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Abstract 
Long-term forest management strategies depend on reliable and up-to-date forest resource 

information. At the property level, this information can be acquired through forest 

management inventories (FMI) that describe forest attributes at stand level to support 

decision-making. At a national level, information of forest attributes is collected by the 

Norwegian national forest inventory (NFI), which provides annual updates regarding regional 

or national forest statistics.  

Large-scale forest prediction maps of forest attributes, such as SR16, have become available 

for large parts of the productive forest areas in Norway due to the increased availability of 

data from airborne laser scanning (ALS) campaigns. SR16 use ground reference values from 

the Norwegian NFI field sample plots as calibration data for prediction models. The use of 

NFI field data has its advantages, primarily for cost-saving reasons, but also the possibilities 

of regular updates of forest attributes as opposed to sporadic updates from NFIs.  

 

This study aimed to assess the prediction accuracy of SR16 predictions for basal area (G), 

dominant height (Hdom), site index (SI), number of trees (N) and age (A) at plot level (250 

m2) against ground reference values. In a subsequent loss analysis, optimal silvicultural 

management strategies maximising the net present value (NPV) were simulated using ground 

reference values. In contrast, suboptimal silvicultural management strategies were simulated 

to maximise the NPV using the presumably erroneous SR16 predictions. Economic losses 

were defined as the reduction of the NPV using SR16 predictions instead of ground reference 

values. The data material comprises 552 field sample plots from three regional FMI 

inventories.  

 

SR16 predictions resulted in prediction accuracies (MD%) of 9.7 % for G, 2.4 % for Hdom, 

7.5 % for SI, 6.6 % for N and 2.3 % for A. The results indicate that SR16 provides accurate 

estimations at a regional level. However, results varied significantly when assessed locally for 

each inventory project. In the loss analysis, SI and A resulted in the most significant NPV 

losses, however, observed losses varied significantly between inventory projects. Prediction 

errors on the remaining variables did not significantly reduce the NPV. In its current form, 

SR16 cannot be considered a viable replacement for local FMIs, however through the 

development of new inventory procedures and new methods of predicting SI, it can play a 

greater role for decision-making in operational forest management in the future.  



IV 
 

 

  



V 
 

Sammendrag 
Langsiktig og rasjonell forvaltning av skogressursene er avhengig av pålitelig og oppdatert 

ressursinformasjon. På eiendomsnivå kan denne informasjonen bli anskaffet gjennom 

skogbruksplantakster som beskriver skogforholdene på bestandsnivå og benyttes 

hovedsakelig av beslutningstakere for avgjørelser knyttet til skogforvaltning. På et nasjonalt 

nivå samles ressursinformasjon av Landsskogstakseringen som bidrar med årlige 

oppdateringer vedrørende regional eller nasjonal skogstatistikk.  

Nasjonale skogressurskart, har gjennom introduksjonen av flybåren laser scanning (ALS) i 

skogbruksplanleggingen, blitt tilgjengelig for størsteparten av det produktive skogarealet i 

Norge. Slike skogressurskart, som SR16, benytter feltdata fra landsskogtakseringen som 

kalibreringsdata til prediksjonsmodeller. Dette har sine fordeler, først og fremst av 

kostnadsbesparende årsaker, men også på grunn av mulighetene for regelmessige 

oppdateringer sammenlignet med sporadiske oppdateringer av dagens skogbruksplaner.  

 

Målet med denne studien var å vurdere nøyaktigheten av prediksjoner fra SR16 for grunnflate 

(G), dominerende trehøyde (Hdom), bonitet (SI), treantall (N) og alder (A) på prøveflatenivå 

(250m2) sammenlignet med bakkemålte referanseverdier. I en påfølgende tapsanalyse ble 

optimal skjøtselsstrategi simulert som en maksimering av nettonåverdien for bakkemålte 

referanseverdier, mens nettonåverdien for «usikre» SR16 prediksjoner ble maksimert 

gjennom en simulert suboptimal skjøtselsstrategi. Økonomiske tap ble definert som en 

nedgang i nettonåverdi ved å benytte seg av SR16 prediksjoner. Datamaterialet brukt i denne 

studien bestod av 552 prøveflater fra tre regionale skogbruksplantakster.  

 

SR16 prediksjoner resulterte i en prediksjonsnøyaktighet (MD%) på 9.7 % for G, 2.4 % for 

Hdom, 7.5 % for SI, 6.6 % for N and 2.3 % for A. Resultatene viser at SR16 gir på regionalt 

nivå gir presise prediksjoner, men resultatene varierer imidlertid mye når resultatene betraktes 

på et lokalt nivå. I tapsanalysen resulterte SI og A i de mest signifikante reduksjonene av 

nettonåverdi, men tapene varierte mye avhengig av takstprosjektene. Prediksjonsfeil hos 

øvrige variabler reduserte ikke nettonåverdien nevneverdig. SR16 kan i dagens utgave ikke 

betraktes som en fullverdig erstatning for skogbruksplaner, men kan gjennom utvikling av 

takstprosedyrer og nye metoder for estimering av SI, utgjøre en større rolle for operativ 

skogforvaltning i fremtiden.    

 



VI 
 

  



VII 
 

Contents 
Acknowledgements .................................................................................................................... I 

Abstract .................................................................................................................................... III 

Sammendrag ............................................................................................................................. V 

1. Introduction ............................................................................................................................ 1 

1.1 Background ...................................................................................................................... 1 

1.2 Mapping of forest resources ............................................................................................. 2 

1.3 Loss analysis .................................................................................................................... 6 

1.4 Research objectives .......................................................................................................... 7 

2. Material and method .............................................................................................................. 8 

2.1 Study area ......................................................................................................................... 8 

2.2 Data material .................................................................................................................... 9 

2.2.1 Ground reference data ............................................................................................. 11 

2.2.2 Forest resource map – SR16 .................................................................................... 14 

2.3 Data analysis .................................................................................................................. 15 

2.3.1 Accuracy analysis .................................................................................................... 15 

2.3.3 Loss analysis ............................................................................................................ 17 

3. Results .................................................................................................................................. 21 

3.1 Accuracy results ............................................................................................................. 21 

3.2 Loss results ..................................................................................................................... 25 

4. Discussion ......................................................................................................................... 29 

4.1 Accuracy analysis ........................................................................................................... 29 

4.2 Loss analysis .................................................................................................................. 33 

5. Conclusion ........................................................................................................................ 38 

6. References ........................................................................................................................ 39 

 

 



VIII 
 

 

 



1 
 

1. Introduction 

1.1 Background 

The total land area of Norway consists of 385 207 km2, of which 14 million hectares or 37% 

of the land are forested. Substantial roots and traditions linked to the right to own private 

property mean a significant share of the forested areas is under private ownership. Of a total 

of 125 000 forest properties, 77% have private ownership (SSB, 2022). The total harvested 

timber volume for industry purposes was 11.5 million m3 in 2022, the largest harvested 

quantity ever recorded in Norway (SSB, 2022). Norway spruce (Picea abies), Scots pine 

(Pinus sylvestris) and European white birch (Betula pendula and Betula pubescens) are the 

most common species of tree in Norway.  

 

All forest properties in Norway, with legal basis from the Forestry Act § 5 “Forest 

management inventory and forest management plan”, are required to have a forest 

management inventory (FMI) which should include the following information at property 

level (Landbruksdirektoratet, 2022; Lovdata, 2022): 

 

- Total area of distinctive types of land 

- Productive forest areas allocated over development class and site index 

- Standing volume allocated over species, site index and development class 

- Annual increment 

- Production potential 

 

In addition, the FMI must contain information at stand level, such as, development class, age, 

annual increment, and areas with environmental importance to the landscape, recreation, 

heritage sites and biodiversity (Landbruksdirektoratet, 2022).   

 

The FMI provides valuable information about the available forest resources but also 

represents a significant expense for the forest owner. Concurrently, Bergseng et al. (2018) 

report from 1978 to 2016 that the annual change in current prices for sawnwood of Norway 

spruce has developed at half the rate of the yearly change of the consumer price index. This 

has reduced the actual value of sawnwood of Norway spruce by 50% within the analysed 

period. As a result, the value of maintaining the forest as an essential source of income may 
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have been reduced, and forest owners might be less willing to invest in FMIs. Therefore, the 

government created subsidies for FMIs designed to stimulate increased activity, increase 

demand, and to reduce the costs paid by forest owners.  

 

The production of an FMI is a complex process characterised by the continual development 

of the design and intensity related to data collection. Technological developments have also 

increased the capability of delivering more precise stand estimations for FMIs. On the other 

hand, more precise estimations have come at the price of an increased cost of producing 

FMIs. Therefore, even after the application of subsidies, forest owners might struggle to see 

the advantages of having an updated FMI available for their property. Consequently, it might 

be desirable to examine what options decision-makers could have to reduce inventory costs 

while maintaining the same level of prediction errors.  

