
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program / specialization: Spring Semester 2023

Computer Science Open

Reliable and Secure Systems

Author: Daniel Gundersen

Supervisor: Nejm Saadallah

Thesis title: Go-MC - An implementation level model checker for Go

Credits (ECTS): 30

Keywords: Number of Pages: 50

Distributed System, Model Checking, Golang, + appendix: 109

Stavanger, June 13, 2023

Go-MC
An implementation level model checker for Go

Daniel Gundersen

June 13, 2023

I

Abstract

Implementation level model checkers haven proven a good tool for identifying
bugs in implementations of distributed algorithms. In recent years many new
model checkers have been developed. These often include new state space re-
duction techniques which increase their effectiveness, but they are often locked
to use a specific state space reduction technique and to support specific abstrac-
tions. This makes it hard to compare different state space reduction techniques
and to change between different abstractions.

We propose Go-MC, a modular implementation level model checker for the
Go programming language. Go-MC consists of four modules: the Scheduler,
the State Manager, the Checker and the Failure Manager. Each module can
easily be swapped for different implementations, which makes it easy to change
between different abstractions and scheduling techniques.

Go-MC also uses Event Managers to control the execution of the algorithm.
Event Managers are flexible and custom implementations can be made to utilize
specific frameworks or to mock components of distributed systems. This allows
us to take a modular approach when simulating distributed systems, which will
reduce the number of events in a simulation and thus reduce the size of the
state space. It also makes it possible to efficiently capture events and support
different frameworks.

II

Acknowledments

I would like thank my supervisor Nejm Saadallah for guidance throughout the
process of writing this thesis. Your feedback and advice has been invaluable.

I would also like to thank Hein Meling, Leander Nikolaus Jehl and Hanish
Gogada for feedback and suggestions when implementing and using Go-MC.

Thank you to my family who have supported me throughout the process of
writing this thesis.

III

Contents

Abstract II

Acknowledgements III

1 Introduction 1

2 Background 3
2.1 Common Abstractions . 6
2.2 Randomness in Distributed Systems 9

3 Related Works 11

4 Go-MC 14
4.1 Main Loop - Linearizing the Execution 15
4.2 Event Managers - Discovering and Executing Events 17
4.3 Scheduler - Assigning Events to Time Slots 20
4.4 State Manager - Collecting State From Nodes 21
4.5 Checker - Verifying the Implementation 22
4.6 Failure Manager - Crashing nodes and detecting failures 22
4.7 Runner - Capturing a Live Run 23

5 Implementation 25
5.1 Configuring Go-MC . 25
5.2 Simulator . 27
5.3 Events . 29
5.4 Event Manager . 30

5.4.1 Sender . 31
5.4.2 gRPC Manager . 31
5.4.3 Sleep Manager . 32

5.5 Scheduler . 33
5.6 State Manager . 34
5.7 Failure manager . 35
5.8 Checker . 36
5.9 Runner . 37

6 Evaluation 39
6.1 Simulation Time . 39
6.2 Finding Bugs . 40

7 Discussion 44
7.1 Tests . 44
7.2 Experiences . 45
7.3 Future Work . 45

8 Conclusion 47

IV

Bibliography 48

A Distributed Algorithms 51
A.1 Hierarchical Consensus . 51

A.1.1 Sender . 51
A.1.2 gRPC . 57

A.2 Eager Reliable Broadcast . 61
A.3 Majority Voting Regular Register 64
A.4 Paxos . 68
A.5 Multipaxos . 78

B Configuration Details 91
B.1 Configuring the Simulation . 91

B.1.1 Parameters for PrepareSimulation 91
B.1.2 Simulator Option . 91
B.1.3 Parameters for Simulation.Run 92
B.1.4 Run Options . 93

B.2 Configuring The Runner . 93
B.2.1 Parameters for PrepareRunner 93
B.2.2 Runner Options . 94

C Prefix Scheduler 95

D Test Configuration 96
D.1 Simulation Time . 96
D.2 Finding Bugs . 105

V

1 Introduction

Distributed systems are a class of systems that are known for being hard to
reason about and difficult to troubleshoot [30, 20, 18, 28, 22]. This is, at least
in part, because distributed systems consists of autonomous nodes communicat-
ing over a network. Consequently, distributed system are inherently concurrent
and they contain all the complexities associated with concurrent programs. In-
dividual nodes can also fail, further increasing the complexity in the system.
Since an ever increasing number of services relies on distributed algorithms it
is essential that we develop effective methods for verifying both the design and
implementation of the algorithms to ensure that these services can operate with
the high uptime that are required of them.

Traditional verification techniques, such as testing, are ill-equipped to deal
with the large amount of randomness inherent in distributed systems. The
randomness causes tests to provide widely different output when run multiple
times with the same input. This is because they only test one possible execution
of the algorithm, while the randomness means that there can be many different
executions corresponding to the same input. Any tool that wants to guarantee
the correctness of a distributed system must verify all possible executions of the
algorithm.

There has been a large amount of research into verification methods for dis-
tributed systems. An early set of methods are traditional model checkers. They
use models of the system, such as Petri Nets[24], TLA+[29] or Promela[3] speci-
fications, to generate all possible states of the system. They then systematically
check all generated states of the system for property violations. These model
checkers are useful for finding logical faults in the design of the algorithm, but
since they only run a model of the system, instead of the final implementation,
they are unable to find implementation errors.

A natural development of such model checkers is to apply them to the final
implementation of the algorithm. Such implementation level model checkers
include MaceMC [11], MODIST [28] and SAMC [18]. Implementation level
model checkers are more efficient at detecting implementation level bugs than
traditional model checkers, since they test the actual implementations instead
of a model of the system. They can therefore detects bugs that occur when
translating the algorithm from specification into the actual implementation.
Implementation level model checker repeatedly run trough the implementation
of the algorithm while recording the state of the processes and controlling the
ordering of important events such as message flow, process crashes and timeouts.
This allows it to explore the state space and discover subtle bugs caused by rare
race conditions.

One of the major problems faced by both traditional and implementation
level model checkers is that the number of possible executions grows quickly as
the number of events (e.g. messages, timeouts, node crashes, etc.) increases.
This is called the state space explosion problem. The state space is the space
of all possible states that can occur in a distributed system and the size of the
state space generally increases with the number of possible executions. As the

1

size of the state space increases both the computation time required to simulate
the execution and the memory required to maintain the state space increases.

Several techniques for reducing the size of the state space have been devel-
oped [23, 30, 2, 19, 18, 10, 28, 11, 20]. However, these techniques are often
implemented as a part of their own model checkers, which are not designed to
make it possible to insert other state space reduction techniques. This has two
disadvantages. Firstly, it creates a situation where, to implement a new state
space reduction technique, you either need to implement a new model checker
or you have to spend time to adapt an existing model checker. Secondly, since
the different state space reduction techniques are run on different model check-
ers it is hard to compare them. At best one can compare the model checkers
as a whole, but this fails to provide a good way of comparing the state space
reduction techniques as the different designs of the model checkers would affect
the results.

We propose Go-MC (Go Model Checker), an implementation level model
checker for the Go programming language. Go-MC makes it possible to ap-
proach verification of distributed systems in much the same way as we approach
verification of other software: by writing deterministic tests that shows that the
desired properties holds under the given input. When a property is violated it
provides counterexamples and the ability to replay the run, which simplifies the
process of identifying and fixing the bug.

Go-MC uses a modular design consisting of four modules: the Scheduler,
the State Manager, The Checker and the Failure Manager. Each module has
a defined interface and can easily be swapped by other implementations of the
module. This ensures that Go-MC can easily be modified to support the as-
sumptions and abstractions required by the algorithm, instead of adapting the
algorithm to fit the model checker. It also makes it easy to implement and
compare different versions of state space reduction techniques.

Go-MC uses Event Managers as the interface to the nodes. The Event
Managers are placed at a high level of the algorithm. This allows them to
intercept events close to the actual implementation of the algorithm, which
reduces noise. This ensures that the Event Managers can utilize the features of
the frameworks to capture events efficiently. Event Managers are flexible and
can also be used to mock components of distributed algorithms. This makes it
possible to utilize a modular design, where each module is verified independently,
when verifying distributed systems. This reduces the number of events in the
simulation, which helps reduce the impact of the state space explosion problem.

Go-MC also contains a tool for recording the execution of events in a live
run of the algorithm. The tool provides the functionality to pause the execution
of events, trigger node crashes or send requests to nodes. This makes it possible
to visualize and control the execution of the algorithm under different scenarios.
The tool uses Event Managers in a similar way as the simulation tool, and can
therefore easily be applied to the same algorithms that are verified.

2

2 Background

Distributed systems are systems consisting of multiple nodes that communicate
by passing messages between them. The nodes in the system cooperates to
achieve some common goal, such as agreeing on a common value or operating a
key-value storage. They are typically passing messages over some network, but
can also use some other method.

A node is some kind of computing element, it could be a computer, a process
or thread on a computer or some other kind of device capable of participating in
the distributed system. We make no assumption about the speed of the nodes.
It can vary over time and all nodes in a distributed system do not have to run
at the same speed.

Each node in a distributed system is controlled by a local algorithm. The
local algorithm define the behavior of the node, such as how it should respond
to messages and what messages it should send to other nodes. The distributed
algorithm is the aggregation of the local algorithms of the nodes in the system.
Thus, the behavior of the distributed algorithm is defined by the behavior of its
nodes [27, 5].

Distributed algorithms can be grouped into modules that defines the behav-
ior an algorithm should present to the user. While all algorithms implementing
the module should present the same external behavior to the user, the methods
used to achieves this behavior and the conditions under which they are achieved
can vary. Consider, for example, the Reliable Broadcast module. The module
has a set goal, which is ensuring that all correct processes agrees on the delivered
messages, but we can implement multiple different algorithms that achieves this
goal. One algorithm can solve the problem by detecting when the node sending
a message has crashed and resending the message to all other nodes. Another
algorithm can solve the problem by always relaying messages to all other nodes
[5].

This enables the use of a modular approach when designing distributed sys-
tems. We can divide the system into several modules, each encapsulating a
specific external behavior, such as reliable broadcasts or consensus(i.e. agreeing
on a common value). New modules can be designed that rely on or extends
the behavior of other modules. The modules can interact with each other by
passing events between them.

This modular approach has several advantages. Firstly, it makes it easy to
replace one implementation of the module with another. This can be useful
when, for example, we want to improve the performance of the algorithm or
when we need the algorithm to support a different set of assumptions. Sec-
ondly, it allows us to verify each module individually. If we have verified an
implementation of a module under a set of assumptions once, we know that it
is correct and we do not need to verify it every time we use it in a distributed
system. Lastly, since modules often encapsulate common behavior it is often
possible to reuse modules across different distributed systems, thus saving time
when implementing new algorithms.

The execution of a distributed algorithm is modelled as a sequence of events,

3

we will call this sequence a run, that are executed by the processes in the
distributed system. An event is one of the three following actions[5]:

1. Sending a message, m.

2. Receiving a message, m.

3. Perform some action that changes the local state of the node.

Sending the same message to multiple nodes, i.e. broadcasting a message, can
be considered a single event, as it has no practical impact on the ordering of
events [15]. We can also consider the sending of a message to be a part of the
previous event, since the sending of a message does not randomly happen, but
is triggered by the execution of the previous event.

As an example, let us consider a basic ping algorithm(Figure 1) where Node
1 sends a ping message to two other nodes, Node 2 and 3, and the two nodes
respond with a ping response message each. This algorithm consists of four
events, which we give the names e1, e2, e3 and e4: the ping arrives at Node
2 (e1), the ping arrives at Node 3(e2), the ping response from Node 2 arrives
at Node 1(e3) and the ping response from Node 3 arrives at Node 1 (e4). The
sequences e1e2e3e4 and e1e3e2e4 are two different runs of this algorithm. Not
all sequence correspond to a valid execution of the algorithm. An example of
this is the sequence e4e1e2e3, which is invalid since the ping response from Node
3 to Node 1(e4) can not be sent before Node 3 receives the ping message from
Node 1 (e2). Only sequences that corresponds to an actual execution of the
algorithm is a possible run.

Figure 1: One possible execution of the basic Ping Algorithm. Events are
marked with their name. When messages are sent they are marked with the
type of message.

The nodes in a distributed system are autonomous, that is, they are inde-
pendent and do not share any resources such as memory or persistent storage.
They only communicate by sending messages to each other. This means that

4

the nodes does not share access to a common global clock, and each node there-
fore has its own notion of time. Each node is equipped with a local clock to
keep track of its local time. Each of the local clocks runs at approximately the
same speed, but due to the heterogeneity of the nodes they will deviate from
each other. It is possible to device algorithms that can synchronize the local
clocks, ensuring that there is a known upper bound to the amount of deviation,
but such algorithms are only possible under certain timing conditions that can
not be guaranteed to hold in all environments. In practice this means that
while each node might have a local clock which it can use to get timestamps,
comparing two timestamps from different nodes is generally meaningless. This
complicates several parts of designing distributed algorithms, such as establish-
ing an ordering of events [27, 16, 5].

In the absence of global clocks, the happened before relationship is often used
to establish a partial ordering of the events. The ordering is partial because it is
unable say definitively what events happened first, but it captures which events
have potentially caused other events and which events might have happened at
the same time. Event e1 happened before (or potentially caused) e2, we write
e1 → e2, if one of the following conditions hold [15]:

• e1 and e2 are events of the same node and e1 was executed before e2 on
the node

• e1 is the sending of a message, m, from a node and e2 is the receipt of the
same message, m, on a node

• given a third event, e3. If e1 → e3 and e3 → e2

Given two events, e1 and e2, if neither e1 → e2 nor e2 → e1, then the two events
are concurrent.

The happened before relationship is very important and an important state
space reduction techniques called Dynamic Partial Order Reduction uses it to
identify runs which are redundant because they correspond to the same hap-
pened before ordering of events [8]. Many state-of-the-art state space reduction
techniques utilizes Dynamic Partial Order Reduction.

As an example we will investigate the happened before relationships in the
execution of the Ping Algorithm presented in Figure 1. We will represent events
representing the sending of a message as a separate events. We will use a ′ to
distinguish between this send event and the event that triggered the sending of
a message, e.g. the sending of the ping response message that is a result of e1
will be denoted as e′1. In this example run Node 1 receives e3 before e4, although
in a different run it is possible that e4 arrives before e3, which would result in
a different happened before relationship. We can establish that:

• e1 → e′1, e2 → e′2 and e3 → e4 since the events are executed on the same
node.

• e′1 → e3 and e′2 → e4, since they are the sending and receipt of a message.

• e1 → e3, since e1 → e′1 → e3

5

• e2 → e4, since e2 → e′2 → e4.

• e1 → e4, since e1 → e3 → e4.

• e1 and e2 are concurrent, since neither e1 → e2 nor e2 → e1.

This can be summarized as: e1 → e3 → e4 and e2 → e4.
When designing distributed algorithms we specify a set of properties that

define the desired behavior of the distributed system. The properties defines
goals that the individual nodes in the system should be working toward and
behaviour that they should avoid. The properties must hold for all possible
executions of the algorithm for it to be correct. These properties are divided
into two categories: Safety and Liveness properties.

Informally, safety properties define what an algorithm should not do. More
formally a safety property is a property that can be violated at some time, t,
and never be satisfied again after. This can for example be that a broadcast
abstraction should not deliver messages that was not sent.

Liveness properties describe what must happen during the execution of the
algorithm. They are properties where it suffices that for any time, t, in an
execution there is some later time, t′ > t where the property is satisfied. We
say that the property must eventually be satisfied, meaning that it must be
satisfied at some point, but not necessarily at the current time. An example
of a liveness property is a property stating that a broadcast algorithm should
eventually deliver a message that is sent [1, 13].

2.1 Common Abstractions

It is desirable that distributed algorithms should be applicable to many devices,
no matter what hardware, or operating system is used on the device and no
matter the details of the communication method used to transfer the messages.
We therefore define abstractions which encapsulate common properties of these
systems. These abstractions make it easier to reason about the system and
makes it possible to design algorithms that match the abstractions instead of
making a new algorithm for each specific device.

One abstraction that is used is the notion of links (also called channels).
Links are connections between two nodes used to pass messages between them.
In the most basic abstraction of a link any message can be dropped by the
network, but the probability of a dropping a message is less than one, ensuring
that eventually some message will be delivered. This type of link abstraction
is often called a fair-loss link. In general, the link abstractions imposes no
limitations to the processing or transmission time of a message. In practice this
means that a message can be delayed for an arbitrary amount of time and that
the order in which messages arrive on a node can be different from the order in
which they were sent (Figure 2).

The fair-loss link abstraction is often used to create several more advanced
link abstractions. An example is the perfect link abstraction, which guarantees
that all messages that are sent are eventually delivered, which can be created

6

Figure 2: Two space-time diagrams showing an example of how messages can
arrive in different orderings depending on the delay. Left: m1m2. Right: m2m1.

by continuously re-sending a message. Various broadcast abstractions, where
messages are sent to a group of nodes instead of only one node, can also be
created [5, 26].

Using the abstraction of point-to-point links does not mean that every node
must be physically connected to all other nodes. It only means that every node
must be able to send messages to all other nodes in the system. The messages
can be routed trough other nodes or even networks before they arrive at the
target node. The abstraction captures this and since it makes no assumptions
on delay it is applicable to a wide range of practical implementation and network
topologies.

Distributed systems are defined by the presence of partial failures where
some of the nodes may fail, while the rest of the nodes continue to execute. To
ensure that the system remains as fault tolerant as possible it is desirable that
the remaining nodes in the system is able to correctly execute the distributed
algorithm even if some nodes fails. Furthermore, a node may fail in different
ways, each of them them having a different impact on the execution of the al-
gorithm. For example if a node crashes and therefore stops processing messages
it will have a different impact than if a network error occurs that temporarily
disconnects a node from the rest of the nodes. Different abstractions are there-
fore used to capture the properties of different types of failures. The failure
abstractions makes it easier to reason about different types of failures and en-
capsulates the properties that must be considered when designing an algorithm
for the abstraction. Three important failure abstractions are introduced below.

The first abstraction is the crash-stop fault, where a node executes the al-
gorithm as specified until a set point where it crashes and stops performing any
action. The node is said to be faulty if it crashes at some point during the
execution, and correct if it never crashes [5, 25].

The second important failure abstraction is the crash-recovery fault. In the
crash-recovery abstraction a correct node might crash if at some point later it
recovers again and continue to execute the algorithm. A correct node can crash
and recover multiple times, as long as it only crashes a finite number of times.
An incorrect node is a node that either crashes and never recovers, or crashes
and recovers infinitely often. When a node recovers it may have lost all state
stored in memory and some kind of stable storage will then be required to ensure
that the node can continue correctly [5, 4].

The final failure abstraction is the Byzantine, or Arbitrary, fault, where

7

faulty nodes may deviate from the specified algorithm and can take any arbitrary
action. This can happen for several reasons for example if a malicious party
manages to get control of one of the machines running the node or by some bug
that causes the node to behave in some way that deviates from the algorithm.
Under a byzantine fault arbitrary messages can be read, edited and inserted
into any communication link [17].

A final important abstraction is the timing assumptions. The timing as-
sumptions encapsulate information about time bounds on communication and
processing delay. We presents three common timing assumptions: Synchronous,
asynchronous, and partially synchronous systems.

Synchronous systems represents systems where there are a known upper
bound to the communication and processing delay. In synchronous systems it
is possible to design algorithms that synchronizes clocks and accurately detects
failures. The major limitation of the synchronous systems is that they are only
applicable to a limited amount of real world systems.

Many distributed systems runs over complex networks where it is hard to
establish a upper limit to communication delay, which means that the syn-
chronous model can not be used. The asynchronous systems model represent
systems where no timing assumptions are made. The model can be applied
to all scenarios, but imposes limitations on the kind of algorithms that can be
implemented. It is, for example, impossible to detect crashes by using timing
mechanisms.

The partially synchronous system model represent a combination of the asyn-
chronous and synchronous systems: there exists an upper bound to the commu-
nication and processing delay, but it is unknown or it only holds eventually [7].
This system model is particularly useful, because it is can be applied to a large
range of real world systems while also making it possible to implement certain
algorithms that can not be implemented in the asynchronous system model, for
example fault-tolerant consensus algorithms[6].

An important class of algorithms that can be used to encapsulate timing
assumptions are failure detectors. Failure detectors are used to detect failures
in distributed systems. The strongest failure detector abstraction is the Perfect
Failure Detector. A Perfect Failure Detector will eventually detect a crashed
node and will never be wrong when it does. The Perfect failure Detectors
relies on the synchronous timing assumption. A weaker failure detector is the
Eventually Perfect Failure Detector. It will eventually detect a crashed node,
but it is not necessarily correct. However, after some unknown time crashes are
detected correctly, but before this time detection of node crashes does not have
to be accurate. We say that it is eventually correct [5]. Other groups of failure
detectors that rely on other assumption also also exists [6], some of which does
not rely on timing assumptions at all [21].

Failure detectors can be used to implement leader electors, which are algo-
rithms that are used to elect some node which will control the algorithm. This
is especially useful in consensus algorithms where all nodes have to agree on a
common value. Both a perfect leader elector and an eventual leader elector can
be implemented by using the respective failure detectors. In addition a byzan-

8

tine leader elector, which can elect a leader in the presence of byzantine nodes,
can be implemented.

2.2 Randomness in Distributed Systems

We have made several assumptions in the model we have presented for dis-
tributed systems: the nodes can execute events at different speeds and the speed
can vary over time, messages can be delayed or dropped, and nodes can crash
during the execution of events. These assumptions ensure that the model we use
can be applied to many types of systems, with little regard for what hardware is
used or the network topology. They also represent sources of randomness: the
factors are out of control of the algorithm and we can not rely on any specific
behaviour from them. We could – of course – make stronger assumptions that
reduces the randomness, but then we would have to ensure that the real world
system that the distributed system is deployed in is accurately described by the
model we use, which would make it harder to deploy. Furthermore, the different
abstractions we have presented does this, but even when we use the stronger
abstractions we can not remove all randomness.

This inherent randomness is one reason that it is hard to implement and
verify distributed systems. Because of the randomness there are rarely a single
run that can represent the execution of the algorithm. Instead, there are many
runs, each representing a scenario where two messages arrives in a different
order, a node slows down or crashes, or a message is dropped by the network.
The number of runs quickly grows, even for relatively simple algorithms, and
reasoning about all possible runs that can occur is challenging: Runs that appear
similar can have subtle differences that must be considered.

The randomness also makes testing of implementations using traditional
methods difficult. Simply running through the algorithm is not an effective
way of identifying bugs, since there is no guarantee that this execution would
result in a run where the bug occur. Even if the bug occur in one execution
there are no guarantee that the bug can be reproduced at a later execution,
making it hard to troubleshoot and verify that the bug has actually been fixed.
Comprehensive unit testing would have to predict all possible states that can
occur during the execution and then execute all possible events on those nodes.
This is equally hard as predicting all runs that can occur, and defining the tests
would be time consuming.

Implementation level model checkers solves these problems by performing
a linearization of the concurrent execution of the algorithm. That is, instead
of executing multiple events on different nodes simultaneously, model checkers
executes all events sequentially, even if the events are executed on different
nodes. By linearizing the execution of the events we reduce the randomness in
the execution: it no longer matter how long it takes to execute an event, because
no other event will be executed at the same time, nor how long a message is
delayed, because no other event will be executed before the message has arrived.
The model checker will still have to resolve other sources of randomness, such
as node crashes or the network dropping messages, but these sources can be

9

modelled as events that are added to the linearization. Thus, they no longer
occur at random times, but rather at pre-planned and deterministic times. The
linearization of the algorithm is therefore deterministic in the sense that each
time a given linearization is run it will always produce the same sequence of
states. Each run corresponds to a different linearization of the algorithm and
the model checkers can create all possible runs of the algorithm by performing
all possible linearizations. The runs can then be checked to ensure that the
properties of the algorithm holds for all discovered states. Any bugs that are
found can be reproduced, ensuring that it is easy to troubleshoot.

Implementation level model checkers can be divided into two components:
the controller and the hooks. The controller is a central unit that manages the
overall execution of the simulation. It controls the hooks, informing them when
to execute events. The controller can be divided into smaller modules, such as
a scheduler and a property checker. The hooks connect to a node. They control
and report actions that the nodes perform back to the controller. They are
the interface between the node and the simulation and are used to collect state
and control the execution of the algorithm. To make it easy to move between
testing and production it should be easy to insert and remove the hooks from
an algorithm.

10

3 Related Works

In recent years several implementation level model checkers for different pro-
gramming languages have been developed.

DSLab is an implementation level model checker implemented in Java and
designed for use while teaching distributed systems. It assumes an asynchronous
network model where nodes are represented as a single-threaded event loop and
can crash, but not recover. The distributed algorithm is defined as a set of
message and timer handlers, called event handlers, that are run upon receiving
a message or a timer firing. Each event handler should be deterministic, in the
sense that the output state should only depend on the input state and the event.
Limited randomness is however supported trough random timer duration which
is controlled by DSLab. It combines two techniques to search the state space:
search for progress and guided search. In search for progress the model checker
will search for states in which progress has been made before searching for invari-
ant violating states. In guided search the user provides information that guides
the model checker towards areas of the state space that are likely to contains
errors, for example when a node has crashed. Finally, DSLab also provides a
graphical interactive debugger that can be used to assist troubleshooting bugs.
It allows for manually controlling the order of events.[20]. Go-MC takes a sim-
ilar approach as DSLab and models nodes as a single-threaded event loop with
each event being deterministic. Go-MC also provides support for the guided
search approach used by DSLap through one of the implemented schedulers.

MODIST is a model checker that assumes an asynchronous and unreliable
network, and will simulate faults by reordering and dropping messages. Nodes
are modelled as processes running multiple threads and communicating with
each other by sending messages over socket connections. MODIST consists
of a frontend that is used to control event execution and a backend that is
responsible for scheduling decisions. The frontend is interposed between the
application and the operating system and intercepts system calls performed by
the application. The process is then paused and the system calls reported to
the backend. The frontend waits until it receives a command from the backend
before returning the system call. Errors can also be introduced by forcing the
system call to return errors. This allows the backend to control the execution of
the distributed algorithm. System calls are discovered by intercepting calls to
the WinAPI. The frontend of MODIST is therefore Windows specific, although
the authors claims that it would be easy to port MODIST to other operating
systems[28].

MaceMC is a model checker that focuses on identifying liveness violations.
It tests programs implemented in Mace, a C++ language extension designed
to simplify the task of implementing distributed algorithms. In Mace a user
defines event handlers which specify how the system should react to events,
such as incoming messages. MaceMC controls message ordering by controlling
the order in which the event handlers are executed. Event handlers should be
deterministic to allow MaceMC to search the state space. MaceMC ensures this
by modifying the Mace random number generator to return deterministic values

11

during simulation[12, 11].
Morpheus is a model checker for testing algorithms implemented in Erlang.

Erlang is a programming language designed for use in distributed systems. Pro-
grams in Erlang is run in Erlang virtual machines that communicates by ex-
changing messages. Morpheus controls the ordering of events by intercepting
the communication primitives and replacing them with specific implementations
that report the call and wait for instructions before resuming. Morpheus simu-
lates clocks by maintaining a queue of timeouts for each node, according to the
order of the deadlines. When all pending messages have been delivered the next
timer is fired. Morpheus focuses on concurrency testing and does not inject
failures, such as dropping messages. Morpheus utilizes an randomized algo-
rithm called Partial Order Sampling to provide strong probabilistic guarantees
of sampling any partial order of a program. Partial Order Sampling assigns in-
dependently random priorities to operations and schedule operations according
to their priority [30].

Demeter is an implementation level model checker that uses an approach
called dynamic interface reduction. The approach divides the system into a set
of components with well defined interfaces. The interface of the components
are discovered dynamically when messages are exchanged by the components.
Dynamic interface reduction uses the discovered interface behaviour to run state
exploration of the individual components separately. This allows it to explore
local decisions, such as thread scheduling, individually instead of performing
global scheduling of all possible interleavings of all nodes [10]. Go-MC expects
events to be deterministic and does not consider local thread scheduling when
exploring the state space. It also mainly considers events that represents com-
munication between nodes.

Dara is an implementation level model checkers for distributed systems im-
plemented in Go. It uses a modified version of the Go runtime, called dgo, to
control several types of nondeterminism, including thread interleaving, network
randomness, the time library and the random library. Dara uses static analysis
of the code to report the coverage of the simulation to a the model checker which
makes scheduling decisions aiming to increase the coverage. State variables are
reported to Dara using two API calls provided by the custom runtime. These
must be called manually by the user in the implementation of the algorithm [2].
Compared with Go-MC, Dara takes a lower level approach where it controls
more detailed events, such as thread scheduling.

SAMC is a implementation level model checker that uses a white box ap-
proach to increase the effectiveness of the scheduling. In the approach the user
provides semantic information to the algorithm by defining policies. The policies
are then used to reduce the reordering of messages, crashes and recoveries [18].
Another implementation level model checker that uses a white box approach
is FlyMC. FlyMC uses symmetry inherent in the algorithm, such as message
symmetry, to reduce the number of messages that are reordered. It also reorders
multiple independent message-pairs at a time by performing parallel flips. This
allows it to quickly explore deep runs [19]. The scheduling module of Go-MC
is designed to make it possible to use white box approaches when designing

12

schedulers.

13

4 Go-MC

This section will provide an overview of Go-MC1. It provide a conceptual model
of the system that can be used to understand how Go-MC works and how
to use it. It presents the model in a top down approach, building the various
components that are used. Section 5 provide a technical overview of the system,
detailing the implementation and the design of the modules.

Go-MC uses a modular design that consists of 4 modules (Figure 3). Each
of the modules is responsible for a separate task and Go-MC can be configured
to use implementations of the modules to represent different abstractions or to
use different techniques. This makes it easy to design modules that represent
different abstractions and to insert own implementation of modules into the
simulation. We will introduce each module and the problems they solve in the
following sections.

Figure 3: System Architecture of the simulator of Go-MC. The simulator con-
sists of four modules and the main loop. The arrows show how the modules
communicate with each other. The simulator uses Event Managers to interface
with the distributed system under testing.

Throughout this section we will use the Hierarchical Consensus algorithms
as an example. We have used Go-MC to test our implementation of hierarchical
consensus (Appendix A.1). The specifications of the algorithm is presented
by Cachin, Guerraoui, and Rodrigues [5](Algorithm 5.2). It is a consensus
algorithm where the correct node with the lowest id is the leader. The leader
imposes its value on all other nodes in the system. The algorithm consist of one
round for each node. A node waits until its round before deciding on the value
received by the leader. The algorithm proceeds to the next round when the node

1The source code of Go-MC can be found at the github repository, https://github.com
/erthbison/GoMC, or as an to this document.

14

GoMC-master/.gitignore

*.out
*.test
*.txt

out/

.vscode/

**/proto/*.pb.go

GoMC-master/checking/checker.go

package checking

import (
	"gomc/event"
	"gomc/state"
)

// The Checker verifies that properties hold for the state space.
type Checker[S any] interface {
	// Verify that the configured properties hold for the provided state space
	Check(root state.StateSpace[S]) CheckerResponse
}

// CheckerResponse is a response returned by a Checker
//
// Contains the result of checking the system.
type CheckerResponse interface {
	// Create a response.
	//
	// Returns a boolean that is true if all properties hold, false otherwise.
	// Returns a string describing the response.
	// This should include a detailed description of which property is violated and the run which caused it to be violated.
	Response() (bool, string)

	// Export the run which caused a property to be violated
	//
	// If a property was violated it will return a slice containing the sequence of EventIds of the events in the run.
	// Otherwise it will return an empty slice.
	Export() []event.EventId
}

GoMC-master/checking/predicate.go

package checking

// Check that the predicate happens eventually.
//
// Return a predicate that run the provided predicate on terminal states.
// Returns the value of the original predicate if the state is terminal.
// Otherwise, it always returns true.
func Eventually[S any](pred Predicate[S]) Predicate[S] {
	return func(s State[S]) bool {
		if !s.IsTerminal {
			return true
		}
		return pred(s)
	}
}

// Check that condition returns true for all processes in the provided global state
//
// Returns false if cond returns false for some node.
// Returns true otherwise.
// If checkCorrect is true, only correct processes will be checked, otherwise faulty processes will also be checked.
func ForAllNodes[S any](cond func(S) bool, s State[S], checkCorrect bool) bool {
	for id, state := range s.LocalStates {
		if checkCorrect && !s.Correct[id] {
			continue
		}
		if !cond(state) {
			return false
		}
	}
	return true
}

GoMC-master/checking/predicateChecker.go

package checking

import (
	"bytes"
	"fmt"
	"gomc/event"
	"gomc/state"
	"text/tabwriter"
)

// Response generated by the PredicateChecker
type predicateCheckerResponse[S any] struct {
	// True if all tests holds. False otherwise
	Result bool
	// A sequence of states leading to the false test. nil if Result is true
	Sequence []state.GlobalState[S]
	// The index of the failing test. -1 if Result is true
	Test int
}

// Generate a response.
//
// Returns two variables, result, and description.
// Result is true if all predicates hold, false otherwise.
// Description is a formatted string providing a detailed description of the result.
// If result is false the description contain a representation of the sequence of states that lead to the failing state
func (pcr predicateCheckerResponse[S]) Response() (bool, string) {
	if pcr.Result {
		return pcr.Result, "All predicates holds"
	}
	var buffer bytes.Buffer
	wrt := tabwriter.NewWriter(&buffer, 4, 4, 0, ' ', 0)
	out := fmt.Sprintf("Predicate broken. Predicate: %v. Sequence: \n", pcr.Test)
	for _, element := range pcr.Sequence {
		fmt.Fprintf(wrt, "-> %v \n", element)
	}
	wrt.Flush()
	out += buffer.String()
	return pcr.Result, out
}

// Export the failing event sequence to a slice of EventIds
func (pcr predicateCheckerResponse[S]) Export() []event.EventId {
	evtSequence := []event.EventId{}
	if pcr.Sequence == nil {
		return evtSequence
	}
	for _, state := range pcr.Sequence {
		if state.Evt.Id == "" {
			continue
		}
		evtSequence = append(evtSequence, state.Evt.Id)
	}
	return evtSequence
}

// A function defining a property to be verified.
//
// Takes a checking.State as input.
// Returns true if the property holds for the state and false otherwise.
type Predicate[S any] func(s State[S]) bool

// A Checker that defines properties using Predicates
type PredicateChecker[S any] struct {
	// A slice of predicates that define the properties
	predicates []Predicate[S]
}

// Create a PredicateChecker
//
// predicates is a variadic parameter of predicates that define the properties that should be checked
func NewPredicateChecker[S any](predicates ...Predicate[S]) *PredicateChecker[S] {
	return &PredicateChecker[S]{
		predicates: predicates,
	}
}

// Checks that all predicates holds for all states in the state space.
//
// States are searched depth first and the search is interrupted if some state that breaks the predicates are provided
// Returns a CheckerResponse containing the result of the checking
func (pc *PredicateChecker[S]) Check(root state.StateSpace[S]) CheckerResponse {
	if resp := pc.checkNode(root, []state.GlobalState[S]{}); resp != nil {
		return resp
	}
	return &predicateCheckerResponse[S]{
		Result: true,
		Sequence: nil,
		Test: -1,
	}
}

// Use a depth first search to search trough all nodes and check with predicates
//
// Checks the state of the current node.
// Immediately stops when finding a state that violates the predicates.
// If the states does not violate the predicates, the method is recursively called on the children of the node.
func (pc *PredicateChecker[S]) checkNode(node state.StateSpace[S], sequence []state.GlobalState[S]) *predicateCheckerResponse[S] {
	sequence = append(sequence, node.Payload())
	if ok, index := pc.checkState(node.Payload(), node.IsTerminal(), sequence); !ok {
		return &predicateCheckerResponse[S]{
			Result: false,
			Sequence: sequence,
			Test: index,
		}
	}

	for _, child := range node.Children() {
		if resp := pc.checkNode(child, sequence); resp != nil {
			return resp
		}
	}
	return nil
}

// Check the state of a node on all predicates.
//
// state is the GlobalState that is stored in the node.
// terminalState is true if this is the last state in the run, false otherwise.
// sequence is the previous states in the run.
//
// returns true and -1 if all properties hold.
// Otherwise, returns false and the index of the predicate that was violated.
func (pc *PredicateChecker[S]) checkState(state state.GlobalState[S], terminalState bool, sequence []state.GlobalState[S]) (bool, int) {
	for index, pred := range pc.predicates {
		if !pred(State[S]{
			LocalStates: state.LocalStates,
			Correct: state.Correct,
			IsTerminal: terminalState,
			Sequence: sequence,
		}) {
			return false, index
		}
	}
	return true, -1
}

GoMC-master/checking/predicate_test.go

package checking

import (
	"gomc/state"
	"testing"
)

var emptySeq = make([]state.GlobalState[bool], 0)

func TestEventually(t *testing.T) {

	eventuallyPred := func(s State[bool]) bool {
		for _, n := range s.LocalStates {
			if !n {
				return false
			}
		}
		return true
	}
	for i, test := range eventuallyTest {
		pred := Eventually(eventuallyPred)
		s := State[bool]{
			LocalStates: test.gs.LocalStates,
			Correct: test.gs.Correct,
			IsTerminal: test.terminal,
			Sequence: emptySeq,
		}
		out := pred(s)
		if out != test.expected {
			t.Errorf("Received unexpected bool from predicate on test %v. Got %v", i, out)
		}
	}
}

func TestForAllNodes(t *testing.T) {
	cond := func(s bool) bool {
		return s
	}
	for i, test := range forAllNodesTest {
		s := State[bool]{
			LocalStates: test.gs.LocalStates,
			Correct: test.gs.Correct,
			IsTerminal: false,
			Sequence: emptySeq,
		}
		out := ForAllNodes(cond, s, test.checkCorrect)
		if out != test.expected {
			t.Errorf("Received unexpected bool from predicate on test %v. Got %v", i, out)
		}
	}

}

var eventuallyTest = []struct {
	terminal bool
	gs state.GlobalState[bool]
	expected bool
}{
	{
		false,
		state.GlobalState[bool]{},
		true,
	},
	{
		true,
		state.GlobalState[bool]{LocalStates: map[int]bool{0: true, 1: true}},
		true,
	},
	{
		true,
		state.GlobalState[bool]{LocalStates: map[int]bool{0: true, 1: false}},
		false,
	},
	{
		false,
		state.GlobalState[bool]{LocalStates: map[int]bool{0: true, 1: false}},
		true,
	},
}

var forAllNodesTest = []struct {
	gs state.GlobalState[bool]
	checkCorrect bool
	expected bool
}{
	{
		gs: state.GlobalState[bool]{
			LocalStates: map[int]bool{0: true, 1: true, 2: true},
			Correct: map[int]bool{0: true, 1: true, 2: true},
		},
		checkCorrect: true,
		expected: true,
	},
	{
		gs: state.GlobalState[bool]{
			LocalStates: map[int]bool{0: false, 1: true, 2: true},
			Correct: map[int]bool{0: true, 1: true, 2: true},
		},
		checkCorrect: false,
		expected: false,
	},
	{
		gs: state.GlobalState[bool]{
			LocalStates: map[int]bool{0: false, 1: true, 2: true},
			Correct: map[int]bool{0: false, 1: true, 2: true},
		},
		checkCorrect: false,
		expected: false,
	},
	{
		gs: state.GlobalState[bool]{
			LocalStates: map[int]bool{0: false, 1: true, 2: true},
			Correct: map[int]bool{0: false, 1: true, 2: true},
		},
		checkCorrect: true,
		expected: true,
	},
}

GoMC-master/checking/state.go

package checking

import "gomc/state"

// The state of the system at the current point of execution
type State[S any] struct {
	// The local states of the nodes.
	LocalStates map[int]S
	// The status of the nodes. True means that the node is correct, false that it has crashed.
	Correct map[int]bool
	// True if this is the last recorded state in a run. False otherwise.
	IsTerminal bool
	// The sequence of GlobalStates that lead to this State.
	Sequence []state.GlobalState[S]
}

GoMC-master/config/runnerOptions.go

package config

// Configures how many records can be buffered

// Default value is 100
type RecordChanBufferOption struct {
	Size int
}

func (opt RecordChanBufferOption) RunnerOpt() {}

// Configures how many pending event can be buffered by each node

// Default value is 100
type EventChanBufferOption struct {
	Size int
}

func (opt EventChanBufferOption) RunnerOpt() {}

GoMC-master/config/runOptions.go

package config

import (
	"gomc/failureManager"
	"io"
)

// Configures the Failure Manager that will be used during the simulation

// The Failure Manager controls what crash abstractions will be represented by the simulation
// and which nodes will crash at some point during the simulation.
// The Failure Manager also works as a Failure Detector that informs nodes about status changes.
// Different Failure Managers can represent different types of Failure Detectors.
// Default value is no node crashes.
type FailureManagerOption[T any] struct {
	Fm failureManager.FailureManger[T]
}

func (fmo FailureManagerOption[T]) RunOpt() {}

// Configures io.writers that the discovered state will be exported to

// Can be applied multiple times to add multiple io.writers.
// Default value is no writers.
type ExportOption struct {
	W io.Writer
}

func (eo ExportOption) RunOpt() {}

// Configures a function to shut down a node after the execution of a run.

