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Abstract

Exploring different ways of describing uncertainty in neural networks is of great
interest. Artificial intelligence models can be used with greater confidence by
having solid methods for identifying and quantifying uncertainty. This is especially
important in high-risk areas such as medical applications, autonomous vehicles,
and financial systems. This thesis explores how to detect classification outliers
in Bayesian Neural Networks. A few methods exist for quantifying uncertainty
in Bayesian Neural Networks, such as computing the Entropy of the prediction
vector. Is there a more accurate and broad way of detecting classification outliers
in Bayesian Neural Networks? If a sample is detected as an outlier, is there a way
of separating between different types of outliers?

We try to answer these questions by using the pre-activation neuron values of
a Bayesian Neural Network. We compare, in total, three different methods using
simulated data, the Breast Cancer Wisconsin dataset and the MNIST dataset.
The first method uses the well-researched Predictive Entropy, which will act as a
baseline method. The second method uses the pre-activation neuron values in the
output layer of a Bayesian Neural Network; this is done by comparing the pre-
activation neuron value from a given data sample with the pre-activation neuron
values from the training data. Lastly, the third method is a combination of the
first two methods.

The results show that the performance might depend on the dataset type.
The proposed method outperforms the baseline method on simulated data. When
using the Breast Cancer Wisconsin dataset, we see that the proposed method
is significantly better than the baseline. Interestingly, we observe that with the
MNIST dataset, the baseline model outperforms the proposed method in most
scenarios. Common for all three datasets is that the combination of the two
methods performs approximately as well as the best of the two.
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Preface

This master thesis is written in an article format. According to the guidelines for
writing an article-based master thesis, I have also written a mantel, an extended
introduction to the article. This mantel will be presented first, introducing the
topic and giving a more in-depth review of the relevant theory and methodological
choices. It will also elaborate on the results and the discussion of the results found
when working on the article.

The article "Outlier Detection in Bayesian Neural Networks" will be presented
in its entirety after the mantel. For now, the article is not written for a specific
journal, so it is not made with regard to any journal-specific guidelines.
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Chapter 1

Introduction

Over the last decade, deep learning models have been adopted in a wide range
of fields due to their ability to solve complicated problems. However, due to the
complex nature of deep learning models, they are often treated as "black boxes",
and their uncertainty related to predictions can be hard to quantify. This makes
it problematic to adopt deep learning models in areas where making the right
decision is critical. This has increased the interest in measuring uncertainty in deep
learning models. Several approaches have been suggested, such as Probabilistic
Modelling [1], Ensemble Methods [2], and Dropout [2]. This thesis will focus on
Probabilistic Modelling, specifically Bayesian Inference, as the proposed method
uses a Bayesian Neural Network.

This mantel will, in Section 1 introduce the topic and background of this thesis.
Secondly, Section 2 will present relevant theory and concepts used in writing this
thesis. The proposed method of this master thesis will be introduced in depth in
Section 3. In Section 4, results are presented. These results will be discussed in
Section 5.

1.1 Background and Motivation
Providing a measure of uncertainty related to predictions in deep learning models is
crucial in many fields of application, such as medical applications [3], autonomous
vehicles [4], and financial systems [5]. This section will provide examples of ap-
plication areas where uncertainty measures are necessary for avoiding undesirable
results.

1.1.1 Medical Applications

The use of Artificial Intelligence (AI) in medicine is rapidly growing as the health-
care industry evolves into a more data-driven field. Use cases of AI application
in medicine include disease detection and diagnosis [6], personalized disease treat-
ment [7], medical imaging [8], accelerated drug development [9], and clinical trial
efficiency [10]. For instance, a comparison between a stand-alone artificial intel-
ligence system and 101 radiologists for detecting breast cancer in mammography
showed that the AI system was statistically non-inferior to the average radiologist
[8].
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CHAPTER 1. INTRODUCTION 2

The use of artificial intelligence in medicine can however become problematic
in cases where the model is uncertain and should ideally be able to refrain from
making a decision. For human physicians, the natural approach when met with
unusual and difficult clinical cases is to communicate uncertainty and seek second
opinions from colleagues. However, AI models do not necessarily communicate
uncertainty and seek second opinions when met with clinical cases of high uncer-
tainty, although this is critically important in most medical applications. This is
made clear when three of the most cited articles about AI models in medicine [11]
[12] [13] since 2016 do not have mechanisms for abstaining when met with high
uncertainty.

1.1.2 Autonomous Systems

Autonomous systems range from simple robotic vacuum cleaners in private homes
to self-driving cars out in public. One can generally divide autonomous systems
into rule-based systems, which use low-level machine learning algorithms, and
those that can learn from their environment, i.e. reinforcement learning. Au-
tonomous vehicles have, over the last decade, been an area of focus for many of
the major car companies [14], where even technology companies like Apple and
Google have their own autonomous vehicle projects [15].

While autonomous vehicles are becoming increasingly better, they still face
major challenges concerning safety. Can AI-based systems that control self-driving
cars be trusted to make the right decision? The self-driving cars use low-level
feature extraction, such as image segmentation and localization, to process raw
sensory input [16]. This is then fed into high-level decision-making systems, which
have algorithms based on a set of rules, such as "if a cyclist is to your left, do
not steer left". This could be problematic if mistakes made in the lower-level
systems are fed into the high-level systems. This was made clear in a fatal car
crash involving a Tesla Model S, and a tractor-trailer [17]. Here, the crash was
caused by low-level systems in the Tesla not being able to distinguish between a
bright sky and the white side of the trailer. Ideally, the low-level and high-level
systems should be taking the uncertainty into account and be able to alert and
hand over the control of the vehicle to the driver.

1.1.3 Financial Systems

The recent boom in FinTech, i.e. financial technology, has shown the great poten-
tial of artificial intelligence in the finance sector, much due to the recent growth
in the volume of digital data and computational capacities. Examples include the
use of chatbots in front office [18], anti-fraud detection systems [19], and high-
frequency trading systems [20].

In the case of high-frequency trading systems, AI models are given control over
systems that could potentially destabilize entire financial markets. This makes it
difficult to justify using uncertainty-unaware AI models in trading. One approach
would be verifying each trade manually, but this is practically impossible in high-
frequency trading. If the model would provide uncertainty measures for each trade,
one could "flag" the trades with high uncertainty such that a human can handle
or verify these.



Chapter 2

Theory

2.1 Uncertainty in Deep Learning
Uncertainty in deep learning is commonly separated into two types of uncertainty:
aleatoric and epistemic uncertainty.

Epistemic uncertainty [21], sometimes referred to as systematic uncertainty,
is the uncertainty related to the model, which is often due to a lack of training
data, poor model specifications and/or having a too simple model. Epistemic
uncertainty is reducible, so increasing the amount of data and/or improving model
specifications would decrease the epismtic uncertainty. One would expect a given
model to have high epismetic uncertainty when met with Out-Of-Distribution
(OOD) data samples. OOD data samples are samples drawn from a different
distribution than the training data. Likewise, we would expect to see low epistemic
uncertainty from samples drawn from the training data distribution.

Aleatoric uncertainty [21] represents the inherent randomness in the data. Data
samples will never give perfect representation of the real world, because it will all-
ways to some degree be contaminated by randomness and/or noise. Aleatoric
uncertainty is not reduicble, because increasing the amount of data would also
introduce more randomness and/or noise. We therefore say that aleatoric uncer-
tainty is not a result of the model, because it is a property of the data.

Prediction uncertainty encapsulates both the epistemic and the aleatoric un-
certainty.

2.1.1 Uncertainty Quantification

Quantifying uncertainty is the process of estimating uncertainty in neural net-
work models. There exist several approaches to uncertainty quantification in deep
learning, such as:

1. Probabilistic Modelling: Probabilistic Modelling, such as Bayesian Neu-
ral Networks [22, 1] (described in more detail in Section 2.4), can incorporate
probabilistic representations that can give probabilistic predictions and un-
certainty quantifications. This method can capture both aleatoric and epis-
temic uncertainty, which leads to a more complete picture of the uncertainty
associated with the predictions.

3



CHAPTER 2. THEORY 4

2. Deep Ensembles: Deep ensemble methods in deep learning refers to com-
bining N models to increase the predictive performance [23]. A prediction
is the combination of these N models. These methods can not only improve
the model accuracy but can also be used for uncertainty estimation. This
is done by looking at the variance of the predictions from the N models.
In the case of using deep ensembles for uncertainty estimation, one use the
same type of models but use randomized initial weights. One should note
that deep ensembles will only provide epistemic uncertainty.

3. Dropout: Dropout in deep learning is a regularization technique for re-
ducing overfitting and improving model generalization. It has been widely
adopted since it was first introduced in 2014 [24]. The term "dropout" refers
to that certain nodes, in both input and hidden layers, are randomly dropped
during training. Randomly dropping nodes forces the model to be less re-
liant on specific nodes. Dropout can be used for uncertainty estimation by
applying dropout at test time and averaging the prediction over multiple
dropout samples. As with deep ensembles, dropout also only estimates the
epistemic uncertainty.

In this thesis, we will focus on the probabilistic approach using Bayesian Neu-
ron Networks.

