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ABSTRACT

Detecting COVID-19 Coronavirus quickly and accurately was essential for preventing and
controlling this pandemic through timely quarantine and medical treatment in the absence
of vaccines. Because there were an increasing number of cases of COVID-19 worldwide
and the limited number of detection kits available, it was difficult to identify the presence
of this disease. Consequently, we needed to seek other alternatives at this time. Deep
learning techniques in computer-aided medical diagnosis have surpassed state-of-the-art
performance in computer-aided diagnosis among existing, widely accessible, and low-cost
resources. This dissertation proposes an alternative diagnostic tool that utilizes available
resources and advanced deep-learning techniques to detect COVID-19 cases. We used
two sources of datasets in this study, one of which was a small dataset [1], and another
was a large dataset [2] with X-ray images of normal, COVID-19, and viral pneumonia.
Using chest X-ray images, we investigated the performance of COVID-19 detection using
machine learning and deep learning methods. We extracted edge and pixel values using
feature extraction and then used Random Forest and Support Vector Machine to classify
the images. Furthermore, we used data augmentation (Brightness, Contrast, and Flipping)
to deal with small data sets. We also used this method for large data sets after reducing
the number of images due to an imbalanced dataset. In addition, we used VGG19, CNN,
and Convolutional Auto Encoder for deep learning models to extract features and clas-
sify COVID-19 chest X-ray images. We used hyperparameter tuning and applied transfer
learning to further improve these models. Results showed a significant improvement in
the accuracy of the models, demonstrating the effectiveness of our methods. By calcu-
lating the accuracy of these models, we found that convolutional autoencoder and CNN
models performed best. Overfitting, however, can impair models’ generalizability and
predictability, reducing their generalizability. There were times when we reduced this

problem, but there were also times when we couldn’t handle it.
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Chapter 1

Introduction

The purpose of this chapter is to provide the background and motivation for the current

research. What inspired us to do this research is explained in this part.

1.1 Background

An infectious disease caused by SARS-CoV-2 viruses is Coronavirus disease (COVID-
19) [3]. This disease started spreading from Wuhan, a city in China, at the end of 2019 [4].
This illness has created an urgent situation throughout the world. As a result, the world
decided to cope with this problem and take urgent action against this problem. The first
problem to solve is diagnosing the disease as soon as possible. Diagnostic methods can be
used in many ways, but X-ray images of the lungs are one of the fastest. Some studies used
this approach to detect COVID-19 by combining deep learning and machine learning. We
have extended and investigated other approaches to detecting COVID using deep learning
and machine learning. In Figure 1.1 examples of images used in this study have been

provided.

Figure 1.1: Examples of X-ray images used in this research and for modeling.



1.2 Motivation for the present research work

There have been millions of deaths caused by the COVID-19 pandemic, resulting in hun-
dreds of thousands of deaths, and the global economy has been left adrift. It is crucial
to detect and diagnose COVID-19 cases as soon as possible in order to manage and con-
trol the disease effectively. A chest X-ray is one of the diagnostic tools for COVID-19,
which can provide valuable information about the severity and progression of the disease,
as well as possible treatment options. This research aimed to explore the application of
machine learning models and deep learning models to the detection of COVID-19, utiliz-
ing chest X-ray images by applying machine learning models and deep learning models.
Medical imaging has seen remarkable success with using of machine learning and deep
learning models [5]. These models include the detection and diagnosis of a wide variety
of diseases. As a result of these models, we will be able to improve the way we approach
medical diagnosis, enabling faster and more accurate diagnosis and ultimately improving
patient outcomes. COVID-19 must be prevented from spreading, and timely treatment
to patients infected with the disease; it is critical to provide rapid and accurate diagnoses
to prevent the spread of the disease. As a diagnostic tool for respiratory diseases, such
as COVID-19, chest X-ray imaging is one of the most widely used. Nevertheless, inter-
preting chest X-ray images is a complex task that requires the expertise of a radiologist
in order to be successful. In case of an early-stage disease or poor image quality, the
interpretation of chest X-rays can also be subjective and subject to error. It is thought
that machine learning and deep learning models can help overcome these limitations by
automating and objectively analyzing chest X-ray images, thereby improving diagnoses
of COVID-19. It has been widely accepted that machine learning models such as Ran-
dom Forest [6] and Support Vector Machines (SVM) [7] have been used in medical image
analysis for many years, and both have shown promise in the analysis of medical images.
Typically, these types of models work based on the concept of supervised learning, where
the model is trained on a set of labeled data in order to learn the underlying patterns and
relationships between input features and the labels assigned to the output features. In
this way, the trained model can be used to predict the outcome of new, unknown data in
the future. In the case of COVID-19 detection, using chest X-ray images, random for-
est, and SVM models can be trained on a dataset of labeled images, where each image
is labeled as either COVID-19 positive or negative. The models can then learn to recog-
nize the patterns and features that distinguish COVID-19 positive images from negative
ones. Once the models are trained, they can be used to predict the COVID-19 status of
new chest X-ray images. Deep learning models, particularly Convolutional Neural Net-
works (CNNs), have shown success in medical image analysis, including the detection
and diagnosis of various diseases. CNNs are particularly suited for image analysis tasks,

as they can learn complex features and patterns from the input images without requiring
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manual feature engineering [8]. In this research, we will explore the application of two
CNN models for COVID-19 detection using chest X-ray images: VGG19 and a custom
CNN. VGG19 is a widely used CNN model that has shown excellent performance in var-
1ous image recognition tasks [9]. A custom CNN model can be designed specifically for
COVID-19 detection, where the architecture and parameters are optimized for this task.
A Convolutional Auto Encoder (CAE) is a type of neural network that can be used for
image compression and reconstruction. CAEs are composed of two parts: a compression
module that compresses an input image to a low-dimensional latent space and a decoder
that reconstructs the original image from the latent space representation. CAEs can be
trained on a dataset of chest X-ray images, where the encoder learns to capture the essen-
tial features of the images, and the decoder learns to reconstruct the images from the latent
space representation [10]. In the case of COVID-19 detection using chest X-ray images, a
CAE can be trained on a dataset of labeled images, where the encoder learns to compress
the essential features that distinguish.



1.3 Organization of the thesis

The research work presented in the thesis is organized and structured in the form of seven

chapters, which are briefly described as follows:
i) Chapter 1 describes the introduction and motivation of the presented paper
ii) Chapter 2 Provides a comprehensive review of relevant literature

iii) Chapter 3 Information about datasets we have used and data augmentation pre-

sented in this study

iv) Chapter 4 A description of the algorithm and methods used in this paper is pre-
sented

v) Chapter 5 Analyzes the experimental results of the models used in this study and

compares them

vi) Chapter 6 Provides a Discussion section about the results of this study and the

challenges it faced

vii) Chapter 7 concludes the thesis with overall discoveries of the present research

work. The scope for future work is also mentioned.



Chapter 2

Literature Review

The objective of this chapter is to present a survey of different papers and articles that have
attempted to solve the COVID-19 detection problem using machine learning algorithms
or deep learning algorithms. In order to apply Artificial Intelligence (AL) methods, they
have used different approaches. Methods that involve traditional machine learning, deep

learning, and hybrid methods can all be divided into three categories.

2.1 Traditional Machine Learning Models

Malathy Jawahar [11] developed a model that highly accurately analyzed chest X-ray im-
ages to detect COVID-19. Histogram Oriented Gradient (HOG) [12] was used to extract
features, and the Gray-Level Co-Occurrence Matrix (GLCM) [13] was used to evaluate
this extraction. These extracted features were then trained with Random Forest classifica-
tion. The accuracy of this model was assessed against other traditional machine learning
classifiers, including SVM, linear regression, and K-nearest Neighbors (KNN) [14].

Cesar Ortiz-Toro [15] incorporated three machine learning algorithms: Random Forest
[16], K-Nearest Neighbors [14], and Support Vector Machines [17]. In this study, a dataset
was constructed using images extracted from a repository of images developed primarily
for the study of COVID-19 and based on pediatric chest X-rays. The tested methods

proved to be reliable and easy-to-use auto diagnostic tools.

Abhishek Dixitn [18] proposed a 3-step procedure that includes K-means clustering [19]
and feature extraction during the pre-processing stage. The selected features are optimized
in the second step using a hybrid differential evolution algorithm [20] and particle swarm
optimization [21]. Following the optimization of the features, the SVM classifier uses
the features as input. According to their model, 8066 images of normal chest X-rays,
5551 images of pneumonia, and 358 images of COVID-19 chest X-rays achieved 99.34%
accuracy. Their model is robust and sustainable in diagnosing individuals infected with
COVID-19.

Hasoon [22] proposed a set of procedures including preprocessing (image noise removal,
image thresholding, and morphological operation), identifying and segmenting regions of
interest, obtaining features, analyzing local binary patterns (LBPs) [23], analyzing gradi-
ent histograms [12], and analyzing Haralick textures [24] and classifying data (K-Nearest

5



Neighbors (KNN) and Support Vector Machines (SVM)). As a result of the combination of
feature extraction operators and classifiers, six models can be generated, including LBP-
KNN [25], HOG-KNN [26], Haralick-KNN [27], LBP-SVM [28], HOG-SVM [29], and
Haralick-SVM [30]. Test samples of 5,000 images were used to evaluate the six models,
which were trained with 5-fold cross-validation. The results showed a high diagnostic ac-
curacy of up to 98.66%. Based on its accuracy, sensitivity, specificity, and precision, the
LBP-KNN [25] model outperforms the other models. In addition to providing an end-to-
end structure without the need for manual feature extraction and manual selection meth-
ods, the proposed method for early detection and classification of COVID-19 by image
processing using X-ray images has been shown to be usable as it provides an end-to-end
structure for the detection and classification of COVID-19.

2.2 Deep Learning Based Methods

Mohamed Loey [31] proposed Convolutional neural networks (CNNs) for classifying
COVID-19 artifacts in real-world situations based on chest X-ray images. Convolutional
neural networks (CNNs) were proposed for recognizing chest X-ray images with Bayesian
optimization [32]. Specifically, two components of the model were applied: the CNN for
feature extraction and learning and the Bayesian optimizer for tuning its hyperparameters.
In a large, balanced dataset, 10,848 images were analyzed (3616 COVID-19, 3616 nor-
mal cases, and 3616 pneumonia cases). The first study compared Bayesian optimization
to three distinct scenarios; convergence charts and accuracy compared the two scenar-
10s. Using Bayesian search [33] to generate optimal architectures, they found that 96%
of their results were accurate. This comparison of research methods and theme analysis
methods is designed to assist qualitative researchers in addressing their research questions

methodologically.

