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Abstract

In this thesis, we evaluated the performance of two generative models, Conditional Tabular Gen-
erative Adversarial Network (CTGAN) and Tabular Variational Autoencoder (TVAE), from the
open-source library Synthetic Data Vault (SDV), for generating synthetic Near Infrared (NIR)
spectral data. The aim was to assess the viability of these models in synthetic data generation
for predicting Dry Matter Content (DMC) in the field of NIR spectroscopy. The fidelity and
utility of the synthetic data were examined through a series of benchmarks, including statistical
comparisons, dimensionality reduction, and machine learning tasks.

The results showed that while both CTGAN and TVAE could generate synthetic data with
statistical properties similar to real data, TVAE outperformed CTGAN in terms of preserving
the correlation structure of the data and the relationship between the features and the target
variable, DMC. However, the synthetic data fell short in fooling machine learning classifiers,
indicating a persisting challenge in synthetic data generation.

With respect to utility, neither synthetic dataset produced by CTGAN or TVAE could serve as
a satisfactory substitute for real data in training machine learning models for predicting DMC.
Although TVAE-generated synthetic data showed some potential when used with Random For-
est (RF) and K-Nearest Neighbors (KNN) classifiers, the performance was still inadequate for
practical use.

This study offers valuable insights into the use of generative models for synthetic NIR spectral
data generation, highlighting their current limitations and potential areas for future research.
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Abbreviations
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CTGAN Conditional Tabular Generative Adversarial Network.

DMC Dry Matter Content.

DT Decision Tree.

ELBO Evidence Lower Bound.

FCNN Fully-Connected Neural Network.

GAN Generative Adversarial Network.

GMM Gaussian Mixture Model.

HMM Hidden Markov Model.

Isomap Isometric Mapping.

KNN K-Nearest Neighbors.

KS Kolmogorov-Smirnov.

ML Machine Learning.

MLP Multilayered Perceptron.

MLR Multiple Linear Regression.

MWU Mann-Whitney U.

NIR Near Infrared.

PCA Principal Component Analysis.

PLSR Partial Least Squares Regression.

RF Random Forest.

2



RNN Recurrent Neural Network.

SDV Synthetic Data Vault.

SG Savitzky-Golay.

SVM Support Vector Machine.
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Chapter 1
Introduction

Near Infrared (NIR) spectroscopy is a non-destructive technique used for the rapid analysis
of various properties of organic and inorganic materials. It measures the absorption of light
at different wavelengths and has found numerous applications in the fields of agriculture, food
science, and environmental monitoring [1]. However, the limited availability of labeled data
often impedes Machine Learning (ML) applications, such as NIR spectral data analysis [2].

To address this issue, this Master’s thesis proposes the application of the Synthetic Data Vault
(SDV) library’s tabular data generators to model NIR spectra data [3]. The SDV library in-
cludes Conditional Tabular Generative Adversarial Network (CTGAN) and Tabular Variational
Autoencoder (TVAE), both of which have shown efficacy in generating realistic synthetic tab-
ular data [4].

NIR spectroscopy data can be represented as tabular data, with each row corresponding to
a spectrum and each column representing a specific wavelength or frequency. Treating NIR
spectra as tabular data provides several benefits. Firstly, it respects the inherent structure
of the data: spectra are ordered sequences of measurements at different wavelengths, akin to
the rows and columns of a table. Secondly, the data’s tabular form ensures that features (i.e.,
wavelengths) are always in the same column, providing consistency and facilitating data in-
terpretation and analysis. Lastly, tabular data formats are compatible with a wide range of
readily available data analysis and ML tools. By treating NIR spectra as tabular data, we can
leverage these tools, such as the SDV library, to generate synthetic NIR spectra that maintain
the underlying structure, patterns, and relationships present in the real data without requiring
expert knowledge.

1.1 Motivation

The primary motivation for this research is to explore the potential of generating synthetic
NIR spectral data using the generative models provided by the SDV library, such as CTGAN
and TVAE. Previous studies have utilized generative models in spectroscopy, but often with
other techniques or highly specialized cases [5–7]. The primary objective of this thesis research is
to create NIR spectra in a broad-based manner, without confining its reach to a specific use case.

A key aspect is the generation of synthetic data with corresponding target values. This is
particularly important as obtaining reference measurements for NIR spectral data often involves
significant financial and time resources. Hence, generating synthetic data that includes target
values can provide considerable savings in time and money. Furthermore, this approach opens
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up the potential to generate data points that might be physically impossible yet lie within the
generative models’ possible output range, providing additional opportunities for diverse and
robust model training.

• Addressing Data Scarcity: Synthetic data can supplement limited real-world NIR
spectra, offering a solution particularly for specific materials or conditions where data is
scarce [8].

• Enhancing Data Diversity: Synthetic spectra can capture a wide range of conditions,
thus enhancing the robustness of ML models by providing diverse training data [9].

• Data Augmentation for Better Models: Synthetic spectra can improve ML models’
performance and help prevent overfitting by augmenting the available training data [9].

• Cost and Time Efficiency: Synthetic spectra can provide a more economical and time-
efficient alternative to the process of collecting and annotating real-world spectra [8].
This can alleviate the financial and temporal burdens associated with obtaining reference
measurements for NIR spectral data [10].

• Facilitating Algorithm Development and Evaluation: Synthetic spectra can serve
as a testing ground for developing and refining algorithms, offering a practical means to
trial and improve methodologies [8].

1.2 Dataset and Methodology

This thesis applies generative models to a mango dataset, which includes Dry Matter Content
(DMC) as a response variable [11]. While a valuable case study in itself, the primary motivation
for selecting this dataset is not its intrinsic value, but its suitability for illustrating the process
and feasibility of generating synthetic NIR spectra. This dataset allows us to demonstrate the
generation of synthetic spectra without confining ourselves to a specific scope or application.
Furthermore, it underscores the potential utility of synthetic spectra in ML tasks, such as pre-
dicting specific target variables like DMC [11].

Simultaneously, this work involves a thorough benchmarking process on the synthetic data pro-
duced. This important step provides an assessment of the synthetic data quality, offering insights
into its potential utility in tasks involving NIR spectral data. It is through this benchmarking
process that we aim to validate the synthetic data and demonstrate its potential to serve as a
viable complement, or in some cases alternative, to real-world data in NIR spectroscopy tasks.

1.3 Objectives

The key objectives of this thesis include:

• Model Evaluation: Assess the proficiency of generative ML models, particularly those
housed within the SDV library, in producing synthetic NIR spectral data.

• Synthesis of Realistic Spectra: Employ tabular generative models to generate authen-
tic and usable synthetic NIR spectral data from the mango dataset.

• Predictive Modeling from Synthetic Spectra: Generate synthetic NIR spectral data
robust enough to support the development of effective ML applications within NIR spec-
troscopy.

Page 11 of 89



• Benchmarking Synthetic Data: Undertake a comprehensive evaluation of the quality
and performance impact of synthetic NIR spectral data on ML models.

• Unearthing Limitations: Identify and articulate the constraints and limitations inher-
ent in the chosen approach for synthetic data generation.

• Future Research Directions: Highlight potential avenues for future investigations
aimed at enhancing the generative modeling of NIR spectra.
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Chapter 2
Theory

2.1 Near infrared spectroscopy

Spectroscopy is a branch of science that deals with the study of interaction between electromag-
netic radiation and matter. It involves using electromagnetic radiation to probe the properties
of a material, and the information obtained can be used to identify and quantify the chemical
composition of a sample. This is done by thoroughly and carefully examining the absorption,
scattering and emission of electromagnetic radiation from the inspected compounds [12]. Figure
2.1 illustrates the spectroscopy process.

Figure 2.1: Process behing spectroscopy [13]. The process involves interaction between light
and matter, where the absorption, emission, or scattering of electromagnetic radiation by the
material provides valuable information about its structure or properties. Figure by Wilsonee,
distributed under CC-BY-SA-4.0

NIR spectroscopy is a type of spectroscopy that operates in the range of wavelengths between
700 and 2500 nanometers [14]. This range of wavelengths corresponds to the region of the
electromagnetic spectrum just beyond the visible range of light. NIR spectroscopy is a non-
destructive and non-invasive technique that can be used to analyze a wide range of materials,
including solids, liquids, and gases.

The basic principle of NIR spectroscopy is that different chemical bonds absorb light at different
wavelengths, specifically through overtones and combinations of the fundamental vibrations
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from the mid-infrared range. By measuring the amount of light absorbed at various wavelengths,
it is possible to identify the presence and quantity of various chemical functional groups in a
sample. This information can be used to quantify the composition of a sample, such as the
amount of protein, fat, or carbohydrate in a food sample.
NIR spectroscopy is widely used in a variety of industries, including food and agriculture, phar-
maceuticals, and materials science. It is particularly useful for rapid, non-destructive analysis of
large numbers of samples. For example, in the food industry, NIR spectroscopy can be used to
measure the quality and nutritional content of grains, fruits, and vegetables, without destroying
the sample.

In order to perform NIR spectroscopy, a sample is illuminated with a beam of light, and the
amount of light absorbed by the sample at different wavelengths is measured using a spectrom-
eter. The resulting spectrum is then analyzed using chemometric techniques, such as Principal
Component Analysis (PCA) or Partial Least Squares Regression (PLSR), to extract informa-
tion about the sample.

Although conventional chemometric methods like Principal Component Analysis and PLSR
have demonstrated effectiveness in analyzing NIR spectral data, they have some limitations.
Beer-Lambert’s law [15] states that the concentration of substances analyzed with NIR should
result in a spectrum that is an additive mix of the real spectra of the substances, given proper
preprocessing. While this implies a linear relationship, there are cases where complex rela-
tionships between spectral features and target variables arise, making non-linear methods more
suitable for obtaining better predictions [16]. Additionally, conventional chemometric tech-
niques require the selection of an appropriate number of components, which can be challenging
and may affect model performance [17].

2.1.1 Chemometric Techniques for NIR Spectroscopy

Traditional approaches for the analysis of NIR spectra involve chemometric techniques that
are widely used to extract meaningful information from complex and high-dimensional spectral
data. Some of the most common chemometric techniques for NIR spectroscopy include:

• PCA: PCA is an unsupervised technique used for reducing the dimensionality of spec-
tral data and identifying the underlying structure or patterns in the data. It achieves
this by transforming the real variables into a new set of orthogonal variables (principal
components) that capture the maximum variance in the data [18].

• PLSR: PLSR is a popular supervised technique in NIR spectroscopy for building quanti-
tative models relating spectral data (predictors) to the properties of interest (responses).
Unlike traditional multiple linear regression, which may suffer from multicollinearity issues
when the predictors are highly correlated, PLSR is specifically designed to handle collinear
and noisy data. It achieves this by constructing a set of orthogonal latent variables, called
PLS components, that capture the maximum covariance between the predictors and re-
sponses. In addition to handling multicollinearity, PLSR, like PCA, is effective at filtering
out random noise in the data, which further contributes to its robustness when dealing
with noisy spectral data. These PLS components are then used to build a linear regres-
sion model, which can be employed for predicting the properties of interest based on the
spectral data [19].

• Multiple Linear Regression (MLR): MLR is a widely used statistical technique that
models the relationship between a continuous response variable and multiple predictor
variables. In NIR spectroscopy, the response variable represents a property of interest
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(e.g., protein content, moisture), while the predictor variables correspond to absorbance
values at various wavelengths [20]. MLR aims to establish the best-fitting linear equation
relating the predictors to the response variable by minimizing the residual sum of squares,
which represents the sum of squared differences between the actual and predicted response
values. Although MLR is commonly employed in chemometrics, it may encounter issues
like multicollinearity when predictor variables exhibit high correlation [21].

These techniques have been instrumental in the analysis of NIR spectra, but they often rely on
linear assumptions and may struggle to capture complex non-linear relationships in the data
[22]. ML methods, particularly deep learning techniques, have the potential to overcome these
limitations by automatically learning hierarchical representations of the data and capturing
non-linear relationships between variables [16, 23].

2.2 Machine Learning

ML, a subfield of artificial intelligence, focuses on developing algorithms and models capable of
learning patterns from data and making predictions or decisions based on these learned patterns
[24, par. 4.4-4.5]. It has significantly impacted various domains, such as healthcare, finance,
marketing, and natural sciences, enabling data-driven decision-making and automating complex
tasks [25, 26]. The core aim of ML is to build models that can generalize and adapt to new,
unseen data by extracting and representing the underlying structure in the available data. This
process typically involves selecting an appropriate model architecture, determining the optimal
model parameters through training, and validating the model’s performance on a separate set
of data. ML models can be broadly categorized into three main types: supervised learning,
unsupervised learning, and reinforcement learning [24, par. 4.7].

Supervised learning involves learning a mapping from input data to output labels using a la-
beled dataset, and it is commonly used for classification and regression tasks. In classification,
the goal is to assign discrete labels or categories to input data points based on their features.
With regression the objective is to predict a continuous numerical value based on input features.
Unsupervised learning, on the other hand, does not rely on labeled data and instead aims to
discover hidden patterns or structures within the input data, making it suitable for tasks such
as clustering, dimensionality reduction, and data synthesis. Reinforcement learning focuses on
training agents to make decisions based on interactions with their environment, learning to
maximize a reward signal over time. This type of learning is particularly well-suited for control
and optimization problems, where the goal is to learn an optimal policy for decision-making in
dynamic environments [24, par. 4.21-4.24].

In addition to the aforementioned ML categories, two major subcategories in ML are deep learn-
ing and shallow learning, differentiated primarily by the complexity and depth of their model
architectures [27, pg. 8].

Artificial Neural Network (ANN) provide the foundational framework for deep learning mod-
els. ANNs are computational models inspired by biological neural networks, consisting of a
series of interconnected nodes or neurons organized in layers. Each neuron processes inputs
from the previous layer, applies a weighted sum to these inputs, and then applies an activation
function to produce an output that is passed to the next layer. The learning process in ANNs,
known as backpropagation, adjusts the weights of the connections to minimize the error between
the network’s predictions and the ground truth by propagating the error gradients backward
through the network layers [28, 29]. The invention of backpropagation marked a significant
milestone in neural network training, as it facilitated efficient training of multi-layered large
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networks [27][par. 1.2.2]. In other words, this innovation made the concept of deep learning
feasible. This increased depth allows them to automatically learn hierarchical representations
of the data and capture complex, non-linear relationships between variables [30, 31].

Specific types of ANN are Fully-Connected Neural Network (FCNN), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN). FCNNs, also known as Multilayered
Perceptron (MLP), contain multiple layers where each neuron in a layer is connected to all
neurons in the previous layer. These types of networks are widely used due to their simplicity
and general capability. An example of a FCNN can be seen in Figure 2.2

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.2: Illustration of Fully-Connected Neural Network, with two hidden layers

Deep learning models like CNNs and RNNs extend the foundational structure of FCNNs. CNNs,
drawing inspiration from the animal visual cortex, employ filters to systematically capture lo-
cal patterns, making them particularly adept at processing high-dimensional and unstructured
data, such as images. RNNs, conversely, are designed to handle sequential data, utilizing loops
within the network to maintain information across the sequence, which proves useful for tasks
involving time-series data or text.

However, these deep learning models, including FCNNs, usually require extensive data and
computational resources for effective training [32]. Additionally, their interpretability can be
challenging due to the complexity of the learned representations, making it difficult to under-
stand how they make their predictions [33].

Shallow learning techniques, on the other hand, involve models with a limited number of layers
or computational steps, such as Support Vector Machines, Random Forests, and k-Nearest
Neighbors. These models can also capture non-linear relationships in the data but do not
automatically learn hierarchical representations the way deep learning models do, which stack
multiple layers to extract increasingly complex features from the input data [27, pg. 18]. While
they may require more feature engineering compared to deep learning techniques [27, pg. 18],
shallow learning methods have proven effective for various tasks and usually offer simpler and
more interpretable models [34], depending on the specific problem and dataset. These models
are generally more computationally efficient and require less data for training compared to
their deep learning counterparts, making them suitable for applications with limited resources
or smaller datasets [35].
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2.2.1 Machine Learning in NIR Spectroscopy

ML methods, especially deep learning techniques, can address the limitations of traditional
chemometric approaches by automatically learning hierarchical representations and capturing
non-linear relationships between variables [16, 23]. These techniques, which encompass super-
vised and unsupervised learning methods, offer the potential to improve chemometric capabil-
ities by providing more accurate and robust predictions through the recognition of complex
patterns in the data.

