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Abstract

Head and neck cancer accounts for around 3%of cancers worldwide, resulting in

many deaths each year. The increasing number of patients receiving a cancer

diagnosis increases the demand for accurate diagnosis and effective treatment.

Intra-tumor heterogeneity is said to be one of the issues in cancer therapy, an is-

sue that needs to be solved. Radiomics pave the way for extracting features based

on the shape, size, and texture of the entire tumor.

Radiomics extracts features from tumors based on the gray levels in a medical

image. The process of radiomics is intended to capture texture and heterogeneity

in the tumor that would be impossible to deduce from a simple tumor biopsy.

Feature extraction by radiomics has been proven to enrich clinical datasets with

valuable features that positively impact the performance of predictive models.

This thesis investigates the use of clinical and radiomics features for predicting

treatment outcomes of head and neck cancer patients using interpretable models.

The radiomics algorithm extracts first-order statistical, shape, and texture fea-

tures from PET and CT images of each patient. The 139 patients in the training

dataset were from Oslo University Hospital (OUS), whereas the 99 patients in the

test set were from the MAASTRO clinic in the Netherlands. All the clinical fea-

tures, together with the radiomics features, counted 388 features in total. Feature

selection through the repeated elastic net technique (RENT) was performed to

exclude irrelevant features from the dataset. Seven different tree-based machine

learning algorithms were fitted to the data, and the performance was validated

by the accuracy, ROC AUC, Matthews correlation coefficient, F1 score for class

1, and F1 score for class 0. The models were tested on the external MAASTRO

dataset, and the overall best-performing models were interpreted.

On the external dataset from the MAASTRO clinic, the highest-performing mod-

els obtained an MCC of 0.37 for OS prediction and 0.44 for DFS prediction. For

both OS and DFS, the highest predictions were made on only the clinical data.

Transparency in machine learning models greatly benefits decision-makers in clin-

ical settings, as every prediction can be reasoned for. Predicting treatment out-

comes for head and neck patients is highly possible with interpretable models. To

determine if the methods used in this thesis are suited for predicting treatment

outcomes for head and neck cancer patients, it is necessary to test the methods

and models on more datasets.
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Sammendrag

Hode- og halskreft st̊ar for rundt 3% av krefttilfellene over hele verden, og for̊arsaker

mange dødsfall hvert år. Det økende antallet pasienter som f̊ar en kreftdiagnose

øker etterspørselen etter nøyaktig diagnosering og effektiv behandling. Intra-tumor

heterogenitet sies å være et av problemene innen kreftbehandling, et problem som

må løses. Radiomics gjør det mulig å ekstrahere egenskaper basert p̊a formen,

størrelsen og teksturen til hele svulsten.

Radiomics ekstraherer egenskaper fra svulster basert p̊a gr̊atoneniv̊aene i et me-

disinsk bilde. Radiomics algoritmen fanger tekstur og heterogenitet i svulsten som

ikke ville være mulig å utlede fra en biopsi. Egenskapsuthenting med Radiomics

har vist seg å berike kliniske datasett med nyttige egenskaper som positivt p̊avirker

ytelsen til prediktive modeller.

Denne oppgaven undersøker bruken av kliniske og radiomics egenskaper for å

predikere behandlingsutfall for hode- og halskreftpasienter ved å bruke tolkbare

modeller. Egenskaper ble esktrahert fra bildene med radiomics De 139 pasientene i

treningsdatasettet var fra Oslo Universitetssykehus (OUS), mens de 99 pasientene i

testsettet var fra MAASTRO-klinikken i Nederland. Alle de kliniske egenskapene

sammen med radiomicsegenskapene utgjorde totalt 388 egenskaper. Egenskap-

sutvelging gjennom repetert elastisk nett teknikk (RENT) ble utført for å ek-

skludere irrelevante egenskaper fra datasettet. Syv forskjellige trebaserte maskin-

læringsalgoritmer ble tilpasset dataene, og ytelsen ble validert av nøyaktigheten,

ROC AUC, Matthews korrelasjonskoeffisient, F1-score for klasse 1 og F1-score for

klasse 0. Modellene ble deretter testet p̊a et eksternt fra MAASTRP klinikken, og

modellene med høyest ytelse ble tolket.

P̊a det eksterne datasettet fra MAASTRO-klinikken oppn̊adde modellene en MCC

p̊a 0, 37 for OS-prediksjon, og 0, 44 for DFS-prediksjon. Datasettene som oppn̊adde

denne ytelsen var kun basert p̊a de kliniske egenskapene. Åpenhet og tolkbarhet

i maskinlæringsmodeller er viktig dersom modellene skal brukes til klinisk beslut-

ningsstøtte, ettersom alle prediksjoner kan begrunnes. Å predikere behandling-

sutfall for hode- og halskreftpasienter er mulig med tolkbare modeller, men for å

avgjøre om metodene anvendt i denne oppgaven er skikket til dette, må metodene

og modellene testes p̊a flere datasett.
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List of Abbreviations

Abbreviation Definition

HPV Human papillomavirus

PET Positron emission tompgraphy

FDG Fluordeoxy glucose

CT Computer tomography

PMT Photomultiplier tubes

LOR Line of response

keV Kilo electron volt
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MTV Mean tumor volume
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ML Machine learning
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TN True negative
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ACC Accuracy

AUC Area under the curve

MCC Matthews correlation coefficient

PRE Precision

REC Recall

OUS Oslo University Hospital (Oslo Universitetssykehus)

OS Overall survival

DFS Disease-free survival
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Chapter 1

Introduction

1.1 Motivation

In 2020, cancer took the lives of nearly 10 million people worldwide [3]. In Norway,

38 265 people were affected by cancer in 2022, which is slightly higher than the

numbers for 2021 [4]. Cancer can be diagnosed using medical imaging, such as

PET and CT images [5]. Cancer can form in all parts of the body, including the

head and neck region.

Head and neck cancer is a term for all cancers originating in the mouth, lip, nose,

sinuses, and throat. It affected 744 994 patients worldwide in 2020 [3], and it ac-

counts for around 3% of cancer cases [3]. Risk factors for cancers in the head and

neck include smoking, humano papillomavirus (HPV) infection, obesity, and alco-

hol consumption [6]. Incidence rates of head and neck cancer are rising, and some

studies have contributed it to the increase of sexually transmitted HPV-infections

[6].

Cancers are most commonly treated with surgery, chemotherapy, or radiation ther-

apy [6]. Cancer treatment aims to remove or destroy cancerous cells without

harming surrounding tissues and organ function [6]. Cancer manifests differently

in every patient, and the need for accurate diagnosis and personalized treatment

is more significant than ever [7]. The distinct tumor phenotypes in human cancers

calls for imaging techniques that can accurately portray the intra-tumor hetero-

geneities non-invasively [8]. Through increased knowledge of the spatial tumor

heterogeneity, it is possible that personalized cancer treatment can minimize treat-

ment resistance and improve clinical outcomes [9].
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1.2 Method

Machine Learning has the potential to be used for decision support in the medical

field [10]. Many machine learning models make accurate predictions but at the

cost of interpretability [10]. For high-stakes decisions, black box models should

be avoided, and inherently interpretable models should be used instead [10]. In-

terpretable models are defined in this thesis as rule-based models that can be

understood by a human.

Extracting statistical, shape and textural features from a tumor in a medical image

can reveal properties of a tumor that cannot be found by inspection of medical

images or biopsies of tissues [8]. Radiomics is a data mining technique that uses

mathematical and statistical algorithms to extract features from medical images

[11]. The extracted features describe the tumor size, shape, density, and texture

[12]. Several studies have demonstrated that radiomics features that describe the

non-uniformity and heterogeneity within tumors, are significantly associated with

overall survival and disease-free survival in head and neck cancers ([13], [14], [15],

[16]).

1.3 Aim

The iModels package, proposed by Singh et al. [2], contains many models whose

primary aim is to make interpretable models while still obtaining state-of-the-art

performance. Rudin [10] argued that making interpretable models without sacrific-

ing performance is possible. This thesis aims to investigate these statements using

already well-established algorithms, as well as some newer candidates proposed in

the iModels package [2]. Interpretable and transparent models that can provide

meaningful explanations behind its predictions without sacrificing performance are

appropriate for decision support in the medical field.

1.4 Outline

Chapter 2 of this thesis will present the theoretical background for all the con-

cepts used to obtain the final results. Chapter 2 starts with Section 2.1, a quick

explanation of cancer, diagnosis, and treatment. In Section 2.3, the basic concepts

of nuclear physics are explained. The imaging modalities used in this thesis are
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then covered in Section 2.5 on Nuclear Medicine. Further, Section 2.6 explains

how radiomics can extract tabular features of the tumor and affected lymph nodes

from medical images. Finally, Chapter 2 is concluded with Section 2.7 where the

machine learning methods used in the thesis are described in detail. Chapter 3

outlines the methods used in this thesis. The results are presented in Chapter 4,

followed by a discussion in Chapter 5. Finally, Chapter 6 summarizes the conclu-

sions of this thesis.
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Chapter 2

Theory

2.1 Cancer

Cancer is a term used for many diseases caused by uncontrolled cell division in

different types of cells [17]. A mutation is always possible when cells divide, and

specific mutations can cause rapid cell division [17]. When a cell divides faster

than normal, it can form a cluster of cancerous cells known as a tumor. Tumors

can be malignant (cancerous) or benign (noncancerous) [18]. Cancerous tumors

can spread to nearby tissues or travel with the bloodstream or lymph system to

other distal parts of the body. This process is called metastases [19]. Metastases

cause secondary tumors to form in other parts of the body. Cancerous tumors

can form in all body parts, including the head and neck, which is the case for the

patients in this thesis.

2.2 Head and neck cancer

Head and neck cancer refers to cancers that arise in the head, throat, mouth, lips,

sinuses, and nasal cavities [6]. In 2017-2021, 4 170 Norwegian patients were diag-

nosed with head and neck cancer [20]. Multiple risk factors are connected to head

and neck cancer, including smoking, drinking, poor diet, or being infected by the

human papillomavirus (HPV) [6]. Diagnosing head and neck cancer can be done

by PET/CT, where combining a functional PET image and a structural CT image

can precisely determine the tumor size and activity. PET/CT is useful for staging

and planning treatment for the patient [21].

There are multiple sites where cancer can arise, and the datasets in this thesis

deals with cavum oris, hypopharynx, oropharynx, and larynx. Cavum oris refers to
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cancer in the oral cavity, hypopharynx refers to the lower part of the neck, and

larynx refers to the voice box. The oropharynx refers to the throat’s middle part,

the back of the mouth and tongue, and the tonsils [22]. Oropharyngeal cancer is

often related to HPV [22].
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2.3 Nuclear Physics

This section explains the relevant terms for Section 2.5.

2.3.1 Radioactivity and radioactive decay

In the nucleus of every atom, there are a number of neutrons and a number of

protons. The protons and neutrons are held together by forces, and when these

forces are imbalanced, the nucleus becomes unstable and thereby radioactive [23],

[24]. An unstable parent nucleus will attempt to become stable by emitting radia-

tion and transforming into a more stable daughter nuclide. This is the process of

radioactive decay [24]. The nuclear radiation emitted in the process exists in one

of three forms; alpha and beta particles, or gamma rays.

2.3.2 Alpha and Beta decay

In alpha decay, a particle with two neutrons and two protons is emitted [24]. It is

equivalent to a 4
2He nuclei [24]. Alpha particles have low penetrative abilities and

cannot pass through a sheet of paper [24].

Beta (β) decay is a process that converts a proton to a neutron or vice versa by

emitting a beta particle of either positive or negative charge [24]. The negative

beta particle, β−, is identical to an electron in mass and charge, whereas the

positive beta particle, β+, is the antiparticle of the electron [24]. This β+-particle

is called a positron. When a radionuclide emits a positron, it follows the reaction

p → n+ e+ + ν (2.3.1)

where p denotes the proton, n denotes the neutron, e+ is the positron, and ν is

the neutrino. Equation 2.3.1 shows β+ decay [24]. The neutrino is an electrically

neutral particle with a negligible mass that carries some of the energy from the

reaction [24]. In Equation 2.3.1, a proton is converted to a neutron by emitting a

positron and a neutrino. The process in Equation 2.3.1 is referred to as positron

emission [24]. Positron emission is the foundation of Positron Emission Tomogra-

phy (PET) imaging [25].
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2.3.3 Gamma decay

Gamma decay occurs when an excited nucleus emits a gamma photon, entering a

lower energy state [24]. A nucleus becomes excited when energy is absorbed into

its structure, which can then be released [24]. Photons have the highest energy and

penetrative power among the three nuclear radiation types. A photon is released

from an excited nucleus A∗ by

A∗ → A+ γ (2.3.2)

where γ denotes the photon released in the process, and A denotes the nucleus in

its ground state. Gamma photons are emitted during annihilation of a positron

and an electron, which is a process relevant to PET imaging [25].

2.3.4 X-rays

An X-ray is an electromagnetic wave with an energy of 10 - 150 keV [26]. Because

of their high energy, X-rays can penetrate through matter and have been used to

depict the insides of a body in an X-ray image. X-ray photons are ionizing radiation

that reacts with matter differently depending on their energies [24]. X-rays form

the basis of Computed Tomography (CT) imaging [27].

2.4 Interaction with matter

The energy of a photon and X-rays makes them able to interact with matter. The

way in which photons react with matter are determined by their energy. The

most common ways photons react with matter is by photoelectric effect, Compton

scattering, pair production, and annihilation [28].

2.4.1 Photoelectric effect

One of the ways photons react with matter is by the process of the photoelectric

effect. In the photoelectric effect, the energy of an incoming photon is absorbed

by the electron in an atom of the receiving matter. The electron takes up energy

from the photon and detaches into space [24]. Its kinetic energy, T , is given by

T = Eγ −Be (2.4.1)

where Eγ is the incident photons energy and Be is the energy needed to release

the electron from the atom, the binding energy of the electron.
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2.4.2 Compton scattering

Compton scattering is a process where a photon collides with a free electron,

causing both the electron and the photon to scatter [24]. The photon releases

some of its energy to the electron, and it is deflected in another direction with

lower energy. The electron now has kinetic energy [24].

2.4.3 Internal pair formation

Internal pair formation is the process where a photon turns into a positron-electron

pair in the presence of a nucleus [29], as illustrated in Figure 2.4.1. Only photons

of energies exceeding 1.02MeV , or 2mec
2, two times the rest energy mec

2 for an

electron, can induce pair formation [29].

Figure 2.4.1: The process of pair formation. Adapted from [29].

2.4.4 Annihilation

When a released positron, e+ collides with its anti-particle, the electron, they

react with each other. This reaction is called an annihilation [24]. The positron

and electron annihilate each other, resulting in two 511 keV photons radiating in

opposite directions. Each photons energy is equivalent to the resting energy of one

electron. The process is illustrated in Figure 2.4.2.
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Figure 2.4.2: The process of annihilation. A red electron and a blue positron meet and
two photons, γ are emitted to opposite sides, each with an energy of 511 keV. Adapted
from [25].

e− + e+ = γ + γ (2.4.2)

The process of annihilation is given in Equation 2.4.2 where e− is the electron, e+

is the positron, or anti-electron, and γ is the resulting photon that are emitted

from the interaction [30].
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2.5 Nuclear medicine

Nuclear physics principles can be utilized for various applications, including medicine.

Nuclear medicine is a branch in the medical field that uses radionuclides to diag-

nose, treat, and monitor disease progression after treatment [28]. The concepts of

the imaging modalitites proton emission tomography (PET), computed tomogra-

phy (CT), and a combination of the two (PET/CT) are relevant to this thesis.

2.5.1 Positron Emission Tomography

Positron emission tomography (PET) is a functional imaging technique that de-

tects organ function in a patient’s body [21]. The most central principle in PET

imaging is the proton emission from a proton-rich radionuclide injected into the

patient as a radioactive tracer [28]. Several types of tracers are used in PET scans,

and the one used in this case is the 18F-fluorodeoxyglucose (18F-FDG) [13]. The

18F-FDG molecule is a glucose molecule with a positron-emitting fluorine-18 atom

attached. The fluorine-18 is an isotope of fluorine, and it has a half-life of 110 min-

utes [28]. Its radioactive decay follows equation 2.5.1 [28]

18
9 F −−−−−−−→

T1/2=110min

18
8 O + e+ + ν (2.5.1)

where T1/2 = 110 min gives the half-life of the radionuclide, 18
8 O is the oxygen

nucleus that is produced from the fluorine isotope, e+ is the released positron, and

ν is the neutrino released in the reaction. As seen in Equation 2.5.1 a proton-rich

radionuclide, 18
9 F , decays by beta decay, also referred to as positron emission [24],

which was described by Equation 2.3.1. The positron, e+, from reaction 2.5.1

travels through surrounding matter and comes to rest after a short distance. It

then reacts with a close by electron, causing both particles to annihilate into two

photons emitted in opposite directions [28], as shown in Figure 2.4.2. These pho-

tons are gamma rays with energies of 511k keV [28]. The PET camera can detect

these photons in a PET scan [28].

The PET scanner

The PET camera consists of several components; scintillation crystals coupled

with photomultiplier tubes (PMTs) in a ring formation [28]. Typical materials for

scintillation crystals in PET detectors are bismuth germanate (BGO), lutetium
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oxyorthosilicate (LSO), or gadolinium oxyorthosilicate (GSO) [25].

Figure 2.5.1: The structure of a PET camera component, consisting of scintillators and
photomultiplier tubes (PMTs). Adapted from [28].

The scintillation crystal produces photons when hit by the incoming photons from

the patient. The crystal then produces light with the same energy that the photon

lost in the crystal [26]. This scintillation light is then multiplied in the photo-

multiplier tubes. The photomultiplier tubes convert the photons to voltage by

exploiting the photoelectric effect where a photon releases its energy to an elec-

tron. [24].

