

Master’s Thesis 2023 30 ECTS

Faculty of Science and Technology

Beyond Extractive: Advancing

Abstractive Automatic Text

Summarization in Norwegian with

Transformers

Jon-Mikkel R. Korsvik

Data Science

Jørgen Navjord

Data Science

Abstract

Automatic summarization is a key area in natural language processing (NLP) and machine
learning which attempts to generate informative summaries of articles and documents. Despite
its evolution since the 1950s, research on automatically summarising Norwegian text has re-
mained relatively underdeveloped. Though there have been some strides made in extractive
systems, which generate summaries by selecting and condensing key phrases directly from the
source material, the field of abstractive summarization remains unexplored for the Norwegian
language. Abstractive summarization is distinct as it generates summaries incorporating new
words and phrases not present in the original text.

This Master’s thesis revolves around one key question: Is it possible to create a machine learn-
ing system capable of performing abstractive summarization in Norwegian? To answer this
question, we generate and release the first two Norwegian datasets for creating and evaluating
Norwegian summarization models. One of these datasets is a web scrape of Store Norske Lek-
sikon (SNL), and the other is a machine-translated version of CNN/Daily Mail. Using these
datasets, we fine-tune two Norwegian T5 language models with 580M and 1.2B parameters to
create summaries. To assess the quality of the models, we employed both automatic ROUGE
scores and human evaluations on the generated summaries. In an effort to better understand
the model’s behaviour, we measure how a model generates summaries with various metrics,
including our own novel contribution which we name ”Match Ratio” which measures sentence
similarities between summaries and articles based on Levenshtein distances.

The top-performing models achieved ROUGE-1 scores of 35.07 and 34.02 on SNL and CNN/DM,
respectively. In terms of human evaluation, the best model yielded an average score of 3.96/5.00
for SNL and 4.64/5.00 for CNN/Daily Mail across various criteria. Based on these results, we
conclude that it is possible to perform abstractive summarization of Norwegian with high-
quality summaries. With this research, we have laid a foundation that hopefully will facilitate
future research, empowering others to build upon our findings and contribute further to the
development of Norwegian summarization models.

PREFACE

This work rounds off our five-year degrees at the Norwegian University of Life Sciences (NMBU).
It is the culmination of our journey through the five-year Master’s programme in Data Science
which we started together in 2018.

We wish to give special acknowledgement to our supervisor, Kristian Hovde Lilland, for his
guidance and insightful feedback throughout the course of this thesis. His deep understanding
of machine learning and academic writing was invaluable to this work.
We also extend our appreciation to our co-supervisor, Nader Aeinehchi from The Norwegian
Tax Administration for giving us the chance to work on this research. He has given us countless
insightful suggestions, constructive critiques, and valuable expertise that greatly enhanced the
quality of this work.
Our sincere thanks are also due to Per Egil Kummervold at the Norwegian National Library
for his significant contributions to the Norwegian NLP field through his work on Norwegian
language models and corpora. Similarly, we acknowledge the guidance and support provided
by Gabriel Borg at the Swedish National Archives. His experiences in translating datasets to
Swedish and within ATS have provided invaluable assets for our work.
Lastly, we would like to express our gratitude to each other. The collaboration’s shared en-
thusiasm and mutual support have not only made this research possible but also made it an
immensely enriching and enjoyable journey.

This thesis is a labour of love, and we are both grateful to have had the opportunity to invest
the past few months exploring and contributing to one of the most exciting fields of research. As
we wrap up this thesis, our conviction has only grown stronger. More so than when we began,
we firmly believe that the topics we’ve explored will continue to shape our everyday lives for
many years to come.

Jon-Mikkel R. Korsvik Jørgen Navjord

Ås, May 14, 2023

i

Page ii of ix

CONTENTS

Abstract i

Preface i

Table of Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 2
1.2 Background . 3
1.3 Structure of thesis . 4

2 Theory 5
2.1 NLP . 5

2.1.1 Tokenization . 6
2.1.2 Word Embeddings . 8
2.1.3 Language Models . 10

2.2 Automatic Text Summarization . 10
2.2.1 Extractive Summarization . 11
2.2.2 Abstractive Summarization . 12
2.2.3 Measuring Abstractiveness . 13
2.2.4 Evaluating Generated Summaries . 15

2.3 Machine Translation . 18
2.3.1 Rule-Based Machine Translation . 18
2.3.2 Statistical Machine Translation . 19
2.3.3 Neural Machine Translation . 19
2.3.4 Evaluating Machine Translation with BLEU 19

2.4 Machine Learning . 20
2.4.1 Learning Paradigms . 21
2.4.2 Training, Validation, and Testing stages 23

2.5 Artifical Neural Networks . 24
2.5.1 Backpropagation . 25
2.5.2 Activation Functions . 26
2.5.3 Dropout . 28

iii

2.5.4 Layer Normalization . 29
2.5.5 Recurrent Neural Networks . 29

2.6 Token Decoding . 32
2.6.1 Greedy Decoding . 32
2.6.2 Advanced Token Decoding . 33
2.6.3 Sampling . 35

2.7 Transformers . 36
2.7.1 Attention . 37
2.7.2 Transformer Architecture . 39
2.7.3 Learning objectives . 41
2.7.4 T5: Text-to-Text Transfer Transformer 42

3 Method 44
3.1 Dataset Curation . 45

3.1.1 Web Scraping . 45
3.1.2 Machine Translation . 46
3.1.3 Additional Datasets Not Utilized Further 48

3.2 Data Exploration . 48
3.2.1 Token Distributions . 49
3.2.2 Exploring Abstractiveness of Summaries 49

3.3 Summarization Modelling . 50
3.3.1 Baselines . 50
3.3.2 North-T5 models . 50
3.3.3 T5 Training procedure . 52
3.3.4 Software and Hardware . 53

3.4 Optimizing Decoding Parameters . 54
3.5 Evaluation . 55

3.5.1 Automatic Evaluation . 55
3.5.2 Human evaluation . 55
3.5.3 Model Abstractiveness . 56

4 Results 57
4.1 Data exploration . 57

4.1.1 Article and Summary Lengths . 57
4.1.2 Abstractiveness . 59

4.2 Training Results . 60
4.3 Token Decoding Parameters . 61
4.4 Evaluation . 62

4.4.1 ROUGE metrics . 62
4.4.2 Human Evaluation . 62
4.4.3 Model abstractiveness . 63

5 Discussion 65
5.1 Datasets . 65

5.1.1 SNL . 65
5.1.2 CNN/DM . 66

5.2 Modelling . 66
5.2.1 Training . 67
5.2.2 Optimal Token decoding parameters . 67

5.3 Evaluation . 68
5.3.1 ROUGE Scores . 69
5.3.2 Human evaluation . 70

Page iv of ix

5.3.3 Model Abstractiveness . 70
5.4 Out of Domain Behaviour . 71
5.5 Further Work . 72

6 Conclusion 73

Bibliography 82

A Python Modules 83

B Dataset and Model URLs 84

C ROUGE Throughout Training 85

D Token Decoding Hyperparameters 86
D.1 Parameter search results . 86

D.1.1 SNL Models . 86
D.1.2 CNN/DM Models . 87

D.2 Parameter configurations . 89

E SNL Examples 90
E.1 Lowest ROUGE-1 . 90
E.2 Highest ROUGE-1 . 91
E.3 Random samples . 92

F CNN/Dailymail 93
F.1 Lowest ROUGE-1 . 93
F.2 Highest ROUGE-1 . 94
F.3 Random samples . 95

G Out-of-domain samples 96
G.1 Aftenposten . 96
G.2 Wikipedia . 97
G.3 Kvinneguiden . 98
G.4 Komplett.no . 99
G.5 Human Evaluation Results . 100

Page v of ix

LIST OF FIGURES

2.1 Example of word-based tokenization and embedding of the sentence ”the cat sat
on the floor” . 6

2.2 Example of one-hot encoding for the sentence ’the cat sat,’ using a vocabulary
size of 5. Each word’s vector has a ’1’ in the index corresponding to the word
and ’0’s in all other positions. 9

2.3 2D visualization of word embeddings for the words ”Man,” ”Woman,” ”King,”
and ”Queen.” The relationships between these words are captured in the vector
space, demonstrating that the word embedding model has successfully learned se-
mantic relationships. The plot illustrates the intuitive vector arithmetic involving
these embeddings. Modification of [17]. 9

2.4 An illustration of overfitting (green line) and a well-balanced model (black line).
Modification of [53]. 23

2.5 A simple artificial neural network with 2 inputs, 2 hidden layers with 4 neurons
each, and a single output neuron. Note that bias nodes are not depicted here.
Modification of [56]. 24

2.6 Plots of the sigmoid, ReLU, and GELU activations, along with their correspond-
ing derivatives. The x-axis represents the input to the activation function, while
the y-axis represents the output. 27

2.7 Visualization of dropout. Neurons with red crosses represents neurons that have
been dropped (values set to zero). Modification of [68] 28

2.8 A depiction of a single-unit RNN. The progression from bottom to top represents
input state, hidden state, and output state. The network weights are denoted by
U, V, and W. The left side features a compressed diagram, while the right side
illustrates the unfolded version of the network. Modification of [75]. 30

2.9 A basic encoder-decoder model [78]. The input sequence is processed by the
encoder, resulting in a context vector that is then used by the decoder to generate
the output sequence. 31

2.10 Example of autoregressive translation of the sequence ”I am driving a car” from
English to Norwegian using an encoder-decoder model. 33

2.11 Example of the process of a beam search with a beam width of 3. The dotted
line represents the sequence greedy decoding would generate and the solid red
line is the most likely sequence generated with beam search. Reprinted from [82]
with permission from Patrick von Platen. 34

2.12 Illustration of the multi-head attention block (left) and scaled dot-product atten-
tion (right), highlighting their connections and substructures within the trans-
former architecture. Illustration with modification from [7]. 38

vi

2.13 Visualization of a simplified Transformer model. N represents the number of
encoder and decoder blocks stacked on top of each other. Illustration with mod-
ification from [7]. 40

2.14 Examples of the MLM and CLM learning objectives 41
2.15 T5 - Multi-Task training and fine-tuning visualized. CoLA measures whether a

sentence is linguistically acceptable or not. Stsb scores two sentences based on
how similar they are. 43

3.1 Flowchart of the methodology and steps utilized in this thesis. 44
3.2 Visual explanation of the different training stages and data used to generate

create our final models based on mT5 and North-T5. 51

4.1 Token distributions generated with the North-T5 tokenizer for SNL 58
4.2 Token distributions generated with the North-T5 tokenizer for CNN/DM 59
4.3 KDE plots for CNN/DM Nor and SNL with density on the x-axis and coverage

on the y-axis. Red indicates a greater number of samples in that area. 60
4.4 Training and validation losses for T5 models during training. The blue lines

represent the training loss, while the orange lines represent the validation loss.
The vertical dashed red line indicates the epoch where the model achieved the
minimum validation loss, which is used for early stopping. For Base-CNN/DM,
the loss values were not logged in wandb for the final epoch for unknown reasons. 61

4.5 KDE plots for models trained on CNN/DM and SNL with density on the x-axis
and coverage on the y-axis. Red indicates a greater number of samples in that
area. Values were generated on the samples in the test sets. 64

C.1 ROUGE scores for T5 models during training. The vertical dashed red line
indicates the epoch where the model achieved the minimum validation loss. For
Base-CNN/DM, the ROUGE values were not logged in wandb for the final epoch
for unknown reasons. 85

Page vii of ix

LIST OF TABLES

3.1 Human evaluation criteria for summaries used by Grusky Et. Al [27] as well as
our own dimension evaluating factuality. The dimension represents the different
categories we measured the performance on and the prompt is the instruction for
evaluating each dimension . 56

4.1 Number of samples in the different splits of SNL and CNN/DM. 57
4.2 Average number of characters in articles and reference summaries and average

compression ratio . 58
4.3 Comparison of models and datasets using match ratio based on Levenshtein dis-

tance, coverage, and density metrics. 59
4.4 Fine-tuning times and GPUs utilized for different models. The total batch size

is calculated with a gradient accumulation of 4 (a technique where the gradi-
ent updates are calculated over multiple mini-batches and applied once, which
effectively simulates larger batch sizes). 60

4.5 Best performing token decoding parameters for each model 62
4.6 ROUGE metrics calculated on the train sets of SNL and CNN/DM. Bald numbers

indicate the best-performing model for a metric 62
4.7 Results of human evaluation across 5 dimensions on SNL. Results are divided

into three different subsets based on the five highest and lowest R-1 scores for
T5-Large and a subset of 5 random samples . 63

4.8 Results of human evaluation across 5 dimensions on CNN/DM. Results are di-
vided into three different subsets based on the five highest and lowest R-1 scores
for T5-Large and a subset of 5 random samples 63

4.9 Comparison of models and datasets using match ratio based on Levenshtein dis-
tance, coverage, and density metrics . 63

A.1 List of Python modules used in this thesis and their purposes 83

B.1 Different datasets generated in this work. The dataset names are clickable and
will direct to their respective Huggingface Hub pages. 84

B.2 Overview of the different North-T5 used and the fine-tuned summarization mod-
els. Model names are hyperlinked to their respective Huggingface Hub pages. . . 84

D.1 Hyperparameter search results for T5-Base-SNL on the validation set. The best-
performing model for each ROUGE metric is highlighted in bold. 86

D.2 Hyperparameter search results for T5-Large-SNL on the validation set. The
best-performing model for each ROUGE metric is highlighted in bold. 87

viii

D.3 Hyperparameter search results for T5-Base-CNN/DM on the validation set. The
best-performing model for each ROUGE metric is highlighted in bold. 87

D.4 Hyperparameter search results for T5-Large-CNN/DM on the validation set. The
best-performing model for each ROUGE metric is highlighted in bold. 88

D.5 Different generation parameters used for optimizing summarizations. Default pa-
rameters are the default generation parameters used in Huggingface Transform-
ers. The ’-’ symbol represents a configuration that uses the default parameter
value. Configurations are divided into three groups: Greedy, Beam Search, and
Sampling configurations. 89

G.1 Results of human evaluation across 5 dimensions on the out-of-domain samples.
Missing value was due to no coherence scored, due to only having one sentence
in the generated summary. 100

Page ix of ix

CHAPTER 1

INTRODUCTION

The forthcoming thesis delves into the application of state-of-the-art transformer models for
executing abstractive summarization of the Norwegian natural language.
The thesis is undertaken in collaboration with the Norwegian Tax Administration (Skattee-
taten), a forward-thinking organization that recognizes the value of integrating modern tech-
nologies, such as summarization, into their operations. Skatteetaten’s commitment to innovation
is driven by a desire to enhance the experience of its users, both internally and externally.

Internally, employees of Skatteetaten stand to benefit from the implementation of abstractive
summarization by gaining quick and concise access to relevant information. By automating the
process of summarizing lengthy documents and reports, employees can focus on higher-level
tasks, such as decision-making and strategic planning. Additionally, incorporating summariza-
tion technologies can streamline internal communication and promote knowledge sharing across
departments, ultimately fostering a more efficient and collaborative work environment.
Externally, taxpayers and other stakeholders interacting with Skatteetaten will also reap the
benefits of abstractive summarization. With the ability to generate succinct and coherent sum-
maries of complex tax regulations, guidelines, and other documentation, the organization can
provide clearer and more accessible information to the public. This improved communication
can lead to increased understanding and compliance, reduced errors, and overall enhanced sat-
isfaction among taxpayers.

Although summarization has been extensively explored in English and other languages, there
remains a noticeable gap in the development of systems tailored for summarizing Norwegian
text. While certain strides have been made in the realm of extractive summarization - a subfield
that constructs summaries by extracting words and sentences from source documents - little
attention has been devoted to abstractive summarization. This type of summarization, which
involves the generation of novel sentences has yet to be fully explored within the context of the
Norwegian language.

One of the primary factors contributing to this underexplored area of research is the scarcity of
publicly available datasets suitable for training machine learning summarization models. High
quality datasets play a crucial role in the development of efficient and accurate models, espe-
cially in the field of natural language processing. The availability of such resources in English
and other widely spoken languages has enabled significant advancements in those languages,
whereas the Norwegian language has been relatively underserved.

Based on the unresearched area of abstraction summarization of the Norwegian natural lan-

1

guage, the following research question was developed:

Is it possible to create a machine learning system capable of performing abstractive
summarization on the Norwegian natural language?

To find the answer to this question, we formalize three objectives which will help us answer
the question.

Objectives

The following objectives form the basis of this thesis:

1. Explore and identify datasets for automatic summarization for the Norwegian language.
If no fitting datasets are found, explore the possibilities of generating datasets ourselves.

2. Design and implement an automatic summarization model capable of generating sum-
maries on Norwegian text using a transformer model.

3. Assess the effectiveness of the developed automatic summarization model through quan-
titative metrics such as ROUGE scores, as well as human evaluation of the generated
summaries.

1.1 Motivation

The rapid growth of digital information has led to an overwhelming abundance of data on the
internet. Every day, countless articles, research papers, and reports are published, making it
nearly impossible for individuals to process and consume all relevant information. This infor-
mation overload has necessitated effective and efficient methods to condense large volumes of
text while retaining the essence and value of the original content. Automatic text summariza-
tion systems address this need by providing concise and coherent summaries, enabling users to
quickly grasp the main ideas of a document without having to read it in its entirety.

Automatic text summarization finds numerous applications across various domains. For in-
stance, in journalism, summarization systems can help news agencies generate brief news sum-
maries for readers who prefer skimming headlines and key points. In academia, researchers
benefit from summaries of scholarly articles to quickly assess their relevance and decide whether
to delve deeper into the full text. Additionally, businesses can utilize summarization systems to
create executive summaries of lengthy reports or synthesize information from multiple sources
for decision-making purposes.

A key motivation for creating summarization systems is enhancing accessibility. Developing
systems that produce shorter versions of large text documents allows individuals with read-
ing difficulties, cognitive impairments, or limited time to more easily access and comprehend
information. This expands opportunities for a wider audience to benefit from the wealth of
knowledge available in text format.

Another significant motivation behind the development of summarization systems is person-
alized content delivery. Tailoring summaries to individual user preferences, summarization
systems can make content more engaging and user-specific. This leads to increased user sat-
isfaction and better information retention, as users receive information more relevant to their
interests and needs.

Page 2 of 101

1.2 Background

A summary is a concise and focused version of a text that conveys the primary ideas, argu-
ments, or themes of the original content. The purpose of a summary is to provide readers
with an abridged overview of the essential information, allowing them to understand the main
points without reading the entire text. Summaries can be created for various types of content,
such as articles, books, research papers, speeches, or multimedia presentations. The process of
summarizing involves identifying the most significant elements within the material, removing
less relevant or redundant information, and presenting the core ideas in a clear and coherent
manner. A well-crafted summary should enable readers to grasp the essence of the original
content while maintaining the overall context and meaning.

Summaries play a crucial role in various contexts of our daily lives, helping us manage in-
formation efficiently and effectively. In the workplace, summaries condense complex reports
or meeting minutes, enabling colleagues to quickly grasp the main points and make informed
decisions. In academia, students often rely on summaries to review essential concepts from
textbooks, lectures, or research articles, aiding comprehension and retention of the material.
In the news and current events, summaries in the form of headlines or brief articles help us
stay informed about world affairs without delving into lengthy, detailed coverage. Additionally,
summaries are commonly employed in the entertainment industry, where movie synopses, book
blurbs, or product descriptions give potential consumers a quick idea of the content, allowing
them to make informed choices.

Creating high-quality summaries poses a significant challenge, as it requires a deep understand-
ing of the source material, the ability to identify its most critical elements, and the capacity
to convey those elements in a clear and coherent manner. One of the main difficulties lies in
accurately interpreting the context, nuances, and intent of the original content, which often
necessitates a comprehensive grasp of the subject matter and language subtleties. Additionally,
selecting the most pertinent information and distinguishing it from less relevant or redundant
content can be a complex task, particularly when dealing with dense or multifaceted materials.
Furthermore, crafting a well-structured and concise summary involves skilful paraphrasing and
synthesis of ideas while preserving the overall meaning and coherence. This process demands
not only linguistic proficiency but also critical thinking and analytical abilities, making it a
difficult task for both humans and automated systems.

Research fields which work with natural language such as summaries are usually a part of the
natural language processing (NLP) research field. NLP is a subfield of artificial intelligence
that focuses on enabling computers to understand, interpret, and generate human language.
NLP bridges the gap between human communication and computer understanding, allowing
machines to analyze, process, and respond to textual and spoken data in a manner similar
to humans. By leveraging techniques from linguistics, computer science, and machine learning,
NLP aims to develop algorithms and models that can effectively handle various language-related
tasks, such as sentiment analysis, machine translation, speech recognition, and summarization.

As a subfield of NLP, Automatic Text Summarization (ATS) focuses on developing computer
algorithms and systems capable of generating concise and coherent summaries from original
text sources. ATS aims to automate the process of identifying key information, eliminating
redundancies, and distilling the core ideas into a shortened version that retains the overall con-
text and meaning. By leveraging natural language processing, machine learning, and artificial
intelligence techniques, ATS seeks to create summaries that accurately represent the primary
points of the source material while maintaining readability and relevance for the target audience.

Page 3 of 101

The ultimate goal of ATS is to provide users with an efficient and effective means of accessing
and understanding the most significant content from vast amounts of textual data, reducing
the time and effort required for manual summarization and enabling the rapid dissemination of
critical information.

The history of automatic text summarization began with Hans Petter Luhn’s work at IBM in
the 1950s [1], which proposed a method for extracting significant sentences from documents
based on term frequency. Over the years, researchers have explored various approaches, includ-
ing rule-based methods, statistical techniques, and machine learning algorithms to improve the
quality of generated summaries.

In the early years, most summarization techniques relied on heuristics, such as identifying
keywords, phrases, and sentence structures that indicate importance within a text. These rule-
based methods achieved moderate success but often struggled with complex texts and varying
domains.

The 1990s saw the introduction of statistical approaches, which leveraged mathematical models
to identify important sentences or phrases based on their frequency and distribution in the doc-
ument. These methods generally outperformed rule-based approaches but still faced challenges
in handling complex texts and producing coherent summaries.

The advent of machine learning and deep learning techniques has revolutionized the field of au-
tomatic text summarization. With the emergence of neural networks and advanced NLP models
like transformers, researchers have been able to create more accurate and coherent summaries
by training algorithms on large-scale datasets. This has led to the development of state-of-the-
art systems highly capable of summarization, such as OpenAI’s GPT-models [2]and T5-based
models [3].

1.3 Structure of thesis

Chapter 2 presents the theoretical foundation for this thesis. The methodology employed is
detailed in Chapter 3. Chapter 4 showcases the results obtained. An in-depth discussion of the
results is provided in Chapter 5 and compared with the research question and objectives. Lastly,
Chapter 6 offers a summary of the findings, along with concluding thoughts and remarks. The
appendix includes additional results which had a minor impact on the thesis.

References to the datasets developed as part of this research project can be accessed in Ta-
ble B.1, each linked to their respective locations on the Huggingface Hub. We’ve provided
an overview of the trained models used throughout this study in Table B.2, also directly
linked to their respective Huggingface Hub pages. For a comprehensive understanding of
our work, the complete source code used in deriving the results of this thesis is available
at https://github.com/navjordj/Master-Norwegian-Abstractive-Summarization, where the final
version of the code for this thesis corresponds to the b985300 commit.

Page 4 of 101

https://github.com/navjordj/Master-Norwegian-Abstractive-Summarization
https://github.com/navjordj/Master-Norwegian-Abstractive-Summarization/commit/b985300324b7217ae5ecf98e57d6fdf794b1a766

CHAPTER 2

THEORY

This chapter delves into the underlying theory used to address the proposed objectives, span-
ning dataset curation, abstractive summarization modelling, and evaluation.

We begin with an introduction to the field of natural language processing (NLP) in Section 2.1,
covering essential topics such as tokenization, word embeddings, and language models. Next,
Section 2.2 explores the field of automatic text summarization (ATS) by discussing different
types of extractive and abstractive techniques and examining summary evaluation methods.
Section 2.3 covers the field of machine translation, introducing various translation techniques
and explaining how translation evaluation is performed. Subsequently, Section 2.4 provides
an introduction to machine learning, followed by an overview of artificial neural networks in
Section 2.5, including different variants such as RNNs and Encoder-decoder models. Section
2.6 discusses how these models can effectively generate sequences of text using various token
decoding techniques. Finally, building on the topics covered, we introduce the state-of-the-art
Transformer architecture and its T5 variant in Section 2.7.

2.1 NLP

Natural Language Processing (NLP) is a branch of artificial intelligence that deals with the
interface between computers and human languages [4, pg. ix]. NLP aims to create compu-
tational methods and algorithms that facilitate machines in comprehending, interpreting, and
generating human language in a manner that is both meaningful and effective. The scope of
NLP is broad and encompasses various tasks such as part-of-speech tagging, sentiment analysis,
machine translation, and named entity recognition, among others. To perform these tasks, NLP
requires the ability to process and analyze extensive volumes of textual data, often referred to
as corpora, to learn valuable information and insights from them. Technologies based on NLP,
like predictive text, handwriting recognition and machine translation have become increasingly
prevalent, and language processing plays a central role in the multilingual information society,
offering more natural human-machine interfaces and sophisticated access to stored information
[4].

One of the primary challenges in NLP is the inherent ambiguity present in human languages,
which can manifest at different levels, such as syntax, semantics, and pragmatics [5]. This am-
biguity, coupled with the variability of human language, makes it difficult for machines to derive
meaning from text. Early approaches to NLP tried to solve this problem by relying heavily on
rule-based and statistical methods, which focused on hand-crafted features and probabilistic

5

models to represent linguistic structures and relationships [6].

However, the advent of deep learning has revolutionized the field of NLP, paving the way for more
advanced and powerful techniques. Deep learning models, such as Recurrent Neural Networks
(RNNs) and Transformer-based architectures [7], have demonstrated their ability to learn and
represent complex linguistic patterns from large-scale data. These models have achieved state-
of-the-art performance on NLP tasks such as abstractive summarization and machine translation
[8, 9].

2.1.1 Tokenization

Since computers are inherently not designed to process human language directly, it is necessary
to convert characters and words into numerical representations, such as integers, that can be
more easily manipulated by computers. In the domain of NLP, tokenization serves as a crucial
step in this transformation process, converting raw textual data into a structured format. As
a fundamental pre-processing technique, tokenization entails breaking down text into smaller
units, or tokens, which can be words, subwords, or characters, depending on the selected ap-
proach.

Figure 2.1 illustrates an example of a tokenizer that divides a sentence into individual words and
associates them with corresponding integer values as well as converting the integers to a dense
vector with an embedding layer explained in Section 2.1.2. The word ”the” appears twice in
the sentence, and both occurrences are mapped to the same integer. Additionally, the tokenizer
appends a < /s > token, which some models discussed later in the thesis require as a signal
which indicates the end of a sequence or sentence.

These tokens serve as the building blocks for various NLP tasks, such as machine translation
and sentiment analysis. In this section, we will delve into the various tokenization techniques
and their applications in the Norwegian language. Moreover, we will discuss the impact of
tokenization choices on the performance of NLP models and how these decisions can affect the
quality of downstream tasks.

Figure 2.1: Example of word-based tokenization and embedding of the sentence ”the cat sat on
the floor”

Page 6 of 101

Tokenization techniques can be broadly categorized into three main approaches: word-based,
subword-based, and character-based tokenization. Each of these methods has its own set of
advantages and drawbacks, which makes them more suitable for specific tasks or languages.
In this section, we will explore these three approaches in detail, along with their respective
tokenization algorithms and their applications in NLP tasks.

Word-based Tokenization

Word-based tokenization is the most intuitive method, wherein textual data is segmented into
individual words. This approach is widely used in languages with clear word boundaries, such
as English, where spaces separate words. However, word-based tokenization may not be as
effective for languages that lack explicit word boundaries, such as Chinese or Japanese. The
primary advantage of this method is its simplicity and interpretability, but it may suffer from
issues like data sparsity and out-of-vocabulary (OOV) tokens. OOV tokens can occur when a
token is found in the test set which does not occur in the train set.

Subword-based Tokenization

Subword-based tokenization addresses some of the limitations of word-based tokenization, such
as handling OOV tokens and reducing data sparsity. This approach segments text into subword
units, which can be smaller than words but larger than characters. Subword tokenization is
especially useful for morphologically rich languages and can improve the generalization of NLP
models. Some of the most used subword tokenization algorithms include:

• Byte Pair Encoding (BPE): BPE is a data compression algorithm that was adapted
for tokenization by Sennrich et al. [10]. It merges the most frequent character pairs in
the training data iteratively until a predefined vocabulary size is reached. The resulting
vocabulary consists of both words and subword units.

• Unigram: This tokenization method is proposed by Taku Kudo [11] and is based on a
unigram language model. It constructs a vocabulary of subword units by maximizing the
likelihood of the training data given the model. The vocabulary is selected in such a way
that it minimizes the perplexity (probability of a generated sequence)of the training data,
leading to better generalization in NLP tasks.

• SentencePiece: SentencePiece [12] is a tokenizer which uses both BPE and Unigram.
It includes spaces in the tokens it generates which makes it better suited for languages
such as Chinese or Japanese which does not use spaces to separate words like for the
English language. Due to this better handling of non-English text, it is widely used for
multilingual models, such as mT5 [13].

These subword tokenization algorithms have been widely adopted in modern NLP models, as
they offer several advantages over traditional word-based tokenization methods. By representing
text as a sequence of subword units, these models can better handle OOV words, rare words,
and morphologically rich languages, leading to improved performance and generalization across
various tasks and languages.

Character-based Tokenization

Character-based tokenization segments text into individual characters, making it the most gran-
ular approach among the three. It has the advantage of eliminating OOV tokens and can capture
fine-grained morphological information. One notable issue with character-based tokenization is
that it can lead to longer input sequences compared to word-based or subword-based approaches,
which may result in increased computational complexity. Moreover, since the meaning of a text

Page 7 of 101

is often conveyed at a higher level than individual characters, character-based models may need
to learn more complex representations to capture meaningful linguistic structures.