Govardhan Jain [34] applied a transfer learning model using pre-trained Convolutional
Neural Networks (CNNs) and a Residual Network architecture with 50 layers (ResNet50)
[35] on 1215 chest X-ray images, then performed data augmentation to gain up to 1832
images to avoid overfitting and improve generalization. Training-validation-testing and
five-fold cross-validation procedures were employed to demonstrate the method’s effec-
tiveness. The high accuracy of 97.77%, recall of 97.14%, and precision of 97.14% in the
case of COVID-19 detection show the effectiveness of the proposed method.

Bhawna Nigam [36] developed Coronavirus diagnostic systems based on popular deep-
learning architectures. This paper describes a set of architectures employed for the analy-
sis: VGG16 [37], DenseNet121 [38], Xception [39], NASNet [40], and EfficientNet [41].
They used a multiclass classification that included COVID-19-positive patients, normal

patients, and another class. Another type of X-ray is used to diagnose pneumonia, in-

6



fluenza, and other respiratory diseases. 79.01%, 89.96%, 88.03%, 85.03%, and 93.48%
of the results were obtained for VGG16, DenseNet121, Xception, NASNet, and Efficient-
Net, respectively.

Harsh Panwar [42] proposed an algorithm based on deep transfer learning to detect COVID
19 cases using chest X-rays and CT scan images. Their research included three datasets:
COVID-chest X-ray, SARS-COV-2 CT-scan, and Chest X-Ray Images (Pneumonia). Ac-
cording to the obtained results, the proposed deep learning model could detect COVID-19-
positive cases in 2 seconds, which is faster than conventional RT-PCR tests. Additionally,
they have established a relationship between COVID-19 patients and Pneumonia patients
to investigate how Pneumonia radiology images correlate with COVID-19 radiology im-
ages. They used the Grad-CAM-based color visualization [43] approach in all experiments
to interpret radiology images and take action for future comings.

Emtiaz Hussain [44] applied a CNN model called CoroDet [45] in this study to detect
COVID-19 automatically on raw chest X-ray and CT scan images. This tool was de-
signed to detect binary or multiclass models of COVID, normal and viral pneumonia, and
bacterial pneumonia. COVID detection techniques were compared in terms of accuracy
to the proposed model. The proposed model produced a classification accuracy of 99.1%
for two classes, 94.2% for three classes, and 91.2% for four classes, clearly better than
the state-of-the-art methods for COVID-19 detection. According to their knowledge, their
method was evaluated using the largest dataset of x-ray images for COVID detection [46].
Shervin Minaee trained four convolutional neural networks using a subset of 2000 chest
X-ray images, including ResNet18 [35], ResNet50 [35], SqueezeNet [47], and DenseNet-
121 [38], to identify COVID-19 disease. The models were then tested on the remaining
3000 images, and most achieved a sensitivity rate of 98% while having a specificity rate
of around 90%.

Shankar [48] provided a model that included preprocessing, feature extraction, and classi-
fication processes. Initially, images were preprocessed using Weiner filtering (WF) [49].
Following that, gray-level co-occurrence matrices, gray-level run-length matrices [50],
and local binary patterns (LBP) were combined for the fusion-based feature extraction
process. An optimal feature subset was then selected using the Salp Swarm Algorithm
(SSA) [51]. An artificial neural network (ANN) was applied to classify infected and
healthy patients.

Stefanos Karakanis [52] proposed deep-learning neural networks built on ResNet8 [35]
and CNN models at the University of Aberdeen in the United Kingdom. Additionally,
they tested their model bias using masked images from the dataset. Their study used
a pre-trained ResNet8 model based on the ImageNet dataset and a CNN model without
transfer learning for COVID detection.



Khabir Uddin Ahamed [53] developed a COVID-19 case detection model by analyzing
chest CT scans and X-ray images. This deep learning model uses a modified ResNet50V2
architecture [35]. Data collected from a variety of publicly available sources were used
to train the model. This data included four types of classes: confirmed COVID-19 cases,
normal controls, and confirmed cases of bacterial and viral pneumonia. As part of the
preprocessing, the aggregated dataset was preprocessed through a sharpening filter before

being fed into the proposed model for further processing.

Sara Hosseinzadeh Kassani [54] evaluated popular deep-learning-based feature extrac-
tion algorithms for COVID-19 detection. A pool of deep convolutional neural networks
was chosen among MobileNet [55], DenseNet [38], Xception [39], ResNet [35], Incep-
tionV3 [56], InceptionResNetV2 [57], VGGNet [37], and NASNet [40] to obtain the most
accurate feature. This is a crucial component of learning. Several machine learning classi-
fiers were used to extract features from the extracted data to categorize subjects as COVID-
19 cases or controls. For unseen data, this approach avoided task-specific data preprocess-
ing methods. A publicly available chest X-ray and CT image dataset, COVID-19, was
used to validate the proposed method. A hybrid ResNet50 [35] feature extractor trained
by LightGBM outperformed a DenseNetl121 [38] feature extractor with 98% accuracy.

The second-best learner was a Bagging tree classifier with 99% accuracy.

Chaimae Ouchicha [58] introduced CVDNet, a deep convolution neural network (CNN)
model for detecting COVID-19 infection in chest X-ray images. Based on residual neu-
ral networks, local and global input features are captured using two similar levels with
different kernel sizes. The model was trained based on a dataset available on the inter-
net that contained 219 COVID-19 chest x-ray images, 1341 normal chest x-ray images,
and 1345 viral pneumonia chest x-ray images. As a result of their experiments, CVDNet
demonstrated impressive classification performance on a small dataset, which can fur-
ther be improved with more training data. On a small dataset, these results demonstrate
promising classification performance. As a result, they believe their CVDNet model could

serve as a valuable tool for radiologists to diagnose COVID-19 cases as early as possible.

Eduardo Luz [59] introduced new deep artificial neural network models that are highly
accurate and have low footprints based on the EfficientNet family of deep neural net-
works. In the study, hierarchical classifiers were employed to take advantage of the un-
derlying taxonomy. For training the proposed approaches and the other five competing
architectures, X-ray images are divided into healthy, pneumonia-free, and COVID-19 pa-
tients. To evaluate the generalization power of the method, they proposed an open-dataset
and cross-dataset evaluation. With 93.9% accuracy, 96.8% COVID-19 sensitivity, and a
100% positive prediction rate, the proposed approach produced a better model than the
other tested approaches by using from 5 to 30 times fewer parameters. The cross-dataset

evaluation indicated that even state-of-the-art models suffer from a lack of generalization
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power, which suggests that deep learning can assist physicians in detecting COVID-19
in X-ray images only with large and heterogeneous databases. COVIDx database [60]
consists of 13,800 X-ray images, 183 of which are from patients with COVID-19. As
far as efficiency and effectiveness are concerned, the reported results represent state-of-
the-art results. Embedding a smartphone app into medical devices or even in physicians’

equipment appears to be a promising option.

Sarra Guefrechi [61] developed a deep learning algorithm to detect COVID-19 in chest
X-ray images using features extracted from the images. An enhanced dataset, compris-
ing COVID-19 and standard chest X-ray images derived from several public databases,
has been fine-tuned using three robust networks, including ResNet50, InceptionV3, and
VGG16. Using data augmentation techniques such as Random Rotation at an angle be-
tween -10 and 10 degrees, random noise, and horizontal flips, they artificially generated
many chest X-ray images. As a result of the proposed models, chest X-ray images were
classified as Normal or COVID-19 with 97.20% accuracy for Resnet50 [35], 98.10% ac-
curacy for InceptionV3 [56], and 98.30% accuracy for VGG16 [37]. COVID-19 detection
methods were easily deployed and showed strong performance in the results, demonstrat-

ing the effectiveness of transfer learning.

2.3 Hybrid Methods

Aras M. Ismael [62] employed a deep-learning algorithm to classify COVID-19 and nor-
mal chest X-rays with the help of feature extraction, fine-tuning of pre-trained convolu-
tional neural networks, and end-to-end training of a developed CNN model. Pretrained
deep CNN models (ResNets with different layers, VGG16 and VGG19) were used for
deep feature extraction. In the end, a Support Vector Machine (SVM) classifier was em-
ployed for deep feature classification. There were 180 chest X-rays from COVID-19 and

200 chest X-rays from normal X-rays used in this study for binomial classification.

Seyed Mohammad Jafar Jalali [63] developed an effective method to detect COVID-19
disease by applying a convolutional neural network (CNN) and combining it with the K-
nearest neighbors at the end layer of the network, which increased the accuracy of the
resulting method. This is done by replacing the last Softmax CNN layer with a K-nearest
neighbors (KNN) classifier that takes into account the agreement of neighborhood labeling
in order to replace the Softmax CNN layer.

Prottoy Saha [64] used a scheme called EMCNet to assess chest X-ray images to make an
automated detection of COVID-19 patients that were suspected. X-ray images of patients
were analyzed using a convolutional neural network so that more profound and higher-
level features could be extracted. To detect COVID-19, binary classifiers such as Random
Forest [16], Support Vector Machine [17], Decision Tree [65], and AdaBoost [66] were
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trained on the extracted features. An ensemble of classifiers was developed based on
the outputs of these classifiers, ensuring better results for datasets of different sizes and

resolutions.

Murugan Hemalatha [67] developed a hybrid Random Forest Deep Learning (HRFDL)
[68] classifier based on Modified Heat Transfer Search (MOMHTS) [69]. CT scan im-
ages were used to identify COVID-19 and chest X-ray images were used to identify viral
pneumonia. In this methodology, the objective is primarily to increase the speed at which
IoT devices communicate as well as to improve COVID-19 detection by optimizing the
HRFDL classifier to be suitable for resources that can handle minimal computation and

storage requirements.

Mesut Togacar [70] restructured the data classes by applying the FuzzyColor technique for
the preprocessing step in which structured images were stacked with the original images.
Then, the stacked dataset was trained with deep learning models such as MobileNetV2 [71]
and SqueezeNet [47]. The features gained by the models were processed using the Social
Mimic optimization method. Afterward, efficient features were combined and classified
using Support Vector Machines (SVM).