2.2 Artifical Neural Networks
An Artifical Neural Network (ANN) is a computational network inspired by
the biological neural networks that make up the structure of the human brain.
As with the human brain, an ANN has interconnected neurons, also referred to
as nodes, that are linked up together in various layers of the network, as seen in
Figure 2.2.1.
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Figure 2.2.1: A fully connected neural network, with n input features, three
hidden layers with m neurons each, and an output layer consisting of k neurons
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A standard ANN with L layers can be structured as follows: an input layer l0,
L−1 hidden layers ll, and an output layer lL. The structure of a basic feedforward
neural network is then, where each layer, except for the input layer, contains a
linear transformation (W [l]×l[l−1]+b[l]) followed by a non-linear activation function
g[l] [1]:

l[0] = x

l[l] = g[l](W [l] × l[l−1] + b[l]), l = 1, ..., L

l[L] = y

This network contains weight parameters W and bias parameters b: θ = (W, b).
The training process of an ANN is then to learn these parameters θ from a given
training data set D. Here, D is a series of input samples x and their target labels
y. The activation functions in neural networks vary, where Sigmoid [25] and ReLU
[26] are amongst the most popular. The sigmoid function takes in a real value and
converts it into a value between 0 and 1:

gsigmoid(x) =
1

1 + e−x

One problem with using the sigmoid function as an activtion function is that this
can cause the vanishing gradients problem [27], which makes deep neural networks
unable to propogate useful gradient information from the output. A solution to
this problem is to use the ReLU function, which is defined as:

gReLU(x) = max(0, x)

which set all values below zero to zero. In the case of building a model for classi-
fication, one usually use the softmax activation function in the last layer:

gsoftmax(x)i =
exi

∑K
i exi

(2.1)

where K corresponds to the number of classes. The softmax function takes in
a vector of K real numbers x and normalizes it into a probability distribution
of K probabilities that sum to 1. Prior to applying the softmax function, the
vector components can be any real number, but after activation, they will be real
numbers in the interval [0, 1]. From Equation (2.1), we see that a larger input
corresponds to a larger probability.

As mentioned, training a neural network is the process of learning a set of
parameters θ from the training data D. This is usually done by using first order
optimization that use the backpropagation algorithm. The backpropagation al-
gorithm computes the gradients of a loss function J with respect to the network
parameters θ. These graidents are then used to update the parameters θ in or-
der to minimize the loss function. Here, a given data sample x is forward passed
through the ANN, leading to a prediction ŷ. This prediction ŷ is compared to the
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true output label from the training data y. The discrepency between ŷ and y is
quantified in the loss function J(θ). Then a backward pass is made, where the
gradients of the loss function with respect to the parameters θ are computed. The
next step is to use the computed gradients to update the model parameters:

θt+1 = θt − η∇̂J(θt)

where η denotes the learning rate, which controls how much the parameters θ are
changed in response to the estimated loss J(θ) in each parameter update, i.e. the
rate for convergence. This is an important hyperparameter because setting this
too low or too high will negatively affect the training process. Too low leads to a
slow convergence time, while setting it too high it can converge too quickly to a
suboptimal solution. One iteration of this process for the entire training data is
referred to as an epoch.

The loss function also requires a so-called optimization strategy, which is an
algorithm for optimizing the loss function. Adam [28], short for Adaptive Moment
Estimation, is a popular choice for optimizing the parameters of neural networks
due to its adaptive learning rate mechanism and momentum-based updates.

ANNs have a tendency to overfit, which means that the model fits exactly
against the training data, but does not genarlize well with unseen data. It is
therefore common to include some form of regularization in the training process.
Regularization is a technique used to prevent the model from overfitting by low-
ering the complexity of the network. Common types of regularization include L1,
L2, and dropout [29]. L2 regularization, which is also known as weight decay or
Ridge Regression, is amongst the most common regularization techniques. The
L2-term is defined as the sum of all squared weight values in a weight matrix, also
known as the Euclidean Norm of a weight matrix (Equation (2.2)):

Ω(θ) = ∥θ22∥ =
∑

i

∑

j

θ2ij (2.2)

During the training of an ANN with L2 regularization one extends the loss function
J(θ) with the so-called regularization term, as shown in Equation (2.3). From
Equation (2.3) one can see that the regularization term is weighted by a scalar
λ. This scaler λ is known as the regularization rate and becomes an additional
hyperparameter in the network:

J(θ) =
λ

2
∥θ22∥+ J(θ) =

λ

2

∑

i

∑

j

θ2ij + J(θ) (2.3)

2.3 Stochastic Neural Networks
A Stochastic Neural Network (SNN) [1] uses stochastic components in the
model. This can be done in two ways: either by giving the network stochastic
activations or by stochastic weight parameters. Figure 2.3.1 shows the difference
between a regular ANN, with fixed weight parameters, and a stochastic neural
network with stochastic weight parameters. SNNs will, in contrast to traditional
ANNs, simulate multiple values of parameters θ with their associated probability
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function p(θ) when making a prediction. One can therefore consider SNNs to be a
special type of ensemble learning. When using ensemble learning with traditional
ANNs one combines predictions from T different independent average-performing
models with the assumption that these will outperform a single well-trained model.
However, this is not necessarily the main intention when ensembling with SNNs.
The main objective is rather to use ensembling to describe the uncertainty related
to predictions for a given network structure. As comparing the predictions from
the T different stochastic forwards passes in the network gives an uncertainty
estimate.
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Figure 2.3.1: Both Figure A and B are neural networks with an input layer
containing two features, a hidden layer with four neurons, and an output layer
with a single neuron. Figure A illustrates a regular ANN, i.e. fixed parameter
values. Figure B illustrates a neural network with stochastic weight parameters.

2.4 Bayesian Neural Networks
A Bayesian Neural Network (BNN) is a type of stochastic neural network
which is trained using Bayesian Inference [30]. For a regular ANN we assume
fixed weight parameters, whereas in a BNN we assume that the model parameters
follow some probability distribution. We can define a prior distribution p(θ) over
all model parameters θ, which includes weight parameters W and bias terms b.
The Bayesian approach in statistics is different from the traditional frequentist
approach in two main areas: in the way it defines probabilities and in the ability
to incorporate prior beliefs. The classical frequentist approach is to interpret a
probability as the relative frequency of occurances when the number of samples
approach infinity, i.e. the long-run probability [31]. The Bayesian inpretation is
on the contrary to treat the probability as a quantification of a personal belief
[32]. Secondly, prior belief p(θ) can be updated in the light of new observations
into a posterior belief, p(θ|D). This is described in Bayes’ Theorem [33]:

p(θ|D) =
p(D|θ)p(θ)

p(D)

where p(D|θ) denotes the likelihood of the data and p(D) represents the marginal
distribution of the data D, which is calculated by:
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p(D) =

∫
p(D|θ)p(θ)dθ (2.4)

In high dimensions, the integral in Equation (2.4) is intractable. Hence, sampling
directly from the posterior will not be possible, and using posterior predictive dis-
tributions will not be straightforward. However, there are established methods for
dealing with this problem, such as Markov Chain Monte Carlo [34] and variational
inference [35]. These will be presented in more detail in Section 2.4.1 and 2.4.2.

In regular ANNs, one typically use the maximum likelihood estimates of θ when
making a prediction ŷ on new data. In BNNs however, the posterior predictive
distribution p(ŷ|D) is used when doing inference on new data:

p(ŷ|x,D) =

∫
p(ŷ|x, θ)p(θ|D)dθ

When making a prediction for a new data sample x, one will make multiple, say T ,
stochastic forward passes through the model. The average prediction from these
T stochastic forward passes will give a relative probability of each class p(ŷ|x,D).
For classifications, the final prediction is the class with the highest probability:

ŷ = argmax
i

pi ∈ p(ŷ|x,D)

2.4.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a group of methods for
systematic random sampling from probability distributions [34]. MCMC methods
can be applied to solve problems related to integration and optimization in high-
dimensional spaces. This is very relevant for applications in statistics, but also
areas such as physics, decision analysis, and machine learning [36].

MCMC methods use Markov Chains to perform Monte Carlo estimates. The
general idea is to start by using Markov Chains to construct a sequence of random
samples S. From the properties of Markov Chains, each sample Si will only depend
on the previous samples Si−1:

P (Sn+1 = sn+1|Sn = sn, ..., S0 = s0) = P (Sn+1 = sn+1|Sn = sn)

In contrast to other methods for sampling, for instance inversion- or rejection-
sampling, MCMC algorithms usually require the Markov Chain to have an initial
"burn-in" period. A "burn-in" is a method of discarding the first n steps of an
MCMC run, so that the Markov Chain can reach its equilibrium distribution. Al-
though "burn-in" is not a theoretical component of MCMC, the use of "burn-ins"
has become the norm because it limits the number of posterior samples needed.

The sequence S of random variables might have high autocorrelaion. Autocor-
relation, in the context of MCMC methods, is a measure of how independent the
different samples from the distribution are. Here, a low autocorrelation is good,
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because this indicates more independent results. However, in cases with high au-
tocorrelation, one would need to sample and store a large amount of samples, Θ,
and then subsample from these samples to get independent samples [1]. This is
computationally expensive because the collection of samples Θ needs to be stored
after training.