In the context of NIR spectroscopy, supervised learning techniques, such as Support Vector
Machines and Random Forests, have been employed for building predictive models that relate
spectral data to properties of interest, such as chemical composition or physical attributes [36,
37]. Meanwhile, unsupervised learning techniques, including clustering algorithms like K-Means,
have proven valuable for data exploration, dimensionality reduction, and grouping similar sam-
ples, which can reveal the underlying structure in the data and facilitate further analysis [38].

When applying ML to NIR spectroscopy, it is essential to consider the importance of data pre-
processing. Techniques such as normalization, scaling, baseline correction, and smoothing can
help mitigate the effects of noise, varying instrument conditions, and other sources of variability
in the spectral data [39]. In NIR spectroscopy, normalization is the process of adjusting the
intensity of the spectra so that they all share a common scale, while smoothing is the technique
of reducing noise or fluctuations in the spectral data to reveal underlying trends or features more
clearly. Both techniques are important for mitigating the effects of noise, varying instrument
conditions, and other sources of variability in spectral data.

One popular smoothing technique is the Savitzky-Golay (SG) method, which employs a mov-
ing polynomial fit to reduce high-frequency noise while preserving important features in the
data, such as peaks and valleys. By enhancing the signal-to-noise ratio using the SG smoothing
technique, the performance and interpretability of the ML models being applied to NIR spec-
troscopic data can be improved [40]. Figure 2.3 shows how effective SG is at estimating the
trend in noisy data.

Figure 2.3: Illustration of SG filter applied to a sine curve with added noise. It demonstrates
how efficient it is at estimating the trend, the estimated curve strongly overlapping with the
original sine curve
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Building on the advances in ML and computational capabilities, more complex models and
algorithms have been explored for NIR spectroscopy, such as the aforementioned deep learning
techniques CNNs and RNNs. These advanced techniques have demonstrated significant poten-
tial in enhancing the analysis and interpretation of NIR data, leading to more accurate, efficient,
and reliable applications across diverse industries [23]. However, it is important to note that the
interpretation of the underlying relationships in the data can be more challenging with these
deep learning techniques compared to traditional shallow ML methods and PCA/PLSR.

2.2.2 Shallow Machine Learning Techniques for NIR Spectroscopy

Shallow ML techniques have gained popularity in the field of NIR spectroscopy due to their
effectiveness in processing high-dimensional spectral data and adaptability for diverse applica-
tions. These methods, including Random Forest (RF), Support Vector Machine (SVM), and
K-Nearest Neighbors (KNN), require less computational resources than deep learning models,
making them practical for modeling data structure. They have proven effective in capturing non-
linear relationships between variables, yielding accurate predictions in numerous spectroscopy
tasks [41–43].

• RF: An ensemble learning method, RF constructs multiple decision trees during train-
ing and combines their outputs for improved prediction accuracy and overfitting control.
Effective in handling high-dimensional data, it naturally models non-linear relationships
between variables [24, par. 6.182-6.193]. Applied to classification and regression tasks
within this field, it has outperformed traditional chemometric methods in several studies
[37, 41, 44].

• SVM: SVMs are ML models capable of linear or non-linear classification and regression
tasks by identifying the optimal hyperplane or decision boundary separating the data.
Effective with high-dimensional data, they have robust generalization capabilities [24,
par. 6.112-6.153]. In the realm of NIR spectroscopy, SVMs have been utilized for various
applications, achieving impressive results and surpassing traditional chemometric methods
in multiple studies [16, 36, 45–48].

• KNN: KNN, a non-parametric and instance-based learning algorithm, is used for classifi-
cation and regression tasks. It predicts outputs by finding the K training samples closest
to a new input and considering the majority vote or average value of these neighbors [24,
par. 6.194-6.208]. Within the NIR spectroscopy domain, KNN has been employed for var-
ious applications, demonstrating promising results compared to traditional chemometric
methods in some studies [47–50].

2.2.3 Deep Machine Learning Techniques for NIR Spectroscopy

Deep learning techniques have emerged as a natural progression of ML advancements, offer-
ing powerful alternatives to traditional chemometric methods for analyzing complex and high-
dimensional NIR spectral data. These models are particularly adept at automatically learning
hierarchical representations of the data and capturing non-linear relationships between vari-
ables, making them highly suitable for various NIR spectroscopy applications. Furthermore,
deep learning models can extract patterns from raw spectra with minimal feature engineering,
streamlining the analysis process [23].

• CNN: CNNs are a class of deep learning models specifically designed for handling grid-like
data, such as images or time-series data. They consist of multiple layers of convolutional
filters followed by pooling layers, which enable the model to learn local features and spatial
hierarchies in the data [25]. Figure 2.4 shows the process flow for a typical CNN. In the
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context of NIR spectroscopy, CNNs can be employed to learn local patterns in the spec-
tral data, which can then be used for tasks such as classification, regression, or anomaly
detection. Several studies have demonstrated the effectiveness of CNNs for analyzing NIR
spectra, achieving improved performance compared to traditional chemometric methods
[5, 6].

Figure 2.4: Depiction a generic CNN, showing an input image passing through multiple con-
volutional and pooling layers, which extract hierarchical features, followed by fully connected
layers that output the final classification or prediction [51]. Figure by Aphex34, distributed
under CC-BY-SA-4.0

• RNN: RNNs are a class of deep learning models designed to handle sequential data, mak-
ing them particularly suitable for time-series analysis or data with temporal dependencies.
RNNs consist of recurrent layers that maintain a hidden state, allowing the model to cap-
ture long-range dependencies and learn patterns across time [52]. For NIR spectroscopy,
RNNs can be used to model the sequential nature of spectral data, capturing dependencies
between neighboring wavelengths, and improving the accuracy of predictions [53]. Several
studies have explored the use of RNNs and their variants, such as Long Short-Term Mem-
ory (LSTM) networks, for NIR spectroscopy applications, demonstrating their potential
for various tasks [53, 54]. Figure 2.5 illustrates the fundamental principle underpinning
RNNs.

Figure 2.5: Portrayal of a generic RNN, where sequential data is processed through intercon-
nected layers that loop back on themselves, enabling the network to retain information from
previous inputs as it makes predictions for the current step in the sequence. [55]. Figure by
MingxianLin, distributed under CC-BY-SA-4.0

Deep learning techniques like CNNs and RNNs have shown great promise in the analysis of NIR
spectral data, offering improved performance over traditional chemometric methods.
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2.3 Generative modeling

In recent years, various ML techniques have been employed to generate synthetic data, which
can be particularly valuable in addressing data scarcity and improving model performance across
a range of applications [9]. By harnessing the power of ML, it is possible to create realistic and
diverse artificial datasets that can augment existing data and facilitate the development of more
robust algorithms tailored for specific domains, such as NIR spectral data analysis.

Generative ML models are a class of techniques that focus on learning the underlying probability
distribution of the data, aiming to produce new instances that closely mirror the real data [56,
pg.27-29]. These models have garnered significant interest lately for their capacity to generate
authentic-seeming data. This synthetic data can be utilized to mitigate issues of data scarcity,
enrich data variety, and bolster the efficacy of ML methods across a range of applications. [9].

In contrast to discriminative models, which aim to model the conditional probability of the
target outputs given the input data, generative models attempt to capture the joint probability
distribution of both the inputs and outputs [57, preface]. By learning this joint distribution,
generative models are able to produce new data points by sampling from the estimated dis-
tribution. This ability to generate new data points has made generative models particularly
valuable for tasks such as data augmentation [9], unsupervised learning [58], and representa-
tion learning [56, pg. 72-79]. Figure 2.6 illustrates the difference between discriminative and
generative modeling

Figure 2.6: Illustration of the main difference between discriminative and generative modeling:
Discriminative modeling focuses on the boundary between classes, while generative modeling
learns the distribution of individual classes [59]. Figure by Jordi Esteve Sorribas, distributed
under CC-BY-SA-4.0

Generative models are particularly proficient in comprehending and replicating the patterns
present in their training data. This unique characteristic enables them to synthesize novel data
that maintains significant resemblance to the original, while incorporating distinctive elements.
Moreover, generative models have the distinct capacity to investigate what is referred to as
the ’latent space’ of the data. The concept of latent space can be analogized to a simplified
or abstracted representation of the data in a lower-dimensional space, retaining only the most
important characteristics. This condensed representation can expose concealed patterns and
relationships within the data, thereby enhancing our comprehension of the data and aiding in
the identification of salient features for subsequent analytical tasks [60].

Various types of generative models exist, each with unique advantages and drawbacks, making
the choice of model dependent on the specific problem and data at hand. Popular generative
models include Bayesian models, such as Gaussian Mixture Model (GMM) and Hidden Markov
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Model (HMM) [61], as well as deep learning-based models like VAEs and GAN [62, 63], which
have achieved high levels of performance.

Bayesian models, a class of generative models based on the principles of Bayesian statistics,
involve estimating probability distributions using prior knowledge and observed data. Their
objective is to learn the probability distribution of the real data, allowing them to produce new
samples that closely align with the real data. These models offer high interpretability and flex-
ibility, but their performance can be constrained by the choice of priors and the computational
complexity of the inference process. Alongside deep learning-based models, Bayesian generative
models such as GMMs and HMMs have been widely used across various applications [64].

Deep learning-based generative models, on the other hand, leverage the power of neural networks
to learn complex, non-linear representations of the data. These models can capture high-
dimensional and intricate structures in the data, but their training can be challenging due to
the optimization of deep architectures and the need for large amounts of training data [65, 66].

2.3.1 Generative Adversarial Networks

GAN, an intriguing class of generative models, was first introduced by Ian Goodfellow and
his colleagues in 2014, captivating the research community with their ability to generate high-
quality synthetic data [62]. Structurally, a GAN consists of two concurrent neural networks —
the generator and the discriminator — that engage in a game-like adversarial training process.

The generator network, denoted as G, begins its operation by receiving a random noise vector,
z, as input. Its mission is to transform this noise into a synthetic data sample, G(z), that mimics
real data so closely that it becomes indistinguishable.

On the other hand, the discriminator network, D, is tasked with the job of a vigilant gatekeeper.
It receives both real data samples, x, and the synthetic samples, G(z), generated by its adver-
sary. For each input, the discriminator must decide whether it’s real or artificially produced
by the generator, expressing its verdict as a probability value. Thus, while the generator con-
stantly endeavors to create convincing fakes, the discriminator hones its ability to discern real
from synthetic.

The training process of GANs can therefore be characterized as a minimax game, where the
generator and discriminator networks are optimized using the following objective function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

Here, pdata(x) denotes the real data distribution, and pz(z) represents the noise distribution.
The generator aims to minimize the objective function, while the discriminator tries to maxi-
mize it.

During the training process, the generator and discriminator networks are updated using back-
propagation and gradient descent. The discriminator is trained to improve its ability to dif-
ferentiate between real and generated samples, and the generator is trained to produce more
realistic samples that can deceive the discriminator. The training continues until an equilibrium
is reached, where the generator produces samples that the discriminator cannot distinguish from
the real data [62].
As Refer to Figure 2.7 for an illustration of the process.
which are trained concurrently within a competitive setting akin to a zero-sum game.
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The generator is responsible for fabricating synthetic data instances, whereas the discrimina-
tor’s role is to distinguish between real and synthetic samples.

””” The generator network, G, takes a random noise vector, z, as input and generates a synthetic
data sample, G(z). The goal of the generator is to produce samples that are indistinguishable
from the real data. The discriminator network, D, takes both real data samples, x, and generated
samples, G(z), as input and outputs a probability value representing its confidence in whether
the input sample is real or generated. The goal of the discriminator is to correctly identify
real data samples and distinguish them from the generated samples. The process is showed in
Figure 2.7 ”””

Figure 2.7: Training process of vanilla GAN. The generator is fed a random noise vector, which
makes the GAN generate a sample. The discriminator is fed both generated and real samples,
and then tries to guess if a sample is real or synthetic.

The training process of GANs is based on a minimax game, where the generator and discrimi-
nator networks are optimized using the following objective function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

Here, pdata(x) denotes the real data distribution, and pz(z) represents the noise distribution.
The generator aims to minimize the objective function, while the discriminator tries to maxi-
mize it.

During the training process, the generator and discriminator networks are updated using back-
propagation and gradient descent. The discriminator is trained to improve its ability to dif-
ferentiate between real and generated samples, and the generator is trained to produce more
realistic samples that can deceive the discriminator. The training continues until an equilibrium
is reached, where the generator produces samples that the discriminator cannot distinguish from
the real data [62].

GANs have demonstrated impressive results in various applications, such as image synthesis,
style transfer, and data augmentation [67]. However, they also face some known challenges. One
such challenge is mode collapse, where the generator produces only a limited variety of samples,
focusing on a few modes of the data distribution rather than capturing the full diversity of the
real data [68].

Another challenge is training instability, which can cause oscillations and divergence in the
learning process [69]. This can occur due to factors such as vanishing gradients, when the dis-
criminator becomes too strong and can easily distinguish between real and generated samples,
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making it difficult for the generator to improve, and non-convergence, where the training pro-
cess may not converge to an equilibrium if the learning rates, model architectures, or training
procedures are not properly balanced [69, 70].

2.3.2 Variational Autoencoders

VAEs are a powerful class of generative models that combine deep learning with Bayesian infer-
ence to learn the underlying probability distribution of the data and generate new samples that
closely resemble the real data. VAEs were introduced by Kingma and Welling in their seminal
paper ”Auto-Encoding Variational Bayes” [63]. Before diving into the specifics of VAEs, it is
essential to understand the foundations of autoencoders, which form the basis for the encoder-
decoder principle and data reconstruction.

Autoencoders are a type of unsupervised learning model that aim to learn a compact and effi-
cient representation of input data by encoding it into a lower-dimensional latent space and then
reconstructing the real data from this latent representation. This process involves two main
components: an encoder network that maps the input data to the latent space, and a decoder
network that reconstructs the real data from the latent representation [71].

Building upon the basic concept of autoencoders, VAEs consist of two main components: an
encoder network and a decoder network, which can be seen in the. The basic architecture can
be seen in Figure 2.8. The encoder network takes input data and maps it to a latent space rep-
resentation, which is a lower-dimensional continuous space that captures the essential features
of the data. The encoder network models the approximate posterior distribution over the latent
variables given the input data, denoted as qϕ(z|x), where z represents the latent variables, x
represents the input data, and ϕ are the parameters of the encoder network.

Figure 2.8: Architecture of VAE [72]; An encoder receives a random noise vector as input,
and compresses it to the latent space with the constraint that it is normally distributed. The
decoder then decodes the vector to a sample that resembles real data. Figure by EugenioTL,
distributed under CC-BY-SA-4.0

The decoder network, on the other hand, takes a sample from the latent space and reconstructs
the real data. The decoder models the likelihood of the data given the latent variables, denoted
as pθ(x|z), where θ are the parameters of the decoder network.

VAEs are trained by maximizing the Evidence Lower Bound (ELBO) on the marginal likelihood
of the data. The ELBO is given by:

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z))
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whereDKL represents the Kullback-Leibler divergence between the approximate posterior qϕ(z|x)
and the prior distribution p(z) on the latent variables. The first term in the ELBO measures
the reconstruction error, while the second term acts as a regularization term that encourages
the approximate posterior to be close to the prior distribution.

By optimizing the ELBO, VAEs learn to generate new samples that are similar to the real data
while ensuring that the learned latent space is smooth and well-structured. This allows VAEs to
generate diverse and realistic synthetic data, which can be employed to ameliorate lack of data,
enhance data diversity, and improve the performance of ML algorithms in various applications
[73].

2.3.3 CTGAN and TVAE

CTGAN and TVAE are two deep learning models designed for generating synthetic tabular
data [4]. They are both capable of modeling complex relationships and distributions of columns
in tabular data and have been shown to outperform other models on real datasets in various
benchmark tests.

CTGAN, is a model that incorporates the benefits of GANs and conditional generation to
effectively synthesize tabular data. In the realm of generative models, conditional generation
pertains to the generation of data samples that adhere to specific input conditions or constraints,
providing more targeted and controlled data synthesis [74].

CTGAN treats continuous and categorical features differently, employing a specific encoding
procedure for each. For continuous variables, CTGAN uses mode-specific normalization. Mode-
specific normalization plays an important role in accurately representing continuous values with
intricate distributions. This approach tackles each continuous column independently, employing
a Variational Gaussian Mixtures (VGM) to estimate the number of modes and fit a Gaussian
mixture. The probabilities of values belonging to each mode are calculated based on the Gaus-
sian mixture, and a mode is sampled accordingly. This sampled mode is then used to normalize
the value by representing it as a one-hot vector indicating the chosen mode and a scalar denot-
ing the value within that mode. The resulting row representation is formed by concatenating
the normalized continuous and discrete columns. By following this process, the mode-specific
normalization in CTGAN ensures that complex distributions of continuous values are appro-
priately handled, thereby enhancing the accuracy of generated synthetic tabular data [4].