// The function should clean up any operations to avoid memory leaks across runs.
// Default value is an empty function.
type StopOption[T any] struct {
	Stop func(*T)
}

func (so StopOption[T]) RunOpt() {}

func (so StopOption[T]) RunnerOpt() {}

GoMC-master/config/simulatorOption.go

package config

import "gomc/scheduler"

// Configures the scheduler used by the simulation.
//
// The scheduler determines the method which will be used to explore the state space.
// It determines the order that events will be executed in.
// Default value is a Prefix Scheduler
type SchedulerOption struct {
	Sch scheduler.GlobalScheduler
}

func (so SchedulerOption) SimOpt() {}

// Configures the max depth of a run

// The depth of a run is the number of events that are executed in a run.
// If a simulation reaches the maxDepth it will stop.
// If a simulation is stopped early, we can not determine whether the algorithm is correct or not,
// we can only determine whether we found some violations in the recorded states.
// Decreasing the max depth will reduce the size of the state space.
// This will reduce memory and computation time requirements.
// Default value is 100
type MaxDepthOption struct{ MaxDepth int }

func (mdo MaxDepthOption) SimOpt() {}

// Configures the maximum number of runs that will be simulated.

// If the number of simulated runs reaches the maximum number of runs the simulation will stop.
// If a simulation is stopped early, we can not determine whether the algorithm is correct or not,
// we can only determine whether we found some violations in the recorded runs.
// Decreasing the maximum number of runs will reduce the size of the discovered state space.
// This will reduce memory and computation time requirements.
// Default value is 1000
type MaxRunsOption struct{ MaxRuns int }

func (mro MaxRunsOption) SimOpt() {}

// Configures the number of runs that are simulated concurrently.
//
// Higher values will reduce simulation time, but require more memory.
// Default value is GOMAXPROCS
type NumConcurrentOption struct{ N int }

func (nco NumConcurrentOption) SimOpt() {}

// Configures the simulation to ignore panics that occur during the execution of events.

// The simulation will not recover from panics that occur during the execution of events.
// This can be useful when debugging sections of the algorithm that panics.
// Default value is false
type IgnorePanicOption struct{}

func (ipo IgnorePanicOption) SimOpt() {}

// Configures the simulation to ignore errors that occur during the simulation of a run.

// Errors that occur during the simulation of a run will be ignored and the simulation of more runs will be continued.
// A summary of all the errors that occurred will be provided at the end.
// Useful to enure that the simulation continues even if some errors are found, allowing checking of the successful runs afterwards.
// Default value is false
type IgnoreErrorOption struct{}

func (ieo IgnoreErrorOption) SimOpt() {}

GoMC-master/configRunner.go

package gomc

import (
	"gomc/config"
	"gomc/runner"
)

// Configure and start a Runner
//
// The runner is started and then returned.
// Commands can be given to the nodes through the runner.
// See Runner for an overview of the available commands.
//
// Initializes the Runner with the necessary parameters.
// See the RunnerOption for a full overview of possible options.
// Default values will be used if no value is provided.
func PrepareRunner[T, S any](initNodes InitNodeOption[T], getState GetStateOption[T, S], opts ...RunnerOption) *runner.Runner[T, S] {
	var (
		// Method that will be used to
		stop = func(*T) {}

		eventChanBuffer = 100
		recordChanBuffer = 100
)

	for _, opt := range opts {
		switch t := opt.(type) {
		case config.StopOption[T]:
			stop = t.Stop
		case config.EventChanBufferOption:
			eventChanBuffer = t.Size
		case config.RecordChanBufferOption:
			recordChanBuffer = t.Size
		}
	}

	r := runner.NewRunner[T, S](
		recordChanBuffer,
)

	r.Start(
		initNodes.f,
		getState.getState,
		stop,
		eventChanBuffer,
)
	return r
}

// Configure how to collect the local state from a node
type GetStateOption[T, S any] struct {
	getState func(*T) S
}

// Configure how to collect the local state from a node
func WithStateFunction[T, S any](f func(*T) S) GetStateOption[T, S] {
	return GetStateOption[T, S]{getState: f}
}

// Optional parameters to configure the runner
type RunnerOption interface {
	RunnerOpt()
}

// Configure the buffer size of the records channel
//
// Default value is 100
func RecordChanSize(size int) RunnerOption {
	return config.RecordChanBufferOption{Size: size}
}

// Configure the buffer size of the event channel used to store pending events
//
// Default value is 100
func EventChanBufferSize(size int) RunnerOption {
	return config.EventChanBufferOption{Size: size}
}

// Configures a function used to stop the nodes after a run.
//
// The function should clean up all operations of the nodes to avoid memory leaks across runs.
//
// Default value is empty function.
func WithStopFunctionRunner[T any](stop func(*T)) RunnerOption {
	return config.StopOption[T]{Stop: stop}
}

GoMC-master/configSimulator.go

package gomc

import (
	"io"
	"log"
	"runtime"

	"gomc/checking"
	"gomc/config"
	"gomc/event"
	"gomc/eventManager"
	"gomc/failureManager"
	"gomc/request"
	"gomc/scheduler"
	"gomc/simulator"
	"gomc/stateManager"
)

// Prepare simulation with initial configuration.
//
// Initializes the simulator with the necessary parameters.
// See the SimulatorOptions for a full overview of possible options.
// Default values will be used if no value is provided.
// Default scheduler is PrefixScheduler.
func PrepareSimulation[T, S any](smOpts StateManagerOption[T, S], opts ...SimulatorOption) Simulation[T, S] {
	var (
		// Maximum number of runs simulated
		maxRuns = 10000

		// Maximum number of events in a run
		maxDepth = 100

		// number of runs that is simulated at the same time
		numConcurrent = runtime.GOMAXPROCS(0) // Will not change GOMAXPROCS but only return the current value

		// If true will ignore all errors while simulating runs. Will return aggregate of errors at the end. If false will interrupt simulation if an error occur
		ignoreErrors = false

		// If true will ignore panics that occur during the simulation and let them execute as normal, stopping the simulation. If false will catch the panic and return it as an error.
		// ignoring the panic will make it easier to troubleshoot the error since you can use the debugger to inspect the state when it panics. It will also make the simulation stop.
		ignorePanics = false

		sch scheduler.GlobalScheduler
)

	// Use the simulator options to configure
	for _, opt := range opts {
		switch t := opt.(type) {
		case config.SchedulerOption:
			sch = t.Sch
		case config.MaxRunsOption:
			maxRuns = t.MaxRuns
		case config.MaxDepthOption:
			maxDepth = t.MaxDepth
		case config.NumConcurrentOption:
			numConcurrent = t.N
		case config.IgnoreErrorOption:
			ignoreErrors = true
		case config.IgnorePanicOption:
			ignorePanics = true
		}
	}
	if sch == nil {
		sch = scheduler.NewPrefix()
	}

	sm := smOpts.sm

	sim := simulator.NewSimulator(sch, sm, ignoreErrors, ignorePanics, maxRuns, maxDepth, numConcurrent)
	return Simulation[T, S]{
		sim: sim,
		sm: sm,
	}
}

// Stores the configured Simulator.
//
// Can be used to run multiple simulations.
// A simulation is started by calling the Run method.
// Only one simulation can be run at a time.
type Simulation[T, S any] struct {
	sim *simulator.Simulator[T, S]
	sm stateManager.StateManager[T, S]
}

// Run the simulation of the algorithm.
//
// The InitNodeOption, requestOption and CheckerOptions are mandatory.
// All RunOptions are optional. Default values will be used if no values are provided.
//
// Returns a checking.CheckerResponse type containing the results of the simulation
func (sr Simulation[T, S]) Run(InitNodes InitNodeOption[T], requestOpts RequestOption, checker CheckerOption[S], opts ...RunOptions) checking.CheckerResponse {
	// If incorrectNodes is not provided use an empty slice
	var (
		requests = []request.Request{}

		export []io.Writer

		stopFunc = func(*T) {}

		fm failureManager.FailureManger[T]
)

	for _, opt := range opts {
		switch t := opt.(type) {
		case config.StopOption[T]:
			stopFunc = t.Stop
		case config.ExportOption:
			export = append(export, t.W)
		case config.FailureManagerOption[T]:
			fm = t.Fm
		}
	}

	if fm == nil {
		fm = failureManager.NewPerfectFailureManager(func(t *T) {}, []int{})
	}

	requests = append(requests, requestOpts.request...)
	if len(requests) == 0 {
		log.Panicf("At least one request must be provided to start the simulation")
	}

	err := sr.sim.Simulate(fm, InitNodes.f, stopFunc, requests...)
	if err != nil {
		log.Panicf("Received an error while running simulation: %v", err)
	}

	state := sr.sm.State()
	for _, w := range export {
		state.Export(w)
	}

	return checker.checker.Check(state)
}

// A option used to configure the Simulator
type SimulatorOption interface {
	// noop method
	SimOpt()
}

// Use a random walk scheduler for the simulation.
//
// The random walk scheduler is a randomized scheduler.
// It uniformly picks the next event to be scheduled from the currently enabled events.
// It does not have a designated stop point, and will continue to schedule events until maxRuns is reached.
// It does not guarantee that all runs have been tested, nor does it guarantee that the same run will not be simulated multiple times.
// Generally, it provides a more even/varied exploration of the state space than systematic exploration
func RandomWalkScheduler(seed int64) SimulatorOption {
	return config.SchedulerOption{Sch: scheduler.NewRandom(seed)}
}

// Use a prefix scheduler for the simulation.
//
// The prefix scheduler is a systematic tester, that performs a depth first search of the state space.
// It will stop when the entire state space is explored and will not schedule identical runs.
func PrefixScheduler() SimulatorOption {
	return config.SchedulerOption{Sch: scheduler.NewPrefix()}
}

// Use a replay scheduler for the simulation
//
// The replay scheduler replays the provided run, returning an error if it is unable to reproduce it
// The provided run is represented as a slice of event ids, and can be exported using the CheckerResponse.Export()
func ReplayScheduler(run []event.EventId) SimulatorOption {
	return config.SchedulerOption{Sch: scheduler.NewReplay(run)}
}

// Use the provided scheduler for the simulation
//
// Used to configure the simulation to use a different implementation of scheduler than is commonly provided
func WithScheduler(sch scheduler.GlobalScheduler) SimulatorOption {
	return config.SchedulerOption{Sch: sch}
}

// Configure the maximum number of runs simulated
//
// Default value is 10000
func MaxRuns(maxRuns int) SimulatorOption {
	return config.MaxRunsOption{MaxRuns: maxRuns}
}

// Configure the maximum depth explored.
//
// Default value is 100.
//
// Note that liveness properties can not be verified if a run is not fully explored to its end.
func MaxDepth(maxDepth int) SimulatorOption {
	return config.MaxDepthOption{MaxDepth: maxDepth}
}

// Configure the number of runs that will be executed concurrently.
//
// Default value is GOMAXPROCS
func NumConcurrent(n int) SimulatorOption {
	return config.NumConcurrentOption{N: n}
}

// Set the ignorePanic flag to true.
//
// If true will ignore panics that occur during the simulation and let them execute as normal, stopping the simulation.
// If false will catch the panic and return it as an error.
// Ignoring the panic will make it easier to troubleshoot the error since you can use the debugger to inspect the state when it panics. It will also make the simulation stop.
func IgnorePanic() SimulatorOption {
	return config.IgnorePanicOption{}
}

// Set the ignoreError flag to true.
//
// If true will ignore all errors while simulating runs. Will return aggregate of errors at the end.
// If false will interrupt simulation if an error occur.
func IgnoreError() SimulatorOption {
	return config.IgnoreErrorOption{}
}

// Optional parameters used to configure a simulation
type RunOptions interface {
	RunOpt()
}

// Specify the failure manager used for the Simulation
//
// Default value is a PerfectFailureManager with no node crashes.
func WithFailureManager[T any](fm failureManager.FailureManger[T]) RunOptions {
	return config.FailureManagerOption[T]{Fm: fm}
}

// Configure the simulation to use a PerfectFailureManager.
//
// The PerfectFailureManager implements the crash-stop failures in a synchronous system.
// It imitates the behavior of the Perfect Failure Detector.
//
// Default value is a PerfectFailureManager with no node crashes.
func WithPerfectFailureManager[T any](crashFunc func(*T), failingNodes ...int) RunOptions {
	fm := failureManager.NewPerfectFailureManager(
		crashFunc,
		failingNodes,
)
	return config.FailureManagerOption[T]{Fm: fm}
}

// Configure the StateManager used to manage the state of the distributed system.
//
// The State Manager collects and manages the state of the system under testing.
type StateManagerOption[T, S any] struct {
	sm stateManager.StateManager[T, S]
}

// Use the provided state manger in the simulation.
func WithStateManager[T, S any](sm stateManager.StateManager[T, S]) StateManagerOption[T, S] {
	return StateManagerOption[T, S]{sm: sm}
}

// Use a TreeStateManager in the simulation.
//
// The TreeStateManager organizes the state in a tree structure, which is stored in memory.
// The TreeStateManager is configured with a function collecting the local state from a node and a function checking the equality of two local states.
func WithTreeStateManager[T, S any](getLocalState func(*T) S, statesEqual func(S, S) bool) StateManagerOption[T, S] {
	sm := stateManager.NewTreeStateManager(getLocalState, statesEqual)
	return StateManagerOption[T, S]{sm: sm}
}

// Configures how the nodes are started.
//
// The function should create the nodes that will be used when running the simulation.
// It should also initialize the Event Manager that will be used.
// The provided SimulationParameters should be used to configure the Event Managers with run specific data.
type InitNodeOption[T any] struct {
	f func(eventManager.SimulationParameters) map[int]*T
}

// Uses the provided function f to generate a map of the nodes.
func InitNodeFunc[T any](f func(sp eventManager.SimulationParameters) map[int]*T) InitNodeOption[T] {
	return InitNodeOption[T]{f: f}
}

// Uses the provided function f to generate individual nodes with the provided id and add them to a map of the nodes.
func InitSingleNode[T any](nodeIds []int, f func(id int, sp eventManager.SimulationParameters) *T) InitNodeOption[T] {
	t := func(sp eventManager.SimulationParameters) map[int]*T {
		nodes := map[int]*T{}
		for _, id := range nodeIds {
			nodes[id] = f(id, sp)
		}
		return nodes
	}
	return InitNodeOption[T]{f: t}
}

// Configures the Checker to be used when verifying the algorithm.
//
// The Checker verifies that the properties of the algorithm holds.
// It returns a CheckerResponse with the result of the simulation.
type CheckerOption[S any] struct {
	checker checking.Checker[S]
}

// Use a PredicateChecker to verify the algorithm.
//
// The predicate checker uses functions to define the properties of the algorithm.
// functions are provided as the checking.Predicate type.
func WithPredicateChecker[S any](predicates ...checking.Predicate[S]) CheckerOption[S] {
	return CheckerOption[S]{
		checker: checking.NewPredicateChecker(predicates...),
	}
}

// Specify the Checker used to verify the algorithm.
func WithChecker[S any](checker checking.Checker[S]) CheckerOption[S] {
	return CheckerOption[S]{checker: checker}
}

// Configures the requests to the distributed system.
//
// The request are used to start the simulation and define the scenario of the simulation.
type RequestOption struct {
	request []request.Request
}

// Configures the requests to the distributed system.
//
// The request are used to start the simulation and define the scenario of the simulation.
func WithRequests(requests ...request.Request) RequestOption {
	return RequestOption{request: requests}
}

// Add a writer that the state will be exported to
//
// Can be called multiple times.
// Default value is no writers
func Export(w io.Writer) RunOptions {
	return config.ExportOption{W: w}
}

// Configures a function used to stop the nodes after a run.
//
// The function should clean up all operations of the nodes to avoid memory leaks across runs.
//
// Default value is empty function.
func WithStopFunctionSimulator[T any](stop func(*T)) RunOptions {
	return config.StopOption[T]{Stop: stop}
}

GoMC-master/Documentation/configuration-guide.md

Configuration Options

Contents:
- [Prepare Simulation Options](#prepare-simulation-options)
- [Run Options](#run-options)
- [Runner Options](#runner-options)

Prepare Simulation Options

StateManagerOption

Configure the StateManager used to manage the state of the distributed system.

The State Manager collects and manages the state of the system under testing.

`WithTreeStateManager[T, S any](getLocalState func(*T) S, statesEqual func(S, S) bool) StateManagerOption[T, S]`

Use a TreeStateManager in the simulation.

The TreeStateManager organizes the state in a tree structure, which is stored in memory. The TreeStateManager is configured with a function collecting the local state from a node and a function checking the equality of two local states.
` WithStateManager[T, S any](sm stateManager.StateManager[T, S]) StateManagerOption[T, S]`

Use the provided state manger in the simulation.

SchedulerOption
Configures the scheduler used by the simulation

The scheduler determines the method which will be used to explore the state space.
It determines the order that events will be executed in.
The default value is a `Prefix` Scheduler

`RandomWalkScheduler(seed int64) SimulatorOption`

Use a random walk scheduler for the simulation.

The random walk scheduler is a randomized scheduler.
It uniformly picks the next event to be scheduled from the currently enabled events.
It does not have a designated stop point, and will continue to schedule events until maxRuns is reached.
It does not guarantee that all runs have been tested, nor does it guarantee that the same run will not be simulated multiple times.
Generally, it provides a more even/varied exploration of the state space than systematic exploration

`PrefixScheduler() SimulatorOption`
Use a prefix scheduler for the simulation.

The prefix scheduler is a systematic tester, that performs a depth first search of the state space.
It will stop when the entire state space is explored and will not schedule identical runs.

`ReplayScheduler(run []event.EventId) SimulatorOption`

Use a replay scheduler for the simulation

The replay scheduler replays the provided run, returning an error if it is unable to reproduce it
The provided run is represented as a slice of event ids, and can be exported using the CheckerResponse.Export()

`WithScheduler(sch scheduler.GlobalScheduler) SimulatorOption`
Use the provided scheduler for the simulation

Used to configure the simulation to use a different implementation of scheduler than is commonly provided

MaxDepthOption
Configures the max depth of a run

The depth of a run is the number of events that are executed in a run.
If a simulation reaches the maxDepth it will stop.
If a simulation is stopped early, we can not determine whether the algorithm is correct or not,
we can only determine whether we found some violations in the recorded states.
Decreasing the max depth will reduce the size of the state space.
This will reduce memory and computation time requirements.
Default value is `100`

`MaxDepth(maxDepth int) SimulatorOption`

Configure the maximum depth explored.

Default value is 100.

Note that liveness properties can not be verified if a run is not fully explored to its end.

MaxRunsOption

Configures the maximum number of runs that will be simulated.

If the number of simulated runs reaches the maximum number of runs the simulation will stop.
If a simulation is stopped early, we can not determine whether the algorithm is correct or not,
we can only determine whether we found some violations in the recorded runs.
Decreasing the maximum number of runs will reduce the size of the discovered state space.
This will reduce memory and computation time requirements.
Default value is `10000`

`MaxRuns(maxRuns int) SimulatorOption`

Configure the maximum number of runs simulated

Default value is 10000

NumConcurrentOption

Configures the number of runs that are simulated concurrently.

Higher values will reduce simulation time, but require more memory.
Default value is `GOMAXPROCS`

`NumConcurrent(n int) SimulatorOption`

Configure the number of runs that will be executed concurrently.

Default value is GOMAXPROCS

IgnorePanicOption

Configures the simulation to ignore panics that occur during the execution of events.

The simulation will not recover from panics that occur during the execution of events.
This can be useful when debugging sections of the algorithm that panics.
Default value is `false`

`IgnorePanic() SimulatorOption`

Set the ignorePanic flag to true.

If true will ignore panics that occur during the simulation and let them execute as normal, stopping the simulation.
If false will catch the panic and return it as an error.
Ignoring the panic will make it easier to troubleshoot the error since you can use the debugger to inspect the state when it panics. It will also make the simulation stop.

IgnoreErrorOption

Configures the simulation to ignore errors that occur during the simulation of a run.

Errors that occur during the simulation of a run will be ignored and the simulation of more runs will be continued.
A summary of all the errors that occurred will be provided at the end.
Useful to enure that the simulation continues even if some errors are found, allowing checking of the successful runs afterwards.
Default value is `false`

`IgnoreError() SimulatorOption`

Set the ignoreError flag to true.

If true will ignore all errors while simulating runs. Will return aggregate of errors at the end.
If false will interrupt simulation if an error occur.

Run Options

InitNodeOption

Configures how the nodes are started.

The function should create the nodes that will be used when running the simulation.
It should also initialize the Event Manager that will be used.
The provided SimulationParameters should be used to configure the Event Managers with run specific data.

`InitNodeFunc[T any](f func(sp eventManager.SimulationParameters) map[int]*T) InitNodeOption[T]`

Uses the provided function f to generate a map of the nodes.

`InitSingleNode[T any](nodeIds []int, f func(id int, sp eventManager.SimulationParameters) *T) InitNodeOption[T]`

Uses the provided function f to generate individual nodes with the provided id and add them to a map of the nodes.

RequestOption

Configures the requests to the distributed system.

The request are used to start the simulation and define the scenario of the simulation.

`WithRequests(requests ...request.Request) RequestOption`

Configures the requests to the distributed system.

The request are used to start the simulation and define the scenario of the simulation.

CheckerOption

Configures the Checker to be used when verifying the algorithm.

The Checker verifies that the properties of the algorithm holds.
It returns a CheckerResponse with the result of the simulation.

`WithPredicateChecker[S any](predicates ...checking.Predicate[S]) CheckerOption[S]`

Use a PredicateChecker to verify the algorithm.

The predicate checker uses functions to define the properties of the algorithm.
The functions are provided as the checking.Predicate type.

`WithChecker[S any](checker checking.Checker[S]) CheckerOption[S]`

Specify the Checker used to verify the algorithm.

FailureManagerOption

Configures the Failure Manager that will be used during the simulation

The Failure Manager controls what crash abstractions will be represented by the simulation
and which nodes will crash at some point during the simulation.
The Failure Manager also works as a Failure Detector that informs nodes about status changes.
Different Failure Managers can represent different types of Failure Detectors.
Default value is no node crashes.

`WithFailureManager[T any](fm failureManager.FailureManger[T]) RunOptions`

Specify the failure manager used for the Simulation

Default value is a PerfectFailureManager with no node crashes.

`WithPerfectFailureManager[T any](crashFunc func(*T), failingNodes ...int) RunOptions`

Configure the simulation to use a PerfectFailureManager.

The PerfectFailureManager implements the crash-stop failures in a synchronous system.
It imitates the behavior of the Perfect Failure Detector.

Default value is a PerfectFailureManager with no node crashes.

ExportOption

Configures io.writers that the discovered state will be exported to

Can be applied multiple times to add multiple io.writers.
Default value is no writers.

`Export(w io.Writer) RunOptions`

Add a writer that the state will be exported to

Can be called multiple times.
Default value is no writers

StopOption

Configures a function to shut down a node after the execution of a run.

The function should clean up any operations to avoid memory leaks across runs.
Default value is an empty function.

`WithStopFunctionSimulator[T any](stop func(*T)) RunOptions`

Configures a function used to stop the nodes after a run.

The function should clean up all operations of the nodes to avoid memory leaks across runs.

Default value is empty function.

Runner Options

InitNodeOption

Configures how the nodes are started.

The function should create the nodes that will be used when running the simulation.
It should also initialize the Event Manager that will be used.
The provided SimulationParameters should be used to configure the Event Managers with run specific data.

`InitNodeFunc[T any](f func(sp eventManager.SimulationParameters) map[int]*T) InitNodeOption[T]`

Uses the provided function f to generate a map of the nodes.

`InitSingleNode[T any](nodeIds []int, f func(id int, sp eventManager.SimulationParameters) *T) InitNodeOption[T]`

Uses the provided function f to generate individual nodes with the provided id and add them to a map of the nodes.

GetStateOption

Configure how to collect the local state from a node

`WithStateFunction[T, S any](f func(*T) S) GetStateOption[T, S]`

Configure how to collect the local state from a node

`WithStopFunctionRunner[T any](stop func(*T)) RunnerOption`

Configures a function used to stop the nodes after a run.

The function should clean up all operations of the nodes to avoid memory leaks across runs.

Default value is empty function.

RecordChanBufferOption

Configures how many records can be buffered

Default value is `100`

`RecordChanSize(size int) RunnerOption`

Configure the buffer size of the records channel

Default value is 100

EventChanBufferOption

Configures how many pending event can be buffered by each node

Default value is `100`

`EventChanBufferSize(size int) RunnerOption`

Configure the buffer size of the event channel used to store pending events

Default value is 100

GoMC-master/Documentation/event-managers.md

Event Managers

Event Managers are the hooks that are inserted into the algorithm.
They allow Go-MC to record and control the execution of events.

To use Go-MC with new frameworks it might be useful to implement new Event Managers.
When implementing a new Event Manager it is also common to implement a new `Event`.
There are no interface that must be implemented by the Event Managers, but Go-MC makes some assumptions about the `Event` and Event Managers that must hold.

Events

An `Event` is assumed to be atomic and deterministic.
Go-MC uses the `NextEvent` signal to ensure that an `Event` remains atomic.
A new `Event` will not be scheduled before the previous `Event` sends a `NextEvent` signal.
It is important that the node has completed all executions when the `NextEvent` signal is sent, otherwise the atomicity of events might be broken.

Some schedulers rely on the determinism of an `Event` to be able to build a view of the state space and properly perform scheduling.
We therefore expect an `Event` to be deterministic.
This means that the event should not contain randomness that is not controlled by Go-MC.

Event Managers

The Event Manager is usually instantiated with a variable of the type `SimulationParameters`.
The type contains the specific simulation parameters used in this run.
Specifically, it contains `NextEvt`, `CrashSubscribe` and `EventAdder`.
`NextEvt` is a function used to send the `NextEvent` signal to Go-MC.
`CrashSubscribe` is a function used by nodes to subscribe to status changes.
`EventAdder` is a type implementing the `EventAdder` interface.
When simulating the type is a Scheduler and when running the algorithm it is a `RunnerController`.
New events should be added to the `EventAdder` when detected.

It is important that the Event Manager is instantiated with the `SimulationParameters` for the current run.
The correct `SimulationParameters` for a run are provided when instantiating the nodes for the run.

```go
// Stores the SimulationParameters used in the specific run of the simulation
//
// The parameters are used to initialize the EventManager and to subscribe to the failure detector
type SimulationParameters struct {
	// Signal the status of the executed event to the main loop.
	NextEvt func(error, int)

	// Used by node to subscribe to status updates from the failure detector
	CrashSubscribe func(NodeId int, callback func(id int, status bool))

	// Add events to the EventAdder used by the simulation
	EventAdder EventAdder
}
```

Mocking Modules

Event Managers can be used to mock modules that an algorithm relies on.
This would significantly reduce the complexity of the module and make it possible to verify individual modules without relying on the actual implementation of other modules.

Consider a module that relies on some consensus algorithm.
Consensus algorithms may contain several rounds of messages between the nodes in the system and using an actual implementation would therefore increase the complexity of the simulation.
Furthermore, the module does not rely on the timing of the intermediary events that is a part of the consensus algorithm, it only rely on the timing of the events where the nodes learn about the decided value.
We can therefore implement an Event Manager that imitates the behavior of the consensus algorithm.
The Event Manager can decide on a value and add an event representing each node learning the value, thus abstracting away the process of deciding on the value.

GoMC-master/Documentation/user-guide.md

User Guide

Go-MC is a tool for verifying and visualizing the implementation of distributed systems.
Go-MC provides two functionalities: The Simulator, and The Runner.
The simulator verifies the algorithm by controlling the execution of events, while the Runner executes the algorithm live and records events and state changes of the system.

The Simulator

The simulator is used to verify that an implementation of a distributed algorithm operates as expected.
Simulating a distributed algorithm consists of two parts:
1) Configuring the Simulation
2) Running the Simulation

Before starting the simulation of the algorithm, it should be noted that the simulation of a distributed system is a costly process and the state space explosion problem ensures that the memory and computation requirements quickly increases as the complexity of the distributed system increases.
Some suggestions for reducing the resources required to run the simulation is provided at the end.

This guide mentions some important options. For a full overview of all possible options see the [configuration guide](/Documentation/configuration-guide.md).

Configuring the Simulation

The simulation is configured using the `PrepareSimulation` function.

```go
func PrepareSimulation[T, S any](smOpts StateManagerOption[T, S], opts ...SimulatorOption) Simulation[T, S]
```

The `T` generic type represent a node of the algorithm.
All nodes in the distributed system must run the same local algorithm, i.e. they must all be of the same type.

The `S` generic type represent the local state of a node.
The type is used to configure which parts of the state of the node will be stored by Go-MC.
An example of a local state is shown below.

```go 
type state struct {
	proposed Value[int]
	decided  []Value[int]
}
```

The `StateManagerOption` is used to configure the **State Manager** that will be used for the simulation.
The **State Manager** is configured with a function that collects the local state of a node and a function that checks the equality of two states.

```go
gomc.WithTreeStateManager(
	func(node *HierarchicalConsensus[int]) state {
		return state{
			proposed: node.ProposedVal,
			decided:  slices.Clone(node.DecidedVal),
		}
	},
	func(a, b state) bool {
		if a.proposed != b.proposed {
			return false
		}
		return slices.Equal(a.decided, b.decided)
	},
)
```

In addition to configuring the **State Manager**, you can also specify the **Scheduler** that will be used when running the simulation.
The scheduler is responsible for deciding the order in which events are executed in a run and for ensuring that the state space is properly explored.
The choice of **Scheduler** has a significant impact on the performance and results of the simulation.
The **Scheduler** can also be used to replay previously executed runs.
The **Scheduler** can be configured by using a `SchedulerOption`, for a full list of the available options see the [configuration guide](/Documentation/configuration-guide.md#scheduleroption)

Running the Simulation

The `PrepareSimulation` function returns an instance of the `Simulation` type.
This type can be used to run multiple simulations by calling the `Run` method.
The different parameters are used to define different scenarios for the verification of the algorithm.
Note that only one simulation can be run at the same time.

```go
func (sr Simulation[T, S]) Run(InitNodes InitNodeOption[T], requestOpts RequestOption, checker CheckerOption[S], opts ...RunOptions) checking.CheckerResponse
```

The `Run` method has three mandatory parameters.
The `InitNodeOption` is used to specify a function that will be used to initialize the nodes used in the simulation.
The function is also used to initialize the **Event Managers** with the provided `SimulationParameters` for the run.

```go
gomc.InitSingleNode(nodeIds,
	func(id int, sp eventManager.SimulationParameters) *HierarchicalConsensus[int] {
		send := eventManager.NewSender(sp)
		node := NewHierarchicalConsensus[int](
			id,
			nodeIds,
			send.SendFunc(id),
		)
		sp.CrashSubscribe(id, node.Crash)
		return node
	},
)
```

The `RequestOption` is used to configure a set of requests that will be made to the nodes during the simulation of the algorithm.
A request can be created using the `NewRequest` function and specifying the id of the target node, the name of the method that should be called on the node and the parameters that should be passed to the method.
The requests will be added to the simulation and interleaved along with the other events, ensuring that all combinations of messages and requests are simulated.
At least one valid request must be provided to the system.
Different requests represent different scenarios, which can induce different types of errors in the distributed system.
It is therefore important to test with different combinations of requests.

```go
gomc.WithRequests(
	gomc.NewRequest(1, "Propose", Value[int]{1}),
	gomc.NewRequest(2, "Propose", Value[int]{2}),
	gomc.NewRequest(3, "Propose", Value[int]{3}),
)
```

```go
func NewRequest(id int, method string, params ...any) request.Request
```

The `CheckerOption` configures the **Checker** that will be used to verify the properties of the distributed system.
The **Checker** is run after the simulations have been completed and it verifies that the properties holds for all states that was discovered.
The only available **Checker** is the `PredicateChecker`, where properties are defined as functions, of the type `Predicate`, returning `true` if the property hold and `false` if it is violated.

```go
gomc.WithPredicateChecker(
	checking.Eventually(
		// C1: Termination
		func(s checking.State[state]) bool {
			return checking.ForAllNodes(func(s state) bool {
				return len(s.decided) > 0
			}, s, true)
		},
	),
	func(s checking.State[state]) bool {
		// C2: Validity
		proposed := make(map[Value[int]]bool)
		for _, node := range s.LocalStates {
			proposed[node.proposed] = true
		}
		return checking.ForAllNodes(func(s state) bool {
			if len(s.decided) < 1 {
				// The process has not decided a value yet
				return true
			}
			return proposed[s.decided[0]]
		}, s, false)
	},
	func(s checking.State[state]) bool {
		// C3: Integrity
		return checking.ForAllNodes(func(s state) bool { return len(s.decided) < 2 }, s, false)
	},
	func(s checking.State[state]) bool {
		// C4: Agreement
		decided := make(map[Value[int]]bool)
		checking.ForAllNodes(func(s state) bool {
			for _, val := range s.decided {
				decided[val] = true
			}
			return true
		}, s, true)
		return len(decided) <= 1
	},
)
```
The `Predicates` have one parameter: a variable of the `State` type.
The `State` stores the state of a system at a certain point of the simulation.
It also stores the sequence of `GlobalState`s that represent the current run, including the current state.

```go 
type Predicate[S any] func(s State[S]) bool
```

```go
// The state of the system at the current point of execution
type State[S any] struct {
	// The local states of the nodes.
	LocalStates map[int]S
	// The status of the nodes. True means that the node is correct, false that it has crashed.
	Correct map[int]bool
	// True if this is the last recorded state in a run. False otherwise.
	IsTerminal bool
	// The sequence of GlobalStates that lead to this State.
	Sequence []state.GlobalState[S]
}

```

The helper functions `Eventually` and `ForAllNodes` are also provided to simplify the process of defining predicates.

The optional configuration `FailureManagerOption` can be used to configure a **Failure Manager** that will be used during the simulation.
The **Failure Manager** determines the failure abstraction that will be supported by the simulation.
It can also provide the functionality of a failure detector.
Go-MC currently only provides the `PerfectFailureManager` which supports the crash-stop failure abstraction with a perfect failure detector, but more **Failure Managers** can be implemented.