Despite MCMC methods’ challenges in terms of scaleability and expensive
storage, they are considered to be very relavant for sampling from posterior distri-
butions in Bayesian Statistics [37]. Amongst the most popular MCMC methods,
we find The Metropolis-Hastings algorithm [38]. This algorithm begins with
an initial guess, or starting point, θ0. The next step is to use a proposed distribu-
tion Q(θ∗|θ) to sample a new candidate θ∗ close to the preceding sample θ. The
candidate sample θ∗ is then compared to the current sample with regard to the
target distribution. Here, the candidate is accepted if it is considered more likely
than the current sample, based on the target distribution. In the case of it being
less likely, the candidate will be accepted with given a probability α, else rejected.
This process will, after repeating it a sufficient amount of times, give a sequence
of samples that converge to the target distribution [1].

2.4.2 Variational Inference

Variational Inference (VI) [39] is an alternative approach to MCMC for solving
intractable integrals in Bayesian Inference. Here, we define a variational posterior
distribution qϕ(θ), which is parameterized by parameters ϕ. The objective is to
optimize the parameters ϕ in order to move the variational posterior distribution
qϕ(θ) close to the true posterior distribution p(θ|D). We can then do posterior
inference using the variational posterior distribution qϕ(θ).

The "closeness" between the true posterior distribution p(θ|D) and the varia-
tional poster distribution qϕ(θ) is commonly measured using the Kullback-Leibler
(KL) Divergence [40], which is defined as:

DKL[qϕ(θ) ∥ p(θ|D)] =

∫
qϕ(θ) log

qϕ(θ)

p(θ|D)
dθ

= Eqϕ(θ)

[
log

qϕ(θ)

p(θ|D)

]

= Eqϕ(θ)[log qϕ(θ)]− Eqϕ(θ)[log p(θ|D)] (2.5)
= Eqϕ(θ)[log qϕ(θ)]− Eqϕ(θ)[log p(θ,D)] + Eqϕ(θ)[log p(D)]

= Eqϕ(θ)[log qϕ(θ)]− Eqϕ(θ)[log p(θ,D)]
︸ ︷︷ ︸

−ELBO

+ log p(D)

However, since we are unable to compute the evidence p(D) from the last line of
Equation 2.5, we need to define a different objective to optimize that is equivalent
to the KL-divergence up to a constant. We can then use the Evidence Lower
Bound (ELBO) [41], which is defined as:

ELBO(q) = Eqϕ(θ)[log p(θ,D)]− Eqϕ(θ)[log qϕ(θ)]
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which accounts for the first two terms in Equation 2.5. Equation 2.5 can be
rewritten as:

log p(D) = ELBO(q) +DKL[qϕ(θ) ∥ p(θ|D)]

KL-divergence is non-negative, hence we know that:

log p(D) ≥ ELBO(q)

Since the log evidence log p(D) cannot be less than ELBO, maximizing the ELBO
will minimize the KL-divergence DKL[qϕ(θ) ∥ p(θ|D)].

2.4.2.1 Bayes-By-Backprop

From Section 2.4.2 we saw that VI is a good tool for approximating Bayesian
Inference. However, stochasticity stops backpropagation from functioning as it
would in a regular ANN [42]. Several solutions have been proposed to solve this
problem, such as Bayes-By-Backprop (BBB) [43] and probabilistic backprop-
agation [44]. This thesis will focus on BBB.

Algorithm 1 Bayes-by-Backdrop [43]
1: ϕ = ϕ0

2: for i = 0, ..., N do
3: Draw ϵ from q(ϵ)
4: θ = t(ϵ, ϕ)
5: f(θ, ϕ) = log(qϕ(θ)− log(p(Dy|Dx, θ)p(θ))
6: ∇ϕf = backpropϕ(f)
7: ϕ = ϕ− α∇ϕf
8: end for

From Algorithm 1, we sample a random variable ϵ from q(ϵ) in each iteration.
Here, ϵ acts as a non-variational source of noise. Although ϵ is sampled in each
iteration, it will still be treated as a constant towards the other variables. Then,
θ is not sampled directly but rather obtained from deterministic transformation
t(ϵ, ϕ), where θ = t(ϵ, ϕ) follows qϕ(θ). From Algorithm 1 we see that the rest of
the transformations are non-stochastic, which enables backpropagation to work as
normal with regards to the variational parameters ϕ.

2.4.3 Usecases of MCMC and VI

From Section 2.4.1 and 2.4.2 we see that MCMC and VI have their advantages
and disadvantages. VI is less computationally expensice than MCMC methods.
However, VI cannot guarantee samples that are (asymtotically) exact with regards
to the target distribution [45], but only finding a distribution close to the target.
In addition, VI is known to underestimate predictive variance [46].

Despite this, VI will be better suited for applications with large data sets and
when one wants to explore many different models quickly. MCMC methods will
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on the other side be better suited for cases with smaller data sets and when one
would gladly pay the price of higher computational costs for exact samples, for
instance, in cases with small and expensive datasets.

2.5 Dimension Reduction
Dimensionality reduction is a technique used to reduce the number of variables
in a dataset while keeping the most important information. Principal Compo-
nent Analysis (PCA) [47] is amongst the most popular dimensionality techniques.
PCA identifies the directions in the dataset that captures the most information
and projects the data in these directions. Each projection is called a principal
component and is a linear combination of the original variables. The first princi-
pal component captures the most variation, and the second principal component,
which will be orthogonal to the first component, captures the second most vari-
ance, and so on.

PCA can be used to project high-dimensional data into lower dimensions, e.g.
two, making it possible to visualize and compare high-dimensional data. One can
create scree plots from PCA, which tells us how much variance each principal
component captures.



Chapter 3

Methods

This chapter will introduce the proposed method for the detection of classifica-
tion outliers in BNNs. The first section will shortly present the properties of the
simulated data used to explain and visualize the proposed method. Secondly, the
baseline method is presented. Then, the two proposed alternative methods are ex-
plained in detail. Lastly, an additional idea for separating OOD and In-Between
(IB) outliers is briefly introduced.

Data simulation is done to facilitate the exploration of alternative approaches.
This approach enables control over the data characteristics and properties. For
example, one can manipulate the data’s balance or adjust the variables’ covari-
ances.

Data used in initial experiments are simulated according to Algorithm 2. Here,
the algorithm’s input is a set of expectations µ, a covariance matrix Σ, and num-
bers of samples n. Matrix U is a (n × d)-sized matrix with values sampled from
a standard normal distribution, i.e. N(0, 1). Here, n and d correspond to the
number of samples and dimensions. Secondly, a Cholesky Decomposition [48] is
performed on the input covariance matrix Σ, creating a decomposed matrix Σ

1
2 .

Matrix U is then multiplied with Σ
1
2 to create matrix W . Lastly, the expectations

µ are added to their corresponding dimension in W .

Algorithm 2 Simulating data from d-dimensional distribution
1: µ = set of expectations
2: Σ = covariance matrix
3: U = (n× d)-sized matrix with values drawn from N(0, 1)

4: Σ
1
2 = CholeskyDecomposition(Σ)

5: W = U × Σ
1
2

6: for i = 1, ..., d do
7: data[:, i] = W [:, i] + µ[i]
8: end for

The initial experiments, which are used to go through the baseline method
in Section 3.1 and the proposed methods later in sections 3.2, 3.3 and 3.4, are
performed on a simulated dataset shown in Figure 3.0.1. This data set consists of
four classes with 200 samples in each class, i.e. a total of 800 samples.

12
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Figure 3.0.1: Simulated data consisting of four classes with 200 samples in each
class, in total 800 samples.

3.1 Background
When measuring predictive uncertainty in a classification setting one can use dif-
ferent approaches, such as variation ratios [49], mutual information [50], and pre-
dictive entropy [50]. Due to the scope of this thesis, we will only focus on predictive
entropy.

Predictive Entropy, denoted ENT, which has its foundations in information
theory, captures the average amount of information in the predictive distribution:

H[y|x,D] = −
K∑

k=1

p(yk|x,D) log p(yk|x,D)

where K corresponds to all possible classes in the given model. The case of
complete uncertainty, which corresponds to maximum entropy, is when each ŷk =
1
K

. The ideal case, i.e. minimum entropy, occurs when the output is 1 for one of
the ŷk and 0 for the rest. This indicates no uncertainty about the given prediction.

We approximate the predictive entropy by sampling the probability vectors,
i.e. the softmax activations in the last layer, from T stochastic forward passes
through the BNN. For each class in K we take the average from the T stochastic
forward passes, 1

T

∑
t p(ŷ = k|x,D, θt), where θt is the sampled network parameters

in stochastic forward pass t, θt ∼ q∗ϕ(θ) [51].
In Figure 3.1.1, we see the predictive entropy in a grid of coordinates close to

the training sample clusters. In this case, the predictive entropy is high in areas
between class clusters. This is not that surprising because this is typically where
a model would be uncertain. In a point in the middle of the four training class
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clusters, the prediction vector ŷ would typically give high probabilities to all four
classes, which would then yield a high entropy. However, we also see a possible
flaw with using predictive entropy. In areas outside the training class clusters, in
dark blue in Figure 3.1.1, we see no indication of uncertainty.

