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A B S T R A C T

Gas hydrates represent one of the main flow assurance challenges in the oil and gas industry as they can lead to
plugging of pipelines and process equipment. In this paper we present a literature study performed to evaluate
the current state of the use of machine learning methods within the field of gas hydrates with specific focus on
the oil chemistry. A common analysis technique for crude oils is Fourier Transform Ion Cyclotron Resonance
Mass Spectrometry (FT-ICR MS) which could be a good approach to achieving a better understanding of the
chemical composition of hydrates, and the use of machine learning in the field of FT-ICR MS was therefore
also examined. Several machine learning methods were identified as promising, their use in the literature
was reviewed and a text analysis study was performed to identify the main topics within the publications.
The literature search revealed that the publications on the combination of FT-ICR MS, machine learning and
gas hydrates is limited to one. Most of the work on gas hydrates is related to thermodynamics, while FT-ICR
MS is mostly used for chemical analysis of oils. However, with the combination of FT-ICR MS and machine
learning to evaluate samples related to gas hydrates, it could be possible to improve the understanding of
the composition of hydrates and thereby identify hydrate active compounds responsible for the differences
between oils forming plugging hydrates and oils forming transportable hydrates.
1. Introduction

Gas hydrates are crystalline structures where smaller guest
molecules are trapped in cages formed by water molecules that are
held together by hydrogen bonds [1]. Gas hydrates are among the
main flow assurance issues when producing oil and gas, especially
subsea or in cold locations, because they can lead to complete blockage
(plugging) of pipelines and process equipment forcing the operator to
shut down the production [2]. The most common, yet very conserva-
tive, hydrate strategy states that the positive driving forces for hydrate
formation, i.e. high pressure and low temperature, should be avoided.
In practice this requires determination of the thermodynamic region
where hydrate formation occurs in order to keep the system outside
this pressure–temperature region. [3].

For hydrate inhibition on the other hand, the most common strat-
egy is currently the use of thermodynamic inhibitors (THIs). These
inhibitors shift the hydrate curve towards higher pressures at hy-
drate inducing temperatures, enabling production at lower tempera-
tures without the formation of gas hydrates [4,5]. Common inhibitors
are organic chemicals, such as methanol and monoethylene glycol
(MEG) dosed at concentrations of 20%–50% of the mass relative to the

∗ Corresponding author.
E-mail address: elise.lunde.gjelsvik@nmbu.no (E.L. Gjelsvik).

water produced [4]. The premise of their application is that gas hydrate
formation is expected, and therefore the inhibitors are always present
in the pipelines. Another promising strategy for hydrate management is
the injection of low dose hydrate inhibitors (LDHI) [6]. The two main
types of LDHIs are the kinetic hydrate inhibitors (KHI) which alter the
kinetics during the hydrate formation, and the anti-agglomerants (AAs)
which alter wettability of the hydrate particles and prevent them from
sticking together. A typical concentration for an LDHI injection is 0.1–
1 wt % relative to the water phase [4,7]. For the AAs the purpose is
to form a slurry of gas hydrates dispersed in the oil phase that can
be transported through the pipelines without the particles aggregating
together or depositing to the pipe wall. However, for an AA to be
efficient, it must be surface active and able to adsorb to the surface
or interact with the hydrate cages of the dispersed hydrate particles.
The purpose of KHIs, on the other hand, is to delay the formation
of hydrates long enough to reach the storage facility without causing
blockage [8]. The KHI binds to the hydrate surface, decreasing the
crystal formation process by preventing the growth of hydrate crystals
nuclei [9].
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However, through laboratory experiments spurred by field expe-
rience, it became evident that some crude oils did not experience
plugging when gas hydrates were formed [10]. Instead, the hydrates
behaved more like dry particles that could be transported without any
issues [11]. The explanation set forth was that some crude oils contain
naturally occurring components that interact with the gas hydrates
rendering the surface of the particles hydrophobic. One hypothesis is
that these components have the ability to adsorb to the hydrate surface,
preventing agglomeration of hydrates and the potential plugging of
the pipeline [12]. Another hypothesis is that parts of a molecule, for
example butyl/pentyl groups, penetrate open cavities on the hydrate
surface (of 512 64 SII cages) and can become embedded in the surface as
the hydrate grows around the alkyl groups [4]. The current status of the
search for the type and structures of natural hydrate inhibitors is that
they have not yet been characterised in detail [2,11–13]. Some previous
studies have suggested that these natural inhibitors may be contained
in the petroleum acid fraction [11,14–17] which has been shown to
include a large amount of naphthenic compounds. Borgund et al. [15]
and Erstad et al. [18] showed experimentally the anti-agglomerating
properties of some petroleum acid fractions.

Similarly, the asphaltene fractions are known to possess self-
agglomerating properties that can stabilise some crude oil systems [19]
and some asphaltenes can alter the plugging potential of crude oils [20,
21]. It has been shown that the asphaltene fractions able to stabilise
systems prone to form transportable slurries are often more polar,
with higher oxygen content, higher acidity and lower double bound
equivalents (DBEs) [22]. Other studies have suggested that the possible
hydrate activity of asphaltenes is related to their sulfoxide content [23].

The overall goal of this review was to establish a baseline for the
current status of the use of machine learning in the field of petroleum
gas hydrates. A part of this study was to identify work related to
naturally occurring hydrate inhibitors in crude oils where machine
learning methods have been used. It was, however, shown that this
research was extremely limited, resulting in only one publication [24].
Therefore, the methodologies described are related to the thermody-
namic aspects of gas hydrates and the chemical analysis of crude oils.
Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR MS) has
a high mass accuracy which could be utilised for analysis of properties
related to gas hydrates. FT-ICR MS was therefore included in this
review to establish a link between aspects of gas hydrates and analysis
of crude oils.

2. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
(FT-ICR MS)

The complex mixtures of crude oils and the relatively high masses of
their components make detailed identification difficult with most mass
spectrometers. However, with the high mass accuracy of FT-ICR MS,
more detailed analysis of crude oil samples are possible [25,26]. In FT-
ICR MS the mass-to-charge (m/z) ratio of ions are determined based on
the cyclotron frequency of the ions in a fixed magnetic field. The mass
accuracy for FT-ICR MS is sub ppm and the mass spectral resolution
can be above 10 million (at m/z = 400), which allows identification
of a large number of different polar groups [27–29]. In an FT-ICR MS
analysis, ions are detected simultaneously within a detecting interval by
the ion cyclotron resonance frequency they produce when they rotate
in a magnetic field. This provides the increase in signal-to-noise ratio
compared to traditional mass spectrometers.

There are several different ionisation techniques to be used in
combination with FT-ICR MS. For crude oils, the most common are
electrospray ionisation (ESI) and atmospheric pressure photo ionisa-
tion (APPI) as they ionise polar compounds efficiently [27,30]. ESI
is achieved by applying a high voltage to a liquid passing through a
capillary tube inducing highly charged droplets [31]. In positive mode,
formic acid is added to the solution aiding ionisation, while in negative
2

mode ammonium hydroxide is added resulting in lower background
noise. APPI is performed by exposing the analytes to photons emitted
from a UV lamp [27] and in positive mode, both molecular ([𝑀+⋅]) and
protonated ions ([𝑀 +𝐻]+) are generated. During negative mode, the
ions of the molecular species are produced by either proton abstraction
or adduct formation. The predominant ions are the molecular species
ion ([𝑀 − 𝐻]−), which is the ion corresponding to the fatty acids
𝑅𝑛 − 𝐶𝑂𝑂−) present in the sample [31]. APPI is sensitive to aromatic
ompounds and sulphur containing compounds.

FT-ICR MS has previously been used widely for crude oil charac-
erisation [27,32–38]. For instance, Qian et al. [39,40] showed that
ositive and negative mode ESI-FT-ICR MS are able to characterise
ifferent aspects of crude oils. In negative mode it was identified
ver 3000 chemical formulas of acids and acidic compounds, while in
ositive mode over 3000 unique elemental compositions of Nitrogen-
ontaining Aromatic Compounds were identified, illustrating the high
ccuracy of FT-ICR MS. The large data sets constituting FT-ICR MS
pectra, require data treatment methods able to handle big data and
ind underlying relationships.

The objective of this review is to provide an overview of the
achine learning methods used within the field of gas hydrates, with

pecific focus on the oil chemistry. First, we performed a text mining
tudy to show the previous research areas of focus and expose potential
aps within. The aim of text mining is to scrape a web page of text
elated to a predefined keyword. We accessed all relevant publications
rom the Scopus Search database [41] and the most common and
romising methods in literature are discussed. Additionally, methods
ommonly used for analysis of FT-ICR MS data in other fields which
e believe could make valuable contributions to analysis of gas hydrate

elated samples, were identified. If correlations between hydrate-active
omponents responsible for non-plugging crude oil systems and oil
omposition can be determined, this can be utilised as a parameter base
or improved hydrate management strategies, better decision support
ools and pipe flow simulations.

. Text mining

To achieve an overview of the current status of machine learning
ethods within the field of petroleum gas hydrates the following

uestions were defined, of which the answers should give a thorough
nderstanding of the field.

• Q1: Within which fields of gas hydrate research are machine
learning used?

• Q2: What type of machine learning methods are used in the
literature?

• Q3: What are the challenges in the field of gas hydrates using
machine learning?

• Q4: How can machine learning improve the field of gas hydrate
research?

.1. Search strategy

For the text mining, we used the Scopus Search API from the pyblio-
etrics library [42] in Python, which searches the Scopus database,

ontaining over 78 million records within the fields of life sciences,
ocial sciences, physical sciences and health sciences [43]. The search
an be defined in different ways, searching for keywords, abstracts,
itle, doi, url, etc. Our approach was to search for selected words within
ither the keywords, titles or abstracts. To ensure that all relevant
eferences were collected, the resulting literature was compared to
esults in Web of Science.

First a search was performed with the combination of gas hydrates,
T-ICR MS, natural inhibitors and machine learning, resulting in zero
ublications. The term natural inhibitor was removed and a search with
as hydrates, FT-ICR MS and machine learning was performed, which
esulted in only one publication, a study performed by the authors of
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Fig. 1. Comparison of publications on the machine learning methods from Table 1 within the fields of gas hydrates and FT-ICR MS and number of publications retrieved.
w
o
p
T
t

f
F
r
f
l
m
a

F
u
m
p

4

t
T
i
t
‘
‘
h
a
t
p

Table 1
Overview of searches, each method was searched in combination with gas hydrate and
FT-ICR MS to find all literature related to the methods.

Subjects Methods

Gas hydrates Principal Component Analysis (PCA)
FT-ICR MS Partial Least Squares (PLS)

Decision Trees (DT)
Random Forest
Artificial Neural Network (ANN)
Support Vector Machine (SVM)
Convolutional Neural Network (CNN)
Regularisation/LASSO/Elastic Net/Ridge Regression
Bayesian Networks (BN)
K-Nearest neighbours (KNN)

this review [24]. Two new searches were therefore performed with gas
ydrates plus machine learning and FT-ICR MS plus machine learning.
his resulted in 45 publications for gas hydrates and 9 for FT-ICR
S. As very few publications were found, it was assumed that most

ublications do not use the term machine learning and only mention
he methods used. Therefore, several machine learning methods were
sed as input in new searches. An overview of the methods included is
resented in Table 1.

The resulting search phrases were as follows for gas hydrates
TITLE-ABS-KEY((gas W/1 hydrate*) AND ((machine learning method)
R (method abbreviation)))’ and for FT-ICR MS ‘TITLE-ABS-KEY((ft-icr
/1 ms) AND ((machine learning method) OR (method abbreviation)))’.

he ‘W/1’ ensures that the words are only one term apart and the
allows for different endings of the word, for instance s for plural

notations. Duplicates of publications were removed.
A search was also performed for natural inhibitors with all the

methods mentioned in Table 1 for both gas hydrates and FT-ICR MS,
which resulted in zero publications.

