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Abstract

This thesis presents an introductory exploration of the neuroimaging field, focusing on
volume-based analysis using functional connectivity. By studying resting state data using
the Power et al. atlas, the research aims to uncover patterns and relationships between
brain regions, employing a qualitative study design with a single subject.

DPABI Toolbox and Connectome Workbench were used to conduct volume-based func-
tional connectivity analyses. DPABI Toolbox was used to preprocess and perform resting
state analysis on the Human Connectome Project (HCP) raw data to produce a functional
connectivity matrix. Connectome Workbench was used to create a pipeline for creating
a resting state functional connectivity matrix. The resting state analysis was performed
on the raw data preprocessed by DPABI and the preprocessed data provided by HCP.

The resting state analyses performed on the same data preprocessed by DPABI yielded
visually indistinguishable matrices. The similarity metrics further corroborated this
observation, indicating no significant dissimilarities. The application of DPABI for
preprocessing and resting state analysis was compared with a self-made pipeline utilizing
preprocessed data from the HCP. The resting state analyses yielded two matrices that
exhibited noticeable differences in their overall intensities, despite sharing a similar
structure. The similarity metrics confirmed these distinctions, as they recorded lower
values, indicating a dissimilarity between the matrices.



Acknowledgements

We would like to thank our supervisor Morteza Esmaeili for all of his support and
encouragement while we were writing this thesis.

Data were provided [in part] by the Human Connectome Project, WU-Minn Consor-
tium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)
funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuro-
science Research; and by the McDonnell Center for Systems Neuroscience at Washington
University.

Thank you to Jonathan Power for letting us use his brain atlas images.

iii





Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Structual Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . 5
2.2 Functional Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . 6

2.2.1 Resting-state fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Functional connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Seed-Based Functional Connectivity . . . . . . . . . . . . . . . . . 9
2.4 Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Power et al. atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Slice-timing correction . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Realignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Brain extraction/ Skull stripping . . . . . . . . . . . . . . . . . . . 13
2.5.4 Coregistration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.5 Linear detrending . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.6 Friston-24 parameter model . . . . . . . . . . . . . . . . . . . . . . 15
2.5.7 Nuisance covariate regression . . . . . . . . . . . . . . . . . . . . . 15
2.5.8 Spatial Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.9 Spatial Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.10 Signal filtering: Bandpass . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 Pearson correlation coefficients . . . . . . . . . . . . . . . . . . . . 19
2.6.2 Fisher R-to-Z transform . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.1 Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



2.7.2 Universal Image Quality Index . . . . . . . . . . . . . . . . . . . . 21
2.7.3 Structural Similarity Index . . . . . . . . . . . . . . . . . . . . . . 22

2.8 File formats used in neuroimaging . . . . . . . . . . . . . . . . . . . . . . 24
2.8.1 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8.2 NIFTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8.3 CIFTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Material 27
3.1 Human Connectome Project . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Minimmal processing pipelines from Human Connectome Project . . . . . 29

3.2.1 HCP Structural Pipelines . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 HCP Functional Pipelines . . . . . . . . . . . . . . . . . . . . . . . 29

4 Software 31
4.1 DPABI Matlab Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Windows Subsystem for Linux . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 FreeSurfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Connectome Workbench . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Method 35
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 DPARSFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Pipeline when using Connectome Workbench to make functional connec-

tivity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 Making a dense label file . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Making a dense time series file . . . . . . . . . . . . . . . . . . . . 45
5.3.3 Making of parcellated functional connectivity matrix . . . . . . . . 47

6 Results and Discussion 51
6.1 DPABI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Comparison between DPABI toolbox and Connectome workbench . . . . 53
6.3 Comparison between the HCP preprocessed data and our preprocessed data 54
6.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Conclusion 63

A Poster 65

Bibliography 67



Chapter 1

Introduction

This chapter will serve as an introduction to this thesis regarding functional connectivity.
Firstly the motivation for the project and the problem description will be presented.
Related work will then be mentioned, briefly describing projects with similar approaches
or goals. The approach to this project will then be presented, as well as an outline for
the thesis.

1.1 Motivation and Problem Description

The motivation behind this study is to serve as an introductory resource, providing an
overview of the neuroimaging field with a focus on conducting volume-based analysis
using functional connectivity in the data. By employing the Power et al. atlas, we aim
to investigate the patterns and relationships of brain regions in resting state data. Our
study focuses on a single subject, employing a qualitative study design to learn about
neuroimaging.

One aspect of our research involves comparing preprocessed data from an external
source to our preprocessed data originating from the same raw data. The goal is to
determine the potential impact of different preprocessing pipelines on the outcomes.
Furthermore, we plan to compare the results of our resting state analysis, conducted using
the Connectome Workbench software, with those obtained through the DPABI Toolbox.
These comparisons will shed light on the differences in functional connectivity patterns
for the subject. Ultimately, our study aims to contribute to a fundamental understanding
of functional connectivity and provide rudimentary insights into the analysis methods
used in neuroimaging research.

1



2 Chapter 1 Introduction

1.2 Related work

In 2022, Kardan et al. conducted a study [1] utilising functional magnetic resonance imag-
ing data from the Baby Connectome Project to evaluate the reliability and distinctiveness
of resting-state functional connectivity (rsFC) in infants and toddlers while also predicting
age within a sample of individuals aged 8 to 26 months. The researchers identified 11
infant-specific resting-state functional networks and highlighted the greater predictive
power of within-network connections compared to between-network connections.

The study conducted by Barch in 2017 [2] aims to explore the relationship between
abnormalities in brain circuits and psychiatric disorders. It focuses on employing resting
state functional connectivity (rs-fcMRI) in evaluating brain circuits and examines the
Human Connectome Project’s progress in this field. The study emphasises the importance
of these advances in understanding neurological circuit dysfunction in psychopathology,
highlighting the characteristics and stability of brain circuits as well as their connection
to behaviour.

Power et al.’s article [3] provides an overview of the advancements in MRI technology and
their impact on understanding functional brain networks in humans. It focuses on the
progression of functional networks spanning infancy to adolescence, utilising resting-state
functional connectivity MRI. Traditional techniques’ drawbacks are highlighted, and
graph theory is introduced as a powerful paradigm for network analysis. It emphasises
the importance of considering wider network contexts when studying the development of
brain systems.

1.3 Approach

The methods performed in this thesis use MATLAB DPABI toolbox and Connectome
Workbench running on Linux to perform volume-based functional connectivity analysis.
The goal is to produce a functional connectivity matrix from the data of one subject from
the Human Connectome Project dataset. Different metrics will be applied to evaluate
the similarity between the connectivity matrices.

Two different methods were applied. One uses raw data, which are being preprocessed in
the DPABI toolbox. A resting state analysis of the processed raw data is done in the
DPABI toolbox and with Connectome Workbench. The other method consists of using
data preprocessed by Human Connectome Project and performing resting state analysis
in Connectome Workbench.
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1.4 Outline

• Chapter 2: Background
This chapter explains some relevant background material for this thesis. It covers
some neuroimaging techniques, relevant preprocessing steps, correlation analysis
and the neuroimaging formats used in this thesis.

• Chapter 3: Material
In this chapter, the data material used in this experiment will be presented and
how it was obtained.

• Chapter 4: Software
The chapter will cover some information about the software used in this thesis.

• Chapter 5: Method
This chapter will describe the method for achieving the thesis goal and provide
information on how the preprocessing/analysis pipelines are used/created.

• Chapter 6: Results and Discussion
This chapter will present the results, and a discussion about the results and project
will be conducted.

• Chapter 7: Conclusion
This chapter will contain an overall evaluation of the results and the project.





Chapter 2

Background

This chapter covers the essentials of structural MRI and introduces functional MRI,
emphasising basics and resting state functional MRI. It explores functional connectivity,
including connectivity matrices and seed-based connectivity. The preprocessing steps
for fMRI images are explained, followed by correlation analysis focusing on Pearson
correlation and Fisher R-to-Z transform. The chapter concludes with an overview of
similarity metrics and an introduction to neuroimaging formats.

2.1 Structual Magnetic Resonance Imaging

There are two types of neuroimaging techniques: structural imaging and functional
imaging. Structural imaging is a method for visualising and analysing anatomical aspects
of the brain. For identifying brain injuries and anomalies, structural approaches are
helpful. Geometric parameters can be quantified, such as the size and volume of a specific
structure or the thickness of a cortical region [4].

Structural MRI is a non-invasive method for analysis of the brain anatomy and pathology
[5]. MRI generates highly detailed images of the brain. The reason for the higher spatial
resolution of MRI is attributed to the use of strong magnetic gradients. Tissues in the
grey matter, white matter, and other parts of the brain respond differently to magnetic
gradients, separating distinct types of tissues and structures [4].

There are various types of MR sequences available for structural neuroimaging. Two
examples of these are T1-weighted and T2-weighted MRI. T1-weighted MRI increases the
adipose tissue signal while decreasing the water signal. T2-weighted MRI amplifies the
water signal [6]. T1-weighted imaging provides the best contrast between grey matter,
white matter and cerebrospinal fluid (CSF). This is why T1-weighted imaging is the most
commonly used technique for quantitative MRI studies of brain morphology. T2-weighted

5



6 Chapter 2 Background

imaging, on the other hand, may be preferred for estimation of the intracranial volume
[7]. The intracranial volume is the volume within the skull, including the brain, meninges
and CSF [8]. T2-weighted imaging is preferred because the enhanced signal intensity of
CSF in this sequence allows for easier quantification of CSF [7].

2.2 Functional Magnetic Resonance Imaging

fMRI is an MRI-based technique that monitors physiological changes in the brain. These
physiological changes are associated with cognitive or behavioural activity and involve
changes in blood flow and oxygen levels. Because it depends on changes in blood oxygen
levels, fMRI indirectly measures brain activity. This change in blood oxygen levels is
referred to as the blood oxygen level-dependent (BOLD) response [4].

The BOLD signal reflects the cognitive workload in a specific brain region during a
given task. That is, an increased workload corresponds to higher metabolic demand in
that region [4]. When neurons become more active, they need more oxygen from red
blood cells. They achieve this by expanding the surrounding blood vessels, increasing
blood flow. As a result, the oxygen concentration rises when the neurons become more
active. Because oxygenated blood produces fewer field disturbances than deoxygenated
blood, the neuron signals endure longer. The fMRI detects more oxygen in this region,
indicating more brain activity [9].