Figure 3.1.1: Predictive entropy in a grid of coordinates close to the training
data clusters.

3.2 Detecting Classification Outliers by using the
Pre-Activation Neuron Values in the Output
Layer

The first proposed alternative method, denoted PRE-ACT, is based on using the
pre-activation neuron values in the output layer of the model. Here, the idea, as
briefly sugguested in [52], is that the output layer of the BNN has accumulated
enough information to decide whether an input sample x is an outlier or not, by
checking if the pre-activation neuron values is unusual. In a BNN with nl = L
layers, the pre-activation neuron values in the last layer, uL, are defined as:

uL = WL × AL−1 + bL

where WL is the weight parameters in the last layer, AL−1 is the activations from
the previous layer, and bL is the bias term in the last layer. The number of units
in uL corresponds to the output layer size of the model, i.e. number of classes, ny:

uL
i : i = 1, ..., ny



CHAPTER 3. METHODS 15

BNNs are probabilistic models, where a prediction is the result of T stochastic
forward passes in the model, uL will, therefore for a given data sample x be the
average pre-activation neuron values of these T stochastic forward passes:

uL =
1

T

N∑

t=1

uL
t

From the properties of the Softmax Activation Function, we can see that the
indices of the highest value in uL will correspond to the indices of the predicted
class after the activation function in the output layer:

g(uL
i ) =

eu
L
i

∑n
k=1 e

uL
k

Firstly, we will therefore look at the highest pre-activation neuron value, i.e.
max1(u

L). Figure 3.2.1 shows how max1(u
L) behaves in a grid of data points

close to the training sample clusters. In the case of Figure 3.2.1 we see that the
max1(u

L) tends to be low in the middle of the class clusters, and higher as the
data points move further away from the class clusters.

However, as we see from Figure 2.2.1, between classes, we get horizontal and
vertical "spikes" where max1(u

L) do not increase as much. This is to be expected
because, in areas between two class clusters, one would expect the model to be
uncertain about which class to choose, hence one would see the two highest values
in uL are close to being the same: max1(u

L) ≈ max2(u
L). It is, therefore, also

interesting to look at the sum of the two highest values in uL:

2∑

k=1

max
k

uL = max
1

(uL) + max
2

(uL)

Figure 3.2.2 shows that when using the sum of the two highest values in uL, i.e.∑2
k=1maxk(u

L), we get smaller "spikes" and they shift 45 degrees. We can also
see that

∑2
k=1maxk(u

L) shifts to higher values closer to the class cluster than from
using max1(u

L).
As this is an illustrative example using a simple dataset with two variables,

x1 and x2, and four classes, we will not present any other combinations of the
pre-activation neuron values. It is, however, important to note that the idea is
that in higher dimensional data with K classes, this method opens up for using
not only

∑2
k=1 maxk(u

L), but also summing all the way up to
∑K−1

k=1 maxk(u
L).

What is best will be situation dependent, where the dimension of the dataset d
and the number of classes K are relevant factors.

Now that we know the values uL for a given data sample x changes depending
on how close it is to the training samples, we need to find a range of "approved"
values for uL. The intuitive approach is to look at the pre-activation neuron values
from the training data X:
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Figure 3.2.1: Highest Pre-Activation Neuron Value, max1 u
L, in a grid of coor-

dinates close to the training data clusters.

ŨL
j : j = 1, ..., nX (3.1)

where nx corresponds to the number of samples in the training data X. ŨL serves
as a distribution of "approved" values for uL. The next step is to create two
p-values, p1 and p2:

p1 =

∑
j=1,...,nX

I(ŨL
j > uL)

nX

p2 =

∑
j=1,...,nX

I(ŨL
j < uL)

nX

(3.2)

where
∑

j=1,...,nX
I(ŨL

j > uL) is the number of samples in ŨL with a higher pre-
activation neuron value than uL and

∑
j=1,...,nX

I(ŨL
j < uL) is the number of sam-

ples in ŨL with a lower pre-activation neuron value than uL. In the denominator,
nX is the total number of samples in ŨL. We test both p1 and p2, because this
enables to detect both too high and too low pre-activation neuron values, i.e. a
two-tailed test. As p1 and p2 functions are p-values, we can set a significance level
α. If p1 or p2 for a given data sample x is below the significance level α, it is
labeled as an outlier. In Figure 3.2.3, a significance level α of 0.05 is used. Here,
we see that areas marked in red are classified as outliers, and areas in dark blue
are classified as inliers.
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Figure 3.2.2: The sum of the two highest Pre-Actication Neuron Values,∑2
k=1maxk u

L, in a grid of coordinates close to the training data clusters.

3.3 Combining Pre-Activation Neuron Values and
Predictive Entropy

In addition to the baseline model in Section 3.1 and the proposed alternative
method in Section 3.2, we will combine the two into one method. This method is
denoted PRE-ACT+ENT. The motivation behind combining the two methods is
that it might be able to extract the strengths of both methods. This method will
then mark a data sample x as an outlier if either of these two methods labels it
as an outlier. In Figure 3.3.1, we observe that combining the two methods also
separates areas between two class clusters, which we did not see in Figure 3.2.3.
Here, one would need to set a separate threshold for the predictive entropy and a
significance level α for the method using pre-activation neuron values.

3.4 Using Pre-Activation Neuron Values to Sepa-
rate Between Out-Of-Distribution and In-Between
Outliers

In Section 3 we created two test statistics, p1 and p2. These p-values measure
the probability of a pre-activation neuron value to be above and below the given
pre-activation neuron value uL, respectively. The idea is that these two p-values
can indicate if a given outlier is either an IB outlier or an OOD outlier. The
motivation behind this method is what we observed in Figure 3.2.1 and 3.2.2.
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Figure 3.2.3: Calculating p-values on a grid of coordinates close to training data
clusters and setting a significance level of 0.05. Coordinates with values below
0.05 are marked as outliers in red, and those above are marked as non-outliers in
dark blue.

Here, we observed that the pre-activation neuron values between class clusters
tend to be low and that pre-activation neuron values tend to be higher the further
it is away from the training sample clusters. The assumption is then that if a data
sample x is labeled as an outlier, we can classify it as an IB or OOD outlier by
seeing which one of p1 and p2 triggered the data samples x to be labeled as an
outlier. Here, p1 would correspond to an OOD outlier, and p2 to an IB outlier.
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Figure 3.3.1: Combining classification outlier detection using both pre-activation
neuron values and predictive entropy.

Figure 3.4.1: Using pre-activation neuron values to detect classification outliers
and separate between In-Between outliers and Out-Of-Distribution outliers.
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Results

4.1 Background
This chapter will compare the three methods for outlier detection on three different
datasets introduced in Section 3: ENT, PRE-ACT, and PRE-ACT+ENT. These
three methods use the same BNN, but the method varies. The methods differ in
the way they classify an outlier.

The three methods will be tested using a fully connected BNN: one input layer,
one hidden layer, and one output layer. The hidden layer contains 100 neurons.
For each data sample x, we do T = 10 stochastic forward passes. The model
implementation follows the implementation from [53], based on [43].

The experiments will consider three performance metrics: False Discovery Rate
(FDR), Power, and accuracy, as seen in Equation (4.1), where TP, TN, FP, FN are
acronyms for True Positives, True Negatives, False Positives, and False Negatives,
respectively:

Accuracy =
TP + TN

TP + TN + FP + FN

FDR =
FP

TP + FP
(4.1)

Power =1− β = 1− FN

TP + FN

Accuracy is the number of correct predictions made by the given model in relation
to the total number of predictions made. In this case, we will only measure the
accuracy for those samples that are not labeled as outliers. FDR is a metric for
measuring the type I errors, i.e. the number of false positives. Power measures the
probability that the given test will reject the null hypothesis when the alternative
hypothesis is true.

Code used to perform experiments, including the models, can be found on
GitHub: https://github.com/hermanelling/master-thesis.git

20
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4.2 Classification Outlier Detection on Simulated
Data

Classification outlier detection experiments in this section are performed on the
simulated data from Section 3. The model is trained on 800 training samples. To
simulate outliers, additional samples are sampled outside and between the class
clusters from the training data (Figure 4.2.1). The test data set consists of 160
non-outlier samples, i.e. drawn from the same distribution as the training data
and 250 outlier samples.

Figure 4.2.1: Figure shows where the outlier samples, in grey, are positioned
compared to the class clusters from the training data, shown in colors. 50 samples
in each cluster of outliers, in total 250 outlier samples.

Figure 4.2.2 shows the FDR, POWER, and accuracy scores for the three meth-
ods on the simulated test dataset from Figure 4.2.1. Here, we see that PRE-
ACT and PRE-ACT+ENT give similar results, where PRE-ACT+ENT gives a
slightly higher FDR and accuracy. Both give POWER scores above 0.9. The ENT
method gives a lower FDR score than both PRE-ACT and PRE-ACT+ENT, but
its POWER and accuracy score is significantly lower. This makes ENT the poorest
method of the three when applied to the simulated data.