For categorical variables, CTGAN adds a conditional vector, fostering a method of condition-
ality that enhances its ability to handle discrete columns and deal with data imbalance. This
ability to handle varying data types makes CTGAN an effective model for synthesizing tabular
data.

Both the generator and the discriminator in CTGAN is composed of a FCNN. They are trained
using a wasserstein loss with gradient penalty. This configuration allows for robust and efficient
training of the model, further improving its ability to generate high-quality synthetic data [75].

Additionally, CTGAN features a conditional generator and training-by-sampling components,
which are specifically designed to tackle issues related to imbalanced training data. These
components enable the generation of data with specific discrete values and allow for targeted
augmentation of underrepresented categories or classes in the data. By addressing data imbal-
ance and enabling controlled generation of tabular data samples, CTGAN proves to be a useful
tool for data augmentation tasks, particularly when working with datasets that have limited
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samples or display significant class imbalance.

Shaped by the core strengths of VAE, TVAE has been tailored to effectively model tabular data.
It parallels CTGAN in its ability to handle intricate relationships in such data, demonstrating
solid performance across diverse benchmark tests. While CTGAN can occasionally outstrip
TVAE, each brings its unique advantages to the table, and the selection largely hinges on the
distinct requirements of the task or application at hand. For instance, differential privacy, a de-
sirable trait in many applications, may be more readily achieved with CTGAN as its generator
is not privy to real data during the training phase [75].

TVAE, an adaptation of the conventional VAE, is fine-tuned to handle tabular data. Like its
CTGAN counterpart, it differentiates between categorical and continuous variables, employing
an encoding process similar to that utilized by CTGAN. In the case of continuous variables, it
adopts a VGM model to transform values with arbitrary distributions into a bounded vector
representation, thus aligning well with the structure of the neural network and enabling the
accurate capture of inherent patterns in the data.

In TVAE, the encoder is slightly modified compared to traditional VAEs, while the decoder
retains a standard structure. The loss function also adopts a nuanced approach, incorporating
the ELBO loss, a fundamental component of VAEs that strikes a balance between data recon-
struction and latent variable regularization.

When juxtaposed with other tabular data synthesis methods such as tableGAN, both TVAE
and CTGAN have demonstrated superior performance, with TVAE excelling in several metrics.
However, it’s crucial to note that CTGAN may hold an upper hand when it comes to ensuring
differential privacy, given that its generator does not interact with real data during the training
process. Thus, the choice between TVAE and CTGAN is largely influenced by the specific needs
of a task or application, with each model offering distinct benefits.

Considering application in NIR spectroscopy, both CTGAN and TVAE could potentially be
applied to generate synthetic spectral data. By modeling the complex relationships between
spectral features and sample properties, these deep learning models can generate realistic and
diverse synthetic NIR spectra that closely resemble real-world data. This augmentation of ex-
isting data can lead to improved model performance and facilitate the development of more
robust algorithms tailored for specific applications in NIR spectral data analysis.

NIR spectra often exhibit strong collinearity among variables because of very high intercor-
relation between absorbances [76]. In addition, NIR spectra data do not involve sensitive or
private information, eliminating privacy concerns that might be relevant in other applications
of synthetic data generation.

Given these unique properties of NIR spectra, some aspects of CTGAN and TVAE might be
less relevant or applicable. For instance, CTGAN’s ability to handle discrete columns and its
potential for differential privacy may not be particularly important when working with contin-
uous NIR spectra data without privacy constraints.

However, CTGAN and TVAE have the potential to work well with NIR spectroscopy data due
to their ability to model complex, high-dimensional continuous data. In particular, these deep
learning models excel at capturing intricate relationships and dependencies between variables,
which can be advantageous when dealing with the strong collinearity often found in NIR spec-
tra. Furthermore, CTGAN’s mode-specific normalization and TVAE’s powerful latent variable
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modeling can effectively handle continuous data with varying ranges and distributions, such as
those found in NIR spectra. Hence, despite initial concerns regarding the relevance or appli-
cability of CTGAN and TVAE when it comes to NIR spectra, these models may possess the
potential to generate high-quality synthetic data that replicates the essential properties of the
real NIR spectra.

2.3.4 Applications of Generative Models in NIR Spectroscopy

Generative modeling has emerged as a promising approach for data augmentation in NIR spec-
troscopy. Researchers have applied this technique to improve the quality and quantity of avail-
able data, leading to better performance in various applications.

Nagasawa et al. focused on enhancing fNIRS-BCI accuracy using a data augmentation method
based on Wasserstein GAN (WGAN) [77]. In their study, they evaluated the effectiveness of the
generated artificial fNIRS data in improving the classification performance of support vector
machines and simple neural networks. The results indicated that the generated data, when
combined with the real training data, led to improved classification accuracy across different
task types.

Dehua Zhu et al. explored the use of boundary equilibrium GAN (BEGAN) to generate synthetic
spectra, particularly for applications with limited calibration samples [78]. They demonstrated
that the synthetic spectra produced by BEGAN maintained high quality and improved the
predictive performance of a consensus algorithm called creating diversity partial least squares
(CDPLS). The study also found a negative correlation between the quality and diversity of the
generated spectra, indicating that adjusting the diversity ratio can help control these factors
according to the specific needs of an application. The success of BEGAN in generating high-
quality synthetic spectra for small sample sets highlights its potential for expanding the number
of spectra and enhancing the performance of spectral analysis models.

Kaixun He et al. proposed a new modeling method based on WGANs to overcome the chal-
lenges of acquiring a sufficient number of labeled samples for NIR spectroscopy, particularly for
predicting octane numbers in gasoline blending [79]. They demonstrated that WGAN, com-
bined with a sample selection method, could generate artificial labeled samples that, when used
alongside real samples, improved the performance of NIR models in predicting octane numbers.

Considering the success of generative models in NIR spectroscopy, it is worth exploring the use
of tabular data generation tools like CTGAN and TVAE. These methods have been successful in
generating synthetic data for various applications, and their ability to capture complex data dis-
tributions makes them suitable for NIR spectroscopy as well. By utilizing these tools, researchers
can potentially generate high-quality synthetic data, which can then be used to improve the
performance of various NIR spectroscopy applications. In conclusion, the advancements in
generative modeling, combined with the adaptability of tabular data generation tools like CT-
GAN and TVAE, present promising opportunities for further improving NIR spectroscopy data
augmentation and performance.

2.4 Evaluation of Synthetic Data

Synthetic data is data that has been generated by a computer. While the concept does not have
formal or universal definition, James Jordon et al. offers the following definiton: ”Synthetic data
is data that has been generated using a purpose- built mathematical model or algorithm, with
the aim of solving a (set of) data science task(s)” [80]. The goal with synthetic data is often
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to approximate real-world data in terms of its underlying structure, statistical properties, and
relationships among variables. It has gained significant attention in recent years due to its
potential applications in a wide range of areas, including data augmentation, addressing data
scarcity challenges, improving model performance, and, in some cases, privacy preservation.
The generation of synthetic data often involves employing advanced algorithms and techniques
that are capable of learning the patterns and dependencies present in the real data to produce
realistic and diverse synthetic samples.

Evaluating synthetic data typically involves assessing its fidelity and utility [81]. Fidelity is
a measure of how closely the synthetic data matches the real data, reflecting the extent to
which the produced data maintains the fundamental characteristics and structure of the real
data. On the contrary, utility signifies the practical value of the synthetic data, for instance,
its application in training ML algorithms and enhancing their efficiency in real-world operations.

It is worth noting that while privacy preservation is a key aspect of synthetic data generation in
certain contexts, particularly when dealing with sensitive or personally identifiable information,
in the case of NIR spectroscopy, privacy concerns are generally less relevant as the data often
does not involve sensitive or private information. This happens to be the case for our data too.
As such, the main focus when evaluating synthetic NIR spectroscopy data is to ensure that it
maintains the critical properties of the real data and proves useful in practical applications.

2.4.1 Fidelity

In terms of synthetic data, fidelity denotes the extent of similarity between the real data and
the data that has been synthesized [80, 81]. This concept assesses how accurately the artifi-
cially generated data mimics the fundamental structure, relationships, and traits of the original
dataset. A substantial degree of fidelity suggests that the generative model has effectively gen-
erated synthetic data that retains the attributes and trends of the real data, thereby making
the synthetic data a dependable alternative for a range of analyses and uses.

Assessing fidelity is an important aspect when evaluating synthetic data, as it helps determine
the quality and usefulness of the generated data in replicating or augmenting the real dataset.
By evaluating fidelity, researchers can establish the effectiveness of the generative model in
producing realistic and high-quality synthetic data, which is critical for maintaining the validity
and usefulness of the synthetic data in various applications. This assessment ultimately leads
to more robust algorithms and improved performance in data-driven applications.

Cosine Similarity and Pearson Correlation: Key Metrics for Assessing Fidelity

When evaluating the fidelity of synthetic data, it is essential to compare the linear relationships
among the features and between the target and features in both the real and synthetic datasets.
Two key metrics used for this purpose are cosine similarity and Pearson correlation.

Cosine similarity is a metric that measures the cosine of the angle between two non-zero vectors
in a multi-dimensional space. This results in a value ranging from -1 to 1. A cosine similarity
closer to 1 signifies that the directions of the two vectors are more aligned, suggesting a high
degree of similarity. Conversely, a value closer to -1 indicates that the vectors are in opposite
directions, implying dissimilarity, while a value near 0 means the vectors are orthogonal or
dissimilar. The cosine similarity is calculated as follows:
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cosine similarity =
A ·B
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(2.1)

In the formula, A and B are the two vectors being compared, n is the dimension of the vectors,
and Ai and Bi are the components of the vectors A and B, respectively.

Pearson correlation is a measure of the linear relationship between two continuous variables
[82]. It ranges from -1 to 1, with a value of 1 indicating a perfect positive linear relationship,
-1 indicating a perfect negative linear relationship, and 0 suggesting no linear relationship.
The Pearson correlation coefficient between two variables X and Y can be calculated using
the following formula: Pearson(X,Y ) = Cov(X,Y )

σX×σY
, where Cov(X,Y ) represents the covariance

between the variables, and σX and σY denote the standard deviations of the respective variables.

By computing the Pearson correlation coefficients for the feature-feature and target-feature pairs
in both the real and synthetic datasets and comparing these coefficients using cosine similarity,
researchers can assess the fidelity of the generated data. High cosine similarity values indicate
that the synthetic data effectively captures the underlying structure and relationships present
in the real data, signifying the generative model’s success in producing realistic and high-quality
synthetic data.

Univariate Resemblance

Univariate resemblance refers to the similarity between the real and synthetic data in terms of
their individual features [81]. Evaluating univariate resemblance is an essential step in assessing
the fidelity of synthetic data, as it ensures that each feature in the generated data maintains the
same distribution and statistical properties as its counterpart in the real dataset. By comparing
summary statistics, such as mean, median, standard deviation, and other measures of central
tendency and dispersion, researchers can determine whether the synthetic data adequately cap-
tures the properties of the real data for each feature. Additionally, univariate resemblance can
be assessed using statistical tests such as the Kolmogorov-Smirnov (KS) test, Student’s t-test,
and Mann-Whitney U (MWU) test, which help in comparing the distributions of the real and
synthetic data. High univariate resemblance indicates that the generative model has success-
fully learned the individual characteristics of each feature, which is critical for maintaining the
overall quality and usefulness of the synthetic data in various applications.

Aggregate Statistics Aggregate statistics are summary measures that describe the central
tendencies, dispersion, and shape of a dataset’s distribution. These statistics can provide valu-
able insights into the univariate resemblance between the real and synthetic datasets by offering
a straightforward comparison of their individual features.

• Mean: The arithmetic average of the data points in a feature. It represents the central
location of the distribution and is sensitive to extreme values (outliers).

• Median: The middle value of a dataset when sorted in ascending order. It represents the
central location of the distribution and is less sensitive to outliers compared to the mean.

• Mode: The most frequently occurring value in a dataset. It indicates the peak of the
distribution.

• Standard Deviation: A measure of the dispersion or spread of a dataset. A higher standard
deviation indicates a greater degree of variability among the data points.
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• Skewness: A measure of the asymmetry of a dataset’s distribution. Positive skewness
indicates that the tail on the right side is longer or fatter, while negative skewness implies
that the tail on the left side is longer or fatter.

• Kurtosis: A measure of the ”tailedness” of a dataset’s distribution. High kurtosis indicates
heavy tails and more outliers, whereas low kurtosis suggests light tails and fewer outliers.

Researchers can compute these aggregate statistics for each feature in both the real and syn-
thetic datasets to evaluate the fidelity of synthetic data. By comparing the values of these
statistics, they can assess the univariate resemblance between the datasets and determine the
extent to which the generative model has captured the individual characteristics of each feature.

A substantial similarity in the overarching statistics between the real and synthetic datasets
indicates the generative model’s success in encapsulating the central tendencies, variance, and
distribution form of the real data. This feature is an integral aspect of fidelity, as it guarantees
that the synthetic data sustains the fundamental properties of the real data, an aspect that is
indispensable for its practical implementations.

KS Test The KS test is a non-parametric method, which means it makes no assumptions
about the underlying distribution of the data [83]. It can be used to compare the distributions
of two samples or a sample against a reference distribution [83]. In the context of evaluating the
fidelity of synthetic data, the KS test is employed to assess the univariate resemblance between
the real and generated data. The test measures the maximum difference between the empirical
cumulative distribution functions (ECDFs) of the two samples, providing a test statistic, D,
which represents the greatest absolute difference between the ECDFs.

The null hypothesis of the KS test states that the two samples are drawn from the same con-
tinuous distribution. A low p value (< 0.05) indicates that the null hypothesis can be rejected,
implying a significant difference between the distributions of the real and synthetic data for a
given feature. Conversely, a high p value (≥ 0.05) suggests that the null hypothesis cannot be
rejected, meaning the distributions of the real and synthetic data are not significantly different.

The KS test is particularly useful for assessing the fidelity of synthetic data, as it is sensitive
to both location and shape differences in the distributions. By applying the KS test to each
feature in the real and synthetic datasets, researchers can effectively evaluate the univariate re-
semblance and determine whether the generative model has successfully captured the individual
characteristics of each feature.

Student T-test The Student’s t-test is a parametric statistical method used to compare the
means of two independent samples, assuming these samples have a normal distribution with
equal variances [84]. When assessing the quality of synthetic data, the Student’s t-test is used
to measure the similarity between the real and generated data by checking if there’s a significant
difference in the averages of each attribute.

The null hypothesis of the Student’s t-test is that the averages of the two samples are the same.
A small p value (less than 0.05) suggests that we can reject the null hypothesis, indicating a
meaningful difference between the averages of the real and synthetic data for a certain attribute.
However, a large p value (equal to or greater than 0.05) means that we can’t reject the null hy-
pothesis, implying that the averages of the real and synthetic data are not significantly different.

It is essential to note that the Student’s t-test relies on the assumption that the data follows a
normal distribution, and the variances of the two samples are equal. If these assumptions are
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not met, the results may not be reliable. In such cases, non-parametric tests like the MWU test
may be more appropriate.

By applying the Student’s t-test to each feature in the real and synthetic datasets, researchers
can evaluate the univariate resemblance and determine whether the generative model has suc-
cessfully captured the mean values of each feature. This analysis helps in understanding if the
synthetic data maintains the central tendencies of the real data.

Mann-Whitney U-test The MWU-test, sometimes referred to as the Wilcoxon rank-sum
test, is a type of non-parametric statistical test used to compare the distributions of two inde-
pendent sets of data [85]. This test does not assume anything about the distribution of the data,
which makes it a good choice for situations where the data doesn’t fit a normal distribution or
when the requirement of equal variances isn’t met.

When examining the fidelity of synthetic data, the MWU-test is used to gauge the univariate
similarity between the real and the synthetic data. This is achieved by investigating if there’s
a significant discrepancy in the distributions of each feature.

The null hypothesis in the MWU-test asserts that the two samples have identical distributions.
When the resulting p-value is less than 0.05, it is indicative of rejecting the null hypothesis,
implying a noteworthy distinction between the distributions of the actual and synthetic data
for a particular characteristic. Conversely, if the p-value is greater than or equal to 0.05, it sug-
gests that the null hypothesis cannot be rejected, implying that there is no significant difference
between the distributions of the real and synthetic data.