 

1.2 Mapping of forest resources 

The mapping of forest resources in Norway has traditionally been divided between the 

National Forest Inventory (NFI) and FMIs. Norway’s NFI ensures nationwide forest data, 

whereas FMIs aim to provide local forest information to be used for decision-making by 

forest owners for current and future silvicultural treatments (Bergseng et al., 2015). However, 

the decisions concerning silvicultural treatments are often made at the stand level. Therefore, 

information is typically acquired through FMIs (Bollandsås et al., 2023).  

 

Rahlf et al. (2021) describe that FMIs produced with complementary data from airborne laser 

scanning (ALS) share common steps, which are “(1) manual stand delineation, (2) 

stratification of the stands into strata based on, for example, tree-species, maturity-classes, (3) 

ALS data acquisition, (4) measurements of some hundred field sample plots distributed over 

the strata, (5) fitting of stratum specific linking models for timber volume and other response 

variables, and (6) estimation of stand-level parameters”. ALS data are acquired for the area of 

interest, which might consist of several municipalities. After the acquisition, the ALS data are 

grouped into grid cells that serve as primary prediction units (Bollandsås et al., 2023). Field 

sample plots containing ground reference values are often distributed across the area 

according to a stratified sampling design (Næsset, 2014). Measurements at the plot level are 

necessary for providing relationships that can link relevant ALS metrics to specific linking 

models for ALS data across the area of interest. Subsequent prediction models for forest 
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attributes are created and applied to grid cells before eventually being aggregated from cell 

predictions to stand-level estimates (Bollandsås et al., 2023; White et al., 2013).  

 

The mapping of forest resources can also be done to sustain regional or national statistics as 

an NFI. An NFI aims to provide statistics for reporting and policy-making on a regional to 

national scale (Rahlf et al., 2021; Tomppo et al., 2010). Due to the vast amount of data 

required to provide NFI statistics, it requires ground reference values to be collected over 

several years. For example, the Norwegian NFI has a five-year rotation period. Therefore, 

each field sample plot used in the Norwegian NFI is subjected to measurements every fifth 

year to sustain annual updates to national forest statistics. However, the manual field sampled 

fraction of the data is comparably smaller for a NFI than a FMI (Rahlf et al., 2021). The 

Norwegian NFI consists of a fixed 3×3 km grid of about 16 000 permanent field sample plots 

where manual field measurements are regularly conducted. These measurements represent a 

vast database of information previously utilised primarily at a regional or national scale for 

volume estimations, volume increment, carbon sequestration, etc. 

 

Producing NFIs and FMIs has traditionally been viewed as separate activities. However, the 

increasing availability of ALS data from national campaigns has contributed to creating 

nationwide forest attribute maps such as SR16 (Rahlf et al., 2021). SR16 is a national forest 

resource map with raster-based predictions of forest attributes that covers large parts of the 

productive forest areas in Norway (Astrup et al., 2019; Bollandsås et al., 2022; Hauglin et al., 

2021). Predictions are structured into cells of 16×16 m that can be used to estimate means and 

totals of forest attributes within a defined area of interest, for example, at stand level. SR16 

combines ground reference values from permanent NFI field sample plots with the newest 

and most up-to-date ALS data available for the specific regions (Bollandsås et al., 2022).  
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There are several advantages and disadvantages for inventory systems using NFI field sample 

plots as ground reference values instead of FMI field sample plots. The main advantage of 

using the NFI plots as ground reference values is that the cost of measuring the plots is 

already covered by other budgets (Bollandsås et al., 2023). Field sample plots require staff to 

be physically in the field to conduct measurements and apply as a considerable cost in the 

production of an FMI. Costs regarding measurements at NFI field sample plots are paid by 

the Norwegian NFI, which means forest owners are not exposed to the related expenses. 

Secondly, data for NFI field sample plots are collected continuously, exemplified by the 

Norwegian five-year rotation period. Thirdly, intervals between FMI projects within the same 

geographic region have traditionally been 10 – 20 years. However, using NFI data for model 

linking and calibration enables wall-to-wall prediction maps of forest attributes to be updated 

frequently due to using the newest and most up-to-date ALS projects available.  

 

The most critical challenge of using NFI field sample plots as calibration data for predictions 

comes from the relatively low sampling intensity compared to FMIs. Prediction models from 

NFIs are calibrated with field sample plots collected over a large spatial domain, typically 

over tens of thousands of square kilometres (Bollandsås et al., 2023). Creating general 

prediction models over vast areas with a comparably small total sampling intensity tends to 

generalise local forest conditions. A model calibrated for a large region might struggle to 

provide relationships between ground reference values and ALS metrics representative of 

smaller geographical areas (Nilsson et al., 2017). Bollandsås et al. (2023) describe that large 

regional models for forest attributes such as tree height, stem diameter and volume are 

challenging to provide a specific relation between ground reference values and ALS metrics 

representative for smaller areas, because these attributes vary relative to factors such as 

latitude, elevation, soil properties and other factors with distinct geographical patterns 

(Næsset, 2014).  
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Another challenge could be due to temporal differences regarding model calibration and 

predictions based on NFIs. The temporal differences might occur between ALS acquisitions 

and parts of the NFI field sample plot dataset (Bollandsås et al., 2023). For example, larger 

regions could be subject to field data acquisitions over several years, which have to be 

projected to a specific date (Bollandsås et al., 2023), whereas non-overlapping ALS 

acquisitions over several years might use different acquisition parameters and instruments 

that could affect the point cloud and the derived metrics (Nicholas R. Goodwin, 2006; 

Næsset, 2005; Næsset, 2009). Furthermore, as opposed to ground reference values, ALS data 

cannot be forecasted or backcasted, and therefore ground reference values and ALS data 

could reflect different forest conditions affecting models (Bollandsås et al., 2023; Hill et al., 

2018). In addition, there could be temporal inconsistencies between ground reference values 

and ALS data within the same geographical area, representing forest stands that could be 

portrayed in different states. Ground reference values might be collected over plots that could 

have been subject to silvicultural treatments, whereas ALS data might have been collected 

before the treatments were applied. Therefore, detecting disturbances before analyses is 

essential because failure to detect even a small number of plots with disturbances could 

potentially inflate the model uncertainty (Bollandsås et al., 2023; Massey & Mandallaz, 

2015).  

 

Bollandsås et al. (2022; 2023) compared ground reference values against SR16 predictions 

across a broad range of forest conditions in Norway. The studies concluded that SR16 

predictions did not produce suitable results to replace more accurate predictions from an area-

based FMI. However, SR16 predictions were suitable only in areas with forest conditions that 

did not deviate much from the average forest conditions in the regions. These areas resulted 

in predictions that were not prone to large systematic prediction errors (Bollandsås et al., 

2022; Bollandsås et al., 2023) 

 

Adapting regional or nationwide prediction maps of forest attributes into strategic forest 

planning represents a significant potential for cost savings, but also the risk of significant 

prediction errors (Bollandsås et al., 2023). Additional empirical research is needed to assess 

the accountability of prediction maps across a broad range of differences in local forest 

conditions (Bollandsås et al., 2023).   
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1.3 Loss analysis 

Hamilton (1978) suggested that a loss analysis can be used to develop a link between errors in 

data and economic costs. The application of forest inventories in the context of long-term 

decision-making is a delicate balance between the consideration of the intensity of the 

inventory work, inventory costs and NPV losses (figure 1). For example, precise stand 

estimates can be achieved at the expense of large inventory costs, bringing total costs to an 

unsustainable level, and vice versa.  

 

 

Loss analyses focuses only on the economic losses caused by an erroneous dataset by 

excluding the addition of inventory costs in the analysis. Economic losses are defined as a 

reduction in net present value (NPV) because of future incorrect decisions regarding 

silvicultural treatments over a specified period. Loss analyses require two contrasting 

datasets. One dataset is regarded as the “true” dataset, using “correct” values, which in turn 

maximises the net present value, whereas the “false” dataset uses an alternative source of data 

with a certain error level. Loss analyses can also be applied by comparing ground reference 

values from FMI field sample plots against SR16 predictions. Ground reference values are, in 

these cases regarded as the “true” dataset aiming to maximise the NPV through a simulation 

of optimal silvicultural treatments over a specified period of time. On the other hand, SR16 

predictions are data obtained from an alternative data source with an expected error level 

resulting in suboptimal silvicultural treatments and reduced NPV.  