To evaluate the use of mass spectrometry (MS) in the field of
gas hydrates, a search was performed with mass spectrometry and gas
hydrates which resulted in 2045 publications. To evaluate how many of
these that were related to machine learning, a search with the methods
presented in Table 1 was performed with both mass spectrometry and
gas hydrates. This search resulted in 11 publications and all the 11
publications were also present in the results from the gas hydrate search
with the machine learning methods.

The text mining study revealed that no other review paper exists on
the topic of machine learning methods within the field of petroleum
3

hydrates. g
Text analysis was performed within the results of the two searches
to find trends in the topics mentioned in the publications. The t-
distributed stochastic neighbour embedding (t-SNE) technique was
used to visualise the data. In t-SNE, similar data are grouped close
together based on the stochastic neighbour embedding, while dissimilar
data are more distant [44].

4. Results

The results from the two searches, gas hydrates and FT-ICR MS,
ith the methods in Table 1, are shown in Fig. 1. From the search
f gas hydrates in combination with the methods from Table 1, 184
ublications were retrieved and from FT-ICR MS and the methods in
able 1, 104 publications were retrieved. The publications returned by
he text mining study are reported in the supporting information.

In Fig. 2 the publications on machine learning methods within the
ields of gas hydrates and FT-ICR MS are plotted by publication year.
ig. 2 shows that there has been an increase in machine learning based
esearch within both fields in the recent years. The first publication
or gas hydrates was in 1998, and the first paper on use of machine
earning within FT-ICR MS is from 2006. As FT-ICR MS has become
ore publicly available in the recent years, it is not surprising that the

mount of publications have increased recently.
The amount of publications within each method is shown in Fig. 3.

or gas hydrates, ANN is the most common machine learning method
sed, followed by SVM and PCA. For FT-ICR MS, the most common
ethod is PCA followed by PLSR, the remaining methods have very few
ublications each and several of the methods had zero publications.

.1. Text analysis study

A text analysis was performed, and a t-SNE plot of topics within
he gas hydrate publications are shown with three topics in Fig. 4.
he most common words for each topic are shown in the word clouds

n Fig. 5. Fig. 4 shows that Topic 2 (orange) has the most entries of
he three. The word clouds show that Topic 2 contains words such as
gas’, ‘hydrate’, ‘prediction’ and words associated with ANNs, ‘artificial’,
neural’ and ‘network’. Topic 3 contains words associated with natural
ydrates and some entries of ‘network’, while Topic 1 contains words
ssociated with seismic and water analysis. From this analysis it is likely
hat the publications of interest with regards to machine learning and
rediction of petroleum gas hydrates are within Topic 2 and natural

as hydrates within Topic 3.
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Fig. 2. The retrieved publications published by year, for gas hydrates in blue and FT-ICR MS in orange. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Fig. 3. Pie chart of the methods from Table 1 in combination with gas hydrates to the left and FT-ICR MS to the right with number of publications for each method in parenthesis.
A text analysis for the FT-ICR MS publications was also performed
nd the t-SNE plot with 3 topics is shown in Fig. 6. As t-SNE models
imilarities and dissimilarities, it is clear from Fig. 6 that Topic 1 (blue)
s very different from Topic 2 (orange) as they are on the opposite sides
f the plot, with Topic 3 (green) as a bridge between them. The most
ommon words for each topic are shown in the word clouds in Fig. 7.
opic 1 is associated to oil spectroscopy and contains words from FT-
CR MS, Topic 2 contains words associated with organic matter analysis
nd Topic 3 contains metabolomic analyses. The machine learning
tudies performed on crude oils are therefore likely within Topic 1.

.2. Classification vs. Regression

Machine learning can be used for analysis and visualisation of trends
nd allows identification of underlying phenomena in a data set. A
ypical pipeline for machine learning is displayed in Fig. 8. The process
tarts with collection of data, pre-processing, training of the model,
esting of the model and finally deployment of the model through
4

prediction from new data. The reader should seek out general textbooks
for an introduction to machine learning [45,46].

Machine learning can be separated into two categories based on
the desired response. When the response is continuous, regression
analysis is used, while when the response is a discrete class label
classification is used. Some algorithms can be used for both classi-
fication and regression tasks with only minor modifications. For gas
hydrate purposes, both regression and classification methods are of
interest. Which method to use is dependent on the type of data and
the desired response to be predicted. For instance, when predicting
thermodynamic properties of crude oils regression methods are most
commonly used, as the desired prediction often is temperature, pressure
or other measurements on the continuous scale. Classification methods
are commonly used when samples are to be predicted based on their
similarities to the defined classes. For instance when classifying oils into
different types, properties etc.

In the following section, the methods included in the literature study
and relevant references will be discussed to achieve an overview of the
use of machine learning for analysis of petroleum related gas hydrates.
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Fig. 4. t-SNE plot with three topics of the text analysis of machine learning publications on gas hydrates.

Fig. 5. Word clouds for each of the three topics and their most common words from the gas hydrate publications, with Topic 1 in blue, Topic 2 in orange and Topic 3 in green.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. t-SNE plot with three topics of the text analysis of machine learning publications on FT-ICR MS. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7. Word clouds for each of the three topics and their most common words, from the FT-ICR MS publications, with Topic 1 in blue, Topic 2 in orange and Topic 3 in green.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Schematic illustration of a machine learning pipeline, with data collection, pre-processing, model training, testing, deployment and prediction.
4.3. Ordinary Least Squares (OLS)

OLS is a regression method for estimating the unknown parameters
in a linear regression model. OLS minimises the sum of squares of the
differences between the observed value and the value predicted by the
linear function of the independent variable as shown by Eq. (1).

𝒚 = 𝑿𝛽 + 𝜖 (1)

The coefficients (𝛽) can be estimated from Eq. (2).