The MWU-test works by ranking the combined data from both samples and calculating the
sum of the ranks for each sample. The test statistic, U, is then computed based on these rank
sums, and its significance is assessed using either a lookup table or by approximating a normal
distribution for larger sample sizes.

By applying the MWU-test to each feature in the real and synthetic datasets, researchers can
evaluate the univariate resemblance and determine whether the generative model has success-
fully captured the overall distribution of each feature. This analysis helps in understanding if
the synthetic data maintains the distributional properties of the real data, which is an important
aspect of the underlying patterns and relationships in the real data.

Multivariate Relationships

Multivariate relationships refer to the associations and dependencies between multiple features
in a dataset. Regarding synthetic data evaluation, assessing multivariate relationships is crucial
for determining whether the generative model has effectively captured the underlying structure
and interactions between features present in the real data. A comprehensive evaluation of mul-
tivariate relationships helps ensure that the synthetic data maintains the real data’s complex
patterns.

There are several methods to assess and compare multivariate relationships in the real and
synthetic datasets [81]. One common approach is to compute the pairwise correlations between
features, which provides insight into the linear relationships among them. Pearson correlation
is a widely used measure to calculate these pairwise correlations. Additionally, comparing
correlational similarities using a metric like cosine similarity can help quantify the resemblance
between the real and synthetic datasets. Visualization techniques, such as correlation plots, can
also be employed to support the assessment of multivariate relationships.
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Pearson Pairwise Correlations Evaluating the fidelity of synthetic data requires assessing
the multivariate relationships among features. One effective method to compare the numerical
features of real and synthetic datasets is by calculating the Pearson pairwise correlations be-
tween the corresponding features in both datasets [81]. This allows researchers to determine
how well the generative model has captured the linear relationships among those features.

By comparing the Pearson correlation coefficient matrices for the real and synthetic datasets,
researchers can identify similarities and differences in the multivariate relationships between
features. High similarity in the Pearson pairwise correlation matrices indicates that the gener-
ative model has effectively maintained the linear relationships among features, to ensure that
the synthetic data captures the real data’s underlying structure and interactions.

Additionally, the Pearson correlation coefficient can be used to analyze the linear relationship
between a target variable and each feature in a dataset. Researchers can evaluate the fidelity of
synthetic data by comparing the Pearson correlations between the target and features for both
the real and synthetic datasets. This allows them to assess the extent to which the generative
model has preserved the linear relationships between the target and the features.

A strong resemblance in the Pearson correlation coefficients between the target and features for
both datasets indicates successful preservation of linear relationships by the generative model.
This aspect is vital to fidelity, as it guarantees that the synthetic data upholds the fundamental
patterns and connections pertinent to the target variable, which is of great importance for areas
like predictive modeling and ML.

Dimensional Resemblance Analysis

Dimensional resemblance analysis employs dimensionality reduction techniques to facilitate the
comparison of real and synthetic datasets in lower-dimensional spaces. Typical techniques for
this purpose are PCA and Isometric Mapping (Isomap). Before we delve further into the details
of dimensional resemblance analysis, a definition of Isomap is in order.

While PCA is a linear transformation, Isomap is a non-linear dimensionality reduction technique
that aims to preserve the intrinsic geometric structure of high-dimensional data by approximat-
ing the geodesic distances between data points in a lower-dimensional space[86]. Isomap is based
on manifold learning and is particularly useful for analyzing data with non-linear structures.
The algorithm for Isomap involves three primary steps:

1. Construct a neighborhood graph: For each data point, connect it to its nearest neighbors,
typically using the k-nearest neighbors or epsilon-radius approach. This graph captures
the local structure of the data.

2. Compute shortest path distances: Calculate the shortest path distances (also known as
geodesic distances) between every pair of data points in the graph, usually using Dijkstra’s
or Floyd-Warshall’s algorithm. Geodesic distances represent the shortest paths between
data points on the manifold, approximated by the graph distance in the neighborhood
graph.

3. Embed data points in lower-dimensional space: Apply classical multidimensional scaling
to the matrix of shortest path distances to obtain a lower-dimensional embedding that
preserves the pairwise geodesic distances between data points as closely as possible.

In the realm of synthetic data evaluation, dimensionality reduction techniques like Isomap
and PCA play a crucial role by enabling the comparison of real and synthetic datasets within
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lower-dimensional spaces. Isomap, in particular, shines in contexts where the data’s underly-
ing manifold structure is non-linear, adeptly capturing the complex relationships between data
points that linear techniques like PCA might overlook. By projecting the synthetic data onto
the top two lower-dimensional components extracted from the real data using these techniques,
we can directly inspect the overlap and consistency between the datasets, particularly focusing
on their non-linear relationships.

Subsequently, this approach allows us to assess the synthetic data’s ability to preserve the un-
derlying structure, patterns, and relationships inherent in the real data. Visualization tools
such as score plots and scree plots further aid in this comparative analysis. Score plots visualize
the data in its top two lower-dimensional components, providing insights into shape similarities
and variabilities, while scree plots graphically display the variance explained by each principal
component, illustrating the proportion each contributes to the overall data variation.

Moreover, the choice of projection technique can provide differentiated insights into the syn-
thetic data’s capacity to capture diverse relationships. For instance, while projecting onto the
real data’s principal components allows us to assess feature relevance and interpretability in
the synthetic data, using Isomap lower-dimensional embeddings helps evaluate its ability to
encapsulate complex, non-linear relationships and manifold structures inherent in the real data.

Data Labeling Analysis

Data Labeling Analysis serves as a method to evaluate the semantic resemblance between real
and synthetic data. This analysis involves assessing the performance of ML classifiers in their
ability to distinguish between real and synthetic records [81]. To conduct this analysis, the real
and synthetic datasets are first combined and labeled accordingly.

Subsequently, the combined dataset is split into a train and test set, with the specific ratio deter-
mined by the researchers. The data is then pre-processed, which involves the standard practices
of normalizing numerical features and one-hot encoding categorical features. The classifiers are
then trained with train data, and their ability to distinguish between real and synthetic data
in the test set is observed.

The performance of the classifiers is inversely related to the fidelity of the synthetic data. A
high classification accuracy suggests that the classifier can easily distinguish between real and
synthetic records, suggesting a low fidelity of the synthetic data. Conversely, a low classification
accuracy signifies that the classifier struggles to differentiate between real and synthetic records,
implying a high fidelity of the synthetic data. This analysis provides insights into how well the
generative model has captured the underlying structure and semantics of the real data, which
is crucial for ensuring the synthetic data’s quality and usefulness in various applications.

Recent research [87] has shown that strong classifiers, such as XGBoost, are able to easily
distinguish between state-of-the-art synthetic data and real data on several tabular datasets. In
reality, they exhibit near-perfect differentiation capabilities, indicating that generating realistic
synthetic NIR spectra by treating it as tabular data can prove to be a formidable challenge.
In-depth analyses of the important features of these classifiers have highlighted that mixed-type
and ill-distributed numerical columns, which are often present in NIR spectroscopy data, are the
least faithfully reconstituted. This indicates that these types of features are more challenging for
generative models to capture accurately, which can negatively impact the fidelity of the synthetic
spectra. The ability of strong classifiers to easily distinguish between real and synthetic NIR
spectra reinforces the importance of evaluating synthetic data using data labeling analysis,
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which can help assess the quality of the synthetic spectra and identify areas for improvement
in generative models.

2.4.2 Utility

The concept of utility in the context of synthetic data fundamentally hinges on how effective
this data is for training ML models. Two key methodologies come into play here: Train on
Synthetic, Test on Real (TSTR), Train on Real, Test on Real (TRTR), which is suggested in
the benchmarking framework of Mikel Hernandez et al. [81]. In the TSTR approach, models
are trained on synthetic data and then evaluated on real data. Meanwhile, the TRTR method,
where models are both trained and tested on real data, provides a benchmark for comparison.
This benchmark serves as a standard of excellence that the TSTR performance should ideally
meet or surpass. Hence, the utility of synthetic data is essentially evaluated by how well it helps
in training ML models, as gauged against the established TRTR benchmark.[80].

Evaluation Metrics

To evaluate the utility of the data, TSTR and TRTR methodologies are employed. The per-
formance assessment within these frameworks can utilize a variety of evaluation metrics. The
selection of an appropriate metric is contingent upon the type of problem, and whether it is a
classification or regression task.
In classification tasks, commonly used evaluation metrics include:

• Accuracy: The proportion of correctly classified instances out of the total instances.

• Precision: The proportion of true positive instances among instances predicted as posi-
tive.

• Recall: The proportion of true positive instances among actual positive instances.

• F1-score: The harmonic mean of precision and recall, providing a single score that
balances the trade-off between precision and recall.

• Receiver Operating Characteristic (ROC) Curve: A graphical representation of a
classifier’s true positive rate against its false positive rate, quantifying the overall perfor-
mance of the classifier across different decision thresholds.

In regression tasks, commonly used evaluation metrics are:

• Coefficient of Determination (R2): A measure of how well the predicted values match
the actual values is the coefficient of determination (R²). R² values range from 0 to 1,
where a value of 1 indicates a perfect fit, and a value of 0 implies no relationship between
the predicted and actual values. It is worth noting that negative R2 values can occur,
which indicates that the model’s performance is worse than a baseline model.

A baseline model, in this context, is a simple model used as a reference point to compare
the performance of more complex models. It typically predicts a constant value, such as
the mean or median of the target variable, for all instances. If a more sophisticated model
achieves negative R² values, it suggests that the model does not capture the underlying
relationships in the data and is outperformed by the simplistic baseline model.

• Mean Absolute Error (MAE): The average of the absolute differences between pre-
dicted and actual values, providing an easy-to-interpret measure of the prediction error.
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• Root Mean Squared Error (RMSE): The square root of the average of the squared
differences between predicted and actual values, emphasizing the impact of larger errors
on the overall error measurement.

TSTR and TRTR

TSTR and TRTR is an established benchmark for utility in the literature [80, 81, 88, 89]. This
approach involves training a ML algorithm on both real and synthetic data, and then comparing
the performance of the resulting models using a holdout dataset derived from the real data.

The TRTR method establishes a benchmark for optimal performance by training and testing
the model on real data. On the other hand, the TSTR method trains the model on synthetic
data and tests it on real data. Assessing the utility of the synthetic data is achieved by com-
paring the performance of the TSTR model against the established TRTR benchmark.

The evaluation of utility is pivotal in ascertaining the efficacy of synthetic data for diverse
ML tasks. Performance comparisons between models trained on synthetic and real data, using
fitting evaluation metrics for both classification and regression problems, enable researchers to
measure the feasibility of synthetic data as a substitute for real data in model training, and
whether it affects performance negatively. Guaranteeing high utility is vital for the effective use
of synthetic data in practical situations, enhancing confidence in the synthetic data generation
process and promoting its widespread use across various sectors and fields.
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Chapter 3
Data Exploration

Data exploration is a crucial step in the ML process, as it allows researchers to gain insights
into the characteristics of the dataset, identify any data quality issues, and understand the
underlying data distribution. This section introduces the dataset used in this thesis and presents
an overview of the data collection process, the spectral features, and the sample selection.

3.1 Dataset Description

The dataset used in this study was obtained from a comprehensive analysis of mango samples
[11]. The spectra were collected using a F750 Produce Quality Meter (Felix Instruments, Ca-
mas, USA) equipped with a MMS1 (Monolithic Miniature Spectrometer; Zeiss, Oberkochen,
Germany) that employed an interactance optical geometry to collect apparent absorption spec-
tra in the wavelength region of 300-1100 nm. The instrument has a pixel resolution of approxi-
mately 3.3 nm, an optical resolution of about 10 nm, and a repeatability of around 1 mAbs units.

The dataset consists of mango samples from eight different cultivars and three National Mango
Breeding Program (NMBP) lines, collected over four seasons between 2015 and 2019. A to-
tal of 112 unique populations, 4685 mango samples with reference values, and 11,834 spectra
were obtained from two distinct growing regions in Australia (Northern Territory and Central
Queensland). The fruit samples were scanned at physiological stages ranging from ’hard green’
to ’ripening’, covering early softening stages through to ’eating ripe’. The authors of the study
where the data originates from removed 143 spectra as outliers. That left the dataset with
11,691 samples.

Spectra collection and destructive reference analysis were performed within a single day. Each
fruit was scanned twice on the widest section of each cheek (approximately the middle of the
fruit) orthogonal to the endocarp plane. A subset of 744 samples were scanned at three different
fruit temperatures (approximately 15, 25, and 35 °C). Fruit cheeks were sliced, and a cylindrical
core (29 mm diameter) was taken at the location of spectral acquisition and trimmed to 10 mm
length (from skin side). The plug was quartered, weighed, and then dehydrated for further
analysis.

3.2 Data Exploration

The data was thoroughly investigated in this subsection using various visualization techniques
and statistical measures to gain a deeper understanding of its characteristics and relationships
between features.
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3.2.1 Preliminary Investigation

Figure 3.1 contains all the spectroscopic measurements from the dataset. As can be seen, most
of the samples have zero measurements for the spectral wavelengths in the beginning and in the
end of the dataset.

Figure 3.1: Plot of all spectra in mango dataset

Figure 3.2 displays the count of samples with zero measurement for each wavelength. It can be
seen that on the very edge of the spectral band provided all samples are measured at zero, and
for the nearby wavelengths a substantial number of the samples contain zeros. Totally, there is
403 spectral wavelengths that contains only zeros. Additionally, there is a lot of noise at the
beginning and the end of the spectra.
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Figure 3.2: Count of samples with zeros for each wavelength

As this master thesis is primarily concerned with the NIR spectrum, and we define the NIR
spectrum as 700-2,500 nm, a plot of the spectral measurements in the range of 699-1200 nm is
shown in Figure 3.3.

Figure 3.3: Plot of NIR spectra of samples. We can see that the end range of the NIR spectra
contains a lot of zeros

We see that the end range of the NIR spectra first contain a lot of apparent noise and sub-
sequently a lot of zero measurements toward the very end. Figure 3.4 zooms into where the
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spectral measurements start to get really noisy. The noise seem to apparently increase drasti-
cally after wavelengths of 1030 nm and beyond. When modelling the spectra, this could serve
as an interesting cutoff point to make the job easier for the generative models.

Figure 3.4: Plot that zooms in on the point where spectra start to get noisy

Figure 3.5 zooms into the elbow point for when the zero measurements start to increase dras-
tically for wavelengths in the NIR spectra. The elbow point occur at wavelength 1137 nm, and
can also potentially serve as a cutoff point when trying to model the spectra.

Figure 3.5: Elbow point of zero count at end of spectra

The NIR spectra contains no missing values, though the columns that contain only zeros could
be considered as missing values, though they are not encoded as so. Figure 3.6, which is plotted
with open-source library missingno, shows that there are no missing values.
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Figure 3.6: Missingno plot shows that we have no missing values

Figure 3.7 shows a subset of NIR spectra that does not contain excessive noise. Interestingly,
Figure 3.7 reveals two distinct subgroups of spectra within the real data: towards the left end
of the spectra, one group exhibits an upward curve, while the other maintains a flat trend.

Figure 3.7: NIR spectra free of noise

Figure 3.8 provides a closer look at the point where the two subgroups diverge from one another,
occurring at approximately 744 nm wavelength.
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Figure 3.8: Point of divergence between two subgroups of NIR spectra, around 744 nm

3.2.2 Statistical Properties

The dataset’s basic statistical descriptions, as shown in Figure 3.9, reveal a curved pattern
across various measures for the NIR spectra. The mean values start at -0.123162 and dip to a
minimum of -0.549416 around the index of 738 before rising back towards zero, suggesting that
the average absorbance values in the NIR spectra are below zero.

The standard deviation values initially decrease from 0.235237 to a minimum of 0.036566 at
index 780, then rise slightly, indicating that the dispersion of absorbance values in the NIR
spectra narrows before widening again. The minimum values exhibit a similar curved pattern,
starting at -0.734356, reaching a minimum of -0.745980 around index 837, and then ascending.
This demonstrates that the lowest absorbance values in each dataset are below zero.

The 25th, 50th (median), and 75th percentile values also follow a curved pattern similar to
the mean and minimum values. The lower quartile, middle value, and upper quartile of the
absorbance values in the NIR spectra all reach a minimum and then increase, emphasizing the
curved nature of the spectra data. In essence, the provided statistics indicate that the NIR
spectra follow a curved pattern with changing dispersion, as the absorbance values become
more tightly clustered before spreading out slightly again.