By default the **Failure Manager** performs no node crashes, but you can configure it to crash specified nodes during the simulation.
The `PerfectFailureManager` is configured with a `crash` function specifying how the node crashes and a list of the nodes that will crash during the simulation.
The `crash` function must ensure that the node does not respond to new messages or requests.
The list of nodes that will crash during the simulation is provided as a list of the ids of the nodes.
The crashes of nodes will be interleaved with other events, such as messages arriving or requests, to ensure that all possible timings are verified.

```go
gomc.WithPerfectFailureManager(
	func(t *HierarchicalConsensus[int]) { t.crashed = true },
	1,
),
```

If the nodes that are created starts separate goroutines, for example when listening to incoming messages, a stop function must be run after each run to clean up after the node.
This ensures that the nodes of the run is properly stopped and that no memory leaks occur when they are discarded.
The stop function is configured with a `StopOption`.
By default, no stop function is used.

```go
gomc.WithStopFunctionSimulator(
	func(t *GrpcConsensus) { t.Stop() },
)
```

Adapting the Algorithm

<!-- TODO: Perhaps say something about designing the algorithm? that some changes must be made for the Event Managers, and that in general the simulation makes some assumptions? -->

While it is desirable for Go-MC to be usable when verifying any implementation of an algorithm out of the box, some basic assumptions must be made to be able to simulate the algorithm.

Firstly, Go-MC assumes that once an event is started it will continue executing until it is completed.
An event can not pause its execution and wait for some other event to be processed.
If this assumption is broken the simulation will not progress beyond the event.

Secondly, it is assumed that all events are deterministic.
This is required for most **Schedulers** to be able to build a view of the state space.

Finally, there must be a away for the **Event Managers** to be inserted into the algorithm.
The specifics of this varies between **Event Managers**, but it might require minimal changes to the implementation.
The changes should be small and care should be taken to ensure that they do not affect the outcome of the algorithm, to preserve the validity of the results.

Reducing the Required Resources
The complexity of the algorithm has a significant impact on the resources required of the simulation.
Complex algorithms consists of more possible runs, and will therefore take longer time to simulate.
They also requires more memory to maintain the discovered state space.
The complexity is generally measured by the number of events are simulated, also called the depth of the simulation.

In general, messages are one of the most common types of events.
One way of keeping the complexity of the algorithm low is therefore to reduce the number of messages sent in the algorithm.
This is already good practice, since messages are considered time-consuming and expensive.
Optimizing the number of messages that are sent, is therefore a good way of reducing the resource requirements.

One way of reducing the number of events that occur is to reduce the number of nodes in the simulation.
Large distributed systems will naturally produce more events than small systems, while not necessarily increasing the probability of finding a known error.
It is therefore useful to design small scenarios with a limited number of nodes, to ensure that the simulation converges quickly and can cover a large part of the state space.

We also recommend taking a modular approach when testing distributed systems.
By dividing the algorithm into several modules that can be simulated independently the complexity of each simulation can remain low, even if the complexity of the system is high.
Custom **Event Managers** can be created to mock modules during the simulation.
For more details about the **Event Managers**, see [event-managers.md](/Documentation/event-managers.md).
Mocking modules in this way will have a large impact on the complexity of the simulation, since complex modules that normally would require multiple rounds of messages can be modelled by using a single event.

In practice, it is not always possible to reduce the complexity of the simulation to a level where the entire state space can be explored.
In these scenarios we can limit the number of runs that are simulated or the maximum depth of the runs that are simulated.
This will allow us to explore parts of the state space.
This will naturally impact the simulations ability to find existing bugs, since there is no guarantee that the bug is in the part of the state space that is explored.
It will however provide some level of assurance that the most common bugs have been eliminated.

The [`MaxRunsOption`](/Documentation/configuration-guide.md#maxrunsoption) option is used to configure the maximum number of runs that will be simulated.
Configuring a low value (around 1000) will significantly reduce the memory and computation requirements of the simulation.
It can however have a significant impact on the probability of finding an existing bug in the implementation, particularly when using certain **Schedulers**.

The maximum depth of a simulation can be configured with the [`MaxDepthOption`](/Documentation/configuration-guide.md#maxdepthoption).
Reducing the maximum depth will result it the simulation of runs stopping early.
This reduces the size of the state space, but also limits the ability to verify the Liveness properties of the simulation.

The choice of **Scheduler** can have an significant impact on the resources required by and the performance of the simulation.
It is therefore important to consider the properties of the specific **Scheduler** to ensure that the correct one is chosen for the simulation.
It is also important to consider the maximum depth and number of runs when selecting the **Scheduler**.
Some **Schedulers** operates by iteratively changing the run that is simulated.
Such a **Schedulers** end up simulating similar runs, which can be a problem when the size of the explored state space is small, compared to the size of the actual state space.
In such cases it might be better to use a **Scheduler** that more evenly samples runs from the entire state space, to increase the chances of finding different bugs.

The Runner

The Runner is used to record the execution of the algorithm during execution.
It collects records of events and states from the nodes in the system and sends them to the subscribed user.

```go
func PrepareRunner[T, S any](initNodes InitNodeOption[T], getState GetStateOption[T, S], opts ...RunnerOption) *runner.Runner[T, S]
```

The Runner is created by the `PrepareRunner` function.
The function prepares and starts a Runner with the provided configuration.
In the same way as the Simulator, the Runner uses two generic variables: `T` and `S`.
`T` specifies the type implementing the node and `S` specifies the type storing the local state of a node.

The `InitNodeOption` is used to specify a function that will be used to initialize the nodes.
This is similar to the option used when running the simulation.

```go
gomc.InitSingleNode(nodeIds,
	func(id int, sp eventManager.SimulationParameters) *HierarchicalConsensus[int] {
		send := eventManager.NewSender(sp)
		node := NewHierarchicalConsensus[int](
			id,
			nodeIds,
			send.SendFunc(id),
		)
		sp.CrashSubscribe(id, node.Crash)
		return node
	},
)
```

The `GetStateOption` configures a function used to collect the state from the nodes.
This is similar to the function used to configure the **State Manager** in the simulation.

```go
gomc.WithStateFunction(
	func(t *paxos.Server) State {
		return State{
			proposed: t.Proposal,
			decided:  t.Decided,
		}
	},
)
```

The `StopOption` is optional, but must be provided if you want to trigger a crash of a node during the running.
The option configures a function that will be used to perform the crash of a node, similar to the function provided to the **Failure Manager** when configuring the run of the Simulation.

```go
gomc.WithStopFunctionRunner(
	func(t *paxos.Server) { t.Stop() },
)
```

You can interact with the distributed system through the provided Runner.
The following commands are provided by the Runner:
- `Request`: Add a request to the system
- `PauseNode`: Pause the execution of events on the specified node
- `ResumeNode`: Resume the execution of events on the specified node
- `CrashNode`: Trigger a crash of the specified node

You can subscribe to receive records collected by the Runner through the `SubscribeRecords` method.
The runner sends three types of records:
- `ExecutionRecord` are sent when an internal event is executed.
- `MessageRecord` are sent when a message is sent or received by a node.
They contain information about the message.
- `StateRecord` are sent after an event has been executed and contains the new state of the node.

The running of an algorithm can be stopped by the `Stop` method.

GoMC-master/event/crashDetection.go

package event

import "fmt"

// Event representing the detection of a crashed node.
//
// The event is created when a node crashed.
// When the event is executed the target node will detect that the crashedNode has crashed.
// This is done by calling the callback function.
type CrashDetection struct {
	targetId int
	crashedNode int

	callback func(id int, status bool)

	evtId EventId
}

// Event representing the detection of a crashed node.
//
// The event is created when a node crashed.
// When the event is executed the target node will detect that the crashedNode has crashed.
// This is done by calling the callback function.
func NewCrashDetection(targetNode int, crashedNode int, callback func(int, bool)) CrashDetection {
	return CrashDetection{
		targetId: targetNode,
		crashedNode: crashedNode,

		callback: callback,

		evtId: EventId(fmt.Sprint("CrashDetection", targetNode, crashedNode)),
	}
}

func (cd CrashDetection) String() string {
	return fmt.Sprintf("{CrashDetection Target: %v. Crashed Node: %v}", cd.targetId, cd.crashedNode)
}

// An id that identifies the event.
// Two events that provided the same input state results in the same output state should have the same id
//
// New event implementations should include a identifier of the event type to prevent accidental collisions with other implementations
func (cd CrashDetection) Id() EventId {
	return cd.evtId
}

// A method executing the event.
// The event will be executed on a separate goroutine.
// It should signal on the channel if it is clear for the simulator to proceed to processing of the state and the next event.
// Panics raised while executing the event is recovered by the simulator and returned as errors
//
// Calls the provided callback function
func (cd CrashDetection) Execute(node any, errorChan chan error) {
	cd.callback(cd.crashedNode, false)
	errorChan <- nil
}

// The id of the target node, i.e. the node whose state will be changed by the event executing.
// Is used to identify if an event is still enabled, or if it has been disabled, e.g. because the node crashed.
func (cd CrashDetection) Target() int {
	return cd.targetId
}

GoMC-master/event/crashEvent.go

package event

import (
	"fmt"
)

// Represent the target node crashing
type CrashEvent struct {
	target int
	crash func(int) error

	id EventId
}

// Create a CrashEvent
//
// target is the id of the target node.
// crash is a function that will be called when the event is executed.
func NewCrashEvent(target int, crash func(int) error) CrashEvent {
	return CrashEvent{
		target: target,
		crash: crash,

		id: EventId(fmt.Sprint("Crash", target)),
	}
}

// An id that identifies the event.
// Two events that provided the same input state results in the same output state should have the same id
//
// New event implementations should include a identifier of the event type to prevent accidental collisions with other implementations
func (ce CrashEvent) Id() EventId {
	return ce.id
}

// A method executing the event.
//
// Call the crash function with the target id
//
// The event will be executed on a separate goroutine.
// It should signal on the channel if it is clear for the simulator to proceed to processing of the state and the next event.
// Panics raised while executing the event is recovered by the simulator and returned as errors
func (ce CrashEvent) Execute(_ any, evtChan chan error) {
	evtChan <- ce.crash(ce.target)
}

// The id of the target node, i.e. the node whose state will be changed by the event executing.
func (ce CrashEvent) Target() int {
	return ce.target
}

func (ce CrashEvent) String() string {
	return fmt.Sprintf("{Crash Target: %v}", ce.target)
}

GoMC-master/event/event.go

package event

// An event represents some kind of action that will be scheduled and interleaved by the simulator
// They contain the information to execute themselves on some generic node and contain an identifier
type Event interface {
	// An id that identifies the event.
	// Two events that provided the same input state results in the same output state should have the same id
	//
	// New event implementations should include a identifier of the event type to prevent accidental collisions with other implementations
	Id() EventId

	// A method executing the event.
	// The event will be executed on a separate goroutine.
	// It should signal on the channel if it is clear for the simulator to proceed to processing of the state and the next event.
	// Panics raised while executing the event is recovered by the simulator and returned as errors
	Execute(node any, errorChan chan error)

	// The id of the target node, i.e. the node whose state will be changed by the event executing.
	Target() int
}

// An event that is used to represent some kind of message between two nodes.
type MessageEvent interface {
	Event

	// Returns the id of the node receiving the event
	To() int
	// Returns the id of the node sending the event
	From() int
}

// Compares two events
//
// Returns true of both events have the same id or if both are nil.
// Returns false otherwise.
func EventsEquals(a, b Event) bool {
	if a == nil || b == nil {
		return a == b
	}
	return a.Id() == b.Id()
}

// An id that identifies the event.
// Two events that provided the same input state results in the same output state should have the same id
type EventId string

GoMC-master/event/event_test.go

package event

import (
	"reflect"
	"sync"
	"testing"
	"time"
)

type node struct {
	foo bool
	bar bool
}

func (n *node) Foo(from int, msg []byte) {
	n.foo = true
}
func (n *node) Bar(from int, msg []byte) {
	n.bar = true
}

func TestFunctionEvent(t *testing.T) {
	// Call a function event of a valid node with valid input
	// Check tht we receive a message on the error channel and that the foo flag on the node is true
	evt := NewFunctionEvent(0, 0, "Foo",
		reflect.ValueOf(0),
		reflect.ValueOf([]byte("Foo")),
)
	n := &node{}
	errChan := make(chan error)
	go func() {
		evt.Execute(n, errChan)
	}()
	select {
	case val := <-errChan:
		if val != nil {
			t.Errorf("Expected to receive no error when executing event. Got: %v", val)
		}
	case <-time.After(5 * time.Second):
		t.Errorf("Expected to receive a message on the errChan")
	}
	if !n.foo {
		t.Errorf("Expected the Foo function to have been called and the foo flag to be true")
	}
}

func TestMessageEvent(t *testing.T) {
	evt := NewMessageHandlerEvent(0, 1, "Bar", 0, []byte("Bar"))
	n := &node{}
	errChan := make(chan error)
	go func() {
		evt.Execute(n, errChan)
	}()
	select {
	case val := <-errChan:
		if val != nil {
			t.Errorf("Expected to receive no error when executing event. Got: %v", val)
		}
	case <-time.After(5 * time.Second):
		t.Errorf("Expected to receive a message on the errChan")
	}
	if !n.bar {
		t.Errorf("Expected the Bar function to have been called and the Bar flag to be true")
	}
}

func TestCrashEvent(t *testing.T) {
	crashedNode := 0
	evt := NewCrashEvent(5, func(i int) error { crashedNode = i; return nil })
	n := &node{}
	errChan := make(chan error)
	go func() {
		evt.Execute(n, errChan)
	}()
	select {
	case val := <-errChan:
		if val != nil {
			t.Errorf("Expected to receive no error when executing event. Got: %v", val)
		}
	case <-time.After(5 * time.Second):
		t.Errorf("Expected to receive a message on the errChan")
	}
	if crashedNode != 5 {
		t.Errorf("Expected the provided function to be executed")
	}
}

func TestSleepEvent(t *testing.T) {
	// Execute a sleep event. Test that a message is sent on the timeChan ensuring that the sleep ends.
	// Also check that we do not receive a message on the errorChan
	sleepChan := make(chan time.Time)
	foo := NewSleepEvent("Foo", 0, sleepChan)
	errChan := make(chan error)
	go foo.Execute(&node{}, errChan)
	select {
	case <-sleepChan:
	case <-time.After(5 * time.Second):
		t.Errorf("Expected the event to execute and end the sleep")
	}

	select {
	case <-errChan:
		t.Errorf("Did not expect to receive a message on the errorChan")
	default:
	}
}

func TestSleepEventOnSameLocation(t *testing.T) {
	// Test that two Sleep events with the same id are interchangeable
	sleepChan1 := make(chan time.Time)
	sleepChan2 := make(chan time.Time)
	foo1 := NewSleepEvent("Foo", 0, sleepChan1)
	foo2 := NewSleepEvent("Foo", 0, sleepChan2)
	if foo1.Id() != foo2.Id() {
		t.Errorf("Expected the Ids to be the same")
	}
	wg := new(sync.WaitGroup)
	wg.Add(2)
	go func() {
		<-sleepChan1
		wg.Done()
	}()
	go func() {
		<-sleepChan2
		wg.Done()
	}()
	errChan := make(chan error)
	foo1.Execute(&node{}, errChan)
	foo2.Execute(&node{}, errChan)
	wg.Wait()
}

GoMC-master/event/functionEvent.go

package event

import (
	"fmt"
	"reflect"
)

// An event representing some request made to a node.
type FunctionEvent struct {

	// The index of the request. Is unique among the FunctionEvents.
	index int
	target int
	method string
	params []reflect.Value

	id EventId
}

// Create a new FunctionEvent
//
// i is the index of the FunctionEvent among the provided requests.
// target is the id of the node that will receive the request.
// method is a string with the name of the method that will be called on the node.
// params is the parameters that will be passed to the method.
func NewFunctionEvent(i int, target int, method string, params ...reflect.Value) FunctionEvent {
	return FunctionEvent{
		index: i,
		target: target,
		method: method,
		params: params,

		id: EventId(fmt.Sprint("Function", i)),
	}
}

// An id that identifies the event.
// Two events that provided the same input state results in the same output state should have the same id
//
// New event implementations should include a identifier of the event type to prevent accidental collisions with other implementations
func (fe FunctionEvent) Id() EventId {
	return fe.id
}

func (fe FunctionEvent) String() string {
	return fmt.Sprintf("{Function %v. Target: %v}", fe.index, fe.target)
}

// A method executing the event.
//
// Use reflection to call the specified method on the nodes with the provided parameters.
//
// The event will be executed on a separate goroutine.
// It should signal on the channel if it is clear for the simulator to proceed to processing of the state and the next event.
// Panics raised while executing the event is recovered by the simulator and returned as errors
func (fe FunctionEvent) Execute(node any, nextEvt chan error) {
	method := reflect.ValueOf(node).MethodByName(fe.method)
	method.Call(fe.params)
	nextEvt <- nil
}

// The id of the target node, i.e. the node whose state will be changed by the event executing.
func (fe FunctionEvent) Target() int {
	return fe.target
}

GoMC-master/event/grpcEvent.go

package event

import (
	"fmt"
)

// An Event representing a node sending a message using asynchronous gRPC request.
//
// An asynchronous RPC call is one that is made in a separate goroutine, and where there response is ignored.
// e.g. go ExampleRpcServer.Foo(...)
//
// The message that is withheld by an interceptor.
// When the event is executed the message is released.
type GrpcEvent struct {
	from int
	target int
	method string
	wait chan bool

	id EventId
}

// Create a new GrpcEvent
//
// from is teh id of the node sending the message, to is the id of the node receiving it.
// method is a string representation of the msg used.
// msg is the message sent.
// wait is a channel that will be used to represent that the message can be sent to the target node.
func NewGrpcEvent(from int, to int, method string, msg interface{}, wait chan bool) GrpcEvent {
	return GrpcEvent{
		target: to,
		from: from,
		method: method,
		wait: wait,

		id: EventId(fmt.Sprint("GrpcEvent", from, to, method, msg)),
	}
}

// An id that identifies the event.
// Two events that provided the same input state results in the same output state should have the same id
//
// New event implementations should include a identifier of the event type to prevent accidental collisions with other implementations
func (ge GrpcEvent) Id() EventId {
	return ge.id
}

// A method executing the event.
//
// Release the message so that it is sent to the target node
//
// The event will be executed on a separate goroutine.
// It should signal on the channel if it is clear for the simulator to proceed to processing of the state and the next event.
// Panics raised while executing the event is recovered by the simulator and returned as errors
func (ge GrpcEvent) Execute(node any, errorChan chan error) {
	ge.wait <- true
}

// The id of the target node, i.e. the node whose state will be changed by the event executing.
func (ge GrpcEvent) Target() int {
	return ge.target
}

func (ge GrpcEvent) String() string {
	return fmt.Sprintf("GrpcEvent From: %v To: %v Method: %v", ge.from, ge.target, ge.method)
}

// Returns the id of the node receiving the event
func (ge GrpcEvent) To() int {
	return ge.target
}

// Returns the id of the node sending the event
func (ge GrpcEvent) From() int {
	return ge.from
}

GoMC-master/event/messageHandlerEvent.go

package event

import (
	"fmt"
	"reflect"
)

// An event representing the arrival of a message on a node.
//
// Does not incorporate any message passing mechanisms, instead it calls an message handler on the target node.
// Assumes that there exist some message handler of the node which can be called.
// Implements the MessageEvent interface
type MessageHandlerEvent struct {
	from int
	to int
	msgType string
	params []reflect.Value

	id EventId
}

// Creates a MessageHandlerEvent
//
// from is the id of the sending node, to is the id of the receiving node.
// msgType is the name of the message handler method that will be called,
// params is the parameters that will be passed to the method.
func NewMessageHandlerEvent(from, to int, msgType string, params ...any) MessageHandlerEvent {
	valueParams := make([]reflect.Value, len(params))
	for i, val := range params {
		valueParams[i] = reflect.ValueOf(val)
	}
	return MessageHandlerEvent{
		from: from,
		to: to,
		msgType: msgType,
		params: valueParams,

		id: EventId(fmt.Sprint("Message ", from, to, msgType, params)),
	}
}

// An id that identifies the event.
// Two events that provided the same input state results in the same output state should have the same id
//
// New event implementations should include a identifier of the event type to prevent accidental collisions with other implementations
func (me MessageHandlerEvent) Id() EventId {
	return me.id
}

func (me MessageHandlerEvent) String() string {
	return fmt.Sprintf("{From: %v, To: %v, Type: %s}", me.from, me.to, me.msgType)
}

// A method executing the event.
// The event will be executed on a separate goroutine.
// It should signal on the channel if it is clear for the simulator to proceed to processing of the state and the next event.
// Panics raised while executing the event is recovered by the simulator and returned as errors
//
// Calls the specified method on the target node with the provided parameters using reflection.
func (me MessageHandlerEvent) Execute(node any, nextEvt chan error) {
	// Use reflection to call the specified method on the node
	method := reflect.ValueOf(node).MethodByName(me.msgType)
	method.Call(me.params)
	nextEvt <- nil
}

// The id of the target node, i.e. the node whose state will be changed by the event executing.
func (me MessageHandlerEvent) Target() int {
	return me.to
}

// The id of the Node that the message is sent to
func (me MessageHandlerEvent) To() int {
	return me.to
}

// The id of the Node that the message is sent from
func (me MessageHandlerEvent) From() int {
	return me.from
}

GoMC-master/event/sleepEvent.go

package event

import (
	"fmt"
	"time"
)

// An event representing a timeout.
//
// It is analogous to time.Sleep and can be used to represent timeout
type SleepEvent struct {
	caller string
	target int // The id of the target node
	timeoutChan chan time.Time

	id EventId
}

// Create a SleepEvent
//
// caller is a string representing the location in the code where the timeout was called. It is used to create the id of the node.
// target is the id of the node that called the timeout.
// timeoutChan is the channel that is waiting for the timeout to expire
func NewSleepEvent(caller string, target int, timeoutChan chan time.Time) SleepEvent {
	evt := SleepEvent{
		caller: caller,
		target: target,
		timeoutChan: timeoutChan,

		id: EventId(fmt.Sprint("Sleep ", target, caller)),
	}
	return evt
}

// An id that identifies the event.
// Two events that provided the same input state results in the same output state should have the same id
//
// New event implementations should include a identifier of the event type to prevent accidental collisions with other implementations
func (se SleepEvent) Id() EventId {
	return se.id
}

func (se SleepEvent) String() string {
	return fmt.Sprintf("{Sleep Target: %v}", se.target)
}

// A method executing the event.
// The event will be executed on a separate goroutine.
// It should signal on the channel if it is clear for the simulator to proceed to processing of the state and the next event.
// Panics raised while executing the event is recovered by the simulator and returned as errors
func (se SleepEvent) Execute(node any, _ chan error) {
	// Send a signal on the timeout channel
	// Don't signal on the error channel since the event that was paused by the sleep event will continue running and the simulator can therefore not begin collecting state yet.
	// The event that continues after the sleep event will signal to the simulator when it has completed.
	se.timeoutChan <- time.Time{}
}

// The id of the target node, i.e. the node whose state will be changed by the event executing.
func (se SleepEvent) Target() int {
	return se.target
}

GoMC-master/eventManager/eventAdder.go

package eventManager

import "gomc/event"

// A type that can receive Events
type EventAdder interface {
	// Add the event to the EventAdder
	// It must be safe to add events from different goroutines.
	AddEvent(event.Event)
}

GoMC-master/eventManager/grpcEventManager.go

package eventManager

import (
	"context"
	"errors"
	"gomc/event"
	"time"

	"google.golang.org/grpc"
)

// An Event Manager that will be used to control asynchronous messages sent using gRPC.
//
// Grpc async calls are called in a separate goroutine without handling the response.
// A context with a deadline should not be used when simulating since real time does not make sense during simulations.
//
// Uses a gRPC unary client interceptor to intercept and withhold messages.
// The interceptor is created by the UnaryClientControllerInterceptor method.
//
// The function created by the WaitForSend method must be called after sending messages using gRPC.
// This ensures that all the messages are added to the EventAdder before continuing.
type GrpcEventManager struct {
	addrIdMap map[string]int

	ea EventAdder
	nextEvt func(error, int)

	msgChan map[int]chan bool
}

// Create a GrpcEventManager for use when using grpc Async calls when simulating
// Grpc async calls are called in a separate goroutine without handling the response.
// A context with a deadline should not be used when simulating since real time does not make sense during simulations.
// addr is a map from address to node id, shc is the scheduler used and nextEvent is the NextEvent channel from the simulator
func NewGrpcEventManager(addr map[string]int, sp SimulationParameters) *GrpcEventManager {
	msgChan := make(map[int]chan bool)
	for _, id := range addr {
		msgChan[id] = make(chan bool)
	}
	return &GrpcEventManager{
		addrIdMap: addr,
		ea: sp.EventAdder,
		nextEvt: sp.NextEvt,
		msgChan: msgChan,
	}
}

// Add an grpcEvent to the scheduler.
func (gem *GrpcEventManager) addEvent(from, to int, msg interface{}, method string, wait chan bool) {
	gem.ea.AddEvent(event.NewGrpcEvent(
		from,
		to,
		method,
		msg,
		wait,
))
}

// Creates a function that wait until all messages has been processed and an event has been created for all of them.
// id is the id of the node sending the messages
//
// The created function should be called right after performing an async multicast using grpc.
// num is the number of messages that are sent.
//
// The method ensures that all messages are added before the event is complete, ensuring that the simulation can proceed as expected and not finish prematurely or ignore some messages.
func (gem *GrpcEventManager) WaitForSend(id int) func(int) {
	return func(num int) {
		for i := 0; i < num; i++ {
			<-gem.msgChan[id]
		}
	}
}

// Create a UnaryClientInterceptor that is used to control the message flow of grpc events.
// The id is the id of the client node sending the requests
//
// It creates a GrpcEvent and holds the message until the grpcRequest event is executed.
// After the grpcRequest event is executed and an (empty) response has been received it signals that the event is completed and that the next event can be executed
func (gem *GrpcEventManager) UnaryClientControllerInterceptor(id int) grpc.UnaryClientInterceptor {
	return func(ctx context.Context, method string, req, reply interface{}, cc *grpc.ClientConn, invoker grpc.UnaryInvoker, opts ...grpc.CallOption) error {
		target := gem.addrIdMap[cc.Target()] // HACK: cc.Target() is an experimental API

		// Create a request event
		wait := make(chan bool)
		gem.addEvent(id, target, req, method, wait)

		// Signal that an event has been created for the event

		select {
		case gem.msgChan[id] <- true:
		case <-time.After(10 * time.Second):
			// The wait for send method has not been called. Panic to i
			panic(errors.New("grpcEventManager: timed out while confirming that message has been processed. grpcEventManager.WaitForSend must be called after sending messages to ensure that the message is properly handled."))
		}
		// Wait until the event has been executed
		<-wait

		err := invoker(ctx, method, req, reply, cc, opts...)

		// Signal that the message event has been completely processed by the server
		gem.nextEvt(nil, target)

		return err
	}
}

GoMC-master/eventManager/sender.go

package eventManager

import (
	"gomc/event"
)

// An Event Manager used to send messages between nodes
//
// Represent a message as a call to a message handler method on the target node.
// When the message arrived the method is called with the parameters.
type Sender struct {
	ea EventAdder
}

// Create a new Sender with the provided EventAdder
func NewSender(sp SimulationParameters) *Sender {
	return &Sender{ea: sp.EventAdder}
}

// Creates a send function that creates an event representing the message to be sent to the target node
// The SendFunc is called with the id of the node that will send the messages.
// Should create a new send function for each node.
//
// The returned send function is used to represent mechanism that sends a message to a node
// id represent the target of the message
// msgType is the message handler that will be called when the message arrive.
// params is the parameters that will be passed to the message handler method.
func (s *Sender) SendFunc(id int) func(int, string, ...any) {
	return func(to int, msgType string, params ...any) {
		s.ea.AddEvent(event.NewMessageHandlerEvent(id, to, msgType, params...))
	}
}

GoMC-master/eventManager/sender_test.go

package eventManager

import (
	"gomc/event"
	"testing"
)

func TestSender(t *testing.T) {
	// Basic test testing that it the sender can send a message.
	sch := NewMockScheduler()
	sender := NewSender(SimulationParameters{
		EventAdder: sch,
	})
	send := sender.SendFunc(0)
	send(0, "Foo", []byte("Foo"))
	out, _ := sch.GetEvent()
	expected := event.NewMessageHandlerEvent(0, 0, "Foo", []byte("Foo"))
	if out.Id() != expected.Id() {
		t.Fatalf("Unexpected event. Got: %v. Expected: %v", out, expected)
	}
}

GoMC-master/eventManager/simulationParameter.go

package eventManager

// TODO: Update thesis to reflect the move of SimulationParameters into eventManager package

// Stores the SimulationParameters used in the specific run of the simulation
//
// The parameters are used to initialize the EventManager and to subscribe to the failure detector
type SimulationParameters struct {
	// Signal the status of the executed event to the main loop.
	NextEvt func(error, int)

	// Used by node to subscribe to status updates from the failure detector
	CrashSubscribe func(NodeId int, callback func(id int, status bool))

	// Add events to the EventAdder used by the simulation
	EventAdder EventAdder
}

GoMC-master/eventManager/sleepManager.go

package eventManager

import (
	"fmt"
	"gomc/event"
	"runtime"
	"time"
)

// An EventManager that is used to set timeouts
type SleepManager struct {
	ea EventAdder
	nextEvt func(error, int)
}

// Create a SleepManager with the provided EventAdder and nextEvent function
func NewSleepManager(sp SimulationParameters) *SleepManager {
	return &SleepManager{
		ea: sp.EventAdder,
		nextEvt: sp.NextEvt,
	}
}

// Creates a sleep function that is used to create timeouts.
// The SleepFunc method is called with the id of the node that sets the timeout.
// Should create a new sleep function for each node.
//
// The returned sleep function imitates the signature of the time.Sleep function.
// The provided duration is ignored.
// It is assumed that at most one timeout is active at each node at teh same time.
func (sm *SleepManager) SleepFunc(id int) func(time.Duration) {
	return func(_ time.Duration) {
		sleepChan := make(chan time.Time)
		_, file, line, _ := runtime.Caller(1)
		evt := event.NewSleepEvent(fmt.Sprintf("File: %v, Line: %v", file, line), id, sleepChan)
		sm.ea.AddEvent(evt)
		// Inform the simulator that the process is currently waiting for a scheduled timeout
		// The simulator can now proceed with scheduling events
		sm.nextEvt(nil, id)

		// Wait until the event is executed before returning
		<-sleepChan
	}
}

GoMC-master/eventManager/sleepManager_test.go

package eventManager

import (
	"gomc/event"
	"testing"
	"time"
)

type MockScheduler struct {
	eventStack []event.Event
}

func NewMockScheduler() *MockScheduler {
	return &MockScheduler{
		eventStack: make([]event.Event, 0),
	}
}

func (ms *MockScheduler) AddEvent(evt event.Event) {
	ms.eventStack = append(ms.eventStack, evt)
}

func (ms *MockScheduler) GetEvent() (event.Event, error) {
	evt := ms.eventStack[len(ms.eventStack)-1]
	ms.eventStack = ms.eventStack[:len(ms.eventStack)-1]
	return evt, nil
}

func (ms *MockScheduler) StartRun() error { return nil }

func (ms *MockScheduler) EndRun() {}

func (ms *MockScheduler) NodeCrash(i int) {}

type Node struct{}

func (n *Node) Foo(from, to int, msg []byte) {}
func (n *Node) Bar(from, to int, msg []byte) {}

func TestSleepManager(t *testing.T) {
	sch := NewMockScheduler()
	nextEventChan := make(chan error)
	nextEvent := func(err error, id int) {
		nextEventChan <- err
	}
	sm := NewSleepManager(SimulationParameters{
		EventAdder: sch,
		NextEvt: nextEvent,
	})
	sleep := sm.SleepFunc(0)
	notBlockedChan := make(chan bool)
	go func() {
		// Need to check that sleep actually blocks until the event is executed
		sleep(time.Second)
		notBlockedChan <- true
	}()

	// Wait until the nextEvent signal is received than execute the event.
	// Like the simulator would
	select {
	case <-nextEventChan:
		evt, _ := sch.GetEvent()
		evt.Execute(&Node{}, nextEventChan)
	case <-notBlockedChan:
		t.Fatalf("Sleep returned before the event was executed")
	}
	select {
	case <-notBlockedChan:
	case <-time.After(time.Second * 5):
		t.Fatalf("Sleep is still blocking after executing the event")
	}
}

GoMC-master/examples/Consensus/consensus.go

package main

type Value[T any] struct {
	Val T
}

type HierarchicalConsensus[T any] struct {
	detectedRanks map[int]bool
	round int
	proposal Value[T]
	proposer int
	proposed bool

	DecidedSignal chan Value[T]

	// Test values used to verify algorithm
	DecidedVal []Value[T]
	ProposedVal Value[T]

	delivered map[int]bool
	broadcast bool

	crashed bool

	id int
	nodes []int
	send func(int, string, ...any)
}

func NewHierarchicalConsensus[T any](id int, nodes []int, send func(int, string, ...any)) *HierarchicalConsensus[T] {
	return &HierarchicalConsensus[T]{
		detectedRanks: make(map[int]bool),
		round: 1,
		proposal: Value[T]{},
		proposer: 0,
		proposed: false,
		delivered: make(map[int]bool),
		broadcast: false,

		DecidedSignal: make(chan Value[T], 1),
		DecidedVal: make([]Value[T], 0),

		id: id,
		nodes: nodes,
		send: send,
	}
}

func (hc *HierarchicalConsensus[T]) Crash(id int, _ bool) {
	if hc.crashed {
		return
	}
	hc.detectedRanks[id] = true
	for hc.delivered[hc.round] || hc.detectedRanks[hc.round] {
		hc.round++
		hc.decide()
	}
}

func (hc *HierarchicalConsensus[T]) Propose(val Value[T]) {
	if hc.crashed {
		return
	}
	hc.ProposedVal = val
	if !hc.proposed {
		hc.proposed = true
		hc.proposal = val
	}
	hc.decide()
}

func (hc *HierarchicalConsensus[T]) Decided(from int, val Value[T]) {
	if hc.crashed {
		return
	}
	if from < hc.id && from > hc.proposer {
		hc.proposed = true
		hc.proposal = val
		hc.proposer = from
		hc.decide()
	}
	hc.delivered[from] = true
	for hc.delivered[hc.round] || hc.detectedRanks[hc.round] {
		hc.round++
		hc.decide()
	}
}

func (hc *HierarchicalConsensus[T]) decide() {
	if hc.id != hc.round {
		return
	}

	if hc.broadcast {
		return
	}
	if !hc.proposed {
		return
	}

	hc.broadcast = true
	for _, target := range hc.nodes {
		if target > hc.id {
			hc.send(int(target), "Decided", hc.id, hc.proposal)
		}
	}
	// Decide on value
	hc.DecidedSignal <- hc.proposal
	hc.DecidedVal = append(hc.DecidedVal, hc.proposal)
}

GoMC-master/examples/Consensus/consensusBench_test.go

package main

import (
	"gomc"
	"gomc/eventManager"
	"testing"

	"golang.org/x/exp/slices"
)

func BenchmarkConsensus(b *testing.B) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *HierarchicalConsensus[int]) state {
				return state{
					proposed: node.ProposedVal,
					decided: slices.Clone(node.DecidedVal),
				}
			},
			func(a, b state) bool {
				if a.proposed != b.proposed {
					return false
				}
				return slices.Equal(a.decided, b.decided)
			},
),
		gomc.PrefixScheduler(),
)

	nodeIds := []int{1, 2, 3}
	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		sim.Run(
			gomc.InitSingleNode(nodeIds,
				func(id int, sp eventManager.SimulationParameters) *HierarchicalConsensus[int] {
					send := eventManager.NewSender(sp)
					node := NewHierarchicalConsensus[int](
						id,
						nodeIds,
						send.SendFunc(id),
)
					sp.CrashSubscribe(id, node.Crash)
					return node
				},
),
			gomc.WithRequests(
				gomc.NewRequest(1, "Propose", Value[int]{1}),
				gomc.NewRequest(2, "Propose", Value[int]{2}),
				gomc.NewRequest(3, "Propose", Value[int]{3}),
),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(
				func(t *HierarchicalConsensus[int]) { t.crashed = true },
				2,
),
)
	}
}

GoMC-master/examples/Consensus/consensus_test.go

package main

import (
	"bytes"
	"encoding/json"
	"os"
	"testing"

	"golang.org/x/exp/slices"

	"gomc"
	"gomc/checking"
	"gomc/eventManager"
)

type state struct {
	proposed Value[int]
	decided []Value[int]
}

var predicates = []checking.Predicate[state]{
	checking.Eventually(
		// C1: Termination
		func(s checking.State[state]) bool {
			return checking.ForAllNodes(func(s state) bool {
				return len(s.decided) > 0
			}, s, true)
		},
),
	func(s checking.State[state]) bool {
		// C2: Validity
		proposed := make(map[Value[int]]bool)
		for _, node := range s.LocalStates {
			proposed[node.proposed] = true
		}
		return checking.ForAllNodes(func(s state) bool {
			if len(s.decided) < 1 {
				// The process has not decided a value yet
				return true
			}
			return proposed[s.decided[0]]
		}, s, false)
	},
	func(s checking.State[state]) bool {
		// C3: Integrity
		return checking.ForAllNodes(func(s state) bool { return len(s.decided) < 2 }, s, false)
	},
	func(s checking.State[state]) bool {
		// C4: Agreement
		decided := make(map[Value[int]]bool)
		checking.ForAllNodes(func(s state) bool {
			for _, val := range s.decided {
				decided[val] = true
			}
			return true
		}, s, true)
		return len(decided) <= 1
	},
}

func TestConsensus(t *testing.T) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *HierarchicalConsensus[int]) state {
				return state{
					proposed: node.ProposedVal,
					decided: slices.Clone(node.DecidedVal),
				}
			},
			func(a, b state) bool {
				if a.proposed != b.proposed {
					return false
				}
				return slices.Equal(a.decided, b.decided)
			},
),
		gomc.PrefixScheduler(),
)

	nodeIds := []int{1, 2, 3}
	resp := sim.Run(
		gomc.InitSingleNode(nodeIds,
			func(id int, sp eventManager.SimulationParameters) *HierarchicalConsensus[int] {
				send := eventManager.NewSender(sp)
				node := NewHierarchicalConsensus[int](
					id,
					nodeIds,
					send.SendFunc(id),
)
				sp.CrashSubscribe(id, node.Crash)
				return node
			},
),
		gomc.WithRequests(
			gomc.NewRequest(1, "Propose", Value[int]{1}),
			gomc.NewRequest(2, "Propose", Value[int]{2}),
			gomc.NewRequest(3, "Propose", Value[int]{3}),
),
		gomc.WithPredicateChecker(predicates...),
		gomc.WithPerfectFailureManager(
			func(t *HierarchicalConsensus[int]) { t.crashed = true },
			1,
),
		gomc.Export(os.Stdout),
)
	if ok, out := resp.Response(); !ok {
		t.Errorf("Expected no errors while checking. Got: %v", out)

		var buffer bytes.Buffer
		json.NewEncoder(&buffer).Encode(resp.Export())
		os.WriteFile("FailedRun.txt", buffer.Bytes(), 0755)
	}
}