4.3 Classification Outlier Detection on Breast Can-
cer Data

The next classification outlier detection experiment uses the Breast Cancer Wis-
consin (diagnostic) dataset [54] and transformed versions of this dataset. The
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Figure 4.2.2: Barplot showing the FDR, POWER, and accuracy score for clas-
sification outlier detection for the simulated dataset. Accuracy is only calculated
on samples that are not classified as an outlier.

Breast Cancer Wisconsin dataset is a binary classification dataset that contains
32 variables and 569 samples. In these experiments, 455 samples are used for
training and 114 for testing. The dataset is scaled to values between 0 and 1
before training.

To simulate outliers, the test dataset is transformed in two ways. Firstly, by
adding a constant, 1, to each variable. Secondly, by adding Gaussian Noise to the
dataset. The Gaussian noise is created by adding a sample drawn from a standard
normal distribution, N(0, 1), to each variable. The test data consist of 50% sam-
ples from the original Breast Cancer Wisconsin data and 50% transformed data,
in total 228 samples in each test datasets.

Figure 4.3.1 shows the FDR, POWER, and accuracy score on the test datasets.
When noise is added to the data, we observe a low FDR on all three methods,
with PRE-ACT having the lowest FDR score with 0.01, followed by ENT with
0.07 and PRE-ACT+ENT with 0.08. PRE-ACT also accounts for the highest
POWER score with 0.60, which is quite low, but still higher than ENT ’s 0.49,
and PRE-ACT+ENT ’s 0.59. We observe a similar ratio with the accuracy score,
where PRE-ACT gives 0.57, ENT gives 0.48, and PRE-ACT+ENT gives 0.58.
While non of the methods give especially good results, we see that both PRE-ACT
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Figure 4.3.1: Barplot showing the FDR, POWER, and accuracy score for clas-
sification outlier detection for two transformed Breast Cancer Wisconsin datasets.
Accuracy is only calculated on samples that are not classified as an outlier.

and PRE-ACT+ENT perform better than ENT
For the data where a constant is added, we observe a considerable difference

between PRE-ACT and ENT. Here, PRE-ACT has the lowest FDR with 0.01 and
the highest POWER with 1.0, while ENT has a FDR score of 0.07 and a POWER
score of 0.49. Here, we observe that PRE-ACT+ENT performs similarly to PRE-
ACT, having the same POWER score, and a slightly higher FDR and accuracy
score.

Overall for both Breast Cancer Wisconsin test datasets, we see that both PRE-
ACT and PRE-ACT+ENT outperform ENT, while the difference between PRE-
ACT and PRE-ACT+ENT is small.

4.4 Classification Outlier Detection on MNIST and
FMNIST

In this section, classification outlier detection experiments are done with MNIST
[55], FMNIST [56], and transformed versions of MNIST. MNIST is a database of
handwritten digits ranging from 0 to 9 (Figure 4.4.1). FMNIST, also referred to as
Fashion-MNIST, is a database of fashion items, such as shoes, t-shirts, and coats
(Figure 4.4.1). The MNIST and the FMNIST datasets contain 70, 000 images each,
where 60, 000 is used for training and 10, 000 is used for validation. The format
of both datasets is 28× 28 grayscale images. These are well-known datasets often
used for benchmarking in image classification tasks.

The model is trained on the MNIST dataset, so the FMNIST dataset will work
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as a dataset of outliers. In addition, the MNIST dataset will also be transformed
in 5 ways: adding Gaussian blur, inverting images, adding constant (100) to all
pixels, shuffling all pixels, and shuffling pixels in a section of the image (Figure
4.4.2). In the test datasets, 50% will be test data from the MNIST dataset, and
the remaining 50% will be outlier samples. In total, 20, 000 samples are in each
test dataset.

Figure 4.4.1: Examples from MNIST and FMNIST data set.

Figure 4.4.2: Examples from transformed MNIST dataset.

Figure 4.4.3 shows the FDR, POWER, and accuracy scores for the three meth-
ods on the six test datasets. With FMNIST, we see that PRE-ACT gives a rel-
atively high FDR score and low POWER and accuracy score. PRE-ACT also
gives similar results on blurred, inverted, shuffled, and partially shuffled images.
ENT performs well on inverted and shuffled images, with POWER scores over 0.9,
FDR scores below 0.08, and accuracy scores of 0.9. However, it does not perform
as well on FMNIST, blurred images, and partially shuffled images. Overall, we
see that ENT gives the lowest FDR score, highest POWER score, and highest
accuracy score in five of the six datasets. The only exception is when a constant
is added; here, we see that PRE-ACT gives a slightly higher POWER score but
also a higher FDR score.
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Common for all the six datasets is that the combination of PRE-ACT and
ENT, i.e. PRE-ACT+ENT, gives a POWER and accuracy score similar to the
best of the first two methods. We also observe that the FDR score tends to be
higher than the worst of the two methods.

4.5 Dimension Reduction Results
Dimensionality reduction was performed on the test datasets used in Section 4.4
and 4.3. The dimension reduction was performed with Principal Component Anal-
ysis (PCA) [47], where two components were kept. This was done in order for us to
be able to visualize and explore high-dimensional data. The results for the MNIST
datasets and the Breast Cancer Wisconsin dataset can be found in Figures 4.5.1
and 4.5.2.
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Figure 4.4.3: Barplot showing the FDR, POWER, and accuracy score for clas-
sification outlier detection for the MNIST, FMNIST, and transformed MNIST
datasets. Accuracy is only calculated on samples that are not classified as an
outlier.
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Figure 4.5.1: PCA for the MNIST test datasets.
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Figure 4.5.2: PCA for the Breast Cancer Wisconsin test datasets
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Discussion

This thesis has focused on detecting classification outliers in a Bayesian Neural
Network by using the pre-activation neuron values in the last layer of the model,
more specifically comparing the pre-activation neuron value in the last layer of
a new sample x with the ones from the training data. The motivation behind
this method was that it might outperform the established method, especially with
Out-Of-Distribution data samples. The proposed methods were tested on three
different datasets.

5.1 Key Findings
In Section 4.2, 4.4, and 4.3, we explored and empirically compared new ways of
detecting classification outliers in Bayesian Neural Networks. We compared a total
of three different methods, and two of these were new. The methods were tested
on three different datasets: the simulated dataset, the MNIST dataset, and the
Breast Cancer Wisconsin dataset.

Interestingly, we observed that PRE-ACT and PRE-ACT+ENT outperformed
the baseline model, predictive entropy, with the simulated data and the Breast
Cancer Wisconsin dataset. While with the MNIST dataset, we saw that the new
methods did not outperform the baseline model, except for when a large constant
is added to the pixels.

It is hard to point out a single reason for the poor result of the proposed
methods on the MNIST dataset. From Figure 3.1.1 in Section 3.1, we saw that
predictive entropy worked well In-Between the class clusters in the simulated data.
However, we also saw that samples in areas outside the class clusters, i.e. Out-Of-
Distribution, did not give high entropy scores. One idea is that with the images
in MNIST, which is 784-dimensional, the outlier samples are in In-Between areas.
In Figure 4.5.1 in Section 4.5 we see when the MNIST and FMNIST datasets are
reduced to two dimensions and compared, the datasets have areas of overlap. Here,
about 34% of the variance is explained (computations not shown). We expected
to see a clearer separation between these two.

Another thing to consider is the number of classes K in the dataset. The
simulated data have four classes and the BCW dataset have two classes, while
MNIST have ten classes. The idea here is that with datasets with few classes it is
easier to get Out-Of-Distribution samples, while with many classes we get more
samples in In-Between areas. This can be the reason why using ENT works well
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with the MNIST dataset.

5.2 Limitations of our work
Due to time limitations, several things were not explored. This section will quickly
mention them. Firstly, the method proposed in Section 3.4 for separating OOD
and IB outliers have not been explored and validated further on test datasets.
While it looked like it was working on the simulated data, this will need to be
studied further before we can say anything about its performance.

Furthermore, the combination used in the proposed PRE-ACT methods, i.e.
choosing which k to use for

∑K−1
k=1 maxk(u

L) and significance level α is based on
empirical results in visualizations. Here, we considered the best combination as
the one that gave the best trade-off FDR, POWER, and accuracy score. Ideally,
we would have liked to use some optimization here. For instance, Neyman-Pearson
optimization [57] could have been applied to minimize the FDR and maximize the
POWER.

Lastly, the datasets used in this thesis. Section 4 indicates that the results
might depend on the type of data used. This is especially relevant for the simulated
data. Simulations are not precise, and results might depend on the simulation
settings, such as the number of classes K, dimensions d, and samples n.

5.3 Further Research
Finding other ways to use the pre-activation neuron values in a Bayesian Neural
Network might be interesting. For instance, instead of just looking at the last
layer, one could see the result when looking at the pre-activation neuron values of
the entire network. Another path is to not look at the highest or the sum of the
K-highest pre-activation neuron values but rather the structure of the "set" of the
pre-activation neuron values.
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ABSTRACT

Describing uncertainty is one of the major issues in mod-
ern deep learning. Artificial Intelligence models could be
used with greater confidence by having solid methods for
identifying and quantifying uncertainty. This article proposes
two alternative methods for classification outlier detection
in Bayesian Neural Networks. This is done by looking for
unusual pre-activation neuron values in the last layer of a
Bayesian Neural Network.