 

Figure 1: (Eid, 2022). Costs of obtaining forest resource information can occur in 
several different ways, for example the correlation between erroneous data and NPV-
losses, or the correlation between expensive inventory costs and precise stand 
estimates. Personal communication, Beslutning – verdien av informasjon. Ås: NMBU 
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Loss analyses have been applied in other studies, such as Eid (2000), which evaluated forest 

inventories' design and intensity. On the other hand, Bollandsås et al. (2022) applied a loss 

analysis to analyse the economic implications of using an NFI-based inventory method 

compared against ground reference values and predictions from an area-based FMI.  

 

1.4 Research objectives 

This study aimed to assess the prediction accuracy and economic viability of using 

predictions from the nationwide prediction map of forest attributes SR16. Ground reference 

values from FMI field sample plots were compared against SR16 predictions to determine the 

prediction accuracy of basal area (G), dominant height (Hdom), site index (SI), number of 

trees/ha (N) and age (A) across a dataset consisting of 552 field sample plots from 3 regional 

FMI project in south-eastern Norway.  

 

The cost of adopting SR16 predictions into strategic forest planning was evaluated using a 

loss analysis that simulated optimal silvicultural management strategies with ground 

reference values and suboptimal silvicultural management strategies with SR16 predictions. 

The economic costs of using SR16 predictions will be evaluated through eventual losses of 

NPV.  

 

The results could reveal if the national forest resource map SR16 can be adopted into 

strategic forest planning.  

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

2. Material and method 

2.1 Study area 

Field sample plots data obtained from the property of Mathiesen Eidsvold Værk are regarded 

as project one in this study (coloured green in figure 2). The data were located in the 

municipalities of Hurdal (60°25’N, 11°4’E, 200 – 600 metres above the sea), Eidsvoll 

(60°20’N, 11°15’E, 120 – 700 metres above the sea), Nannestad (60°14’N, 10°57’E, 130 – 

717 metres above the sea), Ullensaker (60°08’N, 11°10’E, 130 – 350 metres above the sea) 

and Nes (60°07’N, 11°29’E, 100 – 500 metres above the sea) in Viken county, and Gran 

(60°°26’N, 10°29’E, 130 – 810 metres above the sea) and Østre Toten (60°36’N, 10°54’E, 

120 – 840 metres above the sea) located in Innlandet county.  

 

Field sample plot data for project two (coloured yellow in figure 2) were obtained from the 

municipalities of Sigdal (60°03’N, 9°36’E 100 – 1450 metres above the sea) and Flesberg 

(59°50’N, 9°28’E, 150 – 1240 metres above the sea). Field sample plot data for the third 

project (coloured red in figure 2) were collected from Modum (59°57’N, 9°58’ E, 10 – 750 

metres above the sea), Lier (59°52’N, 10°12’E, 0 – 610 metres above the sea) and Asker 

(59°42’N, 10°30’E, 0 – 460 metres above the sea). All municipalities for projects two and 

three were located in the county of Viken, and the data from these projects were a part of the 

data material used in the studies by Bollandsås et al. (2022; 2023) 

 

The dominant species of trees in the project areas are Norway spruce, Scots pine and 

European white birch.  
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Figure 2: Forest inventory projects included in the study. Green areas are designated to project one, yellow for project two 
and red for project three. 

 

2.2 Data material 

The ground reference values were obtained during measurements of field sample plots which 

occurred during three regional ALS-assisted FMI campaigns, whereas SR16 data were 

extracted as additional information specifically for studies:  

 

1. Project one consists of 116 field sample plots for ground reference values and SR16 

predictions. The field sample plots are located on the private property of Mathiesen 

Eidsvold-Værk. 

2. Project two consists of 267 field sample plots for ground reference values and SR16 

predictions.  

3. Project three consists of 169 field sample plots for ground reference values and SR16 

predictions.  
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Ground reference values regarding project one refer to a private initiative by the large forest 

estate, Mathiesen Eidsvold-Værk. The estate required an updated source of forest information 

for strategic planning due to outdated information from their previous FMI conducted in 

2007. Therefore, the new FMI, with accompanying ground reference values, was acquired in 

2021, whereas SR16 predictions were acquired in 2020 (table 1).  

 

The ground reference values from project two (Sigdal-Flesberg) and three (Modum, Lier and 

Asker) relate to the same regional ALS campaign undertaken by Viken Skog ASA. Ground 

reference values were acquired in 2019, whereas SR16 predictions were acquired in 2020 

(table 1). 

 
Table 1: The year of acquisition of ground reference values and SR16 predictions for each project. 

Project id.   Reference SR16 

1 
Mathiesen 
Eidsvold-

Værk 
2021 2020 

2 
Sigdal and 
Flesberg 

2019 2020 

3 
Modum, 

Asker and 
Lier 

2019 2020 

 

 

The dataset consists of 552 field sample plots with ground reference values, supported by 

accompanying SR16 predictions.   
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2.2.1 Ground reference data 

Measurements undertaken at field sample plots follow the intention of a project’s descriptive 

goals. FMIs are produced to assist decision-making at stand level. However, undertaking a 

total measurement of all variables of interest on all trees at plot level could significantly 

increase inventory costs. 

 

The ground reference values contain information regarding site basal area (G), dominant 

height (Hdom), site index (SI), number of trees (N) and age (A) from field sample plots the 

size of 250 m2.   

 

To ease the task of measuring tree heights, the term “selection trees” was introduced. 

Selection trees mean that a specific selection of trees within a field sample plot applies for 

more extensive measurements, including height. However, it should be selected objectively to 

avoid systematic errors because of a subjective selection process (Fitje, 1984). For example, 

systematic errors can be avoided by measuring the height once every fourth tree. Fitje (1984) 

developed models to predict tree heights using the diameter at breast height (dbh) as input due 

to the strong correlation between dbh and tree height. However, the correlation between dbh 

and tree height can vary depending on the site index and density of trees/ha. 

 

Similarly to Bollandsås et al. (2023), the procedure of the height measurement protocols 

means sample trees were selected with a probability proportional to the stand basal area using 

a relascope aiming for 10 sample trees per plot. Then, tree heights were measured using a 

Vertex hypsometer and the dominant height was calculated based on the plot registrations. 

 

Site index describes the potential forest growth based on the dominant height at 40 years age 

at breast height (H40 in Norway). Site index at the plot level is calculated by using a 

correlation between the average age at breast height and the average height of the two largest 

trees at the field sample plot using tables from Tveite (1977). For calculations at hectare level, 

the 100 largest trees/ha is instead used.   
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The basal area (G, m2/ha) was calculated as the sum of the basal area measured from 

individual trees during relascope aiming and scaled to m2/ha. Next, tree species was 

determined. The diameter at breast height (dbh, cm) was measured for all trees equal to or 

larger than 10 cm at breast height. Each tree over the diameter limit was recorded to 

determine the total number of trees (N/ha). Finally, measurements were concluded with 

measurements of stand age (A, yr). 

 

Based on age and site index, forest stands are classified into development classes. 

Development class is defined as a national system of maturity classification (Anon, 1987). 

The classification includes classes 1 to 5, which describe the maturity of clear-felled stands 

towards harvest, 5 being the most mature class defined as ready for harvest. Development 

classes classify the stages in which silvicultural treatments are valid, such as young growth 

thinning, thinning and final harvest. Therefore, it is necessary to provide information on basal 

area, mean height, and volume to manage these treatments properly. This study only included 

plots in development classes 3 to 5.  

 

All ground reference values used in this study were collected through FMIs produced by the 

forest owner association Viken Skog ASA. As a result, field instructions remained identical 

for all field sample plots.  

 

Table 2 describes the distribution of tree species on the field sample plots. The distribution is 

calculated as the percentage of the total basal area.  

 

For further descriptions of the ground reference values, see table 3.  

 
Table 2: The distribution of species for the separate project and the overall distribution for the dataset based on the basal 

area. 

      Species   

Project  Spruce Pine Deciduous 

1 MEV 91 % 2 % 7 % 

2 Sig/Fles 43 % 45 % 12 % 

3 Modum 57 % 31 % 12 % 

  Total 59 % 30 % 11 % 
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Table 3: Each variable's average ground reference values are displayed for each project and the entire dataset. Min and max 
observed ground reference values are also displayed. 