Commonly implemented fMRI techniques acquire brain activity images while subjects
execute given specific tasks. fMRI creates a functional map of brain images that displays
brain activity. During an fMRI scan, the patient may receive a task, such as raising an
arm or thinking of a specific word or phrase. These tasks stimulate the brain, enabling
the fMRI to detect brain activity. fMRI can also detect and reveal brain activity while
subjects rest inside the scanner with instructions to relax during the scanning. This
technique is called resting-state (rs) fMRI [9].

2.2.1 Resting-state fMRI

rs-fMRI is a technique utilised to analyse regional interaction in brain mapping when
a subject is relaxed and does not perform a specific task [10]. This technique is based
on spontaneous BOLD signal changes. Data can be collected via a specialized scan
where people are directed to rest. Since there are no tasks to be completed, rs-fMRI is
particularly appealing for patients who may struggle with task instructions, such as those
with neurologic, neurosurgical and psychiatric problems, as well as young patients [11].
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2.3 Functional connectivity

There are different kinds of connectivity, such as structural and functional. Structural
connectivity describes how different areas of the brain are structurally connected, and
functional connectivity describes how different areas of the brain are functionally related
[12]. Functional connectivity can show how various brain networks or areas cooperate in
carrying out cognitive, sensory, or motor activities and how these networks are affected
by neurological and psychiatric illnesses [13]. In this thesis, the focus is on functional
connectivity.

Figure 2.1: The correlation of brain activity between two or more regions of the brain is
measured by functional connectivity. The pink and purple regions have a high correlation,
while the green and red regions have a low correlation. The brain image is adapted from

[14], and the graphs are inspired by Figure 1a, [15].

Functional connectivity (FC) is a term used to describe the statistical relationship or
correlation between the activity or communication patterns of various brain regions.
In other words, it describes how closely connected or synchronized the activities of
various brain regions or networks are [13]. Figure 2.1 illustrates regions of high and low
connectivity. The pink and purple signals originate from the pink and purple regions and
show similar fluctuations. When overlapped, it can be observed that they look similar
and that they are somewhat correlated. These signals form functional connectivity. When
the red and green signals are compared, it can be observed that they look less similar
and will also have lower correlation [12].
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Figure 2.2: An example of a functional connectivity matrix. This is based on DPABI
example data with the Hannah-Andrew atlas [16]. The matrix shows that brighter yellow
coloured boxes indicate a strong correlation between, for instance, node 7 (vMPFC) and

node 2 (PCC). The diagonal line shows a correlation with itself.

Functional connectivity is represented as a matrix which provides a brief but compre-
hensive description of the pairwise connectivity between all network nodes. In order to
construct a connectivity matrix for a brain network consisting of M nodes, it is necessary
to generate a two-dimensional square matrix. Each row and column will represent a
distinct network node. The elements of this matrix are then filled with the estimated
connectivity values for each set of nodes to form an M x M matrix [17].

Figure 2.2 shows a functional connectivity matrix based on the DPABI example data[18].
The matrix in the figure has an 11 x 11 matrix because the Hannah-Andrew atlas has 11
nodes. The colour bar to the right shows the relationship between the correlation values
and the colours displayed in the matrix. A high correlation or functional connectivity
level means the nodes belong to the same system/network. According to [17], the
diagonal elements of a functional connectivity matrix can sometimes be interpreted as the
representation of each node’s connectivity with itself. However, they are used to encode
some intrinsic property of each node. The main diagonal in functional connectivity
networks may indicate variations in the local dynamics of each region. In practice, the
main diagonal is rarely used in neuroscience.

http://rfmri.org/DemoData


Chapter 2 Background 9

2.3.1 Seed-Based Functional Connectivity

Seed-Based Functional Connectivity Analysis identifies the connectivity between the
seeds and the rest of the brain. The seed might be a voxel, a collection of points derived
from previous fMRI research, or an atlas. If it is based on an atlas, the seed has a
larger region of interest (ROI). The seed-based technique has the benefit of immediately
identifying voxel areas to which the seed region is related [19].

Seed-based techniques for functional connectivity analysis require the creation of seed
regions. The connectivity map is constructed by extracting time series from each ROI
and calculating the correlation between the extracted time series with each other. Seed
selection lacks a standardized approach, leaving various alternatives available. [20].

2.4 Atlas

A brain atlas is a collection of maps or templates that provide a standardized represen-
tation of the anatomical and functional regions of the brain. Brain atlases are used in
neuroimaging studies to identify specific regions, localise functional activity in the brain,
and perform spatial normalization of brain images [21].

2.4.1 Power et al. atlas

The Power et al. atlas identifies specific areas of the human brain that co-activate during
certain tasks. The default mode network (DMN) is a network of interconnected areas
of the brain that are active when a person is relaxed and does not pay attention to a
specific task, such as daydreaming or mind-wandering (resting state) [16]. Power et al.
atlas is a data-driven methodology based on the functional connectivity patterns within
the networks shown in Table 2.1. The atlas identified 264 different areas of the brain that
were continuously active during rest periods and functionally related to other networks
using fMRI data from a group of healthy adults [22].
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Figure 2.3: The figure shows the 264 nodes divide into different networks [22]. The
colours in the atlas correspond to the networks shown in Table 2.1.

The 264 nodes in the atlas were organized into several networks according to their
functional connectivity patterns, as shown in Figure 2.3. A small portion of the brain
is represented by each node in the Power et al. atlas, and the activity of each node is
highly correlated with the activity of the other nodes in the same functional network.
These nodes can specify the areas of interest (ROIs) for subsequent analyses [22]. The
ROIs are colour-coded according to their system, and Table 2.1 shows the systems and
their respective colour.
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Table 2.1: The table shows the suggested systems and colours that the ROIs are grouped
into in Power et al. atlas [22] and a short description of these systems. The table is

constructed using the supplementary Excel spreadsheet from [22].

Suggested Colour Suggested System Description
White Uncertain Uncertain
Cyan Sensory/somatomotor Hand Hand movements [23]

Orange Sensory/somatomotor Mouth Mouth movements [23]
Purple Cingulo-opercular Task Control Associated with task control,

but also involved in a
variety of other processes
in the cognitive, social,
and emotional domains [24]

Pink Auditory Auditory
Red Default mode Resting state
Gray Memory retrieval? Recovery of stored

information[25]
Teal Ventral attention Involves infrequent or

unexpected events that
are behaviorally relevant[26]

Blue Visual Visual
Yellow Fronto-parietal Task Control Participation in a task

and mental effort[27]
Black Salience Acts as a dynamic

switch between the
Fronto-parietal and DMN[27]

Brown Subcortical Involved in intricate
processes like hormone
production, memory, emotion,
and pleasure[28]

Pale blue Cerebellar Involved in motor control[29]
Green Dorsal attention Feature-based attention

(e.g. when the colour of a
target object is precued)[26]
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2.5 Preprocessing

The preprocessing of fMRI data varies depending on the software programme and the
study. However, a standard range of procedures is available to select from [30]. This sec-
tion shows different operations and the typical order in which they have been performed.
This includes slice-timing correction, realignment, brain extraction, segmentation, coreg-
istration between functional and structural images, nuisance regression to remove some
physiological and non-physiological signals, spatial normalisation, spatial smoothing,
and bandpass filtering. All the necessary preprocessing steps should be applied before
performing any functional connectivity analyses [31].

2.5.1 Slice-timing correction

Precise timing is crucial for the analysis of fMRI data. Datasets are typically measured
using repeated 2D imaging techniques, which result in a temporal offset. To avoid this
time difference, slice-timing correction is used as an fMRI preprocessing step [32]. This is
done by changing the time series of each slice to align them with a reference time point
[33], as shown in Figure 2.4.

Figure 2.4: Slice-timing correction: To match the starting time, the signal evoked at
slice 5 is moved towards slice 1. Then the shifted signal is interpolated [14].

2.5.2 Realignment

The main component that affects the data is head movement. When subjects are in a
state of rest, the voxel that corresponds to the signal generated within the brain tissue
remains fixed. When the subject moves its head, the signal generated by the same brain
tissue will be localized in a voxel different from its initial position. This is a significant
issue that is reduced during realignment and ensures that the signal in a certain voxel
has the same series of data [34].
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Figure 2.5: The patient moves while the images are being acquired slice by slice, as
shown in the figure, leading to a corrupted slice-stacked volume. By applying realignment,
the slices will stack in line with each other. The brain image is adapted from [14], and

the image is inspired by Figure 5 from [35].

The goal of realignment is to place all the functional images in line with one another
such that the brain appears in the same location in each image, as shown in Figure 2.5.
Even if the head is stuffed with padding or foam during data gathering, head movement
will still be observed. These movements will result in two significant issues. Firstly, the
source of the signal within a voxel can change over time and between scans, leading to a
fake activation. Secondly, the signal-to-noise ratio (SNR) may be impacted by movement.
The purpose of realignment is to guarantee that the source of the signal in a particular
voxel is always in the same physical place; however, even after realignment, some artefacts
remain. This is still an important step in the preprocessing of fMRI data [34].

2.5.3 Brain extraction/ Skull stripping

Brain extraction, or skull stripping, is commonly performed before brain segmentation.
Brain extraction removes non-brain tissue from brain imaging, such as the skull, dura, and
scalp. It is also known as brain/non-brain segmentation because the brain predominantly
consists of WM, GM, CSF, and the cerebellum [36].

Brain segmentation is a complex problem because of the non-homogeneous intensity
distribution found in brain regions and intensity overlap with surrounding non-brain
structures. This problem requires advanced algorithms and significant human involvement
for parameter adjustment. Although there are numerous brain/non-brain segmentation
methods, the majority are time-consuming, laborious, and lack rapid brain visualisation
[36].

Frequently, fMRI images consist of little non-brain tissue caused by the nature of the imag-
ing. On the other hand, high-resolution MR images almost always contain a significant
amount of eyes, skin, fat, muscle, etc. The robustness of functional image coregistration
to high-resolution MR images will be increased if these non-brain components of the
images can be automatically discarded prior to coregistration [37].
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Brain Extraction Tool (BET) is a fully automated brain extraction tool that has been
tested on a variety of MR modalities, such as T1-weighted and T2-weighted [37]. The
intensity histogram is processed to determine the image’s "robust" lower and upper
intensity values, as well as a rough brain/non-brain threshold. The image’s centre of
gravity is determined, as well as the approximate size of the head [38].

Figure 2.6: This figure shows an illustration of the triangular tesselation of a sphere.

Figure 2.6 illustrates a triangular tessellation of a sphere’s surface. A similar tesselation is
initiated and gradually deformed inside the brain, one vertex at a time. The deformation
happens according to the forces that keep the surface well-spaced and smooth while
seeking to migrate towards the edge of the brain. The procedure is restarted with a
more significant smoothness constraint if a sufficiently clean solution cannot be identified.
Finally, if necessary, the skull’s outer surface is calculated [38].