2.1.1.1 Tokenizing Norwegian

While the general principles of tokenization are the same for Norwegian and other languages
such as English, some specific considerations must be taken into account due to differences
in the linguistic properties of these languages. In this section, we discuss the challenges and
differences in tokenization approaches for Norwegian and their comparison to English.

Morphological Differences Norwegian, as a North Germanic language, has a more complex
morphology compared to English. It exhibits rich inflexion, particularly in its noun and verb
systems. For example, Norwegian nouns can have definite and indefinite forms, as well as plural
forms, leading to a larger number of possible word forms than in English. Furthermore, Norwe-
gian has two written standards, Bokm̊al and Nynorsk, which adds another layer of complexity
when tokenizing the text. These morphological differences can have a significant impact on
the choice of tokenization strategy. Subword-based tokenization, such as Byte-Pair Encoding
(BPE) or SentencePiece, may be more suitable for Norwegian, as it can better handle variations
in word forms.

Handling Compound Words Norwegian, like other Germanic languages, is known for its
compound words, where multiple words are combined into a single word without spaces. This
characteristic can present challenges for tokenization, as splitting compound words into their
constituent parts may be necessary to accurately capture their meaning. Additionally, it is
common for Norwegian translations to be 5% to 10% shorter than their English counterparts
[14], which can also contribute to the difference in the number of characters in sentences and
documents.

For example, in Norwegian, the compound word ”arbeidsmiljø” can be separated into ”arbeids”
(work) and ”miljø” (environment). In English, compound words are generally less frequent and
are often divided by spaces, such as ”work environment.” Therefore, tokenization approaches for
Norwegian may need to incorporate techniques for handling compound words, such as rule-based
or machine learning-based methods.

2.1.2 Word Embeddings

A crucial aspect of NLP tasks is the representation of words as inputs for the machine learning
models. Traditional one-hot encoding [15], which represents words as binary vectors with a
single ’1’ at the index corresponding to the word and ’0’s elsewhere. An example of the sen-
tence ”the cat sat” being one-hot encoded into vectors is shown in Figure 2.2. This results in
high-dimensional, sparse, and computationally inefficient representations. One hot-encoding of
a single word, for instance, with a vocabulary of 10,000 words would produce a vector in which
99.99% of the elements are zero.

To overcome these limitations, word embeddings were introduced, which are dense vector repre-
sentations of words that capture their semantic meaning and syntactic relationships with other
words in a continuous space [16]. By reducing the dimensionality and capturing semantic rela-
tionships, word embeddings enable more efficient and effective training of neural networks for
NLP tasks.

Figure 2.3 presents a commonly used illustration of word embeddings. In this hypothetical
example, the words ”Man,” ”Woman,” ”King,” and ”Queen” have been transformed into 2D

Page 8 of 101

Figure 2.2: Example of one-hot encoding for the sentence ’the cat sat,’ using a vocabulary size
of 5. Each word’s vector has a ’1’ in the index corresponding to the word and ’0’s in all other
positions.

word embeddings (vectors). This equation highlights the capacity of the word embedding model
to represent the relationships between words in a continuous vector space, enabling meaningful
comparisons and operations on the word vectors. The word embedding model has effectively
captured the semantic relationships between these words, as demonstrated by performing vector
arithmetic on the embeddings:

−−→
King−

−−→
Man +

−−−−−→
Woman ≈

−−−−→
Queen (2.1)

Figure 2.3: 2D visualization of word embeddings for the words ”Man,” ”Woman,” ”King,” and
”Queen.” The relationships between these words are captured in the vector space, demonstrat-
ing that the word embedding model has successfully learned semantic relationships. The plot
illustrates the intuitive vector arithmetic involving these embeddings. Modification of [17].

Today’s word embedding methodologies predominantly rely on neural networks to learn real-
valued vector representations of individual words. Two straightforward techniques include the
bag-of-words (BOW) model and the word skip-gram model, commonly known as word2vec mod-
els [16]. The BOW model trains a shallow neural network to predict a single word based on
a context window comprising neighbouring words, which are usually one-hot encoded. After
training a neural language model in this manner, the hidden layer’s weights represent a vector

Page 9 of 101

space where each vector corresponds to a specific word in the vocabulary. These vectors can
then serve as word embeddings. The word skip-gram model inverts the BOW model’s task and
predicts context words based on a single input word. Other neural networks, such as RNNs and
transformers, have also been effectively utilized to learn word embeddings [16] [7].

2.1.3 Language Models

Language Models (LMs) have emerged as a promising approach in the field of NLP, demonstrat-
ing remarkable capabilities in understanding, generating, and reasoning over human language.
Large Language Models (LLMs) represent a significant evolution within this field. Character-
ized by their vast number of parameters, often in the range of billions, LLMs leverage extensive
amounts of data to learn complex patterns and representations of language. This enables them
to capture intricate linguistic relationships and generalize well to a variety of tasks.

Language modelling aims to estimate the probability distribution of a sequence of words or
tokens in a given text [18]. Formally, given a sequence of words w1, w2, ..., wn, the goal is to model
the probability P (w1, w2, ..., wn) by factorizing it into a product of conditional probabilities:

P (w1, w2, ..., wn) =

n∏
i=1

P (wi | w1, w2, ..., wi−1) (2.2)

By estimating these probabilities, language models can learn to generate coherent and gram-
matically correct text, while also capturing the context and dependencies between words. For
example, consider the sentence ”I should pay my taxes” A language model estimates the prob-
ability of each word occurring given the previous words in the sentence. When the model
reaches the word ”taxes,” it calculates the probability of ”taxes” occurring given the context
”I should pay my” As the model processes the entire sentence, it learns the contextual rela-
tionships between the words, which allows it to generate contextually relevant and coherent text.

One of the key innovations behind LMs is the use of pre-training and fine-tuning strategies.
During the pre-training phase, models are exposed to massive corpora, allowing them to learn
general language representations and structures. The fine-tuning phase adapts the pre-trained
model to specific tasks, such as abstractive summarization or sentiment analysis, by training
on a smaller, task-specific dataset. This two-step process has proven to be highly effective, as
LLMs have achieved state-of-the-art performance across a wide array of NLP benchmarks.

The transition from traditional LMs to LLMs (Large Language Models) was marked by the
introduction of models such as GPT-2 by OpenAI [18]. These LLMs employed more advanced
architectures, such as the Transformer (covered in depth in Section 2.7), and were trained on
significantly larger datasets. A key feature of these LLMs is their ability to be used in a zero-
shot learning context. Zero-shot learning is a machine learning concept where a model makes
predictions about data it was not specifically trained on. For instance, a model trained on text
classification tasks can be used to classify text in a category it has never seen before. This is
achieved by leveraging the model’s understanding of language and its ability to generalize from
its training to novel tasks.

2.2 Automatic Text Summarization

Automatic Text Summarization (ATS) is a vital and increasingly relevant task in the field of
NLP. As the volume of textual data available online continues to grow exponentially, there is

Page 10 of 101

a rising need to develop efficient methods for condensing long and complex texts into shorter,
more digestible summaries. This process should maintain the core information and meaning of
the original text while generating summaries that are coherent, fluent, and appear as if written
by humans.

The primary goal of ATS is to facilitate easier and quicker comprehension of large volumes of
information, enabling readers to understand the essence of a text without having to read it in
its entirety. This is especially useful in various domains, such as journalism, legal documents,
research articles, and social media, where professionals and casual readers alike can benefit from
the time-efficient consumption of information.

Since its inception in the late 1950s, the field of automatic text summarization (ATS) has under-
gone significant evolution. Initially, the focus was on using statistical techniques and rule-based
algorithms to extract sentences or phrases deemed most important or relevant to the document’s
overall content. However, summaries generated using these extractive techniques often lacked
coherence and structure.

As the field progressed, more sophisticated approaches, such as graph-based methods, clustering
algorithms, and neural network models, emerged, leading to more coherent and well-structured
summaries. This early technique of extracting important phrases or sentences from the original
text to generate an informative summary is now commonly referred to as extractive summa-
rization. While extractive summarization techniques have improved over time, they still face
challenges in generating summaries that are coherent and readable.

To address these challenges, there has been a shift towards abstractive summarization tech-
niques, which aim to generate summaries that are more fluent and human-like. This shift has
led to the development of more advanced NLP techniques and models, including transformer-
based models like GPT [2], which are capable of producing summaries that capture the essential
information in the input text while also being more natural and readable. These abstractive
summarization techniques have demonstrated significant progress towards generating informa-
tive and coherent summaries that closely mimic human-written summaries.

2.2.1 Extractive Summarization

Extractive summarization is one of the main approaches to automatic text summarization. It
involves identifying and extracting relevant sentences or phrases from the original text and
combining them to form a coherent summary. In this section, we will explore the various meth-
ods and techniques used in extractive summarization, starting from early approaches to more
advanced techniques such as BERT-based methods. We will also discuss the limitations and
challenges faced by extractive summarization.

Early extractive summarization methods relied on simple heuristics and statistical techniques
to identify important sentences. Some common strategies included selecting sentences based
on their position in the text, keyword frequency, or the presence of cue phrases that indicate
importance.

LEAD

One such technique is the LEAD summarization method, which selects a certain number of
the initial sentences of the document as the summary [19]. For example, LEAD-1 would select
the first sentence, LEAD-2 would select the first two sentences, and so on. This approach is
based on the assumption that the beginning of a text often contains crucial information and

Page 11 of 101

sets the context for the rest of the document. While simple and efficient, these approaches,
including various LEAD methods, were prone to generating summaries that lacked coherence
and fluency. Due to this technique’s simplicity, it is often used as a baseline to compare against
more advanced techniques.

TextRank

TextRank is an unsupervised graph-based extractive summarization method inspired by Google’s
PageRank algorithm for ranking web pages [20]. It identifies and extracts the highest-ranked
sentences from a document to generate an informative summary. The algorithm constructs
a graph with sentences as nodes and edges between nodes based on the similarity between
sentences, typically calculated using cosine similarity between vector representations of the
sentences. Cosine similarity is a measure of similarity between two non-zero vectors, which
evaluates the cosine of the angle between them. It ranges from -1 (completely dissimilar) to 1
(completely similar), with 0 indicating orthogonality or no similarity.

Upon constructing the graph, TextRank iteratively assigns scores to each sentence node, with
a sentence’s score determined by the scores of its neighbouring sentences, weighted by their
similarity. After convergence, the top-ranked sentences are selected and combined in their orig-
inal order from the source text, resulting in a summary. TextRank has demonstrated improved
coherence and structure in summaries compared to earlier extractive summarization techniques.

Embedding-based Models

Recent advancements in NLP, particularly the emergence of powerful pre-trained language mod-
els and effective sentence embedding techniques, have led to the development of more advanced
extractive summarization methods that leverage these rich representations. Unlike word em-
beddings, which represent individual words, sentence embeddings capture the meaning of entire
sentences, enabling better identification and ranking of important sentences in the input doc-
ument. Models such as BERT [9], Universal Sentence Encoder [21], and InferSent [22] can
generate meaningful and contextualized embeddings for sentences.

One such model that leverages the power of BERT is BERTSum [23], which fine-tunes the
pre-trained BERT model for the summarization task. BERTSum and similar models operate
by processing each sentence in the document, along with its surrounding context, through the
chosen language model or embedding method. The generated embeddings attempt to capture
the semantic information and relationships between sentences, which are then used to compute
importance scores for the sentences. The top-ranked sentences, determined by their importance
scores, are selected and combined in their original order in the source document to form the
final summary.

2.2.2 Abstractive Summarization

Abstractive summarization is the other major approach to automatic text summarization. Un-
like extractive summarization, which involves selecting and combining existing sentences or
phrases from the source text, abstractive summarization generates summaries by rewriting or
paraphrasing the original content in a more precise manner [24, pg.3]. This approach aims to
create more natural, coherent, and concise summaries that closely resemble human-written sum-
maries, capturing the essence of the input text without being constrained by its exact wording.

Early abstractive summarization methods relied on template-based approaches and rule-based
systems, which generated summaries by fitting the extracted information from the source text

Page 12 of 101

into predefined structures or templates [25]. These methods often required manual effort to
define the templates and rules, and the resulting summaries were limited by the rigidity and
simplicity of the templates, leading to summaries that might not be as natural or coherent as
desired. As the field of natural language processing advanced, more sophisticated abstractive
summarization techniques emerged, aiming to overcome the limitations of early approaches and
produce higher-quality summaries.

Sequence-to-Sequence and Transformer Models

With the advent of deep learning, sequence-to-sequence (seq2seq) models [26] became a popular
approach for abstractive summarization tasks. These models employ an encoder-decoder ar-
chitecture, wherein the encoder processes the input text and captures its semantic information
in a continuous vector representation. The decoder then generates a summary by condition-
ing this representation. Seq2seq models have shown significant improvement in the quality of
abstractive summaries, as they are capable of generating more coherent and fluent summaries
compared to earlier methods. However, they still face challenges in handling long input texts
and may sometimes produce summaries with incorrect or repetitive information. A detailed
discussion of encoder-decoder models for seq2seq tasks is covered in Section 2.5.5.

Building on the success of seq2seq models, transformer-based architectures [7] has emerged as
a powerful approach for abstractive summarization, which is covered in more detail in Section
2.7. Transformers leverage the attention mechanism to capture complex dependencies between
words in the input text, allowing for more effective encoding of the document’s content. State-
of-the-art transformer-based models, such as GPT [2] and T5 [3], have demonstrated exceptional
performance in generating high-quality, coherent, and concise abstractive summaries.

2.2.3 Measuring Abstractiveness

While a model is designed to perform abstractive summarization, it may still opt to generate
summaries by extracting sentences and phrases directly from the source document. This could
be attributed to various factors, such as the inherent structure and content of the source docu-
ment, which may be such that extracting key sentences or phrases can produce a coherent and
meaningful summary without the need for extensive paraphrasing.

Additionally, the model’s training and evaluation procedures may inadvertently favour extrac-
tive summarization strategies. For instance, if the model was trained on a dataset that contains
a significant number of extractive summaries, it may learn a bias towards such strategies. More-
over, limitations in the model’s architecture or optimization process may also hinder its ability
to generate genuinely abstractive summaries, causing it to rely more heavily on extractive tech-
niques. Furthermore, the evaluation metrics used during model development such as ROUGE
(Section 2.2.4) often measure n-gram overlap between the generated and reference summaries,
potentially encouraging the model to generate summaries that resemble the source text more
closely.

Some techniques have been developed to measure the ”abstractiveness” of abstractive summa-
rization models. Measuring this is an important stage in understanding how these models work
and why they generate the resulting summaries. This is especially relevant in an age of black
box models such as Transformers with low explainability. Some techniques have been developed
to measure this, primarily based on overlapping words between the summary and document as
well as text distances.

Page 13 of 101

In the paper presenting the Newsroom dataset, a comprehensive dataset for summarization
comprising more than 1.3 million article-summary pairs [27], the authors introduce two mea-
sures to assess summarization strategies: coverage and density. These metrics are designed to
measure how much overlap there is between the summary and the article.

Given A consisting of a sequence of tokens in the article and the corresponding S consisting
of a sequence of tokens in the summary, the set of extractive fragments F(A,S) is the set of
shared sequences of tokens in A and S. These sequences are identified using a greedy process,
which processes the tokens in summary in order and marks the longest prefix possible as extrac-
tive at each step. F(A,S) is a set which includes all the token sequences identified as extractive.

Using F(A,S), the authors compute two measures: coverage and density.

Coverage Coverage quantifies what percentage of the words in a summary is extracted from
the article being summarized using Coverage(A,S). Here, |S| and represents the size of the
summary and |f | is the length of a extractive fragment:

Coverage(A,S) =
1

|S|
∑

f∈F(A,S)

|f | (2.3)

For instance, if a summary consists of 10 words, out of which 7 words are taken from the
corresponding article, and 3 words are newly introduced, then the Coverage metric for that
summary would be calculated as Coverage(A,S) = 0.7.

Density Density measures how long the extractive fragments used by a summary are. When
a summary utilizes many words directly from the article, it tends to have increased coverage,
Nevertheless, by reorganising the words, the summary could express concepts that the article
does not explicitly state. The Density(A,S) denotes the mean length of the article text from
which each word in the summary is extracted:

Density(A,S) =
1

|S|
∑

f∈F(A,S)

|f |2 (2.4)

For example, a summary of 10 words derived from two extractive sequences of 3 and 4 words
from the article would yield Coverage(A,S) = 0.7 and Density(A,S) = 2.5. Compared to
coverage, density provides a greater overview of longer sequences which have been extracted
from the article and the Newsroom authors suggest relying on density as the primary measure-
ment of abstractiveness.

Match Ratio To measure the degree of a summary consisting of whole sentences extracted
from an article, we propose a novel method based on Levenshtein Distances which we call Match
Ratio to measure this. Coverage and Density measure the overlap of subsequences of text but
are not able to understand that sequences with small differences are similar (e.g. Different
pluralisations of a word). Levenshtein distance measures the number of operations needed to
transform a sequence of text into another. Using this distance, we can use the pair-wise dis-
tances between sentences in the article and summary to measure if a sentence in the summary
is extracted from the article.

Given a summary sentence a and a source sentence b, the Levenshtein distance lev can be
calculated using the recursive formula:

Page 14 of 101

lev(a, b) =

|a| if |b| = 0,

|b| if |a| = 0,

lev
(
tail(a), tail(b)

)
if a[0] = b[0],

1 + min

lev

(
tail(a), b

)
lev

(
a, tail(b)

)
lev

(
tail(a), tail(b)

) otherwise

(2.5)

where tail(x) denotes the string containing all characters of x except the first one, and x[n]
represents the n-th character of string x, counting from 0. In essence, the Levenshtein distance
represents the lowest amount of edits needed to transform a into b, analogous to the shortest
distance between them.

For example, consider the strings ”kitten” and ”sitting”. The Levenshtein distance between
these strings is 3, as demonstrated by the following series of edits:

1. kitten → sitten (substitution of ”s” for ”k”)

2. sitten → sittin (substitution of ”i” for ”e”)

3. sittin → sitting (insertion of ”g” at the end)

To evaluate the degree of similarity between summary and source sentences, we can normalize
the Levenshtein distance by dividing it by the maximum possible distance (i.e., the length of the
longest of the two sentences), resulting in a similarity score ranging from 0 (entirely dissimilar)
to 1 (identical). To define that a sentence is extracted from the article, we can use a distance
threshold (e.g. lev(a, b) > 0.95). Using this, we define the Match Ratio (MR) as

MR =
M

N
(2.6)

Where, M represents the number of nearly identical sentences (based on the defined threshold)
in the summary and the source article, and N represents the total number of sentences in the
summary.

2.2.4 Evaluating Generated Summaries

The evaluation of summarization models is an essential aspect of developing effective and reli-
able systems for automatic text summarization. Assessing the quality and performance of these
models helps to identify their strengths and weaknesses, enabling researchers to refine and im-
prove their algorithms. Furthermore, evaluation provides valuable insights into the practical
impact of summarization models on real-world tasks, user experiences, and applications.

There are several methods used to evaluate summarization models, which can be broadly cate-
gorized into the extrinsic evaluation and intrinsic evaluation.

Extrinsic Evaluation

Extrinsic evaluation refers to assessing the performance of a summarization model by examining
its impact on an external task [28]. The idea is to measure how well the generated summaries
contribute to the overall goal of the application, such as improving user comprehension, saving
time in information retrieval, or enhancing decision-making processes.

Page 15 of 101

In the context of abstractive summarization, extrinsic evaluation can be performed by incorpo-
rating the generated summaries into a real-world application and measuring the effectiveness
of the application with and without the summaries. For example, one could evaluate the sum-
maries by conducting a user study in which participants are asked to perform a task using the
summaries, and then compare their performance to a control group that uses the original text
or a different summary method.

It is important to note that extrinsic evaluation is often more challenging and time-consuming
than intrinsic evaluation, as it requires the design and execution of experiments that involve
human participants and real-world tasks. However, it provides valuable insights into the prac-
tical impact of the summarization model on specific applications and user experiences.

Intrinsic Evaluation

Intrinsic evaluation, on the other hand, focuses on assessing the quality of the generated sum-
maries independently of their impact on external tasks. This can be done by measuring various
aspects of the summaries, such as relevance, coherence, conciseness, or fluency, using automated
metrics or human evaluation.

Automated metrics for intrinsic evaluation typically compare the generated summaries to refer-
ence summaries, either created by humans or obtained from a dataset. Examples of automated
metrics for intrinsic evaluation include ROUGE [29] and BLEU [30]. These metrics compare the
overlap of n-grams between the generated and reference summaries, providing a quantitative
score that reflects the degree of similarity. ROUGE and BLEU differ primarily as ROUGE is
based on recall while BLEU measures precision. In the context of overlapping n-grams, precision
refers to the proportion of n-grams in the generated summary that also appear in the reference
summary, while recall measures the proportion of n-grams in the reference summary that are
present in the generated summary.

The other approach to intrinsic evaluation on summaries is based on qualitative human evalu-
ation, where humans rate the quality of generated summaries on a set of different pre-defined
criteria such as informativeness or fluency.

ROUGE ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is an evaluation met-
ric widely used for assessing the quality of generated summaries in summarization tasks. ROUGE
is based on the idea of measuring the overlap between the generated summary and one or more
reference summaries. It is a recall-oriented metric, as it primarily focuses on capturing the
information content present in the reference summaries. The ROUGE metric was first pro-
posed by Chin-Yew Lin in the paper titled ”ROUGE: A Package for Automatic Evaluation of
Summaries” in 2004 [29]. In this paper, a comprehensive evaluation was conducted, involving
human evaluators who assessed the quality of generated summaries. The results demonstrated
a strong correlation between the ROUGE scores and human evaluations across various ROUGE
metrics, thereby substantiating the metric’s effectiveness in reflecting human judgement.

The core concept behind ROUGE is the overlap of n-grams between the generated summary
and the reference summaries. An n-gram refers to a series of n-words that appear in consec-
utive order. For example, unigrams are single words, bigrams are pairs of consecutive words,
and trigrams are sequences of three consecutive words. By calculating the overlap of n-grams
between the generated and reference summaries, ROUGE quantifies the extent to which the
generated summary captures the salient information in the reference summaries.

Page 16 of 101

Different variants of ROUGE metrics have been developed to address different aspects of sum-
marization quality and offer a more comprehensive evaluation of the generated summaries. Each
variant focuses on specific characteristics of the summaries, capturing different types of similari-
ties and providing unique insights into the performance of summarization models. The necessity
for different ROUGE measures arises due to the inherent complexity and variability of natural
language, as well as the diverse ways in which information can be expressed and organized in
text. Some of these variants include:

• ROUGE-1: Measures the overlap of unigrams (single words) between the generated
summary and reference summaries. Higher ROUGE-1 scores indicate more common words
between the summaries, leading to better performance. The score is computed as a recall
measure, dividing the number of overlapping unigrams by the total number of unigrams
in the reference summaries.

• ROUGE-2: Measures the overlap of bigrams (pairs of consecutive words) between the
generated summary and reference summaries. Higher ROUGE-2 scores indicate more
common bigrams between the summaries, reflecting better performance. The score is
computed as a recall measure, dividing the number of overlapping bigrams by the total
number of bigrams in the reference summaries.

• ROUGE-L: Based on the Longest Common Subsequence (LCS) between the generated
summary and reference summaries, ROUGE-L computes recall as the length of the LCS
divided by the total number of words in the reference summary. Unlike ROUGE-1 and
ROUGE-2, ROUGE-L does not rely on fixed-length n-grams, making it more flexible and
better suited for capturing longer paraphrases.

• ROUGE-LSum: A variant of ROUGE-L that computes the LCS at the sentence level
instead of on the entire summary. It averages the scores of the LCS for each sentence in
the generated summary and the reference summary. This approach may lead to differences
in the results when compared to the original ROUGE-L metric, as it puts more emphasis
on the local coherence between sentences.

While ROUGE is widely used for evaluating summarization models due to its simplicity and
computational efficiency, it has some notable limitations. It is insensitive to semantics, focusing
on the overlap of n-grams or subsequences without considering semantic similarity [31]. As
a result, ROUGE may not recognize the semantic similarity between summaries with similar
meanings but different words or phrasings. Moreover, the quality of reference summaries di-
rectly affects ROUGE scores, potentially misrepresenting the quality of generated summaries if
reference summaries inadequately capture relevant information [32].

Given these limitations, a more comprehensive assessment of summarization models requires
combining ROUGE with other evaluation methods, such as human evaluation.

Human evaluation Human evaluation involves assessing the quality of generated summaries
by obtaining ratings from human judges. This approach is considered to be more reliable and
accurate than automated metrics, as humans can better understand and appreciate the nu-
ances of natural language, including semantics, coherence, and context. Human evaluators can
provide qualitative feedback on various aspects of the summaries, such as informativeness and
fluency, offering a comprehensive evaluation of the summarization model’s performance.

However, this process also comes with certain challenges and limitations. Subjectivity, time,
and resources required to obtain evaluations from human judges can be significant concerns.
Moreover, the process can be slow, as it involves manual efforts from evaluators to carefully read

Page 17 of 101

and assess the generated summaries. To address these issues, a set of guidelines or criteria for
each metric is typically provided to the evaluators [27], ensuring consistency and objectivity in
the assessment process. Additionally, employing a diverse group of evaluators or using a blind
evaluation process can help mitigate potential biases and subjectivity, while streamlining the
evaluation process may help in reducing the time required for assessments.

While there are no single standards for human evaluators, some measurements have evolved
to be commonly used. Grusky et al. in the Newsroom paper discussed in Section 2.2.3 evalu-
ate summaries on four different categories: informativeness, relevance, fluency, and coherence
[27], as described in Table 3.1. The informativeness dimension evaluates how well the sum-
mary captures the key points of the article, while the relevance dimension assesses whether
the details provided by the summary are consistent with the details in the article. Fluency
measures whether the individual sentences of the summary are well-written and grammatical,
and coherence evaluates if the phrases and sentences of the summary fit together and make
sense collectively. Evaluation setups may vary, involving single or multiple evaluators, which
can impact the evaluation process and results.

2.3 Machine Translation

Machine Translation (MT) is a subfield of NLP that focuses on automatically translating text
from one language to another. With an increasingly globalized world, the demand for efficient
and accurate translation systems has grown exponentially. Machine translation systems aim to
facilitate cross-lingual communication, improve access to multilingual information, and support
various applications, such as e-commerce, customer support, and content localization.

Early machine translation systems relied on rule-based and statistical approaches, which faced
challenges in handling the complexity and diversity of natural languages. However, with the
advent of deep learning and advancements in NLP, more sophisticated and effective machine
translation systems have been developed, including neural machine translation (NMT) mod-
els that have demonstrated state-of-the-art performance. In this section, we will discuss the
evolution of machine translation, the major approaches, and their respective strengths and
limitations.

2.3.1 Rule-Based Machine Translation

Rule-Based Machine Translation (RBMT) is one of the earliest approaches to MT, which relies
on manually created rules to map the source language’s grammar, syntax, and semantics to the
target language [33]. These systems typically involve three main components: a source language
analyzer, a transfer component, and a target language generator. The source language analyzer
processes the input text and generates a syntactic and semantic representation. The transfer
component applies a set of rules to convert the source language representation to the target
language representation, and the target language generator then produces the translated text.

RBMT systems have some advantages, such as the ability to handle idiomatic expressions and
domain-specific terminology by incorporating expert knowledge in the form of rules. However,
they suffer from several limitations, including the time-consuming and labour-intensive process
of creating and maintaining rules, the difficulty of handling linguistic ambiguities and variations,
and the rigidity of the system, which often results in less fluent and natural translations.

Page 18 of 101

2.3.2 Statistical Machine Translation

Statistical Machine Translation (SMT) is a data-driven approach that emerged in the late 1990s
as an alternative to rule-based methods [34]. SMT models learn translation probabilities from
large parallel corpora, which consist of aligned text pairs in the source and target languages.
These models typically involve three main components: a translation model, a language model,
and a decoding algorithm. The translation model captures the relationships between words or
phrases in the source and target languages, while the language model estimates the probability
of a sequence of words in the target language. The decoding algorithm then searches for the
most probable target language sequence given the input text.

SMT models offer several advantages over RBMT, such as the ability to learn from data and
generalize to unseen texts, more natural translations, and the potential for unsupervised and
semi-supervised learning. However, SMT models have their limitations, including the reliance on
large parallel corpora, the difficulty in handling long-range dependencies and complex linguistic
structures, and the tendency to produce translations with errors and inconsistencies.

2.3.3 Neural Machine Translation

Neural Machine Translation (NMT) is a deep learning-based approach that has revolutionized
the field of machine translation in recent years [35]. NMT models employ end-to-end learning
to map the input text in the source language to the output text in the target language. These
models typically use encoder-decoder architectures based on transformers, similar to those used
in state-of-the-art abstractive summarization, as discussed in Section 2.7. The encoder processes
the input text and generates a continuous vector representation, while the decoder generates
the translated text by conditioning on this representation. NMT models leverage the power of
neural networks to capture complex dependencies and relationships between words in the source
and target

2.3.4 Evaluating Machine Translation with BLEU

Evaluating the quality of machine translation systems is crucial for measuring progress, compar-
ing different approaches, and guiding future research. Human evaluation is considered the best
way of measuring the quality of translations, as it takes into account factors such as fluency, ad-
equacy, and meaning preservation. However, human evaluation is time-consuming, costly, and
subject to inconsistencies due to subjective judgements. As a result, various automatic eval-
uation metrics have been developed to approximate human judgements, with the most widely
used and influential metric being the Bilingual Evaluation Understudy (BLEU).

BLEU [30] is an automatic evaluation metric designed to measure the quality of machine-
generated translations by comparing them to one or more human-generated reference transla-
tions. The main idea behind BLEU is to compute the similarity between the machine translation
and the reference translations, based on the overlap of n-grams. N-grams are contiguous se-
quences of n words, and BLEU uses n-grams of different lengths (usually up to 4) to capture
lexical and syntactic similarities at various granularities.

Evidence indicates a strong association between BLEU scores and human assessments of trans-
lation quality [30], making it a reliable proxy for human evaluation in many cases. It is compu-
tationally efficient and can be applied to large-scale evaluation tasks. Additionally, as a purely
statistical metric, BLEU can be applied to any language pair without requiring language-specific
knowledge or resources.