Basal area (m2/ha)   

Min 
(field) 

Max 
(field) 

Project N Field m2/ha m2/ha 

1 MEV 116 29.8 5.2 62.1 

2 Sigdal - Flesberg 267 24.1 4.2 54.7 

3 Modum, Asker, Lier 169 29.1 7.7 66.7 

 Total 552 26.8 4.2 66.7 

     

Dominant height (m)   

Min 
(field) 

Max 
(field) 

Project N Field m m 

1 MEV 116 20.7 8.8 31.4 

2 Sigdal - Flesberg 267 20.1 11.2 30.2 

3 Modum, Asker, Lier 169 20.9 11.7 37.4 

 Total 552 20.5 8.8 37.4 

     

Site index (m)   

Min 
(field) 

Max 
(field) 

Project N Field m m 

1 MEV 116 16.5 5.6 26.1 

2 Sigdal - Flesberg 267 13.8 6.0 23.0 

3 Modum, Asker, Lier 169 14.7 6.0 26.0 

 Total 552 14.6 5.6 26.1 

     

Number of trees (n/haa)   

Min 
(field) 

Max 
(field) 

Project N Field n/ha n/ha 

1 MEV 116 831 160 1640 

2 Sigdal - Flesberg 267 670 40 2000 

3 Modum, Asker, Lier 169 708 160 1760 

 Total 552 716 40 2000 

     

Age (year)   

Min 
(field) 

Max 
(field) 

Project N Field yr yr 

1 MEV 116 60.6 18 183 

2 Sigdal - Flesberg 267 89.7 20 217 

3 Modum, Asker, Lier 169 86.2 17 235 

 Total 552 82.5 17 235 
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2.2.2 Forest resource map – SR16 

SR16 is a nationwide prediction map of forest attributes that covers all forested areas in 

Norway. It gives an overview of the extent and characteristics of Norway’s forest resources. 

SR16 predictions are produced through automated processes as a combination of existing 

maps (AR5), terrain models, 3D remotely measured data (ALS and photogrammetry) and 

ground reference values from manual measurements at field sample plots used by the 

Norwegian NFI (NIBIO, 2023). NFI field sample plots were primarily used to provide annual 

updates for regional or national statistics and policy-making (Rahlf et al., 2021; Tomppo et 

al., 2010). However, after the introduction of SR16, ground reference values from NFI field 

sample plots serve a primary role as calibration data for prediction models in the same 

manner as ground reference values for field sample plots in FMIs. NFI field sample plots 

used by SR16 are distributed over all forested areas in Norway according to a permanent 3×3 

km grid.  

 

SR16 predictions of forest attributes were extracted for each field sample plot by weighting 

the 16×16 m cell predictions intersecting the field sample plot with the individual cells area 

included within the plot (Bollandsås et al., 2023). Some SR16 predictions might result from 

several weighted intersecting SR16 cells within the same field sample plot.   

 

SR16 calculates the site index using an area-based method with ALS data as the explanatory 

variable and ground reference values from the Norwegian NFIs field sample plots. 

Additionally, the statistic model utilises AR5 (area resource map and area classification 

system), terrain models and climatic data for predicting the H40 site index for Norway spruce, 

Scots pine and European white birch (NIBIO, 2023).  

 

Ground reference values and SR16-predictions might be related to different points in time 

(table 1). The data were not forecasted or backcasted to represent the same year due to the 

relatively small timespan between the acquisitions of ground reference values and SR16 

predictions. 
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2.3 Data analysis  

2.3.1 Accuracy analysis  

In some circumstances, the state of the field sample plots at the time of ALS acquisition and 

at the time of the FMI field inventory may differ significantly. This can happen for several 

reasons, such as undetected disturbances in SR16 or incorrect classifications of harvests in 

SR16. In these cases, the FMI field inventory may have acquired ground reference values 

representing full stocking, despite the actual state of the field sample plots being very 

different. This might result in large outliers significantly affecting the results of analyses 

(Bollandsås et al., 2023). Therefore, field sample plots with an extremely large disparity 

between the ground reference values and SR16 predictions were excluded by applying 

Rosners’s test (Rosner, 1983) to each plot separately to automatically detect outliers that 

differed significantly from the rest of the observations. The Rosner test was applied for each 

project and variable independently. This resulted in the detection of five outliers in total that 

were removed.  

 

To analyse the systematic differences, ground reference values for variables of interest were 

compared against SR16 predictions by assessing the difference (Di) between the ground 

reference value (yi) and SR16 prediction (ÿi) for each field sample plot. Further, the mean 

difference (MD and MD%) was analysed as the average difference between the ground 

reference values and SR16 predictions for the individual projects and the total dataset. 

Additionally, the root mean squared error (RMSE and RMSE%) was calculated to address the 

concentration of the data around the line of best fit, thus revealing the standard deviations of 

the residuals (prediction errors). The mean difference (MD, MD%) and the root mean 

squared errors (RMSE, RMSE%) were calculated as follows: 
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(1) 

𝐷𝑖 = 𝑦𝑖 − ÿ𝑖 

 
(2) 

𝑀𝐷 =

1
𝑛

∑ (𝐷𝑖)𝑛
𝑖=1

𝑌
 

(3) 

𝑀𝐷(%) =

1
𝑛

∑ (𝐷𝑖)𝑛
𝑖=1

𝑌
× 100 

 
(4) 

𝑅𝑀𝑆𝐸 =  

√1
𝑛

∑ (𝐷𝑖)2𝑛
𝑖=1

𝑌
 

(5) 

𝑅𝑀𝑆𝐸% =

√1
𝑛

∑ (𝐷𝑖)2𝑛
𝑖=1

𝑌
× 100 

 

where n = the number of plots, yi = ground reference value for the forest attribute in plot i, ÿi 

= the predicted forest attribute from SR16 in plot i, Y = the mean ground reference value for 

the forest attribute, and Di is the difference between the ground reference value and SR16 

prediction in plot i.  

 

The minimum (Min) and maximum (Max) observed differences between ground reference 

values and SR16 predictions were determined for the individual projects and the total dataset 

(table 6). 
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2.3.3 Loss analysis 

Long-term timber production computations were made with GAYA (Eid, 2000; Hoen & Eid, 

1990; Hoen & Gobakken, 1997). GAYA is a large-scale forestry scenario model based on the 

simulation of stand-level treatments and linear programming for solving management 

problems (Eid, 2000; Lappi, 1992). All model components are deterministic (Eid, 2000). Eid 

(2000) suggests that economic calculations and stand projections rely heavily on the “average 

tree” of each stand, i.e. the basal area mean diameter (Dba), the mean height weighted by basal 

area (HL) and the number of stems/ha (N). Consequently, the projections are based on 

diameter increment functions (Blingsmo, 1984). The diameter increment is predicted with 

age, dominant height, site quality, N and Dba as independent variables. Height development 

models (Braastad, 1977; Tveite, 1976; Tveite, Bjørn, 1977) were predicted with HL, age and 

site quality as independent variables, whereas a mortality model (Braastad, 1982) used N as 

the independent variable.  

Optimal silvicultural management strategies maximising the NPV were simulated using 

ground reference values. Suboptimal silvicultural management strategies were simulated 

using presumably erroneous SR16 predictions to calculate the maximised NPV for the 

alternate scenario. Projections were performed for ten five-year periods assuming all 

treatments took place in the middle of the five-year period. Treatments included final harvest 

and immediate planting or natural rejuvenation, depending on the forest conditions. A real 

annual rate of discount of 3 % was applied in this study.  
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Figure 3: (Eid, 2000) An illustration of how NPV losses can appear due to erroneous inventory data. Use of uncertain 
inventory data in forestry scenario models and consequential incorrect harvest decisions. Silva Fennica, 34: 89-100. 

 

 

Figure 3 illustrates how NPV losses may appear due to erroneous inventory data. The upper 

line is an indication of the development of the NPV close to the final harvest based on the 

ground reference values, where. In contrast, the lower line represents the NPV from erroneous 

data. Harvesting decisions based on erroneous data could result in the final harvest being 

conducted at time Terr instead of Tref. The resulting NPV losses can be illustrated as the 

difference between NPVref and NPVerr (Eid, 2000).  

 

The expected losses can be calculated using Eid’s (2000) example where NPVrefi = the NPV 

of stand number i (i=1, 2, …, n) for the ground reference values, whereas NPVerri is the NPV 

of SR16 predictions for stand number i (i=1, 2, …, n). The NPV loss caused by an error in the 

data for stand number i can then be calculated as:  
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(6) 

𝑁𝑃𝑉𝑙𝑜𝑠𝑠𝑖 = 𝑁𝑃𝑉𝑟𝑒𝑓𝑖 − 𝑁𝑃𝑉𝑒𝑟𝑟𝑖 

 

 

 

Expected NPV losses of all stands within a project or dataset can be calculated as follows:  

 
(7) 

𝑁𝑃𝑉𝑙𝑜𝑠𝑠 =  (∑ 𝑁𝑃𝑉𝑙𝑜𝑠𝑠𝑖

𝑛

𝑖=1

) / 𝑛 

 

where NPVlossi is the NPV loss for stand number i (i=1, 2, …, n) and n is the total number of 

stands within the dataset or project.  