2.5.4 Coregistration

The fundamental coregistration task is to align two 2D or 3D images. In other words,
modify one spatially to fit the other. This is accomplished by establishing a connection
between the voxel sites in the two images. Once this connection is known, merging the
data at the corresponding locations is possible, allowing for the fusion or comparison of the
two images. For instance, in functional MRI, the functional, low-resolution activations can
be connected to the anatomical structures shown in a separate high-resolution structural
image of the same subject [39].

2.5.5 Linear detrending

Temporal variations in scanner magnetic fields or physiological factors can be used to
explain the signal drift in fMRI. Given that these variables have an impact on signals
in the entire brain, a method for removing spatially global effects of drift has been to
regress out or proportionally scale out spatial mean signals from fMRI signals. However,
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this method does not consider regional variability in fMRI drifts. One of the most
common solutions is to linearly reduce the signal drifts in each voxel, which is called
linear detrending [40].

2.5.6 Friston-24 parameter model

fMRI is particularly challenging when it comes to head motion. According to [41], recent
research [42–45] has shown that the combined impact of "micro" head movements as small
as 0.1 mm between time points can introduce systematic artefactual inter-individual and
group-related differences in fMRI metrics. In the article [41], several potential solutions
to overcome motion in fMRI data were proposed. The simplest and most obvious option
to reduce motion head was using restraint devices (bite bars and vacuum packing) and
having pre-scanning practice sessions using MRI simulators. Even if these solutions are
successful, they do not increase the ability to utilise the previously obtained data.

The Friston 24-parameter model [46] is an autoregressive model that includes current
and previous position parameters, as well as the square of each parameter. This is a
regression of realigned data on six head motion parameters, six head motion parameters
one-time point before, and 12 corresponding squared items [41]. The six head motion
parameters correspond to rigid-body transformation, so the translation in x, y, z direction,
and rotations α, β, γ. The Friston 24-parameter model is a method for removing the
confounding effects of movement-related artefacts in fMRI time series. This method
is based on the assumption that residual motion artefacts remain even after perfect
realignment. These artefacts are classified into two parts. The first part is dependent on
the absolute position in the image space relative to the scanner. The second part is due
to the history of previous displacements or changes in position from scan to scan. In
this thesis, only the necessary description of the Friston 24-parameter model has been
provided. For the details of this model, read the original paper [46].

2.5.7 Nuisance covariate regression

One of the biggest confounds for fMRI is physiological noise, as it affects the BOLD
signals [47]. Physiological noise is defined as image signal fluctuations induced by the
subject’s physiology but excluding brain activity of relevance. The main source of the
physiological noise signals is the respiratory and cardiac systems. These physiological
sources of noise give time-varying signals that, if not corrected, can obscure signals of
interest [48].

The purpose of nuisance regression is to decrease nuisance term contributions in BOLD
time courses [30]. Head motion, a polynomial trend to simulate scanner drift, signals
from CSF, WM, and a whole brain global signal (GS) are all nuisance regressors [49].
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The addition of mean WM and CSF signals has the purpose of lessening the influence of
non-neural BOLD fluctuations produced by motion, scanner artefacts, and physiological
signals that are usually uninteresting (e.g., respiration) [50].

The global signal is a time series of signal intensities averaged across all voxels in the
brain. The global signal is a nuisance regressor in dynamic rs-fMRI research because it
is highly connected to non-neuronal activities like head motion and breathing patterns.
The use of global signal regressor (GSR) has caused controversy in the rs-fMRI literature,
with concerns that it may remove signals of interest and bias group comparisons [50].
According to [50], recent studies comparing various denoising pipelines on motion artefacts
in rs-fMRI show that using GSR in preprocessing pipelines is effective at suppressing
the relationship between motion and functional connectivity but might have some
unfavourable impact on the distance-dependent effects of motion.

2.5.8 Spatial Normalisation

Spatial normalisation is the process of spatially translating data into a common space for
analysis. When planning surgery to remove a tumour, fMRI may be used to gather data
from a single person to understand that specific person. Most of the time, however, we
want to generalize across people in order to draw conclusions about how the brain works,
which is more generally applicable to our species. Individual brains vary greatly in size
and shape, requiring transformation of the brains to match them with one another before
the data can be combined across individuals [30].

An accurate and reliable spatial normalisation process is essential for the analysis of
fMRI data. By comparing each subject to a predefined template, spatial normalisation
attempts to build a one-to-one relationship between the brains of various individuals
[51]. It helps to correct for individual differences in brain anatomy and to reduce the
variability between individuals, which can improve the accuracy and sensitivity [30].

Spatial Normalisation by DARTEL and New Segmentation

DARTEL stands for "Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra" and is an algorithm for diffeomorphic image registration. Image registration
involves calculating a smooth continuous mapping between the points in one image and
the points in another image. The parameters that encode the mapping can then be used
to determine the relative shapes of the images. The goal is usually to find the single
"best" set of values for these parameters. There are numerous approaches to modelling
such mappings [52].
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One approach is the diffeomorphic setting. A diffeomorphic transformation from one
image to another can be represented as a vector field, with each vector describing the
movement of data in that voxel from the original to the transformed image. The number of
parameters in these transformations is very large, but they are regularized to ensure that
the deformations are smooth and do not disrupt the overall structure of the transformed
objects [30].

The DARTEL algorithm has been found to improve individual registration, and thus,
improve localization and sensitivity during analyses. As this method is more deformable,
it improves the realignment of smaller inner structures [53].

The DARTEL and its predecessor, Unified Segmentation, are two of the most commonly
used normalisation algorithms, both of which are implemented in SPM. Unified Seg-
mentation is an iterative model that combines segmentation, bias correction and spatial
normalisation using WM, GM and CSF tissue maps as priors (TPMs). These TPMs are
deformed by a linear combination of a thousand cosine transform bases, and the intensity
of each tissue class is modelled using several Gaussian distributions [54].

DARTEL requires the segmentation of all subjects in the group to create the average
template, whereas Unified Segmentation combines segmentation and normalisation. Aside
from Unified Segmentation, the New Segmentation toolbox included with the SPM12
distribution is another option for providing DARTEL with the required GM and WM
segmentation. This algorithm is almost identical to the one described in the Unified
Segmentation model. New Segmentation may also provide deformation fields, which can
then be used to spatially normalise images [54].

The Montreal Neurological Institute

The Montreal Neurological Institute’s 152 brain template (MNI-152) is the most widely
used template for spatial normalisation in neuroimaging studies. This template was
created using high-resolution T1-weighted scans from 152 normal subjects, where 86 of
them were men and 66 were women. MNI-152 became the standard template because of
its comprehensive coverage of the brain and increased resolution [55].

To develop the MNI-152 brain template, Automated image registration (AIR) algorithms
were used to align brain MRI scans with the reference brain image (target image). The
AIR algorithm is utilised to align 3D and 2D images within and between subjects and
imaging modalities [56]. The brain MRI images were first linearly registered to the target
image (through a 9-parameter affine transformation) and then non-linearly registered to
account for anatomical changes in shape, size, and relative orientation between subjects.
The MNI-152 brain template has the advantage of covering the entire head and providing
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more detailed information from the top of the brain to the bottom of the cerebellum.
On the other hand, the MNI-152 template lacks cortical details [57].

2.5.9 Spatial Smoothing

Depending on the filter design, smoothing fMRI data before statistical analysis might
increase the signal-to-noise ratio (SNR) and sensitivity to signals of certain shapes
and sizes. Smoothing is applied before estimating image registration parameters as it
improves registration. Smoothing can also assist in eliminating resampling artefacts
following image registration. It can also be utilised to mitigate the effects of functional
and anatomical variation within and between people. A downside of smoothing is that it
can cause a partial-voluming artefact around the boundary of the brain when brain voxels
are smoothed with no-brain voxels. Smoothing has additional negative effects, such as a
reduction in effective spatial resolution and blurring and/or shifting of activations [58].

Figure 2.7: The figure shows the definition of FWHM. The x-axis represents the
frequency, while the y-axis represents the amplitude. The FWHM is the frequency of
the shaded region between the points on the curve where the amplitude is half of its

maximum [59].

Convolution of three-dimensional images with a three-dimensional Gaussian filter (or
kernel) is the most common method of spatial smoothing. The width of the distribution
determines the amount of smoothing imposed by a Gaussian kernel. The standard
deviation (σ) is commonly used in statistics to describe this, whereas the full width
at half maximum (FWHM) is used in image processing to describe the width of the
distribution, as shown in Figure 2.7. This measures the width of the distribution at half
its maximum. It is related to the standard deviation by the equation 2.1[30].

FWHM = 2σ
√

ln(2) (2.1)
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The bigger the FWHM, the bigger the smoothing. One general rule of thumb is that the
Gaussian smoothing kernel should be approximately 2-3 times the voxel size [60].

2.5.10 Signal filtering: Bandpass

The majority of the research on resting state functional networks has concentrated on
low frequencies, typically around 0.01-0.1 Hz for BOLD signals [61]. If a higher frequency
band is included, the signal may be contaminated by physiological signals [62]. For
instance, 0.15–0.25 Hz corresponds to the respiratory frequency range [63]. Frequencies
under 0.01 Hz are mostly related to non-physiologic sources like MR scanner drift [64].

2.6 Correlation analysis

Correlation analyses are attempts to find how closely two variables are related. The
main goal of correlation analyses is to establish the presence of a relationship between
variables, as well as to quantify and characterize that relationship [65].

2.6.1 Pearson correlation coefficients

The Pearson correlation coefficient is one of the most common statistical methods used to
estimate functional connectivity. Equation 2.2 shows the formula for Pearson correlation
[66].

r =
∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

(2.2)

In Equation 2.2, n indicates the number of time points. X and Y represent the time
series of the brain activity and X̄ and Ȳ are the means of the time series [66].

The functional connectivity is determined by using the Pearson correlation between
BOLD time series from pairs of brain regions (ROIs). The method measures the linear
relationship between two variables [67]. The sampling distribution for highly correlated
variables is highly skewed. Figure 2.8 shows an illustration of symmetrical distribution,
negative, and positive skew. This skew occurs because the correlation is constrained to
the interval [-1,1] [68].
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Figure 2.8: The figure shows the different skew distributions [69].

2.6.2 Fisher R-to-Z transform

Most analyses also involve the Fisher R-to-Z transform, where R is the Pearson correlation
coefficient and Z is the normal distribution. Fisher’s z-transform of the resulting Pearson
correlation transforms the skewed sample correlation (R) distribution into one that
resembles a normal distribution. The transformation expands the dynamic range beyond
[-1,1]. When examining changes in functional connectivity, this is crucial because
eliminating the Fisher R-to-Z transform would artificially constrain the dynamics of the
data. Fisher’s z-transform is shown in Equation 2.3 [66].