GoMC-master/examples/grpcConsensus/grpcConsensus.go

package main

import (
	"context"
	pb "gomc/examples/grpcConsensus/proto"
	"net"

	"google.golang.org/grpc"
)

type state struct {
	proposed string
	decided []string
}

type Client struct {
	pb.ConsensusClient
	id int32
	conn *grpc.ClientConn
}

type GrpcConsensus struct {
	pb.UnimplementedConsensusServer

	detectedRanks map[int32]bool
	proposal *pb.Value
	proposer int32

	round int32
	delivered map[int32]bool
	broadcast bool

	id int32
	nodes []*Client

	stopped bool

	DecidedVal []string
	ProposedVal string

	waitForSend func(num int)

	srv *grpc.Server
}

func NewGrpcConsensus(id int32, lis net.Listener, waitForSend func(int), srvOpts ...grpc.ServerOption) *GrpcConsensus {
	srv := grpc.NewServer(srvOpts...)
	gc := &GrpcConsensus{
		detectedRanks: make(map[int32]bool),
		proposer: 0,
		round: 1,
		delivered: make(map[int32]bool),
		broadcast: false,
		id: id,
		nodes: make([]*Client, 0),

		DecidedVal: make([]string, 0),
		ProposedVal: "",

		waitForSend: waitForSend,

		srv: srv,
	}
	pb.RegisterConsensusServer(srv, gc)
	go func() {
		srv.Serve(lis)
	}()
	return gc
}

func (gc *GrpcConsensus) DialServers(addrMap map[int32]string, dialOpts ...grpc.DialOption) {
	for id, addr := range addrMap {
		conn, err := grpc.Dial(addr, dialOpts...)
		if err != nil {
			panic(err)
		}
		gc.nodes = append(gc.nodes, &Client{
			id: id,
			ConsensusClient: pb.NewConsensusClient(conn),
			conn: conn,
		})
	}
}

func (gc *GrpcConsensus) Crash(id int, _ bool) {
	if gc.stopped {
		return
	}
	gc.detectedRanks[int32(id)] = true
	// Violates C1: Termination
	// The algorithm does not advance the round again if it enters a round where the node has already crashed
	// The correct implementation would be:
	// for gc.delivered[gc.round] || gc.detectedRanks[gc.round] {
	if gc.delivered[gc.round] || gc.detectedRanks[gc.round] {
		gc.round++
		gc.decide()
	}
}

func (hc *GrpcConsensus) Propose(val string) {
	hc.ProposedVal = val
	protoVal := &pb.Value{Val: val}
	if hc.proposal == nil {
		hc.proposal = protoVal
	}
	hc.decide()
}

func (gc *GrpcConsensus) Decided(ctx context.Context, in *pb.DecideRequest) (*pb.DecideResponse, error) {
	if in.GetFrom() < gc.id && in.GetFrom() > gc.proposer {
		gc.proposal = in.GetVal()
		gc.proposer = in.GetFrom()
		gc.decide()
	}
	gc.delivered[in.GetFrom()] = true
	for gc.delivered[gc.round] || gc.detectedRanks[gc.round] {
		gc.round++
		gc.decide()
	}
	return &pb.DecideResponse{}, nil
}

func (gc *GrpcConsensus) decide() {
	if gc.id != gc.round {
		return
	}

	if gc.broadcast {
		return
	}
	if gc.proposal == nil {
		return
	}

	gc.broadcast = true
	gc.DecidedVal = append(gc.DecidedVal, gc.proposal.GetVal())
	msg := &pb.DecideRequest{
		Val: gc.proposal,
		From: gc.id,
	}
	num := 0
	for _, node := range gc.nodes {
		if node.id > gc.id {
			num++
			go node.Decided(context.Background(), msg)
		}
	}
	gc.waitForSend(num) // Wait until all messages has been sent, but do not wait until an answer is received
}

func (gc *GrpcConsensus) Stop() {
	gc.srv.Stop()
	for _, node := range gc.nodes {
		node.conn.Close()
	}
	gc.stopped = true
}

GoMC-master/examples/grpcConsensus/grpcConsensusBench_test.go

package main

import (
	"gomc"
	"testing"
)

func BenchmarkConsensus(b *testing.B) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(getState, cmpState),
		gomc.PrefixScheduler(),
)
	
	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		sim.Run(
			gomc.InitNodeFunc(
				createNodes(addrMap),
),
			gomc.WithRequests(
				gomc.NewRequest(1, "Propose", "1"),
				gomc.NewRequest(2, "Propose", "2"),
				gomc.NewRequest(3, "Propose", "3"),
),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(
				func(t *GrpcConsensus) { t.Stop() }, 2,
),
			gomc.WithStopFunctionSimulator(func(t *GrpcConsensus) { t.Stop() }),
)
	}
}

GoMC-master/examples/grpcConsensus/grpcConsensusReplay_test.go

package main

import (
	"bytes"
	"encoding/json"
	"fmt"
	"gomc"
	"gomc/event"
	"os"
	"testing"
)

var addrMap = map[int32]string{
	1: ":50000",
	2: ":50001",
	3: ":50002",
}

func TestGrpcConsensusCreateReplay(t *testing.T) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(getState, cmpState),
		gomc.PrefixScheduler(),
)

	resp := sim.Run(
		gomc.InitNodeFunc(createNodes(addrMap)),
		gomc.WithRequests(
			gomc.NewRequest(1, "Propose", "1"),
			gomc.NewRequest(2, "Propose", "2"),
			gomc.NewRequest(3, "Propose", "3"),
),
		gomc.WithPredicateChecker(predicates...),
		gomc.WithPerfectFailureManager(
			func(t *GrpcConsensus) { t.Stop() }, 1,
),
		gomc.WithStopFunctionSimulator(func(t *GrpcConsensus) { t.Stop() }),
)

	fmt.Println()
	ok, text := resp.Response()
	if ok {
		t.Errorf("Expected simulation to fail. Got:\n %v", text)
	} else {
		var buffer bytes.Buffer
		json.NewEncoder(&buffer).Encode(resp.Export())
		os.WriteFile("FailedRun.txt", buffer.Bytes(), 0755)
	}
}

func TestReplayConsensus(t *testing.T) {
	in, err := os.ReadFile("FailedRun.txt")
	if err != nil {
		t.Errorf("Error while setting up test: %v", err)
	}
	buffer := bytes.NewBuffer(in)
	var run []event.EventId
	json.NewDecoder(buffer).Decode(&run)

	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(getState, cmpState),
		gomc.ReplayScheduler(run),
)

	resp := sim.Run(
		gomc.InitNodeFunc(
			createNodes(addrMap),
),
		gomc.WithRequests(
			gomc.NewRequest(1, "Propose", "1"),
			gomc.NewRequest(2, "Propose", "2"),
			gomc.NewRequest(3, "Propose", "3"),
),
		gomc.WithPredicateChecker(predicates...),
		gomc.WithPerfectFailureManager(
			func(t *GrpcConsensus) { t.Stop() }, 1,
),
		gomc.WithStopFunctionSimulator(func(t *GrpcConsensus) { t.Stop() }),
)

	fmt.Println()
	ok, text := resp.Response()
	if ok {
		t.Errorf("Expected simulation to fail. Got:\n %v", text)
	}
}

GoMC-master/examples/grpcConsensus/grpcConsensus_test.go

package main

import (
	"context"
	"net"
	"testing"
	"time"

	"gomc"
	"gomc/checking"
	"gomc/eventManager"
	"gomc/request"

	"golang.org/x/exp/slices"
	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"
)

var predicates = []checking.Predicate[state]{
	checking.Eventually(
		// C1: Termination
		func(s checking.State[state]) bool {
			return checking.ForAllNodes(func(s state) bool {
				return len(s.decided) > 0
			}, s, true)
		},
),
	func(s checking.State[state]) bool {
		// C2: Validity
		proposed := make(map[string]bool)
		for _, node := range s.LocalStates {
			proposed[node.proposed] = true
		}
		return checking.ForAllNodes(func(s state) bool {
			if len(s.decided) < 1 {
				// The process has not decided a value yet
				return true
			}
			return proposed[s.decided[0]]
		}, s, false)
	},
	func(s checking.State[state]) bool {
		// C3: Integrity
		return checking.ForAllNodes(func(s state) bool { return len(s.decided) < 2 }, s, false)
	},
	func(s checking.State[state]) bool {
		// C4: Agreement
		decided := make(map[string]bool)
		checking.ForAllNodes(func(s state) bool {
			for _, val := range s.decided {
				decided[val] = true
			}
			return true
		}, s, true)
		return len(decided) <= 1
	},
}

func createNodes(addrMap map[int32]string) func(sp eventManager.SimulationParameters) map[int]*GrpcConsensus {
	var addrToIdMap = map[string]int{}
	for id, addr := range addrMap {
		addrToIdMap[addr] = int(id)
	}
	return func(sp eventManager.SimulationParameters) map[int]*GrpcConsensus {
		gem := eventManager.NewGrpcEventManager(addrToIdMap, sp)
		lisMap := map[string]*bufconn.Listener{}
		for _, addr := range addrMap {
			lisMap[addr] = bufconn.Listen(bufSize)
		}

		nodes := map[int]*GrpcConsensus{}
		for id, addr := range addrMap {
			gc := NewGrpcConsensus(id, lisMap[addr], gem.WaitForSend(int(id)))
			sp.CrashSubscribe(int(id), gc.Crash)
			nodes[int(id)] = gc
		}

		for id, node := range nodes {
			node.DialServers(
				addrMap,
				grpc.WithContextDialer(
					func(ctx context.Context, s string) (net.Conn, error) {
						return lisMap[s].DialContext(ctx)
					},
),
				grpc.WithBlock(),
				grpc.WithTransportCredentials(insecure.NewCredentials()),
				grpc.WithUnaryInterceptor(gem.UnaryClientControllerInterceptor(int(id))),
)
		}
		return nodes
	}
}

func getState(node *GrpcConsensus) state {
	return state{
		proposed: node.ProposedVal,
		decided: slices.Clone(node.DecidedVal),
	}
}

func cmpState(a, b state) bool {
	if a.proposed != b.proposed {
		return false
	}
	return slices.Equal(a.decided, b.decided)
}

var simulations = []struct {
	nodes map[int32]string
	crashedNodes []int
}{
	{
		map[int32]string{
			1: ":1",
			2: ":2",
			3: ":3",
		},
		[]int{},
	},
	{
		map[int32]string{
			1: ":1",
			2: ":2",
			3: ":3",
		},
		[]int{1},
	},
	{
		map[int32]string{
			1: ":1",
			2: ":2",
			3: ":3",
			4: ":4",
			5: ":7",
			6: ":6",
			7: "127:0:0:1",
		},
		[]int{2},
	},
}

func TestGrpcConsensusPrefix(t *testing.T) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(getState, cmpState),
		gomc.PrefixScheduler(),
)

	for i, test := range simulations {
		requests := []request.Request{}
		for id, addr := range test.nodes {
			requests = append(requests, gomc.NewRequest(int(id), "Propose", addr))
		}
		start := time.Now()
		resp := sim.Run(
			gomc.InitNodeFunc(createNodes(test.nodes)),
			gomc.WithRequests(requests...),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(func(t *GrpcConsensus) { t.Stop() }, test.crashedNodes...),
			gomc.WithStopFunctionSimulator(func(t *GrpcConsensus) { t.Stop() }),
)
		duration := time.Since(start)
		_, desc := resp.Response()
		t.Logf("Test %v - Duration %v: %v", i, duration, desc)
	}
}

func TestGrpcConsensusRandom(t *testing.T) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(getState, cmpState),
		gomc.RandomWalkScheduler(0),
)

	for i, test := range simulations {
		requests := []request.Request{}
		for id, addr := range test.nodes {
			requests = append(requests, gomc.NewRequest(int(id), "Propose", addr))
		}
		start := time.Now()
		resp := sim.Run(
			gomc.InitNodeFunc(createNodes(test.nodes)),
			gomc.WithRequests(requests...),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(func(t *GrpcConsensus) { t.Stop() }, test.crashedNodes...),
			gomc.WithStopFunctionSimulator(func(t *GrpcConsensus) { t.Stop() }),
)
		duration := time.Since(start)
		_, desc := resp.Response()
		t.Logf("Test %v - Duration %v: %v", i, duration, desc)
	}
}

GoMC-master/examples/grpcConsensus/main.go

package main

import (
	"context"
	"fmt"
	"net"

	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"
)

const (
	bufSize = 1024
)

func main() {
	addrMap := map[int32]string{
		1: ":50000",
		2: ":50001",
		3: ":50002",
		4: ":50003",
		5: ":50004",
	}
	addrToIdMao := map[string]int{}
	for id, addr := range addrMap {
		addrToIdMao[addr] = int(id)
	}

	lisMap := map[string]*bufconn.Listener{}
	for _, addr := range addrMap {
		lisMap[addr] = bufconn.Listen(bufSize)
	}

	nodes := map[int32]*GrpcConsensus{}
	for id, addr := range addrMap {
		gc := NewGrpcConsensus(id, lisMap[addr], func(int) {})
		nodes[id] = gc
	}

	for _, node := range nodes {
		node.DialServers(
			addrMap,
			grpc.WithContextDialer(
				func(ctx context.Context, s string) (net.Conn, error) {
					return lisMap[s].DialContext(ctx)
				},
),
			grpc.WithBlock(),
			grpc.WithTransportCredentials(insecure.NewCredentials()),
)
	}

	fmt.Scanln()

	nodes[2].Stop()
	for _, node := range nodes {
		go func(n *GrpcConsensus) {
			n.Crash(2, false)
			n.Propose(addrMap[n.id])
		}(node)
	}
	fmt.Scanln()
}

GoMC-master/examples/grpcConsensus/proto/grpc_consensus.proto

syntax = "proto3";

package proto;
option go_package = "gomc/examples/grpcConsensus/proto";

service Consensus {
 rpc Decided(DecideRequest) returns (DecideResponse){}
}

message Value {
 string val = 1;
}

message DecideRequest {
 Value val = 1;
 int32 from = 2;
}

message DecideResponse {
}

GoMC-master/examples/multipaxos/acceptor.go

package multipaxos

import (
	"context"
	"gomc/examples/multipaxos/proto"
	"sync"

	"github.com/golang/protobuf/ptypes/empty"
)

type acceptor struct {
	proto.UnimplementedAcceptorServer

	sync.Mutex

	nodeId int64

	rnd int64

	slots map[int64]*proto.PromiseSlot

	nodes map[int64]*multipaxosClient
	waitForSend func(num int)
}

func newAcceptor(id int64, waitForSend func(num int)) *acceptor {
	return &acceptor{
		nodeId: id,

		slots: make(map[int64]*proto.PromiseSlot),
		waitForSend: waitForSend,
	}
}

func (a *acceptor) Prepare(_ context.Context, prp *proto.PrepareRequest) (*empty.Empty, error) {
	a.Lock()
	defer a.Unlock()

	if prp.GetCrnd() <= a.rnd {
		return &empty.Empty{}, nil
	}

	a.rnd = prp.GetCrnd()

	slots := make([]*proto.PromiseSlot, 0)
	for _, slot := range a.slots {
		if slot.Slot >= prp.Slot {
			slots = append(slots, slot)
		}
	}

	go a.nodes[prp.GetFrom()].Promise(
		context.Background(),
		&proto.PromiseRequest{
			Rnd: a.rnd,
			Slots: slots,
			From: a.nodeId,
		},
)
	a.waitForSend(1)

	return &empty.Empty{}, nil
}

func (a *acceptor) Accept(_ context.Context, acc *proto.AcceptRequest) (*empty.Empty, error) {
	a.Lock()
	defer a.Unlock()

	if acc.GetVal().GetRnd() < a.rnd {
		return &empty.Empty{}, nil
	}

	a.rnd = acc.GetVal().GetRnd()
	a.slots[acc.GetSlot()] = &proto.PromiseSlot{
		Slot: acc.GetSlot(),
		Val: acc.GetVal(),
	}

	lrn := &proto.LearnRequest{
		Val: acc.GetVal(),
		Slot: acc.GetSlot(),
		From: a.nodeId,
	}

	for _, n := range a.nodes {
		go n.Learn(context.Background(), lrn)
	}
	a.waitForSend(len(a.nodes))

	return &empty.Empty{}, nil
}

GoMC-master/examples/multipaxos/leaderElector.go

package multipaxos

type LeaderElector struct {
	id int64
	correct map[int64]bool
	leader int64

	leaderSub []func(int64)

	stopped bool
}

func NewLeaderElector(id int64, addr map[int64]string) *LeaderElector {
	var leader int64
	correct := make(map[int64]bool)
	for id := range addr {
		correct[id] = true
		if id > leader {
			leader = id
		}
	}
	return &LeaderElector{
		id: id,
		correct: correct,
		leader: leader,
	}
}

func (l *LeaderElector) NodeCrash(id int, _ bool) {
	if l.stopped {
		return
	}

	l.correct[int64(id)] = false

	if int64(id) == l.leader {
		leader := l.nextLeader()
		l.leader = leader
		for _, f := range l.leaderSub {
			f(leader)
		}
	}
}

func (l *LeaderElector) nextLeader() int64 {
	var leader int64
	for id, ok := range l.correct {
		if ok {
			if id > leader {
				leader = id
			}
		}
	}
	return leader
}

// Subscribe to leader change calls
func (l *LeaderElector) LeaderSubscribe(f func(id int64)) {
	l.leaderSub = append(l.leaderSub, f)
}

func (l *LeaderElector) IsLeader() bool {
	return l.leader == l.id
}

func (l *LeaderElector) Leader() int64 {
	return l.leader
}

GoMC-master/examples/multipaxos/learner.go

package multipaxos

import (
	"context"
	"gomc/examples/multipaxos/proto"
	"sync"

	"github.com/golang/protobuf/ptypes/empty"
)

type learntSlots struct {
	learnt bool
	rnd int64
	votes map[int64]*proto.Value
}

type learner struct {
	proto.UnimplementedLearnerServer

	sync.Mutex

	nodeId int64

	learns map[int64]*learntSlots

	learnSubscribe []func(string, int64)

	qourum int
}

func newLearner(id int64) *learner {
	return &learner{
		nodeId: id,

		learns: make(map[int64]*learntSlots),
	}
}

func (l *learner) Learn(_ context.Context, lrn *proto.LearnRequest) (*empty.Empty, error) {
	l.Lock()
	defer l.Unlock()

	slotId := lrn.GetSlot()
	slot, ok := l.learns[slotId]
	if !ok {
		slot = &learntSlots{}
		l.learns[slotId] = slot
	}

	if slot.learnt {
		return &empty.Empty{}, nil
	}

	// If the round of the stored slot is higher than the round of the received slot.
	if lrn.GetVal().GetRnd() < slot.rnd {
		return &empty.Empty{}, nil
	}

	// The new learn is larger then the current. Set the current to the new and reset votes
	if lrn.GetVal().GetRnd() > slot.rnd {
		slot.rnd = lrn.GetVal().GetRnd()
		slot.votes = make(map[int64]*proto.Value)
	}

	// The learn is for the current round. Add it to the slot
	if lrn.GetVal().GetRnd() == slot.rnd {
		// We have already received a learn from this node for this slot and this round.
		// Ignore this one
		if _, ok := slot.votes[lrn.GetFrom()]; ok {
			return &empty.Empty{}, nil
		}

		slot.votes[lrn.GetFrom()] = lrn.GetVal()
		if len(slot.votes) >= l.qourum {
			slot.learnt = true
			l.emmitLearn(lrn.GetVal(), slotId)
		}
	}
	return &empty.Empty{}, nil
}

func (l *learner) emmitLearn(val *proto.Value, slotId int64) {
	for _, callback := range l.learnSubscribe {
		callback(val.GetVal(), slotId)
	}
}

func (l *learner) LearnSubscribe(callback func(string, int64)) {
	l.learnSubscribe = append(l.learnSubscribe, callback)
}

GoMC-master/examples/multipaxos/main/main.go

package main

import (
	"context"
	"fmt"
	"gomc/examples/multipaxos"
	"net"

	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"
)

var (
	bufSize = 1024
	addrMap = map[int64]string{
		1: ":50000",
		2: ":50001",
		3: ":50002",
		// 4: ":50003",
		// 5: ":50004",
	}
	addrToIdMao = map[string]int{}
	lisMap = map[string]*bufconn.Listener{}
	nodes = map[int64]*multipaxos.MultiPaxos{}

	dial = func(ctx context.Context, s string) (net.Conn, error) {
		return lisMap[s].DialContext(ctx)
	}
)

func main() {

	for id, addr := range addrMap {
		addrToIdMao[addr] = int(id)
		lisMap[addr] = bufconn.Listen(bufSize)
	}

	for id, addr := range addrMap {
		mp := multipaxos.NewMultiPaxos(id, addrMap, func(i int) {})
		mp.Start(lisMap[addr])
		nodes[id] = mp
	}

	for _, mp := range nodes {
		mp.DialNodes(
			grpc.WithContextDialer(dial),
			grpc.WithBlock(),
			grpc.WithTransportCredentials(insecure.NewCredentials()),
)
	}

	fmt.Scanln()
	// var wait sync.WaitGroup
	for id, node := range nodes {
		func(id int64) {
			node.LearnSubscribe(func(s string, i int64) {
				fmt.Printf("Node: %v Decided In Slot %v Val: %v\n", id, i, s)
			})
		}(id)
	}

	nodes[3].ProposeVal("TEST")
	fmt.Scanln()
	nodes[3].ProposeVal("TEST2")
	nodes[3].Stop()
	for _, n := range nodes {
		n.NodeCrash(3, false)
	}

	fmt.Scanln()

	// time.Sleep(1 * time.Second)
	nodes[2].ProposeVal("TEST3")
	fmt.Scanln()

	// time.Sleep(5 * time.Second)
	// fmt.Println("DONE")

	for id, n := range nodes {
		fmt.Println("Node", id, "Learnt", n.LearntValues)
	}
}

GoMC-master/examples/multipaxos/multipaxos.go

package multipaxos

import (
	"net"

	"google.golang.org/grpc"
)

type MultiPaxos struct {
	Id int64
	LearntValues map[int64]string

	srv *server

	proposed []string
	stopped bool

	nodes map[int64]*multipaxosClient
	addrMap map[int64]string

	*server
	*LeaderElector
	*proposer
	*acceptor
	*learner
}

func NewMultiPaxos(id int64, addrMap map[int64]string, waitForSend func(int)) *MultiPaxos {
	lrn := newLearner(id)
	l := NewLeaderElector(id, addrMap)
	mp := &MultiPaxos{
		Id: id,

		srv: &server{},

		proposed: make([]string, 0),
		LearntValues: make(map[int64]string),
		addrMap: addrMap,

		LeaderElector: l,
		proposer: newProposer(id, waitForSend, l),
		acceptor: newAcceptor(id, waitForSend),
		learner: lrn,
	}

	lrn.LearnSubscribe(mp.LearnValue)
	return mp
}

func (mp *MultiPaxos) Start(lis net.Listener, srvOpts ...grpc.ServerOption) {
	go mp.srv.StartServer(mp, lis, srvOpts...)
}

func (mp *MultiPaxos) DialNodes(dialOpts ...grpc.DialOption) error {
	nodes, err := mp.srv.DialNodes(mp.addrMap, dialOpts...)
	if err != nil {
		return err
	}
	qourum := len(nodes)/2 + 1
	mp.nodes = nodes
	mp.proposer.nodes = nodes
	mp.acceptor.nodes = nodes
	mp.proposer.qourum = qourum
	mp.learner.qourum = qourum

	return nil
}

func (mp *MultiPaxos) ProposeVal(val string) {
	if mp.stopped {
		return
	}

	mp.proposed = append(mp.proposed, val)
	mp.proposer.ProposeVal(val)
}

func (mp *MultiPaxos) LearnValue(val string, slot int64) {
	mp.LearntValues[slot] = val
	mp.proposer.IncrementAdu()
}

func (mp *MultiPaxos) Stop() {
	mp.srv.Stop()
	mp.stopped = true

	for _, n := range mp.nodes {
		n.Stop()
	}
}

GoMC-master/examples/multipaxos/multipaxosBench_test.go

package multipaxos

import (
	"gomc"
	"testing"
)

var nodes = map[int64]string{
	1: ":1",
	2: ":2",
	3: ":3",
}

func BenchmarkMultipaxos(b *testing.B) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(getState, cmpState),
		gomc.PrefixScheduler(),
)

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		sim.Run(
			gomc.InitNodeFunc(
				InitNodes(nodes),
),
			gomc.WithRequests(
				gomc.NewRequest(1, "ProposeVal", "1"),
				gomc.NewRequest(2, "ProposeVal", "2"),
				gomc.NewRequest(3, "ProposeVal", "3"),
),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(
				func(t *MultiPaxos) { t.Stop() }, 2,
),
			gomc.WithStopFunctionSimulator(func(t *MultiPaxos) { t.Stop() }),
)
	}
}

GoMC-master/examples/multipaxos/multipaxosClient.go

package multipaxos

import (
	"gomc/examples/multipaxos/proto"

	"google.golang.org/grpc"
)

type multipaxosClient struct {
	conn *grpc.ClientConn
	proto.ProposerClient
	proto.AcceptorClient
	proto.LearnerClient
}

func NewMultipaxosClient(conn *grpc.ClientConn) *multipaxosClient {
	return &multipaxosClient{
		conn: conn,
		ProposerClient: proto.NewProposerClient(conn),
		AcceptorClient: proto.NewAcceptorClient(conn),
		LearnerClient: proto.NewLearnerClient(conn),
	}
}

func (mpc *multipaxosClient) Stop() {
	mpc.conn.Close()
}

GoMC-master/examples/multipaxos/multipaxos_test.go

package multipaxos

import (
	"context"
	"net"
	"os"
	"testing"

	"golang.org/x/exp/maps"
	"golang.org/x/exp/slices"
	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"

	"gomc"
	"gomc/checking"
	"gomc/eventManager"
)

var predicates = []checking.Predicate[State]{
	func(s checking.State[State]) bool {
		// Only a value that has been proposed may be chosen
		proposed := make(map[string]bool)
		for _, s := range s.LocalStates {
			for _, val := range s.proposed {
				proposed[val] = true
			}
		}
		return checking.ForAllNodes(func(s State) bool {
			for _, val := range s.decided {
				if !proposed[val] {
					return false
				}
			}
			return true
		}, s, false)
	},
	checking.Eventually(
		func(s checking.State[State]) bool {
			// All correct nodes decide on the same values for the same slots
			first := true
			var decidedVal map[int64]string
			for id, state := range s.LocalStates {
				if !s.Correct[id] {
					continue
				}
				if first {
					decidedVal = state.decided
					first = false
					continue
				}
				if !maps.Equal(decidedVal, state.decided) {
					return false
				}
			}

			return true
		},
),
	// No liveness properties.
}

type State struct {
	proposed []string
	decided map[int64]string
}

var (
	bufSize = 1024
	addrMap = map[int64]string{
		1: ":50000",
		2: ":50001",
		3: ":50002",
	}
)

func getState(t *MultiPaxos) State {
	return State{
		proposed: slices.Clone(t.proposed),
		decided: maps.Clone(t.LearntValues),
	}
}

func cmpState(s1, s2 State) bool {
	if !maps.Equal(s1.decided, s2.decided) {
		return false
	}
	return slices.Equal(s1.proposed, s2.proposed)
}

func InitNodes(addrMap map[int64]string) func(sp eventManager.SimulationParameters) map[int]*MultiPaxos {
	addrToIdMap := map[string]int{}
	for id, addr := range addrMap {
		addrToIdMap[addr] = int(id)
	}

	return func(sp eventManager.SimulationParameters) map[int]*MultiPaxos {
		lisMap := map[string]*bufconn.Listener{}
		for _, addr := range addrMap {
			lisMap[addr] = bufconn.Listen(bufSize)
		}
		gem := eventManager.NewGrpcEventManager(addrToIdMap, sp)

		nodes := make(map[int]*MultiPaxos)
		for id, addr := range addrMap {
			srv := NewMultiPaxos(id, addrMap, gem.WaitForSend(int(id)))
			go srv.Start(lisMap[addr])
			sp.CrashSubscribe(int(id), srv.proposer.leader.NodeCrash)
			nodes[int(id)] = srv
		}

		for id, node := range nodes {
			node.DialNodes(
				grpc.WithUnaryInterceptor(gem.UnaryClientControllerInterceptor(id)),
				grpc.WithContextDialer(
					func(ctx context.Context, s string) (net.Conn, error) {
						return lisMap[s].DialContext(ctx)
					},
),
				grpc.WithBlock(),
				grpc.WithTransportCredentials(insecure.NewCredentials()),
)
		}
		return nodes
	}
}

func TestMultiPaxosSim(t *testing.T) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(getState, cmpState),
		gomc.RandomWalkScheduler(1),
		gomc.MaxRuns(10000),
)
	w, err := os.Create("export.txt")
	if err != nil {
		t.Errorf("Error while creating file: %v", err)
	}
	defer w.Close()
	resp := sim.Run(
		gomc.InitNodeFunc(InitNodes(addrMap)),
		gomc.WithRequests(
			gomc.NewRequest(3, "ProposeVal", "Test1"),
			gomc.NewRequest(2, "ProposeVal", "Test2"),
			gomc.NewRequest(3, "ProposeVal", "Test3"),
			gomc.NewRequest(1, "ProposeVal", "Test4"),
),
		gomc.WithPredicateChecker(predicates...),
		gomc.WithPerfectFailureManager(func(t *MultiPaxos) { t.Stop() }, 3),
		gomc.WithStopFunctionSimulator(func(t *MultiPaxos) { t.Stop() }),
		gomc.Export(w),
)
	if ok, text := resp.Response(); !ok {
		t.Errorf("Test Failed: \n %v", text)
	}
}

GoMC-master/examples/multipaxos/proposer.go

package multipaxos

import (
	"context"
	"gomc/examples/multipaxos/proto"
	"sync"
	"time"

	"github.com/golang/protobuf/ptypes/empty"
)

type proposer struct {
	proto.UnimplementedProposerServer

	sync.Mutex

	nodeId int64
	qourum int

	Adu int64
	nextSlot int64

	crnd int64
	cval *proto.Value

	completedPhase1 bool

	leader *LeaderElector

	promises map[int64]*proto.PromiseRequest

	pendingProposals []string

	nodes map[int64]*multipaxosClient
	waitForSend func(num int)
	wait func(time.Duration)
}

func newProposer(id int64, waitForSend func(num int), l *LeaderElector) *proposer {
	p := &proposer{
		nodeId: id,

		crnd: id,

		leader: l,

		pendingProposals: make([]string, 0),

		promises: make(map[int64]*proto.PromiseRequest),
		waitForSend: waitForSend,
	}
	l.LeaderSubscribe(p.newLeader)
	return p
}

func (p *proposer) performPhaseOne() {
	p.nextSlot = p.Adu
	msg := &proto.PrepareRequest{
		Crnd: p.crnd,
		Slot: p.Adu,
		From: p.nodeId,
	}

	for _, n := range p.nodes {
		go n.Prepare(context.Background(), msg)
	}
	p.waitForSend(len(p.nodes))
}

func (p *proposer) Propose(_ context.Context, prop *proto.ProposeRequest) (*empty.Empty, error) {
	p.Lock()
	defer p.Unlock()

	if !p.leader.IsLeader() {
		return &empty.Empty{}, nil
	}

	if !p.completedPhase1 {
		// Store this value for when phase 1 is completed
		p.pendingProposals = append(p.pendingProposals, prop.GetVal())
		return &empty.Empty{}, nil
	}

	p.nextSlot++
	// create accept message
	acc := &proto.AcceptRequest{
		Val: &proto.Value{
			Val: prop.GetVal(),
			Rnd: p.crnd,
		},
		Slot: p.nextSlot,
		From: p.nodeId,
	}

	// Send accept message
	for _, n := range p.nodes {
		go n.Accept(context.Background(), acc)
	}
	p.waitForSend(len(p.nodes))

	return &empty.Empty{}, nil
}

func (p *proposer) Promise(_ context.Context, prm *proto.PromiseRequest) (*empty.Empty, error) {
	p.Lock()
	defer p.Unlock()

	// Wrong round: ignore
	if prm.GetRnd() != p.crnd {
		return &empty.Empty{}, nil
	}

	// We have already received a promise from this node: ignore
	if _, ok := p.promises[prm.GetFrom()]; ok {
		return &empty.Empty{}, nil
	}

	// We have already completed phase1, so we just ignore this message
	if p.completedPhase1 {
		return &empty.Empty{}, nil
	}

	p.promises[prm.GetFrom()] = prm

	// Still have not reached qourum size
	if len(p.promises) < p.qourum {
		return &empty.Empty{}, nil
	}

	accepts := p.getValues()

	// Accept messages are added to the front of the queue
	for _, val := range accepts {
		p.nextSlot++
		// create accept message
		acc := &proto.AcceptRequest{
			Val: &proto.Value{
				Val: val,
				Rnd: p.crnd,
			},
			Slot: p.nextSlot,
			From: p.nodeId,
		}

		// Send accept message
		for _, n := range p.nodes {
			go n.Accept(context.Background(), acc)
		}
		p.waitForSend(len(p.nodes))
	}

	for _, val := range p.pendingProposals {
		p.nextSlot++
		// create accept message
		acc := &proto.AcceptRequest{
			Val: &proto.Value{
				Val: val,
				Rnd: p.crnd,
			},
			Slot: p.nextSlot,
			From: p.nodeId,
		}

		// Send accept message
		for _, n := range p.nodes {
			go n.Accept(context.Background(), acc)
		}
		p.waitForSend(len(p.nodes))
	}

	p.pendingProposals = make([]string, 0)

	p.completedPhase1 = true
	p.promises = make(map[int64]*proto.PromiseRequest)

	return &empty.Empty{}, nil
}

func (p *proposer) getValues() []string {
	slots := make(map[int64]*proto.PromiseSlot)
	highestSlot := p.Adu
	for _, prm := range p.promises {
		for _, slot := range prm.Slots {
			if slot.GetSlot() > highestSlot {
				highestSlot = slot.GetSlot()
			}

			oldSlot, ok := slots[slot.GetSlot()]
			if !ok {
				slots[slot.GetSlot()] = oldSlot
				continue
			}

			if slot.GetVal().GetRnd() > oldSlot.GetVal().GetRnd() {
				slots[slot.GetSlot()] = slot
			}
		}
	}

	if len(slots) == 0 {
		return []string{}
	}

	length := highestSlot - p.Adu
	vals := make([]string, length)
	for i := 0; i < int(length); i++ {
		slot := slots[p.Adu+int64(i)]
		vals[i] = slot.GetVal().GetVal()
	}
	return vals
}

func (p *proposer) ProposeVal(val string) {
	// Send value to leader
	go p.nodes[p.leader.Leader()].Propose(
		context.Background(),
		&proto.ProposeRequest{Val: val},
)
	p.waitForSend(1)
}

func (p *proposer) newLeader(newLeader int64) {
	p.Lock()
	defer p.Unlock()

	p.completedPhase1 = false
	p.IncrementCrnd()

	if p.leader.IsLeader() {
		p.performPhaseOne()
	}
}

func (p *proposer) IncrementCrnd() {
	p.crnd += int64(len(p.nodes))
}

func (p *proposer) IncrementAdu() {
	p.Adu++
}

GoMC-master/examples/multipaxos/proto/multipaxos.proto

syntax = "proto3";

package proto;
import "google/protobuf/empty.proto";
option go_package = "gomc/examples/multipaxos/proto";

service Proposer {
 rpc Propose(ProposeRequest) returns (google.protobuf.Empty);
 rpc Promise(PromiseRequest) returns (google.protobuf.Empty);
}

service Acceptor {
 rpc Prepare(PrepareRequest) returns (google.protobuf.Empty);
 rpc Accept(AcceptRequest) returns (google.protobuf.Empty);
}

service Learner {
 rpc Learn(LearnRequest) returns (google.protobuf.Empty);
}

message Value {
 int64 rnd = 1;
 string val = 2;
}

message PromiseSlot {
 int64 slot = 1;
 Value val = 2;
}

message ProposeRequest {
 string val = 1;
}

message PromiseRequest {
 int64 rnd = 1;
 repeated PromiseSlot slots = 2;
 int64 from = 3;
}

message PrepareRequest {
 int64 crnd = 1;
 int64 slot = 2;
 int64 from = 3;
}

message AcceptRequest {
 Value val = 1;
 int64 slot = 2;
 int64 from = 3;
}

message LearnRequest {
 Value val = 1;
 int64 slot = 2;
 int64 from = 3;
}

GoMC-master/examples/multipaxos/server.go

package multipaxos

import (
	"gomc/examples/multipaxos/proto"
	"net"

	"google.golang.org/grpc"
)

type server struct {
	srv *grpc.Server
	conns []*grpc.ClientConn
}

func (s *server) StartServer(mp *MultiPaxos, lis net.Listener, srvOpts ...grpc.ServerOption) error {
	s.srv = grpc.NewServer(srvOpts...)
	proto.RegisterProposerServer(s.srv, mp)
	proto.RegisterAcceptorServer(s.srv, mp)
	proto.RegisterLearnerServer(s.srv, mp)
	return s.srv.Serve(lis)
}

func (s *server) Stop() {
	s.srv.Stop()
	for _, c := range s.conns {
		c.Close()
	}
}

func (s *server) DialNodes(addrMap map[int64]string, dialOpts ...grpc.DialOption) (map[int64]*multipaxosClient, error) {
	nodes := make(map[int64]*multipaxosClient)
	for id, addr := range addrMap {
		conn, err := grpc.Dial(addr, dialOpts...)
		if err != nil {
			return nil, err
		}
		nodes[id] = NewMultipaxosClient(conn)
	}
	return nodes, nil
}

GoMC-master/examples/onrr/guide.md

Implementing the (1, N) Regular Register for Tester

We will implement the (1, N) Regular Register for the testing. The process is divided into two steps. First we will implement the register. Then we will set up the tester with the register to verify the implementation.