Page 19 of 101

However, BLEU also has several limitations. It is based on n-gram overlap, which may not
fully capture semantic and structural aspects of translation quality. Also, it is sensitive to the
choice of reference translations and may not be as effective when dealing with languages that
have flexible word order or complex grammar structures [36].

BLEU scores range from 0 to 1 but are often scaled to a range of 0 to 100, with 100 indicating
a perfect match with the reference translations and 0 indicating no overlap. In practice, a
perfect score of 100 is nearly impossible to achieve, as human translations can also differ from
one another. A BLEU score above 30 is generally considered good, while a score above 40 is
considered to be of high quality. It is important to note that the interpretation of BLEU scores
can be dependent on the specific language pair and the domain of the translation task, and
higher scores do not always guarantee that the translation will be perceived as better by human
evaluators due to the limitations mentioned above.

BLEU and ROUGE differences

While BLEU is designed for evaluating machine translation, the ROUGE metric is used for
evaluating Automatic Text Summarization. Both metrics are based on the comparison of a
generated output (translation or summary) to one or more human-generated reference texts.
However, ROUGE primarily focuses on recall, while BLEU emphasizes precision. This means
that ROUGE measures the extent to which the important information in the reference texts is
captured by the generated summary, while BLEU measures how well the generated translation
matches the reference translations.

2.4 Machine Learning

Machine learning is a subfield of artificial intelligence that aims to develop algorithms and mod-
els that enable computers to learn from data and make predictions or decisions based on that
knowledge. In contrast to traditional computer programming, where explicit rules and instruc-
tions are written by humans to solve specific problems, machine learning allows computers to
learn from data and improve their performance over time without being explicitly programmed.

A more formal definition of machine learning provided by Tom Mitchell in ”Machine Learning”
[37] is widely accepted and commonly cited in the field. It provides a formal framework for
understanding the key elements of machine learning:

”A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.

In other words, machine learning involves improving a computer program’s ability to perform
a specific task by exposing it to relevant data (experience E) and measuring its performance on
that task (performance measure P). The program is said to have learned when its performance
on the task improves as a result of the experience it gains from the data.

This definition highlights the central role of data in machine learning and emphasises the impor-
tance of selecting appropriate performance measures to evaluate the effectiveness of the learning
algorithm. It also underscores the goal of developing models that can generalize from observed
data to make accurate predictions or decisions on new, unseen data.

Page 20 of 101

The diverse ways in which a computer program can enhance its performance on a task can
be classified into three distinct learning paradigms. These paradigms showcase the variety of
approaches employed by machine learning models to optimize their performance measures.

2.4.1 Learning Paradigms

In machine learning, three main different paradigms for learning have evolved: supervised learn-
ing, unsupervised learning, and reinforcement learning. Each of the three paradigms uses a
different approach to learn from experience and improve its performance measure.

• Supervised learning is the most common type of machine learning, where the goal is
to learn from mapping between input and output pairs using labelled data. Labelled data
refers to a dataset where each input example is paired with its corresponding output or
target, often referred to as a label or annotation. The input data is presented to the model
along with its corresponding output labels, and the model is trained to generalize to new,
unseen data. In other words, the model learns to predict the output label for a given input
by learning from a set of examples where the correct output is known. Examples of tasks
where supervised learning is used are image classification or sentiment analysis. Common
supervised algorithms used for these tasks include convolutional neural networks (CNN)
[38] or support vector machines (SVM) [39].

• Unsupervised learning involves learning patterns and relationships in the input data
without explicit output labels. The goal is to discover the underlying structure of the data
and to find patterns that can be used to make predictions or solve problems. Examples of
unsupervised learning include clustering using the K-means algorithm [40], dimensionality
reduction with principal component analysis (PCA) [41], and generative modelling using
variational autoencoders (VAEs) [42].

• Reinforcement learning involves learning through trial and error in an environment,
where the goal is to maximize a reward signal. The model learns to take actions that
lead to higher rewards by exploring the environment and receiving feedback in the form
of a reward or punishment. Reinforcement learning has been used in applications such as
robotics with Deep Q-Networks (DQN) [43], playing games using AlphaGo and winning
against human agents [44], and recommendation systems employing Proximal Policy Op-
timization (PPO) [45].

Each of these paradigms possesses its unique strengths and weaknesses, making them suitable
for addressing various types of problems. Supervised learning is particularly effective when
labelled data is available, while unsupervised learning excels at uncovering patterns and rela-
tionships within large, unstructured datasets. Reinforcement learning is well-suited for scenarios
where a reward signal can be established, and exploration is necessary for identifying optimal
solutions. In practice, many machine learning applications employ a blend of these paradigms
to tackle intricate challenges. One such example is ChatGPT [46], which initially undergoes
training to comprehend the nuances of natural language structure using unsupervised learning.
Subsequently, it is fine-tuned with reinforcement learning to align with human expectations of
how a chatbot should interact, effectively combining various learning approaches to achieve a
more sophisticated and user-friendly conversational AI experience.

Transfer Learning

Transfer learning is a powerful technique in machine learning where a model pre-trained on
one task or dataset is fine-tuned to perform a different but related task or to work with a dif-

Page 21 of 101

ferent dataset. This approach leverages the knowledge acquired by the pre-trained model to
achieve better performance and reduced training time on the new task. Transfer learning has
proven particularly effective in deep learning and natural language processing (NLP) applica-
tions, where large and complex models are trained on massive datasets.

The primary motivation behind transfer learning is the observation that, for many tasks, it
is inefficient to train a model from scratch, particularly when a related task has already been
solved using a similar model. Instead, the learned features and representations can be trans-
ferred from the pre-trained model to the new task, allowing the model to build upon existing
knowledge and adapt to the new problem more effectively.

The full process of training a model with transfer learning can be divided into two main stages:

1. Pre-training: During this phase, the model is trained on a large-scale dataset, usually
containing diverse samples. The goal of this stage is to learn general patterns or features
that are relevant to a wide range of tasks [47]. These models, often referred to as ”foun-
dation models,” serve as a base for further fine-tuning on specific domains. For example,
in computer vision, a model might be pre-trained on the extensive ImageNet dataset [48],
where it learns to recognize various object categories, textures, and shapes. It is worth
noting that pre-training is not always necessary for every application, as many foundation
models are publicly shared and available for use. This allows researchers and practitioners
to directly fine-tune these models on their specific tasks, saving both time and resources.

2. Fine-tuning: In this stage, the pre-trained model is further trained on the target task’s
dataset, typically smaller than the pre-training dataset [49]. The objective is to adapt the
model’s knowledge to the specific task by refining its parameters, enabling it to perform
well even with limited labelled data [47]. Continuing with the computer vision example,
the model pre-trained on ImageNet could be fine-tuned on a smaller dataset like CIFAR-10
[50] to classify specific object categories with high accuracy.

Transfer learning offers several advantages over training from scratch :

• Reduced training time: The pre-trained model has already learned fundamental pat-
terns or features in the data, so fine-tuning requires fewer training iterations compared to
training from scratch [51]. As a result, transfer learning often leads to faster convergence
and reduced training time [47].

• Improved performance: Transfer learning often results in better performance on the
target task, as the model can leverage the knowledge gained during pre-training, which
may not be easily obtainable from the smaller target dataset [47]

• Domain adaptation: Transfer learning can facilitate domain adaptation, where the
model is trained on a source domain but applied to a related but different target domain
[49]. By fine-tuning the pre-trained model on a small amount of labelled data from
the target domain, it can effectively adapt to the new domain, mitigating the effects of
distribution shifts and enhancing performance on the target task [52].

Transfer learning has played a significant role in the advancements of NLP in recent years, par-
ticularly with the introduction of large-scale pre-trained models like BERT [9] and T5 (section
2.7.4). These models have been pre-trained on massive text corpora, enabling them to learn
rich language representations that capture diverse linguistic patterns, syntactic structures, and
semantic relationships. The pre-trained models can then be fine-tuned on various downstream
NLP tasks, such as sentiment analysis, question answering, named entity recognition, and ma-
chine translation, resulting in state-of-the-art performance across a wide range of benchmarks

Page 22 of 101

[52].

2.4.2 Training, Validation, and Testing stages

Training, validation, and testing are essential stages in the development of machine learning
models. The training phase involves teaching the model on a labelled dataset, aiming to mini-
mize the discrepancy between predicted and actual labels. After training, the model is validated
using a separate dataset to assess its performance on unseen data. Performance metrics ob-
tained during validation are utilized to adjust model parameters and compare various models
to enhance performance. Testing is the final stage of model development, where the model’s
performance is assessed on a previously unseen portion of the dataset to estimate its effect on
new data.

Figure 2.4: An illustration of overfitting (green line) and a well-balanced model (black line).
Modification of [53].

Overfitting can occur when a model becomes excessively adapted to the training data, capturing
noise or random fluctuations and reducing its ability to generalize effectively to new, unseen
data. To prevent overfitting, it is essential to ensure that the training and validation datasets
are representative of the unseen data the model will encounter in the test set and real-world
applications. In contrast, underfitting may take place when a model fails to learn enough from
the training data, resulting in suboptimal performance. In Figure 2.4, the black line represents
an appropriate balance between underfitting and overfitting, while the green line demonstrates
an overfit model that has not generalized well.

A common practice is to split the dataset into 60% training, 20% validation, and 20% test
subsets. However, the precise proportions depend on the dataset size and the specific problem
being addressed.

One challenge with dividing the data into fixed subsets is that the evaluation might be sensitive
to the particular selection of training and validation data. To address this issue, a technique
called k-fold cross-validation can be employed [54]. In k-fold cross-validation, the training set
is partitioned into k equally-sized subsets, or ”folds.” The model is trained k times, with each
iteration using k-1 folds for training and the remaining fold for validation. The performance
measure is then averaged across the k iterations. By averaging the performance over mul-
tiple training-validation splits, cross-validation offers a more reliable estimate of the model’s

Page 23 of 101

generalization capabilities.

2.5 Artifical Neural Networks

Inspired by the workings of the human brain, artificial neural networks (ANNs) seek to repli-
cate its complex processes through computational means [55]. The brain consists of billions
of interconnected neurons, which transmit and process information via electrical and chemical
signals. ANNs attempt to model these connections and interactions through a series of nodes
and layers, designed to recognize patterns and make decisions based on input data.

At the core of ANNs are artificial neurons, or nodes, which receive input from various sources,
process the information, and pass it along to other nodes within the network. These nodes are
organized into layers, with an input layer receiving the initial data, hidden layers performing
complex computations, and an output layer producing the final result or prediction. When
each node in the previous layer is connected to every node in the next layer, the ANN is often
referred to as a fully-connected neural network or multilayer perceptron (MLP).

Figure 2.5 shows a small MLP with two inputs, two hidden layers with 4 neurons in each layer
and one output neuron. The black arrows depict the weights for each neuron in the MLP. Each
neuron in the MLP has an activation function inside it which adds non-linearity to the values,
making it possible for the network to learn non-linear and more complex relationships. For
each layer, there is also a bias vector, which is an additional parameter that gets added to the
output of the neurons. The bias vector helps shift the values in the activation function along
the horizontal axis similar to the effect of the intercept (b) in the equation for a straight line:
y(x) = mx+ b.

Figure 2.5: A simple artificial neural network with 2 inputs, 2 hidden layers with 4 neurons
each, and a single output neuron. Note that bias nodes are not depicted here. Modification of
[56].

In the process of passing information between layers, the weights come into play. Each con-
nection between a node in one layer and a node in the next layer has a weight associated with
it. To determine the input value for a node in the hidden layer, the values from the previous

Page 24 of 101

layer’s nodes are multiplied by their respective connection weights and then summed together.
This process can be represented mathematically as:

a(l) = f
(
W(l−1)a(l−1) + b(l)

)
(2.7)

where a(l) is the vector of activation values for all neurons in layer l, f is the activation function
for the neurons in layer l (different activation functions commonly used are covered in Section
2.5.2, W(l−1) is the weights connecting layer l−1 (the previous layer) and b(l) is the bias vector
for the neurons in layer l.

The weights and biases are the adjustable elements of an MLP, which are adjusted during the
training process to optimize the network’s performance on a given task. The goal of training
is to minimise the discrepancy between the network’s predictions and the true target values,
usually measured by a loss function which measures the difference between the MLPs output and
the correct values. To achieve this, the network must learn how to adjust its weights and biases
in response to the input data, such that the error between its predictions and the target values
is minimised. One of the most widely used algorithms for this purpose is the backpropagation
algorithm, which aims to do this by iteratively computing the gradients of the loss function
with the goal of minimizing it.

2.5.1 Backpropagation

The backpropagation algorithm is a powerful and efficient method for training artificial neural
networks, specifically MLPs [57]. It is a supervised learning technique that aims to minimise
the error between the network’s predictions and the true target values by adjusting the weights
and biases of the network. The key idea behind backpropagation is to compute the gradient
of the loss function with respect to each weight and bias by applying the chain rule for the
derivatives. The computed gradients are then used to update the network parameters in a way
that reduces the overall error.

The backpropagation algorithm consists of two main phases: the forward pass and the back-
ward pass. In the forward pass, the input data is propagated through the network, layer by
layer, using the formula in Equation 2.7. Once the output values are obtained, a suitable loss
function is chosen based on the specific problem being solved and the nature of the target
values. Common loss functions include the mean squared error (MSE) for regression tasks
[58, pg. 37] and the cross-entropy loss for classification tasks [58, pg. 471]. The selected loss
function quantifies the discrepancy between the network’s predictions and the true target values.

In the backward pass, the gradient of the loss function with respect to each weight and bias
is calculated. This process starts from the output layer and moves towards the input layer,
applying the chain rule for derivatives, which allows the gradient to be computed efficiently
through a series of local computations. Once the gradients are obtained, they are used to
update the weights and biases of the network according to an optimization algorithm, such as
gradient descent or a variant thereof. These updated parameters are adjusted by a factor known
as the learning rate, which determines the step size in the optimization process. Choosing a
suitable learning rate is crucial, as it ensures that the network converges to a solution without
overshooting or getting stuck in local minima.

Despite not being covered in this section, the same principles of backpropagation, including the
forward and backward passes, also apply to more advanced neural network architectures such
as Recurrent Neural Networks (RNNs) and Transformers.

Page 25 of 101

Batch Sizes and Mini-batch Gradient Descent

When training neural networks with backpropagation, multiple samples of data can be passed
through the network at the same time using mini-batches, which are small subsets of the train-
ing dataset. Mini-batch gradient descent offers a balance between the stability of computing
gradients with batch gradient descent, which uses the entire training dataset for a single pa-
rameter update, and the computational efficiency of stochastic gradient descent, which updates
model parameters with a single training example at a time. By processing multiple samples
at once, mini-batch gradient descent takes advantage of the averaging effect, leading to more
stable convergence and allowing modern hardware, such as GPUs, to be efficiently utilized for
faster training time [59].

One of the primary advantages of using mini-batches is the reduction of noise in gradient esti-
mates. While stochastic gradient descent updates model parameters based on a single training
example, introducing high variance in the gradient estimates, mini-batch gradient descent com-
putes the average gradient over a small subset of samples. This averaging effect results in
more stable and accurate gradient estimates, promoting smoother convergence and reducing
the chances of getting stuck in local minima or saddle points [60].

Moreover, mini-batch gradient descent can potentially strike a balance between optimization
and generalization performance. Smaller batch sizes expose the model to a greater variety of
training examples with each update, which may lead to better generalization and faster con-
vergence. On the other hand, larger batch sizes yield more stable gradient estimates and can
utilize computational resources more efficiently. However, it is important to avoid excessively
large batch sizes, as they can negatively impact the model’s generalization capabilities due to
over-optimization on the training set [59].

In practice, to find an optimal batch size that strikes a balance between training speed and
generalization performance, a common approach, as recommended in Google’s fine-tuning play-
book [61], is to choose the largest batch size that can be accommodated within the memory
constraints of the hardware being used. Higher batch sizes lead to increased memory consump-
tion because more training examples are processed simultaneously, which requires additional
memory to store intermediate values, such as activations and gradients, during both the for-
ward and backward passes of the neural network. As a result, choosing a larger batch size can
maximize computational efficiency and take advantage of the parallel processing capabilities of
modern hardware, such as GPUs.

2.5.2 Activation Functions

Activation functions play a crucial role in artificial neural networks, as they introduce non-
linearity into the network, allowing it to learn complex and non-linear relationships between
input and output variables. Without activation functions, the network would essentially be a
linear model, which would limit its ability to learn more intricate patterns in the data.
The sigmoid function is a widely used activation function, especially in earlier ANN models [62].
The sigmoid function is defined as:

f(x) =
1

1 + e−x
, (2.8)

where x is the input to the function. The sigmoid function maps the input to a value between
0 and 1, making it suitable for binary classification problems. However, it suffers from the
vanishing gradient problem, which can slow down the learning process during backpropagation,

Page 26 of 101

as the gradient becomes very small [63].

The rectified linear unit (ReLU) [64] is another popular activation function, defined as:

f(x) = max(0, x). (2.9)

The simplicity of the ReLU function allows for efficient computation and addresses the vanish-
ing gradient problem, as its gradient is either 0 or 1. However, the ReLU function can lead to
dead neurons, which can hinder the learning process.

The Gaussian Error Linear Unit (GELU) [65] is a more recent activation function that has
gained popularity. It is the activation function used by modern NLP models such as T5 [3]and
GPT-2 [18]. The GELU function is defined as:

GELU(x) =
1

2
x

(
1 + erf

(
x√
2

))
(2.10)

where x is the input to the function and erf represents the Gaussian Error function. GELU is
a smooth approximation of the rectifier function and has been shown to perform well in deep
learning models. Its smoothness allows for better gradient flow, which can be beneficial in the
training process.

Figure 2.6: Plots of the sigmoid, ReLU, and GELU activations, along with their corresponding
derivatives. The x-axis represents the input to the activation function, while the y-axis repre-
sents the output.

Figure 2.6 shows plots of the sigmoid, ReLU, and GELU functions, along with their corre-
sponding derivatives. The x-axis represents the input to the activation function, while the
y-axis represents the output. These plots provide a visual representation of how each function
transforms the input into its corresponding output. The derivatives of these functions represent
the rate of change of the output with respect to the input and are essential for the backpropa-
gation algorithm during training.

Softmax

For multi-class classification problems, where the goal is to assign a probability to one of several
possible classes, the softmax function [66] is commonly used as the activation function for the
neurons in the output layer of the neural network. The softmax function transforms a vector

Page 27 of 101

of input values into a probability distribution over the possible classes, where each class is as-
signed a probability between 0 and 1, and the sum of all probabilities is equal to 1. This allows
the neural network to output a probability for each possible class, which can be used to make
predictions.

The softmax function takes a vector of input values x = (x1, x2, ..., xK) and produces a vector
of output values y = (y1, y2, ..., yK), where N is the number of classes. The output values are
calculated as follows:

yi =
exi∑N
j=1 e

xj
, (2.11)

where i indexes the individual elements of the input vector. The denominator in the equation
represents the sum of the exponential values of all the input elements. The numerator is the
exponential value of the i-th input element. The softmax function essentially normalizes the
exponential values of the input elements to obtain a probability distribution over the classes.

2.5.3 Dropout

Dropout is a widely used regularization technique in deep learning models, particularly in neu-
ral networks [67]. It serves as an effective method to mitigate the overfitting issue, leading to
improved generalization on unseen data.

During the training phase, the dropout technique functions by randomly setting a proportion
of neurons in a layer to zero, effectively ”dropping out” their contribution to the forward and
backward passes. This process is visualized in Figure 2.7, where neurons with red crosses are
dropped out. This approach introduces noise to the model’s training, encouraging it to learn
more robust representations of the data and preventing it from becoming overly reliant on any
single neuron. Dropout is only applied during training, and all neurons are retained during the
inference phase, ensuring the model’s full capacity is utilized when making predictions on new
data.

Figure 2.7: Visualization of dropout. Neurons with red crosses represents neurons that have
been dropped (values set to zero). Modification of [68]

Page 28 of 101

The dropout rate, which determines the proportion of neurons to be dropped out, is a critical
hyperparameter that can be tuned for optimal performance. Typically, dropout rates between
10% and 50% are found to be effective in practice [69]. However, it is essential to experiment
with different dropout rates to find the optimal value for a specific task or dataset.

Dropout is particularly effective when used in conjunction with other regularization techniques,
such as weight decay [70] and early stopping [71, pg. 239]. The combination of these techniques
can significantly improve the generalization capability of deep learning models, resulting in
better performance on unseen data. Moreover, dropout has been shown to have an implicit
ensemble effect, as it can be interpreted as training an ensemble of sub-networks with shared
weights, where the final prediction is essentially an averaging of the predictions made by these
sub-networks.

2.5.4 Layer Normalization

Layer normalization [72]is a technique used to improve the performance and training stability
of neural networks, especially deep models with many hidden layers. It helps alleviate the in-
ternal covariate shift problem, which occurs when the distribution of input values to a given
layer changes during training. Layer normalization can be applied independently to each hidden
layer in the network, usually after the linear transformation and before the activation function,
ensuring a consistent distribution of input values to the activation function. This facilitates
faster learning and improved generalisation.

The layer normalization operation is defined as follows. Given an input vector x, the output y
is computed as:

y =
x−E[x]√
Var[x] + ϵ

∗ γ + β (2.12)

The ϵ term is a small positive constant added to the variance to ensure numerical stability and
γ and β are learnable scaling and shifting parameters, which allow the model to adjust the
output distribution during training. E[x] and Var[x] are the expected value and variance of x.

Layer normalization is conceptually similar to batch normalization [73], which is another nor-
malization technique used in deep learning. The key difference between the two is that while
batch normalization normalizes the input values across a batch of samples, layer normalization
normalizes the input values for each sample independently. This makes layer normalization
more suitable for tasks with variable batch sizes or where data dependencies within a batch are
not desirable, such as in recurrent neural networks (RNNs).

2.5.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [74] were developed to address the limitations of traditional
feedforward neural networks in processing sequential data. While ANNs, like MLPs, can effi-
ciently model complex relationships between input and output variables, they lack the ability
to capture temporal dependencies or the order of the input data. This limitation hinders their
effectiveness in tasks involving time-series data, natural language processing, and other appli-
cations that rely on the sequential nature of the input.

RNNs were introduced as a solution to this problem by incorporating a memory mechanism into
the network (often referred to as the hidden state), allowing it to maintain information about
the previous input states. This memory enables RNNs to capture the temporal dependencies
and the order of the input data, making them suitable for a wide range of applications involving

Page 29 of 101

sequential data.

Figure 2.8: A depiction of a single-unit RNN. The progression from bottom to top represents
input state, hidden state, and output state. The network weights are denoted by U, V, and W.
The left side features a compressed diagram, while the right side illustrates the unfolded version
of the network. Modification of [75].

The architecture of an RNN can be visualized as a series of repeating modules, where each
module represents a time step in the sequence, as shown in Figure 2.8. In the compressed
diagram on the left, the circular unit represents the hidden state, which maintains information
about the order and temporal dependencies of the input data. The unfolded version of the
RNN on the right illustrates the process for each input in the sequence. At each time step, the
module takes the current input (bottom), along with the hidden state from the previous time
step, and produces an output (top) and an updated hidden state. The weights of the network,
represented by U, V, and W, are shared across all time steps, allowing the network to learn
patterns and dependencies in the sequence data.

Challenges and Variants of RNNs

Despite their ability to model sequential data and capture temporal dependencies, RNNs face
several challenges and drawbacks that limit their performance and applicability in certain sce-
narios. One of the primary challenges encountered in training RNNs is the vanishing and
exploding gradient problem [63]. This issue occurs due to the repeated application of weight
matrices during backpropagation through time (BPTT), which can cause gradients to either
vanish (approach zero) or explode (grow exponentially). Vanishing gradients make it difficult
for the network to learn long-range dependencies in the input data while exploding gradients
can lead to instability in the training process and poor generalization.

Although RNNs are designed to capture temporal dependencies in sequences, they often struggle
with learning long-range dependencies due to the vanishing gradient problem. This limitation
makes it difficult for RNNs to model complex relationships and contextual information in tasks
involving long input sequences, such as machine translation or long document summarization.

The recurrent nature of RNNs inherently limits their ability to leverage parallel computation.
As the hidden state of each time step depends on the previous time step, the network must pro-
cess the input sequence sequentially, which can result in slower training and inference compared
to feedforward architectures like Convolutional Neural Networks (CNNs) or Transformer-based
models.

Additionally, the hidden state in RNNs serves as the primary memory mechanism, enabling

Page 30 of 101

the network to retain information about previous inputs. However, this memory capacity is
limited by the size of the hidden state and the network’s ability to maintain information across
long sequences. As a result, RNNs can struggle with tasks that require the retention of a large
amount of contextual information or involve the processing of long input sequences.

To address these challenges, researchers have proposed several variants and modifications of the
basic RNN architecture. Some of these include the Long Short-Term Memory (LSTM) [76] and
Gated Recurrent Unit (GRU) [77] networks, which introduce gating mechanisms to alleviate the
vanishing gradient problem and improve the learning of long-range dependencies. Additionally,
the development of the Transformer architecture [7] and its derivatives has further advanced
the field of sequence modelling by introducing attention mechanisms that enable more efficient
handling of long-range dependencies and parallel computation, surpassing the capabilities of
traditional RNNs.

Encoder-Decoder Models

A considerable number of RNNs, particularly those utilized in sequence-to-sequence tasks, make
use of the encoder-decoder architecture [77]. This architecture adeptly addresses the challenges
associated with tasks that involve input and output sequences of varying lengths or structures,
as seen in machine translation and summarization. The primary objective of using encoder-
decoder models is to enable the learning of a fixed-length representation, called the Context
Vector, from variable-length input sequences, and subsequently decode this representation to
generate variable-length output sequences. To achieve this, the model is segmented into two
main components: the encoder and the decoder. Both components typically comprise RNN
layers, such as LSTMs or GRUs.

Figure 2.9: A basic encoder-decoder model [78]. The input sequence is processed by the encoder,
resulting in a context vector that is then used by the decoder to generate the output sequence.

Encoder

The encoder is responsible for processing the input sequence and compressing it into a fixed-
length latent representation, also known as the context vector. This context vector is designed
to capture the essential information from the input sequence, allowing the decoder to generate
an appropriate output sequence based on it.

As illustrated in Figure 2.9, the encoder receives the input sequence and processes it to create
a context vector. This is typically done by processing the sequence one element at a time using
RNN layers, though this detail is abstracted away in the figure.

Page 31 of 101

Decoder

The decoder, also depicted in Figure 2.9, is responsible for generating the output sequence based
on the context vector provided by the encoder. It starts with an initial hidden state, usually
set to the context vector. At each step, the decoder generates an output element and updates
its hidden state based on the current input and hidden state.

The output generated by the decoder at each step is typically passed through a softmax func-
tion, which converts it into a probability distribution over all possible output elements. The
element with the highest probability is then chosen as the predicted output for the current
step. This process continues iteratively until either a predefined maximum output length is
reached, or a special end-of-sequence token is produced, signalling that the model should cease
generating further output.

The encoder-decoder architecture allows RNNs to handle complex sequence-to-sequence tasks
by learning to map input sequences to output sequences through a fixed-length latent represen-
tation. This approach has been highly successful in a wide range of applications and has been
further enhanced by the incorporation of attention mechanisms, which enable the model to dy-
namically focus on different parts of the input sequence during the decoding process, improving
its ability to capture long-range dependencies and handle complex input-output relationships.

2.6 Token Decoding

When generating text for NLP tasks such as machine translation or summarization, the out-
put of the model is normally a token, where the token is an integer that represents a word,
sub-word, or character (Section 2.1.1). The token is then generally concatenated to the input
and used for generating the next tokens in the output sequence. This loop continues until the
model itself decided it has reached the end when it outputs a stop token. Models which generate
sequences like this where models predict the next element in a sequence by conditioning on the
previously generated elements are often referred to as autoregressive models [79, pg. 117] and
the process of selecting tokens and converting tokens back into human-readable characters or
words is known as token decoding.

Figure 2.10 illustrates an example of an autoregressive model translating the English sentence
”I am driving a car” into Norwegian. The generation proceeds until the model outputs a stop
token, which is often ”EOS” (End Of Sequence) or ”</s>”. While the example features an
encoder-decoder model, similar to the T5 model used in this thesis, the principles of token
generation apply to decoder-only models like GPT-2 [18] as well.
The final layer of the decoder in these generative models is normally a softmax function. The
softmax function in the output returns a vector with the probability of each token in the
vocabulary. When selecting the token at each generation step, the easiest thing to do is to
choose the token with the highest probability. This technique of picking tokens is called greedy
decoding [26].

2.6.1 Greedy Decoding

Greedy decoding, while computationally simple and efficient, has several drawbacks that can
limit the quality and diversity of the generated text [80]. These shortcomings are mainly due
to its deterministic nature and focus on short-term rewards rather than long-term coherence.

One significant issue with greedy decoding is the lack of diversity in the generated sequences.
Since it always selects the token with the highest probability at each generation step, the pro-

Page 32 of 101

Figure 2.10: Example of autoregressive translation of the sequence ”I am driving a car” from
English to Norwegian using an encoder-decoder model.

duced sequences tend to be repetitive and lack variety. This can result in monotonous and
predictable outputs, which might not adequately capture the richness and complexity of the
source material or the intended message.

Moreover, greedy decoding is a local optimization method, meaning it focuses on maximizing
the immediate reward rather than considering the overall quality of the generated sequence. As
a result, it can sometimes lead to suboptimal solutions, where the generated text may appear
coherent in the short term but fail to accurately convey the intended meaning or structure of
the original content.

Another limitation of greedy decoding is its inability to recover from errors or explore alter-
native paths once a token has been selected. If a poor choice is made early in the generation
process, the subsequent tokens will be generated based on that choice, potentially leading to a
chain of errors and a poor-quality output.

To address these drawbacks, various alternative decoding strategies have been developed, such
as beam search, top-k sampling, and nucleus sampling. These methods introduce an element of
exploration and randomness into the token selection process, aiming to improve the diversity,
coherence, and overall quality of the generated text by considering multiple potential sequences
and balancing the trade-off between exploration and exploitation.