𝛽 = (𝑿𝑇𝑿)−1𝑿𝑇 𝒚 (2)

A major drawback with OLS regression is that the matrix inversion
used in the calculation of the regression coefficients requires the re-
gressors to be linearly independent or uncorrelated. It also requires
that the number of samples is larger than the number of variables,
which is most often not the case when analysing data from FT-ICR
MS. This renders OLS regression unsuitable for many data analysis
problems. Two commonly used strategies, outlined below, to overcome
this problem are (i) use of latent variables which represent linearly
independent phenomena and (ii) regularisation.

4.4. Latent variable-based methods

4.4.1. Principal Component Analysis (PCA)
PCA [47] decomposes a large data set X into a subspace of la-

tent variables representing the main features of variance as shown
by Eq. (3).

𝑿 = 𝑿𝐼𝑛𝑤𝑔𝑡𝑋 (3)

where X In is the data set with shape (N, K) for N samples and K
variables, and wgtX are the statistical weights balancing the sum of
squares for the K X -variables in X , which has the shape (N, K). PCA
is an effective dimension reduction technique that gives overview of
large data sets and can be used prior to other data analysis methods in
6

order to increase accuracy, overview and interpretation. Eq. (4) shows
the PCA model for A Principal Components (PCs).

𝑿 = �̄� + 𝑻 𝐴𝑷 𝑇
𝐴 + 𝑬𝐴 (4)

where 𝑷𝐴 are the loadings and orthonormal eigenvectors of (𝑿 −
�̄�)𝑇 (𝑿 − �̄�) minimising the covariance between the X -variables after
A PCs. The scores (TA) are orthogonal and calculated by Eq. (5).

𝑻 𝐴 = (𝑿 − 𝒙)𝑷𝐴 (5)

The error term in Eq. (4) is 𝑬𝐴 which is calculated by Eq. (6).

𝑬𝐴 = 𝑿 − �̄� − 𝑻 𝐴𝑷 𝑇
𝐴 (6)

PCA has commonly been used to identify correlations between
analytical data and the properties of crude oils particularly from FT-ICR
MS spectra as shown by the text mining study [48–52]. For instance,
Hur et al. [49] analysed positive and negative mode APPI-FT-ICR MS
spectra from 20 crude oils by PCA and identified differences between
the oils based on their chemical composition. Moreover, their study
showed a strong relationship between peaks in the mass spectra and the
chemical properties of the oils indicating the potential for predicting
crude oil properties from mass spectra.

4.4.2. Partial Least Squares Regression (PLSR)
PLSR [53] decomposes large data sets into a subspace of latent

variables (scores and loadings) representing the main features of co-
variance between X (regressors) and Y (response). Both X and Y can be
multivariate. X has the same input model as for PCA shown in Eq. (3).
As PLSR also takes the response into account, as opposed to PCA, there
is an input model for Y which is shown in Eq. (7).

𝒀 = 𝒀 𝐼𝑛𝑤𝑔𝑡𝑌 (7)

where Y In is the response with shape (N, J) for N samples and J
response variables and wgtY are the statistical weights balancing the
sum of squares for the J Y -variables in Y , which has the shape (N, J).
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The decomposition of X and Y is done simultaneously and iteratively,
taking co-linearities in Y into account. For X the decomposition is
shown in Eq. (8) and for Y in Eq. (9).

𝑿 = �̄� + 𝑻 𝐴𝑷 𝑇
𝐴 + 𝑬𝐴 (8)

𝒀 = �̄� + 𝑼𝐴𝑸𝑇
𝐴 + 𝑭𝐴 (9)

where A denotes the number of Principal Components (PCs) used
and EA and FA are the error terms using A PCs. The loading weight

atrix (WA) maximise the covariance between X and Y by maximising
he covariance between T and U with A PCs. The scores (TA) are
rthogonal as shown by Eq. (10).

𝐴 = (𝑿 − �̄�)𝑾 𝐴 (10)

The loadings for X (PA) are calculated by Eq. (11) while the
oadings for Y (QA) are calculated by Eq. (12).

𝐴 = (𝑻 𝑇
𝐴𝑻

𝑇
𝐴)

−1𝑻 𝑇
𝐴(𝑿 − 𝒙) (11)

𝐴 = (𝑻 𝑇
𝐴𝑻

𝑇
𝐴)

−1𝑻 𝑇
𝐴(𝒀 − 𝒚) (12)

The error term for X (𝑬𝐴) is calculated as for PCA in Eq. (6) and
he error term for Y (𝑭𝐴) is calculated by Eq. (13).

𝐴 = 𝒀 − �̄� − 𝑻 𝐴𝑸𝑇
𝐴 (13)

The regression coefficients (BA), which are measures of the im-
act of variations in the various regressors on the respective response
ariables, are calculated by Eq. (14).

𝐴 = 𝑾 𝐴𝑸𝑇
𝐴 (14)

Prediction of Y for a new sample (Xnew) is then obtained by Eq. (15)
here b0 is the intercept.

𝑝𝑟𝑒𝑑 = 𝒃0 +𝑿𝑛𝑒𝑤𝑩𝐴 + 𝑭𝐴 (15)

PLSR has been widely used for analysis of mass spectra in a variety
f application areas, including for gas hydrates and FT-ICR MS. Vaz
t al. [51] correlated the chemical composition of crude oil from FT-
CR MS data with the total acid number (TAN), using PLSR and support
ector machines (SVMs) as multivariate calibration methods. In Terra
t al. [54] negative-ion mode electrospray ionisation, ESI(-)-FT-ICR MS
as coupled to PLSR and variable selection methods to estimate the
AN of Brazilian crude oil samples. They showed that it was possible to
elate the selected variables to their corresponding molecular formulas,
hus identifying the main chemical species responsible for the TAN
alues. In Hemmingsen et al. [16] TAN values were also used as a
esponse for PLSR to predict the acidic properties of the crude oils.