(1, N) Regular Register

We will use the (1, N) Regular Register(also called onrr), module 4.1 in [1]. The module describes a register with 1 designated writer and N designated readers. Every read operation returns the value of the last value written. A read operation that is concurrent with a write operation may return the last value written or the concurrently written value.

To avoid the use of a perfect failure detector we will use algorithm 4.2, Majority Voting Regular Register from [1].

We first define the `onrr` struct with the variables defined in the algorithm. We define a `WriteIndicator` and a `ReadIndicator` which are channels used to send indications that a write and read operation has completed. Since the program will be run sequentially during simulation the channels must be buffered. Note that when we say that the program will run sequentially we primarily refer to the fact that the tester runs a loop of stages that will be run sequentially. First it will execute execute an event, then it will store the global state. If the channels are not buffered the program will block while executing the event. The nodes can use multiple goroutines, but it should be deterministic in the sense that calling a function several times with the same state should return the same result.

We also store some variables that will be used to verify the algorithm. These are not used in the algorithm. The `ongoingRead` and `ongoingWrite` variables indicate wether the node is currently processing a `Read` or `Write` operation. They will be updated during the execution of the algorithm to ensure that they are correct at all times. `possibleReads` is a slice of all the values that are valid results for the `Read` operations. This is the last written value and the concurrently written value if it exists.

In addition we also define a `nodes` slice containing the ids of all the nodes in the system, a `id` field storing the id of the current node and a `send` function that is used to represent a point-to-point link and will take care of all the communication between nodes. The function has the following signature:

```go
func(from, to int, msgType string, msg []byte)
```

The function is used by the tester to order message arrival and explore all possible states that can occur in the algorithm. We will return to how this function is used later, when we define the methods of the `onrr`.

We define a `NewOnrr` to instantiate an instance of the `onrr` type according to the algorithm. It takes the slice of all node ids and the `send` function as arguments.

We will also define several structs representing the messages used by the algorithm. These are `BroadcastWriteMsg`, `AckMsg`, `BroadcastReadMsg` and `ReadValueMsg`, and they contain the fields defined in the algorithm. They contain no methods and are purely used for structuring the data. We create helper functions `encodeMsg` and `decodeMsg` that will encode and decode between structs and `[]byte`.

We then continue by defining the `Write` function, which is used to invoke a write operation on the register. It increments the `wts` variable and resets the `acks` variable according to the algorithm. It then generates a message and sends it to every node using the `send` function.

The `send` function takes the `id` of the sender and the receiver as first and second argument. As third argument it takes the message type which is a `string` representing the name of method that will be called by the receiver to handle this message. This method is currently not defined, but we will call it `BroadcastWrite`. This function must be exported to ensure that it can be called with the message on the receiver. The fourth argument is a `[]byte` for the message that is going to be sent.

We then define the `BroadcastWrite` method according to the algorithm. Since this method is a receiver of a network message it must have the following signature:

```go
func(from int, to int, msg []byte)
```

The first argument is the `id` of the sender. The second argument is the `id` of the receiver. The third argument is the message as a `[]byte`. The method acknowledges the write broadcast by generating a `AckMsg` and sending it with the `send` function.

The remaining methods are implemented according to the algorithm, using the `send` function for all message transfers and referring to the corresponding message handler function.

Configuring the tester

The tester is configured in the `main.go` file. First a `State` struct is defined. It will be used to define the local state stored by the tester and will contain the information required to ensure that the properties of the module holds for all possible states of the implementation. One state instance is stored for each node for each event in the tester. The local state of all the nodes is combined in a map, `map[int]State`, to form the global state after the set event.

To decide how to define the `State` we need to look at the properties we want to verify. These are *Termination*, informally stating that each operation that is started is eventually completed, and *Validity*, specifying the value that will be read according to the *regular register* abstraction.

To verify the *Termination* property we use the `ongoingRead` and `ongoingWrite` variables. These will be updated by the nodes as the algorithm run. To verify *Validity* we store the set of possible values for each state. The set is maintained by the writer node. We also store a `read` and a `currentRead` variable. `read` is the value returned by the `ReadIndicator` at the current event, if there was such a value. `currentRead` indicates whether there was a value returned by the `ReadIndicator` at the current event.

We then select a `Scheduler` to be used and define the `StateManager`. Currently the only scheduler available is the `BasicScheduler`. The `StateManager` requires two arguments; a function specifying how to create the local state, the `State` struct, from a node and a function specifying how to check states for equality.

We then create a `Simulator` using the `Scheduler` and `StateManager`. We call the `Simulate` method to start the simulation. It takes two arguments: a function specifying how to create and initialize the nodes and a function specifying the start action the nodes should perform. This should be some combinations of the actions performed by the system. The `Simulate` function starts the simulation which runs the provided program in a sequential fashion exploring all possible interleavings of events. It will completely explore the state space of the application.

To check the properties we define a `Checker` and provides functions that takes an instance of the global state and checks that the properties hold for this instance. The functions should return `true` if it holds and `false` id it breaks the property. The `Check` function iterates over all states that occurred during the simulation and verifies that all the functions returns `true` for the state. If it does not it returns information about which function failed and the sequence of states that resulted in the broken predicate.

<!-- What functions do we use to verify the properties ??? -->
To create a function that verifies the *Termination* property we can simply check that the `ongoingRead` and `ongoingWrite` variables are false for all nodes. Since the property states that it should eventually complete, we should not check all global states in the execution. Therefore we only check terminal nodes. This can be done by checking the `terminal` variable or by using the `PredEventually` function.

To verify the *Validity* property we only consider the terminal nodes and then construct a timeline from the start showing when there was an ongoing write operation. We then go trough all read events, and for each event find possible values depending on if they where concurrent with some write operation or not. We then check that the value returned on the `ReadIndicator` is some value in the set of possible values. The set of possible values is the last written value when the operation started and all concurrently written values.

To run the checker we call the `Check` function with the root of the state tree as parameter.

<!--
Notes:
 - hard to define predicates. In particular it is hard to check the returned values in the moment they where returned. Found a solution where we check the channel in the getLocalState function. Requires the channel to be buffered (or for it to be filled in a goroutine i suppose, but that might be weird)

 - All functions must run to completion. Since functions are executed sequentially with the simulator, if it for some reason stop to wait for some input from the simulator, e.g. waiting for the simulator to empty or fill a channel, the program will freeze. To solve this we might move the program into its own goroutine and use an indicator to let the simulator know when the program is waiting and when it is running.

 - SOLVED can not specify multiple start functions and ensure that all orders of them are tried. Requires that the user think more about how the start functions work. Could be solved by creating an event for function calls.

 - SOLVED Tedious to convert messages into `[]byte` before sending it. Could do it automatically using glob. Could be harder to do the decoding, but we might be able to use reflection to find the expected type and use that.

 - Tedious to manually assign the msgType for a message, i.e. the function that will be called when receiving the message. Unknown how to solve this. The message type that is used could be named after the function that will be called. I.e. If you want to call a method that is named "AckWrite" you send an "AckWrite" message to the node.

 - Output from the checker is not that useful in identifying what happened. We should also create a way to export and import the states tree so that we don't have to run the simulation every time we want to run the checker.

 - Could also generate a utility function for broadcasts, but it is not a big issue

 -->

GoMC-master/examples/onrr/onrr.go

package main

type Value struct {
	Ts int
	Val int
}

type BroadcastWriteMsg struct {
	Val Value
}

type AckMsg struct {
	Ts int
}

type BroadcastReadMsg struct {
	Rid int
}

type ReadValueMsg struct {
	Rid int
	Val Value
}

type onrr struct {
	val Value // Current value stored in the register
	wts int // Write timestamp
	acks int // Number of acks received for the current value
	rid int // A read request identifier
	readList map[int]Value // A slice of all values

	WriteIndicator chan bool
	ReadIndicator chan int

	// Used for testing.
	ongoingRead bool
	ongoingWrite bool
	possibleReads []int

	// Id of the current node
	id int
	// Used to keep track of all nodes
	nodes []int
	// Used to send messages to other types.
	send func(to int, msgType string, params ...any)
}

func NewOnrr(id int, send func(to int, msgType string, params ...any), nodes []int) *onrr {
	return &onrr{
		val: Value{Ts: 0, Val: 0},
		wts: 0,
		acks: 0,
		rid: 0,
		readList: make(map[int]Value),

		// Indicator channels
		WriteIndicator: make(chan bool, 1),
		ReadIndicator: make(chan int, 1),

		ongoingRead: false,
		ongoingWrite: false,
		possibleReads: []int{0},

		id: id,
		nodes: nodes,
		send: send,
	}
}

func (onrr *onrr) Write(val int) {
	onrr.wts++
	onrr.acks = 0

	onrr.possibleReads = []int{onrr.val.Val, val}

	value := Value{
		Ts: onrr.wts,
		Val: val,
	}

	onrr.ongoingWrite = true

	msg := BroadcastWriteMsg{Val: value}
	for _, target := range onrr.nodes {
		onrr.send(target, "BroadcastWrite", onrr.id, msg)
	}
}

func (onrr *onrr) BroadcastWrite(from int, msg BroadcastWriteMsg) {
	bwMsg := msg
	if bwMsg.Val.Ts > onrr.val.Ts {
		onrr.val = bwMsg.Val
	}
	ackMsg := AckMsg{
		Ts: bwMsg.Val.Ts,
	}
	onrr.send(from, "AckWrite", ackMsg)
}

func (onrr *onrr) AckWrite(msg AckMsg) {
	ackMsg := msg
	if ackMsg.Ts != onrr.wts {
		return
	}
	onrr.acks++
	if onrr.acks > len(onrr.nodes)/2 {
		if onrr.ongoingWrite {
			onrr.possibleReads = onrr.possibleReads[1:]
		}
		onrr.ongoingWrite = false
		onrr.acks = 0
		onrr.WriteIndicator <- true
	}
}

func (onrr *onrr) Read() {
	onrr.ongoingRead = true

	onrr.rid++
	onrr.readList = make(map[int]Value)
	msg := BroadcastReadMsg{
		Rid: onrr.rid,
	}
	for _, target := range onrr.nodes {
		onrr.send(target, "BroadcastRead", onrr.id, msg)
	}
}

func (onrr *onrr) BroadcastRead(from int, msg BroadcastReadMsg) {
	readMsg := msg
	valMsg := ReadValueMsg{
		Rid: readMsg.Rid,
		Val: onrr.val,
	}
	onrr.send(from, "ReadValue", onrr.id, valMsg)
}

func (onrr *onrr) ReadValue(from int, msg ReadValueMsg) {
	valMsg := msg
	if valMsg.Rid != onrr.rid {
		return
	}
	onrr.readList[from] = valMsg.Val
	if len(onrr.readList) > len(onrr.nodes)/2 {
		val := getvalue(onrr.readList)
		onrr.readList = make(map[int]Value)

		onrr.ongoingRead = false
		onrr.ReadIndicator <- val.Val
	}
}

func getvalue(valueMap map[int]Value) Value {
	var highest Value
	for _, val := range valueMap {
		if val.Ts > highest.Ts {
			highest = val
		}
	}
	return highest
}

GoMC-master/examples/onrr/onrrBench_test.go

package main

import (
	"gomc"
	"gomc/eventManager"
	"testing"

	"golang.org/x/exp/slices"
)

func BenchmarkOnrr(b *testing.B) {

	nodeIds := []int{1, 2, 3}

	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *onrr) State {
				reads := []int{}
				reads = append(reads, node.possibleReads...)

				// If there has been a read indication store it. Otherwise ignore it
				read := 0
				currentRead := false
				select {
				case read = <-node.ReadIndicator:
					currentRead = true
				default:
				}

				return State{
					ongoingRead: node.ongoingRead,
					ongoingWrite: node.ongoingWrite,
					possibleReads: reads,
					read: read,
					currentRead: currentRead,
				}
			},
			func(a, b State) bool {
				if a.ongoingRead != b.ongoingRead {
					return false
				}
				if a.ongoingWrite != b.ongoingWrite {
					return false
				}
				if a.currentRead != b.currentRead {
					return false
				}
				if a.read != b.read {
					return false
				}
				return slices.Equal(a.possibleReads, b.possibleReads)
			},
),
		gomc.RandomWalkScheduler(1),
		gomc.MaxRuns(10000),
)

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		sim.Run(
			gomc.InitNodeFunc(
				func(sp eventManager.SimulationParameters) map[int]*onrr {
					send := eventManager.NewSender(sp)

					nodes := make(map[int]*onrr)
					for _, id := range nodeIds {
						nodes[id] = NewOnrr(id, send.SendFunc(id), nodeIds)
					}
					go func() {
						for {
							<-nodes[1].WriteIndicator
						}
					}()
					return nodes
				},
),
			gomc.WithRequests(
				gomc.NewRequest(1, "Write", 2),
				gomc.NewRequest(2, "Read"),
				gomc.NewRequest(3, "Read"),
),
			gomc.WithPredicateChecker(predicates...),
)
	}
}

GoMC-master/examples/onrr/onrr_test.go

package main

import (
	"gomc"
	"gomc/checking"
	"gomc/eventManager"
	"math"
	"testing"

	"golang.org/x/exp/slices"
)

type State struct {
	ongoingRead bool
	ongoingWrite bool

	possibleReads []int

	read int
	currentRead bool
}

var predicates = []checking.Predicate[State]{
	checking.Eventually(
		func(s checking.State[State]) bool {
			// Check that all correct nodes have no ongoing reads or writes
			return checking.ForAllNodes(func(a State) bool { return !(a.ongoingRead || a.ongoingWrite) }, s, true)
		},
),
	func(s checking.State[State]) bool {
		writer := 0
		possibleReadSlice := make([][]int, len(s.Sequence))
		for i, elem := range s.Sequence {
			possibleReadSlice[i] = elem.LocalStates[writer].possibleReads
		}

		// Create a set of the set of possible values for an event at the provided range
		// Possible values include the union of all locally stored possible value for all states in the range
		possibleVals := func(start, end int) map[int]bool {
			possibleReads := map[int]bool{}
			for i := start; i <= end; i++ {
				for _, val := range possibleReadSlice[i] {
					possibleReads[val] = true
				}
			}
			return possibleReads
		}

		// For each node in. Go trough the sequence and find ReadEvents.
		// Find possible values for the read event and check that it matches the returned value
		for id := range s.LocalStates {
			readStart := math.MaxInt
			for i, elem := range s.Sequence {

				node := elem.LocalStates[id]
				if node.ongoingRead && i < readStart {
					// A read operation starts
					readStart = i
				}
				if node.currentRead {
					// A read operation ends
					valSet := possibleVals(readStart, i)
					if !valSet[node.read] {
						return false
					}
					readStart = math.MaxInt
				}
			}
		}
		return true
	},
}

func TestOnrr(t *testing.T) {
	// Select a scheduler. We will use the basic scheduler since it is the only one that is currently implemented
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *onrr) State {
				reads := []int{}
				reads = append(reads, node.possibleReads...)

				// If there has been a read indication store it. Otherwise ignore it
				read := 0
				currentRead := false
				select {
				case read = <-node.ReadIndicator:
					currentRead = true
				default:
				}

				return State{
					ongoingRead: node.ongoingRead,
					ongoingWrite: node.ongoingWrite,
					possibleReads: reads,
					read: read,
					currentRead: currentRead,
				}
			},
			func(a, b State) bool {
				if a.ongoingRead != b.ongoingRead {
					return false
				}
				if a.ongoingWrite != b.ongoingWrite {
					return false
				}
				if a.currentRead != b.currentRead {
					return false
				}
				if a.read != b.read {
					return false
				}
				return slices.Equal(a.possibleReads, b.possibleReads)
			},
),
		gomc.RandomWalkScheduler(1),
		gomc.MaxRuns(10000),
)
	resp := sim.Run(
		gomc.InitNodeFunc(
			func(sp eventManager.SimulationParameters) map[int]*onrr {
				numNodes := 5
				send := eventManager.NewSender(sp)

				nodeIds := []int{}
				for i := 0; i < numNodes; i++ {
					nodeIds = append(nodeIds, i)
				}
				nodes := make(map[int]*onrr)
				for _, id := range nodeIds {
					nodes[id] = NewOnrr(id, send.SendFunc(id), nodeIds)
				}
				go func() {
					for {
						<-nodes[0].WriteIndicator
					}
				}()
				return nodes
			},
),
		gomc.WithRequests(
			gomc.NewRequest(0, "Write", 2),
			gomc.NewRequest(1, "Read"),
			gomc.NewRequest(2, "Read"),
			gomc.NewRequest(3, "Read"),
			gomc.NewRequest(4, "Read"),
),
		gomc.WithPredicateChecker(predicates...),
)
	ok, desc := resp.Response()
	if !ok {
		t.Errorf("Expected not to find an error in the implementation")
	}
	print(desc)
}

GoMC-master/examples/paxos/acceptor.go

package paxos

import (
	"context"
	"gomc/examples/paxos/proto"

	"github.com/golang/protobuf/ptypes/empty"
	"google.golang.org/protobuf/types/known/emptypb"
)

type Acceptor struct {
	proto.UnimplementedAcceptorServer

	id *proto.NodeId

	// Current round
	rnd *proto.Round

	// The last accepted value and the round in which it was accepted
	vval *proto.Value

	nodes map[int64]*paxosClient
	waitForSend func(num int)
}

func NewAcceptor(id *proto.NodeId, waitForSend func(num int)) *Acceptor {
	return &Acceptor{
		id: id,

		nodes: make(map[int64]*paxosClient),
		waitForSend: waitForSend,
	}
}

func (a *Acceptor) Prepare(_ context.Context, in *proto.PrepareRequest) (*empty.Empty, error) {
	if in.GetCrnd().GetVal() > a.rnd.GetVal() {
		a.rnd = in.GetCrnd()
	}

	go a.nodes[in.GetFrom().GetVal()].Promise(
		context.Background(),
		&proto.PromiseRequest{
			Rnd: a.rnd,
			Val: a.vval,
			From: a.id,
		},
)
	a.waitForSend(1)
	return &emptypb.Empty{}, nil
}

func (a *Acceptor) Accept(_ context.Context, in *proto.AcceptRequest) (*empty.Empty, error) {
	if in.GetVal().GetRnd().GetVal() < a.rnd.GetVal() {
		return &emptypb.Empty{}, nil
	}
	a.vval = in.GetVal()

	msg := &proto.LearnRequest{
		Val: in.GetVal(),
		From: a.id,
	}
	for _, node := range a.nodes {
		go node.Learn(context.Background(), msg)
	}
	a.waitForSend(len(a.nodes))
	return &emptypb.Empty{}, nil
}

GoMC-master/examples/paxos/learner.go

package paxos

import (
	"context"
	"gomc/examples/paxos/proto"

	"github.com/golang/protobuf/ptypes/empty"
	"google.golang.org/protobuf/types/known/emptypb"
)

func ValEquals(a, b *proto.Value) bool {
	if a.GetRnd().GetVal() != b.GetRnd().GetVal() {
		return false
	}
	if a.GetVal() != b.GetVal() {
		return false
	}
	return true
}

type Learner struct {
	proto.UnimplementedLearnerServer

	id *proto.NodeId

	recvLrn map[int64]*proto.Value

	numNodes int

	// Consensus Value
	learnSubscribe []func(string)
}

func NewLearner(id *proto.NodeId, numNodes int) *Learner {
	return &Learner{
		id: id,

		numNodes: numNodes,
		recvLrn: make(map[int64]*proto.Value),

		learnSubscribe: make([]func(string), 0),
	}
}

func (l *Learner) Learn(_ context.Context, in *proto.LearnRequest) (*empty.Empty, error) {
	l.addValue(in.GetFrom().GetVal(), in.GetVal())
	numLrn := 0
	freqVal := &proto.Value{
		Rnd: &proto.Round{Val: -1},
	}
	for _, val := range l.recvLrn {
		if val.GetRnd().GetVal() > freqVal.GetRnd().GetVal() {
			freqVal = val
			numLrn = 0
		}
		if ValEquals(freqVal, val) {
			numLrn++
		}
	}
	if numLrn > l.numNodes/2 {
		l.emmitLearn(freqVal)
	}
	return &emptypb.Empty{}, nil
}

// Add the value to the received value map, if it is the highest round number received from that node
func (l *Learner) addValue(from int64, val *proto.Value) {
	oldVal, ok := l.recvLrn[from]
	if !ok {
		l.recvLrn[from] = val
		return
	}
	if val.GetRnd().GetVal() > oldVal.GetRnd().GetVal() {
		l.recvLrn[from] = val
	}
}

func (l *Learner) Subscribe(f func(val string)) {
	l.learnSubscribe = append(l.learnSubscribe, f)
}

func (l *Learner) emmitLearn(val *proto.Value) {
	for _, f := range l.learnSubscribe {
		f(val.GetVal())
	}
}

GoMC-master/examples/paxos/main/main.go

package main

import (
	"context"
	"fmt"
	"gomc/examples/paxos"
	"log"
	"net"
	"sync"

	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"
)

var (
	bufSize = 1024
	addrMap = map[int64]string{
		1: ":50000",
		2: ":50001",
		3: ":50002",
		4: ":50003",
		5: ":50004",
	}
	addrToIdMao = map[string]int{}
	lisMap = map[string]*bufconn.Listener{}
	nodes = map[int64]*paxos.Server{}

	dial = func(ctx context.Context, s string) (net.Conn, error) {
		return lisMap[s].DialContext(ctx)
	}
)

func main() {

	for id, addr := range addrMap {
		addrToIdMao[addr] = int(id)
		lisMap[addr] = bufconn.Listen(bufSize)
	}

	for id, addr := range addrMap {
		srv, err := paxos.NewServer(id, addrMap, func(int) {})
		if err != nil {
			log.Panicln(err)
		}
		go func(addr string) {
			err := srv.StartServer(lisMap[addr])
			if err != nil {
				log.Println(err)
			}
		}(addr)
		nodes[id] = srv
	}

	for _, srv := range nodes {
		srv.DialNodes(
			grpc.WithContextDialer(dial),
			grpc.WithBlock(),
			grpc.WithTransportCredentials(insecure.NewCredentials()),
)
	}

	// fmt.Scanln()
	var wait sync.WaitGroup
	for _, node := range nodes {
		wait.Add(1)
		go func(n *paxos.Server) {
			n.Subscribe(func(val string) {
				fmt.Println("Node", n.Id, "Decided: ", val)
			})
			wait.Done()
		}(node)
	}

	nodes[5].Stop()
	go func() {
		for _, n := range nodes {
			n.NodeCrash(5, false)
		}
	}()

	for _, node := range nodes {
		go func(n *paxos.Server) {
			fmt.Println("Node", n.Id, "Propose", addrMap[n.Id])
			n.Propose(addrMap[n.Id])
		}(node)
	}
	wait.Wait()
}

GoMC-master/examples/paxos/paxos.go

package paxos

import (
	"gomc/examples/paxos/proto"
	"net"

	"google.golang.org/grpc"
)

type paxosClient struct {
	conn *grpc.ClientConn

	proto.ProposerClient
	proto.AcceptorClient
	proto.LearnerClient
}

func newPaxosClient(conn *grpc.ClientConn) *paxosClient {
	return &paxosClient{
		ProposerClient: proto.NewProposerClient(conn),
		AcceptorClient: proto.NewAcceptorClient(conn),
		LearnerClient: proto.NewLearnerClient(conn),
	}
}

type paxos struct {
	*Proposer
	*Acceptor
	*Learner

	Proposal string
	Decided string

	stopped bool

	Id int64
	correct map[int64]bool
	leader int64
}

func newPaxos(id int64, nodes map[int64]string, waitForSend func(int)) *paxos {
	nodeId := &proto.NodeId{Val: id}
	var leader int64
	correct := make(map[int64]bool)
	for nodeId := range nodes {
		if nodeId > leader {
			leader = nodeId
		}
		correct[nodeId] = true
	}
	l := NewLearner(nodeId, len(nodes))
	p := &paxos{
		Proposer: NewProposer(nodeId, waitForSend),
		Acceptor: NewAcceptor(nodeId, waitForSend),
		Learner: l,

		Id: id,
		leader: leader,
		correct: correct,
	}

	l.Subscribe(p.decided)
	return p
}

func (p *paxos) NodeCrash(id int, _ bool) {
	if p.stopped {
		return
	}
	p.correct[int64(id)] = false
	if int64(id) == p.leader {
		p.newLeader()
	}
}

func (p *paxos) newLeader() {
	p.Proposer.IncrementCrnd()
	p.leader = p.nextLeader()
	if p.leader == p.Id && p.Proposal != "" {
		p.performPrepare(p.Proposal)
	}
}

func (p *paxos) nextLeader() int64 {
	var leader int64
	for id, ok := range p.correct {
		if ok {
			if id > leader {
				leader = id
			}
		}
	}
	return leader
}

func (p *paxos) Propose(val string) {
	if p.stopped {
		return
	}
	p.Proposal = val
	if p.leader == p.Id {
		p.performPrepare(p.Proposal)
	}
}

func (p *paxos) decided(val string) {
	p.Decided = val
}

type Server struct {
	srv *grpc.Server
	connections []*grpc.ClientConn
	addrMap map[int64]string

	*paxos
}

func NewServer(id int64, addrMap map[int64]string, waitForSend func(int), srvOpts ...grpc.ServerOption) (*Server, error) {
	srv := grpc.NewServer(srvOpts...)
	paxos := newPaxos(id, addrMap, waitForSend)
	proto.RegisterProposerServer(srv, paxos)
	proto.RegisterAcceptorServer(srv, paxos)
	proto.RegisterLearnerServer(srv, paxos)
	return &Server{
		srv: srv,
		paxos: paxos,
		addrMap: addrMap,
	}, nil
}

func (p *Server) StartServer(lis net.Listener) error {
	return p.srv.Serve(lis)
}

func (p *Server) Stop() {
	p.srv.Stop()
	for _, c := range p.connections {
		c.Close()
	}
	p.stopped = true
}

func (p *Server) DialNodes(dialOpts ...grpc.DialOption) error {
	nodes := make(map[int64]*paxosClient)
	for id, addr := range p.addrMap {
		conn, err := grpc.Dial(addr, dialOpts...)
		if err != nil {
			return err
		}
		nodes[id] = newPaxosClient(conn)
		p.connections = append(p.connections, conn)
	}
	p.paxos.Proposer.nodes = nodes
	p.paxos.Acceptor.nodes = nodes
	return nil
}

GoMC-master/examples/paxos/paxosBench_test.go

package paxos

import (
	"context"
	"gomc/eventManager"
	"net"
	"testing"

	"gomc"

	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"
)

func BenchmarkPaxos(b *testing.B) {
	addresses := map[int64]string{
		1: ":1",
		2: ":2",
		3: ":3",
	}

	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(t *Server) State {
				return State{
					proposed: t.Proposal,
					decided: t.Decided,
				}
			},
			func(s1, s2 State) bool {
				return s1 == s2
			},
),
		gomc.RandomWalkScheduler(1),
)

	addrToIdMap := map[string]int{}
	for id, addr := range addresses {
		addrToIdMap[addr] = int(id)
	}

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		sim.Run(
			gomc.InitNodeFunc(func(sp eventManager.SimulationParameters) map[int]*Server {
				lisMap := map[string]*bufconn.Listener{}
				for _, addr := range addresses {
					lisMap[addr] = bufconn.Listen(bufSize)
				}
				gem := eventManager.NewGrpcEventManager(addrToIdMap, sp)

				nodes := make(map[int]*Server)
				for id, addr := range addresses {
					srv, err := NewServer(id, addresses, gem.WaitForSend(int(id)))
					if err != nil {
						b.Errorf("Error while starting simulation: %v", err)
					}
					go srv.StartServer(lisMap[addr])
					sp.CrashSubscribe(int(id), srv.NodeCrash)
					nodes[int(id)] = srv
				}

				for id, node := range nodes {
					node.DialNodes(
						grpc.WithUnaryInterceptor(gem.UnaryClientControllerInterceptor(id)),
						grpc.WithContextDialer(
							func(ctx context.Context, s string) (net.Conn, error) {
								return lisMap[s].DialContext(ctx)
							},
),
						grpc.WithBlock(),
						grpc.WithTransportCredentials(insecure.NewCredentials()),
)
				}
				return nodes
			}),
			gomc.WithRequests(
				gomc.NewRequest(1, "Propose", "1"),
				gomc.NewRequest(2, "Propose", "2"),
				gomc.NewRequest(3, "Propose", "3"),
),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(func(t *Server) { t.Stop() }, 1),
			gomc.WithStopFunctionSimulator(func(t *Server) { t.Stop() }),
)
	}
}

GoMC-master/examples/paxos/paxosRunner/main.go

package main

import (
	"bufio"
	"context"
	"fmt"
	"gomc"
	"net"
	"os"
	"strconv"
	"strings"
	"sync"

	"gomc/eventManager"
	"gomc/examples/paxos"
	"gomc/runner"

	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"
)

var (
	bufSize = 1024
	addrMap = map[int64]string{
		1: "127.0.0.1:50000",
		2: ":50001",
		3: ":50002",
		4: ":50003",
		5: ":50004",
	}
	addr2id = map[string]int{}
)

type State struct {
	proposed string
	decided string
}

func main() {

	for id, addr := range addrMap {
		addr2id[addr] = int(id)
	}
	r := gomc.PrepareRunner(
		gomc.InitNodeFunc(
			func(sp eventManager.SimulationParameters) map[int]*paxos.Server {
				lisMap := map[string]*bufconn.Listener{}
				for _, addr := range addrMap {
					lisMap[addr] = bufconn.Listen(bufSize)
				}

				gem := eventManager.NewGrpcEventManager(addr2id, sp)
				nodes := make(map[int]*paxos.Server)
				for id, addr := range addrMap {
					srv, err := paxos.NewServer(id, addrMap, gem.WaitForSend(int(id)))
					sp.CrashSubscribe(int(id), srv.NodeCrash)
					if err != nil {
						panic(err)
					}
					nodes[int(id)] = srv
					go srv.StartServer(lisMap[addr])
				}

				for id, srv := range nodes {
					err := srv.DialNodes(
						grpc.WithContextDialer(
							func(ctx context.Context, s string) (net.Conn, error) {
								return lisMap[s].DialContext(ctx)
							},
),
						grpc.WithTransportCredentials(insecure.NewCredentials()),
						grpc.WithUnaryInterceptor(gem.UnaryClientControllerInterceptor(id)),
)
					if err != nil {
						panic(err)
					}
				}
				return nodes
			},
),
		gomc.WithStateFunction(func(t *paxos.Server) State {
			return State{
				proposed: t.Proposal,
				decided: t.Decided,
			}
		}),
		gomc.WithStopFunctionRunner(func(t *paxos.Server) { t.Stop() }),
)

	wait := new(sync.WaitGroup)
	wait.Add(1)
	// Store records by node id and write them to file
	go func(c <-chan runner.Record) {
		messages := map[int][]runner.Record{}
		for _, id := range addr2id {
			messages[id] = make([]runner.Record, 0)
		}
		m, err := os.Create("Messages.txt")
		if err != nil {
			panic(err)
		}
		for rec := range c {
			m := messages[rec.Target()]
			m = append(m, rec)
			messages[rec.Target()] = m
		}

		for id, msgSlice := range messages {
			fmt.Fprintf(m, "Node %v: [\n", id)
			for _, msg := range msgSlice {
				fmt.Fprintf(m, "\t%v \n", msg)
			}
			fmt.Fprint(m, "]\n")
		}
		wait.Done()
	}(r.SubscribeRecords())

	scanner := bufio.NewScanner(os.Stdin)
	ok := true
	for ok {
		scanner.Scan()
		vals := strings.Split(scanner.Text(), " ")
		cmd := vals[0]
		params := vals[1:]
		switch cmd {
		case "stop":
			r.Stop()
			ok = false
		case "propose":
			if len(params) < 2 {
				panic("To few parameters")
			}
			id, err := strconv.Atoi(params[0])
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
			err = r.Request(gomc.NewRequest(id, "Propose", params[1]))
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
		case "pause":
			id, err := strconv.Atoi(params[0])
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
			err = r.PauseNode(id)
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
		case "resume":
			id, err := strconv.Atoi(params[0])
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
			err = r.ResumeNode(id)
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
		case "crash":
			id, err := strconv.Atoi(params[0])
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
			err = r.CrashNode(id)
			if err != nil {
				panic(fmt.Errorf("Error: %v", err))
			}
		default:
			fmt.Println("Invalid command")
		}
	}

	wait.Wait()
}

GoMC-master/examples/paxos/paxosRunner/Messages.txt

			Node 4: [

						[Message Received - GrpcEvent From: 5 To: 4 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 4 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 5 To: 4 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 4 To: 4 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 4 To: 2 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 4 To: 3 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 4 To: 5 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 4 To: 1 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 3 To: 4 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 4 To: 4 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 2 To: 4 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 1 To: 4 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 5 To: 4 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

]

			Node 5: [

						[Execution - Evt {Function 0. Target: 5}]

						[Message Sent - GrpcEvent From: 5 To: 5 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 5 To: 3 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 5 To: 4 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 5 To: 1 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 5 To: 2 Method: /proto.Acceptor/Prepare]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 5 To: 5 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 5 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 2 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 5 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 1 To: 5 Method: /proto.Proposer/Promise]

						[Message Sent - GrpcEvent From: 5 To: 2 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 5 To: 5 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 5 To: 4 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 5 To: 3 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 5 To: 1 Method: /proto.Acceptor/Accept]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 3 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 4 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 5 To: 5 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 5 To: 4 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 5 To: 1 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 5 To: 2 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 5 To: 3 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 5 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 3 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 2 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed:test decided:}]

						[Message Received - GrpcEvent From: 4 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed:test decided:test}]

						[Message Received - GrpcEvent From: 1 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed:test decided:test}]

						[Message Received - GrpcEvent From: 5 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed:test decided:test}]

]

			Node 1: [

						[Message Received - GrpcEvent From: 5 To: 1 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 1 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 5 To: 1 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 1 To: 4 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 1 To: 2 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 1 To: 3 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 1 To: 1 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 1 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 3 To: 1 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 2 To: 1 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 4 To: 1 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 1 To: 1 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 5 To: 1 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

]

			Node 2: [

						[Message Received - GrpcEvent From: 5 To: 2 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 2 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 5 To: 2 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 2 To: 3 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 2 To: 1 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 2 To: 2 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 2 To: 4 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 2 To: 5 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 3 To: 2 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 2 To: 2 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 4 To: 2 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 1 To: 2 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 5 To: 2 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

]

			Node 3: [

						[Message Received - GrpcEvent From: 5 To: 3 Method: /proto.Acceptor/Prepare]

						[Message Sent - GrpcEvent From: 3 To: 5 Method: /proto.Proposer/Promise]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 5 To: 3 Method: /proto.Acceptor/Accept]

						[Message Sent - GrpcEvent From: 3 To: 2 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 3 To: 5 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 3 To: 4 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 3 To: 1 Method: /proto.Learner/Learn]

						[Message Sent - GrpcEvent From: 3 To: 3 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 2 To: 3 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 3 To: 3 Method: /proto.Learner/Learn]

						[State - {proposed: decided:}]

						[Message Received - GrpcEvent From: 4 To: 3 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 1 To: 3 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

						[Message Received - GrpcEvent From: 5 To: 3 Method: /proto.Learner/Learn]

						[State - {proposed: decided:test}]

]

GoMC-master/examples/paxos/paxos_test.go

package paxos

import (
	"bytes"
	"context"
	"encoding/json"
	"net"
	"os"
	"testing"

	"google.golang.org/grpc"
	"google.golang.org/grpc/credentials/insecure"
	"google.golang.org/grpc/test/bufconn"

	"gomc"
	"gomc/checking"
	"gomc/eventManager"
)

type State struct {
	proposed string
	decided string
}

var (
	bufSize = 1024
	addrMap = map[int64]string{
		1: ":50000",
		2: ":50001",
		3: ":50002",
		4: ":50003",
		5: ":50004",
	}
	zeroVal string
)

var predicates = []checking.Predicate[State]{
	func(s checking.State[State]) bool {
		// Only a value that has been proposed may be chosen
		proposedVal := map[string]bool{}
		for _, state := range s.LocalStates {
			proposedVal[state.proposed] = true
		}
		return checking.ForAllNodes(func(s State) bool { return !(s.decided != zeroVal && !proposedVal[s.decided]) }, s, false)
	},
	func(s checking.State[State]) bool {
		// Only a single value is chosen
		decidedVal := map[string]bool{}
		for _, state := range s.LocalStates {
			if state.decided != zeroVal {
				decidedVal[state.decided] = true
			}
		}
		if len(decidedVal) > 1 {
			return false
		}
		return true
	},
	checking.Eventually(
		func(s checking.State[State]) bool {
			// All correct node should eventually learn the decided value
			return checking.ForAllNodes(func(s State) bool { return s.decided != zeroVal }, s, true)
		},
),
}

func TestPaxosSim(t *testing.T) {
	addrToIdMap := map[string]int{}
	for id, addr := range addrMap {
		addrToIdMap[addr] = int(id)
	}

