform
offered a conversion tool to facilitate this process. The resulting YOLO format consisted of
separate text files for each image frame, which included the class label and the bounding box
coordinates for all objects in that specific frame:

<object id> <x> <y> <width> <height>

(a) (b)

Figure 3.5: Figure (a) displays the individual frames and Figure (b) shows the corresponding
text files on YOLO format.

The YOLO detection algorithm, like most other object detection algorithms, does not provide
explicit support for handling occlusion during detection. Figure 3.6 illustrates the output from
Roboflow, which consists of four folders corresponding to each dataset. Within each folder,
every image file must have a matching text file that shares the same filename.

Figure 3.6: The folder structure output from RoboFlow. To ensure accurate matching of
bounding box annotations with their respective images during training and validation, it is
important that each image file has a corresponding text file with the same filename.

Page 31 of 70

3.4 YOLOv4

YOLOv4, an anchor-based detector introduced in Section 2.2.2, was chosen as one of the de-
tectors for this thesis due to its efficiency and effectiveness in real-time detection. YOLOv4 is
based on the Darknet framework [64] and utilizes the CSPDarknet53 CNN architecture. The
open-source framework is written in C that operates on GPUs through CUDA. All previous
YOLO versions, including YOLOv4, runs on this framework. The requirements for running
YOLOv4 can be found in Appendix A.

3.4.1 YOLOv4 Model Training

In this thesis, transfer learning was employed by utilizing pre-trained weights (yolov4.conv.137)
of YOLOv4 on the MS COCO dataset [65]. The MS COCO dataset comprises 80 distinct
classes and 123,287 images, equipping the model with a robust basis for object detection tasks
[65]. By leveraging the knowledge learned from a large-scale dataset, the YOLOv4 model can
effectively initialize its parameters with meaningful weights. This initialization allows the model
to start with a good understanding of general object features and improves its ability to detect
and track objects in the specific domain of interest, in this case, fish detection. As elaborated
in Section 2.1.5, employing transfer learning strategies can lead to a substantial reduction in
training time while simultaneously enhancing model performance, requiring relatively fewer an-
notated training data.

Hyperparameters in YOLOv4

YOLOv4 comes with a set of default hyperparameters that can influence the learning process
and model performance. Fine-tuning these parameters may enhance the model’s accuracy.
However, optimizing hyperparameters in object detection projects can be a challenging and
resource-intensive task. In YOLOv4, hyperparameter tuning involves modifying one parameter
at a time, executing the algorithm, and evaluating the performance. To validate the improve-
ments, it is necessary to repeat this process multiple times. However, due to time and financial
constraints, primarily the need for Google Colab Pro, comprehensive hyperparameter tuning
was not conducted in this thesis. Appendix B provides a list of the default hyperparameters for
YOLOv4, along with brief explanations for each.

Data Augmentation in YOLOv4:

Apart from the selection of hyperparameters, data augmentation also plays a crucial role in
the model’s performance. Overfitting in computer vision is caused by having too few samples
to learn from, leading to a model that does not generalize well to new and unseen data [21].
Data augmentation mitigates this issue by artificially increasing the size of the training dataset
through techniques such as flipping, cropping, and rotating the existing images, allowing the
model to learn from a larger and more diverse set of data. Two important data augmentation
techniques used in YOLOv4 are listed below.

• Mosaic: Involves randomly selecting four pictures from the training images and merging
them into a single mosaic image used for training. The corresponding bounding boxes are
adjusted to reflect the object’s new position in the image [66].

• Mixup: A technique that blends two images by multiplying and superimposing them
with different ratios. The resulting image is then used to train the model, with the label
adjusted accordingly based on the blending ratios [13].

Page 32 of 70

Upon selection of data augmentation techniques and the specification of hyperparameters, the
subsequent step was to train the YOLOv4 model on the training data. Despite the use of trans-
fer learning, the process remains quite resource-intensive and demands a substantial amount of
time and computational power. During the training process, the model continually evaluates its
own performance on the validation set, which serves as a basis for selecting the optimal model
when the training is terminated. During the training process, the model weights were saved
every 1000 iterations, along with the best weights obtained based on the highest validation
mean Average Precision (mAP) score.

3.5 YOLOv8

The second detection algorithm utilized in this thesis, YOLOv8, is the latest addition to the
YOLO family, and its architecture was introduced in Section 2.2.3. In contrast to YOLOv4,
YOLOv8 uses a decoupled head with an anchor-free structure. Utilizing an anchor-free method,
the algorithm is able to directly estimate the object class and location information based on the
output generated by the network. In this thesis, the Ultralytics YOLOv8.0.20 version is used
and it is installed via pip in Google Colab.

3.5.1 YOLOv8 Model Training

During the training process, YOLOv8 provides five scaled versions of the YOLO model with
varying speeds and accuracies, pre-trained on the MS COCO dataset [67]. The smallest and
fastest version is YOLOv8 Nano (YOLOv8n), while the largest and most accurate version is
YOLOv8 Extra Large (YOLOv8x). The other three versions are YOLOv8 Small (YOLOv8s),
YOLOv8 Medium (YOLOv8m), and YOLOv8 Large (YOLOv8l), each with a unique balance
between speed and accuracy. The availability of these scaled versions allows users to choose the
most appropriate version for their specific use case, depending on the trade-off between speed
and accuracy that they require. In this thesis, the YOLOv8-small was utilized due to the balance
between computational efficiency and detection performance. The default hyperparameters used
during YOLOv8 training are listed in Appendix C with an accompanying explanation. Lastly,
YOLOv8 uses the same data augmentation techniques as YOLOV4.

3.6 DeepSORT

After the completion of the training process for each of the two detectors, the obtained weights
are separately utilized during the detection phase of DeepSORT, providing two distinct mod-
els for object tracking. As outlined in Section 2.2, the DeepSORT algorithm encompasses a
dual structure with a detection part and a tracking part, commonly denoted as a tracking-by-
detection algorithm. Initially, DeepSORT employs its integrated detection algorithm to identify
and locate objects as seen in Figure 3.7. Subsequently, the tracking phase of DeepSORT is exe-
cuted using the Kalman filter, Deep Association Matrix, and the Hungarian algorithm, ensuring
the accurate tracking and preservation of each object’s identity over time through the assign-
ment of unique identifiers.

Page 33 of 70

Figure 3.7: For a tracking-by-detection algorithm, a detection algorithm is required to detect
objects before the DeepSORT tracking stage assigns unique identities to each detected object.

3.6.1 Hyperparameters in DeepSORT

Similar to the previously mentioned detectors, DeepSORT also contains a set of hyperparame-
ters that can be adjusted to enhance the tracking performance. The default hyperparameters
and a brief explanation of them are listed in Appendix D.

Unlike detection models, DeepSORT doesn’t require any training process, and adjusting its
hyperparameters during the inference stage is considerably faster than the training phase of the
detectors. The trained weights obtained from the detectors, along with a test set containing a
.mp4 video footage file, are used as inputs to the DeepSORT tracking algorithm. The output
of this algorithm is a video file containing the input video with tracking properties.

Since the original DeepSORT model did not provide the functionality to export text files con-
taining detection bounding box information (tracking id, x, y, w, h), it was necessary to modify
the DeepSORT implementation to facilitate the evaluation of the two test sets (Channel 3 and
Channel 6) against the ground truth. These modifications allowed the algorithm to produce
prediction bounding boxes in the test sets utilizing the YOLO file format. The added code can
be accessed in Appendix E.

3.7 Evaluation using MOTMetrics

To evaluate and compare the two tracking models, we implemented a series of evaluation metrics
as described in Section 2.4. For metric calculations, we utilized the MOTMetrics library (ver-
sion 1.4.0), installed via pip. This library necessitates ground truth text files for each frame,
in addition to the detection text files, which were made feasible due to the aforementioned
DeepSORT code modifications.

To employ MOTMetrics, we organized two folders containing text files. The first folder holds
ground truth text files, while the second folder stores tracking text files extracted from Deep-
SORT. Both folders adhere to the YOLO format, as demonstrated in the two corresponding
text files in Figure 3.8.

Page 34 of 70

Figure 3.8: The figure illustrates an evaluation between a ground truth file from the ground
truth folder and a corresponding frame from the output DeepSORT folder.

To systematically calculate the tracking metrics, the function provided in Appendix F processes
every corresponding text file from the two folders using MOTMetrics. It uses the IOU metric
to match the objects from the DeepSORT output folder to the ground truth folder for each
frame. The object being tracked is deemed a match when it exhibits an IoU score that exceeds
a specified threshold value with a corresponding ground truth object. In this thesis an IOU
threshold of 0.5 is used, signifying a 50% overlap is required for a detection to be paired with
a ground truth object. After the objects are matched, MOTmetrics proceeds to calculate the
tracking metrics introduced in Section 2.3. The evaluation is used to determine which model
combination is the most effective at tracking fish in an underwater environment, specifically
comparing the performance of DeepSORT when utilizing either YOLOv4 or YOLOv8 as the
detector.