Saddam Hussain Khan [72] presented two fresh approaches to deep learning frameworks:
Deep Hybrid Learning (DHL) [73] and Deep Boosted Hybrid Learning (DBHL) [74] for
COVID-19 detection in chest X-ray datasets. Through a machine learning (ML) classi-
fier attached to a proposed DHL framework, the representation learning ability of two
developed COVID-RENet-1 and 2 models is exploited separately, combined through a
machine learning (ML) framework. They ensured that Region and Edge-based operations
were carefully applied to the COVID-RENet models to learn regions’ homogeneity and
extract boundary features. COVID-RENet-1 and 2 were fine-tuned using transfer learn-
ing on chest X-rays in the proposed DBHL framework. After combining the penultimate
layers of both models, a higher enriched boosted feature space is concatenated, resulting
in a single enriched boosted feature space that contains information from both models. By
using enriched feature spaces in conventional ML classifiers, COVID-19 detection per-
formance was improved. Based on experiments, they found that the DBHL framework,
which merges two-deep CNN feature spaces, achieved high accuracy, sensitivity, F-score,

and precision.

Jawad Rasheed [75] performed this analysis using two of the most commonly used clas-
sifiers to classify areas in the dataset: logistic regression (LR) and convolutional neural
networks (CNN). It was important to speed up and optimize the system as much as pos-
sible, and to accomplish that, the dimensionality of the dataset was also reduced through
principal component analysis (PCA) in order to speed up the learning process further and

to increase classification accuracy by selecting highly discriminating features. While con-
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ventional approaches require a large number of training samples, COVID-19 X-ray images
lacked an adequate number of labeled training samples. To reduce overfitting, generative
adversarial networks (GANs) were utilized for data augmentation. The X-ray images for
this study were derived from the available online dataset and incorporated using GAN. In
COVID-19 patient identification, CNN and LR showed promising results. Positive case
identification accuracy was 95.2%-97.6% without PCA and 97.6%-100% with PCA for
the LR and CNN models .

Nahida Habib [76] extracted features from given X-ray images using Convolutional Neu-
ral Networks (CNNs), CheXNet [77], and VGG-19. Random under sampling, random
over sampling, and synthetic minority oversampling techniques were applied to the ensem-
bled feature vector to overcome the problem of data irregularity. In the next step, several
Machine Learning (ML) classification techniques (Random Forest, Adaptive Boosting,
K-Nearest Neighbors) are used to classify the ensembled feature vector. Random Forest
scored better on the standard dataset than the other methods. Compared to existing meth-
ods, the proposed method achieves improved classification accuracy and AUC values and
outperforms all other models, predicting with 98.93% accuracy. When tested on a variety
of datasets, the model also exhibited generalization capacity. The outcomes of this study

can be used to diagnose pneumonia from chest X-ray images.

Danial Sharifrazi [78] proposed a method to detect COVID-19 using X-ray images that
combines convolutional neural networks (CNN), support vector machines (SVM), and
Sobel filters. The edges of the X-ray images were obtained by filtering a new dataset
of X-ray images using a Sobel filter. Following the CNN deep learning model, an SVM
classifier has been used to learn with relatively small amounts of data. This method is
designed in such a way that it can learn with very little data. The proposed CNN-SVM
with Sobel filter (CNN-SVM + Sobel) achieved 99.02% classification accuracy, 100%
sensitivity, and 95.23% specificity in the automated detection of COVID-19. In this study,
it was shown that CNN performance could be improved by using a Sobel filter. In contrast
to most other research methods, this methodology does not use a pre-trained network.
They validated their developed model with six public databases and obtained the best

performance.
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Chapter 3
Methodology

Image datasets are classified using Deep Learning Neural Networks and traditional ma-
chine learning algorithms in Artificial Intelligence. These methods have been tested on
various datasets, with some advantages and disadvantages. This paper benchmarked tra-
ditional and deep learning algorithms for image classification. A description of the ma-
chine learning and deep learning algorithms and models used in this study is provided for
both datasets. Traditional machine learning algorithms include Random Forests (RF) and
Support Vector Machines (SVM), while CNN, VGG19, and Convolutional Auto Encoding
algorithms were used in deep learning. The algorithms and hyperparameters used are

explained in this chapter.

3.1 Random Forest

A random forest, or random decision forest, is an ensemble learning method that makes
multiple decision trees at training time to solve classification, regression, and other tasks.
To train random forests, bootstrap aggregation is applied, also known as bagging. By
randomly selecting samples from the training set and replacing them with random samples
with responses, repeatedly bagging (L times) obtains a random selection of samples for

fitting trees to: In the case of i=1, ..., L:

1) Then replace n of the training examples in X and Y with replacement examples; call
these X, and Y.

2) Use the X; and Y; as inputs for a classification or regression tree.

Using all the individual regression trees on dataset, predict unseen samples of dataset by

averaging their predictions:

. 1 &
f= T Zfi(dataset)

Alternatively, classification trees can be selected by majority vote [79]. In traditional
machine learning algorithms, features must be extracted, and images should be classi-
fied based on those features. A Random Forest algorithm classifies images by converting

images into numerical features that can then be input into the algorithm. In order to ac-
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complish this, techniques like feature extraction can be used, in which pixel values, texture
features, edge detection, and local binary patterns can be extracted from images. A ran-
dom forest algorithm can be applied to classify the images using the extracted features.
Random forest algorithms can also be applied to other classification problems, with the
main difference being that the input data consists of numerical features instead of raw

image data.

3.2 Support Vector Machine (SVM)

Support Vector Machines is a robust supervised learning algorithm for classification and
regression analysis. Hyper planes are used to classify the dataset according to their optimal
positions. Support Vector Machine (SVM) is a classification model to classify and analyze
data. SVMs are also capable of classifying images and segmenting images. Once the
relevance feedback process is completed, the accuracy of the SVM-based search exceeds
that of traditional query refinement schemes. Applying the kernel trick to maximum-
margin hyper planes allows nonlinear classifiers to be used for higher dimensional data
like images since there are more than two features. We have three classes for our datasets in
this study. As a result, the algorithm fits a maximum margin hyperplane in a transformed
feature space by replacing each dot product with a nonlinear kernel function. Because
there may be a nonlinear transformation and a high dimension in the transformed feature
space, the classifier may not be linear in the original input space. Despite this, support
vector machines perform well in higher-dimensional feature spaces given enough samples.

The loss function for SVM is as following:

1 n
min A||w||*+= " maz((0,1 — y;(w"z; — b))
v Nz
Assuming x; and y; are samples and targets respectively, w is the normal vector, and
wTz; — b is the output. Additionally, \ ensures that the margin is on the right side of

the margin while increasing the margin size [80].

3.3 Convolutional Neural Networks (CNN)

In deep learning neural networks, convolutional neural networks (CNNs) are particularly
effective at analyzing visual imagery. The input data is processed by several layers, each
responsible for a specific operation. CNNs are built by assembling layers that use convo-
lutional neural networks as their building blocks. Using learnable kernels or filters, this
layer identifies certain features or patterns in the image by comparing them to the input
image. Each filter detects a different feature in the image, such as edges, corners, or color

blobs. It slides across the input image and performs a mathematical operation known as
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convolution, which creates a feature map. Convolutional layers are usually combined with
activation functions to introduce non-linearity. Activation functions commonly use Rec-
tified Linear Units (ReLUs), which zero out negative values. Using a pooling layer, the
output is downsampled after the convolutional and activation layers. By performing oper-
ations on non-overlapping regions of the feature map, the pooling layer reduces the spatial
dimension of the feature map. As aresult, the model has fewer parameters and is less likely
to overfit. Input image features are detected in increasingly complex ways by repeating
this convolution, activation, and pooling process multiple times. A fully connected layer
is usually applied to the output of the convolutional layers to perform classification or
regression. With backpropagation, the parameters of the network are adjusted in order
to minimize the difference between the predicted and the accurate output during training.
Image recognition, object detection, and other computer vision tasks benefit significantly
from the convolutional neural network architecture since it is capable of learning features
from the input data automatically [81]. Among the most common image classification
models are convolutional neural networks, which in earlier layers extract blobs and edges
that can be used to identify COVID-19 in chest X-rays. To detect COVID-19, we first de-
veloped a convolutional neural network (CNN) model to classify images. This approach
used the Keras package to use different MaxPooling, Conv2D, dropout layers for regular-
ization, and Dense layers with ReLu activation functions. Based on a multi-class problem,

the SoftMax activation function was used for the last layer of output.

3.4 VGGI19

The Visual Geometry Group (VGG) has developed a convolutional neural network archi-
tecture that has been trained over a large dataset of images for the purpose of classifying
the images. It consists of 19 layers, which have been developed for deep learning on a wide
range of datasets. There are 16 convolutional layers in the VGG19 architecture, followed
by three fully connected layers divided into five blocks containing multiple convolutional
layers. By applying the same padding to the input and using a 3x3 filter, VGG19 produces
an output with the same spatial dimensions as the input. A ReLU activation function fol-
lows the convolutional layers, which introduces nonlinearity to the model. To prevent
overfitting and reduce spatial input dimensions, the max-pooling layers are used to down-
sample feature maps. In VGG19, the fully connected layers produce output probabilities
based on the output classes. The final layer is computed by using a softmax activation
function. In supervised learning, VGG19 is trained by minimizing the subtraction of pre-
dicted and actual output with a loss function to determine the weights of the convolutional
and fully connected layers. ImageNet, for example, is used to train a large dataset of im-
ages with well-known labels. It has achieved state-of-the-art performance in a wide range

of image classification tasks thanks to its powerful image classification model, VGG19.
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Complex features in images can be captured effectively with its deep architecture and
small filters with the same padding. This model has an excellent generalization to various
datasets in various fields and uses three-layered convolution filters and deeper nets [82].
The VGG19 CNN model is pre-trained on ImageNet and is pre-trained on a million im-
ages. Furthermore, it categorizes images based on their shapes and colors. Consequently,
we used this model to classify both datasets and their augmented data to examine their
performance. A few fully connected layers were used to extract features. In the Diagram
3.1, the phases of the VGG19 model for training have been provided.

maxpool
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Figure 3.1: This flow diagram shows the different steps of the VGG19 model that have
been applied in this study. In the first step, more training data were generated using data
augmentation. Images were preprocessed to train the model, and finally, the SoftMax

function was used to classify the images into COVID-19, Normal and Viral Pneumonia
[83].