	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(t *Server) State {
				return State{
					proposed: t.Proposal,
					decided: t.Decided,
				}
			},
			func(s1, s2 State) bool {
				return s1 == s2
			},
),
		gomc.RandomWalkScheduler(1),
)
	w, err := os.Create("export.txt")
	if err != nil {
		t.Errorf("Error while creating file: %v", err)
	}
	defer w.Close()
	resp := sim.Run(
		gomc.InitNodeFunc(func(sp eventManager.SimulationParameters) map[int]*Server {
			lisMap := map[string]*bufconn.Listener{}
			for _, addr := range addrMap {
				lisMap[addr] = bufconn.Listen(bufSize)
			}
			gem := eventManager.NewGrpcEventManager(addrToIdMap, sp)

			nodes := make(map[int]*Server)
			for id, addr := range addrMap {
				srv, err := NewServer(id, addrMap, gem.WaitForSend(int(id)))
				if err != nil {
					t.Errorf("Error while starting simulation: %v", err)
				}
				go srv.StartServer(lisMap[addr])
				sp.CrashSubscribe(int(id), srv.NodeCrash)
				nodes[int(id)] = srv
			}

			for id, node := range nodes {
				node.DialNodes(
					grpc.WithUnaryInterceptor(gem.UnaryClientControllerInterceptor(id)),
					grpc.WithContextDialer(
						func(ctx context.Context, s string) (net.Conn, error) {
							return lisMap[s].DialContext(ctx)
						},
),
					grpc.WithBlock(),
					grpc.WithTransportCredentials(insecure.NewCredentials()),
)
			}
			return nodes
		}),
		gomc.WithRequests(
			gomc.NewRequest(1, "Propose", "1"),
			gomc.NewRequest(2, "Propose", "2"),
			gomc.NewRequest(3, "Propose", "3"),
			gomc.NewRequest(4, "Propose", "4"),
			gomc.NewRequest(5, "Propose", "5"),
),
		gomc.WithPredicateChecker(predicates...),
		gomc.WithPerfectFailureManager(func(t *Server) { t.Stop() }, 5, 1),
		gomc.WithStopFunctionSimulator(func(t *Server) { t.Stop() }),
		gomc.Export(w),
)
	if ok, text := resp.Response(); !ok {
		t.Errorf("Test Failed: \n %v", text)

		var buffer bytes.Buffer
		json.NewEncoder(&buffer).Encode(resp.Export())
		os.WriteFile("FailedRun.txt", buffer.Bytes(), 0755)
	}
}

GoMC-master/examples/paxos/proposer.go

package paxos

import (
	"context"
	"gomc/examples/paxos/proto"

	"github.com/golang/protobuf/ptypes/empty"
	"google.golang.org/protobuf/types/known/emptypb"
)

type Proposer struct {
	proto.UnimplementedProposerServer

	id *proto.NodeId

	v *proto.Value

	// Current round
	crnd *proto.Round
	// Constrained consensus value
	cval *proto.Value

	numPromise int
	largestVal *proto.Value

	phaseOne chan bool

	nodes map[int64]*paxosClient
	waitForSend func(num int)
}

func NewProposer(id *proto.NodeId, waitForSend func(num int)) *Proposer {
	return &Proposer{
		id: id,

		crnd: &proto.Round{Val: id.GetVal()},

		nodes: make(map[int64]*paxosClient),
		waitForSend: waitForSend,
	}
}

func (p *Proposer) performPrepare(propsedVal string) {
	// Use a zero value for round. This will always be smaller than any value returned by the acceptor.
	// This ensures that the value is only chosen if no value is returned by an acceptor
	p.largestVal = &proto.Value{
		Val: propsedVal,
	}

	msg := &proto.PrepareRequest{
		Crnd: p.crnd,
		From: p.id,
	}
	for _, n := range p.nodes {
		go n.Prepare(context.Background(), msg)
	}
	p.waitForSend(len(p.nodes))
}

func (p *Proposer) Promise(_ context.Context, in *proto.PromiseRequest) (*empty.Empty, error) {
	if in.GetRnd().GetVal() != p.crnd.GetVal() {
		return &emptypb.Empty{}, nil
	}

	p.numPromise++
	if in.GetVal().GetRnd().GetVal() > p.largestVal.GetRnd().GetVal() {
		p.largestVal = in.GetVal()
	}

	if p.numPromise <= len(p.nodes)/2 {
		return &emptypb.Empty{}, nil
	}

	msg := &proto.AcceptRequest{
		Val: &proto.Value{
			Rnd: p.crnd,
			Val: p.largestVal.GetVal(),
		},
		From: p.id,
	}

	for _, node := range p.nodes {
		go node.Accept(context.Background(), msg)
	}
	p.waitForSend(len(p.nodes))

	p.numPromise = 0
	p.largestVal = nil

	return &emptypb.Empty{}, nil
}

func (p *Proposer) IncrementCrnd() {
	newRnd := p.crnd.GetVal() + int64(len(p.nodes))
	p.crnd = &proto.Round{Val: newRnd}
}

GoMC-master/examples/paxos/proto/paxos.proto

syntax = "proto3";

package proto;
import "google/protobuf/empty.proto";
option go_package = "gomc/examples/paxos/proto";

service Proposer {
 rpc Promise(PromiseRequest) returns (google.protobuf.Empty);
}

service Acceptor {
 rpc Prepare(PrepareRequest) returns (google.protobuf.Empty);
 rpc Accept(AcceptRequest) returns (google.protobuf.Empty);
}

service Learner {
 rpc Learn(LearnRequest) returns (google.protobuf.Empty);
}

message Round {
 int64 val = 1;
}

message Value {
 string val = 1;
 Round rnd = 2;
}

message NodeId {
 int64 val = 1;
}

message PromiseRequest {
 Round rnd = 1;
 Value val = 2;
 NodeId from = 3;
}

message PrepareRequest {
 Round crnd = 1;
 NodeId from = 2;
}

message AcceptRequest {
 Value val = 1;
 NodeId from = 2;
}

message LearnRequest {
 Value val = 1;
 NodeId from = 2;
}

GoMC-master/examples/rrb/rrb.go

package main

import (
	"fmt"
)

type message struct {
	From int
	Index int
	Payload string
}

func (m message) String() string {
	return fmt.Sprintf("{F:%v, i:%v}", m.From, m.Index)
}

type Rrb struct {
	id int
	nodes []int

	delivered map[message]bool
	sent map[message]bool
	send func(to int, msgType string, msg ...any)

	crashed bool

	deliveredSlice []message
}

func NewRrb(id int, nodes []int, send func(int, string, ...any)) *Rrb {
	return &Rrb{
		id: id,
		nodes: nodes,

		delivered: make(map[message]bool),
		sent: make(map[message]bool),
		send: send,
	}
}

func (rrb *Rrb) Broadcast(msg string) {
	if rrb.crashed {
		return
	}
	message := message{
		From: rrb.id,
		Index: len(rrb.sent),
		Payload: msg,
	}

	for _, target := range rrb.nodes {
		rrb.send(target, "Deliver", message)
	}
	rrb.sent[message] = true
}

func (rrb *Rrb) Deliver(message message) {
	if rrb.crashed {
		return
	}

	// violation of RB2:No Duplication
	rrb.deliveredSlice = append(rrb.deliveredSlice, message)
	if !rrb.delivered[message] {
		rrb.delivered[message] = true
		for _, target := range rrb.nodes {
			rrb.send(target, "Deliver", message)
		}
	}
}

GoMC-master/examples/rrb/rrbBench_test.go

package main

import (
	"gomc"
	"gomc/eventManager"
	"testing"

	"golang.org/x/exp/maps"
	"golang.org/x/exp/slices"
)

func BenchmarkRrb(b *testing.B) {
	nodeIds := []int{0, 1, 2}
	crashedNodes := []int{1}

	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *Rrb) State {
				return State{
					delivered: maps.Clone(node.delivered),
					sent: maps.Clone(node.sent),
					deliveredSlice: slices.Clone(node.deliveredSlice),
				}
			},
			func(s1, s2 State) bool {
				if !maps.Equal(s1.delivered, s2.delivered) {
					return false
				}
				if !slices.Equal(s1.deliveredSlice, s2.deliveredSlice) {
					return false
				}
				return maps.Equal(s1.sent, s2.sent)
			},
),
		gomc.PrefixScheduler(),
)

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		sim.Run(
			gomc.InitNodeFunc(
				func(sp eventManager.SimulationParameters) map[int]*Rrb {
					send := eventManager.NewSender(sp)
					nodes := map[int]*Rrb{}
					for _, id := range nodeIds {
						nodes[id] = NewRrb(
							id,
							nodeIds,
							send.SendFunc(id),
)
					}
					return nodes
				},
),
			gomc.WithRequests(
				gomc.NewRequest(0, "Broadcast", "Test Message"),
),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(
				func(t *Rrb) { t.crashed = true },
				crashedNodes...,
),
)
	}
}

GoMC-master/examples/rrb/rrb_test.go

package main

import (
	"fmt"

	"testing"

	"golang.org/x/exp/maps"
	"golang.org/x/exp/slices"

	"gomc"
	"gomc/checking"
	"gomc/eventManager"
)

var predicates = []checking.Predicate[State]{
	checking.Eventually(
		func(s checking.State[State]) bool {
			// RB1: Validity
			return checking.ForAllNodes(func(a State) bool {
				for sentMsg := range a.sent {
					if !a.delivered[sentMsg] {
						return false
					}
				}
				return true
			}, s, true)
		}),
	func(s checking.State[State]) bool {
		// RB2: No duplication
		for _, node := range s.LocalStates {
			delivered := make(map[message]bool)
			for _, msg := range node.deliveredSlice {
				if delivered[msg] {
					return false
				}
				delivered[msg] = true
			}
		}
		return true
	},
	func(s checking.State[State]) bool {
		// RB3: No creation
		sentMessages := map[message]bool{}
		for _, node := range s.LocalStates {
			for sent := range node.sent {
				sentMessages[sent] = true
			}
		}
		for _, state := range s.LocalStates {
			for delivered := range state.delivered {
				if !sentMessages[delivered] {
					return false
				}
			}
		}
		return true
	},
	checking.Eventually(
		func(s checking.State[State]) bool {
			// RB4 Agreement

			// Use leaf nodes to check for liveness properties
			// Can not say that the predicate has been broken for non-leaf nodes
			delivered := map[message]bool{}
			for _, node := range s.LocalStates {
				for msg := range node.delivered {
					delivered[msg] = true
				}
			}

			for msg := range delivered {
				if checking.ForAllNodes(func(s State) bool { return !s.delivered[msg] }, s, true) {
					return false
				}
			}
			return true
		},
),
}

type State struct {
	delivered map[message]bool
	sent map[message]bool
	deliveredSlice []message
}

var simulations = []struct {
	nodes []int
	crashedNodes []int
}{
	{
		[]int{0, 1, 2},
		[]int{},
	},
	{
		[]int{0, 1, 2},
		[]int{1},
	},
	{
		[]int{0, 1, 2, 4, 5, 6, 7, 8, 9},
		[]int{8},
	},
}

func TestRrb(t *testing.T) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *Rrb) State {
				return State{
					delivered: maps.Clone(node.delivered),
					sent: maps.Clone(node.sent),
					deliveredSlice: slices.Clone(node.deliveredSlice),
				}
			},
			func(s1, s2 State) bool {
				if !maps.Equal(s1.delivered, s2.delivered) {
					return false
				}
				if !slices.Equal(s1.deliveredSlice, s2.deliveredSlice) {
					return false
				}
				return maps.Equal(s1.sent, s2.sent)
			},
),
		gomc.PrefixScheduler(),
)

	for i, test := range simulations {
		resp := sim.Run(
			gomc.InitNodeFunc(
				func(sp eventManager.SimulationParameters) map[int]*Rrb {
					send := eventManager.NewSender(sp)
					nodes := map[int]*Rrb{}
					for _, id := range test.nodes {
						nodes[id] = NewRrb(
							id,
							test.nodes,
							send.SendFunc(id),
)
					}
					return nodes
				},
),
			gomc.WithRequests(
				gomc.NewRequest(0, "Broadcast", "Test Message"),
),
			gomc.WithPredicateChecker(predicates...),
			gomc.WithPerfectFailureManager(
				func(t *Rrb) { t.crashed = true },
				test.crashedNodes...,
),
)
		_, desc := resp.Response()
		fmt.Printf("Test %v: Got result: %v\n", i, desc)
	}
}

GoMC-master/failureManager/failureManager.go

package failureManager

import "gomc/eventManager"

// Used to manage the correctness of nodes
//
// Keeps track of which nodes has crashed.
// Imitates the functionality of a failure manager and provide mechanisms that allows nodes to learn which nodes have crashed.
// Performs changes in the status of nodes.
//
// Configures the RunFailureManager and tracks global information across runs
type FailureManger[T any] interface {
	// Create a RunFailureManager that can be used when simulating a run
	GetRunFailureManager(eventManager.EventAdder) RunFailureManager[T]
}

// RunSpecific part of the FailureManager
//
// Manages the functionality of the Failure Manager across a single run.
type RunFailureManager[T any] interface {
	// Initialize the FailureManager with the nodes that are used in this run
	Init(nodes map[int]*T)

	// Return a map of the node ids and the status of the corresponding node
	//
	// If the status is true the node is currently running.
	// if it is false the node has crashed.
	CorrectNodes() map[int]bool

	// Subscribe to updates about node status.
	//
	// id is the id of the node that subscribes to the callback.
	// The callback is a function that is called with the new status of the node when the status.
	// A node should only subscribe to node crashes once.
	Subscribe(id int, callback func(id int, status bool))
}

GoMC-master/failureManager/failureManager_test.go

package failureManager

// func TestPerfectFailureManager(t *testing.T) {
// 	fm := newPerfectRunFailureManager[struct{}]()
// 	nodes := []int{0, 1, 2, 3, 4}
// 	fm.Init(nodes)
// 	for _, node := range nodes {
// 		if !fm.CorrectNodes()[node] {
// 			t.Errorf("Expected all nodes to be correct. %v is not", node)
// 		}
// 	}
// 	called := false
// 	callbackFunc := func(nodeId int, status bool) {
// 		called = true
// 		if nodeId != 4 {
// 			t.Errorf("Expected node 4 to fail")
// 		}
// 		if status {
// 			t.Errorf("Expected status to be false")
// 		}
// 	}
// 	fm.Subscribe(callbackFunc)

// 	err := fm.NodeCrash(4)
// 	if err != nil {
// 		t.Errorf("Did not expect to receive an error. Got %v", err)
// 	}
// 	if !called {
// 		t.Errorf("Expected the provided callback function to be called")
// 	}

// 	fm.Init(nodes)
// 	for _, node := range nodes {
// 		if !fm.CorrectNodes()[node] {
// 			t.Errorf("Expected all nodes to be correct. %v is not", node)
// 		}
// 	}
// 	err = fm.NodeCrash(4)
// 	if err != nil {
// 		t.Errorf("Did not expect to receive an error. Got %v", err)
// 	}
// 	if !called {
// 		t.Errorf("Expected the provided callback function to be called")
// 	}
// }

// func TestRandomId(t *testing.T) {
// 	fm := New()
// 	nodes := []int{1, 485, 786, 354, 458, 456}
// 	fm.Init(nodes)
// 	for _, node := range nodes {
// 		if !fm.CorrectNodes()[node] {
// 			t.Errorf("Expected all nodes to be correct. %v is not", node)
// 		}
// 	}
// 	called := false
// 	callbackFunc := func(nodeId int, status bool) {
// 		called = true
// 		if nodeId != 354 {
// 			t.Errorf("Expected node 354 to fail. %v failed instead.", nodeId)
// 		}
// 		if status {
// 			t.Errorf("Expected status to be false")
// 		}
// 	}
// 	fm.Subscribe(callbackFunc)

// 	err := fm.NodeCrash(354)
// 	if err != nil {
// 		t.Errorf("Did not expect to receive an error. Got %v", err)
// 	}
// 	if !called {
// 		t.Errorf("Expected the provided callback function to be called")
// 	}

// 	fm.Init(nodes)
// 	for _, node := range nodes {
// 		if !fm.CorrectNodes()[node] {
// 			t.Errorf("Expected all nodes to be correct. %v is not", node)
// 		}
// 	}
// 	err = fm.NodeCrash(354)
// 	if err != nil {
// 		t.Errorf("Did not expect to receive an error. Got %v", err)
// 	}
// 	if !called {
// 		t.Errorf("Expected the provided callback function to be called")
// 	}

// 	err = fm.NodeCrash(0)
// 	if err == nil {
// 		t.Errorf("Provided invalid nodeId. Expected to receive an error")
// 	}
// }

GoMC-master/failureManager/perfectFailureManager.go

package failureManager

import (
	"errors"
	"gomc/event"
	"gomc/eventManager"
)

// The PerfectFailureManager is a failure manager that implements the PerfectFailureDetector abstraction in a fail-stop system.
//
// It is configured with a slice of nodes that will crash at some point during the simulation, i.e. nodes that are faulty.
// it is also configured with a function specifying how the node should crash.
type PerfectFailureManager[T any] struct {
	crashFunc func(*T)
	failingNodes []int
}

// Create a new PerfectFailureManager
//
// Implements the PerfectFailureDetector abstraction in a fail-stop system.
// crashFunc is a function performing the crash on the node.
// It should close all network connections and stop all ongoing executions on the node.
// Events executed on the node after the crash should have no effect.
// failingNodes is a slice of node ids of the nodes that will crash at some point during a run.
func NewPerfectFailureManager[T any](crashFunc func(*T), failingNodes []int) *PerfectFailureManager[T] {
	return &PerfectFailureManager[T]{
		crashFunc: crashFunc,
		failingNodes: failingNodes,
	}
}

// Create a RunFailureManager that can be used when simulating a run
// ea is the EventAdder that is used in this run.
// The EventAdder for the run is provided in the SimulationParameters
func (pfm PerfectFailureManager[T]) GetRunFailureManager(ea eventManager.EventAdder) RunFailureManager[T] {
	return newRunPerfectFailureManager(ea, pfm.crashFunc, pfm.failingNodes)
}

// The run specific implementation of the PerfectFailureManager
//
// Manages the functionality of the PerfectFailureManager during the simulation of a run.
type runPerfectFailureManager[T any] struct {
	ea eventManager.EventAdder
	crashFunc func(*T)
	failingNodes []int

	correct map[int]bool
	nodes map[int]*T
	failureCallback map[int]func(int, bool)
}

// Create a new runPerfectFailureManager
//
// ea is the EventAdder that is used in this run
// crashFunc is a function performing the crash on the node.
// failingNodes is a slice of node ids of the nodes that will crash at some point during a run.
func newRunPerfectFailureManager[T any](ea eventManager.EventAdder, crashFunc func(*T), failingNodes []int) *runPerfectFailureManager[T] {
	return &runPerfectFailureManager[T]{
		ea: ea,
		crashFunc: crashFunc,
		failingNodes: failingNodes,

		correct: make(map[int]bool),
		failureCallback: make(map[int]func(int, bool)),
	}
}

// Initialize the FailureManager with the nodes that are used in this run
func (fm *runPerfectFailureManager[T]) Init(nodes map[int]*T) {
	for id := range nodes {
		fm.correct[id] = true
	}

	fm.nodes = nodes

	// Schedule crash events
	for _, id := range fm.failingNodes {
		if _, ok := nodes[id]; !ok {
			continue
		}
		fm.ea.AddEvent(
			event.NewCrashEvent(id, fm.nodeCrash),
)
	}
}

// Return a map of the node ids and the status of the corresponding node
//
// If the status is true the node is currently running.
// if it is false the node has crashed.
func (fm *runPerfectFailureManager[T]) CorrectNodes() map[int]bool {
	return fm.correct
}

// Perform the crash of the node with the provided id.
//
// The method is called by the CrashEvent when it is executed.
func (fm *runPerfectFailureManager[T]) nodeCrash(nodeId int) error {
	node, ok := fm.nodes[nodeId]
	if !ok {
		return errors.New("FailureManager: Received NodeCrash for node that is not added to the system")
	}

	if status := fm.correct[nodeId]; !status {
		return errors.New("FailureManager: Received NodeCrash for node that has already crashed. Is failStop abstraction so node can not crash again.")
	}
	// Set node as crashed
	fm.correct[nodeId] = false

	// Call the provided crash function with the node
	fm.crashFunc(node)

	// Call all provided crash callbacks
	for id, f := range fm.failureCallback {
		fm.ea.AddEvent(event.NewCrashDetection(
			id,
			nodeId,
			f,
))
	}
	return nil
}

// Subscribe to updates about node status.
//
// id is the id of the node that subscribes to the callback.
// The callback is a function that is called with the new status of the node when the status.
func (fm *runPerfectFailureManager[T]) Subscribe(id int, callback func(int, bool)) {
	fm.failureCallback[id] = callback
}

GoMC-master/failureManager/perfectFailureManager_test.go

package failureManager

import (
	"gomc/event"
	"testing"

	"golang.org/x/exp/maps"
	"golang.org/x/exp/slices"
)

func TestInit(t *testing.T) {
	for i, test := range InitTest {
		sch := NewMockRunScheduler()
		fm := newRunPerfectFailureManager(
			sch, func(t *MockNode) { t.crashed = true }, test.failingNodes,
)
		fm.Init(test.nodes)

		correct := fm.CorrectNodes()
		expectedCorrect := map[int]bool{}
		for id := range test.nodes {
			expectedCorrect[id] = true
		}

		if !maps.Equal(expectedCorrect, correct) {
			t.Errorf("Test %v: Correct nodes has not been initialized correctly. Expected: %v. Got: %v", i, expectedCorrect, correct)
		}

		addedCrashes := []int{}
		for _, evt := range sch.addedEvents {
			addedCrashes = append(addedCrashes, evt.Target())
		}

		if !slices.Equal(test.scheduledCrashes, addedCrashes) {
			t.Errorf("Test %v: Incorrect events scheduled. Expected: %v, Got: %v", i, test.scheduledCrashes, addedCrashes)
		}

	}
}

func TestNodeCrash(t *testing.T) {
	for i, test := range NodeCrashTest {
		sch := NewMockRunScheduler()
		fm := newRunPerfectFailureManager(
			sch, func(t *MockNode) { t.crashed = true }, []int{},
)
		fm.nodes = test.nodes
		fm.correct = test.correct

		// For testing crash function
		expectedNodeCrashed := map[int]bool{}
		for id, node := range test.nodes {
			expectedNodeCrashed[id] = node.crashed
		}
		if _, ok := test.nodes[test.crashingNode]; ok {
			expectedNodeCrashed[test.crashingNode] = true
		}

		fm.Subscribe(test.subscribingNodeId, func(nodeId int, status bool) {})

		err := fm.nodeCrash(test.crashingNode)

		// Test that an error is returned as expected
		isErr := (err != nil)
		if isErr != test.expectedErr {
			if isErr {
				t.Errorf("Test %v: Expected no error got: %v", i, err)
			} else {
				t.Errorf("Test %v: Expected to receive an error", i)
			}
		}

		// Test that CorrectNodes() is properly updated
		// Clone the correct map before calling NodeCrash, then make the expected change
		expectedCorrect := maps.Clone(test.correct)
		if _, ok := test.correct[test.crashingNode]; ok {
			expectedCorrect[test.crashingNode] = false
		}

		if !maps.Equal(expectedCorrect, fm.CorrectNodes()) {
			t.Errorf("Test %v: Unexpected map of correct nodes. Expected: %v, Got: %v", i, expectedCorrect, fm.CorrectNodes())
		}

		// Test that the provided crash function is properly called
		actualNodeCrashed := map[int]bool{}
		for id, node := range test.nodes {
			actualNodeCrashed[id] = node.crashed
		}

		if !maps.Equal(expectedNodeCrashed, actualNodeCrashed) {
			t.Errorf("Test %v: Crash function has been called on unexpected node. Expected: %v, Got: %v", i, expectedNodeCrashed, actualNodeCrashed)
		}

		// Test that the failure callbacks are properly called
		if !test.expectedErr {
			evt := sch.addedEvents[0]
			cd, ok := evt.(event.CrashDetection)
			if !ok {
				t.Errorf("Test %v: Expected CrashDetection event to have been added to scheduler", i)
			}
			if cd.Target() != test.subscribingNodeId {
				t.Errorf("Test %v: Expected CrashDetection event to target node 0", i)
			}
		} else {
			if len(sch.addedEvents) != 0 {
				t.Errorf("Test %v: Expected no event to have been added to the scheduler.", i)
			}
		}

	}
}

var InitTest = []struct {
	// The provided slice of node id for which we will try to schedule crashes
	// May contain invalid values
	failingNodes []int
	// The nodes which we will init
	nodes map[int]*MockNode

	// The node id for which a crash is expected to be scheduled
	scheduledCrashes []int
}{
	{
		[]int{},
		map[int]*MockNode{0: {}, 1: {}, 2: {}},

		[]int{},
	},
	{
		[]int{0, 1},
		map[int]*MockNode{0: {}, 1: {}, 2: {}},

		[]int{0, 1},
	},

	{
		[]int{0, 10},
		map[int]*MockNode{0: {}, 1: {}, 2: {}},

		[]int{0},
	},

	{
		[]int{10},
		map[int]*MockNode{0: {}, 1: {}, 2: {}},

		[]int{},
	},
}

var NodeCrashTest = []struct {
	nodes map[int]*MockNode
	correct map[int]bool
	subscribingNodeId int
	crashingNode int
	expectedErr bool
}{
	{
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
		map[int]bool{0: true, 1: true, 2: true},
		3,
		0,
		false,
	},
	{
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
		map[int]bool{0: true, 1: true, 2: true},
		3,
		5,
		true,
	},
	{
		map[int]*MockNode{0: {}, 1: {crashed: true}, 2: {}},
		map[int]bool{0: true, 1: false, 2: true},
		3,
		1,
		true,
	},
}

GoMC-master/failureManager/utils_test.go

package failureManager

import (
	"gomc/event"
	"gomc/scheduler"
	"gomc/state"
	"gomc/stateManager"
)

// Create some dummy types and states for use when testing
type MockNode struct {
	Id int

	crashed bool
	val int
}

func (n *MockNode) UpdateVal(val int) {
	n.val = val
}

func GetState(n *MockNode) State {
	return State{
		val: n.val,
	}
}

type State struct {
	val int
}

type MockGlobalScheduler struct{}

func NewMockGlobalScheduler() *MockGlobalScheduler {
	return &MockGlobalScheduler{}
}

func (mgs *MockGlobalScheduler) GetRunScheduler() scheduler.RunScheduler {
	return NewMockRunScheduler()
}

type MockRunScheduler struct {
	eventQueue []event.Event
	addedEvents []event.Event
	index int
	runEnded bool
}

func NewMockRunScheduler(events ...event.Event) *MockRunScheduler {
	return &MockRunScheduler{
		eventQueue: events,
		index: 0,
		addedEvents: make([]event.Event, 0),
	}
}

func (ms *MockRunScheduler) AddEvent(evt event.Event) {
	ms.addedEvents = append(ms.addedEvents, evt)
}

func (ms *MockRunScheduler) GetEvent() (event.Event, error) {
	if ms.index < len(ms.eventQueue) {
		evt := ms.eventQueue[ms.index]
		ms.index++
		return evt, nil
	}
	return nil, scheduler.RunEndedError
}

func (ms *MockRunScheduler) StartRun() error {
	if ms.runEnded {
		return scheduler.RunEndedError
	}
	return nil
}

func (ms *MockRunScheduler) EndRun() {
	ms.addedEvents = make([]event.Event, 0)
}

type MockStateManager struct {
	receivedRun []state.GlobalState[State]
}

func NewMockStateManager() *MockStateManager {
	return &MockStateManager{}
}

func (ms *MockStateManager) GetRunStateManager() *stateManager.RunStateManager[MockNode, State] {
	return &stateManager.RunStateManager[MockNode, State]{}
}

func (ms *MockStateManager) State() state.StateSpace[State] {
	return state.TreeStateSpace[State]{}
}

func (ms *MockStateManager) AddRun(run []state.GlobalState[State]) {
	ms.receivedRun = run
}

type MockEvent struct {
	id uint64
	target int
	val int
}

func (me MockEvent) Id() uint64 {
	return me.id
}

func (me MockEvent) Execute(n any, chn chan error) {
	if me.val == -1 {
		panic("Node panicked during testing")
	}
	tmp := n.(*MockNode)
	if !tmp.crashed {
		tmp.val = me.val
	}
	chn <- nil
}

func (me MockEvent) Target() int {
	return me.target
}

GoMC-master/go.mod

module gomc

go 1.19

require (
	github.com/golang/protobuf v1.5.2
	golang.org/x/exp v0.0.0-20230118134722-a68e582fa157
	google.golang.org/grpc v1.53.0
	google.golang.org/protobuf v1.29.0
)

require (
	golang.org/x/net v0.5.0 // indirect
	golang.org/x/sys v0.4.0 // indirect
	golang.org/x/text v0.6.0 // indirect
	google.golang.org/genproto v0.0.0-20230110181048-76db0878b65f // indirect
)

GoMC-master/go.sum

github.com/golang/protobuf v1.5.0/go.mod h1:FsONVRAS9T7sI+LIUmWTfcYkHO4aIWwzhcaSAoJOfIk=
github.com/golang/protobuf v1.5.2 h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw=
github.com/golang/protobuf v1.5.2/go.mod h1:XVQd3VNwM+JqD3oG2Ue2ip4fOMUkwXdXDdiuN0vRsmY=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
golang.org/x/exp v0.0.0-20230118134722-a68e582fa157 h1:fiNkyhJPUvxbRPbCqY/D9qdjmPzfHcpK3P4bM4gioSY=
golang.org/x/exp v0.0.0-20230118134722-a68e582fa157/go.mod h1:CxIveKay+FTh1D0yPZemJVgC/95VzuuOLq5Qi4xnoYc=
golang.org/x/net v0.5.0 h1:GyT4nK/YDHSqa1c4753ouYCDajOYKTja9Xb/OHtgvSw=
golang.org/x/net v0.5.0/go.mod h1:DivGGAXEgPSlEBzxGzZI+ZLohi+xUj054jfeKui00ws=
golang.org/x/sys v0.4.0 h1:Zr2JFtRQNX3BCZ8YtxRE9hNJYC8J6I1MVbMg6owUp18=
golang.org/x/sys v0.4.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/text v0.6.0 h1:3XmdazWV+ubf7QgHSTWeykHOci5oeekaGJBLkrkaw4k=
golang.org/x/text v0.6.0/go.mod h1:mrYo+phRRbMaCq/xk9113O4dZlRixOauAjOtrjsXDZ8=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
google.golang.org/genproto v0.0.0-20230110181048-76db0878b65f h1:BWUVssLB0HVOSY78gIdvk1dTVYtT1y8SBWtPYuTJ/6w=
google.golang.org/genproto v0.0.0-20230110181048-76db0878b65f/go.mod h1:RGgjbofJ8xD9Sq1VVhDM1Vok1vRONV+rg+CjzG4SZKM=
google.golang.org/grpc v1.53.0 h1:LAv2ds7cmFV/XTS3XG1NneeENYrXGmorPxsBbptIjNc=
google.golang.org/grpc v1.53.0/go.mod h1:OnIrk0ipVdj4N5d9IUoFUx72/VlD7+jUsHwZgwSMQpw=
google.golang.org/protobuf v1.26.0-rc.1/go.mod h1:jlhhOSvTdKEhbULTjvd4ARK9grFBp09yW+WbY/TyQbw=
google.golang.org/protobuf v1.26.0/go.mod h1:9q0QmTI4eRPtz6boOQmLYwt+qCgq0jsYwAQnmE0givc=
google.golang.org/protobuf v1.29.0 h1:44S3JjaKmLEE4YIkjzexaP+NzZsudE3Zin5Njn/pYX0=
google.golang.org/protobuf v1.29.0/go.mod h1:HV8QOd/L58Z+nl8r43ehVNZIU/HEI6OcFqwMG9pJV4I=

GoMC-master/readme.md

Go-MC

A modular implementation level model checker for Go.

Prerequisite

- Go: Version 1.19.4 or higher

Learn More

- [How To Use](/Documentation/user-guide.md)
- [Configuration Options](/Documentation/configuration-guide.md)
- [Event Managers](/Documentation/event-managers.md)

A (not so) Quick Showcase of Go-MC

Simulating an Algorithm
To provide an example on how to use Go-MC to verify a algorithm we us the `Regular Reliable Broadcast` algorithm (Algorithm 3.3) from `Introduction to reliable and secure distributed programming` by Cachin et al(2011).
This examples omit some elements for brevity, the complete implementation and testing of the algorithm can be found under `examples/rrb`.

First, we decide what state should be collected from the nodes.
We do not collect all state, but focuses on collecting variables that will be used when verifying the algorithm.
For example, we want to ensure that the algorithm does not create messages that was not sent (RB3: No Creation).
To do this we store a set of both delivered and sent messages and make sure that all messages that are in the delivered set is also in the sent set.
We define a `struct` that stores the variables:

```go
type State struct {
	delivered      map[message]bool
	sent           map[message]bool
}
```

We then prepare the simulation.
This includes configuring static options that will persist over multiple simulations, such as the State Manager and scheduler that will be used.
The signature of the function used to prepare the simulation can be seen below:

```go 
func PrepareSimulation[T, S any](smOpts StateManagerOption[T, S], opts ...SimulatorOption) Simulation[T, S] 
```

The `StateManagerOption` is obligatory and is used to configure the State Manager that will be used.
We configure the State Manager with a function that collects the specified state from the node and with a function that compares the equality of two states.

```go
sim = gomc.PrepareSimulation(
    gomc.WithTreeStateManager(
        func(node *Rrb) State {
            return State{
                delivered:      maps.Clone(node.delivered),
                sent:           maps.Clone(node.sent),
                deliveredSlice: slices.Clone(node.deliveredSlice),
            }
        },
        func(s1, s2 State) bool {
            if !maps.Equal(s1.delivered, s2.delivered) {
                return false
            }
            if !slices.Equal(s1.deliveredSlice, s2.deliveredSlice) {
                return false
            }
            return maps.Equal(s1.sent, s2.sent)
        },
    ),
)
```

We can now run the simulation.
When running the simulation we configure specific scenarios by defining the number of nodes, the request that will be sent to nodes and the checker that will be used and which nodes will fail during the simulation.

```go
func (sr Simulation[T, S]) Run(InitNodes InitNodeOption[T], requestOpts RequestOption, checker CheckerOption[S], opts ...RunOptions) checking.CheckerResponse
```

The `InitNodeOption` is used to configure a function that will initialize the nodes for the simulation.
The function returns a `map[int]*T` where `T` is a node in the algorithm.
The function is used to initialize the Event Manager that is inserted into the algorithm and allows the simulation to control the sources of randomness.

`RequestOption` configures a list of requests that will be sent to the nodes during the simulation.
The requests are used to start the simulation.

`CheckerOption` defines the Checker that will be used to verify the properties of the algorithm.
We use the `PredicateChecker` which uses a set of predicates, defines as go functions, to define the properties.

```go 
resp := sim.Run(
    gomc.InitNodeFunc(
        func(sp eventManager.SimulationParameters) map[int]*Rrb {
            // Initialize the event manager
            send := eventManager.NewSender(sp)
            nodes := map[int]*Rrb{}
            for _, id := range test.nodes {
                nodes[id] = NewRrb(
                    id,
                    test.nodes,
                    // insert the event manager into the node
                    send.SendFunc(id),
                )
            }
            return nodes
        },
    ),
    gomc.WithRequests(
        gomc.NewRequest(0, "Broadcast", "Test Message"),
    ),
    gomc.WithPredicateChecker(predicates...),
    gomc.WithPerfectFailureManager(
        func(t *Rrb) { t.crashed = true }, 
        test.crashedNodes...
    ),
)
```

The `WithPerfectFailureManager` option is an optional parameter that can be used to configure which nodes will crash during the simulation.
The option is also configured with a function that performs the crash on the node.

```go
predicates = []checking.Predicate[State]{
    ...
    func(s checking.State[State]) bool {
		// RB3: No creation
		sentMessages := map[message]bool{}
		for _, node := range s.LocalStates {
			for sent := range node.sent {
				sentMessages[sent] = true
			}
		}
		for _, state := range s.LocalStates {
			for delivered := range state.delivered {
				if !sentMessages[delivered] {
					return false
				}
			}
		}
		return true
	},
    ...
}
```

We define the predicates that will be used by the `PredicateChecker`.
The predicates are used to test that the desired properties holds.
They should return `true` when the property holds and `false` otherwise.

Running an Algorithm

Go-MC also offers support for running an algorithm live and collecting events that are executed.
The `Runner` executes events on different nodes concurrently.
It is configured in much the same way as the simulation.