Terra et al. [55] predicted basic nitrogen and aromatics contents
n crude oil, using positive ion mode laser desorption ionisation (LDI)
oupled to FT-ICR MS and PLSR with variable selection based on com-
etitive adaptive reweighted sampling (CARS) in a procedure called
ARSPLS regression.

Lozano et al. [56] used PLSR and genetic algorithm variable se-
ection on APPI(+)-FT-ICR MS data for quantitative analysis of crude
ils and their fractions. They estimated the API gravity and Conradson
arbon Residue of Colombian crude oil and vacuum residue (VR)
amples with high accuracy.

PLSR can also be used for classification problems, for instance in the
ombination with discriminant analysis (DA), as PLS-DA. Two common
A methods are Linear Discriminant Analysis (LDA) and Quadratic
iscriminant Analysis (QDA) which model the class conditional distri-
ution of the data 𝑃 (𝑋|𝑦 = 𝑘) for each class k. Predictions are obtained
y using Bayes’ rule, and the class that maximises this conditional
robability is selected. The class priors 𝑃 (𝑦 = 𝑘) (the proportion of

instances of class k), the class means and the covariance matrices are
7

then estimated from the training data. w
In Chua et al. [57] PLS-DA was used in tandem with PCA to analyse
crude oil spill data from gas chromatography techniques. The PLS-
DA and PCA combination accurately characterised the crude oil spill
samples, overcoming the shortcomings of the traditional methods.

Likewise, Melendez-Perez et al. [58] utilised PLS-DA for analysis
of ESI(-)-FT-ICR MS spectra of lacustrine oil and marine oil sam-
ples aiming towards comparing and classifying the samples. Results
show that FT-ICR MS coupled with PLS-DA has potential to reveal oil
characteristics more clearly.

Gjelsvik et al. [24] was the only publication from the text mining
results regarding natural inhibitors. In this study, machine learning-
based variable selection was used to identify components related to gas
hydrate formation and PLS-DA emerged as the best performing method.
This study showed that it is possible to identify features from FT-ICR
MS spectra related to hydrate formation.

Accordingly, PLSR have already been shown to be able to predict
chemical properties of crude oils, and PLS-DA has been shown to be
able to classify crude oils samples with high accuracy.

4.4.3. Hierarchical Cluster-based Partial Least Squares Regression (HC-
PLSR)

One promising extension of PLSR is the HC-PLSR [59] method,
which is a locally linear regression method based on separating the
observations into clusters and generating local PLSR models within
each cluster. A global PLSR model comprising all observations is first
made, and the observations are clustered based on the scores from this
PLSR model. Local PLSR models are then made within each cluster.
New observations are projected into the global model and classified
based on their predicted X -scores. Prediction of the response is based
on either the closest local model or a weighted sum of all local models.
HC-PLSR can be used with any clustering and classification method.
HC-PLSR allows for local analysis within each cluster, and represents
a way to handle highly nonlinear relationships between the regressors
and the response.

4.4.4. Artificial Neural Networks (ANNs)
ANNs [60–62] are computing systems consisting of nodes called ar-

tificial neurons, between which the connections have numeric weights
that are often initialised at random, and adjusted by backpropagation.
Backpropagation uses the prediction error to calculate the gradient
of the loss function with respect to the weights in the network. The
neurons are placed in different layers, typically an input layer, one
or more hidden layers, and an output layer. A widely used type of
composition is the nonlinear weighted sum given by Eq. (16).

𝑓 (𝑥) = 𝐾

(

∑

𝑖
𝑤𝑖𝑔𝑖(𝑥)

)

(16)

here K is the activation function (some predefined function, such as
he hyperbolic tangent or a sigmoid function), 𝑤𝑖 are the weights and 𝑔𝑖
re the different functions that are combined in the network. As ANNs
se self learning, the network can adjust weights when a new situation
s introduced, which leads to more flexible predictions than traditional
egression models. ANNs are trained with experimental data where the
utput is a nonlinear function of the input data after learning a pattern
nd creating a prediction model [63]. Deep Neural Networks [64] are
NNs with multiple hidden layers between the input and output layers,
s shown in Fig. 9. These can contain many layers of nonlinear hidden
nits.

Elgibaly and Elkamel [65,66] were the first to develop ANNs to
redict thermodynamic conditions and suitable inhibitors for gas hy-
rate systems. Their network performed well compared to previous
rediction methods based on traditional statistics and experimental
ata analysis, but showed signs of overfitting supposedly due to lack
f experimental data. Chapoy et al. [67] used feed-forward neural net-

orks (FNNs) to predict hydrate stability zones achieving a reasonable
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Fig. 9. Schematic example of a neural network with input layer, hidden layers and output layer.
model, but also pointing out deficiencies in the experimental data as a
weakness of the study.

Ghavipour et al. [68] constructed an apparatus that measured spe-
cific gravity of different gas mixtures and pressure during a hydrate
formation process. ANNs were then used to predict the hydrate forma-
tion conditions by a network with two hidden layers and 10 neurons
in each layer, validated with Leave-One-Out cross validation.

Several studies have in the recent years used ANNs to predict
hydrate formation conditions [69–71]. The purpose of these types of
predictions is to identify the conditions where gas hydrates are formed
and avoid operation within this region.

4.4.5. Support Vector Machines (SVMs)
SVMs [72] are supervised learning methods that analyse data for

classification or regression analysis. SVMs are well suited for learning
tasks where the number of variables is large compared to the number
of observations in the training set.

For classification, SVMs construct a hyperplane or a set of hyper-
planes in a high-dimensional space to separate the observations into
two groups [73]. The goal is to find the hyperplane that has the
largest distance (margin) to the nearest data point belonging to any
of the two classes. The margin is defined as the distance between the
separating hyperplane (decision boundary) and the training samples
that are closest to this hyperplane. Data points that lie on the margin
are known as support vector points, and the solution is represented as
a linear combination of only these points. Decision boundaries with
large margins tend to have a lower generalisation error, while decision
boundaries with small margins are more prone to overfitting.