3.5 Convolutional Auto Encoder

The Convolutional Autoencoder is a type of neural network capable of compressing and
reconstructing images. Generally, Conventional Auto Encoders (CAE) consist of two lay-
ers, encodes and decodes. The encoder learns to extract meaningful features from an input
image through a series of convolutional layers. A compressed representation of these fea-

tures is then created using pooling or upsampling layers. This compressed representation
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contains the most critical information about the input image and is called a ’latent code.” In
order to reconstruct the original image, the decoder uses multiple deconvolutional layers.
The deconvolutional layers learn to fill in” the missing details and create an output image
as close to the original input. As part of training, an autoencoder uses a mean squared error
or binary cross-entropy for the loss function to minimize the difference between input and
output images. As a result of minimizing this loss function, the autoencoder learns how to
encode input images into compact latent representations that capture their most important
features. We minimize the following formula if f,,(.) and g,(.) are encoder and decoder

functions, respectively:
1L 9
min — ;ng(fw(xi)) — wil3

and fully connected layers for autoencoder:
fw(z) = o(wx) =h

gu(h) = o(uh)

which x and / are vectors and o is an activation function like sigmoid or ReLU. It is com-
mon to use convolutional autoencoders to denoise images, compress them, and extract
features from them. Additionally, Combining them with other neural network architec-
tures, such as convolutional neural networks, can enhance their ability to classify images
and detect objects [84]. In the Diagram 3.2, the phases of the Cnovolutional Auto Encoder

model for training have been provided.
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Figure 3.2: In this diagram, we demonstrate the phases of the Auto Encoder model that
we used in this study. The input image with dimensions of (124,124,3) is passed to the
encoder part, and after a few layers, we obtain an image with dimensions of (16,16,8),
which we use as input for a CNN model for training.
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Chapter 4

Data

For every research project, data is needed to work with and verify the results. We can use
this to determine if the results are reliable and performance-oriented. Data Augmentation
is also a way to meet particular needs in datasets, such as helping with small datasets
and making accurate generalizations in training. The methods used in this study to meet
these requirements, work with different data sets, and augment the data are varied. In
studying different articles, we decided to try different methods that were not used in the
papers we studied. We wanted to test different techniques and possibilities to see if they
could improve model accuracy. By exploring techniques that have not been explored in
the examined papers, we could gain insight that would assist in improving our study s
results. Our experiment aimed to increase our models’ accuracy by experimenting with
various data augmentation techniques. A bright and contrast method was used in this
study to augment data to test if the method assisted with enhancing. These methods were
also mixed with the flipping method in order to obtain the results. We achieved the results
by enhancing data simply with brightness and contrast and adding the flipping method. In
order to apply these methods to our model, we had to create new images by using a package
or class that applied these methods to our model. Compared with an image generator or
an open CV package, Data Augmentor is a package that helps you see exactly how many
images have been created and save them in a folder for easy reference. With the help
of Data Augmentor, we were able to create new images by changing the brightness and
contrast of them using the flipping method. Our model becomes more robust as a result of
the exposure to more diverse data. As a result of the package, we could also keep track of
the number of images we have created as well as organize them in an orderly manner. We
have discussed the datasets as well as the augmented datasets used in this study through
this chapter. We will also discuss what we did with them in order to archive better results
and evaluate the performance of different data sources that were used. As such, it was
essential to assess the data quality in order to be able to trust and justify the results of the
research project. In this chapter, we have explained in detail how two datasets from two
different sources were used in the study. This document outlines the process of evaluating

both datasets, as well as possible limitations and issues based on our findings.
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4.1 Data Augmentation

In this study, we used the package Augmentor to create new images from existing data.
Among the existing data (Dataset 1 and Dataset 2), two augmented data sets were created,
one based on brightness and contrast with 0.5 probability for each method. The min factor
was adjusted to 0.3 and the max factor to 0.5. In another augmented data set, the bright-
ness and contrast min factors and max factors were the same, but the probability changed
when the flipping method was added; contrast had a probability of 0.4, brightness had a
probability of 0.3, and flipping had a probability of 0.3. This adjustment of min and max
factors ensures that the augmented data sets have the same overall brightness and contrast
but with different probabilities for the different methods. By adjusting the probability of
each method, the data sets can have different levels of brightness, contrast, and flipping,

which helps create more diverse data sets for training.

4.2 Dataset 1

We received our first dataset from the University of Montreal in Canada. The dataset con-
tains three types of chest X-ray images, Normal, Covid-19, and Viral Pneumonia images,
examined in this study. A total of 317 images are included in this dataset, divided into two
groups, training and test images. A total of 111 Covid-19 images and 70 images are pro-
vided separately for each Normal and Viral Pneumonia class. Furthermore, 26 Covid-19
images and 20 images for each class are included in the test set [1]. Our dataset in dataset 1
is relatively small, so we used augmented data to create additional images. This was done
to avoid overfitting or underfitting issues and attempt to achieve better results. As part of
the data augmentation, we used flipping, brightness, and contrast and made 2000 images
for each class to perform the augmentation. A summary of dataset 1 has been provided in
Table 4.1.

Table 4.1: Summary of dataset 1 used in this study.

Train Data Test Data

COVID-19 111 26
Viral Pneumonia 70 20
Normal 70 20

4.2.1 Data Augmentation for Dataset 1

As part of deep learning, data augmentation entails creating tweaked versions of the origi-
nal data to expand a training dataset artificially. By using this technique, image classifica-
tion tasks can be improved in terms of generalization and robustness. Data augmentation

helps to create more variations of the original data, reducing overfitting and improving
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the model’s ability to recognize patterns in unseen data. It also helps the model to learn
more complex features that can assist it in classifying images more accurately. Various
transformations can be applied to the initial images to produce images with different ap-
pearances. However, these images still represent the same underlying objects or scenes,
including flipping, rotating, cropping, or zooming. The training data will be more diverse,
which will make it easier for the model to learn robust, invariant features. Additionally,
Deep neural networks can overfit when training data if they are too complex and have
a small dataset. By artificially increasing the size of the training dataset, the model can
generalize more efficiently to new, unseen data. This prevents the model from memoriz-
ing the exact training examples. By augmenting the training dataset, the model can learn
more robust features that are not dependent on the actual training examples, thus avoiding
overfitting. We used data augmentation to reduce overfitting and compensate for the small
training dataset in this study. This helped us produce more reliable and robust results. The
training data was split into two sections: training and validation. The first train data we
augmented from them was 91 images for COVID-19, 50 images for each of normal and
viral pneumonia. We then selected 20 images from each class for validation since aug-
mented data cannot be used for validation. So we augmented images from the remaining
data in the training set. In order to augment our data, we applied brightness, contrast, and
flipping, each independently, using the Augmentor package. After applying brightness
and contrast, we added flipping to the methods and tested them. As a result, we had two
augmented datasets: one with brightness and contrast and one with brightness, contrast,
and flipping. Through this way, we could analyze the algorithms’ performance on var-
ious augmented datasets and determine which combination of augmentation techniques
produced the best results. We managed to gain a better understanding of how the augmen-
tation techniques affected algorithm performance by comparing the results of the different
augmented datasets. We then adjusted the training process accordingly based on which
combination of techniques produced the best results. A summary of augmented dataset 1
has been provided in Table 4.2.

Table 4.2: Summary of dataset 1 used in this study.

train data validation data test data

COVID-19 2000 20 26
Viral Pneumonia 2000 20 20
Normal 2000 20 20

4.3 Dataset 2

Compared to dataset one, dataset two is much larger and contains a more significant

number of images than dataset one. It was created by researchers from Qatar Univer-
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sity in Doda, Dhaka University in Bangladesh, Malaysia, and Pakistan based on chest
X-ray images of four different categories: normal images, Covid-19 images, viral pneu-
monia images, and lung opacity images. The first release included 219 COVID-19 chest
X-rays, 1341 normal X-rays, and 1345 viral pneumonia X-rays. The second update in-
cluded 1200 COVID-19 chest X-rays. The second update added 3616 COVID-19 positive
cases, 10,192 Normal, 6012 Lung Opacity (Non-COVID lung infections), and 1345 Viral
Pneumonia images and corresponding lung masks to the database. They will update the
database as soon as the COVID-19 pneumonia images become available. Due to the lim-
ited number of classes in dataset 1, we did not use lung capacity images in this study, and
we compared the results in each dataset and investigated the results in another dataset. In
addition, as we had imbalanced data, some images were reduced to make balanced data,
and data augmentation was used to check the model’s performance on augmented, reduced

data [2]. A summary of dataset 2 has been provided in Table 4.3.

Table 4.3: Summary of dataset 1 used in this study.

train data test data

COVID-19 10182 50
Viral Pneumonia 3652 50
Normal 1295 50

4.3.1 Data Augmentation for Dataset 2

Even if we have a large dataset to work with, data augmentation can still be helpful for
image classification. In applications where the input images may differ in quality or ap-
pearance, data augmentation can help the model identify objects more robustly and invari-
ably. The training data may not adequately represent certain image variations, even if the
dataset is significant. By artificially increasing the diversity of training data, we can ensure
that the model can recognize objects robustly and invariantly. In addition, large datasets
may still have biases that can affect the model’s performance. Those types of images, for
example, might be more accurately recognized if the dataset consists primarily of images
of a certain race or gender. With data augmentation, we can achieve a better distribution
between the classes in training data and reduce model bias. Often, large datasets contain
redundant images or similar images, which make the model overfit to the training data and
perform poorly on new, unseen ones. By artificially increasing the diversity of training
data, data augmentation can reduce overfitting and prevent the model from memorizing the
exact training examples it is supposed to learn. In this way, the model can be more easily
generalized to new, unknown images. As part of this study, we first reduced the number
of images to like the number of Viral Pneumina images by 1300 images, then 260 images
from this train data were analyzed for each class in the validation set and 260 images for

the test set, with the remaining images being utilized for data augmentation to make 2000
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images for the trainset. Our data augmentation was performed using the Augmentor pack-
age, as explained before. Using the Augmentor package, we created augmented images by
applying brightness, contrast, and flipping, each tested separately. After applying bright-
ness and contrast, we added flipping to the methods and tested the algorithms. Therefore,
we had two augmented datasets based on brightness and contrast and one based on bright-
ness, contrast, and flipping. This allowed us to compare the performance of the algorithms
on the different augmented datasets and to see which combination of augmentation tech-
niques produced the best results. By comparing the results of the different augmented
datasets, we were able to understand better how the augmentation techniques were affect-
ing the performance of the algorithms. This allowed us to determine which combination
of techniques produced the best results and to make adjustments to the training process

accordingly. Table 4.4 provides a summary of the data.