2.6.2 Advanced Token Decoding

These methods introduce a balance between deterministic and stochastic approaches in the token
selection, exploring alternative sequences, and mitigating common issues such as repetition and

Page 33 of 101

suboptimal outputs. By leveraging these advanced techniques, researchers and practitioners can
enhance the performance of sequence-to-sequence models across a wide range of natural language
processing tasks and applications. Some of these different techniques commonly utilized in
machine learning research include:

Beam search

Beam search [81] is a heuristic search algorithm used in sequence-to-sequence models for finding
the most likely output sequence. Beam search can be adapted to impose additional constraints
on the generated sequences, such as limiting the length of the output, avoiding repeating n-
grams, and filtering out undesirable words while still being able to generate coherent sequences.

Figure 2.11: Example of the process of a beam search with a beam width of 3. The dotted line
represents the sequence greedy decoding would generate and the solid red line is the most likely
sequence generated with beam search. Reprinted from [82] with permission from Patrick von
Platen.

Figure 2.11 clearly illustrates beam search’s advantage over greedy decoding in generating
a more likely sequence. In this example, greedy decoding, represented by the dotted red
line, generates the sequence The nice woman with a conditional probability of P (nice|The) ·
P (woman|The nice) = 0.2. In contrast, beam search, depicted by the full red line, produces the
sequence The dog has with a higher conditional probability of P (dog|The) · P (has|The dog) =
0.36. This demonstrates the advantage of beam search over greedy decoding, as it considers
multiple candidate sequences and ultimately selects the one with the highest overall likelihood.

The number of candidates beam search considers at each step is known as the beam width or
the number of beams. As the beam width increases, the algorithm explores a larger portion
of the search space, which can lead to better solutions. However, this increased exploration

Page 34 of 101

comes at the cost of higher computational complexity, as more candidate sequences need to be
evaluated at each time step. In practice, selecting an appropriate beam width involves balancing
the need for high-quality output sequences with the available computational resources and time
constraints.

2.6.3 Sampling

Sampling-based decoding techniques provide an alternative approach to token selection in
sequence-to-sequence models by incorporating stochasticity into the decision-making process.
Instead of deterministically selecting the most likely token at each time step, as in greedy
decoding, or exploring a fixed number of candidate sequences, as in beam search [81], sampling-
based methods generate tokens by drawing from a probability distribution over the vocabulary
[83]. This probabilistic approach allows the model to explore a more diverse range of output
sequences, potentially capturing unexpected or creative solutions that deterministic methods
might overlook [18]. Moreover, sampling-based techniques can alleviate issues such as repet-
itive output and overconfidence by introducing variability and uncertainty into the generated
sequences [84].

While traditional sampling decoding works by sampling from the softmax probabilities across
all of the tokens in the vocabulary, recent developments have shown that by modifying the
probability distributions, even better sequences can be generated. Some of these advanced
sampling techniques include:

• Top-k: Top-k sampling [84] is a decoding strategy in which, at each time step, the model
selects the next token by sampling from the k most probable tokens. It introduces some
randomness in the generated output, promoting diversity while still constraining the search
space to more likely token choices.

• Nucleus sampling: Nucleus sampling, or top-p sampling [84], is a decoding method
that selects tokens from the top-p most probable tokens, where p is a probability mass
threshold. This approach balances flexibility and determinism, allowing for diverse and
creative outputs while maintaining control over the generated text’s quality.

• Temperature: Temperature [84] is a hyperparameter in probabilistic sampling tech-
niques that controls the degree of randomness in token selection. A high temperature
leads to more random token selection, while a low temperature makes the model more
deterministic, favouring tokens with higher probabilities.

• Repetition penalty: Repetition penalty [85] is a technique used during the decoding
process to penalize the model for generating repetitive sequences. It involves modifying
the probability distribution over tokens at each time step to decrease the likelihood of
selecting tokens that have already appeared in the generated output, thus encouraging
more diverse and non-repetitive text.

• Eta cutoff : Eta cutoff is an advanced token selection technique that aims to improve
the quality of generated text by estimating a subset of the support of the true distribu-
tion in a language model [86]. It operates by setting an entropy-dependent probability
threshold, which helps identify a more appropriate set of tokens to consider during the
decoding process. Compared to other truncation sampling methods, eta cutoff generates
more plausible and diverse long text sequences, effectively breaks out of repetition, and
demonstrates more reasonable behaviour on a range of test distributions.

The various token sampling techniques discussed in this section offer numerous possibilities for
enhancing decoding strategies in sequence-to-sequence models. For instance, combining beam

Page 35 of 101

search with temperature scaling can strike a balance between exploration and exploitation dur-
ing the search process. Additionally, incorporating repetition penalties into top-k or nucleus
sampling can reduce redundancy and improve sequence diversity.

However, it is essential to recognise that the optimal decoding parameters may vary depending
on the specific task. Repetition is not always undesirable, as some tasks may benefit from
recurring patterns or phrases. Moreover, not all applications require creative outputs, with
some prioritising accuracy and consistency over novelty. By customising the combination of
token sampling techniques to suit each task’s unique requirements and carefully integrating
these methods, researchers and practitioners can achieve an equilibrium between output qual-
ity, diversity, and computational efficiency. This tailored approach enables the development of
versatile models that cater to a wide range of natural language processing tasks and applications.

Furthermore, it is important to note that during the training phase of sequence-to-sequence
models, loss values are calculated at the individual word level rather than considering the
entire sequence. This means that the model evaluates the correctness of its predictions for each
token independently, without accounting for the overall coherence or structure of the generated
sequence. As a result, using advanced decoding techniques like beam search or sampling-based
methods during training would not be compatible with the loss calculation approach, since these
methods focus on generating sequences from a more global perspective. Instead, the optimal
token decoding parameters can be optimized after the model has been trained.

2.7 Transformers

Transformers represent a groundbreaking deep learning architecture first introduced by Vaswani
et al. in their 2017 paper, ”Attention is All You Need” [7]. Since its inception, the transformer
model has become a widely adopted architecture for numerous NLP tasks. One of its main
strengths lies in its ability to handle input and output sequences of varying lengths, which is
especially valuable in tasks such as abstractive summarization and machine translation. Trans-
formers have been successful in addressing some of the limitations and challenges associated
with RNNs, particularly in capturing long-range dependencies and enabling parallel computa-
tion.

In recent years, the success of transformers has extended beyond natural language processing
and into the realm of computer vision with the development of Vision Transformers (ViTs).
ViTs, proposed by Dosovitskiy et al. in their 2020 paper ”An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale” [87], adapt the transformer architecture to accom-
modate images by dividing them into fixed-size, non-overlapping patches and linearly embedding
each patch into a flat vector, which then serves as input for the transformer model.

While there are notable similarities between the structures of Vision Transformers used in com-
puter vision tasks and those employed in NLP, this section will concentrate on the application
of transformer models within the context of NLP tasks.

The cornerstone of the transformer architecture is the self-attention mechanism, which empow-
ers the model to assess the relative significance of each word within a sequence. This mechanism
facilitates the model’s ability to efficiently capture long-range dependencies and contextual in-
formation, outperforming traditional recurrent neural networks in this regard. By leveraging
the self-attention mechanism, transformers are able to mitigate the vanishing gradient problem
that plagues RNNs, enabling more effective learning of long-range dependencies and improv-
ing the overall performance of various NLP tasks. Additionally, the transformer architecture

Page 36 of 101

is highly parallelizable, allowing for faster training and inference compared to the inherently
sequential nature of RNNs.

2.7.1 Attention

The attention mechanism, a central component of the transformer architecture, empowers mod-
els to assess the importance of different words within a sequence by considering the context.
Attention weights represent the relative significance of each word, influencing their contribution
when generating the output. By emphasizing words with higher attention scores, the model is
steered to focus on input segments that are most relevant to the task. This mechanism enables
the model to capture long-range dependencies and contextual information more effectively than
traditional RNNs.

The evolution of attention mechanisms in neural networks can be traced back to content-based
attention from Neural Turing Machines [81]. In this early work, attention was used to access
memory based on the cosine similarity between a query and memory content. The concept was
further developed and introduced into RNNs with additive attention, also known as Bahdanau
attention, in a groundbreaking paper by Bahdanau et al. [35]. This innovative mechanism
allowed models to focus on specific parts of the input sequence when generating output by
calculating the alignment between the hidden states of the encoder and decoder. The attention
landscape advanced further with the introduction of the Transformer architecture by Vaswani
et al. in ”Attention is All You Need” [7], proposing the scaled-dot-product attention mecha-
nism. This highly efficient approach facilitated the development of large-scale models capable
of handling long-range dependencies and complex patterns across various NLP tasks, laying the
foundation for modern language models like GPT and BERT.

The attention weights are computed using the scaled dot-product attention function, which
involves three parameters: queries Q, keys K, and values V . Instead of being derived through
backpropagation, these parameters consist of values from the previous layer in a neural network.
Although Q, K, and V are identical, their distinct roles in scaled dot-product attention allow
them to represent different aspects. Q enable the model to identify the parts of the input
sequence it should focus on, essentially acting as questions posed by the model to uncover
pertinent input information. K, conversely, help the model match queries with corresponding
parts of the input sequence, serving as labels or tags for different segments of input data. Lastly,
V hold the actual information of the input sequence, and when a query finds a matching key,
the model uses the corresponding value to represent that section of the input sequence in the
output. With the three parameters in place, along with dk representing the dimensions of K,
scaled dot-product attention is defined as:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2.13)

As illustrated in Figure 2.12, the scaled dot-product attention function computes the compati-
bility between each query and key in the given sequence. Taking the dot product of the query
and key and dividing it by the square root of the key’s dimension dk normalizes the magnitude
of the values, improving gradient flow during training. The resulting compatibility scores are
then processed through a softmax function, converting them into attention weights that indicate
the relative importance of each word in the sequence. These attention weights are multiplied by
the value vectors (V), and the resulting weighted sum serves as the output of the self-attention
mechanism, effectively capturing context-aware representations of the input sequence.

Page 37 of 101

Figure 2.12: Illustration of the multi-head attention block (left) and scaled dot-product attention
(right), highlighting their connections and substructures within the transformer architecture.
Illustration with modification from [7].

In the transformer architecture, an advanced version of the attention mechanism known as
multi-head attention is utilized. Multi-head attention consists of h parallel scaled dot-product
attention layers, or ”heads,” each with its unique learned linear projections for queries, keys,
and values. This mechanism can be seen on the left side of Figure 2.12.

For each headi, the scaled dot-product attention function is applied to the linearly projected
queries, keys, and values. We can represent the computation of each headi as follows:

headi = Attention(QWQ
i ,KWK

i , V W V
i) (2.14)

In this equation, WQ
i , WK

i , and W V
i are the learned weight matrices responsible for projecting

the input queries, keys, and values, respectively. The multi-head attention is then defined by
concatenating all the headi and applying an additional learned linear projection:

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)W
O (2.15)

Here, WO is the learned weight matrix responsible for projecting the concatenated output.

Multi-head attention, compared to single-head attention, offers several advantages in capturing
various aspects of the input sequence and enhancing the expressiveness and flexibility of the
attention mechanism:

• Diversity in representation: Multi-head attention allows the model to learn different at-
tention patterns across multiple heads. This enables the model to capture diverse aspects
of the input sequence, such as syntactic and semantic information, at various positions,
leading to a richer and more versatile representation.

• Parallelism: Since multi-head attention operates on several heads in parallel, the model
can efficiently learn and process different attention patterns simultaneously. This can lead

Page 38 of 101

to better computational efficiency, especially when implemented on parallel hardware, such
as GPUs or TPUs.

2.7.1.1 Scalability Challenges in Attention Mechanisms

The attention mechanism has been widely adopted for its ability to capture long-range de-
pendencies effectively. However, its scalability with longer context windows (i.e., longer input
sequences consisting of more tokens) is an area of concern due to its quadratic complexity in
terms of time and memory.

The original implementation of the attention mechanism calculates attention scores for each
pair of positions in the input sequence, which means that the number of attention scores in-
creases quadratically with the length of the input sequence. Specifically, for an input sequence
of length n, there are n2 pairwise attention scores. Consequently, both the time complexity and
memory complexity of the attention mechanism is O(n2).

This quadratic complexity presents challenges when processing long input sequences, as it can
lead to increased computational time and memory usage. This limitation has motivated the
development of various techniques to address the scalability issue while maintaining the ability
to capture long-range dependencies effectively.

These techniques are based on the idea that not every single token in the attention window is as
relevant at every step. Longformer [88] introduces a sliding window self-attention mechanism
that reduces the complexity of self-attention from O(n2) to O(n · w), where w is the average
window size. It also employs global attention for a few selected tokens, which allows the model
to capture long-range dependencies. A different approach, Linformer [89] employs low-rank
approximation to the self-attention weights to reduce the computational complexity to O(n).

Both Longformer and Linformer offer a unique approach to addressing the quadratic complexity
challenge posed by the original attention algorithm. However, it is essential to note that the
reduction in time complexity may come at the expense of overall performance or model quality.
In response to this trade-off, a more recent development, FlashAttention [90], has emerged
as a highly popular attention implementation due to its optimized, highly performant nature
based on optimizing write operations to the GPU memory. The implementation is lossless while
maintaining the original O(n2) complexity. The paper reports speedups of 15% on BERT with
a sequence length of 512 compared to the state-of-the-art and a 3x speedup on GPT-2 [18] with
a sequence length of 1K.

2.7.2 Transformer Architecture

The Transformer’s overall architecture is relatively straightforward. A visual representation of
the transformer architecture is displayed in Figure 2.13. The model comprises N encoders and
N decoders stacked on top of each other, as indicated by ”N” in the figure. Several transformer
models that have gained popularity since their release share the same building blocks, but differ
in architecture. For instance, while BERT [9] only employs the encoder part, GPT models [2]
use only the decoder. However, in this section, the focus will be on the original encoder-decoder
architecture [7].

Before the inputs and outputs get sent into the encoder and decoder, the tokens get transformed
into dense vectors by a word embedding layer. After the input sequences are transformed into
dense vectors, the next step is to apply positional encoding. Positional encoding is a technique
used to add positional information to the input sequences in a sequence-to-sequence model. It

Page 39 of 101

Figure 2.13: Visualization of a simplified Transformer model. N represents the number of
encoder and decoder blocks stacked on top of each other. Illustration with modification from
[7].

involves computing sinusoidal functions with different frequencies and phases, which are added
to the input vectors to represent the position of each token within the sequence. This helps the
model distinguish between tokens based on their position.

Encoder

Each encoder comprises a multi-head attention encoding layer and a feed-forward neural net-
work (MLP). The feed-forward layer is a normal feed-forward neural network which usually
uses ReLU or GELU as its activation function. At the beginning of the first encoder block,
the outputs from the positional encoding layer are used as the queries Q, keys K, and values
V for the multi-head attention layer. For the subsequent encoder blocks, the output from the
previous encoder block is used as Q, K, and V . The multi-head attention layer encodes the
input, which is then added to the original input through a residual connection surrounding the
multi-head attention. The combined input is subsequently normalized using layer normaliza-
tion, as depicted by the ”Add & Norm” box. Not shown in the figure is that dropout is applied
to a set percentage of the neurons after normalization is applied. The aggregated input is then
passed through an MLP, and its output is also added and normalized. This constitutes a single
encoder. Multiple instances of this encoder architecture are stacked N times, with each encoder
taking the output of the preceding encoder as input.

Page 40 of 101

Decoder

The decoder stack resembles the encoder stack but with some modifications. The first dis-
tinction is the masking of the initial multi-head attention layer, which processes the output
embeddings generated by the model itself. Masking implies setting attention values to zero
for words that have not been generated yet, allowing the decoder to attend only to words it
has already produced. The second difference is that the subsequent multi-head attention layer
processes both the aggregated and normalized output of the masked multi-head attention layer
and the encoder stack’s outputs using a process often referred to as Cross-Attention. As the
inputs for this layer, Q comes from the output of the final encoder layer, while K and V comes
from the Masked Multi-Head Attention layer in the decoder. This means that the entire input
sequence is first encoded by the encoders and then utilized as a static input for all decoder blocks.

A linear layer at the end of the decoder stack maps the decoder’s real-valued output to a vector
of the desired size. For example, this output vector’s size could be the number of classes if the
Transformer is employed for classification, or the same size as the output vocabulary if used for
machine translation or other sequences. The final output is then passed through the softmax
function to generate a probability for each class or the probability of each token in the target
vocabulary.

2.7.3 Learning objectives

This section focuses on the learning objectives for Transformer models, specifically the two main
pre-training objectives: Masked Language Modeling (MLM) and Causal Language Modeling
(CLM). The learning objectives provide a set of tasks for the model to perform, guiding its
training process. They are instrumental in developing the model’s language understanding and
generation capabilities, which in turn result in improved performance for downstream tasks,
such as abstractive summarization.

Masked Language Modelling

Masked Language Modeling (MLM) is a self-supervised learning task employed for pre-training
transformer models. The objective of MLM is to predict randomly masked words in a sequence
based on the context provided by the surrounding words. The model is trained to reconstruct
the original sequence, constrained by not being able to rely on the masked words. This task is
beneficial as it necessitates the model to learn a rich representation of the input text, capturing
the meaning of the text, and enhancing performance on downstream tasks such as automatic
summarization. The self-supervised nature of MLM allows the model to leverage large amounts
of unlabelled text data, making it more scalable and effective at learning complex language
patterns.

Figure 2.14: Examples of the MLM and CLM learning objectives

Figure 2.14 shows the MLM procedure used for training BERT [9]. The middle token gets

Page 41 of 101

masked with a ”<MASK>” token. After the inputs get passed through the model, the model
tries to predict which word the masked token should be replaced by. In the original paper, 15%
of all tokens in the input were masked, but more recent research has shown that it might be
beneficial to mask up to 40% percent of the tokens [91].

BERT (Bidirectional Encoder Representations from Transformers) is a prominent example of
a transformer model that employs MLM as its pre-training objective [9]. BERT revolutionized
natural language processing by introducing the concept of bidirectional context representation,
which allows the model to understand the relationships between words in both forward and
backward directions. By masking a percentage of the input tokens and requiring the model to
predict the masked tokens based on the unmasked ones, BERT successfully captures a deeper
understanding of the input text. This innovation led to significant improvements in various
downstream tasks, setting new state-of-the-art benchmarks across multiple natural language
processing domains.

Causal language modelling

Causal Language Modeling (CLM) is another widely used pre-training objective for Transformer
models, and more specifically, autoregressive transformer models. As described in Section 2.6,
autoregressive models generate text by predicting one word at a time, conditioning on the pre-
viously generated words. CLM follows a similar approach for pre-training, where the model
learns to predict the next word in a sequence, given all the preceding words.

The objective of CLM is to maximize the likelihood of a target word, given the context words
in the sequence. By training the model in such a manner, it learns the inherent structure and
patterns within the language, enabling it to generate coherent and contextually relevant text.
This is achieved by minimizing the cross-entropy loss between the predicted probabilities and
the true word distribution.

Compared to MLM, CLM allows the model to learn only unidirectional context representation,
as it predicts words based solely on the words that precede them. However, this unidirectional
approach aligns well with the text generation process, where words are generated sequentially.
Models like GPT-2 and GPT-3 (Generative pre-trained transformer) [2, 92] employ CLM as
their only training objective, achieving state-of-the-art performance in various natural language
processing tasks, including translation and summarization. While CLM has some limitations
compared to MLM, such as the inability to leverage bidirectional context, it has proven to be
highly effective for many downstream tasks, particularly those related to text generation.

2.7.4 T5: Text-to-Text Transfer Transformer

The T5 models were first introduced by Raffael et al. [3] in 2019, are a series of Transformer-
based models designed to work as unified text-to-text models for multiple tasks. These models
are pre-trained to convert any input text into a target text by framing a wide range of natural
language processing tasks as sequence-to-sequence (seq2seq) problems. The seq2seq framework
is well-suited for handling tasks such as translation, summarization, and question answering, as
they all involve generating coherent output text based on the input text while preserving the
underlying meaning and context.

While maintaining the overall encoder-decoder structure, T5 uses a simplified version of layer
normalization, where only rescaling is applied, and no additive bias is introduced. In addi-
tion, layer normalization is applied outside the residual path. Another significant change in the
T5 models is the use of relative position embeddings instead of the fixed sinusoidal position

Page 42 of 101

signals or learned position embeddings found in the original Transformer. This approach pro-
duces different learned embeddings based on the offset between the ”key” and ”query” in the
self-attention mechanism. Moreover, the position embedding parameters are shared across all
layers in the model, but within a given layer, each attention head uses a different learned posi-
tion embedding. This modification allows the model to better capture positional relationships
between words in a sequence. Despite these architectural alterations, the T5 models remain
conceptually close to the original Transformer architecture, with the changes mainly aimed at
enhancing performance and transfer learning capabilities.

The original T5 models were trained on a multi-task learning setup, which allowed them to
perform multiple tasks concurrently by learning from diverse datasets and tasks. In this train-
ing approach, the model’s parameters are shared across different tasks, allowing the model to
generalize and transfer knowledge from one task to another. This multi-task training approach
enabled the models to leverage shared representations and learn more efficiently, resulting in
better performance across tasks.

The T5 models were initially pre-trained using a masked language modelling (MLM) objective,
similar to BERT, which allowed them to learn meaningful representations of words and their
contexts. After this pre-training stage, the models underwent further fine-tuning using a causal
language modeling (CLM) objective. This step transformed the T5 models into autoregressive
language models, which significantly improved their performance in text generation tasks by
leveraging the knowledge and representations acquired during the MLM pre-training phase.

Figure 2.15: T5 - Multi-Task training and fine-tuning visualized. CoLA measures whether a
sentence is linguistically acceptable or not. Stsb scores two sentences based on how similar they
are.

Figure 2.15 provides a visual representation of how T5 handles multiple tasks, such as trans-
lation, summarization, measuring linguistic acceptability with CoLA [93] or sentence similarity
with stsb [94]. The model can process these diverse tasks concurrently by converting them into
a unified text-to-text format. By incorporating a diverse set of tasks during pre-training, T5
models develop a more comprehensive understanding of language patterns and structures. This
robust linguistic knowledge allows the models to effectively adapt to a variety of downstream
tasks with minimal fine-tuning. Moreover, the multi-task learning setup encourages the models
to learn task-agnostic representations, which are beneficial for transfer learning and enable the
models to perform well on unseen tasks.

Page 43 of 101

CHAPTER 3

METHOD

In this study, we follow a comprehensive approach that consists of five main stages: dataset cu-
ration, dataset exploration and visualization, modelling, generation hyperparameter tuning, and
validation. These stages are supported by the theoretical underpinnings presented in Chapter 2.

Figure 3.1: Flowchart of the methodology and steps utilized in this thesis.

This section begins by outlining the challenges encountered in identifying suitable Norwegian
summarization datasets. We then discuss the two methods employed to address these chal-
lenges: web scraping and translation. We generate two datasets for further use, a web scrape of

44

Store Norske Leksikon (a Norwegian Encyclopedia) and a translated version of the CNN/Daily
Mail dataset. Further, we discuss some extra datasets generated by us, which we do not focus
on due to limited computational resources.

Subsequently, we describe the visualization techniques used for analyzing the curated datasets,
elaborating on the rationale behind these visualizations and the software employed for their
generation.

Following the data visualization, we first generate two different baselines using LEAD-3 and
TextRank. Then, we train multiple T5 models of varying sizes on two of the datasets detailed
in the first section. Additionally, we discuss the training strategies, hardware, and software
utilized.

After training the models, we describe the optimization process for the sequence generation hy-
perparameters based on a set of manually created token generation configurations, as explained
in Section 2.6, using the validation set.

Finally, we outline the systematic evaluation of our trained models on the test set from the
datasets generated earlier. We evaluate using both ROUGE scores and human evaluation on a
wide range of different criteria. Additionally, we perform human evaluation on a set of out-of-
domain samples to better understand the model’s behaviour.

3.1 Dataset Curation

During the initial stages of dataset curation, our primary objective was to locate existing sum-
marization datasets in Norwegian. However, after conducting an extensive search, we found no
publicly available datasets suitable for our purpose. We were able to find a master thesis [95]
which was written in collaboration with Schibsted, an international media group headquartered
in Oslo. The thesis created systems for extractive summarization using BERTSum [23] on a
private dataset of news articles from Aftenposten and a shortened version (Aftenposten Opp-
summert). We reached out to the supervisor from Schibsted, but we were not able to get access
to the data.

Having exhausted the search for existing Norwegian summarization datasets, we turned our
focus to well-established English summarization datasets, such as CNN/Daily Mail [96]. By
closely examining these datasets, we identified that these datasets were often generated by
scraping websites offering a more accessible and shorter version of the content. Being inspired
by this, we realised that articles on Store Norske Leksion (SNL), a Norwegian Encyclopedia had
a clear writing style where the lead paragraph (the first paragraph in an article) acted as an
ingress/summary where the main parts of the article were highlighted. As a result, we generated
a dataset based on articles and lead paragraphs from SNL. Additionally, we acknowledged the
potential value of translating English summarization datasets into Norwegian to supplement
our dataset acquisition. To this end, we translated the extensively researched CNN/Daily Mail
dataset using a pre-trained transformer model specifically designed for English to Norwegian
translation. In the following section, we provide more details on the methods and procedures
employed to accomplish these tasks.

3.1.1 Web Scraping

Web scraping is an effective method for obtaining information and data from websites. By
programmatically parsing and navigating web page structures, desired content can be accessed

Page 45 of 101

with ease. In the field of NLP, web scraping has become an essential tool, allowing researchers
to gather vast quantities of text data from a wide range of online sources.

SNL

Store Norske Leksikon (SNL) is a peer-reviewed encyclopedia in Norwegian, owned and main-
tained by Norwegian universities and public organisations. Its goal is to make high-quality
knowledge publicly available for Norwegians. The articles are structured so that the first para-
graph (the lead) acts as a summary of the entire article. This made SNL an excellent source
for creating a summarization dataset, with the lead paragraph serving as a summary and the
remaining content as the full-length version.

We couldn’t find any existing datasets containing SNL data, so we decided to create our own
by scraping articles from SNL.no. The first step involved gathering a list of all article URLs
on the site. We extracted the URLs from the sitemaps and retained only those following the
format ”https://snl.no/name of article” to avoid non-article pages.

Next, we scraped the URLs with multiple threads downloading articles at the same time using
the Python module grequests and parsed the received HTML using beautifulsoup4. We ex-
tracted the text from the lead and the rest of the article text, joining the latter while removing
any whitespace. Additionally, we saved metadata such as URLs, headlines, and categories for
each article. To filter out very short articles, we set criteria for keeping an article: the lead had
to be at least 100 characters long, and the rest of the article had to be longer than 400 characters.

Finally, we split the dataset using an 84%/6%/10% split for the train/validation/test sets. This
division was chosen to ensure a sufficient amount of data for training our models while still
providing an adequate sample size for validation and testing. By allocating a larger portion
(84%) of the data for training, our goal was to optimize the model’s learning process. We
allocated 6% of the data for validation, which was intended to help fine-tune the model and
its hyperparameters, while the remaining 10% was designated for the final evaluation of our
model’s performance on unseen data in the test set.

3.1.2 Machine Translation

In this subsection, we explore the process of translating English summarization datasets into
Norwegian to expand our resources for training and evaluating our models. We discuss the chal-
lenges we faced in finding affordable and accurate translation solutions and present the machine
translation model we selected for this task. Furthermore, we detail the translation process and
the steps involved in adapting the CNN/Daily Mail dataset for our study.

In our quest for cost-effective and accessible translation solutions, we explored a variety of com-
mercial services, including Google Translate, Azure Translator, and deepl.com. While these
services excel at English-to-Norwegian translation, their pricing structures, usually determined
by the number of characters or tokens generated, presented a considerable financial burden.
Similarly, commercially hosted language models highly capable of translation, such as OpenAI’s
GPT-3.5, were also deemed too expensive due to the costs associated with their usage. During
our development process, the more affordable ChatGPT API was released, offering translation
capabilities at a fraction of GPT-3’s cost. However, the timing of its release rendered it an un-
viable option for our project as we had already moved on to exploring different approaches. As
a result, we decided to explore alternative avenues and sought a publicly available pre-trained
model to perform machine translation ourselves, balancing quality and cost-efficiency in the

Page 46 of 101

context of our study.

Our search led us to the discovery of the OPUS-MT models from Helsinki NLP. These models
provide a diverse range of over 1000 pre-trained translation models, including multiple options
tailored for English to Norwegian translation. By utilizing the OPUS-MT models, we were able
to capitalise on their capabilities, achieving a satisfactory balance between translation quality
and cost efficiency.

OPUS-MT Model

The OPUS-MT models [97] leverage the extensive OPUS parallel corpus [97], which encom-
passes a wide variety of multilingual texts from diverse domains such as Wikipedia, movie
subtitles, and EU legislation. These models are specifically tailored for low-resource languages,
demonstrating competitive performance in numerous translation tasks.

Performance evaluation of these models takes place on the Tatoeba Challenge Datasets [98].
Tatoeba is a comprehensive, open, and collaborative multilingual database containing sentences
and their translations in a vast array of languages, including low-resource and minority lan-
guages. This dataset consists of high-quality translations and diverse language pairs, con-
tributed by a global community.

Built on a standard transformer setup, the architecture of OPUS-MT models features six self-
attentive layers in both the encoder and decoder networks with eight attention heads per layer,
where one of the heads is trained to learn alignment between words [97, 99]. This design en-
ables the models to capture intricate relationships between source and target languages, yielding
more accurate and coherent translations. For tokenisation, SentencePiece is employed with a
vocabulary of 54 215.

The OPUS-MT model specifically tailored for English to Norwegian translation [100] achieved
an impressive BLEU score of 56.4 on the Tatoeba English to Norwegian Bokm̊al test set. The
model also works for Nynorsk, where it scored 40.3. Based on this performance, we selected
this model for our dataset translation.

Most OPUS-MT models are readily available on the HuggingFace Hub, facilitating experimenta-
tion. However, our chosen model was not accessible there for unknown reasons. To address this,
we downloaded the official weights from Helsinki NLP, converted the model to the appropriate
format, and shared it on the Huggingface Hub [101].