In PET cameras, several crystals are coupled to the same PMT, mainly due to

cost and space restraints [28]. Many of the detector elements from Figure 2.5.1 are

then attached in a ring formation to form a ring detector, as seen in Figure 2.5.2,

covering one transversal slice of the patient’s body [28]. Several of these rings are

stacked together to cover multiple transversal slices simultaneously. The diameter

of the ring varies greatly depending on the scanner’s designated use. For a human

whole body scan, it is typically around 90 cm [28]. Moving the ring of detectors

slightly during the scanning process ensures coverage of the blind spots between

the scintillation crystals [29]. The image resolution of modern day PET scanners

is around 3− 5mm [28].

The PET scan

The patient is injected with the radioactive tracer 18F-FDG. The tracer is then

distributed throughout the body according to the patients specific pharmacokinet-

ics [25]. Since cancer cells have higher metabolic activity than normal cells [17],
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their sugar uptake is more elevated, causing the sugar-bound tracer to accumulate

in the cancer cells [31]. When the radionuclide inside the tracer starts to decay,

the cancerous cells will contain more radionuclides, emitting more radioactivity

than the normal cells. The photons emitted by the radioactive decay are detected

in the PET camera [28].

Suppose the PET camera detects two photons within a specific time interval. In

that case, they are assumed to be from the same annihilation, meaning that the

annihilation must have happened somewhere on the line between them [28], as

seen in the left Figure in 2.5.2. This line is called the line of response (LOR), and

this method of detection is called coincidence detection [28]. The time interval

for coincidence detection is denoted 2τ , and needs to be kept as small as possible

to limit noise from random coincidences. The time it takes from the first photon

from the annihilation hits the detector to the second one is detected is called time

of flight (TOF) [28].

A digital pulse is formed when a photon is detected by one of the detectors. This

digital pulse occurred at the time t and can be coupled with other photons that

occurred at t±τ , and thus 2τ is often referred to as the coincidence detection time

window [28]. If no other photon occurred in the interval of time t± τ , the incom-

ing photon is ignored by the system [28]. If the detector captures more than two

photons within the time interval, the event is again ignored. There are multiple

types of coincidences; true, scattered, and random.
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Figure 2.5.2: The types of coincidences detected in PET imaging. The ring detector
consists of many PET cameras. A true coincidence occurs when the annihilated photons
travel directly to the detector without interacting with the tissues of the patient’s body.
A scatter coincidence occurs when one or both of the photons are scattered in the body,
and causes a false LOR to be registered by the detector, the dotted line in subfigure b).
A random coincidence occurs when two unrelated photons arrive at the detectors within
the time interval, and the detector assumes they originated from the same annihilation.
Again this results in a false LOR, the dotted line in subfigre c) Adapted from [28].

A true coincidence occurs when two photons travel directly from the annihilation

site to the detectors without interruption, as seen in Figure 2.5.2. A scattered

coincidence happens when one or both of the photons are scattered in the body’s

tissues and therefore are detected along a different LOR, the dotted line in Figure

2.5.2b. Since photons lose energy when interacting with matter, the energy levels

that are measured in the detector determine which photons are true and which

are scattered. An energy interval for the detector is typically defined at around

350−650 keV . A random coincidence occurs when photons from different reactions

are detected at the same time. The random coincidences are limited by keeping

the time interval, t ± τ , as low as possible [28]. Only the true coincidences are

beneficial for the final image [28].

Attenuation correction

When a photon passes through the patient’s body, it loses some energy to ab-

sorption and scattering, called attenuation [25]. Compton scattering, outlined in

Section 2.4.2, is the most common interaction for annihilation photons. As the

photons lose energy, the photoelectric effect may also occur [28], as explained in

Section 2.4. Some photons get entirely absorbed by the tissues [25]. An attenu-

ation correction technique is applied to the image to correct for the attenuation
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of the photons. In conventional PET imaging, this is done by mapping out the

attenuation in a patient on a transmission image [25]. For newer PET systems,

this is done by computed tomography [28].

Parameters

The three main parameters in the PET image are based on the concentration of

the radiotracer measured in Bq/ml, and the tumor volume [28]. The standard

uptake value, SUV, is the radiotracer concentration when the patient’s weight and

the injected dose are taken into account, and it is calculated by

SUV =
Ci(kBq/mL)

A(kBq)/W (g)
(2.5.2)

where Ci is the mean or maximum concentration within the region of interest

(ROI), A is the injected dose of radioactivity in the tracer, and W is the patient’s

weight [28]. The SUV-value is coupled to the glucose uptake in the ROI [28]. SUV-

mean is defined as the mean concentration value of the ROI, whereas SUV-max is

defined as the maximum concentration value in the ROI [28]. SUV-peak is a more

stable alternative to the SUV-max, and is found by averaging the concentration

values around the SUV-max. [28]. The metabolic tumor volume is defined as the

parts of the tumor that are most metabolically active. The TLG is defined as

the SUV-mean multiplied by the metabolic tumor volume (MTV), resulting in a

measure of glucose uptake in the entire tumor [28].

2.5.2 Computed tomography

Computed tomography (CT) is a structural imaging technique often used for di-

agnosis and to determine treatment response [24]. CT solves many problems with

traditional X-ray imaging [27].

The CT scanner

The CT scanner is made up of a high-voltage generator, an X-ray tube, filters, a

collimator, and detectors [26]. The X-ray tube consists of an anode and a cathode

in a chamber, where the cathode is negatively charged, and the anode is positively

charged. Under high temperatures, the cathode produces an electron cloud in a

thermionic process. A high voltage accelerates these electrons towards the anode,
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and as they hit, they release their energy in the form of an X-ray.

Figure 2.5.3: The CT scanner in the transversal plane. Adapted from [27] and [26].

The X-rays travel toward the filter, as seen in figure 2.5.3. The filter is present

to remove X-rays of lower energy, called soft X-rays, as these have low penetra-

tive abilities and will only contribute to the total radiation dose to the patient

[26]. Filters like this are typically made of aluminum [26]. Further, a collimator is

designed to focus the beam and limit the amount of scattering before the X-rays

enter the patient. Limiting scattering by collimation increases the resolution of

the final image [27]. From here, the radiation from the fan beam enters the patient

as seen in Figure 2.5.3.

The detector catches the radiation that went through the patient’s body. The

energy of these X-rays reflects what tissues they passed through as different tis-

sues have different attenuation coefficients [27]. The detector may be a xenon

gas detector, where an incident photon ionizes the xenon gas. The ions create a

current proportional to the incident photon’s energy, collected as raw data. The

detector can also be a solid-state detector, similar to the scintillation detector in

PET scans, but with photo-diode instead of PMTs [27].

Similar to PET, during CT imaging, the patient is passed through a circular

detector designed to capture every angle of the body in the final image [27]. The

CT scanner produces transversal image slices by rotating the detector around the
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patient [27], as seen in Figure 2.5.3. The resulting slices are stacked to form a three-

dimensional image of the patient. CT images allow a complete reconstruction of

the patient’s body that can be viewed from all angles [27].

Image reconstruction

When the X-rays hit the detector, their energy and position are recorded as raw

data. The detector can measure how much the beam is attenuated to get the

ray sum [27]. The ray sum is then correlated to the ray’s position, creating an

attenuation profile. All attenuation profiles can be projected onto a matrix in

the process of back projection [27]. Over many rounds of back projection, the

different views with their attenuation profiles are projected onto the matrix, and

eventually, an image should form. Back projecting over many small angles tends

to create shadows or artifacts in the final image. The artifacts can be removed or

reduced by applying a mathematical filter to the data before back projecting it

onto the matrix [27]. The spatial resolution of CT images is 0.5–0.625mm [32].

2.5.3 Head Neck cancer and PET-CT

When combining the functional imaging of PET with the structural imaging of

CT, a more advanced imaging technique arises. The PET scan lights up hot spots

where there might be cancerous cells, and CT pinpoints the area structurally in

the body with high precision [27]. The result is a three-dimensional image of the

exact anatomy with visible potential cancerous regions. PET/CT is a powerful

tool for diagnosing, staging, and post-therapy monitoring of cancer patients [31].

2.6 Radiomics

Previously in Section 2.3, the PET parameters SUVmax, TLG, and MTV were

described. These parameters, derived from PET images, express the tumor up-

take of sugar, which reflects the tumor metabolic activity and the tumor size [33].

In addition to these parameters, other tumor characteristics can be reveal essen-

tial information about the tumor’s shape, size, and texture. These characteristics

typically lie in the tumor heterogeneity, meaning the complex variations in gene

expression, biochemistry, histopathology, and structure in a malignant tumor [34].

Medical images can depict such heterogeneities [33].
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Radioimics is the process of extracting features from a region of interest (ROI),

typically a tumor or malignant lymph nodes in medical images [11]. The extracted

features from the ROI can describe the tumor’s shape, size, and texture, which

is essential information when diagnosing and treating cancer [8]. The radiomics

process starts with a medical image of a patient with a tumor. The ROI is then

identified in the image. A three-dimensional image of the tumor is then rendered.

Features are then extracted from the 3D image, and these features can be stored

in a table to form a dataset that can be used for modeling and prediction [11].

The flow chart for the radiomics process is shown in Figure 2.6.1. Radiomics can

be used on any imaging modality; magnetic resonance, CT, or PET images [11].

For head and neck cancer PET/CT is the preferred image modality [31].

Figure 2.6.1: A flow chart for the radiomics process. Adapted from [12].

2.6.1 Image segmentation

Image acquisition is the first step of the radiomics process, as seen in the flow chart

in Figure 2.6.1. When the image is acquired, the next step is to define the tumor

and, thereby, the region of interest (ROI) in the image. In the case of metastases,

identifying all lesions is necessary, resulting in multiple regions of interest [11].

The region of interest is the region in which the tumor is located. If the image is

three-dimensional, the ROI is a volume or VOI. The ROI defines the part of the

image where all the features are extracted. The extracted features can be divided
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into histogram-based, texture-based, and shape-based.

2.6.2 Image preprocessing

Before feature extraction can be performed, the images needs to be preprocessed,

by discretizing the intensity values of the images. Intensity discretization is the

process of grouping the image intensity values into bins. This can be done in two

ways. The first one groups the intensity values into a fixed number of bins, Ng,

where each intensity value is assigned to a bin depending on its magnitude [12].

The second method defines a bin width, ωb. The first bin starts at the smallest

intensity values and holds all the intensity values up to ωb. [12]. The bins from

either method form a histogram.

2.6.3 Image features

Feature extraction is step 4 in the radiomics process, illustrated by the flow chart

in Figure 3.4.1. Image features can be extracted from the image by using statistical

operations on the voxel gray intensity values [11]. The medical image consists of

voxels of different gray values. Statistical measures can be calculated from these

gray levels, which is the basis of the radiomics features. All formulas for the

features described in this section can be found in the Pyradiomics documentation

[35].

Histogram features

Representing a digital image by its histogram allows statistical information about

that image to be extracted through mathematical operations [12]. A histogram

of a digital image shows the distribution of gray-level values of the pixels in the

image. The histogram depends on the intensity discretization, as explained in Sec-

tion 2.6.2.

Using statistical methods on the histogram results in descriptive features of the

image, such as mean intensity, intensity variance, minimum and maximum inten-

sity. Median intensity is the median value of the grey level distribution, and mode

intensity is the most common intensity value in the histogram. These properties

are first-order statistical properties because they are based on single voxel values

[36]. Skewness and kurtosis are related to the shape of the distributions. The
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Table 2.6.1: The equations for finding the Compactness 1 and 2, the spherical dispro-
portion, the sphericity and the asphericity. All equations for all radiomics features are
found in the Pyradiomics documentation.

Feature Equation

Compactness 1 Fmorph.comp1 =
V

π1/2

Compactness 2 Fmorph.comp2 = 36π V 2

A3

Spherical disproportion Fmorph.sph.dispr =
A

(36πV 2)1/3

Sphericity Fmorph.sphericity =
(36πV 2)1/3

A

Asphercity Fmorph.asphericity =

(
1

36π
A3

V 2

)1/3

− 1

asymmetry of the intensity distribution is described by the skewness. The kurtosis

of the histogram reflects how tailed the distribution is relative to a normal distri-

bution [36]. Further, the entropy and the uniformity describe the distribution of

values among the bins.

Shape-based features

Morphological features are shape-based features that describe the tumor’s geo-

metrical properties. These properties include volume, surface area, elongation,

flatness, compactness, the center of mass shift, and diameter in multiple direc-

tions [35].

The surface area of the tumor is mapped out by triangles lining the surface of the

entire ROI. From the surface area, the volume can be calculated. For ROIs of 1000

voxels and more, the volume can also be found by pixel counting. Pixel counting

is not recommended for smaller ROIs (10-100 voxels), as it tends to overestimate

the volume of the tumor [12]. From the surface and volume, the surface-to-volume

ratio is also easily found by dividing surface by volume.

In addition to volume and surface, some features describe the tumor’s shape.

Multiple features represent the tumor’s sphericity. Compactness 1 and 2, spherical

disproportion, sphericity, and asphericity are all features concerning the roundness

of the tumor [12]. The center of mass shift describes the shift between the center

of the ROI centroid and the center of the intensity-weighted ROI.

The maximum 3D diameter is the distance between the two vertices in the surface

mesh that lay furthest away. This distance describes the extent of the tumor.

Principal Component Analysis (PCA) on the three-dimensional image gives three
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eigenvectors with corresponding eigenvalues that provide information about the

tumor’s shape. The eigenvalues are typically coined λmajor > λminor > λleast [12].

The Major Axis Length, λmajor, is the vector and eigenvalue that explains most

of the variance in the ROI. The minor axis length, λminor, describes the direction

of the ROI with the second most variance. The Least axis length, λleast is the

direction along the ROI that is the shortest. The elongation and flatness can be

found from the eigenvalues derived from PCA. The equations for elongation and

flatness are found in Table 2.6.2.

Table 2.6.2: The definitions of elongation and flatness.

Feature Equation

Elongation Fmorph.pca.elongation =
√

λminor

λmajor

Flatness Fmorph.pca.flatness =
√

λleast

λmajor

Further, the integrated intensity, called total lesion glycolysis (TLG) for PET im-

ages, is the average intensity of the gray levels in the image multiplied by the

tumor volume. Lastly, there are two features for describing the ROI spatial au-

tocorrelation. Spatial autocorrelation is defined as the correlation between two

neighboring voxels [37]. A high spatial autocorrelation refers to the voxel as simi-

lar to its neighbor, and vice versa for a low spatial autocorrelation. A low spatial

autocorrelation in a tumor would mean that areas of the tumor differ from the

rest of the tumor, indicating local abnormalities or deformities. The features that

describe the spatial autocorrelation are the Moran’s I index and the Geary’s C

measure [12]. All equations used for calculation of the radiomics features can be

found in the Pyradiomics documentation [35].

Texture features

The texture in an image can be described by the absolute gradient [12]. The ab-

solute gradient quantifies the difference of pixel values in an image. The absolute

gradient reaches its maximum if two neighboring pixel values are black and white.

This gradient is used to construct a second-order histogram for the image, the

Gray-Level Cooccurence Matrix (GLCM) [36].

The GLCM describes how often two gray values are found on neighboring voxels

(voxels with a set distance) in the image along a particular direction. The GLCM

has dimensions Ng x Ng where each gray level holds a spot in the columns and the
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rows of the GLCM. The GLCM can find texture in the image by comparing inten-

sity values. Many different features can be extracted from the GLCM, including

averages, variances, and entropies [12]. The entropy reveals the randomness of

the gray levels. The angular second moment, similar to the uniformity, describes

how homogenous the image voxel distribution is. The contrast and dissimilarity

give higher values to more different gray levels. The inverse difference does the op-

posite and gives lower values to high-contrast voxels, measuring homogeneity. The

autocorrelation was described for morphological features above, and the explana-

tion also asserts itself for texture features. The GLCM also has some clustering

features, cluster tendency, shade, and prominence, which describe the clustering

of the grey levels in the voxels.

Another similar texture matrix is the Gray-Level Run-Length Matrix (GLRLM).

The GLRLM quantifies the occurrence of consecutive voxels with the same grey

level in a given direction of the image [12]. The GLRLM has dimensions Ng x Nr

where Nr is the maximum run length for grey level i in direction m [12]. In the top

left quadrant of the GLRLM, the values represent short run lengths of low grey

levels, and in the bottom right quadrant, the values represent long run lengths

of high grey levels [12]. Features are extracted based on the short runs, the long

runs, the low grey levels, and the high grey levels from all matrix quadrants. The

non − uniformity of the grey levels and run lengths are extracted into multiple

features, and lastly, the run entropy describes the randomness in the matrix [12].

The Gray Level Size Zone Matrix (GLSZM) describes how the gray levels occur

in a zone of the ROI [12]. The GLSZM has dimensions Ng x Nz where Nz is the

maximum size of the zone. The features of the GLSZM are similar to the GLRLM

features, but instead of run length, the emphasis is on zone size. The upper left

quadrant of the GLSZM contains values for low grey levels in small zones, and the

bottom right quadrant contains high gray levels in large zones. In addition to the

GLRLM-based features, the GLSZM has a zone percentage, which describes how

many actual zones there are in the matrix compared to how many there could be

(potential zones) [12].

Grey Level Distance Zone Matrix (GLDZM) is similar to the GLSZM but incor-

porates the voxels’ distance from the ROI edge [12]. The voxels in a distance zone

have the same grey level and distance from the ROI edge. The dimensions of the

GLDZM are Ng x Nd, where Nd is the maximum distance a voxel can be from the
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border of the ROI. The GLDZM requires a grey-level zone map, which the GLSZM

generates, and a distance map of the ROI. The top left quadrant of the GLDZM

holds values for zones of low grey levels occurring close to the ROI border, and

the bottom right quadrant represents zones of high gray levels occurring towards

the center of the ROI. The features extracted from the GLDZM are similar to the

GLRLM features, but the distance to the ROI border is emphasized instead of run

lengths.

The next texture matrix is called Neighborhood Grey Tone Difference Matrix

(NGTDM). The NGTDM focuses on finding the difference between a voxel grey

value and its neighbors [12]. By considering voxels with neighbors on all sides,

the difference between the voxel grey level value and the mean of the neighboring

voxels can be calculated [12].