Page 35 of 70

Chapter 4
Results

This chapter provides an in-depth analysis and discussion of the results obtained from the mod-
els presented in this thesis, in line with the objectives outlined in Chapter 1. Section 4.1 presents
and examines the quantitative outcomes of the YOLOv4 and YOLOv8 object detectors, fol-
lowed by a comparison and discussion of the detectors combined with the DeepSORT tracking
algorithm. The similarities and differences are emphasized, offering valuable insights into each
method and the impact of the detectors on object tracking in the test videos. Section 4.2
supplement the quantitative analysis by delving into the qualitative distinctions between the
object detectors and the object tracking models. This analysis explores the visual differences,
performance variations, and overall characteristics exhibited by each model, leading to a deeper
understanding of their capabilities. Through the extensive analysis and discussion presented in
this chapter, informed conclusions can be made regarding the effectiveness of the object detec-
tion and object tracking models in fulfilling the thesis objectives.

4.1 Quantitative Analysis

4.1.1 Quantitative Analysis of Detection Performance

The YOLOv4 object detection model was trained for 6000 iterations (375 epochs) with default
hyperparameters in this thesis, as shown in Appendix B. The training process for the YOLOv4
model on the Google Colab servers, using the Pro subscription and Tesla A100 GPU, took
slightly over five hours to complete.

On the other hand, the YOLOv8 object detection algorithm was trained for 100 epochs using
the default hyperparameters specified in Appendix C. As the model did not converge within the
specified number of epochs, the number was increased to 200 during the training process. To
prevent overfitting and optimize the training process, an early stopping hyperparameter called
“patience” was set to 50. This means that if the model did not show any improvement in
the last 50 epochs, training would be stopped. In this particular case, the model stopped at
111 epochs since it had not demonstrated any improvement in performance during the last 50
epochs. The best-performing epoch was therefore found to be number 61. The training process
was conducted on a Tesla A100 GPU provided by Google Colab Pro, and it took approximately
two hours to reach completion.

Figure 4.1a presents the progression of the training and validation loss over the course of the
YOLOv4 model’s training process, as detailed in Section 2.2.2. It visually depicts how the
model’s capability to accurately identify fish within bounding boxes improves over time, as

36

evidenced by the reduction in training loss. Notably, the validation loss also exhibits a similar
trend, decreasing over the course of training, which is an indicator of the model’s improving
generalization to unseen data. The validation loss reaches a minimum at around 3000 iterations,
suggesting that the model’s performance on the validation set is optimal at this point.

(a) (b)

Figure 4.1: The training loss and validation loss curves for YOLOv4 and YOLOv8 are depicted
in Figure (a) and Figure (b), respectively.

Figure 4.1b illustrates the loss for YOLOv8 throughout the training process. Both the train-
ing loss and validation loss show a rapid decline in the initial epochs. However, although the
validation loss stabilizes at approximately 1.2, the training loss keeps decreasing gradually. As
previously stated, the optimal performance was attained at epoch 61. Figures showing the data
augmentation during training is presented in Appendix G.

Furthermore, as explained in Section 2.4, mAP50 and mAP50-95 are among the metrics used
for evaluating detection algorithms. For YOLOv4, as depicted in Figure 4.2a, the mAP50 value
remains relatively stable at around 0.81, indicating that YOLOv4 is capable of detecting objects
in approximately 81% of the validation images with a threshold (IOU) of 50%. However, when
considering the more stringent mAP50-95 metric, YOLOv4’s average value drops to 0.39, im-
plying lower accuracy in localizing objects when higher overlaps are considered. The validation
for both mAP50 and mAP50-95 in YOLOv4 begins after the first 1000 iterations, by default.
This is primarily because the computation of mAP validation scores is resource-intensive and
requires significantly more computational power compared to the standard training process.

Page 37 of 70

(a) (b)

Figure 4.2: The mAP50 and mAP50-95 scores for YOLOv4 and YOLOv8 are shown in Figure
(a) and Figure (b), respectively.

In contrast, based on the mAP50 metric shown in Figure 4.2b, YOLOv8 demonstrates a stronger
validation performance than YOLOv4. The figure illustrates that the model achieves a maxi-
mum mAP50 score exceeding 0.88, indicating high precision in object detection. Additionally,
with a mAP50-95 score of approximately 0.64, YOLOv8 exhibits the ability to more precisely
identify and locate objects with higher IOU thresholds. This observation implies that YOLOv8
could be better suited to handle diverse detection situations in the underwater environments
featured in the thesis datasets.

Table 4.1 provides a summary of the quantitative performance of YOLOv4 and YOLOv8 on the
validation set, as well as two unseen test sets (Channel 3 and Channel 6). The table highlights
consistent results for each detector across the datasets, while also uncovering distinctions be-
tween the two detectors. When comparing the performance on the validation set to the unseen
data, it is evident that YOLOv8 surpasses YOLOv4, particularly in the mAP50-95 metric. This
indicates that YOLOv8 exhibits greater precision in localizing the ground truth bounding boxes
as previously discussed. Moreover, the higher precision scores of YOLOv8 indicate a reduced
number of false positive predictions, demonstrating a lower tendency to detect nonexistent fish.
Additionally, YOLOv8 demonstrates better recall, showcasing its ability to detect and localize
actual fish in the frame.

Table 4.1: The table presents the detection metrics for the validation set during training, and
the two previously unseen test sets during inference.

YOLOv4 YOLOv8

Metric Validation Test Ch6 Test Ch3 Validation Test Ch6 Test Ch3

mAP50 84.3% 84.0% 83.3% 88.4% 88.2% 87.6%

mAP50-95 39.8% 39.2% 38.7% 64.4% 64.3% 63.6%

Precision 0.80 0.79 0.77 0.87 0.87 0.84

Recall 0.81 0.80 0.77 0.83 0.84 0.81

4.1.2 Quantitative Analysis of Tracking Performance

The detection models, YOLOv4 and YOLOv8, were integrated with the DeepSORT tracking
algorithm, as explained in Section 3.6. The tracking performance was evaluated on the video
test sets from Channel 3 and Channel 6, using the default hyperparameters of DeepSORT, listed

Page 38 of 70

in Appendix D. The tracking results for each combination are summarized in Table 4.2.

Table 4.2: Tracking performance using DeepSORT combined with YOLOv4 and YOLOv8 on
video data from Channel 3 and Channel 6 using default parameters.

Detector Dataset MOTA MOTP IDF1 IDSW MT PT ML

YOLOv4
Channel 3 0.563 0.264 0.401 222 24 31 6
Channel 6 0.533 0.267 0.391 236 23 31 8

YOLOv8
Channel 3 0.598 0.192 0.455 188 27 28 6
Channel 6 0.556 0.185 0.466 213 30 27 5

Comparing the two tracking models, it is evident that the combination of DeepSORT with
YOLOv8 outperforms DeepSORT with YOLOv4. The results show that tracking with YOLOv8
yields higher MOTA scores for both Channel 6 (0.556) and Channel 3 (0.598), indicating bet-
ter overall tracking accuracy. Additionally, the lower MOTP values observed for tracking with
YOLOv8 suggest higher location accuracy of predicted bounding boxes. The IDF1 values are
also higher for tracking with YOLOv8, indicating better data association and object identity
maintenance, which ultimately leads to enhanced tracking performance. It is worth noting that
tracking with YOLOv8 results in an increased count of mostly tracked (MT) objects across
both datasets and a significantly reduced number of mostly lost (ML) objects in the Channel 6
test set.

Furthermore, both tracking models were tested in which direction a parameter change would
impact the models’ performance, starting with YOLOv4. Table 4.3 presents values above and
below the default settings for the “MaxAge” (“max age”), “MaxIOUDist” (“max iou distance”)
and “IOU” parameters. Modifying these hyperparameters resulted in the most noticeable dif-
ferences in tracking performance, unlike the other hyperparameters tested.

The most significant improvement was to reduce “MaxAge” to 30 frames from its default value
of 60, resulting in higher MOTA and fewer identity switches. One second of the video con-
sists of 25 frames, which means that 30 frames make up slightly more than one second of the
video. Furthermore, the IDF1 score showed a significant increase, indicating improved data
association and tracking performance. On the other hand, if the “MaxAge” value is increased,
the tracker may retain tracks for a longer duration without matching to new detections before
they are deleted, resulting in an increase in IDSW (identity switches). This leads to incorrect
associations with new detections and increases the number of identity switches.

A slight modification to the “IOU” threshold showed a difference in the performance of the
model. A decrease in “IOU” allows for more bounding boxes to be present, resulting in
marginally higher MOTA and IDF1. On the other hand, increasing the IOU threshold resulted
in a decrease in performance. These findings highlight the sensitivity of the model to the IOU
threshold and the importance of selecting an appropriate value to optimize the tracking perfor-
mance. Additionally, increasing the “MaxIOUDist” parameter improved the MOTA, MOTP,
and IDF1 scores marginally. However, when combined with a reduced “MaxAge” parameter, it
did not yield better performance compared to solely decreasing the “MaxAge” parameter.

Page 39 of 70

Table 4.3: Tuning the hyperparameters to optimize the DeepSORT tracking algorithm utilizing
YOLOV4 on the Channel 3 test set was carried out with the default hyperparameter perfor-
mance as the reference point. The percentage indicates the change in performance relative to
the reference point.