CNN/Daily Mail

To create a dataset suitable for training a Norwegian text summarization model, we used the
CNN Daily Mail dataset (referred to as CNN/DM in the remainer of the thesis), which consists
of English news articles and their corresponding summaries. The dataset has been widely used
for text summarization research, particularly for abstractive summarization tasks. The samples
are extracted from CNN and Daily Mail articles and their associated bullet point descriptions
which have been concatenated to create a summary for the whole article. These bullet points
have been shown to be highly extractive [27, 102] with the most important information located
in the first few sentences [103]. The summaries have also been shown to rarely contain the same
trigram more than once [104], suggesting that token decoding techniques that avoid generating
the same n-grams more than once might be effective when generating summaries using this
dataset.

Page 47 of 101

To translate the dataset from English to Norwegian, we employed the OPUS-MT model as
described above with the following process.

Dataset Translation Process

To translate the dataset using the pre-trained model, we followed these steps:

1. First, we preprocessed the English dataset by removing any special characters, HTML
tags, and extra spaces to ensure a clean input for the translation model.

2. We then divided the dataset into smaller sentences to facilitate parallel processing and
efficient translation. This approach allowed us to speed up the translation process and
reduce the memory requirements of the translation model.

3. For each chunk, we used the pre-trained OPUS-MT model to translate the English arti-
cles and summaries into Norwegian. We fed the model with the preprocessed text and
generated the translated text as output.

4. After translating all the chunks, we combined the translated Norwegian text to form a
complete translated dataset. We ensured that the translated articles and summaries were
correctly aligned and maintained the same structure as the original dataset.

5. Finally, we post-processed the translated dataset by correcting any tokenization issues,
ensuring proper punctuation, and restoring any special characters that were removed
during the initial preprocessing step.

3.1.3 Additional Datasets Not Utilized Further

In the course of our research, we developed several additional datasets that were not ultimately
incorporated into the thesis due to the decision to narrow our focus primarily due to limited
computational resources and slow training times. Nevertheless, we believe these datasets may
be of interest to others, and we have made them available on the Huggingface Hub for explo-
ration and use. In this section, we provide a brief overview of these datasets, their sources, and
the methodologies used in their creation.

Among the unused datasets are Norwegian translations of two well-known English summariza-
tion datasets, XSUM [105] and SAMSUM [106]. We employed the OPUS-MT model to translate
both datasets. XSUM consists of single-sentence summaries of BBC news articles, while SAM-
SUM comprises abstractive summaries of dialogue-based conversations.

We also generated a dataset by extracting Norwegian Wikipedia articles and their associated
lead paragraphs. The methodology used for this dataset closely resembles the approach taken
in the creation of the Store Norske Leksikon (SNL) dataset.

Lastly, we created a dataset using articles from the Norwegian newspaper VG. The source
of these articles was the Norsk Aviskorpus (Norwegian newspaper corpus) [107]. This corpus
includes articles from Norway’s largest newspaper from 1998 to 2019. In this dataset, we used
the first paragraph (lead) of each article as its summary, similar to the approach taken with the
SNL dataset.

3.2 Data Exploration

Our primary motivation for exploring the data was to understand the different distributions of
the sizes of the documents and reference summaries as well as understand the abstractiveness

Page 48 of 101

of the reference summaries.

3.2.1 Token Distributions

In Section 3.3.3, we discuss the rationale behind truncating documents to the first 512 tokens
for abstractive model summarization. To investigate the extent of document truncation, we
utilized the subword SentencePiece tokenizer specifically designed for the North-T5 models em-
ployed in our study (covered in Section 3.3.2). We tokenized each document and calculated the
number of tokens present in each article and reference summary. A histogram was created to
visualize the distribution of token counts across the documents for each of the two datasets. A
vertical line at 512 tokens was added to the plot, marking the truncation point. This graphical
representation allowed us to better understand the proportion of documents affected by the
truncation process and its potential impact on the model’s summarization performance.

We aimed to compare the lengths of articles and summaries as well as the compression rate for
the translated version of the CNN/DM dataset against the original English version. The multi-
lingual SentencePiece tokenizer used by the North-T5 models has been exposed to more English
than Norwegian during its training [108]. Consequently, it’s expected to tokenize Norwegian
sequences and words into smaller subunits, resulting in a higher token count for a Norwegian
sentence compared to its English counterpart [109]. For this reason, a comparison based on the
number of tokens might not yield meaningful results. Instead, we chose to compare the average
number of characters in the datasets (including special characters), as this approach bypasses
the potential misleading results introduced by the tokenizer.

3.2.2 Exploring Abstractiveness of Summaries

To better understand the abstractiveness of the reference summaries in our dataset, we em-
ployed various techniques and metrics, such as coverage, density and our own novel metric,
match ratio. These metrics helped us measure the text overlap between the summaries and the
source documents, as well as the rate at which the conveyed information is compressed.

We used the definitions from Grusky et al. [27] to calculate the extractive fragment coverage,
extractive fragment density, and compression ratio. The coverage measures the proportion of
words in the summary that are part of an extractive fragment in the article, while the density
measures the average length of the extractive fragment to which each word in the summary be-
longs. As density measures overlaps between longer fragments, it should be used as the primary
metric to measure extractiveness. The compression ratio is the word ratio between the article
and its summary. To compute the metrics, we first tokenised the articles and summaries into
words using NLTK [110] and calculated the coverage and density.

We also calculated Match Ratio (MR), which is our own novel contribution based on string
distances calculated using Levenshtein distances [111]. The Levenshtein distance calculates the
minimum number of single-character edits (insertions, deletions, or substitutions) required to
transform one string into another. As a threshold for classifying two sentences as equal, we used
a threshold of 0.95 on the normalized distances between sentences.

Visualizing Abstractiveness Metrics

To display the calculated metrics’ distributions, we employed Seaborn, a Python library dedi-
cated to data visualization. We generated kernel density estimate (KDE) plots for both density
and coverage. KDE illustrates the data through a continuous probability density curve in one

Page 49 of 101

or multiple dimensions. Although comparable to a 2D histogram (heat map), KDE can create
a less cluttered and more easily understandable plot, particularly when visualizing multiple
distributions.

These visualizations helped us gain insights into the quality, originality, and effectiveness of the
summarization datasets, and later in our summarization technique, used in our dataset and
provided a better understanding of the degree to which the dataset and models are extractive
or abstractive.

3.3 Summarization Modelling

In this section, we delve into the methodology adopted for the summarization process, high-
lighting the use of pre-trained Norwegian T5 models and their fine-tuning to achieve desired
outcomes. The North-T5 models, varying in size and complexity, are built upon the founda-
tion of the multilingual T5 model, trained to encompass 101 languages, including Norwegian.
By leveraging these models, we bypass the computational challenges associated with training
language models from scratch. To provide a comparative perspective, we also include baseline
methods, previously discussed in the theory section, such as LEAD-3 and TextRank.

This section further details the training procedure, which employs key techniques such as early
stopping, gradient accumulation, and half-precision training to optimize performance and effi-
ciency. Additionally, we discuss the software and hardware choices that were made to facilitate
seamless model training and experimentation.

3.3.1 Baselines

In order to evaluate the performance of our North-T5 models, we compare them against two
commonly used baselines in the field of extractive summarization, LEAD-3 and TextRank.
These baselines serve as a reference point to gauge the effectiveness of our models and assess
whether they yield improvements in summary quality.

LEAD-3

As previously discussed, LEAD summarization methods select a certain number of the initial
sentences of the document as the summary. In our evaluation, we use the LEAD-3 approach,
which selects the first three sentences of the input text as the summary. By including LEAD-3
as a baseline, we aim to measure the extent to which our models can surpass this rudimentary
yet efficient approach.

TextRank

TextRank, an unsupervised graph-based extractive summarization method, constructs a graph
with sentences as nodes and edges between nodes based on the similarity between sentences. It
iteratively assigns scores to each sentence node, and upon convergence, the top-ranked sentences
are selected and combined in their original order from the source text, resulting in a summary.
We used the Sumy library for the TextRank implementation [112]. By incorporating TextRank
as a baseline, we aim to determine if our models can outperform this more sophisticated method
in terms of coherence and structure.

3.3.2 North-T5 models

The decision was made at an early stage that training a Norwegian language model (LM) from
the ground up would be beyond the scope of this thesis due to the computational expense

Page 50 of 101

involved in training such models from the ground up. Fortunately, a series of Norwegian T5
models, referred to as North-T5 in this thesis, have been trained and made publicly available
by Per Egil Kummervold [113]. These models have been privately trained by Kummervold and
are currently in use at the National Library of Norway.

Instead of training the models from scratch, the North-T5 models used in this thesis were built
upon a variant of the original T5 model named mT5 [108]. The mT5 model is a multilingual
adaptation of the T5 architecture, which has been trained using a similar methodology as de-
scribed in the original T5 paper. The distinction lies in the expansion of the training data to
encompass 101 languages, including Norwegian.

While no thorough evaluation of the models has been performed by either us or Kummervold,
they have both been fine-tuned on classifying which political party Norwegian political tran-
scripts belong to [114]. Kummervold reports an F1 score of 73.2 for the mT5-base compared
to 85.3 for the North-T5-base [113]. This gave us the impression that the North-T5 models are
more capable of modelling the Norwegian language than mT5 and that they should act as a
solid basis for our summarization task.

For tokenization, the models employ the sub-word SentencePiece tokenizer described in Section
2.1.1 which is commonly used for non-English and multilingual models. A vocabulary size of
250 112 tokens is used for all of the models.

The North-T5 models were fine-tuned on the Norwegian Colossal Corpus (NCC), a compilation
of multiple Norwegian corpora released by the AI-lab of the National Library of Norway [115].
The majority of the training data (49GB in total) consists of scanned newspapers, transcripts
from the Norwegian parliament, and books. In addition to the NCC, supplementary data was
included from Common Crawl and English Wikipedia to enhance the multilingual capabilities
of the models [113]. The different steps from mT5 to our fine-tuned summarization models are
shown in Figure 3.2.

Figure 3.2: Visual explanation of the different training stages and data used to generate create
our final models based on mT5 and North-T5.

Five unique models of different sizes were introduced (small, base, large, XL, XXL). The
tiniest model, t5 small NCC lm, comprises 300M parameters, whereas the most substantial,
t5 xxl NCC lm, consists of 13B parameters. The architectures for all these models are alike
but vary in the dimensions of numerous components within the transformer structure. For in-
stance, the base version is composed of 12 encoder and decoder blocks with 12 attention heads
in multi-head attention layers, while the large version features 24 encoder and decoder blocks
with 16 attention heads.

This thesis will focus on the base and large variants (referred to as T5-Base and T5-Large) of
the North-T5 models, consisting of 580M and 1.2B parameters, respectively. The decision to

Page 51 of 101

train only the base and large North-T5 models was influenced by the limited computational
resources available. Training larger models such as XL or XXL would have required access to
more powerful hardware and a higher budget, which was not feasible in this case. Thus, we fo-
cused on base and large models, which still allowed us to explore the potential improvements in
summarization performance while keeping the computational requirements manageable. Train-
ing two different models with different parameter counts should also give us an idea of how the
performance would scale if the larger XL and XXL were to be trained in the future.

3.3.3 T5 Training procedure

The training procedure for fine-tuning the North-T5 models for abstractive summarization
incorporated several crucial considerations. Due to limited computational resources, hyper-
parameters were not explicitly fine-tuned for optimal performance. Nonetheless, the selected
configurations aimed to facilitate a reliable and robust training process.

In a similar fashion to the original T5 paper [3], we inserted the prefix ”oppsummer: ” (”sum-
marize: ” in English) at the beginning of the text to be summarized. We later realized that
this was most likely unnecessary and is only needed when training a model to perform multiple
tasks simultaneously.

Model inputs were processed by limiting the length of the input text to the first 512 tokens,
ensuring a consistent input size for training. This truncation allows the model to efficiently
process the data while maintaining manageable computational requirements. However, this
method has the drawback of discarding data, since any tokens beyond the limit are removed
from the input.

To mitigate overfitting to the training set, we employed a dropout strategy, in which 10% of the
neurons were dropped out following the layer normalization layers. This approach is consistent
with the method used in the training of mT5 models, as described by Xue et al. [108]. Applying
dropout aids in reducing overfitting by adding a form of regularization, which encourages the
model to learn more robust representations and prevents it from relying too heavily on any
single neuron.

An adaptive learning rate was utilized, with the optimizer employing the AdamW algorithm
[70] at a learning rate of 5e-5. A linear scheduler was implemented to adjust the learning
rate during training. The application of a linear scheduler allows for a gradual and controlled
decrease in the learning rate throughout the training process. This can aid in mitigating the
risk of being trapped in local minima and improving the chances of converging towards a more
optimal solution.

Early stopping was employed as a regularisation technique to prevent overfitting and ensure
convergence during the training process. Early stopping involves tracking a performance metric
throughout the training and ceasing the training process once this metric ceases to improve or
begins to deteriorate. We tracked performance on the validation loss, calculated using cross-
entropy on the validation set after each epoch. Early stopping would be activated if the valida-
tion loss did not decrease for two epochs meaning that the best model would have the weights
from two epochs before.

Gradient accumulation was utilized over four steps in the training process, which enabled the
aggregation of gradient values from four mini-batches before performing a single weight update.
This approach facilitates training with larger effective batch sizes without increasing memory

Page 52 of 101

requirements, as gradients are computed and stored for multiple mini-batches before being av-
eraged and applied in a single update step. This was done to help in mitigating the effects
of noisy gradient estimates, which might lead to more stable and efficient optimization during
training,

We implemented half-precision training by employing 16-bit floating-point numbers in place of
the usual 32-bit values [116], enabling us to speed up the training process and decrease memory
consumption with minimal impact on accuracy.

3.3.4 Software and Hardware

Software

This section covers the main software and Python modules used for training the T5 models. A
full list of Python modules used is found in Table A.1.

In this study, we employed various libraries developed by Huggingface for training the models.
Huggingface is an American company that creates open-source software for working with trans-
former models. At the core of the Huggingface ecosystem is the ’transformers’ Python module
[117], which provides access to thousands of pre-trained models and equips users with essential
tools for training new models. This module supports two distinct backends, PyTorch [118] and
TensorFlow [119], affording flexibility in the selection of underlying frameworks. Drawing from
our previous positive experiences with PyTorch, particularly its easy and dependable configu-
rations on Nvidia GPUs, we opted to utilize this backend for this thesis.

PyTorch is a widely-adopted open-source machine learning library primarily developed by Meta
(formerly Facebook)’s AI Research lab (FAIR) [118]. PyTorch offers a comprehensive ecosystem
for developing deep learning models, advanced tensor computations with GPU acceleration, and
an extensive toolkit for constructing neural networks. A distinguishing feature of PyTorch is
its dynamic computational graph, also known as ”eager execution,” which facilitates a more
intuitive and flexible development process. Moreover, it enables seamless integration with nu-
merous other libraries and frameworks within the machine learning ecosystem.

Closely associated with the ’transformers’ module is the ’datasets’ Python module from Hug-
gingface, which includes efficient loaders for loading and creating datasets. Both pre-trained
models and datasets can be uploaded to the HuggingFace Hub, enabling easy sharing. The
North-T5 models described earlier are accessible on the Hub as of April 5, 2023, and our cu-
rated datasets have also been shared.

In addition to the aforementioned tools, we employed DeepSpeed [120] for enhancing the train-
ing efficiency of our models. DeepSpeed is an open-source library developed by Microsoft that
aims to optimize the performance of large-scale model training. It is integrated into ’transform-
ers’ allowing us to take advantage of its optimizations while preserving the original workflow
of the HuggingFace ecosystem. By incorporating advanced techniques such as FlashAttention,
gradient accumulation, mixed-precision training, and distributed training strategies, DeepSpeed
significantly reduces the memory footprint and accelerates training times for deep learning mod-
els. Moreover, it supports flexible and customizable training configurations, making it compat-
ible with a wide range of models and applications.

To effectively monitor the training performance of our models and streamline experiment man-
agement, we utilized Weights & Biases (WandB) [121]. WandB is a versatile, open-source
platform designed to facilitate easy tracking of model training progress, performance metrics,

Page 53 of 101

and hyperparameters. With seamless integration into the HuggingFace ecosystem and PyTorch,
WandB efficiently records metrics for each training run and provides comprehensive visualiza-
tions.

Hardware

After deciding that we wanted to focus on the North-T5 base and large models with 580M and
1.2B parameters, we understood that efficient experimentation necessitated GPU acceleration.
Specifically, to accommodate the large-scale nature of these models, we required multiple GPUs
equipped with substantial amounts of VRAM, which would enable us to train the models using
higher batch sizes. Utilizing GPUs for training would significantly expedite the process, allow-
ing for quicker model convergence and reducing the time spent on iterative experimentation.

To handle the challenges described above, we decided on renting GPU instances from vast.ai.
Vast.ai is a cloud computing platform that specializes in providing on-demand access to GPU
resources for machine learning and deep learning applications. This platform allows users to rent
GPU resources from a diverse marketplace of contributors, enabling cost-effective and scalable
access to high-performance computing resources. Due to the varying availability of the instances
on vast.ai, the models described in this section were trained on different instances with different
GPUs. A full overview of the different hardware setups used for training each T5 model is
provided in Table 4.4

3.4 Optimizing Decoding Parameters

As highlighted in Section 2.6, the selection of tokens in the decoding process plays a crucial
role in determining the quality of the resulting summaries. While the straightforward greedy
approach may yield acceptable results, it often generates repetitive and less inventive sequences.

To determine the optimal token decoding parameters for producing high-quality summaries, we
conducted a search for the most suitable configurations. Although the evaluation of summary
quality is subjective, we relied on a range of computed metrics for each configuration to guide
our selection. We had to perform this parameter search on all four models trained and identify
the best parameters for each model as it was no guarantee that the same generation parameters
would be the same for all four.

We manually devised 12 different parameter configurations, encompassing the various settings
covered in Section 2.6. These configurations can be broadly categorized into two main strate-
gies: generation using beam search and generation through sampling from softmax probabilities.
Furthermore, we included the naive, greedy generation technique as a benchmark for compari-
son. A comprehensive overview of these configurations can be found in Table D.5.

We assessed the performance based on four ROUGE metrics, namely ROUGE-1, ROUGE-2,
ROUGE-L, and ROUGE-LSum. ROUGE-1 was the primary metric we used, due to it being the
most general of the 4 ROUGE metrics measured as it primarily measures the overlap between
single words and not n-grams. If different parameters had similar ROUGE-1 scores, we looked
at the ROUGE-2 as a tiebreaker.

Page 54 of 101

vast.ai

3.5 Evaluation

The final evaluation of the models, employing the optimized generation parameters, was carried
out using a two-fold approach: automatic evaluation with ROUGE metrics and human evalu-
ation. This combination enabled us to benefit from the advantages of reference-based metrics,
such as ROUGE, while also including human assessments to verify the metrics and gain a more
comprehensive understanding of the models’ behaviour.

3.5.1 Automatic Evaluation

The primary metric we wanted to focus on when evaluating was the different ROUGE met-
rics. To calculate them, we generated predictions for each document in the test set. For the
T5-models, the optimal generation parameters found using the methods in the previous section
were employed for each model. We then compared the generated summaries to the reference
summaries to compute the corresponding ROUGE scores. Simultaneously, we recorded the aver-
age length of the generated summaries as well as the average time required to generate a sample.

3.5.2 Human evaluation

We conducted a manual evaluation on a subset of the generated summaries from each model,
driven by two primary motivations. Firstly, we aimed to examine the correlation between our
assigned scores and the ROUGE metrics for the summaries. While ROUGE metrics gener-
ally correlate with human evaluations, they can be fragile, as they may assign low scores to
summaries with the same semantic meaning but different wordings or phrasings. Secondly, we
sought to gain a deeper understanding of the model’s behaviour, identifying its strengths and
weaknesses.

Due to the time-consuming nature of human evaluation, we decided to assess a subset of the
data. For each of the two datasets, we selected samples from the test set based on the perfor-
mance of the large variant models (Large-SNL and Large-CNN/DM): the top 5 best ROUGE-1
scores, the 5 worst ROUGE-1 scores, and 5 randomly chosen documents. This approach ensured
that all models would be assessed on a total of 15 documents from either the SNL or CNN/DM
datasets, providing a representative sample for evaluation purposes.

Furthermore, to measure performance on out-of-domain data where the models were expected
to perform worse, we extracted articles from various sources on different websites. In total,
we downloaded 6 articles: 2 from Aftenposten (a Norwegian newspaper), 2 from Norwegian
Wikipedia, 1 from Kvinneguiden (a Norwegian forum), and 1 from Komplett.no (a Norwegian
online retailer).

We adopted the methodology proposed by Grusky et al. [27] in their Newsroom paper, as
discussed in Section 2.2.4. Our evaluation framework encompasses four key dimensions: In-
formativeness, Relevance, Fluency, and Coherence, as outlined in Table 3.1. Additionally, we
introduced a fifth criterion, Factuality, to address the issue of hallucination frequently encoun-
tered in large language models, which tend to generate plausible yet factually inaccurate text
[122].

We conducted the evaluation ourselves, rating each dimension on a scale from 1 to 5, where 1
represents the lowest score and 5 indicates the highest. The scores were then aggregated for
every model and data subset to provide a comprehensive assessment of their performance.

Page 55 of 101

Dimension Prompt

Informativeness How well does the summary capture the key
points of the article?

Relevance Are the details provided by the summary con-
sistent with details in the article?

Fluency Are the individual sentences of the summary
well-written and grammatical?

Coherence Do phrases and sentences of the summary fit
together and make sense collectively?

Factuality To what degree the summary is truthful, is the
summary free from hallucinations?

Table 3.1: Human evaluation criteria for summaries used by Grusky Et. Al [27] as well as
our own dimension evaluating factuality. The dimension represents the different categories we
measured the performance on and the prompt is the instruction for evaluating each dimension

3.5.3 Model Abstractiveness

Similarly to our approach for assessing the abstractiveness of reference summaries in the datasets,
we computed coverage, density, and match ratio for the generated summaries as well. The ra-
tionale behind this analysis is to gain a deeper understanding of the abstractive summarization
models’ functioning. As previously noted, these models might rely solely on extracting sen-
tences and phrases rather than generating novel ones. Given that the models are trained on
datasets with specific degrees of abstractiveness in their reference summaries, it is reasonable
to anticipate that the summaries produced by the models would exhibit similar characteristics.

Page 56 of 101

CHAPTER 4

RESULTS

This chapter will review the results from the different methodologies used, but a more detailed
analysis will be covered in Chapter 5. The results of the data curation process and the results
of the data exploration process will be shown in Section 4.1. The results of summarization
modelling and hyperparameters for token decoding will be covered in Sections 4.2 and 4.3. The
final evaluation using ROUGE and human evaluation will be shown in Section 4.4

4.1 Data exploration

This section provides an overview of the results of the dataset curation process as well as the
characteristics of the datasets.

Table 4.1 provides an overview of the number of samples in the different subsets for SNL and
CNN/DM.

The initial exploration of SNL.no’s sitemaps resulted in a collection of 168,685 URLs within
the domain. After filtration, the final dataset, spanning all splits, comprised a total of 12,993
samples. After performing the splitting of the samples, this yielded 10 874 train samples, 819
validation samples and 1300 test samples.

56 358 samples from the CNN/DM dataset got translated into Norwegian using the pre-trained
OPUS-MT model. After performing the splitting of the samples, this yielded 47 171 train
samples, 3551 validation samples and 5636 test samples.

Dataset # Samples

Train Validation Test Total

SNL 10 874 819 1300 12 993
CNN/DM 47 171 3551 5636 56 358

Table 4.1: Number of samples in the different splits of SNL and CNN/DM.

4.1.1 Article and Summary Lengths

Table 4.2 shows the average number of characters for the two datasets as well as the English
version of CNN/DM and the compression rate (ratio between article and summary lengths) for

57

each dataset.

Avg. Num. of Chars.

Dataset Article Summary Compression

SNL 1968 239 8.23
CNN/DM (English) 4034 295 13.67
CNN/DM (Norwegian) 3657 281 13.01

Table 4.2: Average number of characters in articles and reference summaries and average com-
pression ratio

The distributions of the number of tokens generated with the North-T5 subword tokenizer are
shown in Figure 4.1 for SNL and Figure 4.2 for CNN/DM.

Figure 4.1: Token distributions generated with the North-T5 tokenizer for SNL

Page 58 of 101

Figure 4.2: Token distributions generated with the North-T5 tokenizer for CNN/DM

4.1.2 Abstractiveness

The results on measuring the abstractiveness of the generated datasets are shown in Table 4.3
and the distributions of coverage and density in Figure 4.3. Higher values indicate a lower level
of novel words and sequences in the reference summaries.

Dataset Match Ratio Coverage Density

SNL 0.00 0.57 0.91
CNN/DM 0.01 0.80 2.45

Table 4.3: Comparison of models and datasets using match ratio based on Levenshtein distance,
coverage, and density metrics.

Page 59 of 101

Figure 4.3: KDE plots for CNN/DM Nor and SNL with density on the x-axis and coverage on
the y-axis. Red indicates a greater number of samples in that area.

4.2 Training Results

The results of fine-tuning the different North-T5 models on SNL and CNN/DM are covered in
this section. Table 4.4 shows the number of epochs and time elapsed until early stopping was
activated for each model. The evolution of loss values throughout training for each model is
shown in Figure 4.4. Similarly, the evolution of ROUGE scores through training is shown in
Figure C.1 in the Appendix.

Model GPUs
Batch Size
(per device)

Total Batch Size Epochs Time elapsed

T5-Base-SNL 4 x GTX 3090 4 64 19 2h 33m
T5-Large-SNL 4 x A40 4 64 13 2h 30m
T5-Base-CNN/DM 4 x A40 16 256 15 4h 0m
T5-Large-CNN/DM 4 x A40 4 64 16 16h 34m

Table 4.4: Fine-tuning times and GPUs utilized for different models. The total batch size
is calculated with a gradient accumulation of 4 (a technique where the gradient updates are
calculated over multiple mini-batches and applied once, which effectively simulates larger batch
sizes).

Page 60 of 101

Figure 4.4: Training and validation losses for T5 models during training. The blue lines represent
the training loss, while the orange lines represent the validation loss. The vertical dashed red
line indicates the epoch where the model achieved the minimum validation loss, which is used
for early stopping. For Base-CNN/DM, the loss values were not logged in wandb for the final
epoch for unknown reasons.

4.3 Token Decoding Parameters

The best-performing token decoding parameters for each model are shown in Table 4.5 along
with the different ROUGE scores on the validation sets. Performance for all of the configurations
are shown in Section D.1

Page 61 of 101

Model Optimal Config R-1 R-2 R-L R-Lsum

T5-Base-SNL Beam No-Repeat N-Gram Size: 3 34.01 15.72 28.84 31.6
T5-Large-SNL Beam No-Repeat N-Gram Size: 3 36.02 17.39 30.64 33.41
T5-Base-CNN/DM Beam No-Repeat N-Gram Size: 3 32.28 12.22 22.01 29.84
T5-Large-CNN/DM Beam No-Repeat N-Gram Size: 5 33.27 13.05 23.03 30.86

Table 4.5: Best performing token decoding parameters for each model

4.4 Evaluation

In this section, we will present our findings during the evaluation of the performance, and
abstractiveness, based on metrics, heuristics as well as human evaluation.

4.4.1 ROUGE metrics

Table 4.6 shows the ROUGE scores for each of the models on SNL and CNN/DM as well as
the average length of generated summaries and runtime for base and large T5 variants.

Model Dataset R-1 R-2 R-L R-Lsum Avg. Runtime
Gen. Length per Sample (s)

LEAD-3 SNL 21.25 3.17 13.60 13.61 69.7 -
TextRank-3 SNL 20.16 3.14 12.36 12.35 107.9 -
T5-Base-SNL SNL 33.91 15.42 28.71 31.33 44.95 0.277
T5-Large-SNL SNL 35.07 16.74 29.86 32.50 41.73 0.486

LEAD-3 CNN/DM 29.82 10.84 18.84 18.83 72.61 -
TextRank-3 CNN/DM 23.79 6.46 14.47 14.48 130.56 -
T5-Base-CNN/DM CNN/DM 32.53 12.23 22.13 30.05 94.47 0.449
T5-Large-CNN/DM CNN/DM 34.02 13.55 23.67 31.52 95.95 0.765

Table 4.6: ROUGE metrics calculated on the train sets of SNL and CNN/DM. Bald numbers
indicate the best-performing model for a metric

4.4.2 Human Evaluation

Tables 4.7 and 4.8 depict the results of the human evaluation performed. The results are divided
into the three different subsets (Bottom R-1, Top R-1 and Random) and the two different T5
models trained. The R-1 scores for each subset are also included.

The evaluation results for out-of-domain samples mentioned in Section 3.5.2 can be found in
Table G.1 in the Appendix.

Page 62 of 101

SNL Human Evaluation Results

Subset Model Semantic Syntactic Avg. R-1

INF REL FLU COH FAC

Bottom R-1 T5-Base-SNL 3.00 4.10 5.00 3.50 4.60 4.04 14.50
(5 samples) T5-Large-SNL 2.90 4.10 5.00 4.17 4.10 4.05 8.53

Top R-1 T5-Base-SNL 1.40 1.20 5.00 4.40 1.20 2.64 94.44
(5 samples) T5-Large-SNL 1.40 1.40 5.00 5.00 2.30 3.02 97.94

Random T5-Base-SNL 3.00 3.40 5.00 5.00 3.00 3.88 36.10
(5 samples) T5-Large-SNL 3.30 3.70 4.60 5.00 3.20 3.96 34.61

Table 4.7: Results of human evaluation across 5 dimensions on SNL. Results are divided into
three different subsets based on the five highest and lowest R-1 scores for T5-Large and a subset
of 5 random samples

CNN/DM Human Evaluation Results

Subset Model Semantic Syntactic Avg. R-1

INF REL FLU COH FAC

Bottom R-1 T5-Base-CNN/DM 3.60 4.60 4.60 4.10 5.00 4.38 8.16
(5 samples) T5-Large-CNN/DM 3.40 4.60 5.00 4.10 5.00 4.42 3.34

Top R-1 T5-Base-CNN/DM 1.00 1.00 5.00 5.00 1.00 2.60 61.94
(5 samples) T5-Large-CNN/DM 1.00 1.00 4.60 4.60 1.00 2.44 99.65

Random T5-Base-CNN/DM 3.10 4.20 3.80 4.20 4.60 3.98 30.58
(5 samples) T5-Large-CNN/DM 4.20 5.00 4.40 4.60 5.00 4.64 43.47

Table 4.8: Results of human evaluation across 5 dimensions on CNN/DM. Results are divided
into three different subsets based on the five highest and lowest R-1 scores for T5-Large and a
subset of 5 random samples

4.4.3 Model abstractiveness

Similarly to in the dataset exploration Section (4.1.2), we calculated the Match Ratio, Coverage
and Density to measure the level of abstractiveness on the generated summaries from the differ-
ent models. The values calculated are shown in Table 4.9 and a KDE plot of the distributions
of coverage and density in Figure 4.5.