The features extracted from the NGTDM are coarseness, contrast, busyness, com-

plexity, and strength [12]. Coarseness is a measure of change in the intensity

of different areas of the image. The contrast measures how the intensity changes

throughout the image, giving a high value for images with abrupt changes in inten-

sity. The busyness describes the heterogeneity of the image, meaning neighboring

voxels of very different intensities are identified as busy. Complexity and strength

describe how complex, or non-uniform, the texture is [12].

The last texture features are derived from the Neighboring Grey Level Dependce

Matrix (NGLDM). The NGLDM also uses the concept of voxel neighbors, similar

to the NGTDM [12]. However, the NGLDM finds the connection between the

center and neighboring voxels if their grey levels fit a set criterion. The result

is a matrix with the dimensions Ng x Nn, where Nn is the maximum number of

dependencies one gray level has. The features extracted from the NGLDM are

similar to the GLRLM, but the dependence between voxels is emphasized instead

of the run lengths [12]. All equations for all features extracted by the radiomics

algorithm are found in the Pyradiomics documentation [35].
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2.7 Machine learning

Machine learning (ML) is a type of artificial intelligence that allows a computer

to learn patterns and relationships in data and use them to make a prediction

[1]. Within machine learning, there are three main branches, called supervised,

unsupervised, and reinforcement learning. With supervised learning, the data has

a predetermined label, and the algorithm attempts to identify data patterns that

can distinguish the different labels [1]. In unsupervised learning, the data has no

label, and the algorithm aims to identify subgroups or patterns within the data

without a predetermined output [1]. The last branch, reinforcement learning, is

where an agent makes decisions and receives feedback to create a sequence of right

decisions [1]. In this thesis, the methods of supervised learning are the ones used.

2.7.1 Fitting a machine learning model

When feeding data to an ML model, it is commonly split into training and test

data, typically denoted Xtrain and Xtest. This allows for evaluating the model’s

performance by training it on one part and testing it on a different, unseen part of

the data. The model’s performance on unseen data determines its generalizability

and, therefore, its performance [1]. The target variables, denoted ytrain and ytest,

are the ground truth that the model’s prediction is compared to [1]. The predic-

tion can be a binary classification problem, a multi-class problem, or a regression

problem. This thesis deals with binary classification.

When training on a data set, a model attempts to learn all the valuable infor-

mation to make the correct prediction [1]. If the model trains too much on the

data, it can adapt to the noise and randomness in the dataset, as seen in Figure

2.7.1, which weakens the model’s ability to predict well on unseen data. This is

called overfitting. Training a machine learning model requires a balance between

learning and overfitting, often called the bias-variance trade-off [1]. The model

should be complex enough to pick up most data patterns without memorizing the

training data’s noise.
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Figure 2.7.1: A graphical representation of one underfitted, one overfitted, and one well-
adapted model plotted in the feature space of feature X1 and X2. Note that class 0 and
class 1 are here represented by blue and red data points, respectively. Adapted from [1].

The bias-variance trade-off is illustrated in figure 2.7.1. The left model has a linear

decision boundary that splits the features by a straight line, which in Figure 2.7.1

results in low variance and high bias This means the model needs to learn more of

the information in the data, or the model is underfitting. The second model has

high variance and low bias, meaning it memorizes some noise and randomness in

the training data, lowering its ability to predict well on unseen data. This model is

overfitting on the data set. The last model has the optimal bias-variance trade-off,

where it learns most of the valuable information in the training data and can use

this to predict well on the test data [1].

Throughout machine learning history many different models and algorithms have

been introduced, including the Decision Tree, the Random Forest, the XGBoost,

the Histogram Gradient Boosting, and the interpretable models from the iModels

package [2].

2.7.2 Decision Trees

Decision trees are models that use a tree-like structure to represent a series of

decisions and their possible consequences [1]. Each node in the tree represents

a decision, and each leaf node represents a possible outcome. As the model is

trained on more data, it becomes better at predicting outcomes based on input

features. Decision trees are also the easiest models to interpret, as their structure

is comprehensible to the brain. In Figure 2.7.2, a simple decision tree structure

for weather someone should get a dog or not is illustrated.

A decision tree algorithm finds the most optimal feature split in a dataset. The

most optimal feature split can be found by calculating the impurity of the potential
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Figure 2.7.2: An illustration of a decision tree, where the classes are split into weather
or not someone should get a dog.

child nodes [1]. The impurity can be defined in three ways; entropy, Gini, and

classification error. The entropy is calculated for each feature, and is given by

IH(t) = −
c∑

i=1

p(i|t)log2p(i|t), (2.7.1)

where p(i|t) is the fraction of samples in class i in node t, and c is the number of

classes. When there is an even mix of samples from all classes in the node, the

impurity is at its maximum value of 1. If the node contains samples from one

class only, the impurity is 0 and the node is called a pure leaf node [1]. The Gini

impurity, IG(t) can be found by

IG(t) =
c∑

i=1

p(i|t)(1− p(i|t)) = 1−
c∑

i=1

p(i|t)2 (2.7.2)

The Gini impurity reaches its maximum value, 0.5, when the classes are perfectly

mixed in the node. The last definition of impurity is the classification error, IE(t),

which can be found by

IE(t) = 1−max{p(i|t)} (2.7.3)
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The most used impurity measures are the Gini and the entropy, and these defi-

nitions yield very similar results. Classification error is not used very often [1].

From the impurity, the information gain (IG) can be defined as

IG(Dp, f) = I(Dp)−
Nleft

Np

I(Dleft)−
Nright

Np

I(Dright) (2.7.4)

where Dp is the dataset in the parent node, f is the feature, I denotes the im-

purities, Np, Nleft, and Nright are the number of samples in the parent, the left

and right child node respectively, Dleft, and Dright are the datasets in the left and

right child nodes. The IG is lowest when the child nodes are a perfect mixture of

the classes, and highest when the child nodes are pure. The model always aims to

split at the feature and value that creates the highest information gain [1].

The algorithm goes through the features and values, one by one, to find the one

with the highest information gain, which creates the first feature split. The pro-

cess repeats on the child nodes until all nodes are pure. This creates an overfitted

decision tree. To avoid overfitting, a maximum depth can be set to stop the tree

from overgrowing. The best value for the maximum depth depends entirely on

the dataset and can be tuned to fit the data [1]. When the model has undergone

training, it can be used to classify new samples. When a new sample is classified,

it is tested against all the conditions of the decision tree until it ends up in a leaf

node. In the leaf node, the sample gets a predicted class label based on the most

common class in that node in the process of majority voting [1].

One of the significant advantages of decision trees is their interpretability. Decision

trees are inherently logical in their structure, and can be understood easily by the

human brain. The decision tree algorithm is the base of many other ML algorithms,

including the Random Forest, XG Boost, and all of the models from the iModels

package [2].

2.7.3 Random Forest

The Random Forest algorithm is a forest of decision trees. The trees in the random

forest are sometimes referred to as estimators. Algorithms that combine multiple

other classifiers into one classification process are called ensemble algorithms [1],

and Random Forest is an ensemble of Decision Trees. The idea behind ensemble

learning is to combine many weak classifiers into one strong classifier [1]. The

algorithm grows multiple decision trees, allowing for a more complex decision tree

26



model without overfitting on the training data [1].

The algorithm starts by drawing a random set of samples and features with re-

placement from the original dataset. These subsets are used to generate and train

multiple decision trees, and this process is called bootstrapping [1]. When classify-

ing a new sample, every tree in the forest makes a prediction. The final class label

is determined in a majority voting, which is called aggregation [1]. Bootstrapping

and aggregation together are called bagging. Bagging makes the Random Forest

algorithm more stable than single decision trees because the model is less sensitive

to random variations in the training dataset [1]. Bagging promotes a model with

high generalizability.

2.7.4 XGBoost

XGBoost is another ensemble algorithm. The name, XGBoost, stands for Extreme

Gradient Boosting, as this algorithm is a further developed gradient boosting al-

gorithm [38]. The name gradient stems from the method of optimization called

gradient descent, which is used for both XGBoost [38] and the HistGradientBooster

[39] explained below. XGBoost works, similarly to other boosting algorithms, by

iteratively growing trees. Each new tree is designed to correctly classify the sam-

ples that were misclassified in the previous iteration. The prediction of a sample

is made by combining each prediction fk from K different trees [38]. The total

prediction, ŷi for a sample i in dataset X can be found by equation 2.7.5,

ŷi =
K∑
k=1

fk(Xi) (2.7.5)

where, fk corresponds to the prediction from a decision tree q. Each tree q is

weighted by a weight ω [38]. The optimization objective of an XGBoost model

is finding a value for ω that minimizes the loss function, Lt. The loss function

describes the prediction error and can be expressed as in 2.7.6,

Lt =
n∑

i=1

l(yi, ŷ
t−1
i + ft(Xi)) + Ωf(t), (2.7.6)

where t denotes the tth iteration, i denotes the sample, l measures the difference

between the ground truth yi and the prediction of last iteration yt−1
i added to the

prediction of the current iteration ft. Ωf(t) is the regularization term of the loss

function. XGBoost uses both L2 and L1 regularization [38]. L2 regularization
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keeps weights from getting too large by punishing large weights. L1 regularization

deals with the complexity of the model and works as a feature selection method for

datasets with many features. Optimizing the loss is done through gradient descent

[38]. The idea behind gradient descent is that there is a parameter combination

that minimizes the prediction errors. XGBoost uses first and second-order gradi-

ents meaning it knows in which direction the gradient is increasing or decreasing

[38].

Figure 2.7.3: Gradient descent is used to find the global minimum of the cost function.
Adapted from [1].

The ciricles indicate the weight of the model, which is slowly approaching the

global minimum in the left diagram of Figure 2.7.3. The arrows in Figure 2.7.3

represent the learning rate, where a high learning rate, shown in the right diagram,

shows that the model overshoots the global minimum of the loss function. The

loss function is illustrated by the red lines. The learning rate is a hyperparameter

in XGBoost that needs to be tuned to the specific dataset. The gradient of a

function is its first derivative, and the hessian of a function is its second derivative

[40]. Including the gradients and hessians in the loss function results in equation

2.7.7 and 2.7.8,

Lt(q) = −1

2

T∑
j=1

ω∗
j + γT (2.7.7)

ω∗
j = −

∑
j gi∑

j hi + λ
(2.7.8)

Lt(q) in equation 2.7.7, calculates the total loss of tree q over all T leaf nodes.

The total loss can also be used as a score for the quality of tree q. Equation 2.7.8

computes the weight, w∗, of leaf node j by the gradient gi and hessian hi. The

regularization term λ is applied to keep the model from overfitting. Equation 2.7.7

is also used to identify the best split during training [38].
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2.7.5 Histogram Gradient Boosting Classifier

Histogram Gradient boosting classifier (HGBC) works similarly to XGBoost in

many ways. However the HGBC discretizes the feature space by binning the data

into a given number of bins, [39]. Figure 2.7.4 shows a graphical representation of

binning.

Figure 2.7.4: The binning of feature values into bins. The original feature values on the
y-axis are replaced by the bin numbers. Adapted from [41].

Within each bin, the gradients of the samples are summed. The sum of the samples’

gradients in each bin forms a histogram. Two separate histograms can be made

for the gradients and hessians, respectively. Like XGBoost, HGBC finds the best

feature split by minimizing the gradient of the child nodes, but because the features

are binned, the number of potential splits to calculate is far less than that of an

unbinned feature space [39]. This makes HGBC very computationally efficient.

2.7.6 iModels

The iModels package, proposed by Singh et al. [2], is a set of rule-based models

aiming to make interpretable ML decision tree models while maintaining a state-

of-the-art performance. The package contains many models, including the Fast

Interpretable Greedy Sums (FIGS), the Hierarchical Shrinkage Tree (HSTree),

and the Boosted Rules Tree.

Fast Interpretable Greedy-Tree Sums

Fast Interpretable Greedy-Tree Sums (FIGS) is an algorithm that grows a flexible

number of trees simultaneously [42]. FIGS builds a decision tree, splitting nodes at
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the most informative criteria. The algorithm can keep adding nodes to an existing

tree or start a new tree at every iteration, which avoids repeated splits and makes

the models more compact [42]. An illustration of the FIGS algorithm compared

to the conventional Decision tree is presented in Figure 2.7.5.

Figure 2.7.5: The FIGS algorithm vs the Decision tree algorithm on a demonstration
function y = 1X1>0+1X2>0 ·1X3>0. The FIGS algorithm requires three splits across two
trees to implement this function, whereas the Decision tree algorithm requires five splits.
Adapted from [42]

In Figure 2.7.5, the algorithms are built on a function y = 1X1>0 + 1X2>0 · 1X3>0.

This function consists of two components that can be implemented by two trees

using the FIGS algorithm [42]. The first tree contains one split X1 > 0, and the

second tree contains two splits X2 > 0 and X3 > 0, as seen in Figure 2.7.5 in

the top right. Implementing the same function using the Decision tree algorithm

requires five splits, many of which are repeated, as seen in Figure 2.7.5 in the

bottom right.

The FIGS algorithm has the advantage that it avoids repeated splits. It keeps

the model smaller and more compact while keeping the complexity of a decision

tree with the same rule set [42]. Avoiding complicated decision trees promotes

interpretability and allows for clear visualizations.

Hierarchical Shrinkage Tree

The Hierarchical shrinkage (HS) algorithm works by regularizing a tree-model’s

prediction [43]. Unlike FIGS, it does not affect the tree structure, but instead, it

affects the prediction. HS is a post-hoc algorithm. For a given tree model f , the
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HS regularizes the prediction on each tree leaf node [43]. It can be applied to any

tree algorithm.

Boosted Rules Classifier

The Boosted Rules Classifier (BR) is another algorithm proposed by Singh et al.

[2]. The algorithm uses the Adaboost algorithm to fit a set of rules sequentially

[44]. Adaboost works by initializing a decision tree stump, C1, which makes a

decision boundary as seen in figure 2.7.6 subfigure a). Before the first iteration,

all samples are equally weighted, whereas for iteration 2, the two misclassified

samples from the previous iteration are assigned a larger weight. Iteration 2 grows

a decision stump, C2, that defines a new decision boundary, as seen in subfigure

b) in Figure 2.7.6, attempting to correctly classify the previously misclassified

samples. The process repeats for the third iteration, with a larger weight assigned

to the samples misclassified in during iteration 2. The result of three rounds of

boosting is a model shown in the bottom right diagram of Figure 2.7.6. A majority

vote decides the final prediction of the model [1].

Figure 2.7.6: The Adaboost algorithm. The red circles denote samples of class 0, and
the blue squares denote samples of class 1. The shaded areas are the different decision
boundaries, where a red area shows that the samples within that area were predicted as
class 0, and vice versa for the blue area. Adapted from [1]
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2.7.7 Model Performance

Measuring model performance is crucial for all ML models. Performance metrics

are needed for tuning and optimization of the models, where the criteria of op-

timization is to maximize a certain metric. Many metrics measure the model’s

performance, including the accuracy, the F1 score for class 1 and class 0, the

receiver operating curve, and the Matthews Correlation Coefficient [1].

Accuracy

The accuracy of a model is the simplest form of metric. The accuracy compares

the predicted outcome to the ground truth by dividing the sum of the correct

predictions by the total number of samples. A Confusion Matrix can visualize the

predicted and true classes, shown in Figure 2.7.7.

Figure 2.7.7: A Confusion Matrix gives a visualization of the model’s right and wrong
classifications. Adapted from [1].

Class 0 and class 1 are also referred to as the negative and positive class. In

Figure 2.7.7, class 0 is referred to as the negative class, and class 1 is referred to

as the positive class. All performance metrics described below are based on the

information given by the Confusion matrix in Figure 2.7.7. The accuracy, ACC,

is given by

ACC =
TP + TN

FP + FN + TP + TN
(2.7.9)

where TP and TN are the true positives and negatives, and FP and FN are the

false positives and negatives, respectively.
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F1 score

The F1 score is defined through the precision and recall metrics [1]. The precision

of a model shows the proportion of the predicted positives that were true positives,

as seen in equation 2.7.10. However, recall shows the proportion of the positives

the model could predict correctly, as shown in equation 2.7.11, given by

PRE =
TP

TP + FP
(2.7.10)

REC =
TP

FN + TP
(2.7.11)

From here the F1 of the positive class can be defined as

F1 = 2
PRE ×REC

PRE +REC
(2.7.12)

The F1 score defeats issues with using precision and recall separately. Optimizing

a model by maximizing the recall increases the probability of the model predicting

false positives, and maximizing the precision increases the probability of predicting

false negatives. The F1 score combines both of these metrics to create a more stable

and balanced metric for the model. [1]. To get the F1 for class 0, the equations

for precision and recall are changed to

PRE =
TN

TN + FN
(2.7.13)

REC =
TN

FN + TN
(2.7.14)

These new definitions are plotted into the equation 2.7.12 to find the F1 score for

class 0.

Receiver operating characteristic

The receiver operating characteristic visualizes the true positive rate (TPR) and

the false positive rate (FPR) in a graphic representation [1]. The optimal model

would have TPR=1 and FPR=0, like the perfect performance line in Figure 2.7.8.

The line across the diagonal of the plot represents random guessing, and a line

under the diagonal would then be worse than random guessing [1]. From the

TPR/FPR graph, the area under the curve (ROC-AUC) can be calculated, giving

a performance estimate for a model.
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Figure 2.7.8: The ROC curve. Adapted from [1].

Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) ranges between [−1, 1] [45]. The

MCC score is less vulnerable for class imbalances than other metrics such as ac-

curacy [45]. If 90% of the samples in a dataset belong to class 1, predicting all

samples as class 1 would give an accuracy of 90% [1]. This example illustrates the

importance of using several performance metrics. The MCC can be found by

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
. (2.7.15)
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Chapter 3

Materials and Methods

This thesis investigated the performance of seven ML classifiers on two head and

neck datasets. The datasets were collected from Oslo University Hospital (OUS)

and the Maastricht University Medical Center (MAASTRO). The dataset from

OUS was used to train and validate the models, and the MAASTRO data was

used for external testing. Radiomics was used to extract features from the images

of each patient. A feature selection algorithm, RENT, was then used to select the

most important features. Seven ML classifiers were tuned by Optuna1, validated

on the OUS data, and tested on the MAASTRO data.