SVMs can be applied to nonlinear classification problems by using
the so-called kernel trick, where the original space is mapped into a
much higher-dimensional space where the observations can be more
easily separated. To achieve this, a mapping function 𝜑 is used, as
shown in Fig. 10. The hyperplanes in the higher-dimensional space are
defined as the set of points whose dot product with a vector in that
space is constant.

In Support Vector Regression (SVR), the hyperplane is the line that
is used to predict the continuous output, shown in Fig. 11. SVR basically
considers the points that are within the decision boundary lines and the
regression line is then the hyperplane that has a maximum number of
points.

SVMs are the second most commonly used methods for gas hydrates.
Cao et al. [74] developed an SVM model for predictions of gas hydrate
formation conditions, in combination with selection algorithms to op-
timise the process parameters for the SVM. Qin et al. [75] used both
SVM and ANNs to predict gas hydrate plugging risks from flowloop and
field data with SVM outperforming the ANN.
8

Fig. 10. The kernel trick to handle non-linear problems.

Rashid et al. [76], Mesbah et al. [77], Ghiasi et al. [78] and Yarveicy
and Ghiasi [79] created SVM models with a linear modification of
the SVM algorithm known as the least squares support vector ma-
chine (LSSVM) to predict thermodynamic properties of gas hydrate
systems. One drawback with SVMs is the large number of quadratic
computations performed to analyse the data, requiring high computa-
tional power, but LSSVM overcomes this due to the less complicated
calculation methods [80].

As previously mentioned, Vaz et al. [51] predicted the TAN from
FT-ICR MS spectra with SVM performing better than both PLSR and uni-
variate methods. SVM is thereby able to both predict thermodynamic
properties of hydrates and chemical properties of crude oils.

4.4.6. Decision Trees (DTs)
DTs [81,82] are attractive models when interpretability is impor-

tant, and consist of a tree root, internal nodes, branches and leaf nodes.
DTs ask a series of questions, and generate decision rules based on
these. The model seeks to find the smallest set of rules that is consistent
with the training data. In general, the rules have the form: if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1
and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 then outcome. Fig. 12 shows an illustration
of a decision tree model.

The rules are chosen to divide observations into segments that have
the largest difference with respect to the target variable. Thus the
rule selects both the variable and the best break point to separate the
resulting subgroups maximally. The break points of variables are found
using significance testing (F- or Chi-square with Bonferroni corrections)
or reduction in variance criteria. To avoid overfitting, one often has to
prune the tree by setting a limit for the maximal depth of the tree.
A leaf can no longer be split when there are too few observations,
the maximum depth (hierarchy of the tree) has been reached, or
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Fig. 11. Illustration of the hyperplane and decision boundaries in SVR.
Fig. 12. Illustration of decision trees with the root node, sub-trees, decision nodes, branches and leaf nodes.
no significant split can be identified. It is assumed that observations
belonging to different classes have different values in at least one of
their variables. DTs are usually univariate, since they use splits based
on a single feature at each internal node, but methods are available for
constructing multivariate trees [83].

To improve the prediction of the DT, a boosting method can be
applied. Boosting is an ensemble method for improving predictions of
a weak learning algorithm [84]. The weak learners are trained sequen-
tially, trying to improve upon its predecessor. When boosting is applied
to a tree, each tree is dependent on prior trees and the algorithm learns
by fitting the residual of the prior trees. One example of a boosting
method is XGBoost (eXtreme Gradient Boosting). In XGBoost, trees
are built at every iteration, always minimising the prediction error
of the classifier while introducing a penalty function to utilise the
computational power more efficiently.

4.4.7. Random Forest (RF)
In DTs, the initial selected split affects the optimality of variables

considered for subsequent splits. Ensemble tree models grow trees
with varying initial splits, and use either a voting or the average of
the predictions for each new data point across all trees. The vote
9

distribution can be used to develop a nonparametric probabilistic pre-
dictive model. The ensemble is less prone to overfitting and other
problems of individual DTs, and generally performs better. RF [85–
87] is an example of such an ensemble tree method. For RF, each tree
is based on a random subset of the data and variables (selected by
bootstrapping). The change in prediction accuracy when the values of
a feature are randomly permuted among observations gives estimates
of the importance of each feature.

Tree models and boosting are among the most common regression
and classification methods, and has been used for gas hydrates and
crude oil analysis. Song et al. [88] used a gradient boosted regression
tree algorithm to predict hydrate phase equilibrium conditions in the
presence of various salts, organic substances or water. The model was
compared to an ANN, where the regression tree achieved the best
prediction model for gas hydrates’ phase equilibrium conditions in the
presence of various salts or organics.

In Acharya and Bahadur [89] RF and XGBoost were used to pre-
dict gas hydrate dissociation temperatures in the presence of hydrate
inhibitors and precursors achieving good predictions.

Lovatti et al. [90] proposed two strategies for the use of RF and data
reduction techniques for NMR spectra of petroleum samples. The study
compared the NMR spectra to the TAN values of the petroleum, and
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the method was able to identify a relationship between the TAN and
specific regions in the spectra.

4.4.8. Naive Bayes (NB) classification
A Bayesian network (BN) is a probabilistic model that represents

a set of random variables and their conditional independence via a
directed acyclic graph (DAG). Using e.g. Chi-squared and mutual infor-
mation tests, one can find the conditional independence relationships
among the variables and use these relationships as constraints to con-
struct a BN. BNs can take prior knowledge into account, by e.g. setting
a certain node as root node or leaf node, thereby applying knowledge
of nodes that are direct causes or effects of other nodes. This results
in nodes that are not directly connected to another node, or that two
nodes are independent.

The probabilistic parameters are encoded into a set of tables, one
for each variable, in the form of local conditional distributions of a
variable given its parents. The joint distribution can be reconstructed
by multiplying these tables (given the independencies encoded into the
network). BNs are DAGs whose nodes represent random variables that
may be e.g. observable quantities or latent variables. Edges (connec-
tions) represent conditional dependencies, and each node is associated
with a probability function.