Fz = atanh(r) (2.3)

2.7 Metrics

2.7.1 Mean Square Error

The mean squared error (MSE) is the average squared difference between the values
observed in a study and the values predicted by a model. The differences must be squared
because some data values will be greater than the prediction, while other data values
will be smaller. Thus their differences can be either positive or negative. Given that
observations can be greater than or less than predicted values, the differences can add
up to zero. This situation is eliminated by squaring these differences [70].

MSE =
∑N

i=1(yi − ŷi)2

N
(2.4)

Equation 2.4 shows the formula for MSE, where N is the number of observations, yi is
the observed data, and ŷi is the predicted data [71].
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Squaring the differences removes negative difference values and ensures that the mean
squared error is always greater than or equal to zero. Only a perfect model with no
errors can give an MSE of zero. In practice, it does not occur [71].

2.7.2 Universal Image Quality Index

The universal image quality index (UQI) is a mathematically defined quality index based
on the statistical properties of the images in comparison. Wang describes the quality
index as universal since the measurement approach is independent of the tested images,
the viewing conditions or the observer. The UQI is defined as Equation 2.5, with the
definitions of the different values found in Table 2.2 [72].

Q = 4σxyx̄ȳ

(σ2
x + σ2

y)[(x̄)2 + (ȳ)2] (2.5)

Table 2.2: Variable Definitions for UQI [72].

Variable Definition
Q Image quality index
x Original image
y Test image

x̄, ȳ Mean of original and test image
σ2

x, σ2
y Variance of original and test image

σxy Covariance between original and test image

The value of the quality factor Q has a range of [−1, 1]. The best quality factor of 1
is obtained if, and only if, xi = yi for all pixels. The lowest value of -1 is obtained if
yi = 2x̄ − xi for all pixels. The quality index measures distortion between two images
based on loss of correlation, luminance, and contrast distortion. It is not easy to see this
from Equation 2.5, so the Q index is rewritten to Equation 2.6, with variable definitions
found in Table 2.2 [72].

Q = σxy

σxσy︸ ︷︷ ︸
Correlation

· 2x̄ȳ

(x̄)2 + (ȳ)2︸ ︷︷ ︸
Luminance

· 2σxσy

(σ2
x + σ2

y)︸ ︷︷ ︸
Contrast

(2.6)

Equation 2.6 Correlation measures the linear correlation between image x and y. The
dynamic range for this part of the equation is [-1, 1]. The highest correlation coefficient
of 1 is obtained when yi = axi + b for all pixels,i, while a > 0. To measure relative
distortions between x and y, the luminance and contrast are compared between x and
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y. Equation 2.6 Luminance measures how close the mean luminance is between x and
y. The factor has a range between [0, 1] and 1 is obtainable only if x̄ = ȳ. Equation 2.6
Contrast compares how close the contrasts are of the two images, where σx and σy can
be viewed as estimates of the contrast of x and y [72].

In general, images are non-stationary, as can the image quality be. Even if the image
quality is space variant, it is often preferable to have a single evaluation of the overall
quality of the image. It is therefore proposed in [72] that an appropriate way to evaluate
the image quality is through local measurement of the statistical features and then
combining them to an overall image quality factor. The proposed method by Wang
and Bovik is a sliding window method with a window size of B × B pixels. The sliding
window is moved horizontally and vertically pixel by pixel, starting from the top left
corner until the bottom right corner is reached. There will be M amount of steps when
the bottom right corner is reached. The overall quality factor is computed as a mean of
locally computed quality factors Qj , as shown in equation 2.7.

Q = 1
M

M∑
j=1

Qj (2.7)

2.7.3 Structural Similarity Index

The Structural similarity index (SSIM) is an image quality metric algorithm proposed
by Wang et al. in 2004 [73]. The luminance of each of the images in question is first
compared. The luminance comparison function is defined as l(x, y), where x and y
are the images being compared. l(x, y) will be a function of µx and µy. The standard
deviation σx and σy are used as an estimate of the contrast and used in the contrast
comparison c(x, y). The structural comparison s(x, y) is normalised, so demeaned and
divided by the standard deviations. These signals are combined in a function yielding
the overall similarity measure given in Equation 2.8.

S(x, y) = f(l(x, y), c(x, y), s(x, y)) (2.8)

Equation 2.8 is the general form of the comparison metric S(x, y). The following list
describes a set of conditions for the similarity metric that should be satisfied by choice
of l(x, y), c(x, y) and s(x, y).

1. Symmetry: S(x, y) = S(y, x)

2. Boundedness: S(x, y) ≤ 1
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3. Unique maximum: S(x, y) = 1 if and only if x = y

Equations 2.9-2.11 are the proposed equations for luminance, contrast and structure
comparisons.

l(x, y) = 2µxµy + C1
µ2

x + µ2
y + C1

(2.9)

c(x, y) = 2σxσy + C2
σ2

x + σ2
y + C2

(2.10)

s(x, y) = σxy + C3
σxσy + C3

(2.11)

The constants C1, C2 and C3 are defined in Equations 2.12-2.14, where L is defined as
the dynamic range of the pixel values (255 for 8-bit greyscale images). K1 and K2 are
defined as much smaller than 1.

C1 = (K1L)2 (2.12)

C2 = (K2L)2 (2.13)

C3 = C2
2 (2.14)

The Comparison equations 2.9-2.11 are then combined into SSIM in Equation 2.15. α, β

and γ are weighing factors to determine the importance of each comparison component.
If C1 = C2 == 0 and α = β = γ = 1, then SSIM is the same as UQI. SSIM can therefore
be viewed as a generalisation of UQI [73].

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (2.15)

SSIM is calculated using a sliding window, but instead of a square window, an 11 × 11
circular Gaussian weighing function is used with a standard deviation of 1.5 samples.
In the paper, α = β = γ = 1 and C3 = C2/2 for simplicity. Wang et al. also used
K1 = 0.01 and K2 = 0.03, then noted that K1 and K2 values are somewhat arbitrary
and insensitive to variation of the values [73].
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With the defined values of α, β, γ and C1 − C3, Equation 2.15 simplifies to 2.16, which is
used in calculation [73].

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) (2.16)

2.8 File formats used in neuroimaging

The datasets used in neuroscience are often complex and large. They consist of many
images and metadata for particular types of scans. Data from fMRI scans can be saved
in either NIFTI or DICOM formats according to Moore et al. [74]. In addition to these
formats, the CIFTI format exists. There are different reasons to use the different formats
explained in this section.

2.8.1 DICOM

DICOM (Digital Imaging and Communication in Medicine) is a complex image format
designed for use and support in a wide range of medical imaging and clinical procedures.
Computed tomography (CT), MRI, ultrasound, x-ray angiography, mammography, and
radiation therapy are among the imaging modalities supported. Most equipment directly
exports images to the DICOM file format with a .dcm extension. It is also possible to
use another form of DICOM with an alternate extension [74].

An advantage of DICOM files is that the medical images are not separated from the key
information about their creation. To accomplish this, the image pixel data is grouped
with a header of important parameters about the patient, study and the image. Some
of the parameters regarding the patient are name, age and sex of the patient. The
parameters regarding the study include the physician, study date, and modality, but are
not limited to these parameters. The name of the device, the manufacturer, and scanner
settings are some of the parameters represented for the imaging details.

The complex and comprehensive nature of the format, DICOM files and datasets can be
a burden to store due to the large required storage space. In addition to the resources
required, each DICOM file contains the encoding of a single 2D slice instead of a 3D
image. This results in many separate files to manage while working with 3D images. It is,
therefore, beneficial for neurological scientists to convert DICOM files to a comparatively
simpler NIFTI format for better support regarding analysis and visualisation [74].
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2.8.2 NIFTI

NIFTI (Neuroimaging Informatics Technology Initiative) is a file format developed by
the National Institute of Health in the early 2000s and is a format specifically for
neuroimaging. It is built upon a previously-used format called ANALYZE and made
improvements such as increased information storage for avoiding ambiguous interpretation
and additional datatype support compared to ANALYZE. The NIFTI format contains a
header and uncompressed image data. The image data can be stored as separate files,
such as .hdr and .img file formats for header and images, respectively, or as a combined
file as .nii or .nii.gz. The .nii extension means that the data is uncompressed, and .nii.gz
means that the data is compressed. The image data is in contrast to DICOM stored as a
3D matrix, making NIFTI capable of storing volume data. The NIFTI header is a list
containing technical parameters such as data scaling, slicing details, axis information
and some fields for a brief description and naming [74].

There are two types of the NIFTI format, NIFTI-1 and NIFTI-2. According to Mark
Jenkinson on the NITRC forum [75], the NIFTI-2 format is a 64-bit update of NIFTI-1.
The intention of NIFTI-2 is to enable the storage of large images and matrices. All
dimensions are coded by 64-bit rather than the 16-bit signed integers of NIFTI-1. Even
though it is a different format, it will still retain the same naming and formatting of
.nii/.nii.gz or .hdr/.img. It is worth noting that NIFTI-1 and NIFTI-2 are not bitwise
compatible with each other [74].

2.8.3 CIFTI

The CIFTI-1 format is a file format that was developed to manage data files relating to
brain connectivity and function employing modalities such as fMRI, diffusion MRI, and
tractography. The listed modalities have large files and need a format that can handle
the large files. The format must also be able to incorporate data representations that
reflect components of brain geometry and circuitry.CIFTI-1 files use NIFTI-2 files as a
basis but include extra information that allows surface data to be provided in the same
format. Vertices are used to represent surface data, whereas voxels are used to represent
volume data. Together these are referred to as brainordinates (from brain coordinates
[76]). Due to several restrictions in the CIFTI-1 format, Coalson et al. created the
CIFTI-2 format, which is detailed in [77]. CIFTI-2 is not backwards compatible with
CIFTI-1, although it is possible to convert from CIFTI-1 to CIFTI-2.

CIFTI files consist of two main parts. They consist of a matrix of values and the CIFTI
XML as a description of how the matrix indices should be interpreted [77]. Index in this
setting is defined as an integer starting from zero that indicates the position along one
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dimension of the matrix. In the documentation for CIFTI-2 [77], Coalson et al. describe
that there are several different mapping types for each dimension. They use "series" as
an example of a straightforward mapping type described as regularly spaced samples.
"Brain models" are an example of a more complicated mapping type. They can include
vertices from one or more surfaces and specific groupings of voxels. A two-dimensional
matrix may hold time series data for surfaces and voxels by mapping indices along one
dimension with a "brain models" mapping and indices along the other dimension with
a "series" mapping. The brain model element for mapping the matrix indices to voxels
or vertices contains a set of attributes, including BrainStructure. This attribute is used
to identify the brain structure. Within the brain models index, there are one or more
brain structures with each voxel/vertice to create the brainordinates. Table 2.3 shows
examples of the different brain structures that can be assigned. The complete list can be
found in [77].