Model Dataset Match Ratio Coverage Density

T5-Base-SNL SNL 0.01 0.77 3.39
T5-Large-SNL SNL 0.01 0.73 2.44

T5-Base-CNN/DM CNN/DM 0.24 0.98 7.13
T5-Large-CNN/DM CNN/DM 0.26 0.98 9.79

Table 4.9: Comparison of models and datasets using match ratio based on Levenshtein distance,
coverage, and density metrics

Page 63 of 101

Figure 4.5: KDE plots for models trained on CNN/DM and SNL with density on the x-axis and
coverage on the y-axis. Red indicates a greater number of samples in that area. Values were
generated on the samples in the test sets.

Page 64 of 101

CHAPTER 5

DISCUSSION

This section offers an in-depth analysis of the results derived from the previous sections. Our
discussion is focused on understanding the insights and implications of these findings. Key areas
of focus include the nature of the generated datasets, the training and optimization process for
the T5 models intended for abstractive summarization, and how performance was evaluated
using both ROUGE metrics and human evaluation. We also touch upon potential directions
for future work.

5.1 Datasets

The first objective formed was based on exploring and identifying datasets which could be used
to train a machine-learning model for automatic summarization. Since we found no suitable
existing datasets and could not get access to Aftenposten Oppsummert from Schibsted, we
ended up generating two datasets to fulfil the objective. The first dataset was generated by
scraping the Store Norske Leksikon (SNL) website, and the second one was a machine-translated
version of the CNN/Daily Mail dataset. This section discusses the quality and characteristics
of the two datasets.

5.1.1 SNL

The SNL dataset was generated by scraping Store Norske Leksikon, using the first paragraphs
as reference summaries and the remaining article content as full documents. This process re-
sulted in a total of 12,993 samples, which were split into 10,874 training samples, 819 validation
samples, and 1,300 test samples. The SNL dataset appears to be of high quality, with reference
summaries effectively capturing the main ideas and facts from the corresponding articles. Nev-
ertheless, a few low-quality samples were identified during the manual evaluation following the
model training.

Two categories of articles, namely those related to Norwegian names and specific dates, did
not contain appropriate reference summaries. Articles about names typically include statistics
and historical context about the name, while articles about dates cover significant events and
notable births or deaths that occurred on that particular date. Instead of containing proper
summaries, the reference summaries included the text: “These were published in 2009 and have
not been updated since. The editors of Store Norske Leksikon have not decided whether we
should keep these articles but are leaving them out for now.” The articles ”Borgar” and ”18.
Juni” in Section E.2 serve as examples of these two categories of articles. Interestingly, despite
these articles having reference summaries that do not accurately represent the article content,

65

the models trained on SNL manage to produce summaries with near-perfect ROUGE scores
(90), as they have learned to mimic the similarities in summaries across these article classes.

5.1.2 CNN/DM

The English version of CNN/DM serves as a widely recognized benchmark for models trained
on extractive and abstractive summarization tasks. Our version was translated to Norwegian
using the procedure explained in Section 3.1.2. Overall, the quality of the translated sentences
in the samples appears satisfactory.

As shown in Table 4.2, the Norwegian translations of both the articles and summaries have fewer
characters on average. This aligns with previous research indicating that Norwegian translations
often are 5%-10% shorter compared to English [14]. The summaries exhibit a slightly higher
compression rate compared to the English version, with the Norwegian having a compression
rate of 13.01 and the English 13.67. The increased compression rate in the Norwegian summaries
may indicate that they contain more concise and focused information. A more comprehensive
analysis and experimentation could provide further insights into the effects of these differences
on the performance of models trained on the translated dataset.

Abstractiveness

The density and coverage for the datasets shown in Table 4.3 show that there is a clear dis-
tinction between the SNL and CNN/DM datasets; CNN/DM exhibits a significantly higher
extractiveness level compared to SNL. Specifically, the coverage for CNN/DM is 0.80, indicat-
ing that 80% of the words in its summaries are also found in the corresponding articles. In
contrast, this figure drops to 57% for SNL.

The difference in density, which considers the average length of extracted sequences a word in the
summary belongs to, is even more pronounced. The average length is 2.45 words for CNN/DM,
while it is only 0.91 words for SNL. This substantial difference in density further underscores the
higher extractiveness of CNN/DM. Indeed, these findings suggest that our translated version of
CNN/DM shares many characteristics with its English counterpart, particularly in terms of the
relatively low level of abstractiveness in the reference summaries [27, 102]. These characteris-
tics can also be spotted in the KDE plots of density and coverage in Figure 4.3. Especially the
density is distributed around a greater area for CNN/DM than for SNL, with a greater number
of samples having densities between six and sixteen.

We also assessed abstractiveness using our novel metric, Match Ratio, which measures overlap
at the sentence level, as opposed to the word or sequence level in the case of coverage and
density, respectively. Interestingly, the Match Ratio for both datasets is close to zero, as shown
in Table 4.3. This implies that there are almost no instances of entire sentences from the articles
being included verbatim in the reference summaries.

5.2 Modelling

We successfully accomplished the second objective of this thesis, which entailed designing and
implementing an automatic summarization model for Norwegian text using a transformer model.
We achieved this by fine-tuning pre-trained North-T5 transformer models on the generated
datasets discussed in the previous section. Following fine-tuning, we optimized the token de-
coding parameters by conducting a search across various configurations. Alongside training
and optimizing the T5 models, we established two extractive summarization baselines, namely

Page 66 of 101

LEAD and TextRank, which gave us some good data points to measure the effectiveness of the
T5 models. This section discusses the training procedure for the four T5 models trained as well
as the process of finding the best-performing token decoding parameters.

5.2.1 Training

Fine-tuning times

The fine-tuning times and hardware requirements for different models, as displayed in Table 4.4,
show significant variations in the time and resources needed for optimal performance. T5-Base-
SNL was trained using four GTX 3900 GPUs with 24 GB VRAM each, while the remaining
models utilized four A40 GPUs with 48 GB VRAM each. This discrepancy in hardware used
makes it difficult to directly compare the training times among the various model runs. How-
ever, it is evident that the training times for models on the two datasets differ substantially, even
though the models share the same number of parameters.For example, the large variants with
1.2B parameters, trained with the same total batch size (64), took more than six times longer
to reach early stopping (16h 34m for Large-CNN/DM compared to 2h 30m for Large-SNL),
due to the differences in the complexity and size of the datasets. Although Large-CNN/DM
needed three additional epochs to converge (16 vs. 13), this disparity is mainly due to the
characteristics of the respective datasets.

The primary factor contributing to this difference is the discrepancy in the number of samples in
the training sets, as presented in Table 4.1. The SNL dataset contains 10,874 samples, whereas
the CNN/DM dataset comprises 47,171 samples. This larger training set size for CNN/DM
significantly increases the time required for fine-tuning the model. Furthermore, as depicted by
the token length distributions in Figures 4.1 and 4.2, the average number of tokens in an article
for CNN/DM is 1,044, while for SNL, it is 556. Despite applying truncation to the first 512
tokens, models trained on the CNN/DM dataset must process a greater number of tokens on
average, leading to longer training times.

Loss results

The visualization of the loss values on the train and validation sets throughout training, as de-
picted in Figure 4.4, demonstrates that the training set loss gradually decreased throughout the
training process. Interestingly, the validation set loss, which was computed at the end of each
epoch, dropped rapidly for the first few epochs for all four models but saw very little reduction
for the remainder of the training. Notably, the plot reveals that the validation loss was lower
for all models except Large-CNN/DM, which surpassed the validation loss towards the end of
training. A lower validation loss than training loss indicates that the models perform better
on unseen samples than on the training data. The primary reason for this is likely the use of
dropout during the training process. Models employing dropout deactivate a subset of neurons
during training, while all neurons remain active when calculating the validation loss.

Significant hyperparameters, such as dropout rate, optimizer, and others, were kept consistent
across all training runs and were not tuned for optimal performance. Although the hyperpa-
rameters were selected based on prior research and best practices, it is possible that further
optimization could have led to even lower loss values or reduced training times.

5.2.2 Optimal Token decoding parameters

Across all models, we found that the most effective decoding parameters were a combination
of beam search and avoiding repeating n-grams as shown in Table 4.5. T5-Large-CNN/DM

Page 67 of 101

achieved the best result without repeating n-grams of size 5, while the other models performed
optimally without repeating n-grams of size 3. There is a potential for achieving even bet-
ter results by experimenting with a larger beam width (number of beams) during the beam
search process. In our experiments, we limited the beam width to 5, which might constrain the
search space and potentially exclude more suitable candidate sequences. A larger beam width
would expand the search space, increasing the likelihood of discovering more optimal summaries.

Prior to our experiments, we anticipated that recent sampling-based token decoding techniques
like eta-cutoff or nucleus sampling would yield superior results due to their widespread adop-
tion and impressive results reported in their papers. However, the results show that sampling
techniques underperformed compared to both greedy and various beam search configurations
for almost every model based on the ROUGE scores. This subpar performance may likely be
attributed to the nature of summary generation, which is less reliant on creativity than other
text-generation tasks such as question-answering or story generation.

The main objective of a summarization model is to produce coherent and relevant summaries
that accurately capture the key ideas of the source documents. Consequently, this task does
not require a high degree of creativity, which may explain the weaker performance of sampling
methods compared to more structured and focused approaches like beam search combined with
the avoidance of repeating n-grams. Additionally, the lower ROUGE scores could be due to
the tendency of sampling methods to select semantically similar words with different surface
forms, such as choosing ’automobile’ instead of ’car’ when ’car’ is present in the reference sum-
mary. This discrepancy can result in a lower match between the generated summary and the
reference, thus impacting evaluation metrics. It is worth noting that ROUGE has a known
weakness in capturing the similarity between words with similar meanings but different surface
forms. Ideally, we should have also conducted human evaluations of the different token decoding
parameters, but such an approach would have been extremely time-consuming.

As explained in Section 3.4, we manually created 12 different parameter configurations compris-
ing greedy decoding, beam search, and sampling methods. While this approach allowed us to
compare various strategies, employing a more sophisticated optimization process, such as using
Optuna [123] or other hyperparameter optimization frameworks, might lead to improved hyper-
parameter settings. With Optuna, we could define a search space for the decoding parameters,
including beam width and top-p values, and then apply an efficient optimization algorithm, like
the Tree-structured Parzen Estimator (TPE) [124] or Bayesian optimization [125], to explore
the hyperparameter space.

Such optimization techniques can systematically explore a vast hyperparameter space, identify-
ing configurations that enhance overall model performance more effectively than manual tuning.
By leveraging advanced optimization methods, we may potentially discover decoding strategies
that further improve the quality of generated summaries while balancing computational re-
quirements and overall model efficiency. However, it is important to note that sophisticated
optimization on the validation set does not guarantee superior performance on the test set due
to the possibility of overfitting. Employing a more rigorous evaluation methodology, such as
cross-validation or held-out test sets, could provide more reliable estimates of model performance
and help mitigate the risk of overfitting.

5.3 Evaluation

The final objective was to evaluate the developed summarization models on both the quantita-
tive ROUGE metric and human evaluation. We did this by calculating ROUGE scores on the

Page 68 of 101

test set as well as performing human evaluation of different subsets of the datasets.

5.3.1 ROUGE Scores

Table 4.6 compares ROUGE scores between the different models trained on SNL and CNN/DM.

Across both the SNL and CNN/DM datasets, we found that the fine-tuned T5-Large models,
with 1.2 billion parameters, consistently outperformed the T5-Base models with 580 million
parameters and the extractive summarization baselines (LEAD-3 and TextRank) for all four
ROUGE metrics. Intriguingly, the performance difference between T5-Large and T5-Base mod-
els was relatively small, despite the large model having nearly twice as many parameters. This
finding is consistent with the scaling laws for neural networks, which propose that although in-
creasing the number of parameters can improve performance, it seldom guarantees a significant
enhancement proportional to the increase in parameters [126].

Interestingly, the ROUGE scores, in descending order, were typically highest for ROUGE-1,
followed by ROUGE-L, ROUGE-Lsum, and finally ROUGE-2. This pattern can be explained
by the nature of these metrics. ROUGE-1 measures the overlap of individual words (unigrams)
between the generated summary and the reference summary, whereas ROUGE-2 takes into ac-
count the overlap of two consecutive words (bigrams). Therefore, ROUGE-2, requiring not only
the correct words but also the correct sequence, is a more stringent metric. Given that our
models often rephrase and condense information, preserving the exact wording and sequence
from the source text is challenging, resulting in lower ROUGE-2 scores.

ROUGE-L and ROUGE-Lsum, on the other hand, are based on the Longest Common Subse-
quence (LCS) between the summary and the reference, which can match phrases and sentences
of varying lengths and does not require exact sequential matching. As such, they generally yield
scores between those of ROUGE-1 and ROUGE-2. However, they still consider the order of the
words to some extent, explaining why their scores are lower than ROUGE-1 but higher than
ROUGE-2 in our results.

We also observed that the extractive baselines, LEAD-3 and TextRank-3, performed consider-
ably better on CNN/DM compared to SNL. This can be attributed to the fundamental differ-
ences in the datasets, with CNN/DM being less abstractive than SNL, as discussed in Section
5.1.2. Given that extractive methods rely on selecting existing sentences from the source text,
they excel when the main points can be effectively captured through direct extraction. In the
case of CNN/DM, crucial information is often contained within a few specific sentences, en-
abling extractive methods like LEAD-3 and TextRank-3 to produce accurate summaries. In
contrast, the more abstractive nature of the SNL dataset requires greater paraphrasing and
sentence rephrasing, posing a challenge for extractive methods and leading to their relatively
lower performance on this dataset.

Another noteworthy observation from Table 4.6 is the variation in average generation length
among the models and datasets. T5-Base and T5-Large produce shorter summaries compared
to the extractive baselines, particularly for the CNN/DM dataset. Briefer summaries may be
perceived as more concise and focused, which could be advantageous for specific applications.
However, it is vital to determine whether these shorter summaries effectively convey the neces-
sary information from the original text without omitting essential details. Subsequent analysis
and human evaluation, as discussed in the next section, will offer a deeper understanding of the
quality and informativeness of the generated summaries.

Page 69 of 101

5.3.2 Human evaluation

We conducted a human evaluation on three distinct subsets of both datasets, comprising the 5
samples with the highest and lowest R-1 scores for the large variant, and 5 randomly selected
samples. For each sample, we manually rated the quality of the summary on 5 different dimen-
sions: Informativeness, Relevance, Fluency, Coherence, and Factuality. In total, we evaluated
30 samples with two predictions for each (T5-Base and T5-Large). This time-consuming process
took several hours to complete. The results and corresponding average R-1 scores for SNL and
CNN/DM can be found in Tables 4.7 and 4.8, respectively.

The analysis of the Lowest R-1 and Top R-1 subsets revealed that ROUGE scores do not always
correlate with the average human evaluation scores. In fact, for both models, the subsets with
the highest human evaluation scores were those with the lowest R-1 scores. This discrepancy
can be attributed to well-written summaries that effectively captured the documents’ essence
but had minimal word overlap with the reference summaries. Examples of this can be found in
Appendices E.1 for SNL and F.1 for CNN/DM. These examples underscore the limitations of
reference-based metrics such as ROUGE and BLEU in accurately evaluating summary quality.
A more effective method might involve collecting multiple summaries for each article or docu-
ment, and then scoring a summary based on the highest ROUGE scores achieved among them
[127].

Given the lower-than-expected correlation between ROUGE scores and human evaluation on
the Lowest and Highest R-1 score subsets, the most reliable indicator of the models’ true per-
formance is the subset with 5 random articles selected from each dataset. For these subsets,
the large variant of North-T5 achieved a marginally higher average score on SNL (+0.12) and
a more significant margin on CNN/DM (+0.66).

We assessed summaries along two semantic dimensions: Informativeness, which gauged how ef-
fectively a summary captured the key points of the article, and Relevance, which evaluated the
consistency of the summary’s details with the article. The gap between the base and large mod-
els widened for both dimensions, suggesting that the small difference in ROUGE scores on the
test sets becomes more pronounced when evaluating meaningful summary generation. In terms
of syntactic dimensions (fluency and coherence), both models performed exceptionally well on
both datasets, indicative of a high level of understanding of the Norwegian language and syntax.

Lastly, we included Factuality as an additional dimension to address potential hallucinations
frequently exhibited by large language models. The base and large models scored equally on
SNL, while the large model achieved a +0.66 higher score on CNN/DM. The hallucinations
we observed were often challenging to identify, and in many cases, we noticed them only due
to our prior knowledge of the topic covered in an article. This illustrates why we wanted to
measure factuality. It is easy to be misled by the highly coherent and fluent text and to place
undue trust in the facts presented by language models. The dangers are especially clear with
chatGPT, a highly popular and publicly available language model, which has been shown to
hallucinate and make up facts [128].

5.3.3 Model Abstractiveness

Similarly to how we explored the level of abstractiveness in the reference summaries in the
datasets, we also calculated density, coverage and the novel match ratio (Section 2.2.3) for the
generated summaries to better understand how the models work.

As demonstrated in Table 4.9, it is evident that the generated summaries lean more towards

Page 70 of 101

extraction than their corresponding reference summaries. This is particularly noticeable in the
models trained on the CNN/DM dataset. For instance, the T5-Large-CNN/DM variant exhibits
a match ratio of 0.24, a substantial increase from 0.01 as found in the reference summaries. Its
density metric also increases to 9.78, compared to 2.45 in the reference summaries. These
increased figures suggest that the models are resorting to a more extractive approach to the
summarization task than intended from our training process, as seen with the same measures
for the reference summaries.

Several factors could account for this increase in extractiveness. First, all the models were found
to get the best ROUGE scores using beam search when selecting tokens. Previous research has
indicated that beam search can cause a strong correlation between the certainty of sequences
and a decrease in abstractiveness [129]. We did not investigate the level of abstractiveness that
might result from other token decoding techniques, such as those based on sampling. However,
it’s reasonable to anticipate that these techniques would likely yield less extractive results. This
expectation stems from the inherent randomness in the decoding process, which could poten-
tially lead to more diverse and less verbatim outputs.

Secondly, by design, ROUGE rewards n-gram overlap between the generated and reference
summaries. Consequently, this might inadvertently encourage the models to extract phrases
directly from the source document, as it is a guaranteed method of maximizing n-gram overlap
and thereby achieving higher ROUGE scores.

5.4 Out of Domain Behaviour

We generated summaries for a few samples from different sources than our fine-tuned summa-
rization models were trained on. We did this to further understand the model’s behaviour and
the effect on training on different datasets.

Upon examining the averaged scores of the models on different data (as shown in Appendix
G), one of the most striking patterns is the consistent performance of the models fine-tuned
on the CNN/DM dataset compared to models trained on SNL. Regardless of the source - be it
Aftenposten, Wikipedia, Kvinneguiden, or Komplett - the CNN/DM models displayed impres-
sive robustness and adaptability, consistently scoring high in human evaluation across all five
dimensions. This pattern suggests that the training on CNN/DM dataset, which comprises a
wide variety of news articles, might have endowed the models with a level of versatility that
enables them to effectively handle diverse text domains.

By inspecting the different summaries, we can see, in particular on Komplett.no in Appendix
G.4 that the models generate summaries which are similar to the datasets they were trained
on. For the models trained on SNL, the generated summaries read similarly to an encyclopedia
article with summaries that include the various facts covered in the article. For example, the
summary from Large-SNL starts with ”Et skjerm-og graffikkort er.. ” (”A display and graphics
card is..”) similar to how an SNL article would start. The models trained on CNN/DM on the
other hand read much more like news articles and generate summaries of the same style as when
evaluated on the CNN/DM dataset.

We also found that some of the same characteristics around the length of summaries and ab-
stractness also being applicable to these summaries generated on different domains. The sum-
maries from the CNN/DM models are longer and more thorough than for the SNL models and
also more extractive as they primarily consist of longer sequences extracted.

Page 71 of 101

5.5 Further Work

One considerable source of uncertainty in this study stemmed from the quality of certain sam-
ples within the datasets. To address this issue, future work should involve a more careful
examination, selection and pre-processing of the generated datasets before training commences.
This would involve identifying and excluding samples containing inadequate or uninformative
reference summaries, as well as improving the overall quality and consistency of the dataset.
By doing so, the reliability and robustness of the trained models can be significantly enhanced,
possibly leading to better performance in generating summaries.

The limitations of our models, which only had access to the first 512 tokens in the articles,
introduced a source of error, particularly for the CNN/DM dataset, as significant portions of
the articles were not used for summarization. Expanding this limit to, for example, 1024 tokens
would substantially increase memory usage. An alternative solution could involve adopting a
two-stage approach, akin to the one proposed by Gehrmann et al. [130], which first extracts
the most relevant portions of a document before performing abstractive summarization on the
reduced text.

LoRA (Low-Rank Adaptation) [131], a recently developed fine-tuning technique, has gained
popularity due to its ability to reduce the number of trainable parameters by up to 10,000
times while maintaining comparable performance to full fine-tuning. Similarly, LoRA could be
combined with INT8 [132], a new datatype used in machine learning based on 8-bit numbers
which further could reduce the memory usage and computational constraints we faced. Lever-
aging these techniques could enable experimentation with larger North-T5 variants, such as
those with 3B and 11B parameters, without the computational constraints encountered in this
study.

The abstractive models trained in this work can be considered black boxes, as their decision-
making processes remain largely unexplainable. While the abstractiveness metrics and human
evaluation offer some insights, many aspects of the model’s behaviour, particularly in terms
of hallucinations, remain unexplained. Further work could explore explainability methods for
transformers, such as AttentionViz which analyzes the attention weights in the network to ex-
plain behaviour [133] or model-agnostic SHAP [134], to gain a deeper understanding of the
models and potentially improve their performance.

We did not address the potential biases and toxic outputs that may arise from the trained ab-
stractive models. Investigating and mitigating biases in both the training data and the model
outputs is an essential aspect of creating responsible AI systems. Further work should focus
on detecting and understanding biases present in the generated summaries, as well as devising
methods to reduce the occurrence of toxic or harmful content. By incorporating these consider-
ations, we can enhance the ethical and social aspects of our models, ensuring that they produce
unbiased summaries.

Page 72 of 101

CHAPTER 6

CONCLUSION

This research marked the first endeavour in developing systems capable of performing abstrac-
tive summarization for the Norwegian language.

Two datasets containing articles and reference summaries were generated based on a web scrape
of Store Norske Leksikon (SNL) and translation based on a pre-trained OPUS-MT transformer
model on CNN/Daily Mail (CNN/DM), a commonly used English summarization benchmark-
ing dataset. The datasets were then used for training different summarization models. The
primary model used is a Norwegian T5 language model based on the transformer architecture.
We fine-tuned the base and large variants, containing 580M and 1.2B parameters respectively,
on the generated datasets. Token decoding parameters were optimized using the validation sets
by assessing the performance on a variety of token decoding parameters spanning beam search
and other sampling techniques. Additionally, we created two extractive baselines using LEAD-3
and TextRank.

Overall, the T5 models outperform the extractive baselines for both datasets. For the T5 vari-
ants, the large variant demonstrated the strongest performance on the different ROUGE metrics
with a ROUGE-1 score of 35.07 on SNL and 34.02 on CNN/DM. In our human evaluation, where
summaries were ranked on their informativeness, relevance, fluency, coherence and factuality,
it averaged 3.96/5 on SNL and 4.64/5 on CNN/DM on randomly selected samples averaged
across all criteria measured. Although the models were trained to generate summaries using an
abstractive approach, an analysis of coverage, density, and match ratio revealed a higher degree
of extractiveness in the model-generated summaries than in the reference summaries used for
training. For instance, the T5-large model trained on CNN/DM exhibited a match ratio of 0.26
and a density of 9.79, in contrast to the reference summaries, which had a match ratio of 0.01
and density of 2.45 on CNN/DM.

When the models were tasked with generating summaries for articles from domains different
than those of SNL and CNN/DM, they were still able to produce informative content, despite
not having been exposed to similar articles during training. Moreover, the stylistic attributes of
the generated summaries seemed to reflect the characteristics of their training datasets. Specifi-
cally, models trained on SNL tended to generate summaries reminiscent of encyclopedia entries,
while those trained on CNN/DM produced summaries bearing more resemblance to news arti-
cles.

The central research question that guided this study was ”Is it possible to create a machine
learning system capable of performing abstractive summarization on the Norwegian natural lan-

73

guage?” This question emerged from a recognition of the scarcity of natural language processing
tools specifically designed for Norwegian, coupled with a desire to bridge this gap and contribute
to the advancement of Norwegian language technology. Given the results we achieved, despite
the limited computational resources and time, we can confidently affirm that it is indeed pos-
sible to create a machine learning system capable of performing abstractive summarization in
Norwegian.

The evidence lies in the satisfactory ROUGE scores and human evaluation scores our models
achieved. These scores are a testament to the models’ proficiency in generating summaries that
are not just semantically accurate but also contextually informative and linguistically coher-
ent in Norwegian. The models demonstrated an impressive ability to adapt to different text
domains and styles, a skill that underscores the versatility of our approach. Moreover, they
highlighted the potential of the T5 architecture to be fine-tuned for languages and tasks beyond
its original design, thus opening new avenues for future research and applications.

In conclusion, this study has shed light on the potential of machine learning and transformer ar-
chitectures in enhancing our ability to process and understand Norwegian text. It has broadened
the horizon of possibilities for Norwegian language technology and set a promising precedent
for further exploration in the field of abstractive summarization for Norwegian.

Page 74 of 101

BIBLIOGRAPHY

[1] Hans Peter Luhn. “The automatic creation of literature abstracts”. In: IBM Journal of
research and development 2.2 (1958), pp. 159–165.

[2] Alec Radford et al. “Improving language understanding by generative pre-training”. In:
(2018).

[3] Colin Raffel et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. 2020. arXiv: 1910.10683 [cs.LG].

[4] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[5] Hercules Dalianis and Eduard Hovy. “On Lexical Aggregation and Ordering”. In: Eighth
International Natural Language Generation Workshop (Posters and Demonstrations).
1996. url: https://aclanthology.org/W96-0508.

[6] Eugene Charniak. Statistical language learning. MIT press, 1996.

[7] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[8] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The Point: Summa-
rization with Pointer-Generator Networks”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vancou-
ver, Canada: Association for Computational Linguistics, July 2017, pp. 1073–1083. doi:
10.18653/v1/P17-1099. url: https://aclanthology.org/P17-1099.

[9] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Com-
putational Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url:
https://aclanthology.org/N19-1423.

[10] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Translation of
Rare Words with Subword Units”. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics, Aug. 2016, pp. 1715–1725. doi: 10.18653/
v1/P16-1162. url: https://aclanthology.org/P16-1162.

[11] Taku Kudo. “Subword regularization: Improving neural network translation models with
multiple subword candidates”. In: arXiv preprint arXiv:1804.10959 (2018).

75

https://arxiv.org/abs/1910.10683
https://aclanthology.org/W96-0508
https://doi.org/10.18653/v1/P17-1099
https://aclanthology.org/P17-1099
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162

[12] Taku Kudo and John Richardson. “Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing”. In: arXiv preprint
arXiv:1808.06226 (2018).

[13] Linting Xue et al. “mT5: A massively multilingual pre-trained text-to-text transformer”.
In: arXiv preprint arXiv:2010.11934 (2020).

[14] Andiamo. How much will your text expand or contract? https://web.archive.org/

web/20221209154703/https://www.andiamo.co.uk/resources/expansion-and-

contraction-factors/. Archived by https://web.archive.org on 2022-12-09. 2021.

[15] Hussain Alkharusi. “Categorical variables in regression analysis: A comparison of dummy
and effect coding”. In: International Journal of Education 4.2 (2012), p. 202.

[16] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. arXiv: 1301.3781 [cs.CL].

[17] Singerep. File:Word vector illustration.jpg — Wikimedia Commons, the free media repos-
itory. [Online; accessed 25-March-2023; modified from the original]. 2022. url: https:
//commons.wikimedia.org/w/index.php?title=File:Word_vector_illustration.

jpg&oldid=714073647.

[18] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI
blog 1.8 (2019), p. 9.

[19] Shibhansh Dohare, Harish Karnick, and Vivek Gupta. “Text summarization using ab-
stract meaning representation”. In: arXiv preprint arXiv:1706.01678 (2017).

[20] Rada Mihalcea and Paul Tarau. “TextRank: Bringing order into texts”. In: Proceedings of
the 2004 conference on empirical methods in natural language processing. 2004, pp. 404–
411.

[21] Daniel Cer et al. Universal Sentence Encoder. 2018. arXiv: 1803.11175 [cs.CL].

[22] Alexis Conneau et al. Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data. 2018. arXiv: 1705.02364 [cs.CL].

[23] Yang Liu. “Fine-tune BERT for extractive summarization”. In: arXiv preprint arXiv:1903.10318
(2019).

[24] Parth Mehta. “From Extractive to Abstractive Summarization: A Journey.” In: ACL
(Student Research Workshop). Springer. 2016, pp. 100–106.

[25] Lu Wang and Claire Cardie. “Domain-independent abstract generation for focused meet-
ing summarization”. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2013, pp. 1395–1405.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems 27 (2014).

[27] Max Grusky, Mor Naaman, and Yoav Artzi. “Newsroom: A Dataset of 1.3 Million Sum-
maries with Diverse Extractive Strategies”. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association
for Computational Linguistics, June 2018, pp. 708–719. doi: 10.18653/v1/N18-1065.
url: https://aclanthology.org/N18-1065.