Naïve Bayesian networks are very simple BNs which are composed
of DAGs with only one parent (representing the unobserved node) and
several children (corresponding to observed nodes), where the child
nodes are assumed to be independent. Naïve Bayes (NB) classification
may be impaired by probabilities of 0, but this can be avoided by using
a Laplace estimator.

The assumption of independence among child nodes is most often
not valid, but this can be corrected for by adding extra edges to include
some of the dependencies between the variables. In this case, the
network has the limitation that each feature can be related to only one
other feature [91]. Selective Bayesian classifiers [92] include a feature
selection stage to remove irrelevant variables or one of the two totally
correlated variables.

Shi et al. [93] used a variational Bayesian neural network for
probabilistic deepwater natural hydrate gas dispersion modelling of
simulated data. Combined with a convolutional neural network, the
model performed well.

Bayesian networks have been used for risk and safety assessment of
storing and transportation of crude and heavy oil. For example, Zhang
et al. [94] used BNs to evaluate the leak safety of heavy oil gatherings
in pipelines. BNs find the probability for leakage and fuzzy set theory
evaluates the consequences of the leakage.

4.4.9. k-nearest neighbours (KNN) classification
KNN [95] locates the k nearest observations to the observation to be

classified (e.g. by an exhaustive search algorithm) based on the chosen
distance metric, and identifies the most frequent class membership
among the neighbours. The number k is specified by the user, and the
right choice of k is crucial to find a good balance between overfitting
and underfitting. Weights are assigned to the contributions of the
neighbours in a majority voting to predict the classes, so that the nearer
neighbours contribute more to the average than the more distant ones.

KNN is fundamentally different from the other supervised classifiers
described here, in that it is a so-called lazy learner. KNN does not
learn a discriminative function from the training data but memorises
it instead. The main advantage of such a memory-based approach is
that the classifier immediately adapts as we collect new training data.
However, the computational complexity for classifying new samples
grows with the number of samples in the training data set and storage
space can hence become a challenge when working with large data sets.

Only two instances where KNN were used related to gas hydrates
were found. Xu et al. [96] used KNN regression, SVM, RF and XGBoost
for the prediction of hydrate formation temperatures achieving good
10

predictions with all methods. p
Amin et al. [97] used KNN to predict hydrate equilibrium conditions
to CO2 capture. The model was simple but showed good predictions

ith low errors, indicating that KNN is a valuable method for analysis
f gas hydrate thermodynamics.

.5. Regularisation-based methods

Another group of machine learning methods that we find promis-
ng for identification of hydrate active compounds in crude oils is
egularisation-based methods, which are very useful for feature selec-
ion purposes. The most commonly used regularisation-based methods
re Ridge regression [98], LASSO (least absolute shrinkage and selec-
ion operator) [99] and Elastic net [100]. Regularisation-based versions
f PLSR are also available, which have shown promise in feature selec-
ion, such as Sparse-PLS [101]/Soft-Threshold PLS [102] and Powered
LS [103]. These may have advances over other regularisation-based
ethods in cases where interpretation is important, due to the possi-

ilities to gain overview of complex data sets through decomposition
f the data into a lower-dimensional subspace of latent variables.

.5.1. Ridge regression
Ridge regression is also known as L2-regularisation. In Ridge, the

um of the squares of the regression coefficients (𝛽) is forced to be less
han a fixed value, which shrinks the size of the coefficients. Ordinary
east squares (OLS) minimises Eq. (17).

𝑆𝑆𝑂𝐿𝑆 =
𝑛
∑

𝑖=1

(

𝒚𝑖 − 𝛽0 −
𝑝
∑

𝑗=1
𝛽𝑗𝒙𝑖𝑗

)2

(17)

while Ridge regression minimise Eq. (18).

𝑆𝑆𝑅𝑖𝑑𝑔𝑒 =
𝑛
∑

𝑖=1

(

𝒚𝑖 − 𝛽0 −
𝑝
∑

𝑗=1
𝛽𝑗𝒙𝑖𝑗

)2

+ 𝜆
𝑝
∑

𝑖=1
𝛽2𝑗 (18)

here 𝜆 ≥ 0 is a penalty term which is often found by cross-validation.
his gives Eqs. (19) and (20).

𝑂𝐿𝑆 = (𝑿𝑇𝑿)−1𝑿𝑇 𝒀 (19)

𝑅𝑖𝑑𝑔𝑒 = (𝑿𝑇𝑿 + 𝜆𝐼)−1𝑿𝑇 𝒀 (20)

Hence, Ridge regression handles multicollinearity in the regressor
X) matrix, while OLS regression does not.

.5.2. LASSO
In LASSO, the estimates of the regression coefficients are obtained

sing L1-constrained least squares. This forces the sum of the absolute
alues of the regression coefficients to be less than a fixed value, which
orces certain coefficients to be set to zero. LASSO is a feature selection
ethod, since variables having zero regression coefficients are omitted

rom the model. In LASSO Eq. (21) is minimised.

𝑆𝑆𝐿𝐴𝑆𝑆𝑂 =
𝑛
∑

𝑖=1

(

𝒚𝑖 − 𝛽0 −
𝑝
∑

𝑗=1
𝛽𝑗𝒙𝑖𝑗

)2

+ 𝜆
𝑝
∑

𝑖=1
𝛽𝑗 (21)

.5.3. Elastic net
Elastic net combines the L1 and L2 penalties of the Ridge and LASSO

ethods linearly as given by Eq. (22).

𝑆𝑆𝐸𝑁 =
𝑛
∑

𝑖=1

(

𝒚𝑖 − 𝛽0
𝑝
∑

𝑗=1
𝛽𝑗𝒙𝑖𝑗

)2

+ 𝜆1
𝑝
∑

𝑖=1
𝛽2𝑗 + 𝜆2

𝑝
∑

𝑖=1
𝛽𝑗 (22)

In Elastic net, highly correlated regressors will tend to have similar
egression coefficients, which creates a grouping effect that is desirable
n many applications.