Table 2.3: An excerpt of the full list of brain structures used in the BrainModel element
of the CIFTI format. Full list in [77] page 10 under the list title BrainStructure Values.

Brain Structure
CIFTI_STRUCTURE_CORTEX

CIFTI_STRUCTURE_CORTEX_LEFT
CIFTI_STRUCTURE_CORTEX_RIGHT

CIFTI_STRUCTURE_OTHER

Data files on the CIFTI format have the additional information about the matrix indices
encoded in XML, a markup language that lets the user define and store data in a sharable
manner [78]. The CIFTI-2 files have this XML placed into a header extension in a NIFTI-
2 file. CIFTI-2 files have a two-part filename extension to distinguish between different
CIFTI files. Some examples of these extensions are .dlabel (dense label), .dtseries (dense
data series), .ptseries (parcellated data series), and .pconn (parcellated connectivity) [77],
which will be used in this project.
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Material

The Connectome Coordination Facility (CCF) manages and distributes public research
data for several studies focusing on the connections within the human brain. These are
referred to as Human Connectome Projects [79].

3.1 Human Connectome Project

The Human Connectome Project (HCP) was a scientific project that attempts to un-
derstand how neural networks or connectomes of the human brain are organized. The
HCP aimed to collect and distribute information about the structural and functional
connectivity of the human brain. Through brain imaging techniques, researchers have
collected information from thousands of participants to examine the complex wiring of the
brain. To better understand how genetics and the environment affect brain connectivity,
researchers collected DNA, demographic data, and behavioural data from the participants
[80].

The HCP dataset includes neuroimaging data from around 1200 healthy young adults.
By providing information on brain connectivity and its relationships with behaviour, it is
possible to deepen the understanding of how the environment and genes affect changes in
the brain circuitry [80]. The 1200 Subjects Release (S1200) contains behavioural and 3T
MR imaging data from 1206 healthy young adults who participated in the study between
2012 and 2015 [81].

rfmri data were collected in four 15-minute runs across two sessions, with two runs each
session. The subjects had their eyes open and had a relaxed fixation on a projected
bright cross-hair on a dark background. The axial oblique varied within each session,
between right-to-left (RL) in one run and left-to-right (LR) in the other run [82].

Table 3.1 shows the list of parameters from the dataset [82].

27
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Table 3.1: Parameters used to collect resting state images [82].

Parameter Value
Repetition time (TR) 720 ms

Echo time (TE) 33.10 ms
Slice thickness 2.0 mm
Slice number 72

Frames 1200
Voxel size 2.0 x 2.0 x 2.0 mm

Subject 100206’s data was used for processing in this thesis. Preprocessed and un-
processed 3T data was downloaded from ConnectomeDB (Connectome Database). In
the unprocessed data, the file 100206_3T_rfMRI_REST1_LR.nii.gz was used as the
functional file, shown in Figure 3.2. The file contains data from the resting state session
one with a left-to-right (LR) direction. File 100206_3T_T1w_MPR1.nii.gz is used as
the structural file [82], shown in Figure 3.1. For processing data contains T1-weighted
images and preprocessed data from the resting state session 1 with phase encoding in
both left-right and right-left directions. During this project, left-right encoding was used.

Figure 3.1: Structural image,
which is in the structural folder.

Figure 3.2: Functional image that
is in the functional folder.

The NIFTI volume file rfMRI_REST1_LR.nii.gz was used as an input to the self-made
pipeline. rfMRI_REST1_LR.nii.gz is one of the outputs from HCP’s Minimal Processing
Pipelines, shown in Figure 3.3.
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Figure 3.3: The figure shows the output from HCP’s Minimal Processing Pipelines.

3.2 Minimmal processing pipelines from Human Connec-
tome Project

The Minimal Processing Pipelines have been applied to the unprocessed data by HCP.
The processing pipelines consist of three sets of pipelines: structural pipelines, functional
pipelines and a diffusion pipeline. After the structural pipelines have been completed,
the functional pipelines or diffusion pipeline may run. Since the diffusion pipeline is not
used during this project, it will not be further elaborated [82].

3.2.1 HCP Structural Pipelines

The HCP structural pipelines consist of three pipelines: PreFreeSurfer pipeline, FreeSurfer
pipeline, and PostFreesurfer pipeline [82]. The PreFreeSurfer pipeline has the main goals
of producing undistorted native structural volume spaces for the subject, as well as
aligning T1 and T2 weighted images, performing bias field correction and registering the
native volume space to MNI space [82]. The bias field is an undesirable signal of low
frequency that corrupts MRI images due to inhomogeneities in the magnetic fields of the
MRI scanner [83].

The FreeSurfer and PostFreeSurfer pipeline’s goals are to process and segment the volume
data into cortical surfaces and create surface files. The data generated from these are
not used in this thesis and are therefore not further elaborated [82].

3.2.2 HCP Functional Pipelines

The functional pipelines consist of the fMRIVolume pipeline and fMRISurface pipeline.
For the intent of this thesis, the only relevant pipeline is the fMRIVolume pipeline. The
fMRIVolume pipeline takes the fMRI data and removes spatial distortions, compensates
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for subject motion by realigning the volume and registers the fMRI data to the structural
data. The structural data is the output. In addition to this, the pipeline reduces the
bias field, normalises the 4D image to a global mean, and finally masks the data with
a brain mask. During the pipeline, there has been taken care to minimize smoothing
effects from the interpolation, such that no unnecessary smoothing is being done. The
output of this pipeline can be used in standard volume-based analyses according to the
reference manual [82]. The output of this pipeline is the fMRI volume data referred to
when HCP processed data is mentioned further in this thesis.
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Software

4.1 DPABI Matlab Toolbox

Volume-based data preprocessing of the HCP dataset was performed by using Data
Processing Assistant for Resting-State fMRI (DPARSF [84]), which is based on Statistical
Parametric Mapping (SPM12 [85]) and had been integrated into Data Processing and
Analysis of Brain Imaging (DPABI [86]) [87].

The MATLAB programs DPABI and DPARSF are used to handle and analyze brain
imaging data. DPABI is a software tool designed for preprocessing and analyzing fMRI
data. DPARSF was created to offer a pipeline for processing and interpreting resting-state
fMRI data. Many preprocessing procedures are necessary for resting-state and task-based
fMRI data, including slice timing correction, motion correction, and spatial normalization,
which are automated by DPARSF. It also includes several tools for artefact detection,
data quality control, and functional connectivity. Although DPABI is a more complete
software package that can be used for preprocessing and evaluating various brain imaging
data [31].

31
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Figure 4.1: DPABI panel/
GUI

Figure 4.2: DPARSF panel/
GUI

There are a few procedures to be performed before using the DPABI toolbox. The first
step is to install the SPM12 and DPABI toolboxes. The DPABI path is then included in
the main environment using subfolders. Figure 4.1 will appear when dpabi is called in
the MATLAB command window. Figure 4.2 will appear when the highlighted button in
Figure 4.1 was pressed. To preprocess the fMRI data the highlighted button in Figure
4.2 was pressed.

The second step is data organization before using the DPABI toolbox. The dataset
must be organized in a specific way to recognise the dataset. One must create a study
folder, one with structural images and another with functional images. Within both
structural and functional folders, there need to be subject folders. In each subject folder,
all DICOM files will be placed. After organizing all data in this manner, the DPABI
toolbox can be used [88].
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4.2 Windows Subsystem for Linux

FreeSurfer and Connectome Workbench are programs that must run on a Linux-based
operating system. Windows Subsystem for Linux (WSL) is a feature within Windows
that allows the user to utilize a Linux command line and a Linux file system directly on
Windows [89]. WSL was configured using Microsoft’s guide for installing WSL [90]. The
Linux distribution that was chosen was Ubuntu-20.04.

4.2.1 FreeSurfer

FreeSurfer is a software package that allows the user to analyse and visualise structural
and functional neuroimaging data. The software package is a collection of tools for
analysing neuroimaging data that includes a variety of algorithms for quantifying the
functional and structural properties of the human brain. [91].

The installation of Freesurfer was done based on a terminal session provided by Freesurfer’s
website [92]. The terminal session gives instructions to download an older version of
FreeSurfer. Freesurfer version 7.3.1 [93] is one of the newest version of Freesurfer, and
therefore this was chosen. The specific file to link within the terminal is "freesurfer_ubuntu20-
7.3.1_amd64.deb". To use Freesurfer, it is necessary to apply to Freesurfer for a license
and add a text file containing the license to the path in Linux.

4.2.2 Connectome Workbench

Connectome Workbench is a free and open source for visualisation and mapping neu-
roimaging data, particularly data generated by the Human Connectome Project. The
software includes wb_view, a graphical user interface (GUI)-based visualisation platform
and wb_command, which is a command-line program for performing a variety of algo-
rithms tasks on, for instance, volume data. wb_command is necessary to run HCP data
processing pipelines [94].

Workbench allows the user to explore data and activity both on the surface and within
the volume of the brain. The software connects with ConnectomeDB to import data
from a group of subjects and display that data in Workbench on a group brain atlas [94].

The ConnectomeDB is a data management platform containing all of the HCP’s gener-
ated data. This includes image data, clinical evaluations, behavioural data, and other
information [95]. The following command was written in the Ubuntu terminal "sudo
apt-get install connectome-workbench" to Install Connectome Workbench.

https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/7.3.1/
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Method

5.1 Overview

DPABI Toolbox and Connectome Workbench were used to conduct volume-based func-
tional connectivity analyses. DPABI Toolbox can be divided into preprocessing and
resting state analysis, shown in Figure 5.1. The pink box represents preprocessing and
shows all the steps involved. The green box shows the resting state analysis of the
preprocessed data and produces a functional connectivity matrix.
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Figure 5.1: DPABI pipeline: HCP raw data are preprocessed (pink box), and resting-
state analysis is performed to obtain a functional connectivity matrix (green box).