Table 4.4: Summary of dataset 1 used in this study.

train data validation data test data

COVID-19 1300 260 260
Viral Pneumonia 1295 260 260
Normal 1300 260 260
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Chapter 5

Experimental Results

We began with two datasets from two different resources to conduct this study. We exam-
ined our methods and algorithms to evaluate the effectiveness and ability of these methods
and algorithms to achieve better results in the world of artificial intelligence. To assess
the usefulness of these methods and algorithms, we compared the results of our analysis
to the original datasets to determine their accuracy and reliability. During this chapter,
we will describe how we have pre-processed the datasets we have used in this study and
how we have used them in this research. In addition, we will present the experimental
results we achieved in the previous chapter by applying the methods we discussed in that
chapter. We have used various metrics, such as precision, recall, and F1-score, to eval-
uate our results. Furthermore, we have compared our results with benchmarks to show
how our proposed methods and algorithms can provide better performance than existing
methods. Finally, we have discussed the impact of using different data pre-processing
techniques on the performance of our algorithms. Here, we have discussed the proposed
models on both datasets that were mentioned in chapter 4 and the hyperparameters ap-
plied to these models. The models were evaluated based on the performance metrics such
as accuracy, precision, and recall. The hyperparameters, such as learning rate and regu-
larization strength, were tuned to optimize the performance of the models, and the results
were compared across the two datasets to determine which model works best in each case.
Furthermore, the results of the experiments confirmed that the model tuned with the cor-
rect hyperparameters achieved superior performance for both datasets, demonstrating the

effectiveness of the proposed approach.

5.1 Image Pre-processing

The first step in analyzing images is preprocessing them. These methods include trans-
formation, orientation, and resizing, which make images more appealing. The function
of models requires that images be preprocessed before they can work correctly. As a re-
sult of this process, we can classify and work. In classical machine learning algorithms,
images cannot be used as they are without first extracting features and saving them in a
data frame. To extract features and detect edges, we used filters for feature extraction.
For feature extraction in this study, we used three different filters, including pixel values,
Gabor filters with different hyperparameters (v = 0.5, and A =7 0, 0 €(1,4)) and the Sobel
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filter which is for edge detection. We can extract features with different theta, and sigma
ranges from a function with a for loop. It is created by first *for loop’ theta in range(1,4)
and then dividing this number into four times pi, and then by second for loop inside this
loop, o is in range(1,4), and then a Gabor filter with kernel size = 9 is created by using
the A = 7 and the v = 0.5. A Gabor filter with different orientations and scales can be
created by looping through theta and sigma ranges. This allows for a more compelling
feature extraction since the filter can be tuned to the specific features in the image that
need to be extracted. The kernel size of 9 ensures that the filter captures enough of the im-
age’s features. The lambda and gamma parameters adjust the filter’s orientation and scale,
respectively. Additionally, image preprocessing can speed up the training and running of
the model. We investigated resizing all the images because they were different sizes. The
fully connected layers of convolutional neural networks require images of the same size
to function. After resizing images to different sizes, like 100*100*3 and 150*150%*3, we
discovered that 50*50*3 was the most effective size for superior performance. Then we
down-sampled the images to (50,50,3) sizes so that we could try to tune the model on the
same size dataset. This would ensure that the model would be trained on the same size
dataset and that the convolutional layers could properly detect the patterns in the images.
This would lead to improved accuracy of the model and better performance. This dimen-
sion was used for VGG19 and CNN training; however, for Auto encoder training, this
dimension (124,124,3) was used since auto encoders reduce the dimension themselves,
and (50,50,3) was a low dimension. Autoencoders are used to compress data into a low-
dimensional representation. To capture the most information, the initial dimension should
be larger than the output dimension. Therefore, (124,124,3) was used as the input di-
mension to ensure that the auto-encoder had enough information to generate meaningful

output.

5.2 Random Forest

5.2.1 Random Forest on Dataset 1

Based on feature extraction using all hyper parameters mentioned in image processing,
Random Forest Classifiers without and with regularization (Lasso and ridge regression)
were used on both datasets. Random forest with default parameters with 50 estimators
(Gini loss function and without max-depth hyper parameter) was used. This was done be-
cause the Random Forest Classifier is robust and accurate compared to other classifiers.
The use of 50 estimators was chosen to ensure high accuracy in the results. Additionally,
image processing allowed extracting features that could be used to refine the model’s ac-
curacy further. The random forest method without regularization proved to achieve 81%

accuracy in the results. When we ran this model on the second dataset, we received 58%
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accuracy, which could have been better for the updated dataset. As we can see, the prob-
lem was classifying the Normal images as Covid-19 images. We observed that the model

over-predicted Covid-19 images, classifying Normal images as Covid-19.

Then we tried a regularized Random forest model with 100 estimators, max-depth =10,
class weight = balanced-subsample, and reached higher accuracy by 2% more, reaching
83%. This enhancement leads to one more percent accuracy when checking the second
dataset by 59%. The Figure 5.1 contains information about confusion matrices of these
performances and checking a training model on a second dataset to investigate how it

performs on unseen data.
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Figure 5.1: In this diagram, Confusion matrix (1) shows the performance of Random
Forest without Regularization on Dataset 1, Confusion matrix (2) shows the investigation
of Random Forest without Regularization on test data of Dataset 2, Confusion matrix (3)
shows the performance of Random Forest with Regularization on Dataset 1, and Confusion
matrix (4) shows the investigation of Random Forest with Regularization on test data of
Dataset 2.
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5.2.2 Random Forest on Dataset 2

Since dataset 2 is large, machine learning algorithms are unsuitable for large datasets,
and training them takes a long time. Machine learning algorithms are computationally
expensive and require many resources to train them. Training on large datasets can take
excessive time and resources, so decreasing the number of images can help speed up the
training process. Random forest on dataset 2 required us to reduce the number of Normal
images due to the GPU and system running on the machine. In the same way, as with
COVID-19 images, we reduced the number of Normal chest X-ray images to 3652. We,
therefore, had 3652 images for Normal and COVID-19 for each class and 1295 images
for Viral Pneumonia. We strived to maintain a balanced dataset, as this would allow us
to make better predictions using random forests. Based on feature extraction using all
hyperparameters mentioned in image processing, Random Forest Classifier with 50 esti-
mators, Gini loss function, and without max-depth hyperparameter was used on Dataset
2. This was done because the Random Forest Classifier is robust and accurate compared
to other classifiers. The use of 50 estimators was chosen to ensure high accuracy in the
results. Additionally, image processing allowed extracting features that could be used to
refine the model’s accuracy further. This approach proved successful, with the Random
Forest Classifier achieving 91% accuracy in the results. When we ran this model on the
second dataset, we received 60% accuracy, which was not ideal for the updated dataset.
As we can see, the problem was classifying the Normal images as Covid-19 images. We
observed that the model over-predicted Covid-19 images, classifying Normal images as
Covid-19. Moreover, we applied the algorithms to Datasetl, a larger dataset, and the re-
sult was 91% accuracy. However, we could not get an accurate result of 60% accuracy
when we used the trained model on Dataset 1. The results of these tests can be seen in
the confusion matrix provided in Figure 5.2, which can be seen in Confusion matrices 1
and 2. Also, we used a regularized random forest for this dataset too to examine that. We
achieved 2% more accuracy by 93% in this trial. The model was further tested on the
dataset and achieved 62% as shown in Figure 5.2 in Cofusion matrices 3 and 4. We could
see that this is just like the previous experience with dataset] with this difference that we
got higher accuracy and prediction. This can be because of the increasing number of train-
ing data as we had a larger dataset. Also, a table has been provided to present a summary
to show the performance of the Random Forest classifier on both datasets. This can be
seen in Table 5.1. The random forest had better results with 91% accuracy on dataset 2,
and this accuracy increased by 2% with regularization. However, both models on dataset
one and Dataset 2 could not predict data from different sources effectively, with about

60% accuracy for both models.
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Figure 5.2: In this diagram, Confusion matrix (1) shows the performance of Random
Forest without Regularization on Dataset 2, Confusion matrix (2) shows the investigation
of Random Forest without Regularization on test data of Dataset 1, Confusion matrix (3)
shows the performance of Random Forest with Regularization on Dataset 2, and Confusion
matrix (4) shows the investigation of Random Forest with Regularization on test data of
Dataset 1.

5.3 Support Vector Machine

5.3.1 Support Vector Machine on Dataset1

Using all hyperparameters mentioned in image processing, a Support Vector Machine
Classifier was implemented for multi-class classification based on feature extraction. The
number of classes* (Number of classes - 1) divided by two classifiers are constructed, and
each class trains data from two classes. Using the decision function shape option, it can
monotonically transform the results of ”one-versus-one” classifiers into a ”one-versus-
the-rest” decision function of shape (n-samples, n-classes). ’One-versus-one” classifiers
are binary classifiers that learn a discrimination function for each pair of classes. By com-

bining these classifiers, a multi-class classifier can distinguish between all classes. The
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Table 5.1: The table summarizes the Random Forest performance on Datasetl and
Dataset2.

Model Datasetl | Dataset2 | Test(Datal on Data2) | Test(Data2 on Datal)
Without

Regulariza- 81 91 58 60

tion

With Regu- | ¢, 93 59 62
larization

decision function shape option allows the user to transform the output of the ”one-versus-
one” classifiers into a ”one-versus-rest” decision function with a shape of (n-samples,
n-classes), where n-samples is the number of images and n-classes is the number of image
classifications. This model allows users to classify multiple classes with a single function
easily. A further refinement of the model’s accuracy was possible through image process-
ing, which allowed us to extract features from the image. The Support Vector Machine
Classifier without regularization on Dataset 1 proved less successful, achieving 77% ac-
curacy shown in the Confusion matrix(1) Figure 5.3 in the results. Also, we checked on
the second dataset; however, we achieved 64% accuracy provided in the Confusion matrix
(2) Figure 5.3, which could have been more optimal compared to Random Forest Model.
As we can see, the problem was in classifying the normal images as COVID-19 images.
The model overpredicted Covid-19 images and thus classified Normal images as Covid-
19 images. Moreover, we applied regularization to the SVM model with kernel trick to
check if this will enhance or not, and by using kernel = rbf, auto gamma, and C = 1, we
received bad results by 39% shown in Confusion Matrix (3) Figure 5.3 dataset]l and when
we checked the regularized model on test dataset 2 from the second resource we achieved

33% for accuracy provided in Confusion Matrix (4) Figure 5.3.