 

The timber prices used in the calculations were based on the average price over five years 

(2017 – 2022), consisting of assortment prices for sawn- and pulpwood for Norway spruce 

and Scots pine on the Norwegian timber marked. Prices used for European white birch are 

composed of mean pulp- and sawnwood prices combined over the same period (SSB, 2022) 

(table 4).  

      

Table 4: The average assortment prices for pulp- and sawnwood for Norway spruce, Scots pine and European white birch 
between 2018 to 2022. The average price during this period is used as assortment prices for the economic analysis. Prices 

are expressed in Norwegian kroner (NOK). 

Assortment 
Average prices/year (NOK) 

Average  
2018 2019 2020 2021 2022 

Spruce - sawnwood 517 523 457 564 654 543 

Spruce - pulpwood 286 344 286 253 306 295 

Pine - sawnwood 473 483 453 546 628 517 

Pine - pulpwood 266 328 274 245 284 279 

Birch - sawnwood 351 470 605 560 608 
405 

Birch - pulpwood 260 312 269 263 350 

 

 

As of 2023, planting costs NOK 5 – 6 per plant without subsidies (Viken-Skog, 2022). The 

cost of planting is reduced by government-created subsidies created to stimulate increased 

carbon sequestration and by using private forest funds with tax advantages. This was assumed 

to reduce the direct cost to 25% of the original costs (table 5).  
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Table 5: The prices of planting for Norway spruce, Scots pine and deciduous trees. Due to subsidies and other benefits, the 
direct share of cost is assumed to be 25%. Prices are expressed as Norwegian kroner (NOK). 

 

Norway 
Spruce 

Scots 
Pine Deciduous Share of cost 

Cost (NOK/plant) 6 6 8 25% 

 

 

NPV losses were calculated for an overall SR16 scenario that used all SR16 predictions 

(scenario 2). Additionally, differentiating independent effects of isolated variables for SR16 

predictions included a series of secondary scenarios (a-e) as follows:  

 

1) Scenario 1: Stand estimates using ground reference values (reference option). 

2) Scenario 2: Stand estimates using all SR16 predictions. 

a. Scenario 2a: Stand estimates isolating SR16 basal area. 

b. Scenario 2b: Stand estimates isolating SR16 dominant height. 

c. Scenario 2c: Stand estimates isolating SR16 site index. 

d. Scenario 2d: Stand estimates isolating SR16 number of trees/ha. 

e. Scenario 2e: Stand estimates isolating SR16 age.  

 

The dataset is comprised of data representing diverse forest conditions geographically and 

biologically. Therefore, the results were separated according to the separate projects.  
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3. Results 

3.1 Accuracy results 

The results from the statistical analysis are presented as the difference between ground 

reference values and SR16 predictions as relative (MD%, RMSE%) and absolute (MD, 

RMSE) results presented for each variable (G, Hdom, SI, N and A) independently for each 

project and the entire dataset (table 6). Additionally, scatterplots highlight the distribution of 

prediction errors as the relationship between the ground reference values (X-axis) and the 

SR16 predictions (Y-axis) (figures 4 to 7).  

The overall accuracy of SR16 predictions resulted in MD% values of 9.7% for G, -2.4% for 

Hdom, 7.5% for SI, 6.6% for N and 2.3% for A. Corresponding RMSE% values were 29%, 

9%, 24%, 34%, and 41% for G, Hdom, SI, N and A, respectively (table 6).  

Locally, MD% of SR16 predictions showed a wide range of variations ranging from 1.0 to 

18.2% for G, -1.0 to -4.8% for Hdom, 0.0 to 12.9% for SI, -0.8 to 19.3 % for N, and -8.0 to 

16.5% for A. Corresponding RMSE% values ranged locally from 26 to 30% for G, 9 to 10% 

for Hdom, 20 to 28 % for SI, 31 to 36% for N, and 40 to 43% for A (table 6).  
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Table 6: The average differences between ground reference values against SR16 predictions which includes the observed 
max, min, MD, MD%, RMSE and RMSE%. 

        Difference 

Basal area (m2/ha)       Min Max MD RMSE 

Project N Field SR16 m2/ha m2/ha m2/ha % m2/ha % 

1 MEV 116 29.8 30.1 -23.1 26.3 0.3 1.0 7.8 26.1 

2 Fles/Sig 267 24.1 26.0 -13.7 18.1 1.9 7.9 6.9 28.7 

3 Modum 169 29.1 34.4 -15.5 25.3 5.3 18.2 8.8 30.3 

  Total 552 26.8 29.4 -23.1 26.3 2.6 9.7 7.7 28.7 

          Difference 

Dominant height (m)       Min Max Average RMSE 

Project N Field SR16 m m m % m % 

1 MEV 116 20.7 19.7 -7.5 5.9 -1.0 -4.8 2.0 9.8 

2 Fles/Sig 267 20.1 19.6 -5.8 5.1 -0.5 -2.5 1.9 9.4 

3 Modum 169 20.9 20.7 -5.0 5.9 -0.2 -1.0 1.8 8.8 

  Total 552 20.5 20.0 -7.5 5.9 -0.5 -2.4 1.9 9.3 

          Difference 

Site index (m)       Min Max Average RMSE 

Project N Field SR16 m m m % m % 

1 MEV 116 16.5 16.5 -9.8 10.0 0.0 0.0 3.2 19.7 

2 Fles/Sig 267 13.8 14.7 -7.6 8.6 0.9 6.5 3.2 23.5 

3 Modum 169 14.7 16.6 -8.0 10.0 1.9 12.9 4.1 27.7 

  Total 552 14.6 15.7 -9.8 10.0 1.1 7.5 3.5 24.0 

          Difference 

Number of trees (n/ha)       Min Max Average RMSE 

Project N Field SR16 n/ha n/ha n/ha % n/ha % 

1 MEV 116 830.7 868.5 -711.1 808.9 37.8 4.6 257.2 31.0 

2 Fles/Sig 267 670.3 664.9 -872.8 458.2 -5.4 -0.8 221.5 33.1 

3 Modum 169 707.9 844.4 -504.2 623.8 136.5 19.3 255.6 36.1 

  Total 552 715.5 762.7 -872.8 808.9 47.2 6.6 239.8 33.5 

          Difference 

Age (yr)       Min Max Average RMSE 

Project N Field SR16 yr yr yr % yr % 

1 MEV 116 60.6 70.6 -99.1 88.0 10.0 16.5 25.9 42.8 

2 Fles/Sig 267 89.7 93.6 -112.8 115.1 3.9 4.3 38.5 43.1 

3 Modum 169 86.2 79.3 -130.4 59.8 -6.9 -8.0 34.7 40.3 

  Total 552 82.5 84.4 -130.4 115.1 1.9 2.3 35.4 41.1 
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Figure 4: Overall scatterplot visualisation. Scatterplots show the relationships between the ground reference values and 
SR16 predictions. An overweight of points on one side of the line could mean unreliable estimates from SR16. 

 

Figure 5: Scatterplot visualisation for project one (MEV) for the variables of interest. Scatterplots show the relationships 
between the ground reference values and SR16 predictions. An overweight of points on one side of the line could mean 

unreliable estimates from SR16. 
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Figure 6: Scatterplot visualisation for project two (Sigdal and Flesberg) for the variables of interest. Scatterplots show the 
relationships between the ground reference values and SR16 predictions. An overweight of points on one side of the line 

could mean unreliable estimates from SR16. 

 

 

 
Figure 7: Scatterplot visualisation for project three (Modum, Lier and Asker) for the variables of interest. Scatterplots show 
the relationships between the ground reference data and SR16 predictions. An overweight of points on one side of the line 

could mean unreliable estimates from SR16. 
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The scatterplots highlight the relationship between the ground reference values and SR16 

predictions. Results indicate significant overpredictions of G, SI, N and A; however, the 

magnitude of overpredictions varied significantly between individual projects and overall 

results. For SI, plots under 17 H40 were observed to be generally overpredicted. However, 

plots with an SI over 17 H40 seemed to a lesser extent to be underpredicted. Prediction errors 

of A can be seen to be generally overpredicted at stand ages below 120 years, whereas stand 

ages over 120 years seems to be underpredicted.  

 

3.2 Loss results 

The economic analysis was performed on the condition that each field sample plot represents 

an individual stand in GAYA and constitutes an area of one hectare. The results are 

highlighted in accompanying tables (tables 7, 8, 9 and 10) and diagrams (figure 8) illustrating 

expected economic losses overall for the dataset, including results for the individual projects, 

and expected losses when isolating the separate variables of interest.  