3.1 The datasets

The OUS dataset contained patients with head and neck cancer treated at Oslo

University Hospital (OUS) from January 2007 to December 2013 [13]. Similarly,

the MAASTRO dataset contained patients treated at the MAASTRO clinic from

January 2008 to December 2014. There were originally around 400 patients re-

ceiving treatment for head and neck cancer at OUS during this time, and since

this thesis follows the work of Moan et al. [13], the same inclusion criteria were

used. Patients diagnosed with cancer in the oral cavity (cavum oris), orophar-

ynx, hypopharynx, and larynx whose radiotherapy treatment plans were based

on 18FDG-PET/CT were included. Patients with oropharyngeal cancer and un-

known HPV-status were excluded, as well as patients without contrast-enhanced

CT images along with the PET images. In total, 139 patients from the OUS

dataset and 99 patients from the MAASTRO dataset fit the inclusion criteria.

1https://github.com/optuna/optuna
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Clinical information was collected from these patients: age, gender, tobacco use

(pack years), Charlson comorbidity index, tumor site, cancer stage, and HPV

status. Two response variables were used in the datasets, namely Disease-free

Survival (DFS) and Overall survival (OS), as described in table 3.1.1. A value of

1 in either of these response variables indicated an event, relapse, or death.

Table 3.1.1: Distribution of the targets for the OUS and MAASTRO datasets. Here DFS
refers to Disease-free survival and OS refers to Overall survival.

Target Type OUS MAASTRO

DFS Binary Target

Disease free (Class 0) 51.1% 40.4%

Local, regional or metastatic 48.9% 59.6%

failure or death (Class 1)

OS Binary Target

Survive (Class 0) 59.0% 46.5 %

Death (Class 1) 41.0% 53.5 %

The clinical features used for this analysis are listed in Table 3.1.2. The two

continuous features age and pack years are presented by their means for both

the OUS and MAASTRO data. The pack-years feature describes the patient’s

tobacco use, where smoking 20 cigarettes (one pack) a day for one year grants you

one pack-year. The remaining categorical features consist of four different cancer

sites; Cavum Oris, Oropharynx, Hypopharynx, and Larynx. The tumor sites were

outlined in Section 2.2. Patients who had HPV-related oropharyngeal cancer had

a registered HPV status. The histologic grade and cancer stage were dichotomized

as seen in Table 3.1.2. Three PET parameters were also included in the clinical

dataset, the SUV peak, MTV, and TLG, which were all outlined in Section 2.5.1.
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Table 3.1.2: Table of features in the clinical dataset. The continuous features are rep-
resented by their mean and standard deviation, and the categorical/binary features are
represented by their distribution, for both the OUS and MAASTRO dataset.

Feature Type OUS MAASTRO

Age (mean) Continuous 60.2± 7.7 61.6± 9.5
Gender Binary
Female 23.0% 26.3%
Male 77.0% 73.7%

Cancer Stage (TNM8) Binary
I-II 51.8 % 19.2 %
III-IV 48.2 % 80.8 %

Tumor Site Categorical
Cavum Oris 7.9% 3.0 %
Oropharynx 65.6% 44.4%
Hypopharynx 11.5% 15.2%
Larynx 15.1% 37.4%

HPV related Binary
Yes: 58% 22.2%
No: 42% 77.8%

Pack Years (mean) Continuous 25.0± 22.8 46.1± 47.7
Histologic grade Binary
High 69.1% 40.4%
Low/moderate 30.9% 59.6%

Charlson comorbodity index Binary
0 61.9 % 25.3 %
1-6 38.1 % 74.7 %

PET parameters
SUV peak Continuous 11.0± 5.4 11.2± 6.2
MTV Continuous 11.9± 13.5 15.1± 10.9
TLG Continuous 121.0± 194.7 109.9± 74.1

The patients were staged according to the tumor-node-metastasis (TNM) system [46].
HPV: Humanopapilus virus.
Charlson Comobidity index: degree of abnormality in cancerous cells.

The clinical features were preprocessed by encoding the categorical variables into

binary variables. Gender was named female, where a value of 1 indicated female,

and 0 indicated male. Tumor site was separated into the four categories shown

in Table 3.1.2, where a value of 1 in one of these indicated that the patient had

cancer at that particular site. The cancer stage, as shown in Table 3.1.2, was

dichotomized into two categories I-II and III-IV, according to the tumor-node-

metastasis system, version 8 [46]. The category Cancer stage had value 0 for

patients in lower cancer stages (I-II), whereas it had value 1 for patients in the

higher cancer stages (III-IV). The histologic grade describes how abnormal the
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cancer cells look under a microscope [47]. Histologic grade was dischotomized into

two levels, 0 and 1-6. In total, the clinical dataset contained 14 features, and will

from here be referred to as dataset D1.

3.2 Software

For this thesis, Python 3.9.13 was used as the programming language of choice.

The Jupyter Notebook IDE from Anaconda was used as the main programming

tool. Pandas [48] was used for preparing and preprocessing the data. The Deci-

sionTree, RandomForest, HistGradientBoosting classifiers, and the metrics were

used through Scikit learn [49], whereas the FIGS, HSTree, and BoostedRules clas-

sifiers were used through the iModels package [2]. The XGBoost was used through

a separate package, the XGBoost package [38]. Feature selection was done through

RENT [50], and for tuning of the models, the Optuna framework [51] was used.

Visualizations were done using Matplotlib [52], Seaborn [53], dtreeviz [54], and

Microsoft Excel [55].

3.3 FDG PET/CT

A Siemens Biograph 16 was used to perform FDG PET/CT on all patients in

the OUS dataset [13]. The tumor volume was then delineated by an experienced

nuclear medicine specialist, based on the PET images. An oncologist refined the

delineation of the gross tumor volume (GTV) based on the CT image and clin-

ical information. The PET values were originally in the unit Bq/ml before the

conversion to standard uptake value (SUV ). An image from a patient in the OUS

dataset is shown in Figure 3.3.1.
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Figure 3.3.1: An example image from one of the patients at OUS.

3.4 Workflow

The workflow of this thesis is outlined in Figure 3.4.1. It consisted of 9 steps

starting with data preprocessing. Further, a performance baseline model was es-

tablished. Feature selection was performed through the RENT feature selection

framework [50], where unimportant features were eliminated. The models were

then tuned and validated on the training data from OUS, before their interpretabil-

ity was assessed. Testing happened in step 8 of the analysis where the models were

evaluated on the unseen data from the MAASTRO clinic.
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Figure 3.4.1: The workflow of this thesis illustrated by 9 steps. Note that the model
selection was done using the OUS data, and the MAASTRO data was used for external
testing.

3.5 Radiomics

Radiomics is a feature extraction technique that extracts firt order internsity, shape

and texture features from medical images. The features extracted from radiomics

are outlined in Section 2.6. The equations for all features are found in the Pyra-

diomics1 documentation [35]. This thesis used radiomics to extract features from

both the PET and the CT images.

From the radiomics process, 354 features were extracted (40 first order, 14 shape,

and 300 texture features from the primary tumor). Radiomics was used through

imskaper2, which is an NMBU developed software based on PyRadiomics [35]. In

addition to the radiomics features, imskaper extracts another 20 three-dimensional

local binary pattern features [56]. In total, radiomics through imskaper extracted

374 features from the medical images. These 374 features formed a radiomics

dataset, which will from here be referred to as dataset D2. A third dataset con-

sisting of both the clinical and the radiomics features will be called dataset D3.

An overview of the datasets is found in Table 3.5.1.

1https://pyradiomics.readthedocs.io/en/latest/index.html
2https://github.com/NMBU-Data-Science/imskaper
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Table 3.5.1: The three datasets from OUS, together with a description, and their number
of features.

Dataset Description Features

D1 Clinical features 14

D2 Features extracted from images by radiomics 374

D3 D1+D2 388

3.6 Feature selection

Using radiomics to extract features from images significantly increases the number

of features in the datasets. High dimensional data causes models to easily overfit,

which leads to poor results on unseen data [1]. Further, high dimensional datasets

have lower interpretability, which is a key factor in the scope of this thesis. For

these reasons feature selection is necessary, and it is step 3 of the flowchart in

Figure 3.4.1.

Feature selection can be done in many ways, one of which is by the repeated elastic

net technique (RENT) [50]. RENT trains an ensemble of models based on subsets

of data, and can provide information on how frequently features are selected for all

the models. Frequently selected features are assumed to be more important to the

prediction, and features that were not selected are assumed to be less important.

Feature selection is then performed based on the weight distribution of a feature

across all models.

The agressiveness of RENT can be controlled through parameters τ1, τ2 and τ3 [50].

These three parameters form conditions that determine if a feature is selected or

not. The first condition sets a limit for the selection frequency of a feature. If

a feature is selected more frequently than the limit τ1, the first condition is ful-

filled. The second condition τ2 determines how many of the weights of a feature

must have the same sign. The third condition is based on the Student’s t-test,

which ensures that the weights of the feature is consistently high with low variance

across all models. Typically a significance value of α = 0.05 is used, and therefore

τ3 = 0.975 [50].

When running RENT, the user selects values for the regularization hyperparame-

ters of L2 and L1 regularization for the underlying logistic regression model. The

values used for RENT in this thesis are defined in Table A.1.1 in Appendix A.1.
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Based on the parameters in Table A.1.1, RENT found the optimal values for the

regularization through k-fold cross validation with 5 folds and 20 rounds. RENT

was run in a brute-force manner, meaning it tests all combinations of hyperpa-

rameters from Table A.1.1, in order to find the best one. For each hyperparameter

combination, RENT trains 100 models. All the 100 models selected features from

the original dataset, with each model selecting a different combination. Features

selected by all the models were considered most important, and features that were

selected by none of the models were considered unimportant. The unimportant

features were eliminated from the dataset.

Step 4 in the in the workflow in Figure 3.4.1, was feature elimination. RENT was

run in a brute-force manner on the three datasets D1, the clinical data, D2, the

radiomics data, and D3, the combination of D1, and D2, as described in Table

3.5.1. This was done for two targets; Disease-free survival and Overall survival.

This resulted in three new subsets of data for each response. All features selected

by RENT at least once were included in the datasets DR1, DR2, and DR3, and

all features that were not selected by RENT were eliminated. All further analysis

was based on the RENT-selected features in datasets DR1, DR2, and DR3 for OS

and DFS.

3.7 Establishing a model framework

Establishing a framework was step 5 of the workflow in Figure 3.4.1. The scope

of this thesis is to provide accurate predictions with models that can be inter-

preted and understood. Decision trees are the most obvious choice of algorithm

for this, because of their inherent interpretability and visualization possibilities.

Decision trees form the basis of many other, more complicated algorithms, which

were all outlined in Chapter 2.7. The classifiers used in this thesis are the Deci-

sion Tree, Random Forest, XGBoost, and HistGradientBoosting , and the FIGS,

HSTree, and the Boosted Rules from the iModels package, described in Section 2.7.

3.8 Tuning the model

Step 6 in the workflow in Figure 3.4.1 was tuning the ML models. There are

several methods for tuning the ML model. To tune a model means determining

the hyperparameters best suited for the dataset. ML models can have an array of
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different hyperparameter options and different effects of tuning. There are many

different algorithms for tuning, one of which is Optuna.

The Optuna package3 is a framework designed to optimize the hyperparameter

combination of an ML classifier. The user defines an objective for optimization.

The objective in this case is the classifier whose hyperparameters are to be opti-

mized. Within the objective, the hyperparameters are defined within a plausible

range for the given classifier. The classifier is created and fit with a hyperparam-

eter combination. A scoring or validation method is defined. To optimize each

model, Optuna creates a study. A study is the process of optimizing the objective,

and is run in a user-defined number of trials. A trial is one execution of the ob-

jective function [51]. The study is created and optimized over a number of trials,

and the hyperparameters that gave the best performing model are stored in the

study object [51].

The efficient hyperparameter sampling and pruning mechanisms set Optuna apart

from other optimization methods. For hyperparameter sampling, Optuna imple-

ments both relational sampling and independent sampling, where relational sam-

pling utilizes the hyperparameter correlations and independent sampling samples

each hyperparameter independently [51]. Pruning mechanisms are designed to ter-

minate trials with unpromising results, to keep the algorithm from wasting time

searching for optimal hyperparameter combinations in useless directions. Optuna

features an Asynchronous successive Halving algorithm (ASHA) for early stopping

based on ranking of previous trials.

Optuna version 3.1.0 was used for hyperparameter tuning in this thesis. All input

hyperparameters for every classifier is found in Appendix B.1. The input hyperpa-

rameters were intentionally held at a lower level to avoid large complicated models,

and to promote model interpretability. The objective of optimization was defined

to be the cross val score from ScikitLearn [49].

3https://github.com/optuna/optuna
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3.9 Validating the model with k-fold cross vali-

dation

Validating the models was step 7 in the flowchart in Figure 3.4.1. K-fold cross-

validation is a type of validation method for machine learning models. The method

splits the data into k folds [1]. In Figure 3.9.1, k = 5. During the first iteration,

labeled 1 in figure 3.9.1, the first four folds are used for training the model, and the

fifth fold is used to validate that model’s performance. The second iteration uses

folds 1, 2, 3, and 5 for training and the fourth for testing. The process repeats five

times, giving five estimates, M1 − M5, for the performance. The model’s overall

performance, M , on the dataset is found by averaging the performance for every

round [1].

Figure 3.9.1: The process of k-fold cross validation with five folds, where the blue fold is
the test fold, and the rest are the training folds. M1-M5 refer to the performance metrics
that measure the performance of the classifiers on each data fold. Adapted from [1].

In this thesis, k-fold cross validation was used with five folds, over 100 repeats

through the RepeatedStratifiedKFold cross validator from ScikitLearn [49]. The

models were made for datasets DR1, DR2, and DR3 for OS and DFS respectively.
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3.9.1 Measuring performance

Five performance metrics were used when measuring the model’s performance.

Accuracy, ROC score, F1 for the positive and negative class, and the Matthews

Correlation Coefficient were described in detail in Section 2.7.7. Evaluating the

model with multiple metrics gives a more complete picture of how the model is

performing, than evaluating with one metric. These five metrics were chosen be-

cause they highlight different aspects of prediction errors. The F1 score specifically

targets class imbalances because it works as a trade off between the Precision and

Recall. The F1 score for the negative class compared to the F1 of the positive

class can reveal if the model is better at predicting one class over the other.

3.10 Prediction on MAASTRO data

Final evaluation of all the models was performed on unseen data from the MAAS-

TRO clinic, which was step 9 in the flowchart in Figure 3.4.1. The predictive

performance of each model was evaluated using the same five performance metrics

as presented in Section 3.9.1, the accuracy, the AUC, the MCC, the F1:1, and the

F1:0.

3.11 Interpretability assessment

The models were validated on their performance, and the best performing mod-

els were interpreted based on their structure and prediction. In this thesis, ML

models were intepreted based on visualizations of the models. For this reason,

only tree-based algorithms were chosen, as they can provide insight to how predic-

tions are made. The Decision Tree can easily be plotted into a tree, which is also

the case with the FIGS model from the iModels package, and several other models.

Some models have built in functions to visualize their structure or predictions,

like the XGBoost and the decision tree. The ensemble models can be visualized

tree by tree, but if there are too many trees, the visualization loses its point. In

that case, the feature importances can be comouted and visualized as a form of

interpretation of the model. Feature importances were computed here with the

Scikit learn feature permutation [49].
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Chapter 4

Results

In this section, the results from the methods presented in Section 3 are presented.

Firstly a baseline performance of each of the targets on the full, unreduced dataset

D3, defined in Table 3.5.1, will be presented. The baseline model was a FIGS

classifier, and the model was tuned by Optuna. The feature selection results

using RENT are then presented for each of the targets. Results from five-fold

cross-validation are then presented, before the models are assessed on their inter-

pretability. Finally, the results from testing the models on the external MAASTRO

data concludes this section.

4.1 The baseline model

A baseline for comparison of model performance was first made. The baseline was

based on the full dataset D3, defined in Table 3.5.1, containing both clinical and

radiomics features, without any feature selection. The MCC scores were used as a

baseline comparison metric, and the FIGS classifier was the baseline classification

algorithm, due to its high interpretability [42].

Table 4.1.1: A baseline performance of the FIGS classifier on the full dataset with both
clinical and radiomics features, for each of the targets OS and DFS. The scores are given
by the MCC, one for the five-fold cross validation on the OUS data, and the other on
the MAASTRO test data.

Response Cross validation External testing

MCC MCC

OS 0.180 0.139

DFS 0.191 0.156

46



From Table 4.1, it is apparent that the MCC of the baseline model is lower for the

external testing than for the training data.

4.2 OS performance results

The results from the steps 2-9 in the workflow illustrated by Figure 3.4.1, are

presented for the OS target in this section. The results for DFS are presented in

Section 4.3.

4.2.1 RENT feature selection results

RENT was used for feature selection for all three datasets, D1, D2, and D3. The

optimal C parameter of RENT was 0.1 for all datasets, whereas the L1 ratios had

different optimal values for each dataset. RENT was run in a brute-force manner

on all three datasets, D1, D2, and D3, with the response variable OS, as explained

in Section 3.6. The result was three new and reduced datasets DR1, DR2, and

DR3, which contained features selected by RENT at least once across 100 models.

The features with selection frequency higher than 30% are displayed in Table 4.2.1,

and the full table of all selected features can be found in Appendix 4.2.1.
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Table 4.2.1: Table of features selected by RENT with a frequency higher than 30% for
response OS. The results are divided by dataset, where D1 is the clincial dataset, D2 is
the radiomics data, and D3 is the combination of both D1 and D2.