Metric MOTA MOTP IDF1 IDSW MT PT ML

Channel3default 0.563 0.264 0.401 222 24 31 6

MaxAge90 -0.6% -0.23% -1.8% +119 0 0 0

MaxAge30 +9.2% -0.31% +18.6% -80 0 0 0

IOU0.5 -0.17% +0.17% -0.5% +20 -1 +1 0

IOU0.4 +1.12% -0.05% +0.5% -7 +2 -1 -1

MaxIOUDist0.8 +0.12% -0.03% +1.3% 0 +1 -1 0

MaxIOUDist0.6 -0.42% -0.12% -3.3% +42 +1 0 -1

MaxAge30 + MaxIOUDist0.8 +7.7% +0.3% +15.2% +38 +1 -1 0

MaxAge30 + MaxIOUDist0.6 +3.2% +0.2% +11.3% -62 0 0 0

MaxAge30 + IOU0.4 +6.5% -0.03% +11.1% -69 0 0 0

MaxAge30 + IOU0.5 +8.4% +0.07% +16.8% -72 0 0 0

In Table 4.4, the performance of the DeepSORT tracking algorithm with YOLOv8 as the de-
tector was evaluated by exploring the influence the hyperparameters have on the performance.
The most substantial enhancement in tracking performance for DeepSORT with YOLOv8 was
achieved by reducing the “MaxAge” parameter. This adjustment resulted in improved tracking
accuracy, evidenced by higher MOTA scores and a significantly increased IDF1 score, aligning
with the observations in DeepSORT with YOLOv4. Consequently, the primary focus for opti-
mizing the DeepSORT algorithm with YOLOv8 should concentrate on reducing the “MaxAge”
parameter while maintaining the “IOU” threshold at its default value of 0.45 and “MaxIOUD-
ist” at 0.7.

Table 4.4: Tuning the hyperparameters to optimize the DeepSORT algorithm utilizing YOLOv8
on the Channel 3 test set was conducted with the default hyperparameter performance as the
reference point.

Metric MOTA MOTP IDF1 IDSW MT PT ML

Channel3default 0.598 0.192 0.455 188 27 28 6

MaxAge90 -2.9% +0.06% -9.2% +92 0 0 0

MaxAge30 +10.6% -0.23% +19.1% -78 -1 +1 0

IOU0.5 -0.15% -0.11% -0.6% +42 -1 +1 0

IOU0.4 +1.55% +0.23% +1.3% +28 +1 -1 0

MaxIOUDist0.8 +0.35% -0.04% +2.1% +92 0 0 0

MaxIOUDist0.6 -0.22% -0.32% -2.5% +56 0 +1 -1

MaxAge30 + MaxIOUDist0.8 +8.1% +0.17% +15.3% -62 0 0 0

MaxAge30 + MaxIOUDist0.6 +2.9% -0.03% +11.2% -16 -1 +1 0

MaxAge30 + IOU0.4 +3.5% -0.42% +12.1% -53 -2 +2 0

MaxAge30 + IOU0.5 +8.9% +0.16% +16.4% -68 -1 +1 0

The quantitative analysis highlights that DeepSORT with YOLOv8 outperforms DeepSORT
with YOLOv4 in terms of MOTA, IDF1, and MOTP. These findings are consistent with the
performance of the standalone object detectors, where YOLOv8 exhibits higher precision in
localizing objects. Furthermore, the tuning of the trackers as seen in Table 4.3 and Table 4.4,
suggest that changing the “MaxAge” hyperparameter to a lower value than the default (60

Page 40 of 70

frames) can result in improved tracking performance, as indicated by higher MOTA and IDF1
scores. However, reducing the “MaxAge” parameter requires a trade-off between minimizing
identity switches and improving occlusion handling capability, as a lower “MaxAge” value can af-
fect object re-identification after occlusion if the occlusion period exceeds the “MaxAge” frames.

Although the number of identity switches is high for both tracking models, this information
alone is insufficient to provide a comprehensive understanding of the underlying causes of these
switches. Further investigation is necessary to determine the specific scenarios in which identity
switches occur and the extent to which different factors, such as occlusion or object appearance
changes, contribute to these switches.

4.2 Qualitative Analysis

To gain a better understanding of the evaluation scores presented in Section 4.1, a qualitative
analysis is conducted in this section. Specifically, we focus on the two detectors used in the
thesis and investigate any differences they may have in detecting and localizing objects. Fur-
thermore, we examine the tracking results to identify any potential causes of identity switches
and assess the robustness of the tracking algorithm when dealing with challenging scenarios
such as occlusions, object appearance changes, and crowded scenes. The insights gained from
this analysis will help to inform further improvements to the tracking algorithm and guide the
development of future work in this field.

4.2.1 Qualitative Analysis of Detection Performance

Figure 4.3a presents the ground truth frame, whereas Figure 4.3b and Figure 4.3c depict the
same frame after being processed by YOLOv4 and YOLOv8, respectively. In Figure 4.3b, it
can be observed that YOLOv4 identifies fish with high confidence in the dense environment;
however, the precision of the bounding box localization has room for improvement. The detec-
tor exhibits some false negatives in the bottom right area of the frame, indicating its struggle
to detect fish in this region. This leads to an increased false negative rate, which negatively
affects the recall score. It is worth noting that the difficulty in detecting fish within this specific
section of the frame could be attributed to the lack of high-quality input data.

In contrast, YOLOv8 generates detection outcomes that show a lower confidence score for the
identified fish, as depicted in Figure 4.3c. However, YOLOv8 successfully detects a fish in the
bottom right corner of the frame that YOLOv4 fails to identify. Although the bounding box
localization for this fish is not perfect, YOLOv8’s more conservative approach leads to a higher
level of localization accuracy in capturing the overall locations of fish. Moreover, Appendix H
provides a detailed analysis of the differences in confidence scores and bounding box localiza-
tion between YOLOv4 and YOLOv8, contributing to the substantial difference in the observed
mAP50-95 scores discussed in Section 4.1.1.

Page 41 of 70

(a) Ground truth (frame 3) (b) YOLOv4 detection (frame 3) (c) YOLOv8 detection (frame 3)

Figure 4.3: Figure (a) shows the ground truth annotation for frame 3 in Channel 3, while Figures
(b) and (c) display the output from DeepSORT using YOLOv4 and YOLOv8, respectively.

After conducting a qualitative analysis of the performance of the detection models emphasizing
the differences in detection and localization, our investigation will now delve deeper into the
output videos obtained from tracking with these models. By closely examining the tracked
videos, we aim to gain a better understanding of the underlying patterns and occurrences that
contribute to identity switches. This qualitative analysis will provide valuable insights into the
dynamics of the tracking process and shed light on the specific situations and contexts in which
identity switches occur.

4.2.2 Qualitative Analysis of Tracking Performance

The quantitative analysis and qualitative comparison of the detection algorithms revealed that
YOLOv8 achieved better performance in detecting fish in terms of object detection accuracy
and bounding box localization. Moreover, DeepSORT utilizing YOLOv8 led to significantly
fewer identity switches compared to DeepSORT with YOLOv4, although the number of identity
switches remained high. In this section, we shift our focus to investigate the underlying factors
and circumstances that contribute to identity switches in both tracking models, starting with
occlusion handling.

Occlusion Handling in Tracking

The ability to handle occlusions is a critical aspect of the tracking process, especially in the
densely populated environment depicted in the datasets used for this study. Occlusions pose
a challenge to tracking algorithms as they need to accurately maintain track continuity and
associate detections during occlusion events. In such complex scenarios, the ability to handle
occlusions effectively becomes essential in achieving reliable and accurate tracking results. Thus,
by analyzing the performance of the models before, during, and after occlusion, we can gain
qualitative insights into how well they handle occlusions.

Page 42 of 70

(a) Before (frame 7) (b) During (frame 74) (c) After (frame 97)

(d) Before (frame 7) (e) During (frame 74) (f) After (frame 97)

Figure 4.4: Figure (a-c) depicts instances where occlusion handling in tracking with YOLOv4
failed, resulting in inaccurate track associations. In Figure (d-f), similar challenges are observed
in occlusion handling with YOLOv8.

Figure 4.4 illustrates the similarity in occlusion handling between the two tracking models,
DeepSORT integrated with YOLOv4 (Figure 4.4a - 4.4c) and YOLOv8 (Figure 4.4d - 4.4f). In
both cases, the models fail to accurately maintain the identities of occluded fish. Specifically, in
the case of YOLOv4the identities of two fish, namely fish with identity 4 and fish with identity
5, were switched with each other. Similarly, YOLOv8 assigns a completely new identity to the
fish after occlusion, resulting in identity switches. This occurrence represents a typical object-
object occlusion scenario, which contributes to the high number of identity switches observed
in the quantitative analysis presented in Section 4.1.2. The occlusion in question persisted
for a duration of more than 40 frames, which corresponds to nearly two seconds of the video.
This particular occlusion serves as an example of the limitations associated with reducing the
”MaxAge” parameter, as discussed in Section 4.2.2. However, it is noteworthy that the failure
to retain the identity of the occluded object was observed across all three tested ”MaxAge”
parameter values, including the default value of 60 frames, as well as 30 and 90 frames. This
finding suggests that the tracking algorithm encounters difficulties in effectively managing such
situations, and adjusting the hyperparameters does not appear to have any impact on the out-
come.