The skewness of the NIR spectra, a measure of the asymmetry in the distribution of the data,
also presents an interesting pattern. The values commence at -0.339706, gradually increase to
a peak of 0.287913 around index 7, and then gradually decrease to a minimum of -0.965078.
This fluctuation in skewness suggests a shift from a left-skewed distribution (where the left
tail is longer or the mass of the distribution is concentrated to the right), through a near-
normal distribution, to a right-skewed distribution (where the right tail is longer or the mass
of the distribution is concentrated to the left). This skewness pattern, combined with the
aforementioned statistical measures, provides a comprehensive picture of the complex, non-
linear patterns in the NIR spectra data.
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Figure 3.9: Plot of basic statistical descriptions of the dataset
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Chapter 4
Method

The code for used in this project can be found here.

Spectroscopic data is typically represented in a tabular format. Our hypothesis is that gen-
erative ML models specifically designed for tabular data would be well-suited for generating
artificial spectra. SDV, an open-source library established at MIT’s Data to AI Lab in 2016,
serves as a comprehensive ecosystem for synthetic data generation [3]. Two models within the
SDV library, TVAE and CTGAN, have been explicitly designed for handling tabular data. Both
models were introduced by Lei Xu et al. in the same publication [90].

Synthetic Data Vault is an open-source library that conveniently lets researchers generate syn-
thetic tabular data utilizing state-of-the-art synthesizers such as CTGAN and TVAE. This
thesis aims to investigate if this library is suitable for generating synthetic NIR spectra that
correspond well with real NIR spectra.

4.1 Preprocessing

We ultimately chose to restrict the dataset’s features between wavelength 699 and 1032, which
encapsulate the NIR spectra free from noise, and we chose ’DM’ (DMC) as response variable.
This leaves the final rendition of the dataset with 113 columns. The definition of the range of
NIR spectra vary, but we chose to define it from 700 nm to 2,500 nm. This choice was inspired
by a study by Puneet Mishra and Dario Passos [91], who used the same dataset. DMC is an
important measure of fruit quality as it is directly linked to various quality attributes such as
taste, flavor, texture, nutritional value, shelf life, and processing suitability [92, 93]. Several
studies have shown that DMC serves as a strong indicator of fruit quality [92, 93] and can be
reliably assessed using NIR spectroscopy [94].

Consequently, using DMC as the response variable in this study is well-founded, and being able
to generate synthetic data that retains the relationship between NIR spectra and DMC would be
highly valuable. In the dataset, spectral measurements originating from the same sample were
arranged sequentially, resulting in consecutive rows representing data from identical samples.
To ensure that the generative models did not emphasize any arbitrary patterns resulting from
consecutive spectral measurements of the same sample, the order of the rows was randomized,
thereby minimizing potential biases when generating new data.

Normalization is a common preprocessing step when working with neural networks, as it helps
to standardize the input data and ensure that the model can learn effectively from the data.
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This often involves scaling the features to have a mean of zero and a standard deviation of one
or transforming them into a specific range. However, when using SDV’s generative models, such
as CTGAN and TVAE, this preprocessing step is not required. These models are designed to
automatically apply mode-specific normalization techniques during the data generation process,
allowing them to handle diverse data types and distributions effectively. As a result, users can
directly work with the generated data without the need for additional normalization steps,
simplifying the data preparation process.

4.2 Training

Both CTGAN and TVAE was trained with batch sizes of 50 and for 500 epochs. CTGAN
was also trained with ’verbose=True’, which prints out the loss values for both generator and
discriminator. Other than that, they were trained with default hyperparameters. For CTGAN,
that means a learning rate of 2e-4 for both generator and discriminator, and a weight decay
of 1e-6 for the adam optimizer for both the generator and discriminator. For TVAE the reg-
ularization term l2scale defaults to 1e-5. Both CTGAN and TVAE have a hyperparameter
enforce_min_max_values, which makes the synthetic data adhere to the min/max boundaries
set by the training data.

During the training process, we performed manual experimentation with several hyperparam-
eters to identify the best configuration for our models. However, we found that the default
hyperparameters provided the most stable results across our experiments. Despite testing vari-
ous combinations of learning rates, batch sizes, and other hyperparameters, we did not observe
significant improvements in the training stability, especially when adding dry matter as a re-
sponse variable. Consequently, we decided to proceed with the default settings for both CTGAN
and TVAE.

The models were trained on Google Colab, which provides a convenient way to access free GPUs
for training neural networks on the data. Unfortunately, to the best of our knowledge, SDV has
not made it possible to plot loss curves from CTGAN training by default. This leaves us with the
option to inspect the training process by printing the loss values for each epoch. Since directly
sharing these printed values here is impractical, we copied the values and used customized code
to extract the loss values for plotting. The loss curves are displayed in Figure 4.1.
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Figure 4.1: The Loss curves of CTGAN were quite unstable during training. While reducing
learning rate seemed to improve stability, it did not produce any better results.

We note that the training process was quite unstable, with the loss oscillating around 0 for both
generator and discriminator. Attempts at modifying the learning rates were made, but to little
avail. The model was plagued by unstable training, particularly when adding dry matter as a
response variable.

4.3 Savitzky-Golay Smoothing

Upon visualizing the synthetic data, it became evident that the synthetic data, particularly the
data generated using CTGAN, was considerably less smooth than the real data, as can be seen
in Figure 4.2. To address this issue, we employed the SG filter to smooth the synthetic data,
making it more akin to the training data. The decision to use the SG filter for smoothing was
inspired by the article from which the mango dataset originates [11], and by the fact that it
is a well-established algorithm for this purpose. SG filters are frequently employed to separate
signal from noise in NIR spectroscopy [95].
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Figure 4.2: Initial heatmaps show that synthetic data is less smooth than real data

To capture the smoothness of the real data, we chose a relatively wide window of 21. This
window size was selected based on the observation that a wider window can effectively capture
the underlying trends in the data while reducing the impact of noise, resulting in smoother
synthetic data that resembles the real dataset. In addition, we chose a polynomial order of 3 to
account for the complexities in the data. A higher polynomial order can better approximate the
variations present in the spectral signal, and a polynomial order of 3 offers a balance between the
simplicity of a linear fit (polynomial order 1) and the complexity of higher-order polynomials.
This combination of hyperparameters aims to provide a balance between preserving the essential
features of the data and eliminating unwanted noise, ensuring that the synthetic data closely
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resembles the real dataset.

4.4 Evaluation

In this thesis, our primary goal is to investigate the ability of tabular generative models from
the SDV library to synthesize high-quality spectral data. Typically, the evaluation of synthetic
data is based on three key aspects: fidelity, utility, and privacy [81]. However, as NIR spectral
data rarely involves privacy concerns, this aspect will not be considered in our assessment. In-
stead, we focus extensively on examining fidelity and utility, utilizing a range of techniques to
provide a comprehensive evaluation of the synthetic data’s quality. Thus, our judgment of the
data generated by the models will predominantly rest on these two key areas of evaluation.

Our evaluation process drew inspiration from the work by Hernandez et al. [81], but we tailored
it to accommodate the specific characteristics of our data. Given that we are working with a
high-dimensional dataset consisting solely of numerical features, we found it necessary to modify
the presentation of certain metrics or even discard them entirely. Presenting statistics for each
column individually in a table is impractical, as our working dataset comprises 113 columns
(112 features and 1 target). Additionally, our dataset does not include any categorical features.
Moreover, privacy concerns, which were a key dimension for the authors, are not relevant in our
case. In order to assess the fidelity of the synthetic spectra, we examined univariate similarity,
multivariate relationships, dimensional similarity, and the ability of common ML classifiers to
distinguish between the real and synthetic data. To evaluate the utility of the synthetic data,
we trained ML regressors on both real and synthetic data and then assessed their performance
on a separate, identical holdout set of real data using the TRTR and TSTR methodology. Our
approach is illustrated in Figure 4.3, inspired by Mikel Hernandez et al. [81].
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Figure 4.3: Figure that outlines our modified approach to evaluation of NIR data. Inspired by
Mikel Hernandez et al. [81]

The dataset we analyzed consists of NIR spectra and the dry matter content as a response
variable. During the evaluation of accuracy, we separated the features from the response vari-
ables. This makes sense because the features, which represent the spectral wavelength intensity,
describe the same phenomenon, while the response variable, dry matter content, represents
something very different. Our primary focus was on evaluating the authenticity of the NIR
spectra, but we also visualized the Pearson correlation between the spectra and dry matter
content, which visualized how faithful this relationship was preserved across synthetic datasets,
and used the ability to predict dry matter from the spectra as a basis for assessing the utility
of the synthetic data.

Due to the high-dimensional nature of the data, presenting univariate statistics for individual
columns is not feasible. Instead, we computed basic univariate statistics for both the real and
generated datasets using a custom function that calculates essential aggregate metrics for each
column. This function employs built-in pandas functions, such as pandas.DataFrame.describe,
which calculates the standard deviation, mean, minimum value, 25th percentile, median (50th
percentile), 75th percentile, and maximum value for each feature. Additionally, it includes
pandas.DataFrame.skew to calculate skewness and pandas.DataFrame.kurtosis to compute kur-
tosis. Since the columns are continuous, we determined that mode was not a suitable metric
to include, as continuous data can take on an infinite number of values within a given range,
making it less likely for any specific value to repeat. This, in turn, means that the mode might
not provide meaningful information about the distribution or central tendency of the data.
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Manually comparing the feature values for the 112 columns is impractical, so we computed the
cosine similarity between the row vectors containing these aggregate measurements for each
wavelength from the real and synthetic datasets. This approach offers an objective way to
quantify similarity. We performed this calculation for datasets generated by both CTGAN and
TVAE, in both their raw and smoothed forms. This analysis provides insight into how effec-
tively the generators preserve the basic numerical properties of the real dataset.

We assessed the univariate resemblance between the real and synthetic datasets by perform-
ing three widely recognized statistical tests: the Student’s T-test for comparing feature means,
the MWU-test for population comparison, and the KS test for comparing distributions. If the
null hypothesis is accepted for each test, the properties are considered preserved. A commonly
employed threshold for accepting the null hypothesis is a p value above 0.05. Since these tests
compare similarities between corresponding columns from both datasets, we computed aggre-
gated statistics, specifically the mean p value and the percentage of columns with a p value
above 0.05. These results can be conveniently compared in a tabular format. Additionally, we
visualized the test scores for each pair of columns from all tests using a line plot.

In our approach to evaluating generative models, it is crucial to ascertain whether they pre-
serve the multivariate relationships present in the original data. To this end, we calculated the
pairwise Pearson correlations for numerical features, as our dataset consists solely of numerical
data. This method enabled us to quantify the relationships between the columns by creating
vectors for each dataset, containing all unique Pearson correlation pairs. Given that there are
6,216 correlation pairs with 112 spectral wavelengths as features, manual comparison becomes
quite challenging.

In light of this, we utilized cosine similarity to compare the Pearson pairwise correlations be-
tween the real and synthetic datasets, as well as to determine the similarity of the correlation
pairs across datasets. We computed the mean, minimum, and maximum differences for these
correlation pairs. Importantly, we also evaluated the preservation of correlation between the
response and features by the generative algorithms.

These methods allowed us to assess the linear relationships among the features and between the
target and features in the synthetic and real datasets. A cosine similarity value approaching 1
would signify a high degree of resemblance, indicating that the generative model has effectively
captured the underlying structure and relationships in the real dataset, an essential aspect for
ensuring the synthetic data’s utility in various applications.

We further scrutinized the data by examining their dimensional resemblance. To achieve this,
we utilized both a linear dimensionality reduction technique, PCA, and a non-linear dimension-
ality reduction technique, Isomap. It is recommended to scale the data before using PCA or
Isomap, so we scaled the data before performing them. We generated scree plots for the princi-
pal components that accounted for at least 95% of the variance in the real data, allowing us to
compare the number of principal components required to explain the majority of the variance in
both datasets. Moreover, we created score plots where data points were plotted against their top
two principal components and projected the synthetic data onto the first principal components
of the real data. We also both visualized the data on their respective Isomap lower-dimensional
embeddings, as well as projecting the synthetic data onto the lower-dimensional embeddings of
the real dataset.

The final approach we employed to evaluate fidelity involved data labeling analysis. Initially,
we labeled the data as either real or synthetic and then combined both into a single dataset.
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This was done separately for CTGAN- and TVAE-generated data, both raw and smoothed.
The dataset was then split into a training and testing set, using an 80:20 split ratio. We scaled
the data since some classifiers are sensitive to scale. To assess utility, we applied a wide range
of classifiers with predefined hyperparameters, as outlined by Mikel Hernandez et al. [81]. The
classifiers and their respective hyperparameters are as follows: RF (n estimators = 100, ran-
dom state = 9), KNN (n neighbors = 10), Decision Tree (DT) (random state = 9), SVM (C
= 100, max iter = 300, kernel = ”linear”, probability = True, random state = 9), and MLP
(hidden layer sizes = (128,64,32), max iter = 300, random state = 9). These algorithms pro-
vide diversity, offering a comprehensive understanding of the synthetic data’s applicability in
various modeling contexts.

Following our assessment of fidelity, we moved forward to evaluate the utility of the synthetic
data. We chose to use the established TRTR and TSTR methodology to measure utility, a
method recognized for this purpose [81, 88, 96]. To maintain consistency and to test the
synthetic data’s utility across various model types, we utilized the regression variants of the
algorithms used in our data labeling analysis (RF, KNN, DT, SVM, and MLP), with the same
hyperparameters where applicable.

By using TRTR as a benchmark for ML model performance and comparing it with TSTR, we
were able to gauge whether synthetic data could potentially be used for training ML models.
The holdout test set comprised 20% of the real dataset. Again, we scaled the data, as some of
the models are sensitive to scale of the features. We calculated the coefficient of determination
(R2) for all datasets and organized them into two tables: one for the real and raw synthetic
data generated by CTGAN and TVAE (Table 5.12), and another for the real and smoothed
synthetic data (Table 5.13).
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Chapter 5
Results

In the Results section of this thesis, we present and describe the findings obtained from employ-
ing the SDV library to generate artificial NIR spectral data using the mango dataset as a case
study. Our analysis demonstrates the performance and feasibility of the proposed generative
ML models in synthesizing NIR spectra with respect to fidelity and utility, which are key syn-
thetic data attributes. Throughout this section, we will elaborate on the quantitative metrics
and visual comparisons used to assess the quality of the synthetic data.

5.1 Fidelity

In the field of synthetic data generation, fidelity refers to the degree to which the generated
data resembles the real data in terms of structure, patterns, and statistical properties. A high
fidelity synthetic dataset should maintain the essential characteristics of the real dataset while
still exhibiting variation, ensuring that the synthesized data is useful for its intended purpose.
To assess the fidelity of the NIR spectral data generated by CTGAN and TVAE, we will consider
both raw and smoothed versions of the synthetic data and employ a combination of quantitative
metrics and visual comparisons. These evaluations will involve assessing the similarity between
the summary statistics of the real and generated data, examining the preservation of spectral
features and the relationships between them. By investigating these aspects, we aim to provide
a thorough assessment of the fidelity of the synthetic NIR spectral data generated by the two
models and determine their suitability for potential applications.

5.1.1 Visualizing spectra

We used lineplots and heatmaps to visualize the spectra. Lineplots and heatmaps allows us to
visualize all samples simulataneously, and lets us easily compare the spectra from all samples
with each other. Lineplots also lets us conveniently compare single samples with each other.

Lineplots

In Figure 5.1, we observe that the raw spectra generated by both CTGAN and TVAE suc-
cessfully replicate the shape of the real data, with TVAE appearing to more faithfully capture
the smoothness of the real data. However, it is evident that the synthesized spectra are con-
siderably rougher than the real data. By comparing this to Figure 5.2, we can see that the
smoothed data, while still rougher than the real data, exhibit a closer resemblance to the real
data’s smoothness compared to the raw synthetic data. This observation highlights the dif-
ferences in fidelity between the two generative models and emphasizes the importance of data
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preprocessing, such as smoothing, to achieve more accurate representations of the real data.