Landgrebe and Nkazi [104] used traditional L1/L2 in order to
educe overfitting of the neural network, but dropout regularisation

roved more effective.
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In Singh et al. [105] Ridge Regression (L2) was used among other
methods to estimate gas hydrate saturation in sedimentary systems
from well-logs by NMR measurements. L2 achieved good accuracy and
was one of the best performing methods. This is an indication that L2
could also perform well with other spectroscopic data of gas hydrate
related samples, such as FT-ICR MS spectra.

Similarly, other regularisation methods have been used in com-
bination with spectroscopic data previously. In Fu et al. [106] both
Sparse-PLS and Elastic net were used for wavelength selection on
data from NIR spectroscopy of corn and gasoline. Both methods select
intervals of wavelengths, where Elastic net selects a smaller model,
while Sparse-PLS achieves a higher accuracy. Finding the wavelengths
closely related to the response could significantly improve a prediction
model.

4.5.4. Convolutional Neural Networks (CNNs)
CNNs are deep neural networks which use convolutions to extract

information in one or more of the hidden layers [63]. CNNs are
regularised versions of fully connected networks. In a convolutional
layer, the data is organised in a feature map where the weights are
connected to the previous layer. These weights are used to filter for
patterns in the data. Commonly used in pattern recognition, CNNs are
good feature extractors by learning the most important variables by
itself.

CNNs can be a valuable tool for instance for the analysis of mass
spectrometry data. Lv et al. [107] used CNNs to analyse peak informa-
tion in tandem mass spectrometry (MS/MS). This method outperformed
others such as SVMs, PCA, deep neural networks and XGBoost. Due
to the nature of the convolutional filters, CNNs are able to learn both
the peak shape and the m/z values, achieve greater robustness for low
ignal-to-noise ratios and can allow for a higher-level representation of
ower-level features representing patterns [108]. Hence, CNNs could be
ery useful for analysing FT-ICR MS data.

Kim et al. [109] used CNNs for saturation modelling from X-ray
T images. The 1-dimensional CNNs performed well, but the method
hows difficulties in determination of optimal parameters for the CNNs.

Li et al. [110] constructed a neural network based on a variational
utoencoder with convolutional layers to predict pore size distributions
n subsurface shale reservoirs. The method showed good predictions
nd although this is not directly related to gas hydrates, gas hydrates
re analysed in a similar manner, indicating that CNN could be a
aluable method given an optimal parameter search.

.6. Data used in literature

The data used in many of the machine learning models previously
eveloped in the field of gas hydrates have been sampled from the liter-
ture. In this review, a number of the cited articles discussed are based
n data sampled from other publications [65–67,69–71,74,77,78,88,89,
6,104]. These references are mainly based on thermodynamic data,
oncerning prediction of gas hydrate formation/dissociation conditions
nd phase equilibrium measurements. Sloan and Koh [1] present an
xtensive list of experimental data which are frequently used by the
uthors sampling experimental data from the literature [65–67,69,71,
04]. Consequently, the models from these authors are based on the
ame data. This can result in shortcomings, as the errors in predictions
rom these models approximate the errors of the experiments. Addition-
lly, where the data are deficient, extrapolation has to be performed
hich decreases the accuracy of the predictions [3]. It is therefore clear

hat there is a need for more experimental data. New experimental
ata should fill the gaps in already published data, and as many of the
odels are based on thermodynamic properties, other aspects of gas
ydrates could be valuable to examine closer. Better understanding of
he mechanisms and the molecular composition related to the inhibi-
ion/dissociation of gas hydrates, could lead to strengthened prediction
odels for the thermodynamic, physical and chemical properties of gas
11

ydrates in the future.
5. Conclusions and future perspectives

In this paper a text mining study was performed to evaluate the
use of machine learning methods within the field of gas hydrates with
specific focus on the oil chemistry. An evaluation of FT-ICR MS was
included in the study to establish a link between aspects of gas hydrates
and analysis of crude oils. Several machine learning methods were
identified as promising and their use in the literature was evaluated.
For studies regarding gas hydrates, predictions of thermodynamic prop-
erties were most common, while FT-ICR MS was used for analysis of
oil chemistry and chemical properties. Most of the publications on
thermodynamic properties of gas hydrates were also created using the
same data sources. It could therefore be beneficial to explore other
areas of gas hydrate research using machine learning in the future.
Although there is little literature describing the use of FT-ICR MS to
characterise gas hydrates, the text mining results show that FT-ICR
MS has been used to characterise crude oils for some time and with
success. Therefore, with the combination of FT-ICR MS and machine
learning, it may be possible to identify the hydrate-active compounds
responsible for the differences between oils forming plugging hydrates
and oils forming transportable hydrates. This can be done by relating
the composition of the oil, determined by FT-ICR MS to information
regarding hydrate formation. The methods presented in this paper
successfully predicted thermodynamic properties in gas hydrates or
chemical properties from FT-ICR MS, and the methods could therefore
be tested with the aim of predicting chemical properties from gas
hydrate related samples. We believe that an approach which is able
to predict hydrate behaviour may lead to new knowledge about natural
gas hydrate inhibitors. The development of a universal method to iden-
tify natural components which inhibit, or work as AAs for gas hydrates
would contribute to new understanding and decision making tools in
the field of gas hydrate flow assurance and management strategies. This
could lead to better decision support tools and better risk evaluations
for transportation of crude oils with gas hydrates present.

The text mining study revealed that the amount of research using
machine learning to analyse both gas hydrate and FT-ICR MS data is
still limited, but research on both topics have increased in recent years.
For FT-ICR MS, most publications used PCA for analysis of the data, and
several of the publications used the chemical composition data to build
machine learning models instead of using the mass spectra directly.
Identifying relationships and building models based on the mass spectra
requires less pre-processing steps and could therefore be advantageous
and could be explored further.
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