[28] Tulu Tilahun Hailu, Junqing Yu, Tessfu Geteye Fantaye, et al. “Intrinsic and Extrinsic
Automatic Evaluation Strategies for Paraphrase Generation Systems”. In: Journal of
Computer and Communications 8.02 (2020), p. 1.

[29] Chin-Yew Lin. “Rouge: A package for automatic evaluation of summaries”. In: Text
summarization branches out. 2004, pp. 74–81.

Page 76 of 101

https://web.archive.org/web/20221209154703/https://www.andiamo.co.uk/resources/expansion-and-contraction-factors/
https://web.archive.org/web/20221209154703/https://www.andiamo.co.uk/resources/expansion-and-contraction-factors/
https://web.archive.org/web/20221209154703/https://www.andiamo.co.uk/resources/expansion-and-contraction-factors/
https://web.archive.org
https://arxiv.org/abs/1301.3781
https://commons.wikimedia.org/w/index.php?title=File:Word_vector_illustration.jpg&oldid=714073647
https://commons.wikimedia.org/w/index.php?title=File:Word_vector_illustration.jpg&oldid=714073647
https://commons.wikimedia.org/w/index.php?title=File:Word_vector_illustration.jpg&oldid=714073647
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/1705.02364
https://doi.org/10.18653/v1/N18-1065
https://aclanthology.org/N18-1065

[30] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation of Machine Trans-
lation”. In: Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, July 2002, pp. 311–318. doi: 10.3115/1073083.1073135. url: https:
//aclanthology.org/P02-1040.

[31] B. Dorr et al. “A Methodology for Extrinsic Evaluation of Text Summarization: Does
ROUGE Correlate?” In: IEEvaluation@ACL. 2005.

[32] Bonnie Dorr et al. “A methodology for extrinsic evaluation of text summarization: does
ROUGE correlate?” In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization. 2005, pp. 1–8.

[33] W John Hutchins. “Machine translation: A brief history”. In: Concise history of the
language sciences. Elsevier, 1995, pp. 431–445.

[34] Peter F Brown et al. “The mathematics of statistical machine translation: Parameter
estimation”. In: (1993).

[35] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].

[36] Chris Callison-Burch, Miles Osborne, and Philipp Koehn. “Re-evaluating the Role of
Bleu in Machine Translation Research”. In: Conference of the European Chapter of the
Association for Computational Linguistics. 2006.

[37] Tom Michael Mitchell et al. Machine learning. Vol. 1. McGraw-hill New York, 2007.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Communications of the ACM 60.6 (2017),
pp. 84–90.

[39] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. “Thumbs up? Sentiment classifi-
cation using machine learning techniques”. In: arXiv preprint cs/0205070 (2002).

[40] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means clustering
algorithm”. In: Journal of the royal statistical society. series c (applied statistics) 28.1
(1979), pp. 100–108.

[41] Ian T Jolliffe. “Principal component analysis: a beginner’s guide—I. Introduction and
application”. In: Weather 45.10 (1990), pp. 375–382.

[42] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[43] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
nature 518.7540 (2015), pp. 529–533.

[44] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”.
In: nature 529.7587 (2016), pp. 484–489.

[45] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[46] OpenAI. Introducing ChatGPT: Our Latest Advancement in Natural Language Process-
ing. Archived by https://web.archive.org on 2023-04-18. 2022. url: https://web.
archive.org/web/20230418171039/https://openai.com/blog/chatgpt.

[47] Jason Yosinski et al. “How transferable are features in deep neural networks?” In: Ad-
vances in neural information processing systems 27 (2014).

[48] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi: 10.
1109/CVPR.2009.5206848.

Page 77 of 101

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://arxiv.org/abs/1409.0473
https://web.archive.org
https://web.archive.org/web/20230418171039/https://openai.com/blog/chatgpt
https://web.archive.org/web/20230418171039/https://openai.com/blog/chatgpt
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

[49] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Transactions
on knowledge and data engineering 22.10 (2010), pp. 1345–1359.

[50] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny
images”. In: (2009).

[51] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), pp. 436–444.

[52] Sebastian Ruder. “Neural transfer learning for natural language processing”. PhD thesis.
NUI Galway, 2019.

[53] Gringer. File:Overfitting.svg — Wikimedia Commons, the free media repository. [Online;
accessed 22-April-2023; modified from the original]. 2023. url: https : / / commons .
wikimedia.org/wiki/File:Overfitting_svg.svg.

[54] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and
prediction. Vol. 2. Springer, 2009.

[55] Hubert L Dreyfus. What computers still can’t do: A critique of artificial reason. MIT
press, 1992.

[56] TseKiChun. File:Neural network explain.png — Wikimedia Commons, the free media
repository. [Online; accessed 27-April-2023]. 2021. url: https://upload.wikimedia.
org/wikipedia/commons/d/d2/Neural_network_explain.png.

[57] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-
tions by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[58] Sebastian Raschka and Vahid Mirjalili. Python Machine Learning, 3rd Ed. Birmingham,
UK: Packt Publishing, 2019, p. 748. isbn: 978-1789955750.

[59] Nitish Shirish Keskar et al. On Large-Batch Training for Deep Learning: Generalization
Gap and Sharp Minima. 2017. arXiv: 1609.04836 [cs.LG].

[60] Yann LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the trade. Springer,
2002, pp. 9–50.

[61] Varun Godbole et al. Deep Learning Tuning Playbook. Version 1. 2023. url: https:
//github.com/google-research/tuning_playbook.

[62] Jun Han and Claudio Moraga. “The influence of the sigmoid function parameters on the
speed of backpropagation learning”. In: From Natural to Artificial Neural Computation:
International Workshop on Artificial Neural Networks Malaga-Torremolinos, Spain, June
7–9, 1995 Proceedings 3. Springer. 1995, pp. 195–201.

[63] Sepp Hochreiter. “The vanishing gradient problem during learning recurrent neural
nets and problem solutions”. In: International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6.02 (1998), pp. 107–116.

[64] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural network”. In:
Biological cybernetics 20.3-4 (1975), pp. 121–136.

[65] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). 2020. arXiv:
1606.08415 [cs.LG].

[66] John Bridle. “Training stochastic model recognition algorithms as networks can lead to
maximum mutual information estimation of parameters”. In: Advances in neural infor-
mation processing systems 2 (1989).

[67] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfit-
ting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

Page 78 of 101

https://commons.wikimedia.org/wiki/File:Overfitting_svg.svg
https://commons.wikimedia.org/wiki/File:Overfitting_svg.svg
https://upload.wikimedia.org/wikipedia/commons/d/d2/Neural_network_explain.png
https://upload.wikimedia.org/wikipedia/commons/d/d2/Neural_network_explain.png
https://arxiv.org/abs/1609.04836
https://github.com/google-research/tuning_playbook
https://github.com/google-research/tuning_playbook
https://arxiv.org/abs/1606.08415

[68] Mads Dyrmann. Neural Network Dropout.svg. [Online; accessed 22-April-2023; modified
from the original]. 2021. url: https://commons.wikimedia.org/wiki/File:Neural_
Network_Dropout.svg.

[69] Alexander Pauls and J Yoder. “Determining optimum drop-out rate for neural networks”.
In: Midwest Instructional Computing Symposium (MICS). 2018.

[70] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2019. arXiv:
1711.05101 [cs.LG].

[71] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[72] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 2016.
arXiv: 1607.06450 [stat.ML].

[73] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].

[74] Jeffrey L Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990), pp. 179–
211.

[75] fdeloche. File:Recurrent neural network unfold.svg — Wikimedia Commons, the free me-
dia repository. [Online; accessed 27-April-2023]. 2022. url: https://upload.wikimedia.
org/wikipedia/commons/b/b5/Recurrent_neural_network_unfold.svg.

[76] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural com-
putation 9.8 (1997), pp. 1735–1780.

[77] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for
statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[78] Medhabarve. File:Basic Encoder-Decoder Architecture.png — Wikimedia Commons, the
free media repository. [Online; accessed 27-April-2023]. 2022. url: https://upload.
wikimedia.org/wikipedia/commons/f/f8/Basic_Encoder-Decoder_Architecture.

png.

[79] Savas Yildirim and Meysam Asgari-Chenaghlu. Mastering Transformers: Build state-of-
the-art models from scratch with advanced natural language processing techniques. Packt
Publishing Ltd, 2021.

[80] Yun Chen et al. A Stable and Effective Learning Strategy for Trainable Greedy Decoding.
2018. arXiv: 1804.07915 [cs.CL].

[81] Alex Graves. Sequence Transduction with Recurrent Neural Networks. 2012. arXiv: 1211.
3711 [cs.NE].

[82] Patrick von Platen. How to generate text: using different decoding methods for language
generation with Transformers. Archived by https://web.archive.org on 2023-03-28.
2023. url: https://web.archive.org/web/20230328003458/https://huggingface.
co/blog/how-to-generate.

[83] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A neural probabilistic language
model”. In: Advances in neural information processing systems 13 (2000).

[84] Ari Holtzman et al. The Curious Case of Neural Text Degeneration. 2020. arXiv: 1904.
09751 [cs.CL].

[85] Nitish Shirish Keskar et al. CTRL: A Conditional Transformer Language Model for
Controllable Generation. 2019. arXiv: 1909.05858 [cs.CL].

[86] John Hewitt, Christopher D Manning, and Percy Liang. “Truncation Sampling as Lan-
guage Model Desmoothing”. In: arXiv preprint arXiv:2210.15191 (2022).

[87] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV].

Page 79 of 101

https://commons.wikimedia.org/wiki/File:Neural_Network_Dropout.svg
https://commons.wikimedia.org/wiki/File:Neural_Network_Dropout.svg
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1502.03167
https://upload.wikimedia.org/wikipedia/commons/b/b5/Recurrent_neural_network_unfold.svg
https://upload.wikimedia.org/wikipedia/commons/b/b5/Recurrent_neural_network_unfold.svg
https://upload.wikimedia.org/wikipedia/commons/f/f8/Basic_Encoder-Decoder_Architecture.png
https://upload.wikimedia.org/wikipedia/commons/f/f8/Basic_Encoder-Decoder_Architecture.png
https://upload.wikimedia.org/wikipedia/commons/f/f8/Basic_Encoder-Decoder_Architecture.png
https://arxiv.org/abs/1804.07915
https://arxiv.org/abs/1211.3711
https://arxiv.org/abs/1211.3711
https://web.archive.org
https://web.archive.org/web/20230328003458/https://huggingface.co/blog/how-to-generate
https://web.archive.org/web/20230328003458/https://huggingface.co/blog/how-to-generate
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/2010.11929

[88] Iz Beltagy, Matthew E Peters, and Arman Cohan. “Longformer: The long-document
transformer”. In: arXiv preprint arXiv:2004.05150 (2020).

[89] Sinong Wang et al. Linformer: Self-Attention with Linear Complexity. 2020. arXiv: 2006.
04768 [cs.LG].

[90] Tri Dao et al. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-
Awareness. 2022. arXiv: 2205.14135 [cs.LG].

[91] Alexander Wettig et al. Should You Mask 15% in Masked Language Modeling? 2023.
arXiv: 2202.08005 [cs.CL].

[92] Tom B Brown et al. “Language Models are Few-Shot Learners”. In: arXiv preprint
arXiv:2005.14165 (2020).

[93] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. “Neural network acceptability
judgments”. In: Transactions of the Association for Computational Linguistics 7 (2019),
pp. 625–641.

[94] Daniel Cer et al. “SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and
Crosslingual Focused Evaluation”. In: Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017). Association for Computational Linguistics, 2017.
doi: 10.18653/v1/s17-2001. url: https://doi.org/10.18653%2Fv1%2Fs17-2001.

[95] Thomas Indrias Biniam and Adam Morén. Extractive Text Summarization of Norwegian
News Articles Using BERT. 2021.

[96] Ramesh Nallapati et al. “Abstractive text summarization using sequence-to-sequence
rnns and beyond”. In: arXiv preprint arXiv:1602.06023 (2016).

[97] Jörg Tiedemann and Santhosh Thottingal. “OPUS-MT – Building open translation ser-
vices for the World”. In: Proceedings of the 22nd Annual Conference of the European As-
sociation for Machine Translation. Lisboa, Portugal: European Association for Machine
Translation, Nov. 2020, pp. 479–480. url: https://aclanthology.org/2020.eamt-
1.61.

[98] Jörg Tiedemann. “The Tatoeba Translation Challenge–Realistic Data Sets for Low Re-
source and Multilingual MT”. In: arXiv preprint arXiv:2010.06354 (2020).

[99] Marcin Junczys-Dowmunt et al. “Marian: Fast neural machine translation in C++”. In:
arXiv preprint arXiv:1804.00344 (2018).

[100] Helsinki NLP. English-Norwegian Translation Model. Archived by https://web.archive.
org on 2023-04-07. 2023. url: https://web.archive.org/web/20230407151908/
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/d20a5002da37b291fe54a6a5b0a81b6bf2958dec/

models/eng-nor.

[101] Jon-Mikkel Korsvik and Jørgen Navjord. jkorsvik/opus-mt-eng-nor. https://huggingface.
co/jkorsvik/opus-mt-eng-nor. (Accessed on 23/01/2023).

[102] Danqi Chen, Jason Bolton, and Christopher D Manning. “A thorough examination of
the cnn/daily mail reading comprehension task”. In: arXiv preprint arXiv:1606.02858
(2016).

[103] Vincent Chen, Eduardo Torres Montaño, and Liezl Puzon. “An examination of the
CNN/DailyMail neural summarization task”. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics. 2017, pp. 2358–2367.

[104] Romain Paulus, Caiming Xiong, and Richard Socher. “A deep reinforced model for ab-
stractive summarization”. In: arXiv preprint arXiv:1705.04304 (2017).

[105] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t Give Me the Details, Just
the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization.
2018. arXiv: 1808.08745 [cs.CL].

Page 80 of 101

https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2202.08005
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653%2Fv1%2Fs17-2001
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://web.archive.org
https://web.archive.org
https://web.archive.org/web/20230407151908/https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/d20a5002da37b291fe54a6a5b0a81b6bf2958dec/models/eng-nor
https://web.archive.org/web/20230407151908/https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/d20a5002da37b291fe54a6a5b0a81b6bf2958dec/models/eng-nor
https://web.archive.org/web/20230407151908/https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/d20a5002da37b291fe54a6a5b0a81b6bf2958dec/models/eng-nor
https://huggingface.co/jkorsvik/opus-mt-eng-nor
https://huggingface.co/jkorsvik/opus-mt-eng-nor
https://arxiv.org/abs/1808.08745

[106] Bogdan Gliwa et al. “SAMSum Corpus: A Human-annotated Dialogue Dataset for Ab-
stractive Summarization”. In: Proceedings of the 2nd Workshop on New Frontiers in
Summarization. Association for Computational Linguistics, 2019. doi: 10.18653/v1/
d19-5409. url: https://doi.org/10.18653%2Fv1%2Fd19-5409.

[107] National Library of Norway. Norsk aviskorpus. https : / / web . archive . org / web /
20221126220115/https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-

sbr-4/. Archived by https://web.archive.org on 2022-11-26. 2020.

[108] Linting Xue et al. mT5: A massively multilingual pre-trained text-to-text transformer.
2021. arXiv: 2010.11934 [cs.CL].

[109] Yennie Jun. All languages are not created (tokenized) equal. May 2023. url: https:
//blog.yenniejun.com/p/all-languages-are-not-created-tokenized.

[110] Edward Loper and Steven Bird. NLTK: The Natural Language Toolkit. 2002. arXiv:
cs/0205028 [cs.CL].

[111] Vladimir I Levenshtein et al. “Binary codes capable of correcting deletions, insertions,
and reversals”. In: Soviet physics doklady. Vol. 10. 8. Soviet Union. 1966, pp. 707–710.

[112] Mǐso Belica. Automatic text summarizer. Archived by https://web.archive.org on
2023-14-02. 2023. url: https://web.archive.org/web/20230214055316/https:
//github.com/miso-belica/sumy.

[113] Per E Kummervold. t5 base NCC lm. https://huggingface.co/north/t5_base_NCC_
lm. Accessed: 2023-04-05. 2023.

[114] Per E Kummervold et al. Operationalizing a National Digital Library: The Case for a
Norwegian Transformer Model. 2021. arXiv: 2104.09617 [cs.CL].

[115] Per Kummervold, Freddy Wetjen, and Javier de la Rosa. “The Norwegian Colossal Cor-
pus: A Text Corpus for Training Large Norwegian Language Models”. In: Proceedings
of the Thirteenth Language Resources and Evaluation Conference. Marseille, France:
European Language Resources Association, June 2022, pp. 3852–3860. url: https :
//aclanthology.org/2022.lrec-1.410.

[116] Paulius Micikevicius et al. Mixed Precision Training. 2018. arXiv: 1710.03740 [cs.AI].

[117] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language Pro-
cessing. 2020. arXiv: 1910.03771 [cs.CL].

[118] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019. arXiv: 1912.01703 [cs.LG].

[119] Mart́ın Abadi et al. TensorFlow: A system for large-scale machine learning. 2016. arXiv:
1605.08695 [cs.DC].

[120] Jeff Rasley et al. “Deepspeed: System optimizations enable training deep learning models
with over 100 billion parameters”. In: Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2020, pp. 3505–3506.

[121] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available from
wandb.com. 2020. url: https://www.wandb.com/.

[122] Razvan Azamfirei, Sapna R Kudchadkar, and James Fackler. “Large language models
and the perils of their hallucinations”. In: Critical Care 27.1 (2023), pp. 1–2.

[123] Takuya Akiba et al. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. 2019. arXiv: 1907.10902 [cs.LG].

[124] James Bergstra et al. “Algorithms for hyper-parameter optimization”. In: Advances in
neural information processing systems 24 (2011).

Page 81 of 101

https://doi.org/10.18653/v1/d19-5409
https://doi.org/10.18653/v1/d19-5409
https://doi.org/10.18653%2Fv1%2Fd19-5409
https://web.archive.org/web/20221126220115/https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://web.archive.org/web/20221126220115/https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://web.archive.org/web/20221126220115/https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://web.archive.org
https://arxiv.org/abs/2010.11934
https://blog.yenniejun.com/p/all-languages-are-not-created-tokenized
https://blog.yenniejun.com/p/all-languages-are-not-created-tokenized
https://arxiv.org/abs/cs/0205028
https://web.archive.org
https://web.archive.org/web/20230214055316/https://github.com/miso-belica/sumy
https://web.archive.org/web/20230214055316/https://github.com/miso-belica/sumy
https://huggingface.co/north/t5_base_NCC_lm
https://huggingface.co/north/t5_base_NCC_lm
https://arxiv.org/abs/2104.09617
https://aclanthology.org/2022.lrec-1.410
https://aclanthology.org/2022.lrec-1.410
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1605.08695
https://www.wandb.com/
https://arxiv.org/abs/1907.10902

[125] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Optimization
of Machine Learning Algorithms. 2012. arXiv: 1206.2944 [stat.ML].

[126] Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint arXiv:2001.08361
(2020).

[127] Mousumi Akter, Naman Bansal, and Shubhra Kanti Karmaker. “Revisiting Automatic
Evaluation of Extractive Summarization Task: Can We Do Better than ROUGE?” In:
Findings of the Association for Computational Linguistics: ACL 2022. 2022, pp. 1547–
1560.

[128] Yejin Bang et al. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Rea-
soning, Hallucination, and Interactivity. 2023. arXiv: 2302.04023 [cs.CL].

[129] Jiacheng Xu, Shrey Desai, and Greg Durrett. “Understanding neural abstractive sum-
marization models via uncertainty”. In: arXiv preprint arXiv:2010.07882 (2020).

[130] Sebastian Gehrmann, Yuntian Deng, and Alexander M Rush. “Bottom-up abstractive
summarization”. In: arXiv preprint arXiv:1808.10792 (2018).

[131] Edward J. Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. 2021. arXiv:
2106.09685 [cs.CL].

[132] Tim Dettmers et al. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale.
2022. arXiv: 2208.07339 [cs.LG].

[133] Catherine Yeh et al. AttentionViz: A Global View of Transformer Attention. 2023. arXiv:
2305.03210 [cs.HC].

[134] Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions.
2017. arXiv: 1705.07874 [cs.AI].

Page 82 of 101

https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/2302.04023
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2305.03210
https://arxiv.org/abs/1705.07874

APPENDIX A

PYTHON MODULES

Module Purpose

datasets Handles loading and processing of datasets for machine
learning tasks

deepspeed Optimizes deep learning computations for PyTorch, partic-
ularly in distributed systems

evaluate Provides a set of evaluation metrics for assessing machine
learning models

huggingface/accelerate Offers utility functions for accelerating Hugging Face models
huggingface/peft Tracks performance of Hugging Face models
huggingface/transformers Includes a collection of pre-trained transformer models for

various NLP tasks
huggingface/evaluate Assists in evaluating machine learning models on various

benchmarks and datasets
huggingface hub Manages model sharing and versioning for Hugging Face

models
nltk Supports a wide range of natural language processing tasks
numpy Enables numerical computations in Python
onnx Facilitates sharing of machine learning models across dif-

ferent frameworks via the Open Neural Network Exchange
format

onnxruntime-gpu Provides GPU support for ONNX runtime
pandas Used for data manipulation and analysis in Python
rouge Computes ROUGE scores for the evaluation of text sum-

maries
seaborn Aids in statistical data visualization in Python
spacy An industrial-strength library for natural language process-

ing in Python
sumy An automatic text summarization library that includes Tex-

tRank among other algorithms
thefuzz Handles string matching, manipulation, and fuzzy matching

using Levenshtein distances
wandb Allows for experiment tracking, dataset versioning, and

model management

Table A.1: List of Python modules used in this thesis and their purposes

83

APPENDIX B

DATASET AND MODEL URLS

Links to the different datasets generated and models trained in this thesis.

Datasets

Dataset Description

SNL Lead paragraphs and remaining articles from Store Norske Leksikon (SNL)

CNN/DM Translated version of CNN/Daily Mail

XSUM Extreme summarization (one sentence summaries) of articles from BBC

SamSum Summaries of short dialogues

VG Ingress and articles from VG (Norwegian newspaper)

Wikipedia Lead paragraphs and remaining articles from Norwegian Wikipedia

Table B.1: Different datasets generated in this work. The dataset names are clickable and will
direct to their respective Huggingface Hub pages.

Fine-tuned Models

Model Dataset

north/t5 base NCC lm -
north/t5 large NCC lm -

T5-Base-SNL SNL
T5-Large-SNL SNL

T5-Base-CNNDM CNN/DM
T5-Large-CNNDM CNN/DM

Table B.2: Overview of the different North-T5 used and the fine-tuned summarization models.
Model names are hyperlinked to their respective Huggingface Hub pages.

84

https://huggingface.co/datasets/navjordj/SNL_summarization
https://huggingface.co/datasets/jkorsvik/cnn_daily_mail_nor_final
https://huggingface.co/datasets/jkorsvik/xsum_nor
https://huggingface.co/datasets/jkorsvik/samsum_nor_final
https://huggingface.co/datasets/navjordj/VG_summarization
https://huggingface.co/datasets/jkorsvik/nowiki_second_scrape_merged
https://huggingface.co/north/t5_base_NCC_lm
https://huggingface.co/north/t5_large_NCC_lm
https://huggingface.co/navjordj/t5-base-snl
https://huggingface.co/navjordj/t5-large-snl
https://huggingface.co/navjordj/t5-base-cnndm
https://huggingface.co/navjordj/t5-large-cnndm

APPENDIX C

ROUGE THROUGHOUT TRAINING

Figure C.1: ROUGE scores for T5 models during training. The vertical dashed red line indicates
the epoch where the model achieved the minimum validation loss. For Base-CNN/DM, the
ROUGE values were not logged in wandb for the final epoch for unknown reasons.

85

APPENDIXD

TOKEN DECODING HYPERPARAMETERS

D.1 Parameter search results

D.1.1 SNL Models

T5-Base-SNL

Config name R-1 R-2 R-L R-Lsum Avg. Gen. Len.

Greedy 32.94 14.90 28.55 30.77 46.34
Beam default 30.78 14.32 26.80 28.65 69.45
Beam No-Repeat N-Gram Size: 3 34.01 15.72 28.84 31.60 45.32
Beam No-Repeat N-Gram Size: 5 33.63 15.69 28.68 31.33 47.75
Beam Encoder No-Repeat N-Gram Size: 5 30.52 13.98 26.73 28.50 69.31
Beam Repetition Penalty: 1.2 32.06 14.79 27.45 29.79 58.89
Sample Top-K: 50 29.87 10.73 24.02 27.03 59.42
Sample Temperature: 1.2 Top-K: 50 27.93 9.00 21.73 25.05 68.73
Sample Top-P: 0.7 32.73 13.81 27.41 30.16 49.16
Sample Top-P: 0.95 30.67 11.57 24.92 28.03 55.91
Sample Eta: 0.0006 29.81 10.94 23.96 26.99 59.56
Sample Eta: 0.0003 30.12 11.16 24.05 27.26 59.82

Table D.1: Hyperparameter search results for T5-Base-SNL on the validation set. The best-
performing model for each ROUGE metric is highlighted in bold.

86

T5-Large-SNL

Config name R-1 R-2 R-L R-Lsum Avg. Gen. Len.

Greedy 35.11 16.66 30.17 32.61 42.66
Beam default 33.84 16.57 29.38 31.41 57.25
Beam No-Repeat N-Gram Size: 3 36.02 17.39 30.64 33.41 41.86
Beam No-Repeat N-Gram Size: 5 35.64 17.42 30.54 33.14 43.32
Beam Encoder No-Repeat N-Gram Size: 5 33.50 15.88 29.17 31.10 55.64
Beam Repetition Penalty: 1.2 34.82 17.00 30.03 32.36 49.77
Sample Top-K: 50 31.54 12.35 25.73 28.80 55.49
Sample Temperature: 1.2 Top-K: 50 29.40 10.64 23.56 26.59 63.29
Sample Top-P: 0.7 34.70 15.68 29.24 32.06 46.33
Sample Top-P: 0.95 32.59 13.28 26.83 29.84 53.18
Sample Eta: 0.0006 31.90 12.36 26.03 29.10 55.68
Sample Eta: 0.0003 31.47 12.50 25.63 28.55 55.49

Table D.2: Hyperparameter search results for T5-Large-SNL on the validation set. The best-
performing model for each ROUGE metric is highlighted in bold.

D.1.2 CNN/DM Models

T5-Base-CNN/DM

Config name R-1 R-2 R-L R-Lsum Avg. Gen. Len.

Greedy 29.58 11.05 21.52 27.52 77.16
Beam default 29.52 11.11 21.02 27.15 105.56
Beam No-Repeat N-Gram Size: 3 32.28 12.15 22.00 29.84 93.96
Beam No-Repeat N-Gram Size: 5 32.14 12.22 22.01 29.73 98.02
Beam Encoder No-Repeat N-Gram Size: 5 27.48 8.34 19.27 25.38 82.86
Beam Repetition Penalty: 1.2 30.51 11.51 21.46 28.11 101.76
Sample Top-K: 50 27.66 8.27 18.14 25.61 84.37
Sample Temperature: 1.2 Top-K: 50 25.68 6.46 16.29 23.68 87.86
Sample Top-P: 0.7 29.89 10.51 20.63 27.75 81.50
Sample Top-P: 0.95 28.47 8.89 18.92 26.41 84.05
Sample Eta: 0.0006 27.74 8.31 18.22 25.75 85.57
Sample Eta: 0.0003 27.90 8.41 18.35 25.89 85.33

Table D.3: Hyperparameter search results for T5-Base-CNN/DM on the validation set. The
best-performing model for each ROUGE metric is highlighted in bold.

T5-Large-CNN/DM

Page 87 of 101

Config name R-1 R-2 R-L R-Lsum Avg. Gen. Len.

Greedy 32.21 12.72 23.25 30.09 73.12
Beam default 32.43 12.83 22.92 30.06 98.45
Beam No-Repeat N-Gram Size: 3 33.27 13.05 23.03 30.86 91.88
Beam No-Repeat N-Gram Size: 5 33.26 13.20 23.17 30.86 95.59
Beam Encoder No-Repeat N-Gram Size: 5 30.64 9.65 21.05 28.40 74.60
Beam Repetition Penalty: 1.2 32.85 13.05 23.06 30.44 97.18
Sample Top-K: 50 28.76 8.91 19.09 26.63 77.90
Sample Temperature: 1.2 Top-K: 50 26.33 6.98 16.99 24.30 80.94
Sample Top-P: 0.7 31.74 11.72 22.16 29.57 75.59
Sample Top-P: 0.95 29.90 9.82 20.21 27.67 77.09
Sample Eta: 0.0006 29.00 9.08 19.27 26.82 77.60
Sample Eta: 0.0003 28.97 9.08 19.32 26.92 77.82

Table D.4: Hyperparameter search results for T5-Large-CNN/DM on the validation set. The
best-performing model for each ROUGE metric is highlighted in bold.

Page 88 of 101

D.2 Parameter configurations

Name
Rep.

Penalty
No-Rep.
N-Gram

Enc.
No-Rep.
N-Gram

Temp. Top-P
Eta

Cutoff

Default 1.0 0 0 1 1.0 0.0

Greedy
configurations

Greedy – – – – – –

Beam search
configurations
Beam default – – – – – –
No-Repeat

N-Gram Size: 3
– 3 – – – –

No-Repeat
N-Gram Size: 5

– 5 – – – –

Encoder
No-Repeat

N-Gram Size: 5
– – 5 – – –

Repetition
Penalty: 1.2

1.2 – – – – –

Sampling
configurations

Top-K: 50 – – – – – –
Top-K: 50,

Temperature: 1.2
– – – 1.2 – –

Top-P: 0.7 – – – – 0.7 –
Top-P: 0.95 – – – – 0.95 –
Eta: 0.0006 – – – – – 0.0006
Eta: 0.0003 – – – – – 0.0003

Table D.5: Different generation parameters used for optimizing summarizations. Default
parameters are the default generation parameters used in Huggingface Transformers. The ’-’
symbol represents a configuration that uses the default parameter value. Configurations are

divided into three groups: Greedy, Beam Search, and Sampling configurations.