Data Feature Frequency (%)

D1 Cancer stage 100

HPV-related 95

Pack years 47

Oropharynx 36

D2 Shape: Tumor Sphericity 100

Texture: GLCM Joint Average (CT) 79

Texture: GLCM Sum Average (CT) 79

Shape: Tumor Major Axis Length (CT) 57

Intensity: Maximum Discrete HU (CT) 35

Texture: GLRLM High Gray Level Run Emphasis (PET) 34

Shape: Maximum Tumor 3D Diameter 31

D3 Shape: Tumor Sphericity 100

Cancer Stage 88

HPV-related 86

For dataset D1, which contained only clinical data, seven of 14 features were se-

lected at least once by RENT. For OS, Cancer Stage was selected in every model,

followed by HPV status, which was selected in 95% of the models, as seen in Table

4.2.1. For the second dataset D2, containing only the radiomics data, 32 features

were selected across the 100 models for the OS response. The tumor sphericity,

a shape feature, was selected by every RENT model, corresponding to a 100%

frequency. The four features below are all textural features from the CT images,

followed by a texture feature from the PET images, and another shape feature,

the maximum diameter.

The third dataset D3 contained clinical and radiomics features, and out of all 388

features in the input data, RENT chose seven features at least once. The top

ranking feature was the shape feature tumor sphericity, the same as for D2. The

Cancer stage and HPV status followed closely with 88% and 86%, respectively.

Only three features were selected at a frequency higher than 30%, and all three

were selected in more than 85% of the models. The full table of RENT selected

features is found in Appendix A.2.
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4.2.2 Reduced dataset

The feature selection performed by RENT, with the results presented in Section

4.2.1, resulted in three new datasets, DR1, DR2, and DR3. The three new datasets

are described in Table 4.2.2. Dataset DR1, DR2, and DR3 were further used in

this analysis to predict the OS target.

Table 4.2.2: The three datasets of RENT selected features from the three original datasets
D1, D2, and D3. See Appendix A.2 for the full list of features.

Dataset Description Features

DR1 Clinical features selected by RENT at least 7

once from dataset D1

DR2 Radiomics features selected by RENT at least 32

once from dataset D2

DR3 Features selected at least once from dataset D3 7

4.2.3 Model validation

Seven ML classifiers were used for validation and prediction in this thesis, which

were: Decison Tree, Random Forest, XGBoost, Histogram Gradient Boosting,

FIGS, HSTree, and Boosted rules. All models were tuned using the Otuna pack-

age, which was outlined in Section 3.8. The result from running Otuna on all

classifiers were an optimized combination of hyperparameters, which is found in

Appendix B.2.

After optimizing the hyperprameters with Optuna, all models were tested again by

a five-fold stratified cross validation, with 100 repeats through the RepeatedStrat-

ifiedKFold validator. The prediction results were then measured by five different

performance, that were averaged over the 100 repeats, for all three datasets, DR1,

DR2, and DR3. The results from the five-fold cross validation are presented in

Table 4.2.3 by the five different performance metrics accuracy, AUC, MCC, F1:1,

and F1:0, for datasets DR1, DR2, and DR3 respectively. The classifiers are ranked

by their accuracy and MCC.

49



Table 4.2.3: Results from the Decision Tree, Random Forest, XGBoost, Histogram Gra-
dient Boosting, FIGS, Hierarchical shrinkage, and Boosted rules classifiers after five-fold
stratified cross validation with 100 repeats on dataset DR1, DR2, and DR3, respectively.
The classifiers are ranked on the MCC scores for each dataset.

Dataset Algorithm Accuracy AUC MCC F1:1 F1:0

DR1 XGBoost 0.7405 0.7219 0.4625 0.6557 0.7885

Boosted Rules 0.7339 0.7249 0.4567 0.6725 0.7725

Random Forest 0.7324 0.7158 0.447 0.6501 0.7795

Decision Tree 0.7005 0.6872 0.3836 0.6059 0.7465

FIGS 0.7081 0.6953 0.4035 0.6282 0.7524

HistGradientBoosting 0.6918 0.6867 0.376 0.6319 0.7300

HSTree 0.6900 0.6841 0.3707 0.6250 0.7295

DR2 HistGradientBoosting 0.7914 0.7750 0.5682 0.7256 0.8302

XGBoost 0.6882 0.6598 0.3457 0.5620 0.7543

RandomForest 0.6823 0.65528 0.3348 0.5572 0.7478

HSTree 0.6725 0.6693 0.3526 0.597 0.6897

BoostedRules 0.6725 0.6528 0.3187 0.5724 0.7279

FIGS 0.655 0.6403 0.3526 0.597 0.6897

Decision Tree 0.6441 0.6286 0.2667 0.5493 0.6990

DR3 BoostedRules 0.7707 0.7609 0.5324 0.7140 0.8057

RandomForest 0.7525 0.7396 0.4915 0.6848 0.7932

HistGradientBoosting 0.7446 0.7328 0.4763 0.6775 0.7849

XGBoost 0.7414 0.7181 0.4763 0.6775 0.7849

Decision Tree 0.7409 0.7316 0.4694 0.6771 0.7797

FIGS 0.7252 0.7154 0.4384 0.6594 0.7657

HSTree 0.6975 0.6642 0.3612 0.5375 0.7676

For the clinical dataset, DR1, the top three classifiers had very similar performance,

all with accuracy and AUC above 0.73. FIGS came in fourth, with slightly poorer

performance. Regarding interpretability, FIGS is a more interpretable model, as

the other models are ensembles of trees, and thereby loose some interpretability.

The boosting process used in both XGBoost and Boosted rules is not inherently

interpretable, but according to the results here, bossting greatly benefits the deci-

sion tree algorithms used on dataset DR1.

For dataset DR2, all model performances are found in Table 4.2.3. The Histogram
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Gradient Boosting algorithm outperformed the other classifiers by nearly 10% for

all performance metrics. Again, the boosting algorithms increased decision trees’

performance. For dataset DR3, the Boosted Rules gave the highest performance,

with an AUC of 0.76 and an MCC above 0.5. The Random Forest followed closely

behind, as seen in Table 4.2.3. All classifiers had an accuracy and AUC above 0.7,

except for the HSTree from iModels.

Note that Random Forest, XGBoost, and Boosted Rules were among the top dour

classifiers for all three datasets. XGBoost and Boosted Rules are both based on

the boosting concept, indicating that boosted decision trees perform better than

non-boosted decision trees across all models. For all classifiers in Table 4.2.3, the

F1:0 score is consistently higher than the F1:1 score. A higher F1:0 score indicates

that the model predicts class 0 best. For OS, class 0 corresponds to survival. All

models predicted the surviving patients slightly better than the dying patients.

All models in Table 4.2.3 outperformed the baseline MCC score of 0.180 from Ta-

ble 4.1. This indicated that the models benefited from the RENT feature selection.

A plot of the five performance metrics, accuracy, AUC, MCC, F1:1, and F1:0,

across the three datasets DR1, DR2, and DR3 are presented in Figure 4.2.1 for all

seven ML classifiers used in this analysis. The classifiers are DT (Decision Tree),

RF (Random Forest), XGB (XGBoost), HGB (Histogram Gradient Boosting),

FIGS, HST (HSTree), and BR (Boosted Rules).
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(a) Accuracy (b) AUC

(c) F1:1 (d) F1:0

(e) MCC

Figure 4.2.1: The performance from five-fold cross validation over 100 repeats for clas-
sifiers DT (DecisionTree), RF (RandomForest), XGB (XGBoost), HGB (HistGradient-
Boosting), FIGS, HST (HSTree), and BR (BoostedRules) on datasets DR1, DR2, and
DR3 from OUS. The FIGS, HST, and BR are the models from the iModels package [2].

In general, most of the classifiers had poorer performance on the radiomics only

dataset, DR2, than on DR3 and DR1, except for the Histogram Gradient Boosting

which predicted very well on the dataset DR2. From Figure 4.2.1, the classifiers

had higher performance for DR3 than DR1. The best performing classifier in

this plot was the HistGradientBoostingClassifier when used on dataset DR2, fol-

lowed by the RandomForestClassifier for dataset DR3. The DecisionTreeClassifier

performed poorly in general, and the HSTree followed it closely.
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4.2.4 Testing on external data

The OS models were finally tested on the external dataset from the MAASTRO

clinic, and the results are presented below in Tigure 4.2.4.

Table 4.2.4: Results from the Decision Tree, Random Forest, XGBoost, Histogram Gra-
dient Boosting, FIGS, HSTree, and Boosted rules classifiers when tested on external data
from the MAASTRO clinic. The FIGS, HSTree, and Boosted rules are the models from
the iModels package [2].

Dataset Algorithm Accuracy AUC MCC F1:1 F1:0

DR1 Decision Tree 0.6667 0.6456 0.3688 0.7519 0.4923

Random Forest 0.6566 0.6462 0.3072 0.7119 0.5750

XGBoost 0.6667 0.6470 0.3588 0.7481 0.5075

HistGradientBoosting 0.6667 0.6456 0.3688 0.7519 0.4923

FIGS 0.6566 0.6390 0.3237 0.7344 0.5143

HSTree 0.6667 0.6456 0.3699 0.7519 0.4923

Boosted Rules 0.5252 0.5121 0.0260 0.6116 0.3896

DR2 Decision Tree 0.5859 0.5859 0.1714 0.6019 0.5684

RandomForest 0.6566 0.6548 0.3097 0.6792 0.6303

XGBoost 0.5454 0.5539 0.1106 0.5055 0.5784

HistGradientBoosting 0.6061 0.5962 0.2007 0.6667 0.5185

FIGS 0.5657 0.5770 0.1176 0.6261 0.4819

HSTree 0.5455 0.5381 0.0779 0.6018 0.4706

BoostedRules 0.5253 0.5308 0.0621 0.5053 0.5437

DR3 Decision Tree 0.5152 0.4984 -0.0037 0.6190 0.3333

RandomForest 0.6061 0.5861 0.2102 0.7023 0.4179

XGBoost 0.6869 0.6803 0.3680 0.7257 0.6353

HistGradientBoosting 0.6061 0.5847 0.2145 0.7068 0.4000

FIGS 0.5455 0.5267 0.0629 0.6512 0.3478

HSTree 0.5051 0.4918 -0.0176 0.5950 0.3636

BoostedRules 0.5253 0.5092 0.0207 0.6240 0.3561
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(a) Performance on DR1

(b) Performance on DR2

(c) Performance on DR3

Figure 4.2.2: Performance of the seven classifiers for predicting OS on the external
MAASTRO dataset, measured in accuracy, AUC, MCC, F1:1, and F1:0, for the Deci-
sion tree, Random Forest, XGBoost, Histogram Gradient Boosting, FIGS, HSTree, and
Boosted rules. The three last models were from the iModels package [2].

HSTree from iModels, the Decision Tree, XGBoost, and HistGradientBoosting

seemed to perform quite similarly on the dataset DR1. For the training data,

XGBoost, HistGradient and Boosted rules had the highest performance, as seen

in Table 4.2.3. The Decision Tree and the FIGS classifiers also performed well
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on the training data with meaning that two of the same classifiers performed well

during validation and testing for dataset DR1.

For dataset DR2, RandomForest gave the best performance on the MAASTRO

data, whereas for the training data, HistGradientBoosting outperformed all other

classifiers, as seen in Figure 4.2.2. The high validation performance of HistGradi-

entBoosting was not transferable to the test data, where this model gave poorer

performance than the RandomForest.

XGBoost gave the best performance on dataset DR2 with the MAASTRO data,

followed by the RandomForest and the HistGradientBoosting. All three of them

also did well on the training data. Boosted rules did very well on the training

data, as seen in Table 4.2.3, which did not translate well to the test data. For

datasets DR2 and DR3, several classifiers give MCC around zero, and some even

below zero. An MCC score below zero is considered worse than random guessing,

meaning the model provides no predictions that are better than randomly guessing

if the patients survives or not.

Table 4.2.5: MCC scores for all classifiers for OS prediction on external testing of
datasets DR1, DR2, and DR3.

Classifier DR1 DR2 DR3

DecisionTree 0.3688 0.1714 -0.0037

RandomForest 0.3072 0.3097 0.2102

XGBoost 0.3588 0.1106 0.2547

HistGradientBoosting 0.3688 0.2007 0.2145

FIGS 0.3237 0.1176 0.0629

HSTree 0.3688 0.0779 -0.0176

BoostedRules 0.026 0.0621 0.0207

Table 4.2.5 shows the MCC scores of all classifiers for OS prediction on the three

datasets, DR1, DR2, and DR3, of the unseen MAASTRO data. The baseline

performance for external validation on the OS target, as in Table 4.1, was 0.139.

For dataset DR1, all classifiers except BoostedRules outperformed the baseline by

over 10%. For the second dataset DR2, the baseline was outperformed by the

Decision Tree, Random Forest, and HistGradientBoosting classifiers. For dataset

DR3, only three of the classifiers outperformed the baseline, and two classifiers
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even had MCC scores below zero. Random Forest, HistGradientBoosting, and

XGBoost had the highest overall MCC on the three datasets.

4.2.5 Interpretability assessment

The interpretability assessment consisted of visualizing high performing models to

reveal the reasoning for the prediction. The highest performing models throughout

the dataset for OS prediction were the Random Forest, the XGBoost, and the His-

togram Gradient Boosting classifiers, with some occasionally high performances

from the Decision tree model. Both the Random Forest and the XGBoost have

visualization possibilities, however, this is not the case for the Histogram Gradient

Boosting. Therefore, Random Forest and XGBoost were visualized in this Section,

based on the model structure on the DR3 dataset.

Random Forest proved to have high performance across all datasets, as seen in

Table 4.2.3. For dataset DR3 Random Forest had an accuracy and an AUC above

0.76, making it the best performing classifier on the OUS data. However, the

model did not generalize well, and obtained an AUC of 0.59 on the MAASTRO

data. XGBoost performed slightly better on the MAASTRO data with an AUC of

0.61, yet XGBoost obtained a slightly lower performance than the Random Forest

during the validation on the OUS data. Boosted rules had a high validation per-

formance, however, it obtained one of the lowest testing performances, as seen in

Table 4.2.4 in the bottom row. Random Forest and XGBoost were visualized by

their structure and their feature importance.

The models with highest overall performance for OS prediction were based on

dataset DR1, the clinical data. From all classifiers on dataset DR1, the Decision

tree and the Random forest were visualized, as they were the highest performing

models on dataset DR1.

Decision tree on clinical data

The Decision tree classifier obtained an MCC score of 0.3836 during training on

the OUS data, and an MCC of 0.3688 on the external testing on the MAASTRO

data, as seen in Table 4.2.3 and 4.2.4. The tree decision tree was visualized, and

its structure is shown in Figure
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Figure 4.2.3: The Decision tree for dataset DR1 for OS prediction

The decision tree has one rule based on the cancer stage feature uicc8 III −
IV . This means the model predicts that all patients with cancer stage I − II

survive and all patients with cancer stage III − IV do not survive. The model is

straightforward and very interpretable.

Random forest on clinical data

The Random forest classifier obtained a training MCC of 0.447 and a test MCC

of 0.31, as seen in Table 4.2.3 and 4.2.4. The model consisted of four trees, two of

which are visualized in Figure 4.2.4. Each tree had a depth of 3.
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(a) Tree 1/4 in the Random Forest.

(b) Tree 2/4 in the Random Forest.

Figure 4.2.4: Two of the four trees that make up the Random Forest model on clinical
data for OS prediction. Note that the final prediction is made by a majority vote across
all four trees, and that these trees are two of those four trees.

The Random forest model on dataset DR1 consisted of four trees, each with a

depth of 4. Tree 1 splits on oropharynx and both child nodes are then split on

the charlson comorbidity index. There are, in total, five leaf nodes on Tree 1. The
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second tree splits at the cancer stage before both child nodes are split on age.

In this tree, pack years are also used slightly further down. This model is highly

interpretable as the four trees can easily give an overeview of what the model is

doing.

Random Forest on clinical and radiomics data

The Random Forest model consisted of 12 estimators with a maximum depth of 5,

as seen in Table B.3.2. The impurity criterion was Gini, which was calculated for

each step by Equation 2.7.2 in Section 2.7. The Random forest model obtained a

training MCC of 0.49 and a test MCC of 0.21. The plots below show some of the

trees generated by the Random Forest classifier. The samples belong to the OUS

data, meaning that there are 139 total samples classified in each tree. Note that

the final prediction was made by a majority vote amongst all trees, as mentioned

in Section 2.7.3. The trees visualized here only contribute towards the final pre-

diction, which is made by all of the 12 trees together, and not by the individual

trees.
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(a) Tree 5 in the Random Forest.

(b) Tree 10 in the Random Forest.

Figure 4.2.5: Two of the trees in the Random Forest model for dataset DR3 and OS
target. Note that uicc8 III − IV is the Cancer stage feature from Table 3.1.2, and
the shape spericity describes the roundness of the tumor. In this visualization, yellow
representd the surviving patients, and green represent the patients that did not survive.60



In Figure 4.2.5, two of the trees from the Random Forest are visualized. Tree 5

started by separating the patients by cancer stage, where the patients in the lower

stages, I − II, went to the left node, and the higher stages, III − IV , went to the

right node. The patients in the lower cancer stage were then split by age, 67.74,

creating two new nodes. Each of the new nodes were then split by oropharynx,

which created a leaf node of two samples. Further, the shape sphericity, age and

pack years were used for splitting until all samples ended up in a leaf node. This

tree had a depth of 5 and 14 rules.

Tree 10 in the forest, as seen in Figure 4.2.5b, was a little smaller than tree 5.

Tree 10 contained 10 rules, which was four less than tree 5. Tree 10 made the first

feature split on the cavum oris feature, which was the rarest cancer site in the

dataset. The first split created a pure leaf node immediately, showing that all 11

patients with cancer in the oral cavity in the OUS dataset died. Both trees showed

that patients with less sphere-like tumors more often ended up in leaf nodes where

the majority of the samples were classified as dead.