5.3.2 Support Vector Machine on Dataset2

Moreover, we applied the algorithms to Dataset2, a larger dataset. We achieved 90%
accuracy for SVM without regularization, as shown in the Confusion Matrix (1) of Figure
5.4, but when we used the trained model on Datasetl that provided 62% accuracy, as shown
in the Confusion Matrix (2) of Figure 5.4, we were unable to achieve a good accuracy

result.

A regularized SVM was also used to evaluate performance by regularizing the model with
kernel trick and gamma = auto and C = 1. We did not improve performance but reduced
performance by more than 30% for dataset 2. As shown in the Confusion Matrix (3) of
Figure 5.4, the results when testing dataset 1 from different sources are 39% accuracy in the
Confusion Matrix (4) of Figure 5.4. In addition, a table has been provided to summarize all

the results of Support Vector Machines on both datasets, which can be found in Table 5.2.
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Figure 5.3: In this diagram, Confusion matrix (1) shows the performance of Support Vec-
tor Machine without Regularization on Dataset 1, Confusion matrix (2) shows the in-
vestigation of Support Vector Machine without Regularization on test data of Dataset 2,
Confusion matrix (3) shows the performance of Support Vector Machine with Regular-
ization on Dataset 2, and Confusion matrix (4) shows the investigation of Support Vector
Machine with Regularization on test data of Dataset 1.

This table shows that Support Vector Machine performed best on Dataset 2 compared to
Dataset 1 and regularized version, but this model could not reach nice results on different

source datasets as well.

5.4 Convolutional Neural Networks (CNN)

A Convolutional Neural Network, which is a popular method of image classification, was
presented in this paper. We tested the performance of Convolutional Neural Networks by
modifying the model with different regularizations, including Ridge regression, Lasso re-
gression, and dropout regularizations. In earlier layers, convolutional neural networks ex-
tract blobs and edges, which helps identify COVID-19 in chest X-rays. To detect COVID-

19, we designed a convolutional neural network (CNN) as a first step. A Keras package
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Figure 5.4: In this diagram, Confusion matrix (1) shows the performance of Support Vec-
tor Machine without Regularization on Dataset 1, Confusion matrix (2) shows the in-
vestigation of Support Vector Machine without Regularization on test data of Dataset 2,
Confusion matrix (3) shows the performance of Support Vector Machine with Regular-
ization on Dataset 2, and Confusion matrix (4) shows the investigation of Support Vector
Machine with Regularization on test data of Dataset 1.

was applied along with MaxPooling, Conv2D, Dropout, and Dense layers activated with
ReLu functions. The final output layer combined a multi-class problem with the SoftMax
activation function. This model was designed with a sequential model with 16 layers. The
input layer was a 50x50x3 image. We also applied five dropout layers with 0.25 param-
eters, Ridge Regression with 0.01 for kernel regularizer, and Lasso Regression with 0.01
for bias regularizer as penalty terms for regularizing the model. We also used batches of
16 sizes and 200 epochs. Using an Adam optimizer and a categorical cross-entropy loss
function with parameters of from logits = True. The logit parameter indicates whether the
activation function should be applied to the model output or not. In this case, the SoftMax
activation function should be applied to the model output; hence the parameter is set to
True. Using the proposed model described in this section, we achieved different accu-
racy through regularization methods. However, the models overfitted after some epochs.

This means the model could accurately predict outcomes based on the data it was trained
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Table 5.2: The table shows the performance of the Support Vector Machine on Dataset 1
and Dataset 2.

Model
(SVM)
Without
Regulariza- 77 90 64 62
tion

With Regu-
larization

Datasetl | Dataset2 | Test(Datal on Data2) | Test(Data2 on Datal)

39 30 33 39

on but could not generalize to untrained data. As a result, the model tended to “mem-
orize” the data it was trained on, causing it to overfit. We used dropout regularization,
Lasso regression, or Ridge regression for regularization. This research found that dropout
regularization helped increase accuracy and reduce overfitting, but it was insignificant.
Moreover, we also applied the best-trained model that was trained on one dataset to an-
other dataset from a different source in order to test it. In terms of accuracy, we did not
achieve a significant level of accuracy, and what we found was that the Normal images,
which made up about 90% of the images, were over classified as COVID-19 images. Ad-
ditionally, there were cases in which COVID-19 and viral pneumonia were misclassified
as Normal. There could be a reason for this, which may be the smaller size of the dataset
compared to the second dataset, which might mean that the model needed to be trained
on more examples from the dataset to be able to classify them accurately. There is also
another reason for the inability to classify well in smaller datasets, which can be caused
by a problem of overfitting in larger datasets. The training history for each regularization
method and dataset is available. Also, the confusion matrix is provided when we applied
a model to one dataset and checked it on another dataset from different sources in the

figures.

5.4.1 CNN on Dataset 1

In this study, we applied three different regularization methods on three different forms
of dataset 1. To begin with, we applied L1, L2, and Dropout regularization to the original
dataset, which is a small dataset. With the CNN model that we developed using the L1
regularization on the original dataset 1, we were able to achieve 89% for accuracy, and
the test on the dataset achieved 60%. The CNN deep learning model was trained on the
original dataset 1, with L2 regularization. The model was then evaluated on a test set
from the original and second datasets. Confusion matrices were generated to measure the
accuracy of the model’s predictions on both datasets. Additionally, training plots for each
epoch were provided to visualize the learning process. The deep learning model achieved

90% accuracy when evaluated on the test set from the original dataset L2 regularization.
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Figure 5.5: This diagram shows the con- Figure 5.6: In this diagram, we show
fusion matrix of the CNN model with the confusion matrix for the CNN model
Dropout regularization algorithm’s pre- based on dataset]1’s data for dataset2’s test
dictions for datasetl. data.

However, when evaluated on the second dataset, accuracy dropped to 54%. On the origi-
nal Dataset 1, dropout regularization had 93% accuracy for checking in the same test set
and 50% accuracy when checking in Dataset 2. Figure 5.5 and Figure 5.6 show confusion
matrices indicating the number of predictions. Figure 5.7 provides a plot of training for
each epoch as well. Additionally, we applied all regularization methods to augmented
data with brightness and contrast to see how the algorithms would be enhanced. The per-
formance of CNN with L1 regularization worsened as the accuracy decreased to 39% and
when tested on Dataset 2 the accuracy became 33%. In order to investigate the capabili-
ties of L2 and Dropout, regularization techniques were applied on Augmented Dataset 1,
which had been enhanced using brightness and contrast adjustments. Although the train-
ing accuracy of the models was not high, achieving only 60% and 63% accuracy for the
best epoch, the testing accuracy on the test set was much better, with values of 93% and
84% for L2 and dropout regularization, respectively, as illustrated in Figure 5.10. The
trained models were also tested on Dataset 2, and the results are presented in Figure 5.9.
The confusion matrices of the number of predictions for both models are provided in Fig-
ure 5.8.

Specifically, we applied brightness, contrast, and flipping techniques to augment Dataset
1 and trained models on these augmented datasets to evaluate their performance. Our pri-
mary aim was to determine the effect of the flipping technique on the prediction model’s
enhancement. Additionally, we compared the performance of L1 regularization with aug-
mented brightness and contrast to that of L2 regularization and dropout regularization. Our
findings indicate that the performance of models with flipping was comparable to those
without flipping. Moreover, the results obtained with L1 regularization with augmented

brightness and contrast were similar to those obtained with L1 regularization augmenta-
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Figure 5.7: A chart showing loss and accuracy for CNNs with dropout regularization for
each epoch, including the best loss and accuracy.

tion by brightness, contrast, and flipping. Additionally, the models trained with L2 and
dropout regularization exhibited high accuracy of 98%, and 95% accuracy when dropout
regularization was applied. However, the highest accuracy achieved during training was
65%, and 62% for L2 and dropout regularization test, respectively. We showed the in
Figures 5.11, 5.12 and 5.13 the result of L2 method wich had better results. To summarize
all results for Dataset 1, we presented a summary in Table 5.3. Our study highlights the
importance of considering data augmentation techniques to improve the performance of

predictive models.

Table 5.3: In the table, various regularization methods of CNN model are compared for
different forms of Dataset1.

CNN
L1 Reg | L2 Reg | Dropout | Test best one on Dataset2

89 90 93 50

Without  Aug-
mentation

With Augmenta-
tion (Brightness, 39 93 84 62
Contrast)

With Augmenta-
tion (Brightness,
Contrast,  Flip-

ping)

39 98 95 65

CNN on Dataset 2

In this thesis, we also investigated the implementation of the CNN model with different

regularization techniques on various forms of Dataset 2. The results of our experiments
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Figure 5.9: This diagram shows the con-
fusion matrix of the CNN model with
the L2 regularization algorithm’s pre-
dictions of dataset2’s test data based
on Augmented (Brightness and Contrast)
datasetl.

are presented in this section. Initially, we applied the CNN model on the original Dataset
2, which was an imbalanced and large dataset. Using L1 regularization, we achieved an
accuracy of 69%. Subsequently, we tested the model to Dataset 1, resulting in an accuracy
of 54%. This difference in accuracy may be due to the imbalance and size of the original
Dataset 2. Therefore, it is essential to consider the characteristics of the dataset while
selecting a regularization technique. Additionally, these findings highlight the importance
of evaluating the performance of models on different forms of datasets to identify their

generalization ability.

Additionally, a Convolutional Neural Network (CNN) model was employed on Dataset 2,
which is imbalanced and voluminous. The model was subject to L2 regularization, which
resulted in an 89% accuracy. The model was then applied to Dataset 1, producing a 77%
accuracy. Following this, we applied a CNN model on the original dataset (Imbalanced
and large dataset) and were able to achieve 91% accuracy for Dropout regularization, as
shown in Figure 5.14, and 80% accuracy after applying the model on dataset 1, as shown
in Figure 5.15. Furthermore, we also provided the history of this training in Figure 5.16.