In contrast to the prolonged occlusion situation presented in Figure 4.4, the subsequent scenario
involves a fish being fully occluded for a shorter duration of only four frames. The tracking
results obtained using YOLOv4 (depicted in Figure 4.5a - 4.5c) and YOLOv8 (Figure 4.5d -
4.5f) both accurately re-identified the occluded fish. This scenario indicates that both tracking
models are capable of handling swift occlusions occurring over a few frames.

Page 43 of 70

(a) Before (frame 91) (b) During (frame 102) (c) After (frame 105)

(d) Before (frame 96) (e) During (frame 102) (f) After (frame 105)

Figure 4.5: In (a-c) the tracking with YOLOv4 demonstrates the correct re-assignment of the
occluded fish to the identity 36. Likewise, in (d-f), the tracking with YOLOv8 successfully
maintains the identity 38 for the fish after it undergoes occlusion.

The difference in performance between swift and prolonged occlusions can be attributed to sev-
eral factors. Firstly, the duration of the occlusion itself plays a crucial role. Shorter occlusions
tend to preserve the visual appearance and motion characteristics of the occluded fish to a
greater extent. This preservation allows the tracking models, particularly DeepSORT which
relies on appearance-based features, to leverage the available visual cues and successfully re-
identify the fish after the occlusion. Additionally, the motion behavior of the occluded fish
may also influence the models’ performance. In scenarios where the occluded fish remains in
the same spatial location before and after occlusion, the models can utilize consistent spatial
cues for re-identification. Conversely, a change in motion or velocity adds complexity and may
hinder the models’ ability to accurately track and re-identify occluded objects.

Hence, it can be inferred that the tracking models’ proficiency in handling occlusions and accu-
rately re-identifying objects is influenced by several factors, including the duration of occlusion,
the preservation of visual features, and the motion of the occluded fish. Swift occlusions can be
managed more effectively since they result in a shorter interruption of visual and motion cues,
thereby allowing the models to maintain a more precise representation of the tracked objects.

Handling Identity Switching during Tracking

The occurrence of identity switches in the tracking models cannot be solely attributed to oc-
clusion. Figure 4.6 illustrates the performance of DeepSORT integrated with YOLOv8 (Fig-
ure 4.6d - 4.6f) and with YOLOv4 (Figure 4.6a - 4.6c) in maintaining the identity of an unob-
scured fish. The results show that tracking with YOLOv8 consistently preserves the identity of
the fish (30), while the tracking model using YOLOv4 exhibits a higher frequency of identity
switches. Initially assigned with identity 21, the fish tracked with YOLOv4 switches to identity
45 and subsequently changes to identity 3. As shown in Figure 4.6a, the identity label “3”
was previously assigned to a different fish. The results of the quantitative analysis corroborate
this observation, as the combination of YOLOv4 and DeepSORT exhibited a higher count of
identity switches and a lower IDF1 score compared to the YOLOv8 tracker. The higher rate

Page 44 of 70

of identity switches underscores the difficulties in preserving stable identities throughout the
tracking process.

(a) DeepSORT with YOLOv4
(frame 201)

(b) DeepSORT with YOLOv4
(frame 207)

(c) DeepSORT with YOLOv4
(frame 222)

(d) DeepSORT with YOLOv8
(frame 201)

(e) DeepSORT with YOLOv8
(frame 207)

(f) DeepSORT with YOLOv8
(frame 222)

Figure 4.6: (a-c) highlights the multiple identity switches experienced by YOLOv4, indicating
a less consistent performance in maintaining object identities, while Figure (d-f) illustrates
YOLOv8’s successful preservation of the fish’s identity (identity 303) during the occlusion period

Furthermore, Figure 4.7 depict a comparison of identity retention between tracking with YOLOv4
and YOLOv8 in the same scenario in the Channel 3 test data. For tracking with YOLOv4, the
fish in the scene is initially assigned identity 41 but undergoes identity switches to 15 and then
back to 41, ending with identity 11. In contrast, DeepSORT with YOLOv8 successfully main-
tains the fish’s identity throughout the sequence. Also, as stated previously, the figure clearly
demonstrates that YOLOv8 exhibits a narrower aspect ratio on the bounding box compared
to YOLOv4. This narrower aspect ratio indicates that YOLOv8 is more effective at precisely
localizing the fish in the scene. By accurately capturing the spatial extent of the fish, YOLOv8
enhances the tracking performance by providing a better representation of the object’s location

Page 45 of 70

(a) Frame 161 (b) Frame 174 (c) Frame 179 (d) Frame 186

(e) Frame 161 (f) 174 (g) Frame 179 (h) Frame 186

Figure 4.7: Figure (a-c) illustrates several identity switches for the fish with an initial identity
of 41 when using DeepSORT with YOLOv4. In contrast, Figure (d-f) shows that the fish
successfully retains its identity as 30 when DeepSORT is combined with YOLOv8.

Despite YOLOv8 generally outperforming YOLOv4 in retaining identity for unobscured fish,
it should be noted that it still faced occasional challenges as seen in Figure 4.8. The tracking
results with YOLOv8 in Figure 4.8d - 4.8f illustrate a tracked fish with identity 89 undergoing
an identity switch to identity 130 during the trajectory change. Similarly, YOLOv4 exhibits the
same issue in Figure 4.8a - 4.8c, resulting in a total of three identity switches, including one prior
to the change in trajectory. These results indicate that while YOLOv8 may encounter occa-
sional difficulties in maintaining consistent identities during tracking, YOLOv4 exhibits greater
challenges in achieving consistent and reliable tracking performance. The difficulties observed
in maintaining consistent identities across both tracking models could potentially stem from a
lack of sufficient or high-quality training data. The models may not have effectively learned to
handle such scenarios, resulting in object identity switches, especially when a fish undergoes
unexpected changes in direction or movement.

Page 46 of 70

(a) Frame 77 (b) Frame 83 (c) Frame 94

(d) Frame 77 (e) Frame 83 (f) Frame 94

Figure 4.8: Figures (a-c) depict three instances of identity switches for the fish initially assigned
identity 75 during tracking with DeepSORT and YOLOv4. Figures (d-f) illustrate a shift in
identity during a trajectory change for fish 89, using DeepSORT integrated with YOLOv8.

Page 47 of 70

Chapter 5
Discussion

The first objective of the thesis, as outlined in Chapter 1, was to achieve precise and accurate
detection of individual fish in densely populated environments. The results presented in this
thesis demonstrate that both YOLOv8 and YOLOv4 perform effectively as standalone object
detectors for fish detection in such environments. However, when considering detection ac-
curacy with higher IOU thresholds (mAP50-95), YOLOv8 achieves significantly better results
than YOLOv4. This finding aligns with the qualitative analysis, which indicates that YOLOv8
is more adept at precisely localizing the positions of detected fish. Nonetheless, both algorithms
have difficulties detecting all the fish in the frames and based on the qualitative analysis this
could potentially be attributed to the low quality of the data used in this thesis or the quantity
of the training data.

The performance difference in detection between YOLOv4 and YOLOv8 can be attributed to
several other key factors. Firstly, YOLOv8 utilizes anchor-free detection with decoupled heads,
which might improve localization accuracy and enhances the precision of bounding box predic-
tions. By removing the reliance on predefined anchor boxes, YOLOv8 can adapt more effectively
to objects of varying sizes and aspect ratios, resulting in more precise and accurate detections.
Additionally, YOLOv8 incorporates a modified backbone architecture that enhances its ability
to capture discriminative features. These differences in architecture can contribute to enhanc-
ing the model’s understanding of visual features, leading to improved performance in object
detection.

The second objective of the thesis was to track fish over an extended period. The findings
indicate that both tracking models faced challenges in maintaining identity during prolonged
occlusion, rapid movement, and variations in swimming patterns. As a result, the tracking
of fish was inconsistent, and it can be stated that the objective of achieving tracking over an
extended period was not fully realized. These challenges highlight the complexity of tracking
fish over extended periods and the need for further research and development to overcome these
limitations and enhance the tracking capabilities in dynamic aquatic environments.

DeepSORT, as an appearance-based tracker, heavily relies on the visual characteristics of the
tracked objects for re-identification. This characteristic could potentially explain the encoun-
tered challenges in maintaining identity during occlusion. The shape of the bounding box can
change significantly depending on the direction of the fish’s movement in relation to the cam-
era. Fish that swim across horizontally and vertically, or towards and away from the camera,
will have extremely different appearances and bounding box shapes, making it challenging for
DeepSORT to retain identity during occlusion. In contrast, a human walking behind another
human is likely to have a similar appearance and the aspect ratio of the bounding box before

48

and after occlusion. As a result, maintaining identities during occlusion becomes comparatively
easier in such scenarios.

A similar explanation can be applied to the challenges faced in retaining identity during rapid
trajectory changes. As observed, when fish undergo swift trajectory changes, often spanning
just a few frames, it becomes increasingly difficult for the tracking algorithm to accurately
maintain their identities. These rapid switches result in significant transformations in the fish’s
shape and appearance, further complicating the task of identity retention for DeepSORT.