Figure 5.1: Lineplot of all spectra from real and raw synthetic datasets
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Figure 5.2: Lineplot of all spectra from real and smoothed synthetic datasets

In the real spectra, we can discern two distinct subgroups: one demonstrating an upward trend
on the left, and the other exhibiting a flat trajectory. The line plots make it difficult to ascertain
whether the generative models have accurately captured these trends, as the synthetic spectra
are substantially more dense than the real spectra, concealing this phenomenon. Table 5.1
presents the number of smoothed spectra with a mean value below -0.5 for the initial 15 spectra
(encompassing all wavelengths up to 744 nm). While CTGAN fell short in reproducing the
quantity within the flat trend subgroup, TVAE came remarkably close. We deliberately com-
puted this quantity solely for the smoothed spectra, given that row means inherently smooth
the spectra, rendering a second application redundant.
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Table 5.1: Number of smoothed spectra that has a row mean below -0.5 for 15 first wavelengths

NIR CTGAN NIR TVAE NIR

count 2375 1230 2291

Heatmaps

In Figure 5.3, the heatmaps corroborate the findings from the line plots, indicating that the
synthetic spectra generated by both CTGAN and TVAE capture the overall pattern of the
real data, albeit with a rougher texture. CTGAN spectra, in particular, appear to be more
jagged than those produced by TVAE. On the other hand, Figure 5.4 demonstrates that the
smoothed synthetic spectra bear a closer resemblance to the real data, with smoothness levels
approximating those of the real spectra.
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Figure 5.3: Heatmap of spectra from real and raw synthetic datasets
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Figure 5.4: Heatmap of spectra from real and smoothed synthetic datasets

Lineplots for Individual Samples

Similarly, Figure 5.5 reveals that the raw data produced by CTGAN is considerably rougher
than the real data, despite capturing the overall trend accurately. In contrast, TVAE-generated
spectra display a smoothness more akin to the real data when compared to CTGAN. Figure
5.5 also shows that the line plots of the smoothed spectra exhibit greater similarity to the real
data than their raw counterparts, emphasizing the importance of smoothing in achieving a more
accurate representation of the real data.
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Figure 5.5: Multiple lineplots that show multiple spectra individually from real and smoothed
synthetic datasets

Figure 5.6: Multiple lineplots that show multiple spectra individually from real and smoothed
synthetic datasets

5.1.2 Univariate Resemblance Analysis

Statistical Tests

Figure 5.7 illustrates that the majority of columns in the CTGAN-generated spectra have a p
value lower than the significance level (<0.05), indicating that these columns are statistically
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different from the real data. Interestingly, the statistical tests seem to consistently identify
which columns are sufficiently similar and which are not, with the same pattern observed across
all figures.

Figure 5.7: Lineplot that shows p values from different univariate statistical tests when com-
paring real data with raw CTGAN-generated data

In comparison, Figure 5.8 reveals that more raw spectra from TVAE have p values higher than
the significance level (≥ 0.05) compared to those produced by CTGAN. Nevertheless, many
spectra still exhibit p values below the significance level (<0.05), following the same pattern of
similarity identification.

Figure 5.8: Lineplot that shows p values from different univariate statistical tests when com-
paring real data with raw TVAE-generated data

Upon examining the smoothed spectra, Figure 5.9 shows that CTGAN-generated spectra have
slightly more columns with p values above the significance level (≥ 0.05). However, the majority
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of columns still fall below the significance value, leading us to reject the null hypothesis that
they are similar to the real data.

Figure 5.9: Lineplot that shows p values from univariate statistical tests when comparing real
data with smoothed CTGAN generated data. The tests’ null hypothesis is that the data is
similar for attribute tested for, and we accept it if p value is higher than the significance level,
which is typically set at 0.05

This pattern is also observed in Figure 5.10, where the smoothed spectra from TVAE display
more columns with p values higher than those of the smoothed spectra from CTGAN. Further-
more, the pattern observed in the smoothed TVAE spectra differs from that of the raw TVAE
spectra, with more columns clustering together and exhibiting p values (≥ 0.05).

Figure 5.10: Lineplot that shows p values from univariate statistical tests when comparing real
data with smoothed TVAE generated data. The tests’ null hypothesis is that the data is similar
for attribute tested for, and we accept it if p value is higher than the significance level, which
is typically set at 0.05
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Table 5.2 and table 5.3 show the mean test-value and percentage of them that are significant,
respectively.

Raw Smooth

CTGAN NIR TVAE NIR CTGAN NIR TVAE NIR

Kolmogorov-Smirnov 0.000 0.013 0.000 0.000
Student T 0.020 0.111 0.020 0.141

Mann-Whitney U 0.011 0.148 0.009 0.128

Table 5.2: The mean p values when comparing raw and smoothed synthetic spectra with real
data using different statistical tests

Table 5.3: Percentage of p values that are above the significance level of 0.05 for the different
statistical tests for raw and smoothed synthetic spectra

Raw Smooth

CTGAN NIR TVAE NIR CTGAN NIR TVAE NIR

Kolmogorov-Smirnov 0.000 9.821 0.000 0.000
Student T 3.571 33.929 6.250 35.714
Mann-Whitney U 1.786 27.679 4.464 29.464

When we take a look at the mean p values and percentages of p values above the significance
level, we can see that TVAE seems to outperform CTGAN in terms of generating spectra that
are more statistically similar to the real data. This holds true for both raw and smoothed
spectra. It’s also interesting to note that smoothing the spectra leads to an improvement in
statistical similarity across the board. This suggests that the smoothing process is helpful in
bridging the gap between synthetic and real data.

Among the three statistical tests, the KS test appears to be the most sensitive to differences
in the distributions. This test consistently results in the lowest mean p values and percentages
of p values above the significance level. On the other hand, the Student T and MWU tests
seem to be less sensitive to such differences, as they generally produce higher mean p values
and percentages of p values above the significance level.

The results indicates that TVAE-generated spectra, particularly when smoothed, demonstrate
a higher degree of statistical similarity to the real data compared to CTGAN-generated spectra.

Cosine Similarity

Because the data worked with is very high-dimensional, it is not practical to showcase univari-
ate statistics for each feature. As this section tries to establish degree of similarity between the
datasets, the similarity between the statistical properties of raw spectra generated by CTGAN
and TVAE and the real was determined using cosine similarity.

As shown in Table 5.4, the cosine similarity between the aggregate statistics of the features
of the raw spectra generated by CTGAN and TVAE is quite high, indicating that they closely
resemble the real data, which suggests that both CTGAN and TVAE are successful in capturing
the overall statistical properties of the real spectra. Most of the scores are near 1, which suggests
identical directions in the multi-dimensional space of the vectors. The exceptions to this are
skew and kurtosis, which score slightly lower, though they are still relatively high.

Page 59 of 89



Table 5.4: Cosine similarity between summary statistics of NIR spectra from real and raw
CTGAN and TVAE spectra

CTGAN NIR TVAE NIR

std 0.986167 0.998840
min 0.999995 0.999880
25% 0.998402 0.999977
50% 0.998050 0.999982
75% 0.997646 0.999971
max 1.000000 0.999998
skew 0.931373 0.967953
kurtosis 0.832141 0.949244

A similar pattern is observed in the smoothed datasets, as shown in Table 5.5. The majority
of the aggregate metrics are nearly identical, with only skew and kurtosis showing slightly more
dissimilarity, though they still remain fairly similar to the real data.

Table 5.5: Cosine similarity between summary statistics of NIR spectra from real and smoothed
CTGAN and TVAE spectra

CTGAN NIR TVAE NIR

std 0.986786 0.996622
min 0.999738 0.999879
25% 0.998814 0.999779
50% 0.999363 0.999667
75% 0.999506 0.999626
max 0.998156 0.998648
skew 0.958181 0.936569
kurtosis 0.887498 0.892053

The overall high cosine similarity clearly indicates that CTGAN and TVAE are capable of gen-
erating synthetic spectra that closely mimic the aggregate statistics found in the real data. They
achieve near-perfect cosine similarity scores for all metrics, except skew and kurtosis, where they
still score quite high. This suggests that CTGAN and TVAE show promise in synthesizing NIR
spectroscopy data while maintaining the essential statistical properties of the real dataset.

One potential area to explore further is the reason behind the lower cosine similarity scores for
skew and kurtosis, as compared to other metrics. It would be beneficial to investigate whether
this discrepancy is due to the nature of the synthetic data generation process or if it arises from
other factors. By gaining a better understanding of this aspect, it may be possible to improve
the performance of CTGAN and TVAE in generating synthetic spectra that closely resemble
the real data.

5.1.3 Multivariate Relationships Analysis

In this subsection, we will discuss the multivariate relationships in the results, focusing on the
relationship between the target variable (Dry Matter Content) and the features (NIR spectra),
as well as the pairwise Pearson correlations between the features. Analyzing these relationships
is crucial for understanding how well the synthetic data generated by CTGAN and TVAE
preserve the real data’s structure and relationships.
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Correlations between Target and Features

To assess the relationship between the features and target variable, we plotted the correlation
between each feature and the target variable, with the correlation on the y-axis and wavelength
on the x-axis. This is shown in Figures 5.11 and 5.12. CTGAN was not able to effectively pre-
serve the target-feature relationship, whereas TVAE managed to maintain the trend, although
it was somewhat rough. The smoothing process did not improve the relationship for CTGAN,
but smoothed TVAE spectra got quite close to the real pattern.

Figure 5.11: Lineplots that shows the correlations between spectra and target for real and raw
synthetic datasets
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Figure 5.12: Lineplots that shows the correlations between spectra and target for real and
smoothed synthetic datasets

Subsequently, we computed the cosine similarity between the target-feature correlations of the
real data and the synthetic data generated by both CTGAN and TVAE, in both raw and
smoothed conditions. The cosine similarity scores are presented in Table 5.6.

Table 5.6: Comparison of Cosine Similarity for CTGAN NIR and TVAE NIR in Two Datasets
Raw Smooth

CTGAN NIR TVAE NIR CTGAN NIR TVAE NIR

Cos Sim -0.336 0.92 -0.401 0.936
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As seen in table 5.6, the cosine similarity scores reveal how well the synthetic data preserves the
target-feature relationships compared to the real data. As mentioned previously, higher cosine
similarity scores indicate better preservation of these relationships.

Correlations within spectra

Next, we investigated the pairwise correlations between the spectra. We created heatmaps of the
Pearson correlation matrices for the real spectra, CTGAN spectra, and TVAE spectra. This was
done for both raw synthetic spectra (Figure 5.13) and smoothed synthetic spectra (Figure 5.14).
We observed that both CTGAN and TVAE captured the pattern of the relationships, although
the intensity did not match perfectly. TVAE seemed to capture the pattern and intensity
better than CTGAN, and smoothing improved both measures for both generative models. The
correlations between neighboring spectra are understandably high in the real data, particularly
in the middle portion, due to the high degree of smoothness exhibited. The less smooth spectra
produced by TVAE and especially CTGAN are obviously less likely to capture the same level
of correlation between neighboring spectra.
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Figure 5.13: Heatmaps that visualize the correlations between the various wavelengths. We can
see that TVAE have been able to capture the pattern of correlations between the wavelengths,
but not match the intensity. CTGAN have been poor at maintaining the integrity of the
multivariate relationships from the real data
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Figure 5.14: Heatmaps of pearson correlation matrix for real and smoothed synthetic datasets

We also computed the cosine similarity between pairwise Pearson correlations for all datasets,
with the results presented in Table 5.7.

Page 65 of 89



Raw Smooth

CTGAN NIR TVAE NIR CTGAN NIR TVAE NIR

Mean 0.471212 0.384182 0.079860 0.174313
Min 0.066943 0.154251 0.000083 0.000038
Max 0.935732 0.533228 0.471514 0.349565
Cos Sim 0.967834 0.989142 0.997282 0.988119

Table 5.7: Summary statistics of differences in pairwise pearson correlations between spectra
from real and synthetic data (raw and smoothed), as well as the cosine similarity between them

The table shows the summary statistics of the differences in pairwise Pearson correlations be-
tween the spectra from the real and synthetic datasets, as well as the cosine similarity between
them. These statistics help assess the preservation of the pairwise relationships between the
features in the synthetic data generated by CTGAN and TVAE.
Overall, the cosine similarity scores in Table 5.7 demonstrate that both CTGAN and TVAE
are able to maintain the pairwise relationships between the spectra in the synthetic data to a
considerable extent. Notably, the cosine similarity scores are slightly higher for the smoothed
CTGAN spectra, but a tiny bit lower for the smoothed TVAE spectra, when comparing with
the raw counterpart.
The cosine similarity scores in Table 5.7 reveal that both CTGAN and TVAE can maintain
the pairwise relationships between the spectra in the synthetic data to a considerable extent.
Interestingly, the scores are slightly higher for the smoothed CTGAN spectra but marginally
lower for the smoothed TVAE spectra compared to their raw counterparts. Our analysis of
multivariate relationships highlights the potential of CTGAN and TVAE in synthesizing NIR
spectroscopy data that retains the structure and relationships present in the real data. The
cosine similarity scores for target-feature relationships and pairwise Pearson correlations be-
tween the features demonstrate the synthetic data’s ability to largely preserve the relationships
found in the real data. This finding is particularly encouraging for future applications of these
techniques in synthesizing and analyzing NIR spectroscopy data.

5.1.4 Dimensional Resemblance Analysis

To investigate the similarity between the real and synthetic datasets, we applied dimensional
analysis using both linear (PCA) and non-linear (Isomap) dimensionality reduction techniques.
The PCA score plots for the raw and smoothed datasets are shown in Figures 5.15 and 5.16,
respectively, using the first two principal components as the axes. Figure 5.15 shows that the
raw CTGAN spectra have a similar oval shape as the real data, but are more compact. The raw
TVAE spectra have a similar size, but are not as elongated as the real. Figure 5.16 shows that
the smoothed CTGAN spectra are more similar in size to the real data and retain a recognizable,
but similar oval shape. The smoothed TVAE spectra are similar to the raw TVAE spectra, but
are more oval-like like the real data.
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Figure 5.15: PCA scores plot for all three datasets with two first principal components as axes

Figure 5.16: PCA score plot of real spectra and smoothed synthetic spectra with two first
principal components as axes

The projection of the raw spectra from CTGAN and TVAE is displayed in Figure 5.17. We
observe that the projected spectra produced by CTGAN closely resemble the raw spectra from
CTGAN in Figure 5.15; they exhibit a somewhat similar oval shape as the real but can be easily
distinguished by their size. The projected spectra generated by TVAE also bear a resemblance
to the raw TVAE spectra shown in Figure 5.15, closer in size to the real than CTGAN spectra,
but they do not quite capture the elongated shape.
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Figure 5.17: Raw synthetic data projected onto the top 2 principal components of the real data

The projection of the corresponding smoothed spectra, displayed in Figure 5.18, performs better.
The size and shape of the smoothed CTGAN spectra become much closer to the real, and the
smoothed TVAE spectra become more elongated along principal component 1 like the real
spectra, but they are stretched further along second principal component than the real spectra.

Figure 5.18: Smoothed synthetic data projected onto the top 2 principal components of the real
data

Figure 5.19 displays a scree plot that explains 95% of the variance after the PCA decomposition
of the raw spectra generated by CTGAN and TVAE. We observe that only three principal
components are required to achieve this for the real data, while the raw synthetic spectra from
CTGAN and TVAE demand significantly more (84 and 87 principal components are needed to
explain at least 95% of the variance in raw CTGAN and TVAE spectra, respectively).
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Figure 5.19: Scree plot of principal components that explains at least 95% of variance in the
real and raw synthetic data

Figure 5.20 presents the corresponding scree plot for the smoothed synthetic data. Smoothing
the data leads to a substantial reduction in the number of principal components needed to
explain at least 95% of the variance (8 for smoothed CTGAN spectra and 5 for smoothed
TVAE spectra).
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Figure 5.20: Scree plot of principal components that explains at least 95% of variance in the
real and smoothed synthetic data

The observed relationship between the amount of variance explained by the principal compo-
nents in the scree plots and the extent to which the data is spread along these principal compo-
nents in the PCA score plots is consistent with our expectations. As the principal components
capture the directions of maximum variance in the data, it is natural to see a correspondence
between the explained variance and the spread of data points along these components in the
score plots.
We plotted the synthetic and real spectra on their corresponding lower-dimensional Isomap
manifold, with raw spectra displayed in Figure 5.21 and smoothed spectra in Figure 5.22.
Neither of the raw spectra captured the shape of the real spectra well, but CTGAN appeared
slightly more faithful. Smoothing the CTGAN spectra improved its dimensional resemblance
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to the real, but this improvement was not observed for the TVAE spectra. Interestingly, both
the raw and smoothed TVAE spectra were quite similar to each other.