Further, we have applied all CNN regularization models to the Balanced Dataset 2 and
have provided the results of the L1 regularization. This showed a 93% accuracy on the
same dataset and an 84% accuracy for testing on Dataset 1. In addition, we provide the
results for L2 regularization which showed 94% accuracy on Dataset 2 and 84% accuracy
for testing on Dataset 1. On Balanced Dataset 2, we applied the CNN model and obtained
95% accuracy with Dropout regularization illustrated in Figure 5.17. We also acquired

90% accuracy with Dropout regularization on dataset 1, which is displayed in Figure 5.18.
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Figure 5.10: This is the loss and accuracy history for CNN with L2 regularization on the
Augmented (brightness and contrast) dataset]1.

Figure 5.19 shows the history of this training. On Augmented Dataset 2, we used CNN
models with different regularization, using Brightness and Contrast, as well as combining
Brightness, Contrast, and Flipping. The results of CNN models with L1 regularization
on both Augmented datasets were not promising. The results show that the accuracy was
reduced by 33 percent for augmented by Brightness and Contrast and augmented by these
in addition to Flipping, respectively. As well we have provided the results for L2 regu-
larization on Augmented (Brightness, Contrast) Dataset2, showing the accuracy of 88%
on Dataset 2 and 72% on Dataset 1. In the next step, we used the CNN model to ana-
lyze Augmented(Brightness, Contrast) Dataset 2, achieving 96% accuracy with Dropout
regularization with a Figure 5.21 to show its confusion matrix. In training, the best accu-
racy was 89%, and 89% accuracy was obtained using Dataset 1 as shown in figure 5.21.
A history of this training can also be found in Figure 5.22. On Augmented(Brightness,
Contrast, Flipping) Dataset 2, L2 and Dropout regularization provided similar results with
93 and 95 accuracies when training but the best epoch was less than this. When testing
on Dataset 1, Dropout gained 90 accuracy, while the L2 gained 89 accuracy. In this study
we provided illustration of Dropout regularization because of better results which can be
seen in Figures 5.23, 5.24 and 5.25. A summary of the results of regularization methods
for the CNN model on dataset 2 has been provided in Table 5.4.
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Figure 5.12: This diagram illustrates the
confusion matrix of the CNN model with
the L2 regularization algorithm’s pre-
diction of dataset2’s test data based on
Augmented (Brightness and Contrast and
Flipping) dataset].

Figure 5.11: This diagram shows the con-
fusion matrix of the CNN model with L2
regularization algorithm’s predictions of
the Augmented (Brightness and Contrast,
Flipping) dataset].

5.5 VGGI19

5.5.1 VGG19 on Datasetl

We trained the VGG19 model on the original and each augmented Dataset 1 separately and
evaluated the performance on the validation set. The model was trained for 200 epochs
with a batch size of 16 using the Adam optimizer and categorical cross-entropy loss. Table
5.5 summarizes the performance of VGG19 on each dataset: In the case of the original
and augmented Dataset 1, there was not much difference between them when we applied
VGG19 to them. Due to the fact that the accuracy of the original data was 87% as shown
in the confusion matrix in Figure 5.26, 86% as shown in Figure 5.29 and 89% as shown in
Figure 5.32 for Augmented(Brightness and Contrast) and Augmented (Brightness, Con-
trast and Flipping) respectively. In spite of this, the best accuracy rates in the training
phase were significantly lower than these percentages. It can be seen that the testing re-
sults of Dataset 2 and the training are presented in Figures as follows: 5.28 for training on
the original Dataset 1, 5.31 for training on the Augmented (Brightness, Contrast) dataset,
5.34 for training on Augmented (Brightness, Contrast, Flipping) dataset, 5.27, 5.30 and

5.33 illustrate the testing on Dataset2 using the training on Dataset].

5.5.2 VGG19 on Dataset2

We trained the VGG19 model on each dataset separately and evaluated the performance

on the validation set. The model was trained for 200 epochs with a batch size of 16 using
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Figure 5.13: This is the accuracy and loss history for CNN with L2 regularization on the
Augmented (Brightness, Contrast, and Flipping) dataset 1.

the Adam optimizer and categorical cross-entropy loss. Table 5.6 summarizes the per-
formance of VGG19 on each dataset. The results of using VGG19 on Dataset 2 showed
that there was a difference between Imbalanced data and balanced data with reduction and
augmentation. With the VGG19 model applied to Imbalanced data, we obtained 76 per-
cent accuracy, shown in Figure 5.35. However, when evaluating the test data of Dataset
1, we obtained 59 percent accuracy, shown in Figure 5.36. There is also a training history
provided in Figure 5.37. By reducing the number of normal images and using brightness,
contrast, and flipping, VGG19 improved accuracy from 76% to 91-93% when tested on the
same dataset as well as from 59% to 81-83% when tested on Datasetl. Figures 5.38, 5.39,
and 5.40 explain how to use the model without augmentation on balanced data. More-
over, 5.41, 5.42, and 5.43 describe how they to be applied the model to balanced data with
brightening and contrast augmentation. Finally, figures 5.44, 5.45, and 5.46 illustrate how
the model was applied to balanced data augmented by brightness, contrast, and flipping.

5.6 Convolutional Auto Encoder

5.6.1 Auto Encoder on Dataset 1

We trained the Convolutional Auto Encoder model on the original and augmented dataset
separately and evaluated the performance on the validation set. The model was trained for
200 epochs with a batch size of 16 using the Adam optimizer and categorical cross-entropy
loss. The Table 5.7 summarizes the performance of the Convolutional Auto Encoder on
Original Dataset 1 and each Augmented Dataset 1. The Auto Encoder algorithms were

tested with Original Dataset 1 and Augmented by Brightness and Contrast, and the results
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Figure 5.15: On this diagram, we show a
confusion matrix representing predictions
of Datasetl’s test data based on original
Dataset2’s data using a CNN model with
the Dropout regularization algorithm.

Figure 5.14: This diagram shows the
confusion matrix of CNN model predic-
tions using the Dropout regularization al-
gorithm on original Dataset?2 test data.

were the same, with 87 percent accuracy for the same dataset and 60 percent accuracy on
Dataset 2. Adding the flipping method for augmentation did not yield promising results,
with 57 percent accuracy for the same data and 35 percent for Dataset 2. Figures 5.47 ,
5.48 and 5.49 provide results for the original dataset. Figures 5.50, 5.51 and 5.52 provide
results for Augmented(Brightness, Contrast) dataset. Figures 5.53 , 5.54 and 5.55 provide
results for Augmented(Brightness, Contrast , Flipping) dataset.

5.6.2 Auto Encoder on Dataset 2

The results of Convolutional Auto Encoder are summarized in Table 5.8 for Dataset 2
and its Augmented data. Moreover, the results of the Reduced Dataset 2 are shown in
Figures5.56, 5.57 and 5.58, and the results of the Augmented by Brightness and Contrast
Dataset 2 are provided in Figures 5.59, 5.60 and 5.61. Also, the information of the re-
sults for Augmented by Brightness, Contrast, and Flipping is illustrated in Figures 5.62,
5.63 and 5.64. In our experiment, we trained a convolutional autoencoder on a dataset
of images intending to reconstruct the input images. The autoencoder was implemented
using Keras with a convolutional encoder and decoder architecture, with max pooling and
up-sampling layers for dimensionality reduction and expansion. During training, we no-
ticed that the model was overfitting from the first few epochs. The loss on the training set
decreased rapidly, while the loss on the validation set remained relatively constant. We
monitored the training progress using the training and validation loss metrics and found
that the model achieved a training loss of 0.05 and a validation loss of 0.20 after just five
epochs. We analyzed the model’s performance on a held-out test set of images to inves-

tigate the overfitting issue. We found that the model’s reconstruction performance on the
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Figure 5.16: This is the history of loss and accuracy for CNN with Dropout regularization
on original Dataset 2, including the best epoch for loss and accuracy for each epoch.

test set was much worse than its performance on the training set, indicating that the model
had learned to memorize the training data rather than learn valuable features that gener-
alize to new data. In conclusion, our experiment showed that convolutional autoencoders
could overfit from the first few epochs, and the model is a complex training dataset size.
Regularization techniques may only sometimes effectively mitigate overfitting, and re-
ducing model complexity may result in decreased performance. Therefore, it is essential
to carefully balance model complexity and regularization to achieve optimal performance

and generalization in image classification tasks.

Using all the models we used and all the validations performed on them, we concluded
that the large dataset helped improve the models’ performance since, as we can see from
the tables, accuracy decreased when performing on Dataset 2. In addition, Convolutional
Auto Encoding and Convolutional Neural Networks were the most effective models in the
analysis. However, we could see that there was overfitting in the first epochs. However,
we could see that using Dataset 2 instead of Dataset 1 as a training set could improve
COVID detection in Dataset 1. The Convolutional Auto Encoding and Convolutional
Neural Networks had better results due to their ability to detect data patterns and make
more accurate predictions. The overfitting issue could not be addressed by using Dataset
2 as the training set, which allowed for the model to better detect COVID in Dataset 1 by

learning more relevant features.
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confusion matrix generated by the CNN fusion matrix generated by CNN model
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Figure 5.19: This is the history of loss and accuracy for each epoch, including the best
accuracy and loss epoch for CNN with Dropout regularization on the original Balanced
Dataset 2.
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Figure 5.20: This diagram shows the Figure 5.21: This diagram shows the

confusion matrix generated by the CNN confusion matrix generated by the CNN
model with the Dropout regularization al- model with the Dropout regularization al-
gorithm’s predictions of the Augmented gorithm’s predictions of Datasetl’s test
(Brightness and Contrast) Dataset2 test data based on the Augmented (Brightness
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Figure 5.22: This is the history of loss and accuracy for each epoch, including the best
accuracy and loss epoch for CNN with Dropout regularization on the Augmented (Bright-
ness and Contrast) Dataset 2.
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confusion matrix generated by the CNN confusion matrix generated by the CNN
model with the Dropout regularization model with the Dropout regularization al-
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Figure 5.25: This is the history of loss and accuracy for each epoch, including the best
accuracy and loss epoch for CNN with Dropout regularization on the Augmented (Bright-
ness, Contrast, and Flipping) Dataset 2.
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Table 5.4: In the table, various regularization methods of CNN are compared for different

forms of Dataset?2

CNN

L1 Reg | L2 Reg | Dropout | Test best one on Datasetl
Without Aug-
mentation  (Im- 69 89 91 80
balanced)
Without  Aug-
mentation (Bal- 93 94 95 90
anced)
With Augmenta-
tion (Brightness, 33 88 96 &9
Contrast)
With Augmenta-
tion (Brightness,
Contrast,  Flip- 30 92 93 20
ping)

Table 5.5: This table presents the summary of the VGG19 model for Dataset] and its

augmented data with the main features of the model.