Page 89 of 101

APPENDIX E

SNL EXAMPLES

E.1 Lowest ROUGE-1

Examples of two of the summaries which got the lowest ROUGE-1 scores on T5-Large-SNL
with their corresponding references

Alliance Internationale
de Tourisme
Document: Organisasjonen ble stiftet
i 1898 som en ideell, ikke-statlig organ-
isasjon som representrerte interessene til
nasjonale foreninger og forbund. Den
har hatt sitt n̊aværende navn siden 1919.
AIT hadde tidlig tilslutning fra blant an-
net sykkelorganisasjoner, men senere har
motororganisasjonene f̊att dominerende
plass. [...]

Reference: Alliance Internationale de
Tourisme, verdensomfattende reiselivsor-
ganisasjon med hovedkontor i Genève.

T5-Base-SNL (R-1: 4.25) AIT er en
internasjonal organisasjon for reiselivs- og
motororganisasjoner. Organisasjonen ble
stiftet i 1898 som en ideell, ikke-statlig or-
ganisasjon som representerer interessene
til nasjonale foreninger og forbund. AIT
har konsultativ status ved FN siden 1947.

T5-Large-SNL (R-1: 8.0) ACI er en
internasjonal organisasjon for reiselivs- og
motororganisasjoner. Organisasjonen ble
grunnlagt i 1898.

Brakteater
Document: Brakteater i Norge Norske
brakteater preget kort etter 1100 ser
ut til å være de første brakteatmyn-
ter overhodet. Med unntak av perio-
den rundt 1280-1319 var brakteaten den
dominerende myntformen i Norge fra beg-
ynnelsen av 1100-tallet til slutten av 1300-
tallet. Det ble preget brakteater i Norge
frem til begynnelsen av 1500-tallet, de
siste under erkebiskop Erik Valkendorf.
[...]

Reference: Brakteater var mynter med
preg bare p̊a den ene siden. Blanketten
p̊a brakteaterne var s̊a tynn at adversens
opphøyde preg vises negativt p̊a reversen.

T5-Base-SNL (R-1: 11.54) Brakteat
er en myntform som ble preget i Norge
fra 1100-tallet til slutten av 1500-tallet.
I Norge var brakteat den dominerende
myntformen i nordisk middelalder.

T5-Large-SNL (R-1: 8.33) Brakteater
er en middelaldermynt som er preget med
en liten billedflate til r̊adighet. Myn-
tene er ofte enkle og enkle i utformingen,
men har ofte et enkelt motiv p̊a mynten.
De norske brakteatmyntene ble preget i
Norge fra begynnelsen av 1100-tallet til
slutten av 1300-tallet.

90

E.2 Highest ROUGE-1

Examples of two of the summaries which got the highest ROUGE-1 scores on T5-Large-SNL
with their corresponding references.

Borgar
Document: Namnet har fleire vari-
antar: Borgar, Borger.Namnedag er 11.
juni. Bjørg og Bjørge har ogs̊a namnedag
denne dagen. Namnestatistikk I perio-
den 1900–2017 var det omtrent 360 menn
(fødde i Noreg) som hadde Borgar som det
einaste førenamnet eller som det fyrste av
fleire. [...]

Reference: Borgar er eit mannsnamn
som g̊ar tilbake til det norrøne Borg-arr.
I dette toledda namnet tyder forleddet
‘berging; vern’ og etterleddet ‘krigar’.

T5-Base-SNL (R-1: 88.89) Borgar er
eit mannsnamn som g̊ar tilbake til det
norrøne Borgarr. I dette toledda nam-
net tyder forleddet ‘strid’ og etterleddet’
‘gud’. Disse ble publisert i 2009 og er
ikke blitt oppdatert etterp̊a. Redaksjonen
i Store norske leksikon har ikke bestemt
oss for om vi skal beholde disse artiklene,
men lar dem ligge ute enn s̊a lenge.

T5-Large-SNL (R-1: 93.83) Borgar er
eit mannsnamn som g̊ar tilbake til det
norrøne Borg-r. I dette toledda namnet
tyder forleddet ‘berging’ og etterleddet’
krigar’.

18. Juni
Document: Les om m̊aneden juni.18.
juni er nasjonaldag i Seychellene.Bjarne
og Bjørn har navnedag.Noen kjente per-
soner med fødselsdag 18. juni er Fe-
ofan Prokopovitsj (1681), Miklós Hor-
thy (1868), Anastasia (1901), Otto Grieg
Tidemand (1921), Kjell (Arve) Lund
(1927), Reidar Thomassen (1936), Ailo
Gaup (1944), Torstein Bugge Høverstad
(1944) og Bent Stiansen (1963).18. juni
1928 døde Roald Amundsen.Noen andre
historiske begivenheter som har foreg̊att
18. juni: [...]

Reference: Dette er en datoartikkel.
Disse ble publisert i 2009 og er ikke blitt
oppdatert etterp̊a. Redaksjonen i Store
norske leksikon har ikke bestemt oss for
om vi skal beholde disse artiklene, men
lar dem ligge ute enn s̊a lenge.

T5-Base-SNL (R-1: 100.0)Dette er en
datoartikkel. Disse ble publisert i 2009 og
er ikke blitt oppdatert etterp̊a. Redak-
sjonen i Store norske leksikon har ikke
bestemt oss for om vi skal beholde disse
artiklene, men lar dem ligge ute enn s̊a
lenge.

T5-Large-SNL (R-1: 100.0) Dette er
en datoartikkel. Disse ble publisert i 2009
og er ikke blitt oppdatert etterp̊a. Redak-
sjonen i Store norske leksikon har ikke
bestemt oss for om vi skal beholde disse
artiklene, men lar dem ligge ute enn s̊a
lenge.

Page 91 of 101

E.3 Random samples

Examples of some random samples from the test split of the SNL dataset

Årevinger
Document: Andre grupper av årevinger
som for eksempel darwinvepser og
plantevepser er mindre kjente, til tross for
at de omfatter svært mange arter b̊ade p̊a
verdensbasis og her i landet.Årevingene
utgjør en egen orden blant insektene, som
ogs̊a kalles veps. [...]

Reference: Årevinger er en stor gruppe
insekter med mer enn 4000 arter bare i
Norge. Den omfatter velkjente insekter
som maur, stikkeveps og humler, og hus-
dyret honningbie.

T5-Base-SNL (R-1: 38.09) Årevinger
er en gruppe insekter i ordenen veps. De
omfatter rovdyr, pollenspisere, honning-
sugere, gallvepser og snyltevepser.

T5-Large-SNL (R-1: 37.21)
Årevinger er en orden av insekter i or-
denen veps. De omfatter bier, humler,
stilkveps, broddvepser og snyltevepser.

Borgerlig begravelse
Document: Arbeidet med å utvikle
en ikke-religiøs gravferdsseremoni har i
Norge særlig skjedd i regi av Human-Etisk
Forbund, som brukte betegnelsene ≪borg-
erlig bisettelse≫ og ≪borgerlig begrav-
else≫ p̊a sine gravferdsseremonier frem til
2006, da navnet ble endret til ≪humanis-
tisk gravferd≫.Ogs̊a borgerlig begravelse
m̊a foreg̊a p̊a en kirkeg̊ard eller i et krema-
torium. Ved kremasjon kan urnen settes i
urnehall der man har dette, ellers m̊a urne
eller kiste settes ned p̊a kirkeg̊ard. [...]

Reference: Borgerlig begravelse er en
tradisjonell betegnelse p̊a gravferd som
foreg̊ar uten medvirkning av et religiøst
trossamfunn. Før 1. januar 1970 var
borgerlig begravelse forbeholdt personer
som ikke var medlem av Den norske kirke,
men i dag har alle adgang til å nytte en
slik seremoniform.

T5-Base-SNL (R-1: 36.96) Borgerlig
begravelse er en seremoni for personer
som ikke er medlem av en kirke eller
en folkekirke. I Norge brukes beteg-
nelsen ≪borgerlig bisettelse≫ og ≪human-
istisk begravelse≫ som en uformell samle-
betegnelse for ikke-religiøse gravferdsser-
emonier i regi av Human-Etisk Forbund
eller Humanistene (tidligere Humanistfor-
bundet).

T5-Large-SNL (R-1: 37.21) Borgerlig
begravelse er en ikke-religiøs gravferdsser-
emoni for personer som ikke er medlem av
kirken eller den danske folkekirken.

Page 92 of 101

APPENDIX F

CNN/DAILYMAIL

F.1 Lowest ROUGE-1

Examples of two of the summaries which got the lowest ROUGE-1 scores on T5-Large-CNN/DM
with their corresponding references

Document: (CNN) – Ca 160 mennesker
ble arrestert av saudiarabiske sikker-
hetsstyrker tidlig fredag morgen i Buraida
for ulovlig protester utenfor den byens
Bureau of Investigation and Aktoration,
ifølge Saudi Press Agency. Talsmannen
for Qassim-politiet sa at 15 kvinner og 6
barn var blant de 161 [...]

Reference: Amnesty International
kaller arrestasjoner forfølgelse. Dusinvis
protesterer i byen. Demonstranter er blitt
opprørt over det rettslige system. Saud-
iske offisielle gjør referanse til avvikende
grupper

T5-Base-SNL (R-1: 20.0) Ca 160
mennesker ble arrestert i Buraida for
ulovlig protester utenfor byens Bureau of
Investigation and Aktoration. Demon-
stranter har gjentatte ganger samlet seg
for å kreve at de fengslede slektningene de
sier har vært holdt fengslet i årevis uten
å ha blitt tiltalt, prøvd eller gitt adgang
til advokater. Amnesty International kri-
tiserer arrestasjonene.

T5-Large-SNL (R-1: 2.56) En tals-
mann for Qassim-politiet sier at 15 kvin-
ner og 6 barn var blant dem som ble tatt
inn. Demonstranter ble arrestert etter at
offiserer p̊a stedet ikke hadde klart å over-
bevise dem om å avslutte demonstrasjo-
nen. Demonstranter har gjentatte ganger
samlet seg for å kreve at de fengslede slek-
tningene deres blir løslatt.

Document: (Tribune Media Services) –
Du kan dekke mye territorium i Skan-
dinavia uten å noensinne sjekke inn p̊a
hotell. Overnattende luksuscruiseskip
stablet med badstuer, smorgasboder og
pliktfrie shoppingseilas nattlig mellom
Stockholm og Helsingfors. [...]

Reference: Rick Steves skriver eu-
ropeiske reiseguidebøker og vertskap for
reiseshow. Hans TV-serie, Rick Steves’
Europa, - om PBS-stasjoner. Steves sel-
skap, Europe Through the Back Door,
gjennomfører Europa-turneer.

T5-Base-SNL (R-1: 1.98) B̊ater mel-
lom Stockholm og Helsingfors tilbyr gle-
dene av et luksuscruiseskip til en rimelig
pris. Viking og Silja forbinder hovedste-
dene i Sverige og Finland. Begge linjene
tilbyr topp moderne skip med luksuriøse
m̊altider, rimelige lugarer, rikelig med un-
derholdning og nok pliktfrie godsaker til å
senke et skip. Hver linje har en eldre, min-
dre luksuriøs flate, men cateringer bedre
til lavbudsjettreisende, tilbyr rabatter til
studenter, seniorer og skinnepass-holdere.

T5-Large-SNL (R-1: 2.13) B̊ater mel-
lom Stockholm og Helsingfors tilbyr gle-
dene av et luksuscruiseskip til en rimelig
pris. B̊atene er store – p̊a 56 000 tonn,
nesten 200 meter lange – og med 2700
senger er de de største (og billigste) luk-
sushotellene i Skandinavia. Viking har ry
som festb̊aten. Silja regnes som mer ele-
gant, men har likevel sin andel av tidvis
irriterende og støyende passasjerer.

93

F.2 Highest ROUGE-1

Examples of two of the summaries which got the lowest ROUGE-1 scores on T5-Large-CNN/DM
with their corresponding references

Document: (KNN Studentnytt) – 9.
september 2011. Last ned PDF-kart re-
latert til dagens visning:. New York;
Shanksville, Pennsylvania; Arlington,
Virginia. Trykk her for å f̊a tilgang til
utskriften av dagens CNN Student News-
program. Merk at det kan være en
forsinkelse mellom tidspunktet da videoen
er tilgjengelig og n̊ar transkripsjonen pub-
liseres.

Reference: Daglig transkripsjon er en
skriftlig versjon av hver dags CNN Stu-
dent News-program. Bruk denne ut-
skriften til å hjelpe elever med å forst̊a
og forst̊a ordforr̊adet. Bruk ukeavisen til
å teste din kunnskap om historier du s̊a
p̊a CNN Student News.

T5-Base-SNL (R-1: 63.49) Denne ut-
skriften er en skriftlig versjon av hver dags
CNN Student News-program. Bruk Tran-
skripsjonen til å hjelpe elever med lese-
forst̊aelse og ordforr̊ad.

T5-Large-SNL (R-1: 100.0) Daglig
transkripsjon er en skriftlig versjon av
hver dags CNN Student News-program.
Bruk denne utskriften til å hjelpe elever
med å forst̊a og forst̊a ordforr̊adet. Bruk
ukeavisen til å teste din kunnskap om his-
torier du s̊a p̊a CNN Student News.

Document: 9. mars 2015. Denne uken
markerer årsdagen for flere historiske hen-
delser: en borgerrettsmarsj til Selma,
Alabamas Edmund Pettus-bro, forsvin-
ningen av en Malaysia Airlines-flyvning,
og minnehøytiden for den internasjonale
kvinnedagen. P̊a denne siden finner du
dagens program Transcript og et sted du
kan be om å f̊a være med p̊a CNN Student
News Roll Call. TRANSCRIPT. Trykk
her for å f̊a tilgang til utskriften av da-
gens CNN Student News-program.

Reference: Denne siden inkluderer se-
rien Transcript. Bruk Transkripsjonen til
å hjelpe elever med leseforst̊aelse og ord-
forr̊ad. Nederst p̊a siden kommenterer
man for en sjanse til å bli nevnt p̊a CNN
Student News. Du må være lærer eller
elev i alderen 13 år eller eldre for å be
om en omtale p̊a CNN Student News Roll
Call.

T5-Base-SNL (R-1: 73.58) Denne
siden inkluderer serien Transcript og et
sted du kan be om å bli nevnt p̊a CNN
Student News Roll Call. Bruk Tran-
skripsjonen til å hjelpe elever med lese-
forst̊aelse og ordforr̊ad. Du m̊a være lærer
eller elev 13 år eller eldre for å be om at
du blir nevnt.

T5-Large-SNL (R-1: 99.115) Denne
siden inkluderer serien Transcript. Bruk
Transkripsjonen til å hjelpe elever med
leseforst̊aelse og ordforr̊ad. Nederst p̊a
siden kommenterer man for en sjanse til å
bli nevnt p̊a CNN Student News. Du m̊a
være lærer eller elev i alderen 13 år eller
eldre for å be om en omtale p̊a en CNN
Student News Roll Call.

Page 94 of 101

F.3 Random samples

Examples of some random samples from the test split of the CNN/DM dataset

Document: Kabul, Afghanistan (CNN)
– Et NATO-ledet International Secu-
rity Assistance Force helikopter krasjet
fredag i Afghanistans hovedstad Kabul,
og drepte 12 mennesker, sa ISAF i
en uttalelse. ISAF bekreftet at he-
likopteretgikk ned men sa at årsaken
til ulykken var ukjent. Det var in-
gen Anmeldelse om Opprørervirksomhet
i Omr̊adet,sa Kaptein. [...]

Reference: Tolv ISAF-medlemmer døde
i krasjet, sier ISAF. Helikopteret styrtet
i det østlige Kabul, sier en politisjef. De
drepte er identifisert som tyrkiske borg-
ere. Det er ingen rapporter om sivile tap,
sier politisjefen.

T5-Base-SNL (R-1: 27.59) ISAF
bekrefter at helikopteret gikk ned, men
sier at årsaken til ulykken var uk-
jent. Det var ingen Anmeldelse om
Opprørervirksomhet i Omr̊adet.

T5-Large-SNL (R-1: 46.57) ISAF
bekrefter at helikopteret gikk ned, men
sier at årsaken til ulykken er ukjent.
Kabul-politiet sier at fem lik ble trukket
fra vraket og de ble identifisert som
tyrkiske borgere. Det var ingen umiddel-
bare rapporter om sivile tap.

Document: En 18-̊arig mann er arrestert
hjemme i Birmingham p̊a mistanke om å
forberede seg p̊a å reise til Syria for å
slutte seg til Den islamske staten. West
Midland Police har sagt at ten̊aringen, fra
Hodge Hill-omr̊adet i Birmingham, ble ar-
restert rundt kl. 7 i dag av offiserer fra
West Midlands Counter Terrorism Unit.
En talsmann for styrken sa: ”Operasjo-
nen var planlagt og etterretningen ledet.
Det var ingen umiddelbar trussel mot of-
fentlig sikkerhet...”

Reference: West Midland Police sa at
mannen er fra Hodge Hill i Birmingham.
Han ble arrestert kl. 7 p̊a grunn av
mistanke om terrorlovbrudd, sier poli-
tiet. Det kommer etter at tre britiske
ten̊aringsjihadister ble arrestert i Tyrkia.
Sikkerhetsoperasjonen stoppet dem i å
slutte seg til islamistiske statsforkjempere
i Syria.

T5-Base-SNL (R-1: 42.59) En 18-̊arig
mann er arrestert hjemme i Birmingham
p̊a mistanke om å forberede seg p̊a å reise
til Syria for å bli med i Den islamske
staten. Han ble arrestert rundt kl. 7 i dag
av offiserer fra West Midlands Counter
Terrorism Unit. En talsmann for styrken
sa: ”Operasjonen var planlagt og etterret-
ningen ledet. Det var ingen umiddelbar
trussel mot offentlig sikkerhet.”

T5-Large-SNL (R-1: 60.55) West
Midland Police har sagt at ten̊aringen, fra
Hodge Hill-omr̊adet i Birmingham, ble ar-
restert rundt kl. 7 i dag av offiserer fra
West Midlands Counter Terrorism Unit.
Mannen ble arrestert p̊a hjemmeadressen
sin p̊a mistanke om forberedelse til ter-
rorhandlinger, i strid med terrorlovens §
5 2006. Den kommer dagen etter at tre
britiske ten̊aringsjihadister ble arrestert i
Tyrkia.

Page 95 of 101

APPENDIX G

OUT-OF-DOMAIN SAMPLES

Samples that were extracted from different sources than the different models were trained on.
These documents don’t have corresponding reference summaries.

G.1 Aftenposten

Mann siktet for drapsforsøk p̊a Sunnaas sykehus
Document: Hendelsen skal ha skjedd ved 00.30-tiden natt til onsdag. En kvinne i 40-
årene ble alvorlig skadet, men er utenfor livsfare, skriver VG. Hun ble operert onsdag. –
Saken er kodet som drapsforsøk. Det er en alvorlig voldshendelse, bekrefter politiadvokat
Torgeir Lutro til VG. Det er foreløpig uklart hva som foranlediget hendelsen.
Kvinnen var p̊a besøk hos siktede, som var innlagt p̊a sykehuset. Politiet har ogs̊a
beslaglagt et v̊apen de mener ble brukt. Det er ikke klart hva slags v̊apen dette er. VG
skriver at brannvesenet kom til stedet før politiet, og at de passet p̊a gjerningspersonen
frem til politiet ankom. – Vi rykket fra brann, vi er de lokale. I dette tilfellet var politiet
et stykke unna, forteller utrykningsleder Søren Rodriguez til avisen. [...]

T5-Base-SNL: Sunnaas sykehus er et åpent sykehus i Oslo. Sykehuset ligger p̊a Nesodden
utenfor Oslo. Det er Norges største spesialsykehus innen fysikalsk medisin.

T5-Large-SNL: Sunnaas sykehus er et sykehus i Oslo som er siktet for drapsforsøk etter
en voldshendelse natt til onsdag.

T5-Base-CNN/DM: En kvinne i 40-̊arene ble alvorlig skadet, men er utenfor livsfare,
skriver politiet. Kvinnen var p̊a besøk hos siktede, som var innlagt p̊a sykehuset. Poli-
tiet har ogs̊a beslaglagt et v̊apen de mener ble brukt. Det er foreløpig uklart hva som
foranlediget hendelsen.

T5-Large-CNN/DM: En kvinne i 40-̊arene ble alvorlig skadet, men er utenfor livsfare.
Hun var p̊a besøk hos siktede, som var innlagt p̊a sykehuset. Politiet har beslaglagt et
v̊apen de mener ble brukt.

96

G.2 Wikipedia

Levenshtein-distanse
Document: I informasjonsteori refererer Levenshtein-distansen mellom to strenger (f.eks.
to ordformer) til det minste antallet operasjoner som trengs for å endre den ene strengen til
en annen, hvor operasjonene er innsetting, sletting eller erstatning. Levenshtein-distansen
har f̊att navnet sitt etter den russiske forskeren Vladimir Levenshtein, som satte opp m̊al
for redigeringsdistanse i 1965. [...]

T5-Base-SNL: Vladimir Levenshtein-distanse er et m̊al for redigeringsdistanse mellom to
strenger (f.eks. to ordformer).

T5-Large-SNL: Levenshtein-distanse er et m̊al for antall operasjoner som trengs for å
endre en streng til en annen

T5-Base-CNN/DM: Levenshtein-distansen mellom to strenger refererer til det minste
antallet operasjoner som trengs for å endre den ene strengen til en annen. Den brukes i
retteprogram, men ogs̊a i bioinformatikk.

T5-Large-CNN/DM: Levenshtein-distansen refererer til det minste antallet operasjoner
som trengs for å endre den ene strengen til en annen. Den er nyttig for å finne ut hvor like
to strenger er, og blir brukt mye i søkemotorer og søkefunksjoner.

Page 97 of 101

G.3 Kvinneguiden

Jeg vil ikke delta i konfirmasjonen
Document: ”Jeg er stemor til to, og de har vært i livet mitt siden de var ganske sm̊a.
Moren deres har vært vanskelig å ha med å gjøre hele tiden, selv om jeg ikke hadde noe
med bruddet å gjøre. Som eksempler kan nevnes at hun bare har vandret inn i mitt hus
n̊ar det passet henne, og hun har løyet om meg til barna. [...]

T5-Base-SNL: Dette er et spørsm̊al jeg ønsker å stille til foreldrene i forbindelse med
bruddet i familien. Det er svært vanskelig å svare p̊a spørsm̊alet, men det er vanvittig av
meg å sette foten ned og ikke finner meg i mer psykisk mishandling. Jeg har bestemt meg
for å dra til yngstes konfirmasjon.

T5-Large-SNL: Det er vanskelig å si noe om hvordan jeg har det i livet mitt. Jeg har
vært i et forhold siden jeg var ganske liten, og har opplevd at jeg har blitt usynlig i mitt
eget liv. N̊a føler jeg meg svelget den siste kamelen, og føler meg i mer psykisk mishandling
enn jeg noensinne har gjort.

T5-Base-CNN/DM: Mor til to har vært vanskelig å ha med å gjøre hele tiden, selv om
jeg ikke hadde noe med bruddet å si. Hun har løyet om meg til barna, og hun har sagt at
jeg ikke var usynlig. Jeg har bestemt meg, s̊a trenger ingen r̊ad, men er det s̊a vanvittig
av meg å sette foten ned og ikke finner meg i mer psykisk mishandling? Far er rasende p̊a
meg, og jeg føler at jeg har svelget den siste kamelen

T5-Large-CNN/DM: Mor har vært vanskelig å ha med å gjøre hele tiden, selv om jeg
ikke hadde noe med bruddet å gjøre. Til tross for slike og lignende ting, stilte jeg opp for
fullt i eldstes konfirmasjon. Jeg vil ikke dra i yngstes konfirmasjon. Far er rasende p̊a meg,
og jeg føler at jeg har svelget den siste kamelen.

Page 98 of 101

G.4 Komplett.no

Skjermkort og grafikkort - GPU - Sørg for god
grafikk
Document: Et godt grafikkort er viktig for å f̊a det beste ut av spillopplevelsene! Hos
Komplett finner du skjermkort for deg som skal game, jobbe med avansert design eller
utføre enklere oppgaver.
En datamaskin er som mennesker flest – helt og holdent avhengig av flere deler i kroppen
som spiller p̊a lag. Prosessoren er datamaskinens hjerne og har ansvar for de fleste arbei-
dsoppgavene. Grafikkjobben derimot, det å vise levende bilder og filmer, er skjerm- og
grafikkortets domene.
Enkelt fortalt avgjør grafikkort (ogs̊a kalt skjermkort, GPU eller graphic card) hvor fort
maskinen klarer å oppdatere skjermen n̊ar det gjelder oppløsning og bildehastighet. [...]

T5-Base-SNL: En datamaskin har et skjermkort som gjør det mulig å vise levende bilder
og filmer p̊a skjermen. Skjermkortet er en viktig komponent for å f̊a det beste ut av
spillopplevelsene p̊a en datamaskin.

T5-Large-SNL: Et skjerm- og grafikkort er en komponent i en datamaskin som brukes
til å vise levende bilder og filmer. Dette er den delen av maskinen som gjør de tyngste
løftene. Det er skjermkortet som avgjør hvor fort maskinen klarer å oppdatere skjermen
n̊ar det gjelder oppløsning og bildehastighet.

T5-Base-CNN/DM: En datamaskin er helt og holdent avhengig av flere deler i kroppen
som spiller p̊a lag. Grafikkjobben derimot, det å vise levende bilder og filmer, er skjerm- og
grafikkortets domene. Produsentkongene Nvidia og AMD har sluppet noen av sine beste
produkter p̊a mange år. Det er en god idé å vurdere hvilket grafikkort du har behov for,
for dette er den delen av maskinen som gjør de tyngste løftene.

T5-Large-CNN/DM: Det er fullt mulig å investere i et bra grafikkort til gaming uten
å svi av en formue. Produsentkongene Nvidia og AMD har sluppet noen av sine beste
produkter p̊a mange år. For å f̊a en jevn og god spillopplevelse i nyere spill er det nærmest
et krav å ha et topp moderne grafikkort.

Page 99 of 101

G.5 Human Evaluation Results

Results from the human evaluation performed on the out-of-domain samples.

INF REL FLU COH FAC Overall
Source Model

Aftenposten T5-Base-CNN/DM 3.50 5.00 5.00 4.50 5.00 4.60
T5-Large-CNN/DM 4.25 5.00 4.75 5.00 5.00 4.80
T5-Base-SNL 2.75 3.75 4.50 5.00 3.75 3.95
T5-Large-SNL 2.25 3.00 5.00 4.00 3.00 3.45

Wikipedia T5-Base-CNN/DM 4.25 5.00 5.00 4.50 5.00 4.75
T5-Large-CNN/DM 5.00 5.00 5.00 5.00 5.00 5.00
T5-Base-SNL 3.50 4.75 5.00 – 4.25 4.38
T5-Large-SNL 4.00 5.00 5.00 5.00 5.00 4.80

Kvinneguiden T5-Base-CNN/DM 3.00 4.00 5.00 5.00 4.00 4.20
T5-Large-CNN/DM 3.50 5.00 5.00 4.50 5.00 4.60
T5-Base-SNL 1.00 1.00 4.50 3.50 2.00 2.40
T5-Large-SNL 1.50 1.00 2.00 4.00 1.00 1.90

Komplett T5-Base-CNN/DM 5.00 5.00 5.00 5.00 5.00 5.00
T5-Large-CNN/DM 3.50 5.00 5.00 3.50 5.00 4.40
T5-Base-SNL 4.00 5.00 5.00 5.00 4.50 4.70
T5-Large-SNL 4.50 5.00 5.00 5.00 5.00 4.90

Table G.1: Results of human evaluation across 5 dimensions on the out-of-domain samples.
Missing value was due to no coherence scored, due to only having one sentence in the generated
summary.

Page 100 of 101

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Structure of thesis

	Theory
	NLP
	Tokenization
	Word Embeddings
	Language Models

	Automatic Text Summarization
	Extractive Summarization
	Abstractive Summarization
	Measuring Abstractiveness
	Evaluating Generated Summaries

	Machine Translation
	Rule-Based Machine Translation
	Statistical Machine Translation
	Neural Machine Translation
	Evaluating Machine Translation with BLEU

	Machine Learning
	Learning Paradigms
	Training, Validation, and Testing stages

	Artifical Neural Networks
	Backpropagation
	Activation Functions
	Dropout
	Layer Normalization
	Recurrent Neural Networks

	Token Decoding
	Greedy Decoding
	Advanced Token Decoding
	Sampling

	Transformers
	Attention
	Transformer Architecture
	Learning objectives
	T5: Text-to-Text Transfer Transformer

	Method
	Dataset Curation
	Web Scraping
	Machine Translation
	Additional Datasets Not Utilized Further

	Data Exploration
	Token Distributions
	Exploring Abstractiveness of Summaries

	Summarization Modelling
	Baselines
	North-T5 models
	T5 Training procedure
	Software and Hardware

	Optimizing Decoding Parameters
	Evaluation
	Automatic Evaluation
	Human evaluation
	Model Abstractiveness

	Results
	Data exploration
	Article and Summary Lengths
	Abstractiveness

	Training Results
	Token Decoding Parameters
	Evaluation
	ROUGE metrics
	Human Evaluation
	Model abstractiveness

	Discussion
	Datasets
	SNL
	CNN/DM

	Modelling
	Training
	Optimal Token decoding parameters

	Evaluation
	ROUGE Scores
	Human evaluation
	Model Abstractiveness

	Out of Domain Behaviour
	Further Work

	Conclusion
	Bibliography
	Python Modules
	Dataset and Model URLs
	ROUGE Throughout Training
	Token Decoding Hyperparameters
	Parameter search results
	SNL Models
	CNN/DM Models

	Parameter configurations

	SNL Examples
	Lowest ROUGE-1
	Highest ROUGE-1
	Random samples

	CNN/Dailymail
	Lowest ROUGE-1
	Highest ROUGE-1
	Random samples

	Out-of-domain samples
	Aftenposten
	Wikipedia
	Kvinneguiden
	Komplett.no
	Human Evaluation Results