The proposed methods are compared to a baseline method
for outlier detection, Predictive Entropy, on three datasets: a
simulated dataset, the MNIST dataset, and the Breast Can-
cer Wisconsin dataset. In addition, we introduce an idea for
separating In-Between and Out-Of-Distribution outliers.

The results indicate that the proposed methods’ perfor-
mance depends on the dataset type. In the case of a simple
simulated dataset, we see that the proposed methods outper-
form the baseline method. The proposed method also outper-
forms the baseline method on the Breast Cancer Wisconsin
dataset. However, when tested on the MNIST image dataset,
we observed that the baseline is better than the proposed
method. Common for all three datasets is that a combination
of the two methods gives approximately as well POWER
score as the best of the two, but also a higher FDR score than
the best of the two.

Index Terms— Classification Outlier Detection, Uncer-
tainty, Bayesian Inference, Bayesian Neural Networks,

1. INTRODUCTION

Due to their ability to solve complicated problems, Deep
Learning Models have, over the last decade, expanded into
an increasingly large amount of fields, such as medicine [1],
autonomous vehicles [2], and finance [3]. However, neu-
ral networks are generally prone to overfitting, which affects
their generalizability [4]. Furthermore, deep learning models’
inability to say ”I don’t know” in cases where it should be
uncertain is problematic. Generally, one will, therefore, not
know when a deep learning model makes a sensible choice
or not. There have been proposed several approaches to solve
this problem, such as Probabilistic Modelling [5], Ensemble
Methods [6] and Dropout [6]. Amongst the most promising

is the type of probabilistic modeling using the Bayesian ap-
proach. This is because Bayesian Neural Networks offer a
natural way to describe and quantify a model’s uncertainty.

Outlier detection with Bayesian Neural Networks has al-
ready been explored quite a bit. Here, the approach has been
to use the predictive entropy of the predictive distributions to
measure uncertainty, which has worked well with datasets like
MNIST and FMNIST [7]. However, as indicated in [8], this
approach might not work well with samples drawn from Out-
Of-Distribution samples. This is illustrated in Figure 1, where
this method demonstrates high uncertainty in In-Between ar-
eas but indicates no uncertainty in dark blue corner areas.

Fig. 1: Predictive entropy in a grid of coordinates with simu-
lated binormal data consisting of four classes with 200 sam-
ples in each class.

In this paper, we propose alternative methods for outlier
detection in Bayesian Neural Networks. Unlike predictive en-
tropy methods, these methods aim to detect both In-Between
and Out-Of-Distribution outliers. This paper is organized as
follows: Section 2 will present the most relevant theoretical
aspects, including an introduction to Bayesian Neural Net-
works, which include Artificial Neural Networks, Bayesian
Inference, and Variational Inference. In Section 3, we de-
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tail the proposed methods used in this paper. The empirical
results are presented in Section 4. Finally, Section 5 will dis-
cuss the key findings, limitations, and suggestions for further
work.

2. THEORY

2.1. Uncertainty in Deep Learning

Uncertainty in deep learning is generally divided into two
types: aleatoric and epistemic uncertainty. Epistemic uncer-
tainty is the type of uncertainty related to the model. This can
be caused by several things, such as a lack of data, poor model
specifications, and/or having a too simple model. Epistemic
uncertainty is reducible, which means that, in the case of lack-
ing data, one would decrease the epistemic uncertainty by
adding more data. Aleatoric uncertainty is on the other hand
caused by inherent randomness in the training data. Data sam-
ples will never perfectly represent the real world because they
will always contain some randomness and/or noise. Adding
more data will not reduce the aleatoric uncertainty because
more data will also introduce more randomness and/or noise.
We, therefore, say that aleatoric uncertainty is irreducible.
Predictive uncertainty, the confidence we have in a prediction,
results from both epistemic and aleatoric uncertainty.

2.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by how the
human brain’s biological neurons work. ANNs are tradition-
ally structured with an input layer l0, L − 1 hidden layers ll,
and an output layer lL [5],

l0 = x

ll = gl(W l × ll−1 + bl), l = 1, ..., L− 1

lL = y

where each layer l, except the input layer, represents a linear
transformation, which is followed by a non-linear transforma-
tion g(x), i.e. an activation function. The objective is to learn
the model parameters θ = (W, b) from the training data D.
Here, D is a set of input samples x and class labels y. This is
usually done with first-order optimization [9], using the back-
propagation algorithm for approximating a minimal cost point
estimate for the model parameters θ̂. In regular ANNs, each
parameter gets a fixed value (Figure 2A).

ANNs offer a good tool for solving complicated problems.
Still, they have been shown to be overconfident and unreliable
when met with test samples drawn from a different distribu-
tion than from its training samples [10].

2.3. Bayesian Neural Networks

Bayesian Neural Networks (BNNs) [5, 11] introduce uncer-
tainty by treating its model parameters θ as random variables.
These random variables have their own distribution, which
is marginalized to form a predictive distribution (Figure 2B).
We can incorporate prior information by defining a prior dis-
tribution over the model parameters, p(θ). When observing
new data, one can use Bayes’ rule to update the prior belief
and get the posterior distribution of the parameters [12],

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ (1)

where p(D|θ) is referred to as the likelihood of the data and
p(D) is the marginal distribution of the data.

In high dimensions, the integral in Equation (1) is in-
tractable. It is therefore not possible to compute exact or sam-
ple directly from the posterior distribution p(θ|D). However,
there are established methods for dealing with this problem,
such as Markov Chain Monte Carlo methods [13] and Varia-
tional Inference [14].

There are several benefits with BNNs, such as their natu-
ral ability to distinguish between epistemic and aleatoric un-
certainty with respectively p(θ|D) and p(y|x, θ) [15]. This
gives BNNs the ability to learn from small datasets without
overfitting [16]. Secondly, BNNs provide better calibration
than regular ANNs [17, 18], which mean that they give more
consistent uncertainty and are less likely to be overconfident.

2.3.1. Variational Inference

Variational Inference (VI) [14] is an alternative approach to
MCMC methods for solving intractable integrals in Bayesian
Inference. The main idea is to use approximation rather than
sampling. In contrast to MCMC methods, VI methods scale
well with more network parameters. This makes VI suitable
for applications in deep learning.

The idea behind VI is to introduce a variational distribu-
tion, qϕ(θ), parameterized by parameters ϕ. The objective is
to optimize the parameters ϕ to move the variational distribu-
tion qϕ(θ) close to the true posterior distribution p(θ|D). The
”closeness” between the true posterior distribution and the
approximate distribution qϕ(θ) is measured using Kullback-
Leibler divergence (KL-divergence) [19]:

DKL[qϕ(θ) ∥ p(θ|D)] =

∫
qϕ(θ) log

qϕ(θ)

p(θ|D)
dθ (2)

From Equation 2 we see that in order to solve DKL[qϕ(θ) ∥
p(θ|D)], one will need to compute p(θ|D), which was the
problem from the start. A way to tackle this problem is to use
the evidence lower bound (ELBO) [20],
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Fig. 2: Both Figure A and B are neural networks with an input layer containing two features, a hidden layer with four neurons,
and an output layer with a single neuron. Figure A illustrates a regular ANN, i.e. fixed parameter values. Figure B illustrates
a neural network with stochastic weight parameters.

ELBO(qϕ) = Eqϕ(θ)[log p(θ,D)]− Eqϕ(θ)[log qϕ(θ)]

which will serve as a loss. This can be rewritten into:

log p(D) = ELBO(qϕ) +DKL[qϕ(θ) ∥ p(θ|D)]

And since the KL-divergence is non-negative, we can say that:

log p(D) ≥ ELBO(qϕ)

Furthermore, we know that the log evidence log p(D) cannot
be less than ELBO, maximizing the ELBO will therefore,
minimize the KL-divergence DKL[qϕ(θ) ∥ p(θ|D)].

2.3.2. Bayes By Backprop

While VI offers a good theoretical tool for approximating in-
tractable integrals, it still needs a practical implementation
for usage in deep learning models. The problem is stochas-
ticity prevents backpropagation from working as in regular
ANNs [21]. Bayes By Backprop (BBB) [22], which is a prac-
tical implementation of stochastic variational inference [23]
in combination with a reparametrization trick [24], offers a
backpropagation-compatible algorithm.

As seen in Algorithm 1, this method samples a random
variable ϵ from q(ϵ) in each iteration. Here, ϵ acts as a non-
variational source of noise. Even though ϵ is sampled, it is
treated as a constant towards the rest of the variables. We
then see that θ is obtained from a deterministic transforma-
tion t(ϵ, ϕ), where θ = t(ϵ, ϕ) follows qϕ(θ). As for the rest
of the transformations in Algorithm 1 we see that they are
non-stochastic, which enables backpropagation to function as
normal towards the variational parameters ϕ.