Figure 5.21: Isomap score plot of raw and real spectra against their own top lower-dimensional
embeddings as axes

Figure 5.22: Isomap score plot of smooth and real spectra against their own top lower-
dimensional embeddings as axes

Additionally, we projected the synthetic spectra onto the lower-dimensional embeddings ob-
tained from the Isomap reduction of the real data. The Isomap projection of the raw spectra
can be seen in Figure 5.23, while the Isomap projections of the smoothed spectra are displayed
in Figure 5.24. The projections of both CTGAN and TVAE successfully captured the distinct
characteristics of the real data’s shape. However, both models displayed a similar rotation
relative to the real data and did not exhibit the same level of spread along the top two lower-
dimensional embeddings. The corresponding raw and synthetic spectra shared similar shape
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and rotation, but the projected data points from the smoothed data were more dispersed than
their raw counterparts. This indicates that the top two lower-dimensional embeddings account
for a greater proportion of the nonlinear variance in the real data compared to the synthetic
data, although smoothing assists in capturing more of this variance.

Figure 5.23: Isomap score plot of real spectra and raw spectra against top lower-dimensional
embeddings from real spectra as axes

Figure 5.24: Isomap score plot of real spectra and smoothed spectra against top lower-
dimensional embeddings from real spectra as axes

5.1.5 Data Labeling Analysis

In this section, we present the results of the Data Labeling Analysis performed on the synthetic
spectra generated by CTGAN and TVAE, both raw and smoothed. This analysis evaluates the
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semantic resemblance between the real and synthetic data by assessing the performance of vari-
ous ML classifiers in distinguishing between the real and synthetic records. Lower classification
accuracy implies higher fidelity of the synthetic data, as it indicates that the classifiers struggle
to differentiate between the real and synthetic records.

Tables 5.8, 5.9, 5.10, and 5.11 present the performance metrics (Accuracy, F1, Precision, and
Recall) of five different ML classifiers (RF, KNN, DT, (SVM), and MLP when applied to the
raw and smoothed synthetic spectra generated by CTGAN and TVAE, respectively.

For the raw synthetic spectra generated by CTGAN (Table 5.8), RF and MLP achieved perfect
classification scores, indicating strong classifiers are clearly able to distinguish between real and
synthetic records. SVM and DT score overall high too. KNN, however, had a lower classification
scores, suggesting some degree of similarity between the real and synthetic data.

Accuracy F1 Precision Recall

RF 1.0 1.0 1.0 1.0
KNN 0.760154 0.684654 0.520513 1.0
DT 0.99658 0.996581 0.996581 0.996581
SVM 0.999145 0.999145 0.998291 1.0
MLP 1.0 1.0 1.0 1.0

Table 5.8: Evaluation of ML algorithms performance at discriminating between real and raw
synthetic NIR Spectra generated by CTGAN

Regarding the raw synthetic spectra generated by TVAE (Table 5.9), RF and MLP exhibited
near-perfect classification scores. KNN and SVM, on the other hand, demonstrated significantly
lower scores, except for the again perfect recall for KNN and near perfect precision for SVM,
which indicates raw TVAE spectra resemble real spectra more than the raw CTGAN spectra. It
is intriguing that KNN again demonstrates perfect recall but otherwise overall poor classification
performance. One can be tempted to believe that KNN classifies nearly all records as the same
class.

Accuracy F1 Precision Recall

RF 0.999572 0.999572 0.999145 1.0
KNN 0.501496 0.006814 0.003419 1.0
DT 0.969645 0.969251 0.95641 0.982441
SVM 0.501496 0.656857 0.953846 0.500898
MLP 1.0 1.0 1.0 1.0

Table 5.9: Evaluation of ML algorithms performance at discriminating between real and raw
synthetic NIR Spectra generated by TVAE

When considering the smoothed synthetic spectra generated by CTGAN (Table 5.10), the clas-
sification scores were still generally high, with MLP achieving perfect accuracy and RF nearly
so, indicating that smoothing did not help fool RF and MLP. DT and SVM also displayed
strong classification metrics yet again. Even KNN improved its classification scores, suggesting
that the resemblance between real and synthetic data was not improved by smoothing, rather
the contrary.
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Accuracy F1 Precision Recall

RF 0.998717 0.998716 0.997436 1.0
KNN 0.886704 0.872289 0.773504 1.0
DT 0.990167 0.990133 0.986325 0.993971
SVM 0.992304 0.992353 0.998291 0.986486
MLP 1.0 1.0 1.0 1.0

Table 5.10: Evaluation of ML algorithms performance at discriminating between real and
smoothed synthetic spectra generated by CTGAN

Lastly, for the smoothed synthetic spectra generated by TVAE (Table 5.11), the strong classifiers
RF and MLPmaintained high classification accuracies. DT also maintained a high overall scores.
SVM and KNN showed a marked increase in classification scores compared to the raw TVAE
spectra, implying that smoothing had a limited impact on the fidelity of the synthetic data in
this case.

Accuracy F1 Precision Recall

RF 0.988884 0.988851 0.98547 0.992255
KNN 0.683198 0.538318 0.369231 0.993103
DT 0.952116 0.951431 0.937607 0.965669
SVM 0.910646 0.915419 0.966667 0.869331
MLP 0.999572 0.999572 0.999145 1.0

Table 5.11: Evaluation of ML algorithms performance at discriminating between real and
smoothed synthetic NIR Spectra generated by TVAE

In our data labeling analysis, we discovered that smoothing the synthetic data did not make it
more difficult for classifiers to distinguish between real and synthetic data. In some instances,
such as with KNN, the classifier’s performance actually improved. Interestingly, KNN achieved
a perfect recall but had relatively lower scores in other performance metrics. One potential
explanation for this behavior could be that the KNN classifier is biased towards predicting one
class over the other. This hypothesis is further supported by the fact that KNN achieved a
classification accuracy close to 50% when classifying raw TVAE spectra in a balanced dataset.
A 50% classification accuracy suggests that the classifier is unable to distinguish between the
samples effectively. These findings highlight the importance of considering different classifiers
when evaluating synthetic data fidelity, as well as the potential limitations of using synthetic
data in real-world applications. Further research could investigate techniques to mitigate clas-
sifier bias or improve the overall performance of generative models, ensuring that the synthetic
data is more representative of the real data across various performance metrics.

5.2 Utility

In this section, we assess the utility of the synthetic data generated by CTGAN and TVAE by
evaluating the performance of ML algorithms trained on both real and synthetic data. Using
the TRTR and TSTR methodology, we compared the performance of five regressor variants of
the classifiers employed in the data labeling analysis: RF, KNN, DT, SVM, and MLP. The
coefficient of determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE) were calculated for each classifier trained on the real, raw synthetic, and smoothed
synthetic data.
Table 5.12 shows the R2 values for the ML algorithms trained on the real spectra and the raw
spectra produced by CTGAN and TVAE. The results demonstrate that the models trained on
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the real data generally outperform those trained on the synthetic data. Notably, the RF classifier
trained on TVAE-generated data achieved a moderately high R2 value of 0.180346, while the
same classifier trained on CTGAN-generated data yielded a negative R2 value, indicating that
the model is not able to predict the target variable accurately. Our SVM regressor performed
poorly at predicting DMC from all spectra, and intriguingly performed worst with the real NIR
spectra.

NIR CTGAN NIR TVAE NIR

RF 0.667707 -0.006353 0.180346
KNN 0.372196 -0.146006 0.133436
DT 0.292846 -1.322496 -0.255557
SVM -8.574527 -3.601274 -2.544479
MLP 0.708510 -1.269254 0.002788

Table 5.12: Comparing ML algorithms trained on real spectra against raw spectra produced by
CTGAN and TVAE on performance on same holdout subset of real data

Table 5.13 presents the R2 values for the ML algorithms trained on the real spectra and the
smoothed spectra produced by CTGAN and TVAE. Similar to the results obtained with the raw
synthetic data, the models trained on the real data outperform those trained on the smoothed
synthetic data. However, the RF classifier trained on TVAE-generated smoothed data achieved a
higher R2 value of 0.189407 compared to the same classifier trained on the raw TVAE-generated
data. The SVM regressor still performed quite poorly at predicting the DMC when trained on
smoothed spectra, performing worse than a baseline model.

NIR CTGAN NIR TVAE NIR

RF 0.667707 -0.209106 0.189407
KNN 0.372196 -0.294911 0.150815
DT 0.292846 -2.450614 -0.388260
SVM -8.574527 -14.083039 -2.277547
MLP 0.708510 -0.409346 -0.041049

Table 5.13: Comparing ML algorithms trained on real spectra against smoothed spectra pro-
duced by CTGAN and TVAE on performance on same holdout subset of real data

The utility assessment indicates varying results for the synthetic data generated by TVAE and
CTGAN. For TVAE, some promise was shown, particularly for RF and KNN. However, the
synthetic data did not yet reach the level of utility necessary to replace real data for training
ML models. In contrast, CTGAN consistently achieved negative scores. This result suggests
that models trained on synthetic data generated by CTGAN perform worse than a simple
baseline model, such as predicting the mean of the target variable for all instances.
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Chapter 6
Discussion

Our discussion centers around understanding and analyzing the outcomes of our research, in
which we scrutinized the fidelity and utility of synthetic data generated by CTGAN and TVAE
for potential use in ML applications within NIR spectroscopy. We leveraged a multitude of
techniques to evaluate the synthetic data’s quality and its viability as a substitute for real data
in the training and assessment of ML models.

We examined various facets of fidelity in our analysis, including univariate resemblance, mul-
tivariate relationships, dimensional resemblance analysis, and data labeling analysis. The goal
of these assessments was to conduct a comprehensive exploration of the similarity between syn-
thetic and real data, considering statistical properties, inter-variable relationships, and overall
data structure. Besides fidelity, we also appraised the utility of the synthetic data by gauging
its suitability as an alternative to real data in the training of a range of ML models.

As we move forward, we will delve into the implications of our results, ponder over potential
reasons behind the observed findings, and propose further work to enhance the quality and utility
of synthetic data for NIR spectroscopy applications. We will also confront the constraints of
our study and evaluate how these limitations could influence our conclusions.

6.1 Our Findings

This study investigated the capabilities of CTGAN and TVAE from SDV in generating syn-
thetic data that closely resembled real NIR spectral data. Both models successfully produced
synthetic data with similar statistical properties, but TVAE demonstrated superior preservation
of correlations between variables and maintained the relationship between target and features
more effectively than CTGAN, which performed poorly in this regard. TVAE performed sig-
nificantly better in preserving a subset of flat trend NIR spectra with a similar quantity to the
real data, which CTGAN was unable to achieve.

During the data labeling analysis, it was observed that classifiers could easily distinguish be-
tween real and CTGAN-generated data, while having a harder time differentiating between real
and TVAE-generated data. This finding suggests that the synthetic data produced by TVAE
is more similar to the real data.

In the utility assessment, it was revealed that although TVAE-generated synthetic data shows
potential, particularly for RF and KNN classifiers, it has not yet reached the level of utility
necessary to replace real data for training ML models. Conversely, CTGAN-generated synthetic
data performed poorly, with models trained on this data faring worse than a simple baseline
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model.

The poor performance by CTGAN could be linked to struggle to replicate the correlation
between the spectra and DMC found in the real data. It is intriguing to note this difficulty,
given that CTGAN managed to largely replicate the relationships between the spectra. In
contrast, TVAE captured all the correlations in the real data quite well, suggesting a higher
capacity to model complex relationships in the data.

6.2 Interpretation and Implication of Results

The results demonstrated promise, particularly in more superficial comparisons, such as plots
and statistical similarities between real and synthetic data. Although it is possible to distin-
guish between them, especially between real and raw synthetic spectra which appeared notably
rougher, the synthetic data still captured the overall pattern and trend. Moreover, TVAE effec-
tively preserved the Pearson pairwise correlations between features and between features and
the target.

However, when using dimensionality reduction and ML techniques to examine the resemblance
between real and synthetic data, it became apparent that they were easily distinguishable. It is
worth noting that fooling ML classifiers remains a challenge when generating synthetic tabular
data [87].

The synthetic spectra did not show significant potential as a replacement for real spectra when
training ML regressors, as they yielded much lower scores compared to the real data. This was
particularly true for CTGAN, which performed worse than a baseline model for all ML models.
Upon examining the correlation between the target and features in the CTGAN dataset, we
found that it did not capture the relationship between target and features well, despite doing
a decent job at preserving the correlation between features. However, it did not preserve this
correlation as well as TVAE, resulting in CTGAN producing rougher spectra than TVAE, indi-
cating that it generally struggled more than TVAE to capture the correlations between columns.
We also noted that CTGAN suffered from unstable loss values, indicating poor performance on
this data.

The correlations between the target and features are not particularly high even in the real data,
which might partially explain why achieving a high degree of utility is challenging in this case.
It is a possibility that regression problems require better data than classification, making it in-
herently more challenging working with a continuous target. It is possible that a higher degree
of utility could be achieved if a different target were chosen.

6.3 Remaining Challenges

The tabular generative models used in this thesis were successful in capturing some impor-
tant aspects of fidelity but failed significantly in others. While they managed to produce data
that appeared promising on a superficial level, ML models could easily distinguish them from
each other. Strong classifiers typically perform well in distinguishing real and synthetic tabular
records [87], indicating that it is a generally difficult problem yet to be solved.

As for utility, the synthetic data did not seem like a viable substitute for real data. The scores
were far worse than those obtained with real data, but this might improve with a different target,
such as one that would lead to a classification problem instead of regression. Another option
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could be binning the target to transform it into a classification problem, potentially simplifying
the task. Additionally, the training of the models might have performed better with different
hyperparameters. This thesis did not employ automatic and systematic hyperparameter tuning,
as manual experimental adjustments did not appear to yield promising results.

Another challenge faced in our study relates to the inherent nature of NIR spectra, which
exhibit diffuse signals and high correlations between features. It is possible that the tabular
variants of generative models, such as CTGAN and TVAE, may struggle to fully capture these
correlations. This could potentially explain the limitations we observed in terms of data fidelity
and utility. Future work could explore alternative generative models that are better suited to
capturing these complex, highly correlated features present in NIR spectra.

In addition to NIR spectroscopy, there are other spectroscopic techniques that exhibit sharper
peaks and higher spectral resolutions. It is possible that these characteristics might be easier for
generative models to capture and reproduce. Future research could investigate the applicability
of generative models to other spectroscopic techniques, which may lead to improved fidelity and
utility in these domains.

6.4 Future Work

The results of this study illuminate the shortcomings NIR spectroscopic data using state of the
art generative models. However, there are still potential areas that warrant further exploration
that could possibly enhance the quality and utility of the synthetic data. In this context, we
propose two main ways forward for future research: Data Handling and Generative models.

6.4.1 Data Handling

A potential approach to improve the results may involve investigating alternative preprocessing
techniques to better align the synthetic data with the real data. In our study, we did not perform
hyperparameter tuning for SG smoothing, suggesting that there might be more suitable hyper-
parameters for the data generated by CTGAN and TVAE. In terms of fidelity, the synthetic
data, especially from TVAE, closely resembled the real data. However, the data generated by
CTGAN appeared somewhat more irregular. Adjusting the hyperparameters in SG smoothing
or employing alternative smoothing techniques, such as moving average, standard normal vari-
ate, and multiplicative scatter correction (either individually or in combination), could further
enhance the quality of the synthetic data. These methods have been used to preprocess NIR
spectra in previous studies [97].

Another approach we could consider is treating the NIR spectra as 1D images, which might
yield more desirable outcomes. In our study, we opted to represent NIR spectra samples as rows
in a table due to their structured format. This choice made the use of CTGAN and TVAE par-
ticularly sensible. However, we observed that the synthetic data tended to be less regular than
the real data. A GAN model that interprets NIR spectra as images might be better equipped to
account for and maintain the local relationships between neighboring features, which appears
to be a primary challenge with our results. This could be achieved through the use of a GAN
with CNN, unlike the fully connected networks employed by CTGAN. Additionally, we could
explore the possibility of treating a small selection of randomly chosen spectra as a 2D image.
This approach could potentially enhance the smoothness of the real data by leveraging multiple
spectra to illustrate this characteristic.

Another interesting idea if considering NIR spectra as image data would be to use a CNN to
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predict the target. Since the synthetic spectra in many ways visually resemble the real spec-
tra, treating the synthetic spectra as 1D-images could yield better performance with respect to
utility, even if the data was produced by a model that considers the data tabular.

It might also be helpful to choose a different subset of the NIR spectra. The wavelengths in
the range of approximately 700-750 nm display quite a different intensity from the subsequent
wavelengths. This discrepancy could make it more challenging for the generative models to
accurately model the spectra and preserve the relationship between them. Removing the first
few columns could make a difference.