 

The total value for the overall dataset using ground reference values was NOK 48 295 083. 

Using SR16 predictions resulted in a total loss of NOK 402 814. The average loss per hectare 

was 728 NOK/ha, constituting to an average loss of 0.83%. On the other hand, the max 

registered loss was NOK 19 904. Isolating SR16 predictions in separate analyses resulted in 

an average NPV loss ranging from NOK 98/ha to 561/ha. The results show that A and SI 

inflicted the most significant NPV reductions (table 7).  

 
Table 7: Loss results for the entire dataset displayed as min, max, the total sum of losses, in addition to average losses and 
the total NPV. The column SR16 represents overall results utilising all variables, whereas SR16 G = isolated basal area, SR16 

Hdom = isolated Hdom, SR16 SI = isolated SI, SR16 N = isolated N and SR16 A = isolated A. 

 

 

 

 

SR16 SR16 G SR16 Hdom SR16 SI SR16 N SR16 A
Net present value (NOK) 48 295 083 47 892 269 48 240 256 48 240 932 48 157 445 48 220 305 47 984 574

0 0 0 0 0 0 0

0 728 99 98 249 135 561

Max loss (NOK) 0 19 904 5 338 11 750 8 271 11 750 17 509

0 402 814 54 827 54 151 137 638 74 778 310 509

Stands with loss 0 186 83 48 106 85 145

Stands without loss 552 366 469 504 446 467 407

Max loss (%) 0 % 69.00 % 46.65 % 47.72 % 45.45 % 47.72 % 61.14 %

Average loss (%) 0 % 0.83 % 0.11 % 0.11 % 0.28 % 0.15 % 0.64 %

TOTAL
Scenario 1 Scenario 2
1) Reference option

Min loss (NOK/ha)

Average loss (NOK/ha)

Sum loss (NOK)
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Another way to view the results of the economic analysis is to split up the dataset and review 

the results of the individual project themselves due to substantial variation in forest 

conditions that could affect SR16 predictions and the potential impact the variables could 

have on the behaviour of GAYA.  

 

The total value for project one using ground reference values was NOK 13 157 927. Using 

SR16 predictions on all variables resulted in a total loss of NOK 168 490. The average NPV 

reduction per hectare was NOK 1 453/ha, which accounts for an average NPV reduction of 

1.28%. Furthermore, the max loss for an individual stand amounted to NOK 19 904. Isolating 

the various variables resulted in an average loss that varied between NOK 31/ha to 999/ha 

depending on the variable isolated. Age accounts for most economic losses (table 8). 

  

Table 8: Loss results for project one (MEV) displayed as min, max, the total sum of losses, in addition to average losses and 
the total NPV. The column SR16 represents overall results utilising all variables, whereas SR16 G = isolated basal area, SR16 

Hdom = isolated Hdom, SR16 SI = isolated SI, SR16 N = isolated N and SR16 A = isolated A. 

 

 

Secondly, the total value for project two using the ground reference values was NOK 

18 904 733. The total economic loss of using SR16 predictions was NOK 151 205. The 

average economic loss of using SR16 predictions resulted in a loss of 564 NOK/ha, an 

average reduction of 0.80% net present value. The highest recorded loss in a stand was NOK 

17 221. Isolating separate SR16 variables resulted in an average economic loss ranging from 

NOK 95/ha to 435/ha. The results suggest that age is responsible for the most significant 

economic reduction (table 9).  

 

SR16 SR16 G SR16 Hdom SR16 SI SR16 N SR16 A

Net present value (NOK) 13 157 927 12 989 437 13 137 515 13 154 281 13 121 502 13 148 764 13 042 035

0 0 0 0 0 0 0

0 1 453 176 31 314 79 999

Max loss (NOK) 0 19 904 5338 1 223 7 116 1 781 17 509

0 168 490 20412 3 646 36 425 9 163 115 892

Stands with loss 0 55 19 12 36 21 44

Stands without loss 116 61 97 104 80 95 72

Max loss (%) 0 % 69.00 % 46.65 % 29.22 % 45.45 % 3.10 % 39.98 %

Average loss (%) 0 % 1.28 % 0.16 % 0.02 % 0.28 % 0.07 % 0.88 %

Min loss (NOK/ha)

Average loss (NOK/ha)

Sum loss (NOK)

MEV
Scenario 1 Scenario 2

1) Reference option
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Table 9: Loss results for project two (Sigdal and Flesberg) displayed as min, max, the total sum of losses, in addition to 
average losses and the total NPV.  The column SR16 represents overall results utilising all variables, whereas SR16 G = 

isolated basal area, SR16 Hdom = isolated Hdom, SR16 SI = isolated SI, SR16 N = isolated N and SR16 A = isolated A. 

  

Finally, the total value of project three using the ground reference values was NOK 16 232 

740. Applying SR16 predictions for all variables resulted in a total loss of NOK 83 119. The 

average NPV reduction using SR16 predictions for all variables was 492 NOK/ha or a 0.51% 

NPV reduction. The max loss experienced in an individual stand was NOK 14 289. Isolating 

SR16 variables resulted in average NPV reductions ranging between NOK 52/ha to 462/ha. 

Isolated SR16 age accounted for an average loss nearly identical to when all variables were 

used (table 10).  

 

Table 10: Loss results for project three (Modum, Lier and Asker) displayed as min, max, the total sum of losses, in addition to 
average losses and the total NPV. The column SR16 represents overall results utilising all variables, whereas SR16 G = 
isolated basal area, SR16 Hdom = isolated Hdom, SR16 SI = isolated SI, SR16 N = isolated N and SR16 A = isolated A. 

    

 

 

 

 

 

SR16 SR16 G SR16 Hdom SR16 SI SR16 N SR16 A

Net present value (NOK) 18 904 733 18 753 528 18 879 160 18 878 098 18 852 541 18 863 428 18 788 235

0 0 0 0 0 0 0

0 564 95 99 195 154 435

Max loss (NOK) 0 17 221 2 361 6 207 6 888 7 689 17 221

0 151 205 25 573 26 635 52 192 41 305 116 498

Stands with loss 0 76 45 23 37 44 62

Stands without loss 268 192 223 245 231 224 206

Max loss (%) 0.00 % 51.10 % 29.81 % 47.72 % 8.62 % 47.72 % 48.05 %

Average loss (%) 0.00 % 0.80 % 0.14 % 0.14 % 0.28 % 0.22 % 0.62 %

Min loss (NOK/ha)

Average loss (NOK/ha)

Sum loss (NOK)

SIGDAL-FLESBERG
Scenario 1 Scenario 2

1) Reference option

SR16 SR16 G SR16 Hdom SR16 SI SR16 N SR16 A

Net present value (NOK) 16 232 740 16 149 621 16 223 898 16 208 870 16 183 719 16 208 430 16 154 621

0 0 0 0 0 0 0

0 492 52 141 290 144 462

Max loss (NOK) 0 14 289 2 518 11 750 8 271 11 750 14 289

0 83 119 8 842 23 870 49 021 24 310 78 119

Stands with loss 0 55 19 13 33 20 39

Stands without loss 169 114 150 156 136 149 130

Max loss (%) 0,00 % 31.93 % 31.26 % 35.03 % 12.07 % 7.41 % 61.14 %

Average loss (%) 0,00 % 0.51 % 0.05 % 0.15 % 0.30 % 0.15 % 0.48 %

MODUM

Average loss (NOK/ha)

Sum loss (NOK)

Scenario 1 Scenario 2

1) Reference option

Min loss (NOK/ha)
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Figure 8 presents expected losses overall and for the individual variables, where results 

indicate that most losses occur below 50 years of age. Accordingly, the figure shows that A 

and SI cause most of the observed NPV losses at stands below 50 years.  

 
Figure 8: Barplots indicating overall NPV losses illustrated as NOK/ha for each isolated variable and overall SR16 scenario by 

stand age. 
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4. Discussion 

4.1 Accuracy analysis 

This study aimed to assess the accuracy of predictions from the SR16 forest resource map by 

comparison against ground reference values based on 552 field sample plots from several 

FMI projects in south-eastern Norway. An additional assessment of the economic costs 

caused by erroneous stand predictions was performed using the long-term forest simulator, 

GAYA. Bollandsås et al. (2022; 2023) undertook similar analyses using ground reference 

values and SR16 predictions from projects two and three. However, the study was conducted 

on the variables of V, G, Hm and Hdom. Furthermore, the present study assessed prediction 

errors for SI, N and A, in addition to Hdom and G. The results highlighted the importance of 

assessing results locally, which resulted in significant variations of prediction errors for the 

regional FMI projects.  