Connectome Workbench was used to create a pipeline for creating a resting state functional
connectivity matrix. The pipeline uses CIFTI files, so the NIFTI inputs are converted
to the CIFTI format. The resting state analysis can be performed on the raw data
preprocessed by DPABI and the preprocessed data provided by HCP. A block diagram
of the pipeline is shown in Figure 5.2.
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Figure 5.2: The block diagram has three main sections that coincide with the three
main steps of the resting state analysis. The blue box (lower left) represents the steps
involved in creating a dense label file, the red box (upper left) represents the steps
involved in creating the dense time series and the purple box (upper right) represents

the steps involved in creating the parcellated connectivity matrix.

5.2 DPARSFA

The DSPARFA panel can be divided into two subpanels highlighted in Figure 5.3. The
upper panel, marked in pink, consist of preprocessing parameters. The lower panel,
marked in green, consists of options for resting state fMRI analysis. All the preprocessing
options are based on functions from the SPM Toolbox [96].

Figure 5.3: DPARSFA panel, where different parameters are defined. The upper pink
box contains preprocessing parameters, and the lower green box contains options for
resting state fMRI analysis. The colours of the boxes coincide with the boxes in the

DPABI processing block diagram in Figure 5.1.

The working directory is the path to the directory containing the structural and functional
folders. Figure 5.4 shows where to define the working directory and an overview of the
subjects. As shown in the figure, this experiment only used data from one subject.
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In the lower right corner of Figure 5.3, there is a starting directory; here, the functional
folder must be defined. The functional folder is defined as "FunRaw" in the figure.

Figure 5.4: The figure shows where to define the working directory and where to put in
time points and TR.

From Table 3.1, the time points and the repetition time (TR) are defined as 1200 and
0.72 s, as shown in Figure 5.4.

The preprocessing pipeline consisted of the following steps. The initial ten time points
were discarded. Normally the first 5-10 time points are discarded or removed because
the imaging will not reach a steady state, and the subject will not enter the rest state by
that time [96].

Slice timing correction was applied by defining the following parameters: the slice number,
slice order and reference slice. The slice number was set to 72 from Table 3.1, and the
slice order was defined with all the even numbers first, followed by odd numbers up to 72.
The slices were acquired on a 3T scanner (Siemens MAGNETOM ConnectomS syngo)
with interleaved series mode and transversal direction from feet to head [82]. According
to Table 2 in this paper [97], the slice order has to be defined as even to odd order
in SPM since the dataset has an even number of slices. The reference slice was set to
one and served as a template for the alignment process. This parameter corrects for
differences in the acquisition times between slices in a volume of fMRI data. This helps
reduce the effects of slice-dependent artefacts, as described in Section 2.5.1. Figure 5.5
shows the parameters used to define slice timing correction.

Figure 5.5: Slice timing parameters are defined, and realignment has been checked.

Realignment was also applied to correct the head motion during the fMRI scan, as shown
in Figure 5.5. This ensures that the signal source in a particular voxel is always in the
same physical location, as explained in Section 2.5.2.
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The AutoMask box was checked to automatically extract the brain from the rest of the
skull for each realigned image. This will remove non-brain tissues, such as the skull,
scalp, and meninges, but also removes noise. Bet was applied if the AutoMask failed to
extract the brain accurately because of artefacts or image noise [96]. Bet was applied for
better coregistration as described in Section 2.5.3. Figure 5.6 shows that both AutoMask
and Bet have been applied to the fMRI data.

Figure 5.6: Automask, brain stripping algorithm BET, and T1 coregister functional
image have been checked.

Each T1 anatomical image was coregistered with a functional image. The goal is to
accurately map functional data onto the underlying brain anatomy so that the structural
and functional images are in the same space, explained in Section 2.5.4).

The "New Segment + DARTEL" method segments T1 weighted structural images and
applies the DARTEL algorithm to normalise the results to a standard template. The
"New Segment" function segments T1 weighted images into grey matter, white matter,
and CSF. This function creates tissue probability maps that show the likelihood that each
voxel is a part of the CSF, white matter, or grey matter [98]. The "DARTEL" method
prepares T1 weighted images that normalise each subject’s data to a standard brain
template. These two methods combine segmentation and normalization into a single
workflow, which provides a common reference area for comparing functional connectivity
patterns among subjects, explained in Section 2.5.8. Figure 5.7 shows that "New Segment
+ DARTEL" was performed on the data.

Figure 5.7: Segmentation, nuisance regression and filtering have been selected.

The affine regularisation in segmentation was applied for European brain. Nuisance
covariate regression was applied, where the polynomial trend was set to 1 (linear detrend),
the head motion model was set to Friston 24, and nuisance regressors were WM, CSF,
and global, as shown in Figure 5.7. This polynomial trend has the potential to reduce
the effects of low-frequency drifts. The Friston 24 model was used to regress the head
motions. White matter, CSF, and global signals were estimated to remove covariance
and were used as nuisance regressors. This was done to reduce noise and minimize the
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error. The bandpass filter was set to 0.01-0.1 Hz to remove low- and high-frequency
physiological noise.

Spatial normalisation was performed by defining the bounding box, voxel size and
"Normalize by DARTEL", as shown in Figure 5.8. The bounding box refers to the region
of interest (ROI) used for skull stripping, and the default values were used. The voxel
size was set to 2 mm, as shown in Table 3.1. "Normalize by DARTEL" was applied since
the "New Segment + DARTEL" method was used. Structural differences and similarities
between groups or individuals can be studied more precisely by normalising structural
MRI images to a standard template using DARTEL [98].

Figure 5.8: Normalization and smooth have been applied to the data.

Spatial smoothing was applied by setting the FWHM to 8 mm. This is because the
literature’s most commonly used smoothing level is 8 mm FWHM, which also is the
default value in SPM [99]. The default mask is called a binary mask image, which
removes non-brain tissues [98].

Since the goal was to perform functional connectivity analysis, the functional connectivity
was selected, as shown in Figure 5.9. The extracted ROI time courses option was selected
to enable DPABI to extract all the ROI time courses and use this to calculate other
similarity assessments.

Figure 5.9: Functional connectivity has been chosen for resting state analysis.

Once functional connectivity is selected, the "Define ROI" button is activated. The
"Define ROI" button allows the user to choose standardised atlases. The chosen atlas
was "/Power_Neuron_264ROIs_Radius5_Mask", as shown in Figure 5.10.
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Figure 5.10: Defining the ROI as the Power el at. atlas.

Once everything has been defined, the preprocessing and resting state analysis can be
initiated. During the preprocessing of fMRI resting-state imaging, a warning message
may appear, indicating that the system is unable to detect the coregistered T1 images
automatically. In such cases, a prompt will ask if the original T1 weighted imaging
should be used as the imaging process. To apply coregstration to the original T1 image,
this prompt should be accepted.

Figure 5.11: Abbreviations of folders produced by DPABI.

When all the processing is completed, there will be a message in the command window
that says that the processing is done. The Working Directory will contain various folders
corresponding to different preprocessing steps. Figure 5.11 FunImgARC indicates that
folders have images that have been slice timing, realigned, and covariates removed. The
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most significant folder is the result folder, containing the correlation coefficient map for
subsequent analysis and visualisation.

5.3 Pipeline when using Connectome Workbench to make
functional connectivity matrix

When using Connectome Workbench to make a functional connectivity matrix the created
pipeline was based on a pipeline [100]. The pipeline makes a dense data series file and a
dense label file and creates a functional connectivity matrix from these. Tijhuis et. al’s
pipeline uses CIFTI dense data series (.dtseries) and dense label (.dlabel) files as inputs,
while the files being inserted into the pipeline created in this project are NFITI files. The
first file is a 3D NIFTI mask, and the second file is a 4D NIFTI volume file containing
the time series. It is, therefore, necessary to convert the NIFTI files into their respective
CIFTI formats before being used in the final pipeline. The resting state analysis pipeline
was applied to both the raw data preprocessed by DPABI and the raw data preprocessed
by HCP. Only the preprocessed raw data from HCP will be displayed throughout the
steps of the pipeline.

5.3.1 Making a dense label file

The first step in the developed pipeline is to create a dense label file. Dense label files
have .dlabel.nii as their extension and store named label maps across vertices and voxels.
Each label map has a separate label table defined within the CIFTI XML. A row is a
single label value from each named label map for one vertex or voxel [77].

The pipeline that creates this dense label file centres around the utilization of the -cifti-
create-label function from the Workbench Command, which makes the dense label file from
the NIFTI file Power_Neuron_264ROIs_Radius5_Mask. The online documentation
[101] provides detailed information about this function. There are several optional input
variations in the documentation, but the most relevant for this project is the option
named -volume. This option requires a label volume and a structure label volume. The
label volume is a volume containing the labels that will be displayed. The structure
volume contains a set of labels from the list of CIFTI brain structures found in [77].
Structure names that are not from the full list are ignored, and the voxels in the dense
label file from these areas are not included.

The NIFTI time series file from HCP has been transformed from its native space to
MNI152, and the Power_Neuron_264ROIs_Radius5_Mask is also in MNI152 space. The
mask has a voxel size of 3 mm, while the time series has a voxel size of 2 mm. Therefore
an affine transformation is applied to the Power_Neuron_264ROIs_Radius5_Mask to
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achieve a voxel size of 2 mm. Figure 5.12 shows the original mask, and Figure 5.13 shows
the mask after the affine transformation. It can be observed that the highlighted pixel
in both of the figures has the same index value of 232. The voxel coordinate in XYZ
measured in mm are the same, but the voxel indices differ. In Figure 5.12, the voxel
indices are (40, 38, 24), while in Figure 5.13, the voxel coordinates are (60, 57,36). This
change in voxel indices happens because the voxel size change from 3 mm to 2 mm. The
change in voxel indices is 1.5 times larger in Figure 5.13 than in 5.12. The scaling also
changed the shape of some of the regions slightly.

Figure 5.12: This figure shows a slice from the original Power et al. mask. The crosshair
highlights the x-, y- and z-coordinates (-30, -12, 0) in mm, the voxel indexes (40, 38, 24)
as well as the voxel value of 232. The mask has a voxel size of 3 mm and is in MNI

space.

Figure 5.13: This figure shows a slice of the Power et al. atlas after the affine
transformation has been applied to it. The crosshair highlights the x-, y- and z-
coordinates (-30, -12, 0) in mm, the voxel indexes (60, 57, 36) as well as the voxel value

of 232.
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The Workbench Command function -volume-label-import was used to make the label
volumes. The function takes a volume file and a text file as inputs and produces a label
volume. The text file contains the label name, the index the label is associated with and
colour specifications. The colour specifications have the format R G B α, where R, G,
and B are the colour channels red, green and blue. α denotes the opacity of the colour.
The format of the text file is shown in Figure 5.14.

<Label_name1>
idx1 R1 G1 B1 α1
<Label_name2>

idx2 R2 G2 B2 α2
...