The `Runner` is prepared using the `PrepareRunner` function.
There are two mandatory options: `InitNodeOption`, which is similar to the one used to run a simulation and creates the nodes that will be used and `GetStateOption`, which is a function defining how to collect the state from the node.
The `GetStateOption` is similar to one of the functions used to configure the State Manager.

```go
func PrepareRunner[T, S any](initNodes InitNodeOption[T], getState GetStateOption[T, S], opts ...RunnerOption) *runner.Runner[T, S]
```

In the example below we configure an implementation of the paxos algorithm for running.
The algorithm can be found under `examples/paxos`.
Note that the complete initialization of the nodes is done in a separate function called `createNodes`.

```go
r := gomc.PrepareRunner(
		gomc.InitNodeFunc(
			createNodes(addrMap)
		),
		gomc.WithStateFunction(func(t *paxos.Server) State {
			t.Lock()
			defer t.Unlock()
			return State{
				proposed: t.Proposal,
				decided:  t.Decided,
			}
		}),
		gomc.WithStopFunctionRunner(
            func(t *paxos.Server) { t.Stop() },
        ),
	)
```

The `PrepareRunner` function returns a configured and started `Runner`.
The `Runner` can then be given commands, such as sending requests to nodes, pausing and resuming the execution of events on a node, and crashing a node.

```go
err = r.Request(
    gomc.NewRequest(id, "Propose", "Value 1"),
)
```


GoMC-master/request/request.go

package request

import "reflect"

// Represent a function call or request to a node
// Id: The id of the node
// Method: The name of the method to be called on the node
// Params: The parameters to be passed to the method
type Request struct {
	Id int
	Method string
	Params []reflect.Value
}

GoMC-master/requests.go

package gomc

import (
	"gomc/request"
	"reflect"
)

// Create a new Request that will be sent to a node.
//
// Id: The id of the node
// Method: The name of the method to be called on the node
// Params: The parameters to be passed to the method
func NewRequest(id int, method string, params ...any) request.Request {
	valueParams := make([]reflect.Value, len(params))
	for i, val := range params {
		valueParams[i] = reflect.ValueOf(val)
	}
	return request.Request{
		Id: id,
		Method: method,
		Params: valueParams,
	}
}

GoMC-master/runner/commands.go

package runner

import "reflect"

type command interface {
	cmd()
}

// Pause the execution of the node with the provided Id
type pauseCmd struct {
	Id int
}

func (pc pauseCmd) cmd() {}

// Resume the execution of the node with the provided Id
type resumeCmd struct {
	Id int
}

func (pc resumeCmd) cmd() {}

// Crash the node with the provided Id
type crashCmd struct {
	Id int
}

func (pc crashCmd) cmd() {}

// Send a request to the node with teh provided Id
type requestCmd struct {
	Id int
	Method string
	Params []reflect.Value
}

func (pc requestCmd) cmd() {}

// Stop the running of the algorithm
type stopCmd struct{}

func (pc stopCmd) cmd() {}

GoMC-master/runner/nodeController.go

package runner

import (
	"fmt"
	"gomc/event"
)

// The nodeController is used to control the execution of events on a single node
//
// It manages the events that should be executed on a node, and ensures that they are executed in a sequential order.
//
// It also executes the commands on the node.
// Commands should be given from the same goroutine.
//
// Finally it records the execution of events and the changes of states of the node and sends it on the recordChan.
type nodeController[T, S any] struct {
	id int
	node *T

	// Is closed if the node has crashed. Otherwise it is open.
	// No messages are sent on the channel.
	crashed chan bool

	// Collects the state from the node
	getState func(*T) S
	// Crash/stop the node
	crashFunc func(*T)

	// Send updates of events and states to the user
	recordChan chan Record

	// Used to pause execution of events
	pauseChan chan bool
	// Used to pause and resume execution of events
	resumeChan chan bool
	// Closed if the execution of events on the node is paused.
	paused chan bool

	// Pending events for the node
	eventQueue chan event.Event
	// Signal when to begin the next event for the node
	nextEvtChan chan error
}

// Create a new NodeController
//
// Specify the id of the node and the instance of the node.
// Also requires a function collecting the state of the node and performing a crash on the node.
// The provided recordChan is used to send records on.
// eventQueueBuffer specifies the number of messages that can be stored at a time.
func NewNodeController[T, S any](id int, node *T, getState func(*T) S, crashFunc func(*T), recordChan chan Record, eventQueueBuffer int) *nodeController[T, S] {
	return &nodeController[T, S]{
		id: id,
		node: node,

		crashed: make(chan bool),

		recordChan: recordChan,

		crashFunc: crashFunc,
		getState: getState,

		pauseChan: make(chan bool),
		resumeChan: make(chan bool),
		paused: make(chan bool),

		eventQueue: make(chan event.Event, eventQueueBuffer),
		nextEvtChan: make(chan error),
	}
}

// Start the main loop of the nodeController
//
// The main loop executes events in a sequential manner.
// It sends records of the event that is executed and the state after the event is executed.
//
// The main loop can be paused by calling the Pause method and resumed by calling the resume method.
func (nc *nodeController[T, S]) Main() {
	// When the main loop stops: close the node
	defer nc.crashFunc(nc.node)
	for {
		select {
		case <-nc.pauseChan:
			// Pause the execution of events
			if _, ok := <-nc.resumeChan; !ok {
				return
			}
		case evt, ok := <-nc.eventQueue:
			// Execute events
			if !ok {
				return
			}
			nc.recordEvent(evt, true)
			go evt.Execute(nc.node, nc.nextEvtChan)
			err := <-nc.nextEvtChan
			if err != nil {
				panic(fmt.Sprintf("nodeController: Received error while executing events: %v", err))
			}
			nc.recordState()
		}
	}
}

// Record the current state of the node
func (nc *nodeController[T, S]) recordState() {
	nc.recordChan <- StateRecord[S]{
		target: nc.id,
		State: nc.getState(nc.node),
	}
}

// Record the provided event
// isExecuting is true if the event is executed now, false if it is added to the nodeController.
func (nc *nodeController[T, S]) recordEvent(evt event.Event, isExecuting bool) {
	if msg, ok := evt.(event.MessageEvent); ok {
		nc.recordChan <- MessageRecord{
			From: msg.From(),
			To: msg.To(),
			Sent: !isExecuting,
			Evt: msg,
		}
		return
	}

	// If we are not executing the event here and it is not a message event then we do not record it
	// We will record it later when it is actually executed
	if !isExecuting {
		return
	}

	// Want to add record non-message events as well
	nc.recordChan <- ExecutionRecord{
		target: evt.Target(),
		Evt: evt,
	}
}

// Add the event to the nodeController
func (nc *nodeController[T, S]) addEvent(evt event.Event) {
	if nc.isCrashed() {
		return
	}

	nc.recordEvent(evt, false)
	nc.eventQueue <- evt
}

// Signal to the main loop that the event has been completed.
// It can now collect state and proceed to execute the next event.
func (nc *nodeController[T, S]) nextEvent(err error) {
	if nc.isCrashed() {
		return
	}
	nc.nextEvtChan <- err
}

// Pause the execution of events on the node.
func (nc *nodeController[T, S]) Pause() {
	if nc.isCrashed() {
		return
	}
	if nc.isPaused() {
		return
	}
	close(nc.paused)
	nc.pauseChan <- true
}

// Resume the execution of events on the node.
func (nc *nodeController[T, S]) Resume() {
	if nc.isCrashed() {
		return
	}
	if !nc.isPaused() {
		return
	}
	nc.paused = make(chan bool)
	nc.resumeChan <- true
}

// Stop the node.
// Stops the execution of events on the main loop and calls the crashFunc on the node.
func (nc *nodeController[T, S]) Close() {
	if nc.isCrashed() {
		return
	}
	close(nc.crashed)
	close(nc.eventQueue)
	close(nc.resumeChan)
}

// Returns true if the node has crashed. False otherwise.
func (nc *nodeController[T, S]) isCrashed() bool {
	select {
	case <-nc.crashed:
		return true
	default:
		return false
	}
}

// Returns true if the execution of events is paused. False otherwise.
func (nc *nodeController[T, S]) isPaused() bool {
	select {
	case <-nc.paused:
		return true
	default:
		return false
	}
}

GoMC-master/runner/nodeController_test.go

package runner

import (
	"testing"
	"time"
)

var (
	eventBuffer = 1000
	getState = func(n *MockNode) int { return n.val }
	crashFunc = func(n *MockNode) { n.crashed = true }
)

func TestNodeControllerMain(t *testing.T) {
	for i, test := range mainTest {
		recordChan := make(chan Record)
		nc := NewNodeController(0, test.node, getState, crashFunc, recordChan, eventBuffer)

		for _, evt := range test.events {
			nc.addEvent(evt)
		}

		go nc.Main()

		currentState := 0
		for j := 0; j < len(test.events)*2; j++ {
			rec := <-recordChan
			if state, ok := rec.(StateRecord[int]); ok {
				expectedState := test.expectedStateChange[currentState]
				if state.State != expectedState {
					t.Errorf("Test %v: Events executed in unexpected order. Got state: %v. Expected: %v", i, state.State, expectedState)
				}
				currentState++
			}
		}

		select {
		case rec := <-recordChan:
			t.Errorf("Test %v: No more record expected got: %v", i, rec)
		default:
		}

	}
}

func TestNodeControllerPause(t *testing.T) {
	recordChan := make(chan Record)
	node := &MockNode{}
	nc := NewNodeController(0, node, getState, crashFunc, recordChan, eventBuffer)

	go nc.Main()

	nc.Pause()

	nc.addEvent(MockEvent{val: 10})

	// Nc is paused
	// Check that no record is received and that the state does not change
	select {
	case rec := <-recordChan:
		t.Errorf("NodeController paused. Did not expect to get value: %v", rec)
	default:
	}

	if node.val != 0 {
		t.Errorf("NodeController paused. Did not expect the state of the node to be updated")
	}

	// Resume execution
	nc.Resume()

	// check that event is recorded
	select {
	case rec := <-recordChan:
		if _, ok := rec.(ExecutionRecord); !ok {
			t.Errorf("Expected to get an ExecutionRecord. Got %T", rec)
		}
	case <-time.After(5 * time.Second):
		t.Errorf("NodeController resumed. Did expect to get value. Got none")
	}

	// Check that state is recorded
	select {
	case rec := <-recordChan:
		state, ok := rec.(StateRecord[int])
		if !ok {
			t.Errorf("Expected to get an StateRecord. Got %T", rec)
		}
		if state.State != 10 {
			t.Errorf("NodeController resumed. Expected to receive state record with correct value. Got: %v. Expected: %v", state.State, 10)
		}
	case <-time.After(5 * time.Second):
		t.Errorf("NodeController resumed. Did expect to get value. Got none")
	}

	if node.val != 10 {
		t.Errorf("NodeController resumed. Did expect the state of the node to be updated. Got: %v", node.val)
	}
}

func TestClose(t *testing.T) {
	recordChan := make(chan Record)
	node := &MockNode{}
	nc := NewNodeController(0, node, getState, crashFunc, recordChan, eventBuffer)

	stopped := make(chan bool)
	go func() {
		nc.Main()
		stopped <- true
	}()

	nc.Close()

	nc.addEvent(MockEvent{val: 10})

	select {
	case rec := <-recordChan:
		t.Errorf("NodeController stopped. Did not expect to receive an event. Got %T", rec)
	case <-time.After(100 * time.Millisecond):
	}

	select {
	case <-stopped:
	default:
		t.Errorf("Expected main loop to have stopped")
	}
}

func TestCloseAfterPause(t *testing.T) {
	recordChan := make(chan Record)
	node := &MockNode{}
	nc := NewNodeController(0, node, getState, crashFunc, recordChan, eventBuffer)

	stopped := make(chan bool)
	go func() {
		nc.Main()
		stopped <- true
	}()
	nc.Pause()

	nc.Close()

	nc.addEvent(MockEvent{val: 10})

	select {
	case rec := <-recordChan:
		t.Errorf("NodeController stopped. Did not expect to receive an event. Got %T", rec)
	case <-time.After(100 * time.Millisecond):
	}

	select {
	case <-stopped:
	default:
		t.Errorf("Expected main loop to have stopped")
	}
}

func TestAllowDuplicateClose(t *testing.T) {
	recordChan := make(chan Record)
	node := &MockNode{}
	nc := NewNodeController(0, node, getState, crashFunc, recordChan, eventBuffer)

	stopped := make(chan bool)
	go func() {
		nc.Main()
		stopped <- true
	}()

	nc.Close()

	nc.Pause()

	nc.Close()

	nc.Resume()

	nc.Close()

	nc.addEvent(MockEvent{val: 10})

	select {
	case rec := <-recordChan:
		t.Errorf("NodeController stopped. Did not expect to receive an event. Got %T", rec)
	case <-time.After(100 * time.Millisecond):
	}

	select {
	case <-stopped:
	default:
		t.Errorf("Expected main loop to have stopped")
	}
}

func TestResumeBeforePause(t *testing.T) {
	recordChan := make(chan Record)
	node := &MockNode{}
	nc := NewNodeController(0, node, getState, crashFunc, recordChan, eventBuffer)

	go func() {
		nc.Main()
	}()

	nc.Resume()

	nc.Pause()

	nc.Pause()

	nc.Pause()

	nc.Resume()

	stopped := make(chan bool)
	go func() {
		nc.Main()
		stopped <- true
	}()

	nc.addEvent(MockEvent{val: 10})

	// check that event is recorded
	select {
	case rec := <-recordChan:
		if _, ok := rec.(ExecutionRecord); !ok {
			t.Errorf("Expected to get an ExecutionRecord. Got %T", rec)
		}
	case <-time.After(5 * time.Second):
		t.Errorf("NodeController resumed. Did expect to get value. Got none")
	}

	// Check that state is recorded
	select {
	case rec := <-recordChan:
		state, ok := rec.(StateRecord[int])
		if !ok {
			t.Errorf("Expected to get an StateRecord. Got %T", rec)
		}
		if state.State != 10 {
			t.Errorf("NodeController resumed. Expected to receive state record with correct value. Got: %v. Expected: %v", state.State, 10)
		}
	case <-time.After(5 * time.Second):
		t.Errorf("NodeController resumed. Did expect to get value. Got none")
	}

	if node.val != 10 {
		t.Errorf("NodeController resumed. Did expect the state of the node to be updated. Got: %v", node.val)
	}
}

var mainTest = []struct {
	node *MockNode
	events []MockEvent

	expectedStateChange []int
}{
	{
		&MockNode{},
		[]MockEvent{{val: 5}, {val: 10}},

		[]int{5, 10},
	},
	{
		&MockNode{},
		[]MockEvent{},

		[]int{},
	},
	{
		&MockNode{},
		[]MockEvent{{val: 5}, {val: 10}, {val: 10}},

		[]int{5, 10, 10},
	},
}

GoMC-master/runner/records.go

package runner

import (
	"fmt"
	"gomc/event"
)

// A record that has been collected by the Runner.
//
// The Target method returns the id of the node where the event originates.
// There are three types of records:
//
// StateRecord: Which contains the state of a node after an event has been executed.
//
// ExecutionRecord: Which represent the execution of a local event.
//
// MessageRecord: Which are created when a message is sent and when it is executed on a node.
type Record interface {
	Target() int
	fmt.Stringer
}

// Sent by a node after executing some event (received a message or executed local event)
type StateRecord[S any] struct {
	target int
	State S
}

// The id of the node whose state was collected
func (sr StateRecord[S]) Target() int {
	return sr.target
}

func (er StateRecord[S]) String() string {
	return fmt.Sprintf("[State - %+v]", er.State)
}

// Sent when a node execute some local event
type ExecutionRecord struct {
	target int
	Evt event.Event
}

// The id of the node where the local event was executed
func (er ExecutionRecord) Target() int {
	return er.target
}

func (er ExecutionRecord) String() string {
	return fmt.Sprintf("[Execution - Evt %v]", er.Evt)
}

// Sent when a node either send or receive a message.
// The sent flag is true if the message was sent by the node and false if it was received
type MessageRecord struct {
	From, To int
	// Sent is true if the record was created because a node sent this MessageEvent
	// It is false if the record was created because the MessageEvent was executed on a node.
	Sent bool
	Evt event.MessageEvent
}

// The id of the node
//
// If the message was sent by a node, it is the id of the event that sent the message.
// if the message was received on a node it is the id of the event that received the message.
func (m MessageRecord) Target() int {
	if m.Sent {
		return m.From
	}
	return m.To
}

func (m MessageRecord) String() string {
	var t string
	if m.Sent {
		t = "Sent"
	} else {
		t = "Received"
	}
	return fmt.Sprintf("[Message %v - %v]", t, m.Evt)
}

GoMC-master/runner/runner.go

package runner

import (
	"gomc/eventManager"
	"gomc/request"
)

// The Runner Runs the algorithm in real time and records the execution of events.
//
// Can only perform one running at a time
// Each of the nodes maintains its own event loop where it executes events sequentially.
type Runner[T, S any] struct {
	rc *RunnerController[T, S]

	cmd chan command
	resp chan error
}

// Create a new Runner
//
// recordChanBuffer specifies the size of the buffers for the record channels
func NewRunner[T, S any](recordChanBuffer int) *Runner[T, S] {
	// cmd starts closed, since commands can not be given before the main loop has been started
	cmd := make(chan command)
	close(cmd)
	return &Runner[T, S]{
		rc: NewEventController[T, S](recordChanBuffer),

		cmd: cmd,
		resp: make(chan error),
	}
}

// Start the Runner
//
// The Runner must be started before commands can be given to it.
//
// initNodes creates the nodes used when running the algorithm.
// getState specifies how to collect the state of a node.
// stop specifies how to stop the node when it crashes or when the running is stopped.
// eventChanBuffer specifies how many pending events can be buffered by each node.
func (r *Runner[T, S]) Start(initNodes func(sp eventManager.SimulationParameters) map[int]*T, getState func(*T) S, stop func(*T), eventChanBuffer int) {

	nodes := initNodes(eventManager.SimulationParameters{
		CrashSubscribe: r.rc.CrashSubscribe,
		EventAdder: r.rc,
		NextEvt: r.rc.NextEvent,
	})
	r.cmd = make(chan command)
	r.rc.MainLoop(nodes, eventChanBuffer, stop, getState)

	go func() {
		for cmd := range r.cmd {
			var err error
			switch t := cmd.(type) {
			case pauseCmd:
				err = r.rc.Pause(t.Id)
			case resumeCmd:
				err = r.rc.Resume(t.Id)
			case crashCmd:
				err = r.rc.CrashNode(t.Id)
			case requestCmd:
				err = r.rc.NewRequest(t.Id, t.Method, t.Params)
			case stopCmd:
				r.rc.Stop()
				close(r.cmd)
				err = nil
			}
			r.resp <- err
		}
	}()
}

// Subscribe to records of events and states that are reported by the nodes
//
// Events on different nodes can be executed concurrently, so order of events from different nodes does not necessarily match.
// Orders of events on the same node is guaranteed to match the order in which they where executed.
// Nodes send a MessageRecord when they either send or receive a message and an ExecutionRecord after they perform some local execution.
// Nodes send a StateRecord containing the new state of the node after they have received a message or executed some local event.
func (r *Runner[T, S]) SubscribeRecords() <-chan Record {
	return r.rc.Subscribe()
}

// Stop the running of the algorithm
//
// Must be called after the running has been started.
// Can be called from multiple goroutines.
func (r *Runner[T, S]) Stop() error {
	r.cmd <- stopCmd{}
	return <-r.resp
}

// Send a request to a node.
//
// Must be called after the running has been started.
// Can be called from multiple goroutines.
func (r *Runner[T, S]) Request(req request.Request) error {
	r.cmd <- requestCmd{
		Id: req.Id,
		Method: req.Method,
		Params: req.Params,
	}
	return <-r.resp
}

// Pause the execution of events on the specified node.
//
// Must be called after the running has been started.
// Can be called from multiple goroutines.
func (r *Runner[T, S]) PauseNode(id int) error {
	r.cmd <- pauseCmd{
		Id: id,
	}
	return <-r.resp
}

// Resume the execution of events on the specified node.
//
// Must be called after the running has been started.
// Can be called from multiple goroutines.
func (r *Runner[T, S]) ResumeNode(id int) error {
	r.cmd <- resumeCmd{
		Id: id,
	}
	return <-r.resp
}

// Crash the specified node.
//
// Must be called after the running has been started.
// Can be called from multiple goroutines.
func (r *Runner[T, S]) CrashNode(id int) error {
	r.cmd <- crashCmd{
		Id: id,
	}
	return <-r.resp
}

GoMC-master/runner/runnerController.go

package runner

import (
	"fmt"
	"gomc/event"
	"reflect"
)

// Controls the running of the algorithms.
//
// Manages the nodes in the system and forwards command to the specified nodes.
// Aggregates records from the nodes and sends them to subscribed users.
type RunnerController[T, S any] struct {
	// Buffer size of the record channels
	recordChanBuffer int

	// channel used to send subscribe channels from users
	subscribeRecordChan chan chan Record

	// map of all the node controllers in the system
	nodes map[int]*nodeController[T, S]

	// Callback functions that have subscribed to node crash updates
	crashSubscribes map[int]func(id int, status bool)

	// Id of the next request
	requestId int

	//
	stop chan bool
}

// Create a new EventController
//
// recordChanBuffer specifies the buffer size of the channel used to receive records from the nodes.
func NewEventController[T, S any](recordChanBuffer int) *RunnerController[T, S] {
	// The event controller is initially stopped and is started when the main function is called,
	stop := make(chan bool)
	close(stop)
	return &RunnerController[T, S]{
		subscribeRecordChan: make(chan chan Record),
		recordChanBuffer: recordChanBuffer,

		crashSubscribes: make(map[int]func(id int, status bool)),

		stop: stop,
	}
}

// Subscribe to the records that are created by the Runner
func (ec *RunnerController[T, S]) Subscribe() <-chan Record {
	outRecordChan := make(chan Record, ec.recordChanBuffer)
	ec.subscribeRecordChan <- outRecordChan
	return outRecordChan
}

// Add the specified event to the correct node.
//
// Must be called after the Main loop has been started.
func (ec *RunnerController[T, S]) AddEvent(evt event.Event) {
	if ec.isClosed() {
		return
	}
	id := evt.Target()
	node, ok := ec.nodes[id]
	if !ok {
		return
	}
	node.addEvent(evt)
}

// Send the status of the previous event to the specified node.
//
// The status is provided as the err parameter and the node is specified using the id.
// Must be called after the Main loop has been started.
func (ec *RunnerController[T, S]) NextEvent(err error, id int) {
	if ec.isClosed() {
		return
	}
	node, ok := ec.nodes[id]
	if !ok {
		return
	}
	node.nextEvent(err)
}

// The Main loop of the Runner Controller.
//
// Starts the record loop that collects and forwards record.
// Initializes the nodes and starts their separate main loops.
func (ec *RunnerController[T, S]) MainLoop(nodes map[int]*T, eventChanBuffer int, crashFunc func(*T), getState func(*T) S) {
	ec.stop = make(chan bool)

	// Receive the records of events and states from the different nodes
	inRecordChan := make(chan Record, ec.recordChanBuffer)
	// Start the record loop that collects and forwards records
	go ec.recordLoop(inRecordChan)

	// Create the nodeManagers and start their main loop
	ec.nodes = make(map[int]*nodeController[T, S])
	for id, node := range nodes {
		nc := NewNodeController(id, node, getState, crashFunc, inRecordChan, eventChanBuffer)
		ec.nodes[id] = nc
		go nc.Main()
	}
}

// Collects and forwards records.
func (ec *RunnerController[T, S]) recordLoop(inRecordChan <-chan Record) {
	outRecordChan := make([]chan<- Record, 0)
	for {
		select {
		case rec := <-inRecordChan:
			// Forwards the received record to subscribed users
			for _, c := range outRecordChan {
				c <- rec
			}
		case c := <-ec.subscribeRecordChan:
			// Add the received channel to the subscribed channels
			outRecordChan = append(outRecordChan, c)
		case <-ec.stop:
			// Close all out channels and stop the loop
			for _, c := range outRecordChan {
				close(c)
			}
			return
		}
	}
}

// Stop the running of the algorithm
//
// Stop the execution of events on the nodes.
// Stop handling new records and close the record loops
//
// Must be called after the main loop has been started.
func (ec *RunnerController[T, S]) Stop() {
	if ec.isClosed() {
		return
	}
	for _, n := range ec.nodes {
		n.Close()
	}
	// Signal to the recordLoop to close all record channels
	close(ec.stop)

	// Remove the nodes.
	ec.nodes = nil
}

// Pause the execution of events on the specified node.
//
// Must be called after the main loop has been started.
func (ec *RunnerController[T, S]) Pause(id int) error {
	if ec.isClosed() {
		return fmt.Errorf("RunnerController: Runner Controller has been stopped. No more commands can be executed.")
	}
	node, ok := ec.nodes[id]
	if !ok {
		return fmt.Errorf("RunnerController: No node with the provided id. Provided id: %v", id)
	}
	node.Pause()
	return nil
}

// Resume the execution of events on the specified node.
//
// Must be called after the main loop has been started.
func (ec *RunnerController[T, S]) Resume(id int) error {
	if ec.isClosed() {
		return fmt.Errorf("RunnerController: Runner Controller has been stopped. No more commands can be executed.")
	}
	node, ok := ec.nodes[id]
	if !ok {
		return fmt.Errorf("RunnerController: No node with the provided id. Provided id: %v", id)
	}
	node.Resume()
	return nil
}

// Crash the specified node.
//
// Must be called after the main loop has been started.
func (ec *RunnerController[T, S]) CrashNode(id int) error {
	if ec.isClosed() {
		return fmt.Errorf("RunnerController: Runner Controller has been stopped. No more commands can be executed.")
	}
	node, ok := ec.nodes[id]
	if !ok {
		return fmt.Errorf("RunnerController: No node with the provided id. Provided id: %v", id)
	}
	node.Close()

	ec.sendCrashNotification(id)
	return nil
}

// Send crash notification to all subscribed nodes
func (ec *RunnerController[T, S]) sendCrashNotification(crashedId int) {
	for id, f := range ec.crashSubscribes {
		node, ok := ec.nodes[id]
		if !ok {
			continue
		}
		node.addEvent(event.NewCrashDetection(id, crashedId, f))
	}
}

// Subscribe to notifications about changes in the status of the nodes.
//
// id is the id of the node that subscribes to status changes.
// The provided callback function is called When the status of a node changes.
func (ec *RunnerController[T, S]) CrashSubscribe(id int, callback func(id int, status bool)) {
	ec.crashSubscribes[id] = callback
}

// Send a new request to the specified node.
//
// id is the id of the node that will receive the request.
// method is a string with the name of the method that will be called on the node.
// params is the parameters that will be passed to the method.
//
// Must be called after the main loop has been started.
func (ec *RunnerController[T, S]) NewRequest(id int, method string, params []reflect.Value) error {
	if ec.isClosed() {
		return fmt.Errorf("RunnerController: Runner Controller has been stopped. No more commands can be executed.")
	}

	node, ok := ec.nodes[id]
	if !ok {
		return fmt.Errorf("RunnerController: No node with the provided id. Provided id: %v", id)
	}

	node.addEvent(event.NewFunctionEvent(ec.requestId, id, method, params...))
	ec.requestId++
	return nil
}

// Returns true if the running has been stopped.
// false otherwise.
func (ec *RunnerController[T, S]) isClosed() bool {
	select {
	case <-ec.stop:
		return true
	default:
		return false
	}
}

GoMC-master/runner/runnerController_test.go

package runner

import (
	"gomc/event"
	"strconv"
	"testing"
)

func TestCommandsIncorrectId(t *testing.T) {
	for i, test := range commandTest {
		ec := NewEventController[MockNode, int](1000)

		nodes := make(map[int]*MockNode)
		for _, id := range test.nodeIds {
			nodes[id] = &MockNode{Id: id}
		}
		ec.MainLoop(nodes, eventBuffer, crashFunc, getState)
		var err error
		for _, cmd := range test.commands {
			switch cmd.cmd {
			case "stop":
				ec.Stop()
			case "pause":
				err = ec.Pause(cmd.id)
			case "resume":
				err = ec.Resume(cmd.id)
			case "crash":
				err = ec.CrashNode(cmd.id)
			}
		}
		if err == nil {
			t.Errorf("Test %v: Expected to receive an error", i)
		}
		ec.Stop()
	}
}

func TestCrashSubscribe(t *testing.T) {
	for i, test := range crashNodeTest {
		ec := NewEventController[MockNode, int](1000)
		nodes := make(map[int]*MockNode)
		for _, id := range test.nodeIds {
			nodes[id] = &MockNode{Id: id}
		}

		ec.MainLoop(nodes, eventBuffer, crashFunc, getState)

		ec.CrashSubscribe(test.subscribeId, func(id int, status bool) {})

		err := ec.CrashNode(test.id)
		isErr := (err != nil)
		if isErr != test.expectErr {
			if isErr {
				t.Errorf("Test %v: Expected no error got: %v", i, err)
			} else {
				t.Errorf("Test %v: Expected to receive an error", i)
			}
		}
	}
}

func TestAddEvent(t *testing.T) {
	for _, test := range addEventTest {
		ec := NewEventController[MockNode, int](1000)
		nodes := make(map[int]*MockNode)
		for _, id := range test.nodeIds {
			nodes[id] = &MockNode{Id: id}
		}

		ec.MainLoop(nodes, eventBuffer, crashFunc, getState)
		recSub := ec.Subscribe()
		for j, target := range test.eventTargets {
			ec.AddEvent(MockEvent{
				id: event.EventId(strconv.Itoa(j)),
				target: target,
			})
		}

		ec.Stop()

		numEvt := 0
		for j := 0; j < len(test.eventTargets)*2; j++ {
			rec := <-recSub
			if rec, ok := rec.(ExecutionRecord); ok {
				expectedEvt := test.eventTargets[numEvt]
				evtId, err := strconv.Atoi(string(rec.Evt.Id()))
				if err != nil {
					panic(err)
				}
				if expectedEvt != evtId {
					t.Errorf("Unexpected event. Expected %v. Got: %v", expectedEvt, evtId)
				}
				numEvt++
			}
		}
	}
}

func TestMultipleClose(t *testing.T) {
	ec := NewEventController[MockNode, int](1000)
	nodes := make(map[int]*MockNode)
	for id := 0; id < 3; id++ {
		nodes[id] = &MockNode{Id: id}
	}
	ec.MainLoop(nodes, eventBuffer, crashFunc, getState)
	ec.Stop()

	ec.Stop()
}

type testCommand struct {
	cmd string
	id int
}

var commandTest = []struct {
	nodeIds []int
	commands []testCommand
}{
	{
		[]int{0, 1, 2},
		[]testCommand{{"pause", 10}},
	},
	{
		[]int{0, 1, 2},
		[]testCommand{{"stop", -1}, {"pause", 0}},
	},
	{
		[]int{0, 1, 2},
		[]testCommand{{"resume", 10}},
	},
	{
		[]int{0, 1, 2},
		[]testCommand{{"stop", -1}, {"resume", 0}},
	},
	{
		[]int{0, 1, 2},
		[]testCommand{{"crash", 10}},
	},
	{
		[]int{0, 1, 2},
		[]testCommand{{"stop", -1}, {"crash", 1}},
	},
}

var crashNodeTest = []struct {
	nodeIds []int
	id int
	subscribeId int

	expectErr bool
}{
	{
		[]int{0, 1, 2},
		1,
		0,

		false,
	},
	{
		[]int{0, 1, 2},
		10,
		0,

		true,
	},
	{
		[]int{0, 1, 2},
		1,
		15,

		false,
	},
}

var addEventTest = []struct {
	nodeIds []int
	eventTargets []int

	expectedEvents []int
}{
	{
		[]int{0, 1, 2},
		[]int{0, 1},

		[]int{0, 1},
	},
	{
		[]int{0, 1, 2},
		[]int{0, 10, 1},
		[]int{0, 2},
	},
}

GoMC-master/runner/utils_test.go

package runner

import (
	"gomc/event"
)

// Create some dummy types and states for use when testing
type MockNode struct {
	Id int

	crashed bool
	val int
}

func (n *MockNode) UpdateVal(val int) {
	n.val = val
}

func GetState(n *MockNode) State {
	return State{
		val: n.val,
	}
}

type State struct {
	val int
}

type MockEvent struct {
	id event.EventId
	target int
	val int
}

func (me MockEvent) Id() event.EventId {
	return me.id
}

func (me MockEvent) Execute(n any, chn chan error) {
	if me.val == -1 {
		panic("Node panicked during testing")
	}
	tmp := n.(*MockNode)
	if !tmp.crashed {
		tmp.val = me.val
	}
	chn <- nil
}

func (me MockEvent) Target() int {
	return me.target
}

GoMC-master/scheduler/guidedSearch.go

package scheduler

import (
	"gomc/event"
	"sync"
)

// A scheduler that initially will follow a provided run before it begin searching the state space.
type GuidedSearch struct {
	run []event.EventId
	search GlobalScheduler
}

// Create a new GuidedSearch scheduled
//
// search is the Scheduler that will be used to explore the state space after the provided run has been completed.
// run is the sequence of events that will be executed before beginning to search the state space.
func NewGuidedSearch(search GlobalScheduler, run []event.EventId) *GuidedSearch {
	return &GuidedSearch{
		run: run,
		search: search,
	}
}

// Create a RunScheduler that will communicate with the global scheduler
func (gs *GuidedSearch) GetRunScheduler() RunScheduler {
	search := gs.search.GetRunScheduler()
	return newRunGuidedSearch(search, gs.run)
}

// Reset the global state of the GlobalScheduler.
// Prepare the scheduler for the next simulation.
func (gs *GuidedSearch) Reset() {
	gs.search.Reset()
}

// Manages the exploration of the state space in a single goroutine.
// Events can safely be added from multiple goroutines.
// Events will only be retrieved from a single goroutine during the simulation.
// Communicates with the GlobalScheduler to ensure that the state exploration remains consistent.
type runGuidedSearch struct {
	sync.Mutex
	// The scheduler used to search the state space
	search RunScheduler

	// The provided run
	run []event.EventId
	guided *runReplay

	useGuided bool
}

// Create a new GuidedSearch scheduler using the provided search scheduler for searching the state space after it has followed the provided run
func newRunGuidedSearch(search RunScheduler, run []event.EventId) *runGuidedSearch {
	return &runGuidedSearch{
		search: search,

		run: run,
		guided: nil,
		useGuided: true,
	}
}

// Get the next event in the run.
//
// Will follow the provided run until it has been completed or until it is unable to find the next event.
// After that the scheduler will begin to search the state space using teh provided search scheduler.
//
// Will return RunEndedError if there are no more events in the run.
func (gs *runGuidedSearch) GetEvent() (event.Event, error) {
	gs.Lock()
	defer gs.Unlock()
	if gs.useGuided {
		evt, err := gs.guided.GetEvent()
		if err != nil {
			gs.useGuided = false
			// Migrate all pending events from the guided scheduler to the search scheduler
			for _, evt := range gs.guided.pendingEvents {
				gs.search.AddEvent(evt)
			}
			return gs.search.GetEvent()
		}
		return evt, err
	} else {
		return gs.search.GetEvent()
	}
}

// Implements the event adder interface.
//
// It must be safe to add events from different goroutines.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (gs *runGuidedSearch) AddEvent(evt event.Event) {
	gs.Lock()
	defer gs.Unlock()
	if gs.useGuided {
		gs.guided.AddEvent(evt)
	} else {
		gs.search.AddEvent(evt)
	}
}

// Prepare for starting a new run.
//
// Returns a NoRunsError if all possible runs have been completed.
// May block until new runs are available.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (gs *runGuidedSearch) StartRun() error {
	gs.Lock()
	defer gs.Unlock()
	gs.useGuided = true
	gs.guided = newRunReplay(gs.run)
	err := gs.guided.StartRun()
	if err != nil {
		return err
	}
	return gs.search.StartRun()
}

// Finish the current run and prepare for the next one.
//
// Will always be called after a run has been completely executed,
// even if an error occurred during execution of the run.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (gs *runGuidedSearch) EndRun() {
	gs.search.EndRun()
	gs.guided.EndRun()
}

GoMC-master/scheduler/guidedSearch_test.go

package scheduler

import (
	"errors"
	"gomc/event"
	"testing"

	"golang.org/x/exp/slices"
)

func TestGuidedSearch(t *testing.T) {
	for i, test := range GuidedSearchTests {
		gsch := NewGuidedSearch(NewPrefix(), test.run)

		sch := gsch.GetRunScheduler()

		err := sch.StartRun()
		if err != nil {
			t.Errorf("Unexpected error: %v", err)
		}

		numRuns := 0
		actualRun := []event.EventId{}
		numEvent := 0
		for {
			if events, ok := test.events[numEvent]; ok {
				// add some more events
				for _, event := range events {
					sch.AddEvent(event)
				}
			}
			evt, err := sch.GetEvent()
			if errors.Is(err, RunEndedError) {
				sch.EndRun()
				numRuns++
				if !slices.Equal(test.run[:test.lengthReplay], actualRun[:test.lengthReplay]) {
					t.Errorf("Did not follow run for start of execution in test %v", i)
				}

				err := sch.StartRun()
				if errors.Is(err, NoRunsError) {
					break
				}
				actualRun = []event.EventId{}
				numEvent = 0
				continue
			}
			actualRun = append(actualRun, evt.Id())
			numEvent++
		}
		if numRuns != test.numRuns {
			t.Errorf("Got an unexpected number of total runs in test %v. Got %v. Expected: %v", i, numRuns, test.numRuns)
		}
	}
}

var GuidedSearchTests = []struct {
	run []event.EventId
	events map[int][]MockEvent
	// Specify the number of events in the provided run that the scheduler is expected to follow before it begins searching
	// This is generally the length of the run, but can be shorter if for instance the replayScheduler is unable to find the next event in the run
	lengthReplay int
	numRuns int
}{
	{
		run: []event.EventId{"1", "2", "3"},
		events: map[int][]MockEvent{
			0: {{id: "1"}, {id: "2"}, {id: "3"}, {id: "4"}, {id: "5"}},
		},
		lengthReplay: 3,
		numRuns: 2,
	},
	{
		run: []event.EventId{},
		events: map[int][]MockEvent{
			0: {{id: "1"}, {id: "2"}, {id: "3"}, {id: "4"}, {id: "5"}},
		},
		lengthReplay: 0,
		numRuns: 120,
	},
	{
		run: []event.EventId{"1", "2", "3", "4", "5"},
		events: map[int][]MockEvent{
			0: {{id: "1"}, {id: "2"}, {id: "3"}, {id: "4"}, {id: "5"}},
		},
		lengthReplay: 5,
		numRuns: 1,
	},
	{
		run: []event.EventId{"1", "2", "3", "4", "5"},
		events: map[int][]MockEvent{0: {{id: "1"}, {id: "2"}, {id: "4"}, {id: "5"}}},
		lengthReplay: 2,
		numRuns: 2,
	},
	{
		run: []event.EventId{"1", "2"},
		events: map[int][]MockEvent{
			0: {{id: "1"}, {id: "2"}, {id: "3"}, {id: "4"}, {id: "5"}},
			2: {{id: "6"}, {id: "7"}},
		},
		lengthReplay: 2,
		numRuns: 120,
	},
}