Despite the challenges faced by the tracking algorithms in handling occlusions and abrupt
changes in object trajectory, the study revealed a notable difference between the two tracking
models in their ability to maintain tracks for unobscured objects. Tracking with YOLOv8 ex-
hibited a higher degree of success in preserving the identity of unobscured fish, leading to a
lower number of identity switches compared to utilizing YOLOv4. A reason for this could be
that YOLOv8 predicts bounding boxes with a more conservative aspect ratio, which fits the
detected objects better. This better localization provided by YOLOv8 results in less varia-
tion in aspect ratio between frames as the object moves, making the tracking process easier.
Contrarily, YOLOv4’s bounding box prediction may not always be as precise, which can cause
rapid alterations in the bounding box’s shape and size during tracking. This inconsistency can
challenge the tracker’s ability to preserve the identity of the tracked object, leading to a higher
frequency of identity switches compared to YOLOv8. The ability to maintain consistent identi-
ties for unobstructed objects is a critical factor in achieving accurate and dependable tracking
results.

The results indicate that the combination of DeepSORT utilizing YOLOv8 presents the high-
est overall performance in tracking fish over an extended period within our test sets. This
combination ensures precise bounding box localization and decent tracking of unobscured fish.
However, this combination still experienced a significant number of identity switches. Hence,
while this combination of models shows potential, it does not offer a sufficiently high level of
accuracy for consistently tracking fish under challenging circumstances. Even though detector
tuning was not performed as part of this study, the notable differences observed between the
detectors during both detection and tracking suggest that further tuning could enhance the
overall tracking performance. Nevertheless, considering the high mAP50-95 demonstrated by
YOLOv8, it seems the detectors are not the primary cause for the identity switches during
tracking.

A concurrent master’s thesis also utilizes the same dataset and incorporates the ByteTrack
algorithm [16] in combination with YOLOv8, as described in Chapter 1. The version of the
detector employed in that thesis (Ultralytics YOLOv8.0.20) is identical to the one used in this
thesis, and the same default hyperparameters have been applied. A key point of divergence
between DeepSORT and ByteTrack lies in their treatment of bounding boxes. DeepSORT ap-
plies a filtration process that disregards bounding boxes with low detection confidence scores.
In contrast, ByteTrack utilizes a different approach where it considers all detection boxes for
the association, irrespective of their confidence scores, instead of exclusively prioritizing those
with high scores.

Page 49 of 70

Table 5.1: The table illustrates the performance differences between ByteTrack and DeepSORT
utilize the same YOLOv8 object detector.

Tracker Dataset MOTA MOTP IDF1 IDSW MT PT ML

ByteTrack
Channel 6 0.652 0.158 0.624 73 33 24 5
Channel 3 0.657 0.168 0.597 93 25 30 6

DeepSort
Channel 6 0.556 0.185 0.466 213 30 24 5
Channel 3 0.598 0.192 0.455 188 25 30 6

Table 5.1 illustrates the better performance of ByteTrack compared to DeepSORT when both
are paired with the same YOLOv8 object detection algorithm. With default parameters, Byte-
Track achieves a notably higher IDF1 score and a significantly lower number of identity switches.
Given that both tracking algorithms employ the same object detection algorithm, the higher
performance of the ByteTrack model is largely attributed to its unique method of handling
detections, which differentiates it from DeepSORT.

ByteTrack’s ability to consider all detection boxes during its association process enables it to
recover objects that could be occluded or have low detection confidence scores. In contrast,
DeepSORT filters out such detections, potentially treating them as background rather than
true objects. As a result of its approach, ByteTrack exhibits significantly higher accuracy and
more consistent tracking performance than DeepSORT.

DeepSORT’s approach of filtering out detection boxes with low confidence scores can lead to the
exclusion of potentially valid object detections, resulting in fragmented trajectories and reduced
tracking accuracy, especially in scenarios involving occlusions or partial object visibility. To en-
hance the accuracy and reliability of fish tracking in dynamic aquatic environments, further
research and development are needed to overcome these limitations. It is worth noting that
the findings of this study deviate from the claims made in the published paper on DeepSORT,
which suggests its ability to track objects through extended periods of occlusions. The observed
high number of identity switches during occlusions highlights the necessity for advancements to
achieve reliable tracking performance under such conditions. Overall, these findings emphasize
the need for further research and development to address the challenges of fish tracking and im-
prove the accuracy and reliability of computer vision-based monitoring systems in aquaculture
settings.

5.1 Future Work

This thesis has identified several challenges that need to be addressed to enhance the perfor-
mance of tracking fish for an extended period in dense environments. These challenges were
identified based on the results and discussions presented in the previous chapters.

As part of future work, exploring the integration of a tracker that leverages the strengths of
both ByteTrack and DeepSORT is a promising avenue. By combining ByteTrack’s ability to
utilize low-confidence detection boxes and DeepSORT’s robustness in handling motion and ap-
pearance, a hybrid tracker might offer improved accuracy, identity retention, and consistency in
diverse and challenging scenarios. Further research and development in this direction could pave
the way for more effective and efficient multi-object tracking techniques in various applications.

Additionally, transformers such as TrackFormer [68] could also be a promising area for further
research, as it adopts a distinct paradigm, known as tracking-by-attention. This technique

Page 50 of 70

utilizes attention mechanisms for data association and performs detection and tracking jointly
[68]. TrackFormer, in contrast to DeepSORT, captures the dependencies between objects and
frame-level features without the need for explicit modeling of motion and appearance. This is
achieved through the utilization of attention mechanisms, which allow the model to dynamically
weigh the relevance of different objects and features during the tracking process. [68].

Moreover, in order to achieve accurate object-tracking outcomes, it is crucial to carefully select
an appropriate object detection algorithm. Future research could explore the use of alternative
detectors to further reduce the occurrence of false negatives and increase localization precision.
As computer vision technology continues to advance, object detection algorithms could be de-
signed to handle both normal and occluded bounding boxes, thereby improving the accuracy
and effectiveness of object tracking algorithms. The utilization of such detectors could enhance
the tracking algorithm’s ability to handle re-identification effectively, especially in difficult sce-
narios such as prolonged occlusions.

The challenges in accurately detecting and tracking fish in this study are not solely due to the
detection and tracking algorithms used. The dataset utilized in this thesis was not originally
designed for computer vision tasks, so future work should prioritize acquiring higher-quality
data with enhanced visual clarity. This can be achieved by employing a camera that has a
higher frame rate to capture more frames per second, along with a higher resolution to enhance
the overall video quality. In addition, using multiple cameras in the fish tank can help to reduce
occlusion challenges by providing multiple views of the same scene, allowing for more complete
tracking of fish movement. This approach can enhance the accuracy of the tracking algorithm
by providing more comprehensive coverage of the environment, thereby enabling the identifi-
cation of fish from multiple angles. Alternatively, using a 360-degree camera could be a viable
option for capturing a complete view of the tank, but would not provide any additional help in
occlusion handling.

Furthermore, the development of a new metric to supplement the existing tracking metrics
for identifying occlusion handling would be beneficial. A suitable metric for evaluating object
tracking performance during occlusion scenarios could consider factors such as the number of
successfully tracked objects during occlusion scenarios, the duration of occlusions, and the accu-
racy of predicted bounding boxes during occlusion scenarios. The creation of a dedicated metric
would be valuable in assessing and comparing the performance of various tracking models when
it comes to handling occlusions. This metric would provide insights into how well the models
can handle occluded objects and help identify the strengths and weaknesses of each approach.

A consistent tracking model with minimal identity switches has the potential to significantly
impact the aquaculture industry in assessing fish welfare. Such a computer vision system could
provide valuable insights into appetite, behavior, growth, and disease progression over the lifes-
pan of the fish. The traditional manual labor currently employed in monitoring fish tanks,
as described in Chapter 1, could be replaced by an automated system, which would likely be
less susceptible to inaccuracies due to enhanced visibility and more time- and cost-efficient.
This advantage could be further amplified if multiple cameras are utilized in tandem to track
fish movements and minimize occlusion scenarios, thereby preserving the identity of each fish
throughout its life cycle.

The successful implementation of a robust computer vision system for monitoring fish has the
potential to extend beyond fish tanks and be applied in various environments, including sea-
based fish farming. By adapting the system to address challenges related to water conditions,
lighting variations, and environmental factors, it can become a versatile tool for monitoring and

Page 51 of 70

managing fish populations in diverse settings. The computer vision system initially developed
for tracking salmon can be further customized and expanded to monitor other fish species. By
fine-tuning the detection and tracking algorithms to accommodate variations in appearance,
behavior, and movement patterns across different species, the automated monitoring system
can offer broad applicability within the aquaculture industry.

In addition to its primary tracking capabilities, the computer vision system can be trained
to recognize specific events such as attacks, flights, and bites, providing valuable insights into
fish behavior and interactions. By detecting and analyzing these events, aquaculture operators
can gain a deeper understanding of social dynamics, aggression patterns, and feeding behavior
within fish populations. This advancement holds significant implications for the aquaculture
industry, enabling researchers to gain valuable insights into fish behavior and make informed
decisions regarding fish welfare, feeding patterns, and environmental conditions.