The Random forest model containing 12 trees with a depth of five is likely too

complicated to interpret directly from the visualizations. Therefore, the feature

importance was found for all the features in the dataset. The Random Forest fea-

ture importance was found using the ScikitLearn permutation importance. The

feature importance was calculated by defining a baseline model with all the fea-

tures in the dataset, before dropping the features one by one, and comparing the

performance of model to the baseline [49]. The feature importance is then ex-

pressed by how much the performance decreased when the feature was excluded.

The result is shown in Figure 4.2.6.
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Figure 4.2.6: The feature importances of the Random Forest model on the DR3 dataset
for the OS target. Note that the feature importances were found by feature permutation.

Figure 4.2.6 suggests that the shape sphericity, meaning the tumor’s roundness,

is the dataset’s most important feature. According to Figure 4.2.6, the model

performance rises with around 13% by including the shape sphericity. The uicc8 II-

IV feature, for the Cancer stage, was the second most important feature according

to Figure 4.2.6, followed by age, pack years, and HPV status. Cavum oris had did

not have any impact on the models performance, and oropharynx had a negative

impact on the model, meaning that excluding the feature improves the models

performance slightly, as implied by Figure 4.2.6.

XGBoost on the clinical and radiomics data

The XGBoost model, with all hyperparameters listed in Table B.2.3, consisted of

9 estimators with a maximum depth of 9. The plots in Figure 4.2.7, show the

structure of two of the trees in the XGBoost model on dataset DR3 for OS. Note

that the final prediction is made in a boosting manner, described in Section 2.7.4,

meaning none of the individual trees visualized here made a prediction alone.
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(a) Tree 2 in the XGBoost.

(b) Tree 3 in the XGBoost.

Figure 4.2.7: Two of the trees in the XGBoost model for dataset DR3 and OS tar-
get. Note that uicc8 III − IV is the Cancer stage feature from Table 3.1.2, and the
shape sphericity describes the roundness of the tumor.

Figure 4.2.7 shows two of the 9 trees that was generated by XGBoost for dataset
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DR3 for OS. This plot looks different from the one for Random Forest, as it was

visualized by the plot tree function implemented in XGBoost. Tree 2 made the

first split on feature uicc8 III-IV, the cancer stage, followed by one split on the

oropharynx feature. Tree 3 started by splitting on the Cavum oris feature, simi-

lar to the Random Forest model from Figure 4.2.5b, followed by four consecutive

splits on different ages. Nine trees in total makes the XGBoost model a little to

complicated to grasp through the visualizations only. Therefore the feature impor-

tances were found for each feature, in an attempt to add more context to the model.

The feature importances were computed in the same manner as for Random Forest,

and the results are plotted in Figure 4.2.8. Like Random Forest, the most impor-

tant feature for the XGBoost model was the shape sphericity, according to Figure

4.2.8, and excluding it from the model degrades the model performance by around

5%. Several of the RENT selected features had a negative feature importance, as

the plot in Figure 4.2.8 shows, including oropharynx, hpv-related, pack years, and

age. Several of the features that were considered unimportant by Figure 4.2.8,

were used in the trees visualized in Figure 4.2.7.
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Figure 4.2.8: The feature importances of the features in dataset DR3 for the fitted XG-
Boost model for OS target. Note that the feature importances were averaged over 10
rounds of feature permutation, and that the numbers on the X-axis corresponds to the
difference in performance of the baseline model and the model where each feature is per-
mutated.

4.3 DFS performance results

All results from step 2-9 in the flowchart in Figure 3.4.1 for DFS are presented in

this section.

4.3.1 RENT feature selection results

RENT was used in a brute-force manner for feature selection amongst all datasets,

D1, D2, and D3. The features selected with a frequency more than 30% by RENT

are presented in Table 4.3.1. The full table of all features selected at least once is

presented in Appendix B.3.
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Table 4.3.1: Table of features selected by RENT with a frequency higher than 30%. for
target DFS.

Data Feature Frequency (%)

D1 HPV-related 98

Cancer Stage 89

Pack years 41

Cavum Oris 39

Oropharynx 37

D2 Shape: Tumor Sphericity 95

Texture: LBP 102 (PET) 95

Shape: Tumor Elongation 69

Texture: GLSZM Small Area Low Gray Level Emphasis (CT) 63

Texture: LBP 201 (PET) 48

Texture: GLSZM Gray Level Non-Uniformity Normalized (PET) 31

D3 Shape: Tumor Sphericity 98

Shape: Tumor Elongation 95

Texture: LBP 102 (PET) 94

Texture: GLSZM Small Area Low Grey Level Emphasis (CT) 85

Texture: LBP 201 (PET) 68

HPV-related 55

Texture: GLSZM Grey Level Non-Uniformity Nomalized (PET) 49

Cancer Stage 47

For the D1 dataset, consisting only of clinical data, there were 10 features that

were selected by RENT at least once. HPV-status was the most selected feature

with a 98% frequency. cancer stage was selected at an 89% frequency, and the fre-

quency dropped to 41% for pack years. For dataset D2, 25 features were selected at

least once by RENT. The shape sphericity and the texture feature LBP 102 (PET)

both had a frequency of 95%. The shape feature tumor spherecity describes the

roundness of the tumor, and the LBP 102 is a PET image texture feature. The

shape feature tumor elongation, had a frequency of 69%. The three next features

are texture features, for both CT and PET images.

Dataset D3, consisted of both clinical and radiomics features, had the highest

number of features selected at least once by RENT. In total, 42 features from D3

were selected at least once by RENT. Again, the shape feature tumor sphericity
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had the highest selection frequency, followed by the tumor elongation. The five

most selected features in D2 and D3 were the same, however, the frequencies were

slightly different, as seen in Table 4.3.1.

4.3.2 Reduced dataset

The feature selection performed by RENT, with the results presented in Section

4.3.1, resulted in three new datasets, DR1, DR2, and DR3. The three new datasets

are decribed in Table 4.3.2.

Table 4.3.2: The three datasets of RENT selected features for DFS from the three original
datasets D1, D2, and D3.

Dataset Description Features

DR1 Clinical features selected by RENT at least 10

once from dataset D1

DR2 Radiomics features selected by RENT at least 25

once from dataset D2

DR3 Features selected at least once from dataset D3 42

4.3.3 Model validation

The three reduced datasets DR1, DR2, and DR3 were then used to train models.

For optimization of hyperparameters, the Optuna framwork was used. The Optuna

framework was outlined in Section 3.8, and the optimal hyperparameters for each

classifier on all three datasets is presented in Appendix B.2. The models were then

tested again in a five-fold cross validation over 100 repeats. The results of the four

best classifiers for each dataset are presented in Table 4.3.3.
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Table 4.3.3: Results from the Decision Tree, Random Forest, XGBoost, Histogram Gra-
dient Boosting, FIGS, Hierarchical shrinkage, and Boosted rules classifiers after five-fold
stratified cross validation with 100 repeats on dataset DR1, DR2, and DR3 respectively.
The performances are ranked by MCC.

Dataset Algorithm Accuracy AUC MCC F1:1 F1:0

DR1 Decision Tree 0.6860 0.6836 0.3852 0.6327 0.7196

HistGradientBoosting 0.6756 0.6738 0.3618 0.6312 0.7049

Random Forest 0.6686 0.6674 0.3450 0.6336 0.6919

Boosted Rules 0.6646 0.6639 0.3349 0.6427 0.6767

HSTree 0.6524 0.6511 0.3095 0.6193 0.6738

FIGS 0.6455 0.6433 0.3018 0.5919 0.6780

XGBoost 0.6459 0.6448 0.2984 0.6113 0.6687

DR2 XGBoost 0.7253 0.7250 0.4575 0.7142 0.7310

Decision Tree 0.7135 0.7152 0.4462 0.7278 0.6872

HSTree 0.7135 0.7152 0.4462 0.7278 0.6872

BoostedRules 0.7117 0.7134 0.4431 0.7270 0.6836

HistGradientBoosting 0.6930 0.6942 0.3980 0.6942 0.6817

RandomForest 0.6855 0.6952 0.3971 0.0.6840 0.7003

FIGS 0.6169 0.6158 0.2387 0.6042 0.6196

DR3 HistGradientBoosting 0.7208 0.7204 0.4478 0.7124 0.7235

XGBoost 0.7196 0.7191 0.4457 0.7065 0.7266

Decision Tree 0.7071 0.7086 0.4329 0.7200 0.6818

FIGS 0.7071 0.7086 0.4329 0.7200 0.6818

HSTree 0.7071 0.7086 0.4329 0.7200 0.6818

BoostedRules 0.7009 0.7026 0.4209 0.7158 0.6732

RandomForest 0.7013 0.6693 0.4104 0.6693 0.7228

The Decision tree classifier was within the top three classifiers for all three datasets,

DR1, DR2, and DR3, for predicting DFS. This was not the case for OS, as seen

in Table 4.2.4. Further all classifiers outperformed the baseline performance from

Table 4.1, which was an MCC of 0.190. In general, the F1:1 and F1:0 scores

are quite similar, which indicated that the model predicted the dead or relapsed

patients.

For dataset DR1, the clinical data with features selected by RENT, the four best-

performing classifiers all performed very similarly, with accuracies and AUC scores
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above 0.66, as seen in Table 4.3.4. The Decision Tree and the HistGradientBoost-

ing classifier had F1:0 scores above 0.7. For DR3, three classifiers performed

identically: the FIGS, HSTree, and Decision Tree.

(a) Accuracy (b) AUC

(c) F1:1 (d) F1:0

(e) MCC

Figure 4.3.1: The performance from five-fold cross validation for DFS prediction over
100 repeats for classifiers DT (DecisionTree), RF (RandomForest), XGB (XGBoost),
HGB (HistGradientBoosting), FIGS, HST (HSTree), and BR (BoostedRules) on datasets
DR1, DR2, and DR3. The FIGS, HST, and BR are from the iModels package [2].

The performance on datasets DR2 and DR3 were, for many of the classifiers, very

similar. Figure 4.3.1 shows that the FIGS classifier performed poorly on DR2,

whereas the XGB classifier performs very well on the same dataset. The Decision

Tree had very high F1:0 score for dataset DR1, however, the other performances

on DR1 were below par. The overall best performance is on dataset DR2 by the

XGBoost classifier.
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In general, all classifiers performed better on datasets DR2 and DR3, than on DR1,

which indicated that the radiomics features contributes positively to the models.

Only the FIGS classifier performed better on the DR1, the clinical data, than on

DR2, the radiomics data. The Decision tree had a high F1 : 0 score for dataset

DR1, indicating that the model predicted the disease-free patients slightly better

than the relapsed or passed patients.

4.3.4 Testing on External dataset

The models were all tested on the external dataset from the MAASTRO clinic.

The results from prediction on the MAASTRO data is presented by Figure 4.3.2.
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Table 4.3.4: Results from the Decision Tree, Random Forest, XGBoost, Histogram Gra-
dient Boosting, FIGS, HSTree, and Boosted rules classifiers when tested on external data
from the MAASTRO clinic for DFS prediction. The FIGS, HSTree, and Boosted rules
are the models from the iModels package [2].

Dataset Algorithm Accuracy AUC MCC F1:1 F1:0

DR1 Decision Tree 0.7172 0.6701 0.4016 0.7941 0.5484

Random Forest 0.7374 0.7072 0.4425 0.7969 0.6286

XGBoost 0.6768 0.6242 0.3035 0.7681 0.4667

HistGradientBoosting 0.7172 0.6701 0.4016 0.7941 0.5485

FIGS 0.7172 0.6701 0.4016 0.7941 0.5484

HSTree 0.7172 0.6701 0.4016 0.7941 0.5485

Boosted Rules 0.6566 0.6112 0.2575 0.7462 0.4688

DR2 Decision Tree 0.5859 0.5076 0.0260 0.7248 0.1633

RandomForest 0.6162 0.5693 0.1587 0.0.7164 0.4062

XGBoost 0.6162 0.5934 0.1906 0.6885 0.5000

HistGradientBoosting 0.5958 0.5076 0.0260 0.7248 0.1633

FIGS 0.4343 0.4167 -0.1653 0.5172 0.3171

HSTree 0.5958 0.5076 0.0260 0.7248 0.1633

BoostedRules 0.5958 0.5076 0.0260 0.7248 0.1633

DR3 Decision Tree 0.5859 0.5076 0.0260 0.7248 0.1633

RandomForest 0.6869 0.6487 0.3277 0.7634 0.5373

XGBoost 0.5960 0.5483 0.1106 0.7015 0.3750

HistGradientBoosting 0.6061 0.5528 0.1266 0.7153 0.3607

FIGS 0.5859 0.5076 0.0260 0.7248 0.1633

HSTree 0.5859 0.5076 0.0260 0.7248 0.1633

BoostedRules 0.5859 0.5076 0.0260 0.7248 0.1633

The performance metrics are presented in Table 4.3.4. For dataset DR1 the per-

formance of the RandomForest was somewhat higher than the other classifiers, as

shown in Table 4.3.5. Several other classifiers performed similarly on the DR1 data,

and the FIGS classifier had the second highest MCC score. For DR1, the classi-

fiers all performed better on the external dataset than on the training data. For

the DR2 dataset, with only radiomics features, the XGBoost and RandomForest

classifiers had the highest performance on the external data, with an MCC of 0.37.

XGBoost performed best on the training data as well, indicating generalizability.
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(a) DR1 MAASTRO

(b) DR2 MAASTRO

(c) DR3 MAASTRO

Figure 4.3.2: Results of testing seven classifiers for prediction of DFS on the external
MAASTRO dataset.

For dataset DR2 qnd DR3 several of the MCC scores are close to zero, and some

are even below. An MCC score below zero indicates that the classifier performs

worse than random guessing. For predicting DFS, the radiomics features did not
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contribute positively to the predictions.

Table 4.3.5: MCC scores for all classifiers for DFS prediction on external testing of
datasets DR1, DR2, and DR3.

Classifier DR1 DR2 DR3

DecisionTree 0.4016 0.026 0.026

RandomForest 0.4425 0.1587 0.2836

XGBoost 0.3588 0.1906 0.1106

HistGradientClassifier 0.4016 0.026 0.1266

FIGS 0.4214 -0.1653 0.026

HSTree 0.4016 0.026 0.026

BoostedRules 0.2547 0.026 0.026

Compared to the baseline from Table 4.1, which was 0.156 for external testing of

DFS, all models on the clinical dataset, DR1, performed better than the baseline.

For DR2, only Random Forest and XGBoost outperformed the baseline score of

0.156. For DR3, the Random Forest was the only classifier that beat the MCC

score.

4.3.5 Interpretability and overall assessment

The highest-performing models for DFS prediction were all on the clinical dataset,

as seen by the MCC scores in Table 4.3.5. For the clinical dataset, DR1, the

Decision tree, FIGS, and Random Forest were visualized, whereas for the clinical

and radiomics dataset, DR3, only the Random forest was visualized.

Decision tree on clinical data

For dataset DR1, the Decision tree achieved a training MCC of 0.39 and a test

MCC of 0.41. The Decision tree had the highest performance on the training data,

whereas the Random forest performed the highest on the test data. The Decision

tree structure for dataset DR1 is presented in Figure 4.3.3. The decision tree had

a depth of 2, and the optimization criterion was Gini.
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Figure 4.3.3: Decision tree for dataset DR1, the clinical dataset, for predicting DFS.
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The Decision tree classifier did the first split on the HPV-status feature. Further,

the HPV-negative patients were split by cancer stage, and patients with cancer

stage I-II were predicted to survive disease free. The HPV-positive patients were

split by age. However, both leaf nodes predicted surviving patients, as seen in

Figure 4.3.3.

FIGS on clinical data

The FIGS model obtained an MCC of 0.30 on the OUS training data and 0.42 on

the MAASTRO test data for the clinical dataset. The model consisted of two trees,

and the features HPV-status and SUVpeak were chosen by the FIGS algorithm for

the two rules.
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(a) Tree 1/2 (b) Tree 2/2

Figure 4.3.4: The structure of the FIGS model on dataset DR1 for predicting DFS.

The FIGS model on the clinical data found that ?? and SUVpeak were the most

informative features to split on. The HPV status was a slightly better predictor,

as the SUVpeak predicted many survuving patients wrongly, as seen in the right

tree in Figure 4.3.4.

Random forest on clinical data

Random forest model on dataset DR1 achieved a training MCC of 0.35 and a test

MCC of 0.44 as seen in Table 4.3.3 and 4.3.4, respectively. The Random forest

model consisted of 8 estimators, each with a maximum depth of 1. A majority

vote amongst the estimators made the final prediction. Four Random forest model

estimators are visualized in Figure 4.3.5.
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(a) Tree 0 (b) Tree 1

(c) Tree 2 (d) Tree 3

Figure 4.3.5: The structure of four of the estimators in the Random forest model for
dataset DR1 predicting DFS.

The estimators in the Random forest model in Figure 4.3.5 split on the features

cavum oris, oropharynx, age, and pack years. The oropharynx and cavum oris are

two cancer site features described in Table 3.1.2. The age was split on 68.8 years,

and pack-years were split on 33.

Random forest on clinical and radiomics data.

The chosen model for DR3 was the Random Forest, which had a high performance

on the external MAASTRO data. Random Forest obtained a training MCC score

of 0.4189, which was the lowest amongst all the classifiers. However, it was the only

classifier to perform better than the baseline on the external data. The Random

Forest model consisted of 20 estimators, each with a maximum depth of 10, which

is quite a large model. One of the trees was visualized in Figure 4.3.6. Note that

the final prediction was made from a majority vote between all 20 estimators and

not by the tree visualized here.

77



Figure 4.3.6: Tree 7 of 20 from the Random Forest model for predicting DFS on dataset
DR3. Note that this tree is not the only tree that makes up the prediction of the Random
Forest model. The prediction is made by a majority vote.
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Figure 4.3.7: The feature importances of all the features in dataset DR3 on the Random
Forest model on DFS.

The model structure and plot of the feature importance were visualized. Tree 7

of 20 in the Random forest model initially split at the HPV-status. The following

splits were done on Small area Low Gray level emphasis and first order skewness.

The remaining feature splits occurred on a few shape features concerning the

sphericity and LBP features.