 

It was expected that SR16 predictions would not be as accurate as the ground reference 

values. However, it was a surprise that the results varied significantly between the individual 

project areas. Regional prediction models, like the ones used in SR16, use NFI field 

observations as calibration data from a larger region to produce predictions for forest 

attributes at a local level. However, using NFI field observations as calibration data in 

prediction models can struggle to provide accurate local predictions of forest attributes, 

leading to FMI-specific differences observed in Bollandsås et al.’s (2023) study. The results 

from the present study, which included SI, N, and A as additional variables, underline 

previous studies’ findings linked to FMI-specific differences. For example, the overall MD% 

for A was 2.4%, whereas MD% values of 16.5%, 4.3%, and -8.0% were observed at projects 

one, two, and three, respectively (table 6). Similar variations were observed for the other 

variables, indicating that the FMI-specific differences were not limited to a single forest 

attribute. 
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SR16s utilisation of NFI plots as ground reference values might introduce unwanted 

consequences in poorly adapted models that tend to generalise forest conditions due to a 

small sampling intensity. Poorly adapted models struggle to link ground reference values and 

ALS data representing smaller geographical areas. For example, poorly adapted ALS models 

might struggle to form a relationship between stem properties and distinct geographical 

patterns like latitude, elevation, and soil properties at a local level (Næsset, 2014). The 

present study and Bollandsås et al. (2023) provide evidence regarding distinct geographical 

patterns that suggest these traits are especially noticeable for assessments of local FMI 

projects. An overrepresentation of the average forest conditions for the area from which the 

data are collected is a general challenge of prediction models developed from empirical data 

(Bollandsås et al., 2023). A single FMI could be comprised of forest conditions that are, on 

average, different from those represented by the field sample plots used as calibration data. 

Consequently, systematic prediction errors could occur for smaller spatial domains 

(Bollandsås et al., 2023). However, since SR16 estimates generally seem to provide more 

dissimilar estimations for forest conditions locally, providing property-specific data could 

yield even more pronounced dissimilarities (Bollandsås et al., 2023). Neither the present 

study nor the study of Bollandsås et al. (2023) included property-specific data at the scope of 

an average forest property to illustrate the potential consequences of individual properties. 

The property-specific data used for project one does not provide a general guideline for 

property-specific data due to its large size not being representative of the average forest 

property. 

 

For smaller domains, predicting the magnitude of prediction errors could be challenging 

when external models are applied without additional ground reference values from the area of 

interest (Bollandsås et al., 2023). In cases with ground reference values from field sample 

plots, the average prediction error could be observed by subtracting observed plot values with 

corresponding predictions (Bollandsås et al., 2023). Plot observations for calibration of local 

effects with predictions from a regional model from SR16, might provide a cost-effective 

way of supporting local planning of silvicultural management planning, especially since the 

number of local field sample plots could potentially be substantially smaller than the standard 

practice in operational FMIs (Bollandsås et al., 2023).   
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Nilsson et al. (2017) reported an absolute MD% that ranged from 16 to 22% for G. whereas 

Bollandsås et al. (2023) reported an absolute MD% that ranged from -7 to 6% for Hdom and -

17 to 41% for G. In the present study, the overall MD% range for G ranged from 1 to 18%, 

and Hdom ranged from – 1 to – 5%, which is lower than the ones reported by Nilsson et al. 

(2017) and Bollandsås et al. (2023).  

 

RMSE% measures the distance between the residuals to the line of best fit and illustrates how 

concentrated the data is around it. RMSE% values in this study ranged from 26 to 30% for G, 

9 to 10% for Hdom, 20 to 28% for SI, 31 to 36% for N and 40 to 43% for A (table 6). The 

results imply no significant difference in the perceived variation internally between the 

projects and the total estimate. However, external variations between estimates for different 

variables emphasise the previous confirmation of how ALS data results in significantly lower 

RMSE% values for Hdom. Notably, the RMSE% for A in this study was higher than that for 

any other variable. Earlier studies such as Nilsson et al. (2017) reported RMSE % from 20 to 

27% for G in a leave-one-out-cross-validation study for three independent areas in Sweden. 

Correspondingly, Bollandsås et al. (2023), partially using the same data as this study, 

compared SR16 predictions against ground reference values, resulting in RMSE% ranging 

from 22 to 46% for G and 6 to 17% for HO. The study from Bollandsås et al. (2023) utilised 

data from various geographical regions and forest conditions, which might have resulted in 

more significant variations in RMSE% compared to the present study.  

 

Hauglin et al. (2021) studied overall plot level RMSE% values ranging from 31 to 33% for G 

using non-stratified and species-specific SR16 models. The study recommended including 

separate models for each main tree species to improve prediction accuracy. However, 

Bollandsås et al. (2023) did not observe a significant improvement in their study using 12 

stratified models compared to the three models used by Hauglin et al. (2021). Despite not 

including species-specific or stratified models, the RMSE% values for G and Hdom in this 

study are still comparably smaller than the RMSE% reported by Hauglin et al. (2021) and 

Bollandsås et al. (2023). It is possible that differences in field measurement protocols, such as 

variations in sampling designs and plot sizes, could have influenced the RMSE% results 

reported by Bollandsås et al. (2023) compared to those found in this study.   
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Bollandsås et al. (2023) suggested that providing general guidance on where SR16 

predictions perform well is challenging. Using a variable importance analysis (VIP-analysis), 

Bollandsås et al. (2023) elaborate that the observed factors explaining the variability of 

differences between SR16 predictions and ground reference values were predominantly 

represented in variables describing forest and canopy structure. Of several forest attributes 

describing the forest and canopy structure, the proportion of deciduous trees at the plot level 

was one of the major sources of explaining variability in observed differences between the 

ground reference value and SR16 predictions. Results from the present study indicate more 

significant prediction errors for G and SI in project two and three, possibly linked to a higher 

proportion of deciduous trees at plot level compared to project one (table 2). Previous studies 

(Liang et al., 2007; Næsset, 2005) suggested that an increased proportion of deciduous trees 

in a plot effect derived ALS metrics when all other factors are kept equal.  

 

One issue that arose during the comparison of results was the difference in methodology with 

Bollandsås et al. (2023). During the acquisition of data for the present study for data, the time 

interval between the acquisition of ground reference values and SR16 predictions was short. 

As a result, growth models were not used to simulate forest conditions to the equivalent year 

for both datasets. Instead, the data were used as they were with minor deviations, as the 

deviations were deemed insignificant enough to avoid introducing more significant errors that 

could occur using growth models. Conversely, Bollandsås et al. (2022; 2023) utilised various 

growth models to backcast SR16 predictions to the FMI field plot acquisition date. Due to the 

differing methodologies used, it is challenging to determine the extent to which the 

backcasting impacts the comparability of results between the two studies. 
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4.2 Loss analysis  

As Bollandsås et al. (2023) pointed out, decisions regarding the particular use of data should 

be based not only on the desired levels of accuracy but also on the data acquisition costs 

related to the suitability for decision-making (Kangas, 2010). Therefore, Bollandsås et al. 

(2023) suggested that further studies should focus on this topic using a loss analysis as an 

analytical method.  

 

Table 7 shows that the total overall average loss was a 0.83% reduction of NPV. In contrast, 

individual variables ranged from an NPV reduction of 0.11% to 0.64%. NPV reductions are 

caused by inaccurate predictions, resulting in a delayed or premature final harvest and/or 

wrong rejuvenation method. According to Eid (2000), a given error level would result in 

more significant NPV losses for A and SI than losses from other variables. With this in mind, 

it was unsurprising that these two variables were the leading cause of most expected losses. 

Eid (2000) suggests that site index directly affects the development of the “average” tree, ie. 

Importance for diameter growth and height development because these effects heavily 

influence decisions regarding the timing of final harvest and rejuvenation method. Therefore, 

erroneous SI predictions might result in significant NPV losses. However, most losses seem 

to be attributed to inaccurate predictions related to age. An erroneous age prediction plays an 

even more prominent role in the timing of final harvests (Eid, 2000).   

 

In the same manner as the assessment of prediction accuracy, results varied significantly for 

the loss analysis when the result was reviewed locally. Therefore, loss results from the 

individual projects can be viewed in tables 8, 9 and 10.  

 

Regarding prediction accuracy, project one had the most precise predictions among the 

reviewed projects. However, the magnitude of prediction errors did not necessarily 

correspond with reductions in NPV. Project one had the largest overall observed NPV 

reduction, of which the majority of NPV losses could be attributed to a significant 

overprediction of A. The results align with those of Eid (2000) regarding the potential of 

erroneous predictions of A. On the other hand, the relationship between the magnitude of 

significant prediction errors resulted only in minor NPV reductions for Hdom compared to 

the other projects.  
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Project two comprises almost half of the dataset and aligns more closely with the overall 

observed results. However, unlike project one, the magnitude of prediction errors for A in 

project two does not correlate well with the corresponding NPV reductions. For instance, a 

prediction error of 4.3% for A in project two resulted in an average NPV reduction of 0.62%. 