Page 52 of 70

Chapter 6
Conclusion

The two main objectives of this thesis were focused on achieving the following:

1. Detect individual fish in a dense aquatic environment with high precision and accuracy
utilizing computer vision.

2. Track individual fish over an extended period based on computer vision in the same dense
environment.

The findings of this study show that both YOLOv4 and YOLOv8 object detection models can
detect and localize fish in densely populated environments. Among the two, YOLOv8 outper-
formed YOLOv4, achieving 88.4% mAP50, 64.4% mAP50-95, 0.87 precision, and 0.83 recall
on the validation set, as indicated in Table 4.1. For tracking purposes, the combination of
DeepSORT and YOLOv8 demonstrated superior overall performance compared to the pairing
of DeepSORT and YOLOv4, as indicated by higher MOTA and IDF1 scores and a lower MOTP
score for both test sets. Specifically, for the Channel 3 test set, the tracker achieved a MOTA
score of 0.598, MOTP score of 0.192, and IDSW score of 0.455, as shown in Table 4.2. However,
the tracking models faced difficulties in handling longer-duration occlusions and rapid trajec-
tory changes, which led to a significant number of identity switches.

Based on the results, our findings indicate that YOLOv8 demonstrates accurate fish detec-
tion capabilities in high-density environments. However, when combined with DeepSORT for
tracking, the overall performance was not consistently reliable due to the challenges posed by
occlusion scenarios and rapid changes in fish trajectory, resulting in a high number of identity
switches. Therefore, to ultimately achieve the goal of utilizing computer vision in fish welfare
monitoring, it is essential to continue conducting further research and development to address
the challenges and enhance fish tracking performance in dense environments. Overcoming the
limitations observed in this study will contribute to the advancement of fish monitoring tech-
niques and support the goal of promoting fish welfare in aquaculture practices.

53

Bibliography

[1] Francesca Conte et al. “Consumers’ Attitude Towards Fish Meat”. In: Italian Jour-
nal of Food Safety (2014). url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5076726/.

[2] Øyvind Aas-Hansen et al. “Ny teknologi for overv̊aking av oppdrettsmiljø og fiskevelferd i
oppdrettsmerder. Sluttrapport for FHF prosjekt 900085”. In: Nofima (2010). url: https:
//nofima.no/publikasjon/1170717/.

[3] Isaac Ankamah-Yeboah et al. “The Impact of Animal Welfare and Environmental In-
formation on the Choice of Organic Fish: An Empirical Investigation of German Trout
Consumers”. In: (2019). issn: 0738-1360, 2334-5985. doi: 10.1086/705235. url: https:
//www.journals.uchicago.edu/doi/10.1086/705235.

[4] Alicia Bárcena et al. “The 2030 Agenda and the Sustainable Development Goals”. In:
United Nations publication (2018). url: https://www.vetinst.no/rapporter- og-
publikasjoner/rapporter/2022/fiskehelserapporten-2021.

[5] Helmut Segner et al. “Welfare of fishes in aquaculture”. In: FAO Fisheries and Aquaculture
Circular 1189 (2019). issn: 2070-6065. url: https : / / www . fao . org / 3 / ca5621en /
ca5621en.pdf.

[6] Kristine Gismervik et al. “Fiskehelserapporten 2021”. In: Veterinærinstituttet (2022),
pp. 35–60. issn: 1890-3290. url: https://www.vetinst.no/rapporter-og-publikasjoner/
rapporter/2022/fiskehelserapporten-2021.

[7] Christopher Noble et al. “Welfare Indicators for farmed Atlantic salmon: tools for assessing
fish welfare”. In: Nofima (2018). url: https://nofima.no/wp- content/uploads/
2021/05/FISHWELL-Welfare-indicators-for-farmed-Atlantic-salmon-November-

2018.pdf.

[8] Ling Yang et al. “Computer vision models in intelligent aquaculture with emphasis on
fish detection and behavior analysis: a review”. In: Archives of Computational Methods in
Engineering 28 (2021), pp. 2785–2816.

[9] Ahmad Salman et al. “Fish species classification in unconstrained underwater environ-
ments based on deep learning”. In: Limnology and Oceanography: Methods 14.9 (2016),
pp. 570–585.

[10] Geoffrey French et al. “Convolutional Neural Networks for Counting Fish in Fisheries
Surveillance Video”. In: Proceedings of the Machine Vision of Animals and their Behaviour
(MVAB). Sept. 2015, pp. 7.1–7.10. isbn: 1-901725-57-X. doi: 10.5244/C.29.MVAB.7.
url: https://dx.doi.org/10.5244/C.29.MVAB.7.

[11] Liang Liu et al. “Counting fish in sonar images”. In: 2018 25th IEEE International Con-
ference on Image Processing (ICIP). IEEE. 2018, pp. 3189–3193.

54

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076726/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076726/
https://nofima.no/publikasjon/1170717/
https://nofima.no/publikasjon/1170717/
https://doi.org/10.1086/705235
https://www.journals.uchicago.edu/doi/10.1086/705235
https://www.journals.uchicago.edu/doi/10.1086/705235
https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2022/fiskehelserapporten-2021
https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2022/fiskehelserapporten-2021
https://www.fao.org/3/ca5621en/ca5621en.pdf
https://www.fao.org/3/ca5621en/ca5621en.pdf
https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2022/fiskehelserapporten-2021
https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2022/fiskehelserapporten-2021
https://nofima.no/wp-content/uploads/2021/05/FISHWELL-Welfare-indicators-for-farmed-Atlantic-salmon-November-2018.pdf
https://nofima.no/wp-content/uploads/2021/05/FISHWELL-Welfare-indicators-for-farmed-Atlantic-salmon-November-2018.pdf
https://nofima.no/wp-content/uploads/2021/05/FISHWELL-Welfare-indicators-for-farmed-Atlantic-salmon-November-2018.pdf
https://doi.org/10.5244/C.29.MVAB.7
https://dx.doi.org/10.5244/C.29.MVAB.7

[12] Cigdem Beyan, Vasiliki-Maria Katsageorgiou, and Robert B Fisher. “Extracting statisti-
cally significant behaviour from fish tracking data with and without large dataset clean-
ing”. In: IET Computer Vision 12.2 (2018), pp. 162–170.

[13] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “Yolov4: Optimal
speed and accuracy of object detection”. In: arXiv preprint arXiv:2004.10934 (2020).

[14] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics. Version 8.0.0. Jan.
2023. url: https://github.com/ultralytics/ultralytics.

[15] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple online and realtime tracking
with a deep association metric”. In: 2017 IEEE international conference on image pro-
cessing (ICIP). IEEE. 2017, pp. 3645–3649.

[16] Yifu Zhang et al. “Bytetrack: Multi-object tracking by associating every detection box”.
In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXII. Springer. 2022, pp. 1–21.

[17] Sebastian Raschka and Vahid Mirjalili. Python machine learning: Machine learning and
deep learning with Python, scikit-learn, and TensorFlow 2. 2019.

[18] Frank Rosenblatt. “The perceptron, a perceiving and recognizing automation”. In: Cornell
Aeronautical Laboratory (1957). url: https://blogs.umass.edu/brain-wars/files/
2016/03/rosenblatt-1957.pdf.

[19] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: 5 (1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259.

[20] AD Dongare, RR Kharde, Amit D Kachare, et al. “Introduction to artificial neural net-
work”. In: International Journal of Engineering and Innovative Technology (IJEIT) 2.1
(2012), pp. 189–194.

[21] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

[22] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. “Activation func-
tions in deep learning: A comprehensive survey and benchmark”. In: Neurocomputing
(2022).

[23] Mohamed Elgendy. Deep learning for vision systems. 2020.

[24] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. “Stereo r-cnn based 3d object detection for
autonomous driving”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019, pp. 7644–7652.

[25] Abdul Hanan Ashraf et al. “Weapons detection for security and video surveillance using
cnn and YOLO-v5s”. In: CMC-Comput. Mater. Contin 70 (2022), pp. 2761–2775.

[26] Andre Esteva et al. “Deep learning-enabled medical computer vision”. In: npj Digital
Medicine (2021). issn: 2398-6352. doi: https://doi.org/10.1038/s41746-020-00376-
2.

[27] Elvis Saravia. “ML Visuals”. In: https://github.com/dair-ai/ml-visuals (Dec. 2021).

[28] Shibani Santurkar et al. “How does batch normalization help optimization?” In: Advances
in neural information processing systems 31 (2018).

[29] Luyang Wang et al. “Skip-connection convolutional neural network for still image crowd
counting”. In: Applied intelligence 48 (2018), pp. 3360–3371.

[30] Laith Alzubaidi et al. “Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions”. In: Journal of big Data 8 (2021), pp. 1–74.

[31] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A survey of transfer learning”.
In: Journal of Big data 3.1 (2016), pp. 1–40.

Page 55 of 70

https://github.com/ultralytics/ultralytics
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://doi.org/10.1007/BF02478259
https://doi.org/https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/https://doi.org/10.1038/s41746-020-00376-2

[32] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and semantic
segmentation”. In: (2014), pp. 580–587.

[33] Ross Girshick et al. “Region-based convolutional networks for accurate object detection
and segmentation”. In: IEEE transactions on pattern analysis and machine intelligence
38.1 (2015), pp. 142–158.