As in Section 4.2.5, the feature importance was based on the permutation impor-

tance. As seen in Figure 4.3.7, only 18 of the 42 features positively contributed

to the model’s performance. The most important feature was the GLSZM Non-

uniformity for PET, meaning the non-uniformity of texture in PET images was an

important predictor for DFS for the Random forest model. The two second most

important features were the shape features flatness and sphericity, both considered

important by RENT, as seen in Table A.3.3.
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Chapter 5

Discussion

This thesis aimed to determine if it was possible to use interpretable models to

predict treatment outcomes for patients with head and neck cancer while main-

taining state-of-the-art performance. This section discusses the results found in

Section 4.3.5.

5.1 Features selected by RENT

This thesis used RENT [50] as the framework of choice for feature selection. In

total, three subsets of data were used with RENT for two different targets, yield-

ing six different subsets of data. For the OS target, the results from RENT are

presented in Table 4.2.1, with a full version in Appendix A.2. For the DFS target,

the complete Table of results can be found in Appendix A.3, with a shorter version

in Table 4.3.1.

For the clinical dataset D1, a total of 7 features were selected at least once by

RENT for OS, whereas ten features were selected for DFS, suggesting that more

features were required for predicting DFS. All seven features selected by RENT

for OS were also selected for DFS, in addition to female, larynx, and cavum oris.

Cancer stage and HPV were the two most selected features in RENT for both OS

and DFS.

For the radiomics dataset D2, a total of 25 features were selected by RENT for

OS and 32 for DFS. Again, RENT selected more features for DFS models than

for OS models. For both OS and DFS, the shape feature tumor sphericity was the

most selected feature, suggesting the roundness of the tumor was an important

feature for both OS and DFS prediction. Liu et al. [14] also found that tumor
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roundness was a signature feature for predicting OS and DFS. Tumor sphericity

was also found to be a signature feature for CT radiomics by Keek et al. [57], who

also found that rounder tumors had a better prognosis.

For OS on the radiomics dataset, DR2, three texture features were selected with

a frequency higher than 30%. These were glcm JointAverage d 1 CT c16, which

measures the mean gray-level intensity in the intensity distribution of the CT

image, glcm SumAverage d 1 CT c16, which measures the occurrence of high grey-

level pairs and low grey-level pairs, and glrlm HighGrayLevelRunEmphasis PET c04,

which measures the concentration high gray-level intensity values [35]. Note that

texture in CT images is related to the tumor’s physical texture, whereas texture in

PET images is related to the tumor’s uneven tracer uptake. Texture in the PET

images reflects the tumor’s metabolic activity, as explained in Section 2.5.

For DFS on the radiomics dataset, DR2, other texture features were selected. The

local binary pattern features LBP 102 PET and LBP 201 PET was chosen by

RENT with a selection frequency of 95% and 48%, respectively. The LBP fea-

tures describe texture patterns in the tumor captured by the PET images [58].

The tumor elongation was selected at a frequency of 69%, suggesting that it is an

important feature for predicting DFS.

For the full dataset D3, which consisted of both radiomics and clinical features, the

number of features selected for OS and DFS was quite different. For OS, only seven

features were selected from D3, with 6 being clinical features. For DFS, 42 features

were selected from the D3 dataset. The OS and DFS target had five common fea-

tures, tumor sphericity, uicc III-IV (cancer stage), HPV-related, cavum oris, and

age, suggesting that these features were important to both OS and DFS prediction.

The PET parameter SUVpeak was selected only once by RENT for DFS predic-

tion. The other PET parameters MTV and TLG were never selected by any of the

models in RENT, which suggests that they were not important for the prediction

of OS and DFS. The work of Moan et al. [13] also found that the PET parameters

had no significance for predicting DFS.
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5.2 Performance results

5.2.1 OS

For dataset DR1, every model outperformed the baseline for training and testing.

This indicated that models based on RENT-selected clinical features yield a higher

performance for OS prediction than the entire dataset of clinical and radiomics fea-

tures.

During model validation, XGB, RF, and BR from iModels, obtained the highest

performance when predicting OS on dataset DR1, the clinical dataset, with AUC

around 0.72 and MCC of around 0.45, as seen in Table 4.2.3. However, during

external testing on the MAASTRO, the performance dropped for all three clas-

sifiers. During external testing, four classifiers had the same performance, the

decision tree, XGBoost, HistGrad, and FIGS, as seen in Table 4.2.4. These four

had the highest performance among all classifiers during testing, with an AUC of

0.65 and MCC of 0.37. None of them had the same performance during training.

For dataset DR2, consisting of 25 radiomics features, the HistGrad classifier ob-

tained the highest performance with an AUC of 0.78 and MCC of 0.57 during

validation on the OUS data. The RF and XGB followed with AUC scores around

0.67, which is not unlike what other studies found. Liu et al. [14] found that

for PET and CT radiomics of the primary tumor, an AUC of 0.68 − 0.90 was

achievable, and Vallières et al. [15] obtained an AUC of 0.60 for PET and CT ra-

diomics when predicting OS. The performance of the HistGrad classifier dropped

from training to external testing, where the HistGrad achieved an AUC of 0.60.

XGBoost did not generalize well and ended up with an AUC of 0.55, just 5% better

than random guessing. The highest-performing model across training and testing

for dataset DR2 was the Random Forest. The Random forest model generalized

well and obtained a test AUC of 0.65, not far from the training AUC and in line

with the results from similar studies ([14], [15]).

Dataset DR3 consisted of six clinical and one radiomics feature. The performance

during model validation was promising, with BR from iModels obtaining an AUC

of 0.76, followed by RF and HistGrad with an AUC of around 0.73, as seen in Ta-

ble 4.2.3. Again, during external testing on the MAASTRO data, the performance

dropped for all classifiers. BR experienced the largest drop, down to an AUC of

0.51, indicating the model did not generalize well. The best performance on the
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external testing was achieved by XGBoost, with an AUC of 0.68. XGBoost gave

a training AUC of 0.71, meaning the model generalized well to the external dataset.

For both datasets, DR2 and DR3, several models were outperformed by the base-

line model from Table 4.1. The baseline MCC for validation was 0.180, and the

baseline for testing was 0.139 for OS. All classifiers outperformed the baseline dur-

ing validation for both DR2 and DR3. However, several of the classifiers performed

poorly during testing on the MAASTRO data. For dataset DR2, HSTree and BR

from iModels obtained an MCC of just 0.078 and 0.062, respectively. Such low

MCC scores indicated that the model’s predictions were just above random guess-

ing.

In general, for all the datasets, the F1:0 score dropped the most for all classifiers

during external validation, indicating that many patients from the MAASTRO

clinic were falsely predicted as positives. For the model validation on the OUS

data, the F1:0 score was consistently higher than the F1:1 score, indicating that

OUS patients were more often predicted as false negatives.

The highest-performing classifier during training when predicting OS was the Hist-

GradBoosting classifier on dataset DR2, the radiomics dataset. The HistGrad

achieved an MCC of 0.57, as seen in Table 4.2.3. However, it did not general-

ize well to the external dataset, where it obtained an MCC of 0.20. The highest

performing classifier during testing on the external MAASTRO dataset was the

Decision tree, FIGS, and HSTree classifiers on the clinical dataset, DR1, with an

MCC of 0.37. The three classifiers had the same performance across all metrics,

suggesting they were similar in structure. The three classifiers had training MCCs

between 0.37− 0.39, suggesting they generalized well to the test data.

5.2.2 DFS

For the DFS target, the classifiers performed very similarly during training on

dataset DR1, with all AUCs between 0.64−0.68. For external testing, the model’s

performances spanned a greater interval with the highest-performing model, the

Random forest, achieving an AUC of 0.71 and the lowest-performing model, the

Boosted rules from iModels, achieving an AUC of 0.61.

The performance of the classifiers on dataset DR2, the radiomics dataset, was

slightly higher during training than those of the clinical dataset, as seen in Ta-
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ble 4.3.3. The XGBoost, decision tree, HSTree, and Boosted rules from iModels,

all gave AUCs above 0.71. The models did not generalize well to the test data,

where the same models obtained AUCs of 0.51 − 0.59. XGBoost has the highest

performance during testing of all the classifiers with an AUC of 0.59. In general,

the test performance for the radiomics dataset was much lower than that of the

clinical dataset, indicating that DFS was best predicted for the MAASTRO data

on the clinical features rather than the radiomics features.

For dataset DR3, the training AUCs for nearly all classifiers were above 0.70, with

only RandomForest at 0.67. However, Random Forest achieved a test AUC of

0.64, meaning the model generalized well to the unseen MAASTRO data and per-

formed approximately the same during training and testing. All other classifiers

achieved an AUC between 0.51 − 0.55, similar to randomly guessing the class of

each patient. The Random Forest had the highest performance across the training

and testing.

For both datasets, DR2 and DR3, the external testing performance of F1:0 was

very low for some classifiers. As seen in Table 4.3.4 and Figure 4.3.2, the F1:0

score for the Decision tree, FIGS, HSTree, and Boosted rules was 0.16 for both

DR2 and DR3. This indicated that the models predicted many false positives. For

datasets DR2 and DR3, several models did not outperform the baseline, with many

obtaining an MCC score just above 0, which is the limit for random guessing. For

the radiomics-only dataset, DR2, the FIGS classifier even got MCC scores lower

than zero, which is worse than random guessing.

The highest performing classifier on the OUS training data for DFS prediction was

the XGBoost classifier on dataset DR2, the radiomics data. XGBoost obtained a

training MCC score of 0.46, as seen in Table 4.3.3, on the OUS data. However,

it did not generalize well to the test data, which obtained an MCC of 0.19, as

seen in Table 4.3.4. The highest-performing classifier on the MAASTRO test data

for DFS prediction was the Random forest classifier on the clinical dataset DR1.

Random forest obtained an MCC of 0.44 during external testing, as seen in Table

4.3.4, and an MCC of 0.35 during training.
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5.3 Possible explanations for performance gap

The two datasets collected from OUS and the MAASTRO clinic had some core

differences, as seen in Table 3.1.2. Patients from OUS tended to have fewer pack

years, lower stages, and different frequencies of the different cancer sites. For

the MAASTRO dataset, there were more patients with laryngeal cancer, which

is linked to smoking [59]. This coincides with the higher trends of pack years for

the MAASTRO dataset. In the OUS dataset, oropharyngeal cancer was the most

common type, accounting for nearly 75% of all the cases. The differences between

the features pack years and age in the two datasets are visualized in Figure 5.3.1.

(a) Age distribution

(b) Pack years distribution

Figure 5.3.1: The distributions of age and pack years in the OUS and MAASTRO
datasets

Figure 5.3.1a shows that the average age of the OUS and MAASTRO patients was

about the same, as seen in Table 3.1.2. The tails of the MAASTRO age curve

are slightly longer, meaning the MAASTRO patients had a greater age span than

the OUS patients. Figure 5.3.1b shows that the MAASTRO patients, on average,

smoked more than the OUS patients and that someone in the MAASTRO dataset

had nearly 400 pack years.
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Across all the models, the most common pattern was that the models performed

higher during training than on validation. For DFS on dataset DR1, the models

predicted much better on the MAASTRO data after training on the OUS data.

The patients from the MAASTRO clinic were generally sicker than the OUS, with

a higher percentage of patients in the later stages of cancer. Predicting the out-

come of patients might be easier if the patients, in general, are sicker. In general,

models that got accuracies and AUC around 0.7 for training on the OUS data

obtained a lower performance on the MAASTRO dataset and vice versa. The two

datasets have core differences that can explain the drop in performance or the

increase for dataset DR1 on DFS prediction.

Overoptimistic results could cause a reason for the drop in performance between

training and testing. Throughout k-fold cross-validation, all of the data has at

some point been training the model, meaning there is an information bleed be-

tween the training data and the validation data for all classifiers. This could lead

to a seemingly over-optimistic performance during the model validation.

5.4 Interpretability and overall assessment of the

models

Implementing machine learning in the medical field offers many possibilities but

also proposes some challenges. One of these challenges is interpretability. Many

ML models are so-called black box models that offer no insight into how the pre-

diction is made. When diagnosing and administering treatment to a patient, the

consequences of wrong predictions are severe. The ideal implementation of ML

models for clinical decision support is to use easily explainable models with state-

of-the-art performance.

The iModels package was explored in this thesis because of its promise of high-

performing interpretable models. Several of the models from the iModels package

proved less effective than RandomForest, XGBoost, and HistogramGradient mod-

els for several datasets in this thesis. This is likely due to the simplicity of the

iModels algorithms. The iModels package offers an array of models for inter-

pretable machine learning. In the FIGS article, [42], an interpretable model was

coined to have less than 20 decision rules. For complicated datasets, like those en-
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riched with radiomics features, 20 splits may be too few to catch the data patterns.

The same is true for the Decision Tree algorithm. As seen in Table 4.2.4 and 4.3.4,

the Decision tree performs poorly during external validation of the MAASTRO

data for the radiomics datasets.

The models interpreted in Section 4.2.5 and 4.3.5 had different complexities de-

pending on which datasets they were built on. The models built on the clinical

datasets had simple structures. The decision tree performed well on the clinical

datasets for both OS and DFS prediction, as well as other simple algorithms. The

Random forest, XGBoost, and HistGradeBoosting classifiers had the highest per-

formances on the more complicated datasets. The HistGradientBoosting was not

visualized here, as it is less interpretable than the other models.

The features found most important by the feature importance permutation were

the same for the RENT-selected models. Sphericity was one of the most impor-

tant feature in both feature importance diagrams for DR3, which was confirmed

by RENT. Other studies have also found tumor sphericity to be an important

predictor for OS and DFS [14], [57]. For the XGBoost on the DR3 dataset for

OS prediction, several of the features in the dataset have a negative feature im-

portance, indicating that their presence in the dataset degrades the performance

slightly, as seen in Figure 4.2.8. This caused a discrepancy between the features

considered important by RENT and the features considered important by the

model. Note that this is for the XGBoost model and that the RENT feature se-

lection chose features based on the logistic regression algorithm.

For OS prediction on the clinical data, a Decision tree with just one rule, as seen

in Figure 4.2.3 obtained an MCC of o.37 during training and testing. The De-

cision tree’s only rule was that patients with cancer stage I − II were predicted

to survive, and IIIIV were predicted to not. During tuning, the model had the

possibility of choosing a more complex structure. However, this simple depth of

1 was chosen. With only one rule, predicting OS with an MCC of 0.37 on these

datasets was highly possible.

Further, for OS prediction, the Random forest model on the clinical data only

obtained a training MCC of 0.447 and a test MCC of 0.31. The Random forest

model on the clinical and radiomics data obtained a training MCC of 0.49 and a

test MCC of 0.21. The model on only the clinical data had a 10% better perfor-
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mance on the unseen data, while the two models performed around the same on

the training data. The clinical Random forest model also had a simpler structure,

as seen in Figure 4.2.4, with four trees with a maximum depth of 3, whereas the

clinical and radiomics model consisted of 12 trees with a depth of 5. The most

interpretable Random forest model outperformed the more complicated model.

For DFS prediction, both the Decision tree and the FIGS algorithm obtained

MCCs of 0.30 − 0.42 during training and testing. Both models were inherently

interpretable in their structure and were visualized in Figure 4.3.3 and 4.3.4. Both

trees obtained a high performance while keeping their interpretability.

The Random forest on the clinical data consisted of 8 estimators with one rule

each. Four estimators were visualized in Figure 4.3.5. This model obtained a

training -MCC of 0.35 and a test MCC of 0.44. The Random forest model on the

clinical and radiomics data obtained a training MCC of 0.42 and a test MCc of

0.33. Overall the two Random forest models perform almost identically, where one

predicts better on the OUS data, and the other predicts better on the MAASTRO

data. The RF model on the clinical and radiomics data consists of 20 trees, each

with a maximum depth of 10. This model is considerably more complicated and

less interpretable than the model for the clinical data, yet they perform about the

same.

For both OS and DFS, the clinical datasets gave rise to the models with the

highest performances in this thesis. Several classifiers were simple trees that were

easily visualized and understood, indicating that it is possible to predict treatment

outcomes at state-of-the-art performance using interpretable models.

5.5 Future Work

Other algorithms promote interpretability, such as Bayesian networks [60] and

Bayesian rule lists [61], which both offer interpretable probabilistic classifiers. The

minimum description length (MDL)-based rule lists are another classification algo-

rithm that offers interpretable rule lists for classification. MDL-based rule lists do

not require any tuning, as it is a hyperparameter-free algorithm [62]. Conducting

a comparison between these algorithms and the iModels algorithms would be an

interesting approach.
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Identifying the misclassified samples across the 100 models during training would

lead to more insight into which patients are harder to classify. Determining where

the model falls short, through which patients are hard to classify, could be an

interesting addition to a model used for decision support. Because the different

cancer sites were so differently distributed amongst the two datasets, and cancer

sites often were coined as important features for the models, splitting the dataset

by the different cancer sites could lead to better predictions.

89



Chapter 6

Conclusion

This thesis aimed to find interpretable models for predicting patient outcomes of

head and neck cancer patients. The analysis was based on decision trees to pro-

duce visualizations that could provide context to the model’s predictions. Two

responses were predicted; overall survival and disease-free survival. Radiomics

features were extracted from the images using imskaper [56]. The data was sep-

arated into three datasets, one for the clinical data, one for the radiomics data,

and one for all of the data. Feature selection on the three was done using the

repeated elastic net technique [50]. This resulted in six datasets, three for each re-

sponse. Seven machine learning classifiers were trained and tested on the datasets.

A dataset from Oslo University Hospital was used for training all the classifiers.

This dataset contained 139 patients. For testing, a dataset from the MAASTRO

clinic was used, which contained 99 patients.

For predicting overall survival, the highest performance was achieved by the Hist-

GradientBoosting classifier during training, with a training MCC of 0.57. However,

the model did not generalize well to the external testing. This performance was

obtained on the radiomics only dataset. The highest test performance was an MCC

of 0.37 which was obtained by the Decision tree, FIGS, and HSTree classifiers on

the clinical data.