<Label_nameN>
idxN RN GN BN αN

Figure 5.14: Label table format

The created label volumes are the display and structure label volumes to be inserted into
-cifti-create-label. The display label volume is created using the scaled Power et al. mask
as the volume input to -volume-label-import. The label table uses the indexes from the
scaled mask as label names and indexes. The colours are set to match the functional
networks shown in Table 2.1, and the opacity (α) is set to the highest setting of 255.
Figure 5.15 shows one slice of the display label volume.

Figure 5.15: This figure shows a slice of the display label volume. The highlighted
voxel displays "232" which is the label corresponding to the value 232 in the Power et al.

atlas.



44 Chapter 5 Method

To make the structure label volume, the brain structure CIFTI_STRUCTURE_OTHER
was chosen. This avoids the need for manual labelling of the structures, as it is not
required for the label structure volume to function as intended. The scaled Power et al.
mask needs to become a binary mask containing the same voxels as the mask. This is
achieved by applying a comparison operator x > 0 for all voxels, where x is an individual
voxel. Every voxel that satisfies this inequality is set to 1. The binary mask is then
used to create the structure label volume by combining the binary mask with a label
table. The label name is set to "OTHER" and the index is set to 1. The colour choice is
arbitrary and was set to blue. Figure 5.16 shows one slice of the structure label volume.
The value displayed in the structure label volume is the label "OTHER".

Figure 5.16: This figure shows one slice of the structure label volume. The highlighted
voxel now has a value of OTHER.

The display label volume file and the structure label volume are then combined using
-cifti-create-dense-label. One slice of the finished dense label file is shown in Figure 5.17.
In the information box, it can be observed that the file name contains .dlabel, and it is
specified that the labels are CIFTI labels.
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Figure 5.17: Dense label file created in the developed pipeline. The colours of the
label file match up with the nodes in the Power et al. atlas. The number shown in the
information box is a CIFTI label with the label ’232’, which matches the index of the

ROI from the atlas.

5.3.2 Making a dense time series file

The dense data series has the file extension .dtseries.nii and represents data points in
a series for every voxel and vertex in the mapping. The dense data series has a series
mapping along the rows, and along the columns, it has brain models mapping. The series
mapping contains attributes such as the number of points, start, step and unit. Most of
the time, the series is a time series, but it can also represent other data types, such as
measurements of frequency (Hz), distance (m) or angles (radians) [77].

Creating a dense time series file in this pipeline centres around utilising the -cifti-create-
dense-timeseries from workbench command [101]. Function -cifti-create-dense-timeseries
has several input options related to the CIFTI file format. The inputs used in this
project are -volume, -timestart, -timestep and -unit. The -volume option has two inputs:
volume data and structure label volume. The volume data is the 4D NIFTI volume time
series that will be transformed into the CIFTI dense data series format. The structure
label volume contains label data, acts like a mask that removes voxels that will not be
examined, and connects the data to brain structures in the CIFTI format.

The scaled Power et al. mask is used as a foundation to create the structure la-
bel volume. The only brain structure that will be included in this project is the
CIFTI_STRUCTURE_OTHER from Table 2.3, for the same reasons as described in
Section 5.3.1 about creating a dense label. The scaled mask is then thresholded and
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transformed into a binary mask by applying the comparison operator x > 0 for all voxels,
where x is an individual voxel. The result of the thresholding is shown in Figure 5.18.

Figure 5.18: The figure shows the binary mask used to create the label structure volume.
The highlighted voxel is the same as in Section 5.3.1.

The binary mask is then used to create the label structure volume to be inputted to
-cifit-create-dense-timeseries. -volume-label-import is used as described in Section 5.3.1,
when describing how to create a label structure volume. Figure 5.14 is used as a template,
and the label name is "OTHER". The index is set to 1, and the chosen colour is set to
blue. The opacity is set to 255. Figure 5.19 shows the label structure volume.

Figure 5.19: The figure shows the structure label volume used to create the dense time
series. The label "OTHER" is displayed as the value of the highlighted voxel.
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When the label structure volume has been created the dense label file can be constructed
using -cifti-create-dense-timeseries. The 4D NIFTI time series is set as the data volume,
and the created label structure volume is set as the structure label volume option. The
starting time is set to 0, the time step is set to 0.72, following Table 3.1, and the unit is
set to seconds. The resulting dense time series file is shown in Figure 5.20.

Figure 5.20: The figure shows the dense time series file created in the developed pipeline.
The highlighted voxel has a data series value of 11058.3 at time point 0 s.

5.3.3 Making of parcellated functional connectivity matrix

The final step of creating a parcellated connectivity matrix is based on the pipeline
created by Tijhuis et al. [100]. The pipeline creates a parcellated connectivity file from a
dense label and a dense data series. The dense data series is parcellated using the dense
label to achieve this.

A parcellated data series has the extension .ptseries.nii and represents data points in a
series for areas of the brain. The parcellated data series has a series mapping along the
rows and a parcel mapping along the columns. The parcel element associates a name
and voxel and/or vertice data to an index [77].

Parcellated connectivity files have the extension .pconn.nii and represent connectivity
between parcels or areas of the brain. Each row represents the connectivity from one
parcel from the column to all the parcels within that row. Using "from" and "to" does not
imply directly that the data is always directed but acts as a convention for directed data.
The parcellated connectivity files can contain a single mapping along both axes, such
as in this project, or it can contain different groups of parcels, creating an asymmetric
matrix [77].
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The first step in this preprocessing step is to demean, and variance normalise the dense
time series data. According to Tijhuis et al. in the manual of their GitHub repository
[100], the demeaning and variance normalisation is done to standardise the data for
concatenation. A slice of the demeaned and variance normalised dense time series is
shown in Figure 5.21.

Figure 5.21: The figure shows a slice of the demeaned and variance normalised dense
time series file at time point 0 s.

The next step is to parcellate the dense time series. This is done by applying -cifti-
parcellate from Connectome Workbench to the dense time series with the created dense
label as a parcellation template. When parcellating, it is necessary to specify which
mapping to parcellate. For this data, the parcellation will be applied to the columns of
the dense time series, since it contains the brain model mapping. Then the specified
voxels can be associated with a label/parcel. The choice of parcellation method was the
mean of the voxels within each parcel, which is the standard choice for the command. A
slice of the parcellated time series is shown in Figure 5.22.
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Figure 5.22: This figure shows a slice of the parcellated time series at timepoint 0 s.
The information box shows which parcel the specific voxel belongs to and the mean

value of all the voxels within that specific parcel.

The final step of the pipeline is to create the parcellated connectivity matrix and store
the data. This is done using the -cifti-correlation from Connectome Workbench. This
function uses the parcellated time series as input, calculates the correlation between all
the parcels and organises the correlation values in a matrix on the parcellated connectivity
format .pconn.nii. The function is called twice; one time for calculating the Pearson
correlation and one time to calculate the Pearson correlation and apply the Fisher R-to-Z
transform to the correlation data. The data within parcellated connectivity files are also
stored as text files for easy access in Python.
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Results and Discussion

Functional connectivity matrices for all the experiments were achieved by using the
Pearson correlation for each pair of regions. Then each correlation coefficient underwent
a Fisher z-transformation to improve the spatial normality of the correlation value
distribution. When calculating the Structural similarity using SSIM it is required to
provide the dynamic range of the input images. The floating points of the matrices are
therefore converted into 64-bit unsigned integers, which results in L = 264 − 1.

6.1 DPABI

A 264 × 264 functional connectivity matrix produced from raw data from HCP is shown
in Figure 6.1. Preprocessing and resting-state analyses were performed using DPABI.
Each node is defined according to the Power el at. atlas on the x-axis, marked by different
coloured boxes. The colour bar indicates the range of the correlation between each ROI
pair, which ranges from just below -0.2 to slightly above 1.6.

The matrix in Figure 6.1 can be divided into diagonal and off-diagonal elements. The
diagonal elements can be ignored since they show the correlation between the nodes
themselves. The diagonal elements have a correlation value of ∞ due to the Fisher
R-to-Z transform and contain no information of interest. The off-diagonal elements show
the connectivity between pairs of different nodes, which can be divided into the upper
and lower triangle. It can be observed that the matrix is symmetric about the main
diagonal, so the upper and lower triangle are identical. From Equation 2.2 describing the
Pearson correlation, it can be observed that in the comparison between Xi and Yi the
same operations are done to the variables. This means that the order of operation does
not matter, resulting in a symmetrical matrix about the main diagonal. This symmetry
can be observed in Figure 6.1.
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Figure 6.1: A 264 x 264 matrix produced by DPABI where each node is labelled
according to Table 2.1 describing the colours of the different functional networks.

Figure 6.1 shows a block-like structure of higher correlation which can be observed along
the diagonal of the matrix. These allude to higher functional connectivity for nodes that
belong to the same system for this subject.
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Figure 6.2: The default mode network is marked with a red dashed line, and The visual
network is marked with a blue dashed line.

The default mode network seems to correlate mostly with itself and seems to have a
lower correlation with other networks, as shown in Figure 6.2. This is highlighted by red
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dashed lines, where the areas within the rows and columns related to the default mode
are bluer than the rows and columns related to the visual networks.

The visual network is marked with a blue dashed line and has some correlation with
other networks such as the sensory/somatomotor hand. This means that the fluctuation
from the visual network is similar to that from the sensory/somatomotor hand. The
visual network has a high correlation, which makes sense because the subjects had their
eyes open during the data acquisition.

6.2 Comparison between DPABI toolbox and Connectome
workbench

Figure 6.3 shows the functional connectivity matrices of data preprocessed in DPABI
Toolbox. Resting state analysis was performed in DPABI Toolbox, where the resulting
matrix is shown in Figure 6.3a. Figure 6.3b shows the matrix where the resting state
analysis was performed in Connectome Workbench.

Figure 6.3: a) Raw data processed by DPABI, FC-matrix from DPABI. b) Data
preprocessed by HCP pipeline, FC matrix created by connectome workbench through

Linux command line.

By visual inspection, there seem to be no observable differences between the two matrices.
The similarity metrics were performed to see any possible differences on both matrices
and the results are shown in Table 6.1.

From the table, it can be observed that there are some small differences as indicated by
the SSIM value of 0.998. MSE and UQI achieved a result of 0.000 and 1.000. The values
are rounded to 3 decimal points, so there are most likely some very small differences that



54 Chapter 6 Results and Discussion

are present in both MSE and UQI. These differences must be present at the 4th decimal
point or later. This is the case since every pixel/element must have the same value to
achieve the best SSIM score of 1 as described in Section 2.7 about metrics. The result
shows that the self-made resting state analysis pipeline has comparable results to the
DPABI pipeline.