[34] Pierre Sermanet et al. “Overfeat: Integrated recognition, localization and detection using
convolutional networks”. In: arXiv preprint arXiv:1312.6229 (2013).

[35] Jimin Yu and Wei Zhang. “Face mask wearing detection algorithm based on improved
YOLO-v4”. In: Sensors 21.9 (2021), p. 3263.

[36] Chengji Wang et al. “Anchor free network for multi-scale face detection”. In: 2018 24th
International Conference on Pattern Recognition (ICPR). IEEE. 2018, pp. 1554–1559.

[37] Taoshan Zhang et al. “A fully convolutional anchor-free object detector”. In: The Visual
Computer 39.2 (2023), pp. 569–580.

[38] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. “Objects as points”. In: arXiv
preprint arXiv:1904.07850 (2019).

[39] Soharab Hossain Shaikh et al. “Moving object detection approaches, challenges and object
tracking”. In: Moving object detection using background subtraction (2014), pp. 5–14.

[40] Chien-Yao Wang et al. “CSPNet: A new backbone that can enhance learning capability
of CNN”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition workshops. 2020, pp. 390–391.

[41] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv preprint
arXiv:1804.02767 (2018).

[42] Yi Zhu and Shawn Newsam. “Densenet for dense flow”. In: 2017 IEEE international
conference on image processing (ICIP). IEEE. 2017, pp. 790–794.

[43] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[44] Diganta Misra. “Mish: A self regularized non-monotonic activation function”. In: arXiv
preprint arXiv:1908.08681 (2019).

[45] Kaiming He et al. “Spatial pyramid pooling in deep convolutional networks for visual
recognition”. In: IEEE transactions on pattern analysis and machine intelligence 37.9
(2015), pp. 1904–1916.

[46] Shu Liu et al. “Path aggregation network for instance segmentation”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018, pp. 8759–8768.

[47] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional network”.
In: arXiv preprint arXiv:1505.00853 (2015).

[48] Alexander Neubeck and Luc Van Gool. “Efficient non-maximum suppression”. In: 18th
international conference on pattern recognition (ICPR’06). Vol. 3. IEEE. 2006, pp. 850–
855.

[49] RangeKing. Brief summary of YOLOv8 model structure 189. Accessed: April, 2023. 2023.
url: https://github.com/ultralytics/ultralytics/issues/189.

[50] Zheng Ge et al. “Yolox: Exceeding yolo series in 2021”. In: arXiv preprint arXiv:2107.08430
(2021).

[51] Junyi Chai et al. “Deep learning in computer vision: A critical review of emerging tech-
niques and application scenarios”. In: Machine Learning with Applications 6 (2021),
p. 100134.

Page 56 of 70

https://github.com/ultralytics/ultralytics/issues/189

[52] Alex Bewley et al. “Simple online and realtime tracking”. In: 2016 IEEE international
conference on image processing (ICIP). IEEE. 2016, pp. 3464–3468.

[53] Liang Zheng et al. “Mars: A video benchmark for large-scale person re-identification”. In:
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VI 14. Springer. 2016, pp. 868–884.

[54] James Munkres. “Algorithms for the assignment and transportation problems”. In: SIAM
5.1 (1957), pp. 32–38.

[55] Hamid Rezatofighi et al. “Generalized intersection over union: A metric and a loss for
bounding box regression”. In: Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition. 2019, pp. 658–666.

[56] Paul Henderson and Vittorio Ferrari. “End-to-end training of object class detectors for
mean average precision”. In: Computer Vision–ACCV 2016: 13th Asian Conference on
Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part
V 13. 2017, pp. 198–213.

[57] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall and ROC
curves”. In: Proceedings of the 23rd international conference on Machine learning. 2006,
pp. 233–240.

[58] Mark Everingham et al. “The pascal visual object classes challenge: A retrospective”. In:
Springer 111 (2015), pp. 98–136.

[59] Jiabo He et al. “α-IoU: A Family of Power Intersection over Union Losses for Bounding Box
Regression”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 20230–
20242.

[60] Ohay Angah and Albert Y Chen. “Tracking multiple construction workers through deep
learning and the gradient based method with re-matching based on multi-object tracking
accuracy”. In: Automation in Construction 119 (2020), p. 103308.

[61] Anton Milan et al. “MOT16: A benchmark for multi-object tracking”. In: arXiv preprint
arXiv:1603.00831 (2016).

[62] Ergys Ristani et al. “Performance measures and a data set for multi-target, multi-camera
tracking”. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands,
October 8-10 and 15-16, 2016, Proceedings, Part II. 2016, pp. 17–35.

[63] Boris Sekachev et al. opencv/cvat: v1.1.0. Version v1.1.0. Aug. 2020. doi: 10.5281/
zenodo.4009388. url: https://doi.org/10.5281/zenodo.4009388.

[64] Joseph Redmon. Darknet: Open Source Neural Networks in C. http://pjreddie.com/
darknet/. 2013–2016.

[65] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: CoRR abs/1405.0312
(2014). arXiv: 1405.0312. url: http://arxiv.org/abs/1405.0312.

[66] Wang Hao and Song Zhili. Improved Mosaic: Algorithms for more Complex Images. 2020.
doi: 10.1088/1742-6596/1684/1/012094.

[67] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics. Version 8.0.0. Jan.
2023. url: https://github.com/ultralytics/ultralytics.

[68] Tim Meinhardt et al. “Trackformer: Multi-object tracking with transformers”. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022,
pp. 8844–8854.

Page 57 of 70

https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1088/1742-6596/1684/1/012094
https://github.com/ultralytics/ultralytics

Appendix A
Requirements

A.1 YOLOv4 Requirements

R-package name Version Purpose of use

”Python” ≥ 3.9 YOLOv4 Requirement

”CUDA” 12.0 Requirement for Darknet framework for running
on GPU

”cuDNN” 8.7.0 Requirement for Darknet framework for running
on GPU

”OpenCV” 4.2.0 Requirement for Darknet framework

”CMake” ≥ 3.18 Requirement for YOLOv4

”Darknet” Requirement for YOLOv4 Darknet framework

Table A.1: YOLOv4 requirements to run training process.

A.2 YOLOv8 requirement

R-package name Version Purpose of use

”Python” 3.9 YOLOv4 Requirement

”CUDA” 12.0 Necessary for using GPU

”cuDNN” 8.7.0 Necessary for using GPU

”OpenCV” 4.2.0 YOLO requirement

Table A.2: YOLOv8-packages used during model training.

58

A.3 DeepSORT Requirements

DeepSORT with
YOLOv4 require-
ments

Version Purpose of use

”Python” ≥ 3.8 Programming language used for implementing
YOLOv4 and DeepSORT.

”Tensorflow” 2.3.0 Deep learning framework

”Probuf” 3.19.6 Serializing structured data.

”certifi” 2022.12.7 A collection of root certificates for secure con-
nections

”idna” 2.10 A library for handling Internationalized Domain
Names in Applications (IDNA)

”tensorboard” 2.9.1 A visualization tool for monitoring and analyz-
ing TensorFlow runs

”requests” 2.25.1 A library for making HTTP requests

”opencv-python” A computer vision library used for image and
video processing tasks

”Pillow” A library for image processing tasks, including
image resizing, cropping, and format conversion

”Matplotlib” 3.5 A plotting library used for creating visualiza-
tions

”numpy” 1.18.5 A fundamental package for scientific computing
with Python

Table A.3: Requirements for running inference with DeepSORT.

Page 59 of 70

Appendix B
Default Hyperparameters for YOLOv4

Hyperparameter Default
Value

Purpose of Hyperparameter

”Batch” 64 The number of training examples used in one
batch.

”Subdivision” 16 Number of mini-batches per batch.

”Max batches” 6000 The maximum batch size that can be used dur-
ing training. Set to 6000 for datasets with three
or fewer classes.

”Learning Rate” 0.001 Initial learning rate

”Steps” 4800,
5400

The number of iterations at which to change
the learning rate during training. The de-
fault values are typically 80% and 90% of
”Max batches”.

”Width” 416 Image width resized during training and detec-
tion.

”Height” 416 Image height resized during training and detec-
tion.

”Momentum” 0.9 Controls the influence of the previous gradient
direction on the current weight update during
optimization.

”Saturation” 1.5 Augmentation technique. 50% increase.

”Exposure” 1.5 Augmentation technique. 50% increase.

”Hue” 0.1 Augmentation technique. scale: 0−1.

”Mosaic” 1 (on) Data augmentation technique: merging four im-
ages into one.

”Mixup” 1 (on) Data augmentation technique: blends two im-
ages by multiplying and superimposing them
with different ratios.

Table B.1: YOLOv4 and its default hyperparameters during training.

60

Appendix C
Default Hyperparameters for YOLOv8

Hyperparameter Default
Value

Purpose of Hyperparameter

”Epochs” 100 Number of times the entire training dataset is
passed through the model during training.

”Patience” 50 Number of epochs with no improvement after
which training will be stopped.

”Batch” 16 Number of samples per gradient update.

”IOU” 0.7 IOU threshold used for NMS to filter out redun-
dant detections.