Algorithm 1 Bayes-by-Backdrop [22]

1: ϕ = ϕ0

2: for i = 0, ..., N do
3: Draw ϵ from q(ϵ)
4: θ = t(ϵ, ϕ)
5: f(θ, ϕ) = log(qϕ(θ)− log(p(Dy|Dx, θ)p(θ))
6: ∇ϕf = backpropϕ(f)
7: ϕ = ϕ− α∇ϕf
8: end for

3. PROPOSED METHOD

This section presents the methods used in this paper, which
includes the baseline method and two proposed alternative
methods. Lastly, we introduce an idea for separating In-
Between and Out-Of-Distribution outliers. All examples in
this section use the simulated data in Figure 3, which consist
of four classes of 200 samples each, in total 800 samples,
drawn from a bivariate normal distribution.

3.1. Background

The standard approach, denoted ENT, for quantifying predic-
tive uncertainty in BNNs is using the predictive entropy of the
prediction vector ŷ [25]:

H[y|x,D] = −
K∑

k=1

p(yk|x,D) log p(yk|x,D)

From the properties of the Softmax activation function [26],
we know that each of the K elements in y is a real number in
the range [0, 1], which sums to 1. Maximum uncertainty, i.e.
maximum entropy, is achieved when each ŷk in ŷ is uniformly
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Fig. 3: Simulated data consisting of four classes with 200
samples in each class, in total 800 samples.

distributed. Minimum uncertainty is achieved when one of
the given ŷk = 1 and the rest is 0.

As BNNs are probabilistic models where a prediction is
the result of T stochastic forward passes, the predictive en-
tropy is calculated from the average of these T stochastic for-
ward passes:

p(yk|x,D) =
1

T

T∑

t=1

p(y = k|x,D, θt)

for each of the K classes, where θt are the sampled network
parameters in stochastic forward pass t from the variational
posterior distribution, θt ∼ q∗ϕ(θ).

In Figure 1 we visualize the predictive entropy in a grid of
coordinates in and around the training samples. Here, we ob-
serve a high predictive entropy between the training samples
in In-Between areas, shown in red, yellow, and turquoise col-
ors. However, in Out-Of-Distribution areas outside the class
clusters, we see low predictive entropy, shown in dark blue.

3.2. Outlier Detection with Pre-Activation Neuron Values

This section presents the first proposed alternative method,
denoted PRE-ACT, for classification outlier detection in
BNNs. This method uses the pre-activation neuron values
in the last layer to indicate whether a data sample x is an
outlier. The pre-activation neuron values in the last layer of a
model with L layers are defined as:

uL = WL ×AL−1 + bL

where WL are the weight parameters of the last layer, AL−1

are the activations from the previous layer and bL is the bias

term of the last layer. Here, uL is a vector of ny values, where
ny corresponds to the output layer size, i.e. the number of
classes in the model:

uL
i : i = 1, ..., ny

Since BNNs are probabilistic models, uL will here be defined
as the average from T stochastic forward passes in the model:

uL =
1

T

T∑

t=1

uL
t

From the properties of the Softmax function [26], we
know that the highest value in the pre-activation neuron val-
ues uL, max1 u

L, will correspond to the highest probability
after activation:

g(uL
i ) =

eu
L
i

∑ny

i=1 e
uL
k

where g is the Softmax function. As the highest probability
after Softmax activation corresponds to the predicted class,
we will therefore initially look at the highest pre-activation
neuron values in the last layer, max1(u

L). Figure 4 shows
how max1(u

L) changes depending on its distance from the
training samples. In this case, we can see that max1(u

L) is
lower in the middle of the four class clusters and it increases
as it moves further away from the training samples.

Fig. 4: Highest Pre-Activation Neuron Value, max1 u
L, in a

grid of coordinates close to the training data clusters.

However, as we observe from Figure 4, we get ”spikes” of
low pre-activation values between the class clusters, shown in
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green and yellow. This is not that surprising, as one would
expect the model to be uncertain about which class to choose
between two class clusters. Therefore, for the data samples in
the ”spikes” with low pre-activaion values we observe that the
two highest values are close to being the same: max1(u

L) ≈
max2(u

L). This makes it interesting to also look at the sum
of the two highest values in uL:

2∑

k=1

max
k

uL = max
1

(uL) + max
2

(uL)

Figure 5 shows how the sum of the two highest pre-activation
neuron values in the last layer, i.e.

∑2
k=1 maxk u

L, changes
depending on its distance to the training samples. Here, we
observe that we get smaller ”spikes” of low pre-activation
neuron values and that they shift 45 degrees.

Fig. 5: The sum of the two highest Pre-Actication Neuron
Values,

∑2
k=1 maxk u

L, in a grid of coordinates close to the
training data clusters.

Examples shown in Figure 4 and 5 are illustrative exam-
ples from a simple simulated dataset. It is, however, important
to note that the idea is that in data with K classes, this method
does not necessarily only use

∑2
k=1 maxk u

L, but also sums
up to K − 1:

∑K−1
k=1 maxk(u

L). What is best in the given
situation will depend on the data, where dimensions d and the
number of classes K can be relevant factors.

From Figures 4 and 5 we saw that uL changes depending
on how close it is to the training samples. The next step is to
find a range of approved values for uL. Here, it makes sense
to use the pre-activation neuron values from the training data
because they represent the range of values one would expect
from data samples drawn from the same distribution as the
training data:

ŨL
j : j = 1, ..., nX

here, nX corresponds to the number of samples in the training
data X . We then create two p-values, p1 and p2:

p1 =

∑
j=1,...,nX

I(ŨL
j > uL)

nX

p2 =

∑
j=1,...,nX

I(ŨL
j < uL)

nX

where
∑

j=1,...,nX
I(ŨL

j > uL) is the number of samples in
ŨL with a higher pre-activation neuron value than uL and∑

j=1,...,nX
I(ŨL

j < uL) is the number of samples in ŨL

with a lower pre-activation neuron value than uL. In the de-
nominator, nX is the total number of samples in ŨL. The idea
is then to test new data samples based on these p-values, p1
and p2, where if the pre-activation neuron values for a given
data sample x give a p-value, either p1 or p2, below a given
significance level α, it is labeled as an outlier. This is illus-
trated in Figure 6 with a significance α = 0.05. Here, the
areas marked in red are labeled as outliers, and those in dark
blue are labeled as non-outliers.

Fig. 6: Calculating p-values, p1 and p2, setting a significance
level α = 0.05. Samples, where p1 or p2 are below 0.05, are
marked as outliers in red, and those above are marked as non-
outliers in dark blue.

3.3. Combinding Predictive Entropy and Pre-Activation
Neuron Values for Outlier Detection

The second proposed method, denoted PRE-ACT+ENT, com-
bines the baseline model in Section 3.1 and the proposed al-
ternative method in Section 3.2. The motivation is that this
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might extract the strengths of both methods into one. Here,
one would mark data sample x as an outlier if the baseline
model or the proposed alternative model labels x as an out-
lier. This method requires a separate threshold for the pre-
dictive entropy and a significance level α for the proposed
alternative method. Figure 7 shows how this method com-
bines both methods. Different from Figure 6 in Section 3.2 is
that this method also marks areas between two class clusters
as outliers, not only areas between all four class clusters.

Fig. 7: Combining classification outlier detection using pre-
dictive entropy and pre-activation neuron values. The thresh-
old for predictive entropy is 0.6, and the significance level α
used for the pre-activation neuron values is 0.05.

3.4. Separating between In-Between and Out-Of-Distribution
Outliers

From Section 3.2 we have two p-values: p1 and p2, which
measure the probability of a pre-activation neuron value to be
above and below the given pre-activation neuron value uL,
respectively. The idea is that p1 and p2 can indicate if a sam-
ple, already labeled as an outlier, is an In-Between or Out-Of-
Distribution outlier. The motivation for this idea comes from
what we observed in figures 4 and 5, where uL tends to be
low between the class clusters and high outside the class clus-
ters. The assumption is then that we can classify the outlier as
an In-Between outlier or Out-Of-Distribution outlier by see-
ing which one of p1 and p2 triggered the data sample x to be
labeled as an outlier.

In Figure 8 we applied this method to the simulated data.
Here, the method labels areas between the four class clusters
as In-Between outliers and areas outside the class clusters as
Out-Of-Distribution outliers.

Fig. 8: Using pre-activation neuron values to detect classifi-
cation outliers and separate between In-Between outliers and
Out-Of-Distribution outliers.

4. EXPERIMENTAL RESULTS

Fig. 9: Figure shows where the outlier samples, in grey, are
positioned compared to the class clusters from the training
data, shown in colors. 50 samples in each cluster of outliers,
in total 250 outlier samples.

This section will compare three different methods for
classification outlier detection on three different datasets. All
three methods use the same BNN but vary in how they detect
classification outliers. The model used in the experiments
uses the BBB method [27] and follows the implementation
by [28]. The model is a shallow BNN with one input layer,
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Fig. 10: Barplot showing the FDR, POWER, and accuracy
score for classification outlier detection for the simulated
dataset. Accuracy is only calculated on samples that are not
classified as an outlier.

one hidden layer, and one output layer. The hidden layer
consists of 100 neurons.