Table 6.1: The table shows the similarity between the matrices in Figure 6.3

DPABI × DPABI+Workbench
SSIM 0.998
MSE 0.000
UQI 1.000

6.3 Comparison between the HCP preprocessed data and
our preprocessed data

Figure 6.4 shows two functional connectivity matrices. The Matrix from Figure 6.4a is
produced using HCP’s raw data, and DPABI for both preprocessing and calculation of the
functional connectivity. The matrix from Figure 6.4b is produced by using preprocessed
HCP data which has been fed through the self-made pipeline based on Connectome
Workbench. The colour maps are the same, and both matrix from Figure 6.4 a and b
has a range of approximately -0.25 to 1.5.

Figure 6.4: a) Raw data processed by DPABI FC-matrix created by DPABI. b) Raw
data processed by HCP preprocessing pipeline, FC-matrix created with Connectome

Workbench.
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From Figure 6.4, it can be observed that the two matrices have similar structures, but
different intensities. The diagonal from DPABI is ∞ and therefore the diagonal values
have been removed from the matrix and appear to be white. The maximum value of
matrix b was 7.254, which is significantly larger than the off-diagonal values of matrix b.
The diagonal elements are not of interest, since they represent functional connectivity
with themselves, as described in Chapter 2.3. By removing the diagonal values, the
contrast from the off-diagonal values was increased when displaying the matrices. It can
be observed that the default mode has lower connectivity to the other networks in both
of the matrices. In Figure 6.4a the connectivity within the default network is higher
compared to Figure 6.4b where it is barely visible.

6.4 Metrics

Table 6.2 lists the overall results of the experiments performed in this study. The rows
show the different metrics used to evaluate the similarity between the matrices and the
columns show a comparison of different matrices. The first column shows the metric
values of comparing the functional connectivity of the preprocessed raw data and the
resting state analysis on DPABI. The column represents an ideal comparison.

The second column in Table 6.2 shows the similarity metrics when comparing the matrices
from Figure 6.3a and b. These values are almost the same as the ideal values as described
in Section 6.2.

Table 6.2: The table shows an overview of the measured metrics.

DPABI × DPABI DPABI × DPABI+Workbench DPABI × HCP+Workbench
SSIM 1.000 0.998 0.218
MSE 0.000 0.000 0.107
UQI 1.000 1.000 0.348

The last column in Table 6.2 shows the similarity metrics when comparing the matrices
from Figure 6.4a and b. The SSIM and UQI index quantify structural differences of the
matrices shown in Figure 6.4.

When comparing the last column with the ideal result (first column), the difference in
the SSIM index is 0.782. The difference between the UQI index and the ideal UQI index
is 0.652. The MSE has a value of 0.107. This indicates that, on average, each element
in the matrices have a squared difference of 0.107. Calculating the square root of MSE
shows that, on average, the difference between the elements in the matrices is 0.327.
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6.5 Discussion

The original problem description was to compare volume-based analysis with surface-
based analysis. This is the reason for installing FreeSurfer in Linux. This problem
description had to be abandoned mid-way due to a discovery that when the Linux-based
pipeline had been developed, it was a volume-based approach. Since it had taken months
to develop the volume-based pipeline (Linux), it was not feasible to develop a new
surface-based pipeline in the given time frame.

Connectome Workbench
The basis for the self-made pipeline was the pipeline developed by Tijhuis et al. [100],
as described in Chapter 5. The inputs to the pipeline are a dense label file and a dense
data series. During the development, understanding how to make these files would prove
difficult when new to the field of neuroimaging. Finding relevant coding examples for
creating the CIFTI formats proved difficult. Most search results showed how to use the
CIFTI formats, not their creation. The documentation of Connectome Workbench [101]
contains 206 commands that operate on different types of mappings, such as volumes,
surfaces, CIFTI files and other utilities. In addition to Connectome Workbench and
Freesurfer were downloaded to add to the arsenal of available tools.

Due to many commands and the scarcity of relevant coding examples, Chat-GPT was
used to discover potentially relevant commands. Figure 6.5 shows a snapshot of a
conversation with Chat-GPT about creating dense label files. Chat-GPT outputs a shell
script containing the Connectome Workbench command -volume-label-import. Chat-GPT
suggests that the output of -volume-label-import is a dense label file, but the output
of this command is a label volume, as described in Chapter 5.3.1. The suggested label
table is also in the wrong format. Therefore, Chat-GPT’s information is wrong, and
the result will not be directly implementable. However, the result highlighted the label
import command used in the final pipeline, showing the usefulness of Chat-GPT. By
using Chat-GPT, narrowed the search process to a couple of commands that could be
further inspected and evaluated for the task. This approach was more efficient than
reading about all the commands.
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Figure 6.5: This is a snapshot of a conversation with OpenAI’s natural language model
Chat-GPT 3.5. The blue (upper) box shows the input to Chat-GPT, while the red

(lower) box shows the model output.

The main challenge during the pipeline creation was understanding how to combine the
dense label and the dense time series file when parcellating. The first naive approach was
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to use provided brain mask from HCP to make the dense time series and try to mask it
with the dense label file during parcellation. The dense label file and dense time series
were in their original volume spaces. This resulted in a prompt that stated that the time
series and the label file were in different volume spaces. This problem was fixed by using
an affine transformation on the mask to fit the data described in Section 5.3.1 about
creating the dense label file. Even after matching the voxel size, the naive approach of
using the brain mask from HCP had its problems. The atlas has voxels in some areas
that the brain mask does not. This can be seen in Figure 6.6. This figure shows that
the brain mask has a voxel value of 0, indicating that the voxel is not included when
creating a dense time series. However, if the dense time series is masked with the atlas
mask, the value of the same voxel is set to 0 in the dense time series, as shown by the
highlighted text in Figure 6.7. It is therefore included and has not been omitted.

Figure 6.6: Demonstration of missing voxel compared to atlas mask. The black area
represents the binary mask of the brain. The light red cross represents the affine-
transformed Power et al. mask. The crosshair highlights a voxel included in the Power

et al. atlas but not in the brain mask.
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Figure 6.7: The figure shows a dense time series masked with the affine-transformed
Power et al. atlas during its creation. The darker red area coincides with the area
included in the brain mask. The lighter red area is not a part of the brain mask, but
when the dense time series is created with the Power et al. mask, the voxels not included

in the brain mask but a part of the Power et al. mask is set to 0.
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DPABI Toolbox
It was difficult to find information about some functions in DPABI. For instance, bounding
box is a function used for normalization. Information about this function can be found
in the SPM12 manual [102]. However, it has not been explained in detail in the manual.
Therefore, we used the default value. The default mask was also a function that did
not have sufficient documentation. The information we found was one sentence on a
forum [103] and a PowerPoint [98] provided by the creator of the DPABI. AutoMask was
another function which was difficult to find any information about. The information we
gathered was from a YouTube video about DSPARF [96] provided by associate Professor
Lu and the PowerPoint provided by the creator of the DPABI. The Affine regularisation
in the segmentation function was set to European. The option was between East Asian
and European. We assumed that most of the subjects were European.

Based on the recommended range for smoothing in Section 2.5.9, the kernel should be
within 4 mm to 6 mm, corresponding to 2 to 3 times the voxel size of 2 mm. However,
we opted for an 8 mm kernel size due to its widespread use in the fMRI literature and its
default value in SPM [99]. The choice of an 8 mm kernel size could have led to excessive
spatial smoothing, potentially resulting in augmented functional connectivity. The overt
smoothing may have formed connections by blending nearby regions, even if they don’t
belong to the same nodes/networks.

One of the driving factors for doing a qualitative study was the processing time when
using DPABI. The preprocessing and resting state analysis took 28 hours for one subject.
Therefore a qualitative approach was more suitable as a greater learning experience as
an introduction to the field of neuroscience. This, however, results in a study that does
not give any validity to the general population of healthy young adults.

Metric Analyses
The metric analyses were performed on the Pearson correlated matrices, not the Fisher
R-to-Z-transformed matrices. This was done due to using SSIM and UQI as similarity
metrics. The metrics are calculated using sliding windows, as described in Section 2.7.
Using the generated functional connectivity matrices after Fisher R-to-Z transforms
would result in similarity indexes of either NaN (not a number) or ∞ because of the
diagonal elements. When replacing the diagonal elements with values significantly higher
than the off-diagonal elements, the SSIM and UQI values change based on the chosen
value. Due to the sliding windows calculation of the metrics, using the upper or lower
triangles of the matrices would not work, resulting in errors. It would be preferable to
use a metric where this would be possible since it would be possible to calculate the
similarity of one of the triangles and omit the diagonal. This approach would likely have
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more difficulty comparing spatial information if the matrices are flattened to a column
or row vector.

Function Connectivity Matrix
The functional connectivity matrix shown in Figure 6.1 does not specify each node
according to the Power et al. atlas template from Table 2.1. The default mode network
shown in Figure 6.1 is simplified. The default mode network is highlighted as shown in
Figure 6.8. In the highlighted area, it can be observed that most of it consist of default
mode network nodes, but some uncertain nodes, memory retrieval nodes and a ventral
attention node are also present. The simplification is done to get a better overview of
the nodes.

Figure 6.8: A zoomed view of Figure 6.1, which highlights the composition of the
default mode region





Chapter 7

Conclusion

This study aimed to provide an introductory resource in the field of neuroimaging, explic-
itly focusing on volume-based analysis for generating functional connectivity matrices.
Two experiments explored the patterns and relationships of brain regions in resting
state data. Experiment one compared the functional connectivity matrix produced
using DPABI preprocessing and resting state analysis on HCP raw data with the matrix
produced using Workbench to perform resting state analysis on DPABI preprocessed
data. Experiment two compared the functional connectivity matrix produced using
DPABI with the matrix created utilising the Workbench to perform resting state analysis
on HCP preprocessed data.

The result of experiment one is that the produced matrices had no noticeable differences
by visual inspection. The similarity metrics also support this statement. Experiment
two resulted in two matrices with noticeable differences where the structure was similar
but with different overall intensities. The similarity metrics also reflected the differences
between the matrices with lower values. The calculated mean difference between the
matrix elements was 0.327.

The findings of this study indicated that preprocessing techniques impacted the subject’s
functional connectivity matrices. These observations highlight the importance of selecting
appropriate preprocessing methods when performing resting state analysis. Further
research is warranted to better understand the specific preprocessing steps that optimise
functional connectivity analyses. The study should also be conducted with more subjects
such that a statistical analysis may be conducted with more validity for the general
population of healthy young adults.
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