Binning the target could transform the regression problem into a classification problem, poten-
tially making it easier to preserve the relationship between the target and features. Additionally,
predicting bins might be more forgiving of the rougher patterns of the synthetic spectra, thus
making it easier to predict the target.

Spectral data, especially NIR spectra, is characterized by a high degree of correlation between
features [76]. This presents a unique challenge for synthetic data generation. Our current pre-
processing methods and generative models, while effective to an extent, were not fully able to
capture these inter-feature correlations. To address this, future work should consider exploring
data handling techniques and generative models that can explicitly model these correlations.
Methods such as PLSR [19] could be employed in preprocessing to emphasize the structure of
correlation in the data. Alternatively, more advanced generative models that explicitly model
correlations could be utilized.

Lastly, an alternative approach worth exploring involves creating hybrid datasets by combining
real and synthetic data to potentially enhance the predictions of ML models. In this study, we
focused on training models exclusively on synthetic data; however, augmenting real data with
synthetic data could lead to improved prediction performance. This idea addresses the limita-
tions observed when using purely synthetic data and introduces a new direction for investigating
the potential advantages of leveraging hybrid datasets in this domain.

6.4.2 Model Tuning

Despite initial attempts, manual tuning of hyperparameters for the CTGAN and TVAE mod-
els yielded negligible improvements in the generated synthetic NIR spectra. As a result, the
prospect of systematic hyperparameter tuning, which includes techniques such as grid search,
random search, and Bayesian optimization [98], was not pursued due to computational resource
constraints. Future research with more computational resources could explore this aspect for
potentially enhanced results.

6.4.3 CTAB-GAN

In addition to hyperparameter tuning, the consideration of more advanced GAN models could
also be beneficial. In particular, CTAB-GAN is an intriguing candidate for further exploration
[99]. CTAB-GAN, unlike CTGAN and TVAE, is specifically tailored to manage skewed con-
tinuous distributions, a characteristic seen in our NIR spectra. By employing diverse data
preprocessing methods for different distributions, CTAB-GAN provides a versatile tool for han-
dling various spectral shapes.

The structure of CTAB-GAN includes a generator and a discriminator, both of which are CNNs,
along with an auxiliary multi-layer perceptron classifier. This additional classifier plays a piv-
otal role in preserving the semantic richness of the original data and estimating the classes
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of synthetic data, a feature that could prove especially advantageous when dealing with the
intricate associations found within NIR spectral data. To tackle any imbalances present in the
training dataset, CTAB-GAN also integrates a conditional aspect, which serves to optimize the
learning experience.

CTAB-GAN employs a training regimen using a cross-entropy loss function supplemented with
information loss and classification loss. This multi-objective loss function could lead to a more
balanced representation of the real NIR spectra in the synthetic data. In preliminary studies,
CTAB-GAN has demonstrated superior performance in terms of ML efficacy and statistical
similarity metrics compared to other state-of-the-art models, suggesting its potential to improve
the results obtained in our study. The exploration of such advanced models in conjunction with
hyperparameter tuning could lead to significant improvements in the generation of synthetic
NIR spectra.

6.4.4 Other Generative Models

Generative AI has experienced rapid progress in recent years, driven by advancements in deep
learning algorithms, computational power, and the availability of large-scale datasets. This
growth has led to the development of sophisticated models capable of generating realistic and
high-quality data across various domains, such as images, text, audio, and tabular data. Two
types of generative models that have been on the rise recently is the adverserial autoencoders
[100] and denoising diffusion probabilistic models [101].

Adversarial Autoencoders (AAEs) could be considered for further work on generating synthetic
NIR spectra. As a type of generative model that combines the concepts of autoencoders and
GANs, AAEs can potentially improve the generation of synthetic NIR spectra by leveraging
their unique architecture and adversarial loss concept. As explained earlier in the text, the
latent space in VAE is regularized by minimizing the KL-divergence between the distribution
of the encoded samples and a predefined distribution, usually normal. In AAE, the latent
space is instead regularized through adversarial loss. By using a discriminator to distinguish
between random vectors drawn from a desired distribution (again, usually normal) and an en-
coded sample, it will through adversarial loss enforce the distribution of the encoded sample to
approximate that distribution.

AAEs have shown promising results in generating clearer latent spaces and more consistent
representations in other domains. In the context of generating synthetic NIR spectra, AAEs
could potentially produce more realistic and accurate spectra by better capturing the underly-
ing structure and distribution of the original data.

Denoising Diffusion Probabilistic Models (DDPMs) offer a promising avenue for generating high-
quality synthetic NIR spectra. These models have recently gained traction in the generative
modeling domain due to their ability to produce highly realistic synthetic samples by leverag-
ing a diffusion process [102]. DDPMs have outperformed GAN and VAE in various important
benchmarks in recent years [103, 104]

The diffusion process is a random process that models how a system changes over time due to
random fluctuations or noise. In generative modeling, the diffusion process is used to simplify a
sample from a complex data distribution into a simpler distribution, typically Gaussian noise,
through a series of time steps that progressively adds a small amount of noise to the data. A
neural network then tries to undo this diffusion process by denoising it to restore the data back
to its original state. It starts with the last time step noise was introduced to the data and tries
to output the less noisy version of the previous time step, repeating this process for every step
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that introduced noise to the data. By iteratively performing the denoising process in reverse
order of the diffusion process, the neural network learns the intricate distribution of the real
data, enabling it to transform randomly sampled noise into meaningful synthetic samples that
bears a strong resemblance to real data.

DDPM are becoming a leading paradigm in most domains, and tabular data is no exception;
in a study by Kotelnikov et al. [105], the authors introduced TabDDPM, a DDPM specifically
designed for tabular data, and compared its performance against leading variants of GAN (CT-
GAN, CTAB-GAN and CTAB-GAN+) and VAE (TVAE) in terms of quality, ML efficiency,
and privacy. TabDDPM demonstrated superior performance in approximating individual fea-
ture distributions, particularly for numerical features with a uniform distribution, categorical
features with numerous categories, and features that were both continuous and discrete. The
ML efficiency of TabDDPM was evaluated using the average performance of various algorithms
(Decision Tree, RF, Logistic Regression, and MLP models from the scikit-learn library) and
the performance of CatBoost, a highly successful classifier of tabular data. TabDDPM outper-
formed all other generators in both evaluation methods, showcasing its high utility. When we
treat NIR data as tabular, this approach could perhaps lead to better results than we acquired
in this study.
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Chapter 7
Conclusion

In this thesis, we scrutinized the capability of the Synthetic Data Vault’s (SDV) models—CTGAN
and TVAE—in synthesizing Near-Infrared (NIR) spectral data that closely mirrors real-life
counterparts. The investigation revealed that both models could generate synthetic data with
similar statistical properties. However, TVAE emerged as the superior model, demonstrating
a higher proficiency in preserving correlations between variables and the relationship between
target and features.

Despite the superficially promising nature of the synthetic data, as evidenced by plots and sta-
tistical similarities, ML classifiers managed to distinguish real from synthetic data effortlessly.
This reveals the persistent challenge of creating synthetic tabular data that can convincingly
imitate real data. Furthermore, when assessing utility, synthetic data generated by both CT-
GAN and TVAE fell short in replacing real data for training ML models aimed at predicting
DMC.

In conclusion, the synthetic NIR spectral data crafted by CTGAN and TVAE display poten-
tial but also room for substantial enhancement, particularly in terms of fidelity and utility.
This research broadens our understanding of synthetic data generation and its role in NIR
spectroscopy. The study highlighted TVAE’s superior performance in generating more realistic
synthetic data, yet underlined that neither model could convincingly supplant real data in ML
model training.

The findings of this thesis pave the way for intriguing future research opportunities. These
include exploring diverse preprocessing techniques, experimenting with a wider range of gener-
ative models, investigating the treatment of NIR spectra as 1D images, and transitioning the
regression problem into a classification one. The concept of creating hybrid datasets, which
blend real data with synthetic data, also warrants further exploration. Delving into these di-
rections could herald the advent of more adept generative models and amplify the utility of
synthetic data in NIR spectroscopy and related domains.

In our pursuit of synthetic data generation techniques that can effectively stand in for real data
in training ML models, further research is indispensable. Continued efforts in this area promise
to bring about significant benefits across a multitude of applications within the field of NIR
spectroscopy.
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[70] Martin Arjovsky and Léon Bottou. “Towards principled methods for training generative
adversarial networks”. In: arXiv preprint arXiv:1701.04862 (2017).

[71] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In: arXiv preprint
arXiv:2003.05991 (2020).

[72] EugenioTL. Variational Autoencoder structure. File:VAE Basic.png. 2021. url: https:
//commons.wikimedia.org/wiki/File:VAE_Basic.png.

[73] Unai Garay-Maestre, Antonio-Javier Gallego, and Jorge Calvo-Zaragoza. “Data augmen-
tation via variational auto-encoders”. In: Progress in Pattern Recognition, Image Anal-
ysis, Computer Vision, and Applications: 23rd Iberoamerican Congress, CIARP 2018,
Madrid, Spain, November 19-22, 2018, Proceedings 23. Springer. 2019, pp. 29–37.

[74] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In: arXiv
preprint arXiv:1411.1784 (2014).

[75] Gael Lederrey, Tim Hillel, and Michel Bierlaire. “DATGAN: Integrating expert knowl-
edge into deep learning for synthetic tabular data”. In: arXiv preprint arXiv:2203.03489
(2022).

[76] PW Goedhart. “Comparison of multivariate calibration methods for prediction of feeding
value by near infrared reflectance spectroscopy.” In: Netherlands Journal of Agricultural
Science 38.3B (1990), pp. 449–460.

[77] Tomoyuki Nagasawa et al. “fNIRS-GANs: data augmentation using generative adversar-
ial networks for classifying motor tasks from functional near-infrared spectroscopy”. In:
Journal of Neural Engineering 17.1 (2020), p. 016068.

[78] Dehua Zhu et al. “Synthetic spectra generated by boundary equilibrium generative ad-
versarial networks and their applications with consensus algorithms”. In: Optics Express
28.12 (2020), pp. 17196–17208.

[79] Kaixun He, Jingjing Liu, and Zhi Li. “Application of Generative Adversarial Network
for the Prediction of Gasoline Properties”. In: Chemical Engineering Transactions 81
(2020), pp. 907–912.

[80] James Jordon et al. Synthetic Data – what, why and how? 2022. arXiv: 2205.03257
[cs.LG].

[81] Mikel Hernandez et al. “Standardised metrics and methods for synthetic tabular data
evaluation”. In: Preprint at https://doi. org/10.36227/techrxiv 16610896 (2021), p. v1.

[82] Richard Taylor. “Interpretation of the correlation coefficient: a basic review”. In: Journal
of diagnostic medical sonography 6.1 (1990), pp. 35–39.

[83] Vance W Berger and YanYan Zhou. “Kolmogorov–smirnov test: Overview”. In: Wiley
statsref: Statistics reference online (2014).

[84] Edward H Livingston. “Who was student and why do we care so much about his t-test?
1”. In: Journal of Surgical Research 118.1 (2004), pp. 58–65.

[85] Nadim Nachar et al. “The Mann-Whitney U: A test for assessing whether two indepen-
dent samples come from the same distribution”. In: Tutorials in quantitative Methods
for Psychology 4.1 (2008), pp. 13–20.

[86] Joshua B Tenenbaum, Vin de Silva, and John C Langford. “A global geometric framework
for nonlinear dimensionality reduction”. In: science 290.5500 (2000), pp. 2319–2323.

[87] EL Hacen Zein and Tanguy Urvoy. “Tabular Data Generation: Can We Fool XGBoost?”
In: NeurIPS 2022 First Table Representation Workshop.

Page 87 of 89

https://commons.wikimedia.org/wiki/File:VAE_Basic.png
https://commons.wikimedia.org/wiki/File:VAE_Basic.png
https://arxiv.org/abs/2205.03257
https://arxiv.org/abs/2205.03257


[88] Kei Long Wong et al. “A Novel Fusion Approach Consisting of GAN and State-of-Charge
Estimator for Synthetic Battery Operation Data Generation”. In: Electronics 12.3 (2023),
p. 657.

[89] Michael Platzer and Thomas Reutterer. “Holdout-based empirical assessment of mixed-
type synthetic data”. In: Frontiers in big Data 4 (2021), p. 679939.

[90] Lei Xu et al. “Modeling Tabular data using Conditional GAN”. In: CoRR abs/1907.00503
(2019). arXiv: 1907.00503. url: http://arxiv.org/abs/1907.00503.

[91] Puneet Mishra and Dário Passos. “Deep multiblock predictive modelling using parallel
input convolutional neural networks”. In: Analytica chimica acta 1163 (2021), p. 338520.

[92] John W Palmer et al. “Fruit dry matter concentration: a new quality metric for apples”.
In: Journal of the Science of Food and Agriculture 90.15 (2010), pp. 2586–2594.

[93] Nicholas T Anderson, Phul P Subedi, and Kerry B Walsh. “Manipulation of mango fruit
dry matter content to improve eating quality”. In: Scientia Horticulturae 226 (2017),
pp. 316–321.

[94] Hailong Wang et al. “Fruit quality evaluation using spectroscopy technology: a review”.
In: Sensors 15.5 (2015), pp. 11889–11927.

[95] Md Asadur Rahman, Mohd Abdur Rashid, and Mohiuddin Ahmad. “Selecting the opti-
mal conditions of Savitzky–Golay filter for fNIRS signal”. In: Biocybernetics and Biomed-
ical Engineering 39.3 (2019), pp. 624–637.

[96] Pasquale Zingo and Andrew Novocin. “Introducing the TSTRMetric to Improve Network
Traffic GANs”. In: Advances in Information and Communication: Proceedings of the 2021
Future of Information and Communication Conference (FICC), Volume 1. Springer.
2021, pp. 643–650.

[97] Bahareh Jamshidi et al. “Reflectance Vis/NIR spectroscopy for nondestructive taste
characterization of Valencia oranges”. In: Computers and Electronics in Agriculture 85
(2012), pp. 64–69.

[98] Li Yang and Abdallah Shami. “On hyperparameter optimization of machine learning
algorithms: Theory and practice”. In: Neurocomputing 415 (2020), pp. 295–316.

[99] Zilong Zhao et al. CTAB-GAN: Effective Table Data Synthesizing. 2021. arXiv: 2102.
08369 [cs.LG].

[100] Alireza Makhzani et al. “Adversarial autoencoders”. In: arXiv preprint arXiv:1511.05644
(2015).

[101] Jascha Sohl-Dickstein et al. “Deep unsupervised learning using nonequilibrium thermo-
dynamics”. In: International Conference on Machine Learning. PMLR. 2015, pp. 2256–
2265.

[102] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 6840–6851.

[103] Gustav Müller-Franzes et al. “Diffusion Probabilistic Models beat GANs on Medical
Images”. In: arXiv preprint arXiv:2212.07501 (2022).

[104] Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis.
2021. arXiv: 2105.05233 [cs.LG].

[105] Akim Kotelnikov et al. “TabDDPM: Modelling Tabular Data with Diffusion Models”.
In: arXiv preprint arXiv:2209.15421 (2022).

Page 88 of 89

https://arxiv.org/abs/1907.00503
http://arxiv.org/abs/1907.00503
https://arxiv.org/abs/2102.08369
https://arxiv.org/abs/2102.08369
https://arxiv.org/abs/2105.05233


 

 

 


	Introduction
	Motivation
	Dataset and Methodology
	Objectives

	Theory
	Near infrared spectroscopy
	Chemometric Techniques for NIR Spectroscopy

	Machine Learning
	Machine Learning in NIR Spectroscopy
	Shallow Machine Learning Techniques for NIR Spectroscopy
	Deep Machine Learning Techniques for NIR Spectroscopy

	Generative modeling
	Generative Adversarial Networks
	Variational Autoencoders
	CTGAN and TVAE
	Applications of Generative Models in NIR Spectroscopy

	Evaluation of Synthetic Data
	Fidelity
	Utility


	Data Exploration
	Dataset Description
	Data Exploration
	Preliminary Investigation
	Statistical Properties


	Method
	Preprocessing
	Training
	Savitzky-Golay Smoothing
	Evaluation

	Results
	Fidelity
	Visualizing spectra
	Univariate Resemblance Analysis
	Multivariate Relationships Analysis
	Dimensional Resemblance Analysis
	Data Labeling Analysis

	Utility

	Discussion
	Our Findings
	Interpretation and Implication of Results
	Remaining Challenges
	Future Work
	Data Handling
	Model Tuning
	CTAB-GAN
	Other Generative Models


	Conclusion