The experiments will be evaluated using three perfor-
mance metrics: False Discovery Rate (FDR), POWER, and
accuracy. These are defined in Equation (3), where TP, TN,
FP, FN are acronyms for True Positives, True Negatives, False
Positives, and False Negatives, respectively:

Accuracy =
TP + TN

TP + TN + FP + FN

FDR =
FP

TP + FP
(3)

Power =1− β = 1− FN

TP + FN

The code implementation can be found on GitHub: http
s://github.com/hermanelling/master-thesi
s.git

4.1. Classification Outlier Detection on Simulated Data

In this section, classification outlier detection experiments
are performed on the simulated data presented in Figure 3
in Section 3. Here, the model is trained on 800 samples. In
order to simulate outliers, we have sampled outlier samples
in areas between all four class clusters and outside the class
clusters, as seen in Figure 9. The test data consists of 160
samples drawn from the same distribution as the training data,
i.e. non-outliers, and 250 outlier samples.

In Figure 10 we see the FDR, POWER, and accuracy
score for the three methods on the simulated test dataset.
We observe that PRE-ACT and PRE-ACT+ENT give similar
results, where PRE-ACT+ENT gives slightly higher FDR,
but also a higher accuracy score. Both PRE-ACT and PRE-
ACT+ENT give POWER scores above 0.9. ENT gives a
considerably lower POWER and accuracy score with 0.42
on both metrics, but a lower FDR than both PRE-ACT and
PRE-ACT+ENT.

4.2. Classification Outlier Detection on Breast Cancer
Wisconsin Dataset

In the next classification outlier experiment, we test the Breast
Cancer (diagnostic) Wisconsin (BCW) dataset [29]. The
BCW dataset is a binary classification dataset with 32 vari-
ables and 569 samples. In this experiment, the model is
trained on 455 samples, and 114 samples are set aside for
testing. This dataset was scaled to values between 0 and 1
before training. To simulate outliers, we have transformed
the test dataset in two ways. Firstly by adding Gaussian
Noise from a standard normal distribution to each variable.
Secondly, a constant, 1, is added to each variable in the test
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Fig. 11: Barplot showing the FDR, POWER, and accuracy score for classification outlier detection for two transformed Breast
Cancer Wisconsin datasets. Accuracy is only calculated on samples that are not classified as an outlier.

dataset. Our two datasets will then consist of 50% samples
from the original BCW test data and 50% transformed data.

Figure 11 shows the FDR, POWER, and accuracy for the
two Breast Cancer Wisconsin test datasets. When noise is
added we observe a low FDR on all three methods, where
PRE-ACT has the lowest with an FDR of 0.01, followed by
ENT with 0.07 and PRE-ACT+ENT with 0.09. PRE-ACT
gives the highest POWER with 0.60, which is quite low,
followed by PRE-ACT+ENT with 0.50. Common for all
three methods is that the accuracy score is slightly below the
POWER score.

For the test dataset where a constant is added, we ob-
serve a considerable difference between the baseline method
ENT and the two proposed alternative methods PRE-ACT and
PRE-ACT+ENT. Here, PRE-ACT gives an FDR, POWER,
and accuracy of 0.01, 1.0, and 0.94, respectively. Followed
by PRE-ACT+ENT with 0.09, 1.0, and 0.98. Similar to
PRE-ACT+ENT, ENT gives an FDR score of 0.07 but a con-
siderably lower POWER and accuracy score of 0.49 and
0.48.

4.3. Classification Outlier Detection on MNIST

In the next experiment, the model is trained on the MNIST
dataset [30], which is a dataset of handwritten digits in the
range 0− 9 of size 28× 28 (Figure 12). It consists of 60, 000
training samples and 10, 000 test samples. For testing, we

will also use FMNIST and transformed versions of MNIST.
FMNIST is an image dataset of fashion items from the Za-
lando fashion catalog [31] (Figure 12). Similar to MNIST,
it consists of 60, 000 training samples and 10, 000 test sam-
ples in size 28 × 28. The transformed MNIST datasets are
transformed in the following ways: blurred, inverted, con-
stant added to pixels, shuffled pixels, and partially shuffled
pixels, as seen in Figure 13. For each outlier dataset, i.e.
FMNIST and the transformed versions of MNIST, we create
a test dataset consisting of 50% samples from MNIST and
50% outliers samples, in a total of six datasets with 20, 000
samples in each.

Figure 14 shows the FDR, POWER, and accuracy scores
for the three methods on the six different test datasets. With
FMNIST, we see that PRE-ACT gives a relatively high FDR
score, low POWER score, and lower accuracy compared to
ENT. PRE-ACT also gives similar results on blurred, inverted,
shuffled, and partially shuffled images. ENT performs well on
inverted and shuffled images, with POWER scores over 0.90,
FDR scores below 0.08, and accuracy scores over 0.90. ENT
does not perform equally well on FMNIST, blurred images,
and partially shuffled images. Still, we see that ENT performs
best overall, with the lowest FDR, highest POWER score, and
highest accuracy score in five out of six test datasets. The
only exception is when a constant is added, here we see that
PRE-ACT gives a slightly higher POWER score but also a
higher FDR score.
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Fig. 12: Examples from MNIST and FMNIST data set.

Fig. 13: Examples from transformed MNIST dataset.
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Fig. 14: Barplot showing the FDR, POWER, and accuracy score for classification outlier detection for the MNIST, FMNIST,
and transformed MNIST datasets. Accuracy is only calculated on samples that are not classified as an outlier.
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Common for all six test datasets is the PRE-ACT+ENT
gives POWER and accuracy scores similar to the best of
PRE-ACT and ENT, but also gives the highest FDR out of the
two.

4.4. Dimension Reduction Results

Principal Component Analysis (PCA) [32] was performed on
the MNIST test datasets and the BCW test datasets. This
was done because PCA can transform high-dimensional data
down to low dimensions, which enables us to visualize and
explore high-dimensional data.

Results are found in figures 15 and 16.

48



Fig. 15: PCA for the MNIST test datasets.
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Fig. 16: PCA for the BCW test datasets
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5. DISCUSSION

In this paper we introduced PRE-ACT and PRE-ACT+ENT
- two alternative methods for classification outlier detection
in Bayesian Neuron Networks, which is based on looking for
unusual pre-activation neuron values in the last layer of the
model.

5.1. Key findings

In Section 4.1, 4.2, and 4.3, we explored and compared the
baseline method for classification outlier detection and the
proposed alternative methods. Here, we compared in total
three different methods, two of which were new, on three dif-
ferent datasets: simulated data, the Breast Cancer Wisconsin
dataset, and the MNIST dataset.

The results gave indications that the performance of the
methods are dependent on the type of dataset. The simulated
dataset is a simple bivariate simulated data, the Breast Can-
cer Wisconsin dataset is tabular data, and MNIST is an im-
age dataset. The proposed methods performed better than the
baseline on both the simulated dataset and the Breast Cancer
Wisconsin dataset but performed worse than the baseline ENT
in five out of six MNIST test datasets.

The reason for the results depending on the type of dataset
is unclear. We see a potential reason in the PCA of the test
dataset with MNIST and FMNIST (Figure 15). Here, 784 di-
mensions are reduced to two dimensions, where about 34%
of the variance is explained (computations not shown). This
figure shows that there is an overlap between MNIST and FM-
NIST, in contrast to the BCW test datasets in Figure 16, where
we can see which samples are outliers. In the case of the PCA
of MNIST and FMNIST, we would have liked to see a clear
separation between the two, as we can with the MNIST data
and where a constant is added to the MNIST data Figure 15.
However, in the PCA figure, we also see a clear separation
between MNIST and the inverted MNIST, PRE-ACT still per-
forms poorly here.

Another explanation could be the number of classes K.
The simulated dataset has four classes, the BCW has two
classes, and the MNIST dataset has ten classes. Getting OOD
outliers in datasets with few classes K might be easier. In
contrast, in the datasets with many classes K we might get
a situation where the outliers somehow end up being in In-
Between areas, which enables ENT to work well.

5.2. Limitations

We briefly mention limitations to this study, which should
be subject to further study. Firstly, the combination used
in the proposed method PRE-ACT and PRE-ACT+ENT, i.e.
which k to use for

∑K−1
k=1 maxk(u

L) and significance level α,
were based on empirical results from visualizations. The best
method was evaluated by what gave the best trade-off between

FDR, POWER, and accuracy. We would ideally use optimiza-
tion, for instance, the Neyman-Pearson optimization [33], to
minimize the FDR and maximize the POWER.

Secondly, as indicated in Section 5.1, the results depend
on the dataset used in experiments. This is especially relevant
for the simulated data. Results might depend on the simula-
tion settings, such as the number of classes K, dimensions d,
and samples n. The balance of the dataset is also something
to consider.

Lastly, the proposed method for separating In-Between
and Out-Of-Distribution outliers in Section 3.4 was not val-
idated on any test datasets beyond what is seen in Figure 8.
Before concluding if this is a viable method, one would need
to explore this further.

5.3. Furthers works

As the proposed methods only focus on the last layer of the
network, it might be interesting to explore the possibilities
of using every layer of the model, as this might improve the
results. The idea is that information might be lost during a
forward pass in the network.

Another interesting path is not to look at the sum of the
K − 1 highest pre-activation neuron values in the last layer
but rather at each element in the set of pre-activations. Here,
one might gain information by looking at the structure of the
pre-activation neuron values.
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