In contrast, a prediction error of 16.5% for A in project one resulted in an average NPV loss 

of 0.80% (tables 6, 8 and 9). This might suggest no clear correlation between the magnitude 

of prediction errors and corresponding NPV losses between projects one and two.  

 

Project three displayed significant prediction errors for G, SI, N and A. However, despite the 

large magnitude of these errors, the total NPV reduction for this project was still significantly 

lower than what was observed for the other projects. These results are surprising but could be 

explained by a large underprediction of A, which could lead to significantly lower NPV 

losses compared to what an equivalent overprediction might impose. On the other hand, Eid 

(2000) explains that A plays an even more significant role than SI when determining the time 

of the final harvest. A large underprediction of A would extend the timespan before the final 

harvest, whereas a large overprediction of SI would shorten the timespan before the final 

harvest. Therefore, the prediction errors for SI and A are likely to counteract each other, 

resulting in lower NPV overall losses than if both variables were overestimated or 

underestimated. However, an isolated SI exhibited the most significant observed NPV 

reduction among the projects.  

 

Previous research has demonstrated the usefulness of loss analyses for evaluating the 

accuracy of forest resource maps, such as the national forest resource map (SR16) in Norway. 

Bollandsås et al. (2022) reported an average NPV loss of 2.4% utilising data from SR16. 

From a total of 48 stands, 36 stands reported a reduction in NPV. On the other hand, 

replacing SR16 predictions for A and SI with ground reference values reduced the total NPV 

loss to 0.056 % affecting just 5 out of 48 stands. Comparably, NPV losses using SR16 

predictions in the current study were overall 0.83%, whereas NPV losses were 1.28%, 0.80% 

and 0.51% for the respective projects. Bollandsås et al. (2022) attributed the large proportion 

of NPV losses from SI to the generally poor adaptability of SR16 predictions that did not 

span the width of variation seen in the ground reference values. In contrast, NPV losses 

stemming from A were resulted from systematic over-predictions of SR16 A. The site index 

of the most productive areas was generally underestimated. Although this study did not 
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perform similar scenario analyses, the findings suggest similarities with Bollandsås et al.’s 

(2022) study, indicating that the highest proportion of observed NPV losses were resulted 

from SR16 predictions for A and SI. 

 

It is essential to carefully evaluate and compare the results with the study of Bollandsås et al. 

(2022), given that the study utilised a small dataset consisting of only 48 field sample plots 

located in homogenous forest conditions with a predominance of old-growth forests in highly 

productive areas. These areas tend to have a high value of information (VOI) and may be 

more susceptible to significant NPV reductions if incorrect management decisions are made 

(figure 9). This could affect the comparability with the present study. On the other hand, the 

present study included SR16 predictions for A and SI for all field sample plots accounting for 

various forest conditions. The introduction of various forest conditions in the present study 

could provide more realistic results than Bollandsås et al.’s study (2022), as seen by lower 

overall NPV losses in the present study. Consequently, the results from the loss analysis in 

the present study could suggest that an SR16-based approach generally performs better than 

Bollandsås et al.’s (2022) results.  

 

 
Figure 9: (Eid, 2022). The value of information regarding the priority of the final harvest of forest stands, 1 = top priority, 2 = 

secondary priority, and 3 = third priority. Personal communication, Beslutning – verdien av informasjon. Ås: NMBU 

 

In light of the findings by Bollandsås et al. (2022), replacing SR16 predictions for A and SI 

with ground reference values may offer a promising approach to assess loss analyses 

accurately. This could result in considerable reductions of inventory costs by using ground 

reference values for A and SI while supplementing with SR16 predictions for other variables. 

The inventory cost per hectare for an FMI range between NOK 100 – 200/ha but depends on 

the property size. If a forest owner utilises the forest fund and other subsidies to purchase an 

FMI, regular costs for a forest property of 100 hectares would exceed NOK 30/ha 
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(Bollandsås et al., 2022). It was suggested by Bollandsås et al. (2022) that the economic loss 

of using SR16 predictions instead of a local FMI represented losses of a completely different 

magnitude, even when limitations associated with the study’s data material are accounted for. 

Although this study resulted in significantly lower NPV losses associated with using SR16 

predictions, the magnitude of these losses would still outweigh the costs of conducting an 

FMI inventory and potential NPV losses due to FMI data. Bollandsås et al. (2022) illustrated 

that replacing SR16 predictions for A and SI with ground reference values resulted in NPV 

losses of NOK 49/ha, whereas replacing A and SI for an FMI inventory with ground 

reference values resulted in a loss of NOK 64/ha.  

 

Nevertheless, it should be noted that neither the current study nor Bollandsås et al. (2022) 

included inventory costs as an additional factor in the loss analyses. Therefore, it is difficult 

to fully assess this approach’s economic viability and determine how reducing manual 

measurements could improve the utility of SR16 predictions in strategic forest planning.  

 

Noordermeer et al. (2018) presented two methods of SI determination as “the (1) direct and 

(2) indirect method”. The direct method was calculated by regressing field observations of 

age-height SI against canopy height metrics derived from ALS data from the first point in 

time and changes in ALS metrics reflecting canopy height growth during the observation 

period of 15 years. The indirect method was calculated by modelling Hdom for the two points 

in time using the ALS metrics as predictors. Then, SI was derived from the initial Hdom, the 

estimated Hdom, and the length of the observation period using empirical SI curves. The 

direct method resulted in an RMSE of 1.78 m H40 for Norway spruce and 1.08 m H40 for 

Scots pine, whereas the indirect method resulted in an RMSE of 1.82 m H40 obtained for both 

species (Noordermeer et al., 2018). Comparably, the overall obtained RMSE from this study 

was 3.5 m H40. The new and improved methods of determining SI proposed by Nordermeer 

et al. (2018) could be introduced to SR16 predictions. However, the methods require data 

from at least two ALS campaigns covering the same area of interest. Therefore, it might not 

be viable for the full SR16 coverage.  
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To the best of our knowledge, there is limited literature explicitly investigating the use of loss 

analyses for evaluating SR16 predictions. While there have been studies using similar 

methods in other contexts, there is a gap in research on this particular topic, performed on the 

scope and using the variables done in this study.  

 

At the same time, it is essential to consider the limitations of the loss approach. The economic 

implications of an error can vary depending on the context in which it occurs. For example, a 

significant prediction error for tree height may be more costly in the context of timber 

production than in the context of carbon sequestration. In other words, it is essential to 

interpret loss results cautiously and consider the specific economic implications of prediction 

errors in each case. In addition to considering the limitations of the loss approach, it is also 

important to recognise the potential consequences of using inaccurate inventory data in forest 

management scenarios. Eid (2000) investigated the use of uncertain inventory data in forestry 

scenario models and found that even minor errors in inventory data could lead to substantial 

changes in forest management decisions. This underscores the importance of accurate 

inventory data, a critical factor in developing reliable forest management models. When using 

loss analyses to evaluate the accuracy of inventory data, it is essential to consider the 

potential long-term costs of inaccurate data, as the consequences of incorrect forest 

management decisions can compound over time.  
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5. Conclusion 
The results from this study highlight the potential benefits and weaknesses of using 

predictions from the Norwegian SR16 forest resource across a large diversity of forest 

conditions. It can be seen that prediction errors varied depending on the individual projects, 

of which areas with a significant proportion of deciduous trees contributed to significant 

prediction errors. Economic losses resulting from prediction errors were mainly related to age 

and, occasionally, site index. However, the magnitude of prediction errors did not entirely 

explain the observed NPV losses.  

 

This study shows that SR16 predictions deliver accurate results for larger areas. However, the 

predictions struggle to capture the complete range of variations in local forest conditions and 

therefore are not suitable as a fully-fledged replacement for an FMI. On the other hand, as 

shown in the economic analysis, isolated G, Hdom and N did not result in significant 

economic losses and can, according to the assumptions of the loss analysis, provide 

satisfactory results if used with ground reference values for age and site index as shown by 

Bollandsås et al. (2022). Nonetheless, SR16 remains a valuable source of information which 

can be helpful in many contexts.  

 

Further research should assess the methods of determining SI presented by Noordermeer et 

al. (2018) in the context of possible integration of SI determination into SR16. In addition, 

further research could also include assessing inventory costs and economic losses of 

replacing SR16 predictions for A and SI with ground reference values across a broad range of 

forest conditions.  
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