For predicting disease-free survival, the XGBoost classifier achieved the highest

performance on dataset DR2, with an MCC of 0.46 during training. The model

did not generalize well to the external MAASTRO data, where it obtained a test

MCC of 0.19. The highest performance on the MAASTRO data was achieved by

the Random forest classifier, with an MCC of 0.44.
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The Decision tree models, for the most part, performed well on the clinical data.

However, it struggled to grasp the complexity of the radiomics datasets and was

outperformed by other algorithms for the radiomics datasets. The high perfor-

mance on the clinical dataset and the interpretability makes the decision tree a

good candidate for use in various applications.

The iModels did not outperform the other classifiers. However, some did perform

well on the clinical datasets for both OS and DFS prediction. For the more com-

plex datasets with many radiomics features, the iModels were outperformed by

the Random forest, XGBoost, and the HistGradientBoosting classifiers.

Several interpretable models predicted well on clinical data, whereas more complex

models were needed to capture the patterns in the radiomics data. Transparency

in machine learning models greatly benefits decision-makers in clinical settings,

as every prediction can be reasoned for, contributing to a greater understanding.

Predicting treatment outcomes for head and neck patients is highly possible with

interpretable models. In order to determine if the methods used in this thesis are

suited for predicting treatment outcomes for head and neck cancer patients, it is

necessary to test the models on more datasets.
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Appendix A

RENT

A.1 RENT input parameters

The input parameters for running the RENT algorithm for feature selection is

presented below in Table A.1.1. Each parameter is presented with a description

and the range used for each parameter.

Table A.1.1: The parameter ranges used for training the ensemble of models through the
RENT framework. The input parameters are described, and their respective ranges and
values are presented.

Parameter Description Range

C Controls the amount of L2 regularization [0.1, 1, 10, 100, 1000]

L1-ratio Controls the amount of L1 regularization [0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1]

K Number of models in ensemble 100

testsize range Allows more randomness into the model (0.25, 0.25)

by varying the size of the subsets

random state Sets a value to keep results reproducible None

autoEnetParSel Determines how the best regularization False

parameters are found

poly If ON then combinations of and interactions OFF

of features can also be used to train the

models

scoring Performance metric for the models MCC

classifier The chosen classification algorithm logreg
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A.2 Features selected by RENT at least once for

OS target

This section presents the full tables with results of running RENT on the clinical

data (D1), the radiomics data (D2) and the combined data (D3).

Table A.2.1: Table of features selected by RENT at least once across 100 models for
dataset D1, the clincal data, and OS.

Feature Frequency (%)

Cancer stage 100

HPV-related 95

Pack years 47

Oropharynx 36

age 6

charlson 4

Cavum oris 4
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Table A.2.2: Table of features selected by RENT at least once across 100 models on
dataset D2, the radiomics data, for OS.

Feature Frequency (%)

shape Sphericity 100

glcm JointAverage d 1 CT c16 79

glcm SumAverage d 1 CT c16 79

shape MajorAxisLength 57

first order Maximum CT 35

glrlm HighGrayLevelRunEmphasis PET c04 34

shape Maximum3DDiameter 31

glcm ClusterShade d 1 PET b2 25

gldm LargeDependenceLowGrayLevelEmphasis d 1 CT c16 17

gldm LargeDependenceHighGrayLevelEmphasis d 1 CT c16 12

glrlm LowGrayLevelRunEmphasis PET c04 7

glcm JointAverage d 1 PET c04 7

glcm SumAverage d 1 PET c04 7

LBP 102 PET 7

first order Minimum PET 6

glcm Autocorrelation d 1 PET c04 5

glszm ZoneEntropy CT b20 5

glrlm ShortRunHighGrayLevelEmphasis PET c04 4

shape Maximum2DDiameterSlice 3

gldm DependenceV ariance d 1 CT b20 3

first order Skewness PET 3

LBP 210 CT 2

first order Skewness CT 2

glszm GrayLevelNonUniformityNormalized CT b20 2

ngtdm Busyness d 1 PET c04 2

gldm HighGrayLevelEmphasis d 1 CT c16 2

glcm Autocorrelation d 1 CT c16 2

first order Range CT 1

ngtdm Busyness d 1 CT b20 1

ngtdm Busyness d 1 PET b2 1

shape Elongation 1

gldm HighGrayLevelEmphasis d1 PET c04 1
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Table A.2.3: Table of features selected by RENT at least once for the combination of
clinical and radiomics data, dataset D3, for OS

Feature Frequency (%)

shapeSphericity 100

Cancer Stage 88

HPV − related 86

oropharynx 12

pack years 6

cavum oris 2

Age 2

A.3 Features selected by RENT at least once for

DFS target

This section presents the full tables with RENT selected features for datasets D1,

D2, and D3.

Table A.3.1: Table of features selected by RENT at least once across 100 models for
dataset D1 for DFS

Feature Frequency (%)

hpv related 98

uicc8 III − IV 89

pack years 41

cavum oris 39

oropharynx 37

larynx 4

charlson 2

female 1

age 1

SUV peak 1

Table A.3.2 presents all features selected by RENT at least once, with their re-

spective frequencies for dataset D2, the radiomics dataset.
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Table A.3.2: Table of features selected by RENT at least once across 100 models for
dataset D2 for DFS

Feature Frequency (%)

shape Sphericity 95

LBP 102 PET 95

shape Elongation 69

glszm SmallAreaLowGrayLevelEmphasis CT c16 63

LBP 201 PET 48

glszm GrayLevelNonUniformityNormalized PET c04 31

LBP 201 CT 12

shape F latness 9

glrlm ShortRunLowGrayLevelEmphasis PET c04 9

glszm ZoneEntropy PET b2 8

LBP021PET 4

glszm SizeZoneNonUniformityNormalized PET b2 3

glszm ZoneEntropy PET c04 2

gldm LargeDependenceLowGrayLevelEmphasis d 1 CT c16 2

glszm SmallAreaHighGrayLevelEmphasis PET b2 2

glcm MaximumProbability d 1 PET b2 1

LBP 003 CT 1

LBP 300 CT 1

glszm GrayLevelV ariance PET c04 1

LBP 102 CT 1

glrlm ShortRunHighGrayLevelEmphasis PET c04 1

glcm SumSquares d 1 PET c04 1

glrlm HighGrayLevelRunEmphasis PET c04 1

first order Minimum PET 1

glszm GrayLevelNonUniformityNormalized PET b2 1

Table A.3.3 presents all features selected by RENT at least once, with their re-

spective frequencies for dataset D3, the combined clinical and radiomics dataset.
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Table A.3.3: Table of features selected by RENT at least once across 100 models for
dataset D3 for DFS

Feature Frequency (%)

shape Sphericity 98

shapeElongation 95

LBP 102 PET 94

glszm SmallAreaLowGrayLevelEmphasis CT c16 85

LBP 201 PET 68

hpv related 55

glszm GrayLevelNonUniformityNormalized PET c04 49

uicc III − IV 47

shape F latness 18

glszm ZoneEntropy PET b2 17

glrlm ShortRunLowGrayLevelEmphasis PET c04 16

glszm SmallAreaHighGrayLevelEmphasis PET b2 13

cavum oris 12

LBP 201 CT 11

age 10

female 9

LBP 021 PET 8

larynx 5

hypopharynx 5

glszm SizeZoneNonUniformityNormalized CT b20 3

glrlm HighGrayLevelRunEmphasis PET c04 3

glszm ZoneEntropy PET c04 2

glcm SumSquares d 1 PET c04 1

glcm SumSquares d 1 PET c04 2

glcm ClusterProminence d 1 PET b2 2

glszm SizeZoneNonUniformityNormalized PET b2 2

glszm SizeZoneNonUniformity PET b2 2

glszm SmallAreaLowGrayLevelEmphasis PET b2 2

glszm GrayLevelNonUniformityNormalized PET b2 2

histgrade high 2

glcm Imc1 d 1 CT b20 1

glcm MaximumProbability d 1 PET b2 1

first order Kurtosis PET 1

gldm LargeDependenceLowGrayLevelEmphasis d 1 CT c16 1

LBP 102 CT 1

glrlm ShortRunHighGrayLevelEmphasis PET c04 1

glcm JointEnergy d 1 CT b20 1

gldm DependenceEntropy d 1 PET c04 1

first order Skewness CT 1

LBP 021 CT 1

glcm MCC d 1 CT c16 1

glcm ClusterTendency d 1 PET c04 1

glcm MCC d 1 CT b20 1
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Appendix B

Optuna

B.1 Optuna input parameters

Optuna takes in an array of different hyperparameters for tuning a classifier, and

the hyperparameter ranges for all classifiers are presented in this section. The

same input hyperparameters were used for all classifiers and targets.

B.1.1 Decision Tree Classifier

The input hyperparameters of the Decision Tree Classifier are presented in Table

B.1.1. Description of the hyperparameters are included, along with the ranges and

values.

In Table B.1.1, the input hyperparameters for the DecisonTreeClassifier are pre-

sented.

Table B.1.1: Input parameter range for running Optuna on a Decision Tree classifier

Hyperparameter Range

max depth 1 - 20

criterion gini, entropy

B.1.2 Random Forest Classifier

Table B.1.2 presents the hyperparameter ranges provided to Optuna to tune the

Random Forest Classifier. The desr
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Table B.1.2: Input parameter range for running Optuna on a Random Forest classifier.
A description of each hyperparameter is included, with the range and values.

Hyperparameter Range

n estimators 1 - 20

max depth 1 - 20

criterion gini, entropy

B.1.3 XGBoost

Table B.1.3 presents the hyperparameter ranges provided to the optimizer Optuna

for the XGB Classifier.

Table B.1.3: Input hyperparameter range for running Optuna on a XGBoost classifier,
along with a description of each hyperparameter.

Hyperparameter Range

booster gblinear, gbtree, dart

lambda 1e-8 - 1.0, log=True

alpha 1e-8 - 1.0, log=True

subsample 0.2 - 1.0

colsample bytree 0.2 - 1.0

if booster = gbtree

max depth 1 - 9

eta 1e-8 - 1.0, log=True

gamma 1e-8 - 1.0

grow policy depthwise, lossguide

B.1.4 Histogram Gradient Boosting Classifier

Table B.1.2 presents the hyperparameter ranges provided to the optimizer Optuna

for the Histogram Gradient Boosting Classifier.
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Table B.1.4: Input hyperparameter range for running Optuna on a Histogram Gradient
Boosting Classifier, along with a description for each hyperparameter.

Hyperparameter Range

learning rate 0.5 - 0.2

max depth 1 - 7

min samples leaf 1 - 30

l2 regularization 0 - 0.1

max bins 2 - 255

B.1.5 FIGS Classifier

Table B.1.2 presents the hyperparameter ranges provided to the optimizer Optuna

for the Histogram Gradient Boosting Classifier.

Table B.1.5: Input hyperparameter range for running Optuna on a FIGS Classifier,
along with a decription of each parameter

Hyperparameter Range

max rules 1 - 20

min impurity decrease 0.0 - 1.0

max features sqrt, log2

B.1.6 Hierarchical Shrinkage Classifier

Table B.1.2 presents the hyperparameter ranges provided to the optimizer Optuna

for the Hierarchical Shrinkage Classifier.

Table B.1.6: Input hyperparameter range for running Optuna on a HSTree Classifier,
along with a description of each hyperparameter

Hyperparameter Range

reg param 0 - 10

max leaf nodes 2 - 30

shrinkage scheme node based, leaf based
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B.1.7 Boosted Rules Classifier

Table B.1.2 presents the hyperparameter ranges provided to the optimizer Optuna

for the Boosted Rules Classifier.

Table B.1.7: Input hyperparameter range for running Optuna on a Boosted Rules Clas-
sifier, along with a description of each hyperparameter

Hyperparameter Range

n estimators 1 - 20

learning rate 0.5 - 2.0

B.2 Optuna output for OS target

The result of running Optuna is a set of hyperparameters that yielded the best

results for the classifier on a dataset. In this section the results of ML models run

on dataset DR1, DR2, and DR3 are presented for the OS target. The results of

Optuna on the DFS target are presented in Section B.3.

B.2.1 Decision Tree

Table B.2.1: Optimal hyperparameters chosen by Optuna for Decision Tree Classifier on
datasets DR1, DR2, and DR3 with OS target

Hyperparameter DR1 DR2 DR3

max depth 2 7 3

criterion gini entropy gini

B.2.2 Random Forest
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Table B.2.2: Optimal hyperparameters chosen by Optuna for Random Forest Classifier
on dataset DR1, DR2, and DR3 with OS target

Hyperparameter DR1 DR2 DR3

n estimators 4 5 20

max depth 11 18 10

criterion gini entropy entropy

B.2.3 XGBoost

Table B.2.3: Optimal hyperparameters chosen by Optuna for XGBoost Classifier on
dataset D1 with OS target.

Hyperparameter DR1 DR2 DR3

n estimators 8 16 9

learning rate 0.0676 0.0474 0.0046

lambda - - 0.0048

alpha - - 0.0002

max depth 13 13 9

subsample 0.5917 0.5640 0.3458

colsample bytree 0.6051 0.2251 0.3322

gamma 1.2528 0.6578 1.8712e-08

booster gbtree dart gbtree

grow policy - - depthwise

B.2.4 HisGradientBoosting

Table B.2.4: Optimal hyperparameters chosen by Optuna for HistGradientBoosting Clas-
sifier on dataset D1 with OS target

Hyperparameter DR1 DR2 DR3

learning rate 0.6207 0.1914

max depth 6 1

min samples leaf 11 30

l2 regularization 0.0742 0.0390

max bins 87 136
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B.2.5 FIGS

Table B.2.5: Optimal hyperparameters chosen by Optuna for FIGS Classifier on dataset
DR1 with OS target

Hyperparameter DR1 DR2 DR3

max rules 2 18 8

max trees 11 5 13

min impurity decrease 0.9376 0.9604 0.9993

max features sqrt sqrt log2

B.2.6 HSTree

Table B.2.6: Optimal hyperparameters chosen by Optuna for HSTree Classifier on
dataset DR1 with OS target

Hyperparameter DR1 DR2 DR3

reg param 6.0168 7.1762 4.5546

max leaf nodes 2 2 12

cv 7 8 5

shrinkage scheme leaf based node based node based

B.2.7 Boosted Rules

Table B.2.7: Optimal hyperparameters chosen by Optuna for Boosted Rules Classifier on
dataset DR1 with OS target

Hyperparameter DR1 DR2 DR3

n estimators 1 7 16

learning rate 0.7327 0.7120 0.5502

B.3 Optuna output for DFS target

Optuna was used to tune classifiers on all three datasets DR1, DR2, and DR3 with

the DFS target. The optimal parameters are presented in this section.
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B.3.1 Decision Tree

The results from running Optuna on the Decision Tree Classifier with the input

hyperparameters defined in Table B.1.1, are presented in this section in Table

B.3.1.

Table B.3.1: Optimal hyperparameters chosen by Optuna for Decision Tree Classifier on
datasets DR1, DR2, and DR3 with DFS target

Hyperparameter DR1 DR2 DR3

max depth 2 7 1

criterion gini entropy entropy

B.3.2 Random Forest

This section presents the result from running Optuna on a Random Forest classifier

with the input hypparameters from Table B.1.2. The results are shown in Table

B.3.2.

Table B.3.2: Optimal hyperparameters chosen by Optuna for Random Forest Classifier
on dataset DR1, DR2, and DR3 with DFS target

Hyperparameter DR1 DR2 DR3

n estimators 8 19 15

max depth 1 10 2

criterion entropy entropy gini

B.3.3 XGBoost

In this section, the results from running Optuna on an XGBoost classifier with the

input hyperparameters form Table B.1.3 are presented. The results are found in

Table B.3.3.
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Table B.3.3: Optimal hyperparameters chosen by Optuna for XGBoost Classifier on
dataset DR1, DR2, and DR3 with DFS target

Hyperparameter DR1 DR2 DR3

n estimators 8 20

learning rate 0.0677 0.0198 0.4344

lambda - 3.6730e-7 1.9295e-05

alpha - 5.3980 4.0553e-07

max depth 13 5 2

subsample 0.5917 0.5767 0.7134

colsample bytree 0.6050 0.6692 0.8715

gamma 1.2527 0.0601 -

booster gbtree gbtree gblinear

grow policy depthwise

B.3.4 HisGradientBoosting

The results from running Optuna on a Histogram Gradient Boosting Classifier on

datasets DR1, DR2, and DR2 are presented below in B.2.4. The hyperparameters

fed to Optuna were presented in Table B.1.4.

Table B.3.4: Optimal hyperparameters chosen by Optuna for HistGradientBoosting Clas-
sifier on dataset DR1, DR2, and DR3 with DFS target

Hyperparameter DR1 DR2 DR3

learning rate 0.6206 0.1780 0.0503

max depth 6 9 13

min samples leaf 11 15 30

l2 regularization 0.07423 0.2367 0.04860

max bins 87 87 218

B.3.5 FIGS

The parameters from running Optuna on a FIGS classifier using the hyperparam-

eter ranges from Table B.1.5
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B.3.6 HSTree

Table B.3.6: Optimal hyperparameters chosen by Optuna for HSTree Classifier on
dataset DR1 with DFS target

Hyperparameter DR1 DR2 DR3

reg param 6.01687 3.4427 5.5848

max leaf nodes 2 2 2

cv 7 2 5

shrinkage scheme leaf based node based leaf based

B.3.7 Boosted Rules

Table B.3.7: Optimal hyperparameters chosen by Optuna for Boosted Rules Classifier on
dataset DR1 with DFS target

Hyperparameter DR1 DR2 DR3

n estimators 1 1 2

learning rate 0.7327 1.3015 1.2310
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Table B.3.5: Optimal hyperparameters chosen by Optuna for FIGS Classifier on datasets
DR1, DR2, and DR3 with DFS target

Hyperparameter DR1 DR2 DR3

max rules 2 1 1

max trees 11 19 13

min impurity decrease 0.9376 0.6474 0.3065

max features sqrt None None
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