”size” 640 Input size of images during training and infer-
ence.

”close mosaic” 10 Maximum distance in pixels for two images to
be merged together in mosaic augmentation.

”lr0” 0.01 Initial learning rate for the optimizer.

”mosaic” 1.0 Mosaic augmentation during training.

”mixup” 0.5 Mixup augmentation during training.

”fliplr” 0.5 Probability of using flip left-right augmentation
during training.

”hsv h” 0.015 Controls the amount of hue shift applied to the
image.

”hsv s” 0.7 Controls the amount of saturation adjustment
applied to the image.

”hsv v” 0.4 Controls the amount of brightness adjustment
applied to the image.

Table C.1: YOLOv8 and its default hyperparameters during training.

61

Appendix D
Default Hyperparameters for DeepSORT

Hyperparameter Default
Value

Purpose of Hyperparameter

”max cosine distance” 0.4 The maximum cosine distance between two fea-
tures for them to be considered a match.

”nn budget” 100 The maximum number of previous detections to
keep for each track.

”nms max overlap” 1.0 The maximum allowed overlap between two
bounding boxes for NMS to be applied.

”iou” 0.45 A threshold specifying the IoU determining if
detection and a track should be considered the
same object. (NMS IOU threshold)

”score” 0.5 A threshold specifying the confidence score.

”max iou distance” 0.7 The threshold value that determines how much
the bounding boxes should overlap to determine
the identity of the unassigned track.

”max age” 60 Maximum number of frames a track can re-
main unmatched with a detection before being
deleted.

”n init” 3 Number of consecutive detections before the
track is confirmed and gets assigned an id.

Table D.1: DeepSORT and its default hyperparameters.

62

Appendix E
Modify DeepSORT code

Add the python code to the following file and line:

1. DeepSORT utilizing YOLOv4: Add to objecttracker.py line 220.

2. DeepSORT utilixing YOLOv8: Add this code to ultralytics>yolo>v8>detect>predict.py
line 242.

In object tracker.py line 220, add:

1 file_path = os.path.join('path/to/directory/', "frame_ {:06d}.txt".

format(frame_num))

2 w = bbox [2] - bbox [0]

3 h = bbox [3] - bbox [1]

4 x = (bbox [0] + bbox [2])/2 - w/2

5 y = ((bbox [1] + bbox [3]) /2) - h/2

6

7 if os.path.isfile(file_path):

8 with open(file_path , 'a') as f: #append

9 f.write("{} {} {} {} {} {} \n".format(str(frame_num), str(

track.track_id), x, y, w, h))

10 else:

11 with open('directory/frame_ {:06d}.txt'.format(frame_num), 'w')
as f: #write

12 f.write('{} {} {} {} {} {} \n'.format(str(frame_num), str(

track.track_id), x, y, w, h))

In addition, you need to create a folder where the predicted bounding box files will be stored.
The path to this folder should be added to the first line of the code. The predicted files should
be saved using a specific naming convention, such as ”frame000001.txt” for example. These
extracted files will be compared to the ground truth files during evaluation using MOTmetrics,
hence, the names have to be the same for easy comparison.

63

Appendix F
MOTMetrics code

The extracted frame from Appendix E are used in this code in combination with the ground
truth text files. This functions takes in two folders, the DeepSORT text files and the ground
truth files.

1 import motmetrics as mm

2 import os

3 import numpy as np

4

5 def motmetrics(gt_path , tracking_path , num_frames , metrics_chosen):

6 """

7 This is a fuction that takes in .txt files from ground truth the

data and from the output .txt files from DeepSORT , both stored

in two separate folders. The function further uses a distance

matrix in the MOTMetrics libarary to map the tracking object to

the ground truth object. It outputs different evaluation metrics

given in 'metrics chosen '.
8

9 Args:

10 gt_path: path to ground truth folder with .txt files

11 tracking_path: path to output txt files

12 num_frames: number of frames to use as metric

13 metrics_chosen: List of metrics selected

14 """

15

16 # Creates an accumulator object to accumulate the counts

17 # It stores the evaluation results

18 acc = mm.MOTAccumulator(auto_id=True)

19

20 # Looping through each frame in both gt and tracking

21 # Starting from frame 3, because DeepSORT needs 2 detections before

starting the tracks.

22 for frame_num in range(3, num_frames):

23 # Load the annotation and detection data for the current frame

24 # given the .txt files are named ex. frame_000003.txt

25 ground_truth = os.path.join(gt_path , f'frame_{frame_num :06d}.
txt')

26 deepsort = os.path.join(tracking_path , f'frame_{frame_num :06d}.
txt')

27

28 # Load data from a text file into numpy array

29 ground_truth_data = np.loadtxt(ground_truth)

64

30 deepsort_data = np.loadtxt(deepsort)

31

32 # Extract gt ids and tracking ids for this specific frame

33 ground_truth_id = ground_truth_data[ground_truth_data [:,0] ==

0, 1] # array of gt ids

34 deepsort_id = deepsort_data [:,1] # array of tracking ids

35

36 # Save all bounding box coordinates in arrays

37 # Format: x, y, width , height of the bounding boxes

38 ground_truth_frame = ground_truth_id[ground_truth_id [:, 0] ==

0, 2:6]

39 deepsort_frame = deepsort_data [:, 2:6]

40

41

42 #Compute 'intersection over union (IoU)' distance matrix

between object and hypothesis rectangles.

43 # IoU =0.5: 50% overlapping between tracking BB and gt BB.

44 distances = mm.distances.iou_matrix(ground_truth_frame ,

45 deepsort_frame ,

46 max_iou =0.5) # inverse IoU

47

48 # Update the accumulator

49 acc.update(ground_truth_id , deepsort_id , distances)

50

51 mh = mm.metrics.create ()

52 summary = mh.compute(acc , metrics=metrics_chosen , name='metrics ')
53 return summary

Page 65 of 70

Appendix G
YOLOv8 Data Augmentation

Figure G.1 and Figure G.2 shows various augmentation techniques during the training process
of YOLOv8.

Figure G.1: Illustration of data augmentation in the training process.

66

Figure G.2: Illustration of data augmentation in the training process.

Page 67 of 70

Appendix H
Detections: Differences in Localization

Figure H.1 illustrates the disparity in precise localization between the YOLOv4 and YOLOv8
object detectors. Notably, YOLOv8 demonstrates accurate detection of the entire fish, exhibit-
ing high confidence in its prediction. On the other hand, YOLOv4 fails to detect the fish’s head
and exhibits a lower confidence score for its detection.

Figure H.1: Ground truth vs. YOLOv4 vs YOLOv8. The bounding boxes are highlighted for
more visibility.

In Figure H.2, both detectors encounter difficulties in accurately localizing the object. However,
there are notable differences in their approach. YOLOv4, despite having a higher confidence
score, generates a larger bounding box that encompasses a significant portion of the background.
In contrast, YOLOv8, with a lower confidence score, tightly encompasses the fish but falls short
in extending the bounding box to include the tail region.

68

Figure H.2: Ground truth vs. YOLOv4 vs YOLOv8.

Fig. H.3 demonstrates that YOLOv4 exhibits a higher confidence score, yet its bounding box
localization is less accurate compared to YOLOv8, which closely resembles the ground truth.

Figure H.3: Ground truth vs. YOLOv4 vs YOLOv8.

Fig. H.4 reveals that YOLOv4 has a notably high confidence score, yet it struggles to accurately
fit the bounding box. On the other hand, YOLOv8 successfully replicates the ground truth in
this case.

Figure H.4: Ground truth vs. YOLOv4 vs YOLOv8.

Page 69 of 70

	Introduction
	Background
	Problem Statement
	Structure of the thesis

	Theory
	Deep Learning Theory
	The Perceptron
	Multi-Layer Neural Network
	Optimization: Backpropagation and Gradient Descent
	Convolutional Neural Network (CNN)
	Transfer Learning

	Object Detection and YOLOv4 and YOLOv8 Detectors
	Object Detection: An Overview
	YOLOv4: Architecture and Features
	YOLOv8: Architecture and Features

	Object Tracking and DeepSORT
	Object Tracking: An Overview
	Object Tracking with DeepSORT

	Evaluation Metrics
	Metrics for Object Detection
	Metrics for Object Tracking

	Method
	Software and Hardware
	Dataset
	Data Annotation
	Guideline for annotation
	YOLO data format

	YOLOv4
	YOLOv4 Model Training

	YOLOv8
	YOLOv8 Model Training

	DeepSORT
	Hyperparameters in DeepSORT

	Evaluation using MOTMetrics

	Results
	Quantitative Analysis
	Quantitative Analysis of Detection Performance
	Quantitative Analysis of Tracking Performance

	Qualitative Analysis
	Qualitative Analysis of Detection Performance
	Qualitative Analysis of Tracking Performance

	Discussion
	Future Work

	Conclusion
	Requirements
	YOLOv4 Requirements
	YOLOv8 requirement
	DeepSORT Requirements

	Default Hyperparameters for YOLOv4
	Default Hyperparameters for YOLOv8
	Default Hyperparameters for DeepSORT
	Modify DeepSORT code
	MOTMetrics code
	YOLOv8 Data Augmentation
	Detections: Differences in Localization