VGG19
Datasetl Accuracy| Test on Dataset2
Without Augmentation 87 58
With Augmentation (Brightness, Contrast) 86 58
With Augmentation (Brightness, Contrast, Flipping) | 89 54
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Figure 5.28: A history of loss and accuracy for each epoch, including the best accuracy
epoch and loss epoch for the VGG19 model on Original Dataset].
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Figure 5.29: The diagram shows the con-
fusion matrix of VGG19’s predictions
for Augmented (Brightness and Contrast)
Dataset 1’s test data.
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Figure 5.30: A confusion matrix is
displayed in this diagram showing
the VGG19 algorithm’s predictions of
Dataset2’s test data based on Augmented
(Brightness and Contrast) Dataset 1.

Table 5.6: The table shows the summary of the VGG19 model on Dataset 2 and its aug-

mented data.

VGG19
Dataset2 VGG19 | Test on Datasetl
Without Augmentation(Imbalanced) 76 59
Without Augmentation (Blanaced) 91 81
With Augmentation (Brightness, Contrast) 92 80
With Augmentation (Brightness, Contrast, Flipping) 93 83
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Figure 5.31: A history of loss and accuracy for each epoch, including the best accuracy
epoch and loss epoch for the VGG19 model on Augmented (Brightness and Contrast)

Datasetl.
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Figure 5.32: The diagram shows the con-
fusion matrix of VGG19’s predictions
for Augmented (Brightness, Contrast, and
Flipping) Dataset1’s test data.
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Figure 5.33: A confusion matrix is
displayed in this diagram showing
the VGG19 algorithm’s predictions of
Dataset2’s test data based on Augmented
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Table 5.7: The table shows the summary of the Convolutional Auto Encoder model on

Dataset 1 and its augmented data.

Convolutional Auto Encoder

Datasetl Accuracy| Test on Dataset2
Original 87 61
With Augmentation (Brightness, Contrast) 87 62

With Augmentation (Brightness, Contrast, Flipping) | 90 61
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Figure 5.34: A history of loss and accuracy for each epoch, including the best accuracy
epoch and loss epoch for the VGG19 model on Augmented (Brightness, Contrast and

Flipping) Dataset1.
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Figure 5.35: This diagram shows the con-
fusion matrix of the VGG19 model’s pre-
dictions for Original Dataset2.
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Figure 5.36: The confusion matrix pre-
sented here shows the VGG19 algorithm’s
predictions based on Original Dataset2’s
data for Dataset1’s test data.

Table 5.8: The table shows the summary of the Convolutional Auto Encoder model on

Dataset 2 and its augmented data.

Convolutional Auto Encoder
Dataset2 Accuracy| Test on Datasetl
Balanced (Reduced) 95 84
With Augmentation (Brightness, Contrast) 93 83
With Augmentation (Brightness, Contrast, Flipping) | 94 84
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Figure 5.37: This is the history of loss and accuracy on Original Dataset2 for each epoch,
including the best epoch for accuracy and loss.
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Figure 5.38: This diagram shows the con-
fusion matrix of the VGG19 model’s pre-
dictions for Balanced Dataset?2.
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Figure 5.40: This is the history of loss and accuracy on Balanced Dataset2 for each epoch,

including the best epoch for accuracy and loss.
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Figure 5.41: This diagram shows the con-
fusion matrix of the VGG19 model’s pre-
dictions for Augmented (Brightness and
Contrast) Dataset?2.
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Figure 5.43: This is the history of loss and accuracy on Augmented (Brightness and Con-
trast) Dataset2 for each epoch, including the best epoch for accuracy and loss.
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Figure 5.45: The confusion matrix pre-
sented here shows the VGG19 algorithm’s
predictions based on Augmented (Bright-
ness, Contrast, and Flipping) Dataset2’s
data for Dataset]’s test data.

Figure 5.44: This diagram shows the con-
fusion matrix of the VGG19 model’s pre-
dictions for Augmented (Brightness, Con-
trast, and Flipping) Dataset2.
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Figure 5.46: This is the history of loss and accuracy on Augmented (Brightness, Contrast,
and Flipping) Dataset2 for each epoch, including the best epoch for accuracy and loss.
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accuracy and loss epoch for the Auto Encoder model on Augmented (Brightness and Con-
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Figure 5.53: In this diagram, we show
the confusion matrix of the Auto Encoder
model algorithm’s predictions of Aug-
mented (Brightness, Contrast and Flip-
ping) Dataset 1 test data.
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Figure 5.58: This is the history of loss and accuracy for each epoch, including the best
accuracy and loss epoch for the Auto Encoder model on Reduced Dataset?2.
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Figure 5.62: In this diagram, we show
the confusion matrix of the Auto Encoder
model algorithm’s predictions of Aug-
mented (Brightness, Contrast, and Flip-
ping) Dataset 2 test data.
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Chapter 6

Discussion

Recently, machine learning and deep learning models have attracted significant attention
for the detection of COVID-19 using chest X-rays. The results from various studies sug-
gest that these models have the potential to detect COVID-19 accurately with high sen-
sitivity and specificity, making them useful for diagnosing and treating COVID-19. One
of the advantages of using these models is that they can analyze different data with large
amounts. They can identify patterns that may be difficult for human experts to detect.
This allows for the rapid and accurate identification of COVID-19 cases, which is partic-
ularly important in situations where access to testing facilities is limited or where there
is a need for rapid diagnosis. In the case of COVID-19 detection, using chest X-ray im-
ages, deep learning, and machine learning models also presented several challenges in this
study. We encountered some challenges when testing a trained model on another dataset
set from a different source due to the fact that we were using different sources of data
sets. Here are some challenges mentioned. Since we used two different datasets from two
sources, we had some issues when training on one dataset and testing on another from a
different source. In testing the model on another dataset, the sensitivity decremented too
much for Normal Chest X-ray images, and they were misclassified as COVID-19 images.
Several ways can solve this problem, including data augmentation, fine-tuning, regular-
ization techniques, ensemble models, and hyperparameter tuning. As a result of using
these methods, we were able to improve performance in some cases. Data regularization
with dropout, for instance, could improve performance, but the data augmentation did not
work for Dataset 1, which was a small dataset. A second challenge was overfitting, which
we had, especially in Dataset 1, since we knew that overfitting was bound to occur in such
a small dataset and also that data augmentation did not help us much with this problem for
dataset 1. However, in Dataset 2, we were able to train models and prevent overfitting for
more epochs since more images were available for training. However, overfitting was not
completely eliminated in Dataset 2. Thirdly, standardized image acquisition protocols,
different formats of images in datasets, and different annotation protocols can result in
significant differences in the quality and consistency of the data used to train the models.
If the dataset used for training is too small or biased, the models may also be prone to
overfitting. We had this problem with Dataset 1. There was also a problem with image
dimension when training. We tried different image dimensions to train, but the image with

(50,50,3) was able to train the model better and result in better results, while the image
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with (100,100,3) could not. Additionally, this information was about dataset one, which
was small. However, when we wanted to apply this dimension (100,100,3) to datasets, we
also encountered problems with the GPU memory and image count. Thus, it was evident
that the best image dimension for training the model when using Dataset 2 was (50,50,3)
as well. Another challenge is the lack of interpretability of the models. Although these
models may be highly accurate, it may be difficult to understand how they arrived at a
particular diagnosis. As a result, determining why a model produced an incorrect predic-
tion can be particularly difficult if the model produced a false positive or false negative
result. Despite these challenges, using deep learning and machine learning models for
COVID-19 detection using chest X-ray images holds promise for improving the accuracy
and efficiency of COVID-19 diagnosis. Further research is needed to address the chal-
lenges associated with these models and to validate their accuracy and effectiveness in
clinical settings. Additionally, efforts should be made to develop standardized protocols
for image acquisition and annotation and improve the interpretability of the models. Over-
all, applying these models represents an exciting opportunity for advancing our ability to

diagnose and manage COVID-19.
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Chapter 7

Conclusion

The research work presented some research methods using traditional Machine Learning
and Deep Learning algorithms, along with data analysis methods, to detect COVID-19 by
examining chest X-ray images. The models used are able to detect COVID-19 with a high
degree of accuracy, and we found that by using deep learning models, they could detect
COVID-19 more accurately than using traditional data analysis methods.

7.1 Conclusions

Our master’s thesis examined the use of Deep Learning models and Machine Learning
methods to detect COVID-19 in chest X-ray images. Public health has been affected by
COVID-19, and we need accurate and rapid diagnostic tools. COVID-19 can be diagnosed
using chest X-ray imaging, a widely available and cost-effective diagnostic modality. Us-
ing chest X-ray images, this thesis aims to address the problem of the COVID-19 pandemic
by detecting it. To classify chest X-ray images as positive or negative for COVID-19, we
applied several deep learning models, Convolutional Neural Networks (CNNs), and trans-
fer learning techniques. Furthermore, we compared the performance of our models with
that of radiologists using a dataset of chest X-ray images from COVID-19 patients. Ac-
cording to our results, deep learning models could detect COVID-19 with high accuracy,
with some models outperforming radiologists regarding sensitivity and specificity. The
use of transfer learning (VGG19) approaches and pre-trained models to classify COVID-
19 chest X-ray images showed promising results. However, our experiments also highlight
the importance of dataset quality and size, as well as the interpretability and generalizabil-
ity of models. According to our results, the performance of the models varied depending
on the dataset used, and further research is needed to ensure the reliability and general-
izability of the deep learning models in clinical practice. In addition, we realized that if
we use different datasets for training and testing, some bias may occur, but this can be
addressed by utilizing a larger dataset. However, data augmentation by Brightness, Con-
trast, and Flipping for small datasets did not work. It could not accurately predict the test
data from different sources, and it misclassified normal images as COVID-19 images, or
sometimes they were all classified as Viral Pneumonia images. In summary, our find-
ings suggest that deep learning models may assist in diagnosing COVID-19 using chest

X-ray images, but further research and validation will be necessary to ensure their clinical
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validity and applicability.
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