GoMC-master/scheduler/prefix.go

package scheduler

import (
	"errors"
	"gomc/event"
	"sync"
)

type run []event.EventId

// Explores the state space by maintaining a stack of unexplored prefixes.
// When a new run is started it follows the prefix and begins exploring from there, adding new prefixes it discovers as it executes events.
//
// Deterministic, stateful scheduler that explores the entire state space.
type Prefix struct {
	// unexplored prefixes
	r []run

	// Used to wait for a change in p.ongoing or p.r.
	// The condition is len(p.r) == 0 and p.ongoing > 0
	cond *sync.Cond

	// Number of runScheduler currently scheduling a run.
	// I.e. number of runScheduler not waiting for a new run
	ongoing int
}

// Create a Prefix Scheduler
//
// The Prefix Scheduler is a deterministic and stateful scheduler that explores the entire state space.
// Given enough runs it will completely explore the state space.
func NewPrefix() *Prefix {
	ss := &Prefix{
		r: []run{{}},
		cond: sync.NewCond(new(sync.Mutex)),
	}
	return ss
}

// Create a RunScheduler that will communicate with the global scheduler.
func (p *Prefix) GetRunScheduler() RunScheduler {
	return newRunPrefix(p)
}

// Add the provided prefix to the list of unexplored prefixes.
func (p *Prefix) addRun(r run) {
	p.cond.L.Lock()
	defer p.cond.L.Unlock()

	p.r = append(p.r, r)

	if len(p.r) == 1 {
		p.cond.Broadcast()
	}
}

// End the run
//
// Decrement the number of ongoing runs
func (p *Prefix) endRun() {
	p.cond.L.Lock()
	defer p.cond.L.Unlock()

	p.ongoing--
	// Signal on the cond that the ongoing variable has changed
	p.cond.Broadcast()
}

// Get the prefix for the next run
//
// Will block until some prefixes are available.
// If no prefixes are available and there are no ongoing runs it will return nil
func (p *Prefix) getRun() run {
	p.cond.L.Lock()
	defer p.cond.L.Unlock()

	// If there are no available events wait until there are.
	// If at the same time all runSchedulers are waiting for a new event then there will never be a new available event since there are no runSchedulers that can add a new event
	// All possible runs have therefore been explored and we return nil
	// Use the cond to wait for a change in p.ongoing or p.r
	for len(p.r) == 0 && p.ongoing > 0 {
		p.cond.Wait()
	}
	if len(p.r) == 0 {
		return nil
	}

	// Pop the latest prefix
	r := p.r[len(p.r)-1]
	p.r = p.r[:len(p.r)-1]

	p.ongoing++
	return r
}

// Reset the global state of the GlobalScheduler.
// Prepare the scheduler for the next simulation.
func (p *Prefix) Reset() {
	p.cond.L.Lock()
	defer p.cond.L.Unlock()

	p.r = []run{{}}
	p.ongoing = 0
}

// Manages the exploration of the state space in a single goroutine.
// Events can safely be added from multiple goroutines.
// Events will only be retrieved from a single goroutine during the simulation.
// Communicates with the GlobalScheduler to ensure that the state exploration remains consistent.
type runPrefix struct {
	sync.Mutex

	p *Prefix

	currentIndex int
	currentRun run

	pendingEvents []event.Event
}

// Create a new runPrefixScheduler
func newRunPrefix(p *Prefix) *runPrefix {
	return &runPrefix{
		p: p,

		currentIndex: 0,
		currentRun: make(run, 0),
		pendingEvents: make([]event.Event, 0),
	}
}

// Get the next event in the run. Will return RunEndedError if there are no more events in the run.
func (rp *runPrefix) GetEvent() (event.Event, error) {
	rp.Lock()
	defer rp.Unlock()

	if len(rp.pendingEvents) == 0 {
		return nil, RunEndedError
	}

	var evt event.Event
	if rp.currentIndex < len(rp.currentRun) {
		// Follow the current run until it has no more events
		evtId := rp.currentRun[rp.currentIndex]
		// Remove events from the pending events queue as they are selected
		evt = rp.popEvent(evtId)
		if evt == nil {
			return nil, errors.New("Scheduler: Scheduled an event that was pending")
		}
	} else {
		// Pop the last element from the pending events
		evt = rp.pendingEvents[len(rp.pendingEvents)-1]
		rp.pendingEvents = rp.pendingEvents[:len(rp.pendingEvents)-1]

		// For all pending events we create a new run and add it to the pending runs queue
		for _, pendingEvt := range rp.pendingEvents {
			// Add these runs to the pending run slice
			newRun := make(run, len(rp.currentRun))
			copy(newRun, rp.currentRun)
			newRun = append(newRun, pendingEvt.Id())
			rp.p.addRun(newRun)
		}
		rp.currentRun = append(rp.currentRun, evt.Id())
	}
	rp.currentIndex++
	return evt, nil
}

// Get the event from the pending events
// Return nil if it is not found in the pending events
func (rp *runPrefix) popEvent(evtId event.EventId) event.Event {
	for i, pendingEvt := range rp.pendingEvents {
		if evtId == pendingEvt.Id() {
			rp.pendingEvents = append(rp.pendingEvents[:i], rp.pendingEvents[i+1:]...)
			return pendingEvt
		}
	}
	return nil
}

// Implements the event adder interface.
//
// It must be safe to add events from different goroutines.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rp *runPrefix) AddEvent(evt event.Event) {
	rp.Lock()
	defer rp.Unlock()
	rp.pendingEvents = append(rp.pendingEvents, evt)
}

// Prepare for starting a new run.
//
// Returns a NoRunsError if all possible runs have been completed.
// May block until new runs are available.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rp *runPrefix) StartRun() error {
	rp.Lock()
	defer rp.Unlock()

	rp.currentIndex = 0
	r := rp.p.getRun()
	if r == nil {
		return NoRunsError
	}
	rp.currentRun = r
	return nil
}

// Finish the current run and prepare for the next one.
//
// Will always be called after a run has been completely executed,
// even if an error occurred during execution of the run.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rp *runPrefix) EndRun() {
	rp.p.endRun()
}

GoMC-master/scheduler/prefix_test.go

package scheduler

import "testing"

func TestQueueSchedulerExplore2Events(t *testing.T) {
	sch := NewPrefix()
	testDeterministicExplore2Events(t, sch)
}

func TestQueueExploreBranchingEvents(t *testing.T) {
	sch := NewPrefix()
	testDeterministicExploreBranchingEvents(t, sch)
}

func TestConcurrentBranchingEvent(t *testing.T) {
	sch := NewPrefix()
	testConcurrentDeterministic(t, sch)
}

func BenchmarkQueueScheduler(b *testing.B) {
	for i := 0; i < b.N; i++ {
		sch := NewPrefix()
		err := benchmarkRunScheduler(sch.GetRunScheduler(), 7)
		if err != nil {
			b.Errorf(err.Error())
		}
	}
}

GoMC-master/scheduler/random.go

package scheduler

import (
	"gomc/event"
	"math/rand"
	"sync"
)

// A scheduler that randomly picks the next event from the available events.
//
// It is useful for testing a random selection of the state space when the state space is to large to perform an exhaustive search
// It provides no guarantee that all errors have been found, but since it is random it generally contains a larger spread in the states that are checked compared to the exhaustive search.
type Random struct {
	rand *rand.Rand
}

// Create a new Random scheduler
//
// Initialized with a seed which is used to initialize run-specific schedulers
func NewRandom(seed int64) *Random {
	// The provided seed is used to generate seeds for the runScheduler
	return &Random{
		rand: rand.New(rand.NewSource(seed)),
	}
}

// Create a RunScheduler that will communicate with the global scheduler
func (r *Random) GetRunScheduler() RunScheduler {
	return newRandomRun(rand.Int63())
}

// Reset the global state of the GlobalScheduler.
// Prepare the scheduler for the next simulation.
func (r *Random) Reset() {

}

// Manages the exploration of the state space in a single goroutine.
// Events can safely be added from multiple goroutines.
// Events will only be retrieved from a single goroutine during the simulation.
// Communicates with the GlobalScheduler to ensure that the state exploration remains consistent.
type randomRun struct {
	sync.Mutex

	// a slice of all events that can be chosen
	pendingEvents []event.Event

	rand *rand.Rand
}

// Create a new randomRun scheduler
func newRandomRun(seed int64) *randomRun {
	return &randomRun{
		pendingEvents: make([]event.Event, 0),

		rand: rand.New(rand.NewSource(seed)),
	}
}

// Get the next event in the run.
//
// Randomly selects the next event.
//
// Will return RunEndedError if there are no more events in the run.
// The event returned must be an event that has been added during the current run.
func (rs *randomRun) GetEvent() (event.Event, error) {
	rs.Lock()
	defer rs.Unlock()

	if len(rs.pendingEvents) == 0 {
		return nil, RunEndedError
	}

	index := rs.rand.Intn(len(rs.pendingEvents))
	evt := rs.pendingEvents[index]

	// Remove the element from the slice. This changes the order of the element in the slice, but is more efficient as we do not need to move all elements after the removed element.
	// Since we are drawing randomly the ordering does not matter
	rs.pendingEvents[index] = rs.pendingEvents[len(rs.pendingEvents)-1]
	rs.pendingEvents = rs.pendingEvents[:len(rs.pendingEvents)-1]

	return evt, nil
}

// Implements the event adder interface.
//
// It must be safe to add events from different goroutines.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rs *randomRun) AddEvent(evt event.Event) {
	rs.Lock()
	defer rs.Unlock()
	rs.pendingEvents = append(rs.pendingEvents, evt)
}

// Prepare for starting a new run.
//
// Returns a NoRunsError if all possible runs have been completed.
// May block until new runs are available.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rs *randomRun) StartRun() error {
	rs.Lock()
	defer rs.Unlock()
	rs.pendingEvents = make([]event.Event, 0)
	return nil
}

// Finish the current run and prepare for the next one.
//
// Will always be called after a run has been completely executed,
// even if an error occurred during execution of the run.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rs *randomRun) EndRun() {
}

GoMC-master/scheduler/random_test.go

package scheduler

import (
	"errors"
	"gomc/event"
	"testing"
)

func TestRandomScheduler(t *testing.T) {
	// Perform one random run
	gsch := NewRandom(1)
	sch := gsch.GetRunScheduler()
	err := sch.StartRun()
	if err != nil {
		t.Errorf("Got unexpected error: %v", err)
	}
	sch.AddEvent(MockEvent{"0", 0, false})
	sch.AddEvent(MockEvent{"1", 0, false})

	// This should cause two possible interleavings. Either event 1 first and Event 2 afterwards or Event 2 then Event 1.
	run := []event.Event{}
	for i := 0; i < 2; i++ {
		evt, err := sch.GetEvent()
		if err != nil {
			t.Errorf("Did not expect to receive an error. Got %v", err)
		}
		run = append(run, evt)
	}
	_, err = sch.GetEvent()
	if !errors.Is(err, RunEndedError) {
		t.Errorf("Expected to get a RunEndedError. Got: %v", err)
	}

	events := map[event.EventId]int{"0": 0, "1": 0}
	for _, evt := range run {
		if events[evt.Id()] > 1 {
			t.Errorf("Event occurred more times than it was scheduled: %v", evt.Id())
			events[evt.Id()]++
		}
	}
	sch.EndRun()

	err = sch.StartRun()
	if err != nil {
		t.Errorf("Got unexpected error: %v", err)
	}
}

GoMC-master/scheduler/replay.go

package scheduler

import (
	"errors"
	"gomc/event"
	"sync"
)

// A scheduler that replays the provided run
//
// The scheduler replays the run once, before stopping the simulation.
// It does not further explore the state space.
//
// If the algorithm has been changed, and the scheduler is unable to follow the provided run it will return errors.
// It will stop after replaying the provided run, even if there are more pending events.
type Replay struct {
	run []event.EventId
	done bool
}

// Create a new Replay scheduler
//
// run is the sequence of events that will be replayed.
func NewReplay(run []event.EventId) *Replay {
	return &Replay{
		run: run,
	}
}

// Create a RunScheduler that will communicate with the global scheduler
//
// The first run-specific scheduler will replay the run once. The other will immediately return NoRunsErrors.
func (r *Replay) GetRunScheduler() RunScheduler {
	if r.done {
		return newRunReplay(nil)
	}
	r.done = true
	return newRunReplay(r.run)
}

// Reset the global state of the GlobalScheduler.
// Prepare the scheduler for the next simulation.
func (r *Replay) Reset() {
	r.done = false
}

// Manages the exploration of the state space in a single goroutine.
// Events can safely be added from multiple goroutines.
// Events will only be retrieved from a single goroutine during the simulation.
// Communicates with the GlobalScheduler to ensure that the state exploration remains consistent.
type runReplay struct {
	sync.Mutex
	// A slice of the run to be replayed with event ids in order
	run []event.EventId
	// The index of the current event
	index int

	pendingEvents []event.Event
}

// Create a new runReplay scheduler
func newRunReplay(run []event.EventId) *runReplay {
	return &runReplay{
		index: 0,
		run: run,

		pendingEvents: make([]event.Event, 0),
	}
}

// Get the next event in the run.
//
// Gets the next event in the provided run.
// Returns an error if it is unable to find the event.
//
// Will return RunEndedError if there are no more events in the run.
// The event returned must be an event that has been added during the current run.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rr *runReplay) GetEvent() (event.Event, error) {
	rr.Lock()
	defer rr.Unlock()

	if rr.index >= len(rr.run) {
		return nil, RunEndedError
	}
	evtId := rr.run[rr.index]
	evt := rr.popEvent(evtId)
	if evt == nil {
		return nil, errors.New("RunScheduler: Unable to find next event")
	}
	rr.index++
	return evt, nil
}

// Get the event from the pending events
// Return nil if it is not found in the pending events
func (rr *runReplay) popEvent(id event.EventId) event.Event {
	for i, evt := range rr.pendingEvents {
		if evt.Id() == id {
			// Remove the event from the pending events and return the event
			rr.pendingEvents = append(rr.pendingEvents[:i], rr.pendingEvents[i+1:]...)
			return evt
		}
	}
	return nil
}

// Add an event to the list of possible events
//
// It must be safe to add events from different goroutines.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rr *runReplay) AddEvent(evt event.Event) {
	rr.Lock()
	defer rr.Unlock()
	rr.pendingEvents = append(rr.pendingEvents, evt)
}

	// Prepare for starting a new run.
	//
	// Returns a NoRunsError if all possible runs have been completed.
	// May block until new runs are available.
	// StartRun, EndRun and GetEvent will always be called from the same goroutine,
	// but not from the same goroutine as AddEvent.
func (rr *runReplay) StartRun() error {
	rr.Lock()
	defer rr.Unlock()
	if rr.run == nil {
		return NoRunsError
	}
	return nil
}

// Finish the current run and prepare for the next one.
//
// Will always be called after a run has been completely executed,
// even if an error occurred during execution of the run.
// StartRun, EndRun and GetEvent will always be called from the same goroutine,
// but not from the same goroutine as AddEvent.
func (rr *runReplay) EndRun() {
	rr.Lock()
	defer rr.Unlock()
	rr.index = 0
	rr.run = nil
}

GoMC-master/scheduler/replay_test.go

package scheduler

import (
	"errors"
	"gomc/event"
	"testing"

	"golang.org/x/exp/slices"
)

func TestReplayScheduler(t *testing.T) {
	for i, test := range replaySchedulerTest {
		gsch := NewReplay(test.run)
		sch := gsch.GetRunScheduler()
		err := sch.StartRun()
		if err != nil {
			t.Errorf("Received unexpected error: %v", err)
		}
		for _, evt := range test.events {
			sch.AddEvent(evt)
		}
		actualRun := []event.EventId{}
		for {
			evt, err := sch.GetEvent()
			if err == NoRunsError {
				break
			}
			if err == RunEndedError {
				break
			}
			if evt == nil {
				if !test.expectedErr {
					t.Errorf("Did not expect to receive an error in test %v", i)
				}
				break
			}
			actualRun = append(actualRun, evt.Id())
		}
		if !test.expectedErr && !slices.Equal(actualRun, test.run) {
			t.Errorf("Received unexpected order of events in test %v. \n Got: %v\n Expected %v", i+1, actualRun, test.run)
		}
	}
}

func TestReplaySchedulerEndRun(t *testing.T) {
	run := []event.EventId{"1", "3", "4", "6", "7"}
	events := []MockEvent{
		{id: "4", target: 0},
		{id: "5", target: 1},
		{id: "1", target: 0},
		{id: "3", target: 0},
		{id: "7", target: 0},
		{id: "2", target: 1},
		{id: "6", target: 0},
	}
	gsch := NewReplay(run)
	sch := gsch.GetRunScheduler()
	err := sch.StartRun()
	if err != nil {
		t.Errorf("Received unexpected error: %v", err)
	}
	for _, evt := range events {
		sch.AddEvent(evt)
	}
	actualRun := []event.EventId{}
	for {
		evt, err := sch.GetEvent()
		if errors.Is(err, NoRunsError) {
			break
		}
		if errors.Is(err, RunEndedError) {
			break
		}
		actualRun = append(actualRun, evt.Id())
	}
	if !slices.Equal(actualRun, run) {
		t.Errorf("Received unexpected run. \nGot: %v. \nExpected: %v", actualRun, run)
	}
	sch.EndRun()
}

func TestReplaySchedulerMultipleRuns(t *testing.T) {
	run := []event.EventId{"1", "3", "4", "6", "7"}
	events := []MockEvent{
		{id: "4", target: 0},
		{id: "5", target: 1},
		{id: "1", target: 0},
		{id: "3", target: 0},
		{id: "7", target: 0},
		{id: "2", target: 1},
		{id: "6", target: 0},
	}
	gsch := NewReplay(run)
	sch := gsch.GetRunScheduler()
	err := sch.StartRun()
	if err != nil {
		t.Errorf("Received unexpected error: %v", err)
	}
	for _, evt := range events {
		sch.AddEvent(evt)
	}
	actualRun := []event.EventId{}
	for {
		evt, err := sch.GetEvent()
		if errors.Is(err, NoRunsError) {
			break
		}
		if errors.Is(err, RunEndedError) {
			break
		}
		actualRun = append(actualRun, evt.Id())
	}
	if !slices.Equal(actualRun, run) {
		t.Errorf("Received unexpected run. \nGot: %v. \nExpected: %v", actualRun, run)
	}
	sch.EndRun()

	err = sch.StartRun()
	if !errors.Is(err, NoRunsError) {
		t.Errorf(" Expected to get NoRunsError on second start run. Got: %v", err)
	}
}

var replaySchedulerTest = []struct {
	run []event.EventId
	events []MockEvent
	expectedErr bool
}{
	{
		run: []event.EventId{},
		events: []MockEvent{},
		expectedErr: true,
	},
	{
		run: []event.EventId{"1", "2"},
		events: []MockEvent{{id: "2"}, {id: "1"}},
		expectedErr: false,
	},
	{
		// The provided run contains an event that is not added. Expect an error
		run: []event.EventId{"1", "3"},
		events: []MockEvent{{id: "2"}, {id: "1"}},
		expectedErr: true,
	},
	{
		run: []event.EventId{"1", "2", "2"},
		events: []MockEvent{{id: "2"}, {id: "1"}, {id: "3"}},
		expectedErr: true,
	},
	{
		run: []event.EventId{"1", "2", "2"},
		events: []MockEvent{{id: "2"}, {id: "1"}, {id: "2"}},
		expectedErr: false,
	},
}

GoMC-master/scheduler/scheduler.go

package scheduler

import (
	"errors"
	"gomc/event"
	"gomc/eventManager"
)

// Used to manage the exploration of the state space.
// The global scheduler manages the total state across several runs.
// Communicates with several run schedulers in separate goroutines to ensure that the exploration remains consistent
type GlobalScheduler interface {
	// Create a RunScheduler that will communicate with the global scheduler
	GetRunScheduler() RunScheduler

	// Reset the global state of the GlobalScheduler.
	// Prepare the scheduler for the next simulation.
	Reset()
}

// Manages the exploration of the state space in a single goroutine.
// Events can safely be added from multiple goroutines.
// Events will only be retrieved from a single goroutine during the simulation.
// Communicates with the GlobalScheduler to ensure that the state exploration remains consistent.
type RunScheduler interface {
	// Get the next event in the run.
	//
	// Will return RunEndedError if there are no more events in the run.
	// The event returned must be an event that has been added during the current run.
	// StartRun, EndRun and GetEvent will always be called from the same goroutine,
	// but not from the same goroutine as AddEvent.
	GetEvent() (event.Event, error)

	// Prepare for starting a new run.
	//
	// Returns a NoRunsError if all possible runs have been completed.
	// May block until new runs are available.
	// StartRun, EndRun and GetEvent will always be called from the same goroutine,
	// but not from the same goroutine as AddEvent.
	StartRun() error

	// Finish the current run and prepare for the next one.
	//
	// Will always be called after a run has been completely executed,
	// even if an error occurred during execution of the run.
	// StartRun, EndRun and GetEvent will always be called from the same goroutine,
	// but not from the same goroutine as AddEvent.
	EndRun()

	// Implements the event adder interface.
	//
	// It must be safe to add events from different goroutines.
	// StartRun, EndRun and GetEvent will always be called from the same goroutine,
	// but not from the same goroutine as AddEvent.
	//
	// Events that are added directly after an event has been returned are caused by that event.
	// This can be used to establish a happened-before relationship.
	eventManager.EventAdder
}

var (
	// The current run has ended and a new run should be started.
	// The simulator will call EndRun() and then prepare for the execution of a new run.
	RunEndedError = errors.New("scheduler: The run has ended. Reset the state.")

	// All possible runs have been completed. No more available runs.
	// The simulation will stop.
	NoRunsError = errors.New("scheduler: No available new runs to be started.")
)

GoMC-master/scheduler/scheduler_test.go

package scheduler

import (
	"errors"
	"gomc/event"
	"strconv"
	"testing"
)

func benchmarkRunScheduler(sch RunScheduler, numEvents int) error {
	for {
		evt, err := sch.GetEvent()
		if errors.Is(err, RunEndedError) {
			sch.EndRun()
			for i := 0; i < numEvents; i++ {
				sch.AddEvent(MockEvent{event.EventId(strconv.Itoa(i)), 0, false})
			}
		} else if errors.Is(err, NoRunsError) {
			return nil
		}
		if err == nil && evt == nil {
			return errors.New("Expected to receive an event.")
		}
	}
}

func testDeterministicExplore2Events(t *testing.T, gsch GlobalScheduler) {
	sch := gsch.GetRunScheduler()
	err := sch.StartRun()
	if err != nil {
		t.Errorf("Did not expect to receive an error. Got %v", err)
	}
	sch.AddEvent(MockEvent{"0", 0, false})
	sch.AddEvent(MockEvent{"1", 0, false})

	// This should cause two possible interleavings. Either event 1 first and Event 2 afterwards or Event 2 then Event 1.
	run1 := []event.Event{}
	for i := 0; i < 2; i++ {
		evt, err := sch.GetEvent()
		if err != nil {
			t.Errorf("Did not expect to receive an error. Got %v", err)
		}
		run1 = append(run1, evt)
	}
	_, err = sch.GetEvent()
	if !errors.Is(err, RunEndedError) {
		t.Errorf("Expected to get a RunEndedError. Got: %v", err)
	}
	sch.EndRun()

	err = sch.StartRun()
	if err != nil {
		t.Errorf("Did not expect to receive an error. Got %v", err)
	}
	sch.AddEvent(MockEvent{"0", 0, false})
	sch.AddEvent(MockEvent{"1", 0, false})

	run2 := []event.Event{}
	for i := 0; i < 2; i++ {
		evt, err := sch.GetEvent()
		if err != nil {
			t.Errorf("Did not expect to receive an error. Got %v", err)
		}
		run2 = append(run2, evt)
	}
	for i := 0; i < 2; i++ {
		if run1[i].Id() != run2[1-i].Id() {
			t.Errorf("Unexpected result from the two runs. Expected run 2 to be reverse of run 1. Got: Run1: %v, Run2: %v", run1, run2)
		}
	}
	_, err = sch.GetEvent()
	if !errors.Is(err, RunEndedError) {
		t.Errorf("Expected to get a RunEndedError. Got: %v", err)
	}
	sch.EndRun()

	err = sch.StartRun()
	if !errors.Is(err, NoRunsError) {
		t.Errorf("Expected to get a NoEventError. Got: %v", err)
	}
}

func testDeterministicExploreBranchingEvents(t *testing.T, gsch GlobalScheduler) {
	// 1. Add one event
	// 2. Get One event
	// 3. Add Two events
	// 4. Get the two events
	// Expects two chains. Both should contain all 3 events and start with event 0
	sch := gsch.GetRunScheduler()

	err := sch.StartRun()
	if err != nil {
		t.Errorf("Did not expect to receive an error. Got %v", err)
	}
	sch.AddEvent(MockEvent{"0", 0, false})

	run1 := []event.Event{}
	evt, err := sch.GetEvent()
	run1 = append(run1, evt)
	if err != nil {
		t.Errorf("Expected no error. Got: %v", err)
	}
	if evt.Id() != "0" {
		t.Errorf("Expected to be returned Event 0. Got: %v", evt)
	}

	sch.AddEvent(MockEvent{"1", 0, false})
	sch.AddEvent(MockEvent{"2", 0, false})

	for i := 0; i < 2; i++ {
		evt, err = sch.GetEvent()
		if err != nil {
			t.Errorf("Expected no error. Got: %v", err)
		}
		run1 = append(run1, evt)
	}
	_, err = sch.GetEvent()
	if !errors.Is(err, RunEndedError) {
		t.Errorf("Expected %v, got: %v", RunEndedError, err)
	}
	sch.EndRun()

	err = sch.StartRun()
	if err != nil {
		t.Errorf("Did not expect to receive an error. Got %v", err)
	}
	sch.AddEvent(MockEvent{"0", 0, false})

	run2 := []event.Event{}
	evt, err = sch.GetEvent()
	run2 = append(run2, evt)
	if err != nil {
		t.Errorf("Expected no error. Got: %v", err)
	}
	if evt.Id() != "0" {
		t.Errorf("Expected to be returned Event 0. Got: %v", evt)
	}
	sch.AddEvent(MockEvent{"1", 0, false})
	sch.AddEvent(MockEvent{"2", 0, false})

	for i := 0; i < 2; i++ {
		evt, err = sch.GetEvent()
		if err != nil {
			t.Errorf("Expected no error. Got: %v", err)
		}
		run2 = append(run2, evt)
	}
	_, err = sch.GetEvent()
	if !errors.Is(err, RunEndedError) {
		t.Errorf("Expected %v, got: %v", RunEndedError, err)
	}
	sch.EndRun()

	err = sch.StartRun()
	if !errors.Is(err, NoRunsError) {
		t.Errorf("Expected to get a NoEventError. Got: %v", err)
	}

	if run1[0].Id() != run2[0].Id() {
		t.Errorf("Both chains should start with the same event. Chain1 %v, Chain2: %v", run1[0], run2[0])
	}
	for i := 1; i < 3; i++ {
		if run1[i].Id() != run2[3-i].Id() {
			t.Errorf("Unexpected result from the two runs. Expected run 2 to be reverse of run 1. Got: Run1: %v, Run2: %v", run1, run2)
		}
	}
}

func testConcurrentDeterministic(t *testing.T, gsch GlobalScheduler) {
	runs := [][]event.Event{}
	runChan := make(chan []event.Event)
	for i := 0; i < 2; i++ {
		go func() {
			sch := gsch.GetRunScheduler()
			for {
				err := sch.StartRun()
				if errors.Is(err, NoRunsError) {
					break
				}
				sch.AddEvent(MockEvent{"0", 0, false})

				run := []event.Event{}
				evt, err := sch.GetEvent()
				run = append(run, evt)
				if err != nil {
					t.Errorf("Expected no error. Got: %v", err)
				}
				if evt.Id() != "0" {
					t.Errorf("Expected to be returned Event 0. Got: %v", evt)
				}

				sch.AddEvent(MockEvent{"1", 0, false})
				sch.AddEvent(MockEvent{"2", 0, false})

				for i := 0; i < 2; i++ {
					evt, err = sch.GetEvent()
					if err != nil {
						t.Errorf("Expected no error. Got: %v", err)
					}
					run = append(run, evt)
				}
				_, err = sch.GetEvent()
				if !errors.Is(err, RunEndedError) {
					t.Errorf("Expected %v, got: %v", RunEndedError, err)
				}
				sch.EndRun()
				runChan <- run
			}
		}()
	}
	for run := range runChan {
		runs = append(runs, run)
		if len(runs) == 2 {
			close(runChan)
		}
	}

	if runs[0][0].Id() != runs[1][0].Id() {
		t.Errorf("Both chains should start with the same event. Chain1 %v, Chain2: %v", runs[0][0], runs[1][0])
	}
	for i := 1; i < 3; i++ {
		if runs[0][i].Id() != runs[1][3-i].Id() {
			t.Errorf("Unexpected result from the two runs. Expected run 2 to be reverse of run 1. Got: Run1: %v, Run2: %v", runs[0], runs[1])
		}
	}
}

type MockEvent struct {
	id event.EventId
	target int
	executed bool
}

func (me MockEvent) Id() event.EventId {
	return me.id
}

func (me MockEvent) Execute(_ any, chn chan error) {
	chn <- nil
}

func (me MockEvent) Target() int {
	return me.target
}

GoMC-master/simulator/error.go

package simulator

import "fmt"

// Aggregates the errors that ocurred during a simulation
type simulationError struct {
	errorSlice []error
}

func (se simulationError) Error() string {
	return fmt.Sprintf("Simulator: %v Errors occurred running simulations. \nError 1: %v", len(se.errorSlice), se.errorSlice[0])
}

GoMC-master/simulator/runSimulator.go

package simulator

import (
	"errors"
	"fmt"
	"gomc/event"
	"gomc/eventManager"
	"gomc/failureManager"
	"gomc/request"
	"gomc/scheduler"
	"gomc/stateManager"
	"runtime/debug"
)

// Performs the simulation of runs
type runSimulator[T, S any] struct {
	sch scheduler.RunScheduler
	sm *stateManager.RunStateManager[T, S]
	fm failureManager.RunFailureManager[T]

	nextEvt chan error

	maxDepth int
	ignorePanics bool
}

// create a new runSimulator
//
// Configure a new runSimulator with a runScheduler, runStateManager and a RunFailureManager.
// Also specify the max depth of the run and whether to ignore panics that occur when executing an event.
func newRunSimulator[T, S any](sch scheduler.RunScheduler, sm *stateManager.RunStateManager[T, S], fm failureManager.RunFailureManager[T], maxDepth int, ignorePanics bool) *runSimulator[T, S] {
	return &runSimulator[T, S]{
		sch: sch,
		sm: sm,
		fm: fm,

		nextEvt: make(chan error),

		maxDepth: maxDepth,
		ignorePanics: ignorePanics,
	}
}

// Main loop of the runSimulator.
//
// Continuously listens to the nextRun channel and starts simulating a new run each time it receives a signal.
// Stops simulating runs when the channel is closed or when a scheduler.NoRunsError is returned.
// Sends the status of each run on the status channel.
// When it closes it sends an indication on the closing channel
func (rs *runSimulator[T, S]) SimulateRuns(nextRun chan bool, status chan error, closing chan bool, cfg *runParameters[T]) {
	// Continue executing runs until the nextRun channel is closed or until the scheduler returns NoRunsError
	for range nextRun {
		err := rs.simulateRun(cfg)
		if errors.Is(err, scheduler.NoRunsError) {
			break
		}
		// Send error to main loop
		status <- err
	}

	// Indicate that the runSimulator has stopped
	closing <- true
}

// Simulate a run
//
// Simulating consists of three parts: initialization, execution and teardown of the run.
// teardown of the run is always called after the run, even if errors occur.
func (rs *runSimulator[T, S]) simulateRun(cfg *runParameters[T]) error {
	nodes, err := rs.initRun(cfg.initNodes, cfg.requests...)
	if err != nil {
		return fmt.Errorf("Simulator: An error occurred while initializing a run: %w", err)
	}

	// Always teardown the run.
	defer rs.teardownRun(nodes, cfg.stopNode)

	err = rs.executeRun(nodes)
	if err != nil {
		return fmt.Errorf("Simulator: An error occurred while simulating a run: %v", err)
	}
	return nil
}

// Initialization of a run
//
// Creates the nodes and collects the initial state.
// prepares the scheduler and the failure manager for the new run.
// schedules new requests.
func (rs *runSimulator[T, S]) initRun(initNodes func(sp eventManager.SimulationParameters) map[int]*T, requests ...request.Request) (map[int]*T, error) {
	nodes := initNodes(eventManager.SimulationParameters{
		NextEvt: rs.nextEvent,
		CrashSubscribe: rs.fm.Subscribe,
		EventAdder: rs.sch,
	})

	rs.sm.UpdateGlobalState(nodes, rs.fm.CorrectNodes(), nil)

	err := rs.sch.StartRun()
	if err != nil {
		return nil, err
	}

	err = rs.scheduleRequests(requests, nodes)
	if err != nil {
		return nil, err
	}

	// Init nodes and schedule crash requests
	rs.fm.Init(nodes)

	return nodes, nil
}

// Teardown the current run.
//
// This includes indicating to the scheduler and state manager that the run has ended.
// Also ensure that all nodes are no longer running.
func (rs *runSimulator[T, S]) teardownRun(nodes map[int]*T, stopFunc func(*T)) {
	// Call end run on scheduler and state manager
	rs.sch.EndRun()
	rs.sm.EndRun()

	// Stop all nodes
	// What happens if nodes is a nil map???
	// Will not iterate over nil map. No problems.
	for _, node := range nodes {
		stopFunc(node)
	}
}

// Execute the run
//
// Schedules and executes new events until either the scheduler returns a RunEndedError or there is an error during execution of an event.
// If there is any other error during the execution it returns the error, otherwise it returns nil
// Uses the state manager to get the global state of the system after the execution of each event
func (rs *runSimulator[T, S]) executeRun(nodes map[int]*T) error {
	depth := 0
	for depth < rs.maxDepth {
		// Select an event
		evt, err := rs.sch.GetEvent()
		if errors.Is(err, scheduler.RunEndedError) {
			return nil
		} else if err != nil {
			return err
		}
		node, ok := nodes[evt.Target()]
		if !ok {
			return fmt.Errorf("Event not targeting an existing node. Targeting %v", evt.Target())
		}
		err = rs.executeEvent(node, evt)
		if err != nil {
			return err
		}
		rs.sm.UpdateGlobalState(nodes, rs.fm.CorrectNodes(), evt)
		depth++
	}
	return nil
}

// Execute an event on the provided node
//
// Executes the provided event on the provided node in a separate goroutine and returns the error.
// Blocks until the event has been executed and a signal is received on the NextEvt channel
func (rs *runSimulator[T, S]) executeEvent(node *T, evt event.Event) error {
	// execute next event in a goroutine to ensure that we can pause it midway trough if necessary, e.g. for timeouts or some types of messages
	go func() {
		if !rs.ignorePanics {
			// Catch all panics that occur while executing the event. These are often caused by faults in the implementation and are therefore reported to the simulator.
			defer func() {
				if p := recover(); p != nil {
					// using the debug package to get the stack could be useful, but it adds some clutter at the top
					rs.nextEvt <- fmt.Errorf("Node panicked while executing an event: %v \nStack Trace:\n %s", p, debug.Stack())
				}
			}()
		}
		evt.Execute(node, rs.nextEvt)
	}()
	return <-rs.nextEvt
}

// Add the requests to the scheduler.
//
// Discards the request if the target node of the request is not a valid node
func (rs *runSimulator[T, S]) scheduleRequests(requests []request.Request, nodes map[int]*T) error {
	// add all the functions to the scheduler
	addedRequests := 0
	for _, f := range requests {
		if _, ok := nodes[f.Id]; !ok {
			continue
		}
		rs.sch.AddEvent(
			event.NewFunctionEvent(
				addedRequests, f.Id, f.Method, f.Params...,
),
)
		addedRequests++
	}
	if addedRequests == 0 {
		return fmt.Errorf("At least one request should be provided to start simulation.")
	}
	return nil
}

// Signal the status of the event to the runSimulator.
func (rs *runSimulator[T, S]) nextEvent(status error, _ int) {
	rs.nextEvt <- status
}

// Stores the parameters used to start a run.
// Should be read only.
type runParameters[T any] struct {
	initNodes func(sp eventManager.SimulationParameters) map[int]*T
	stopNode func(*T)
	requests []request.Request
}

GoMC-master/simulator/simulator.go

package simulator

import (
	"fmt"
	"gomc/eventManager"
	"gomc/failureManager"
	"gomc/request"
	"gomc/scheduler"
	"gomc/stateManager"
)

// Simulates the a distributed algorithm
//
// Executed all events in the distributed system in a sequential order.
type Simulator[T any, S any] struct {

	// The scheduler keeps track of the events and selects the next event to be executed
	Scheduler scheduler.GlobalScheduler

	sm stateManager.StateManager[T, S]

	// If true will ignore all errors while simulating runs. Will return aggregate of errors at the end. If false will interrupt simulation if an error occur
	ignoreErrors bool

	// If true will ignore panics that are raised during the simulation. If false will catch the panic and return it as an error.
	ignorePanics bool

	maxRuns int
	maxDepth int
	numConcurrent int
}

// Create a mew simulator
//
// Configure the simulator with the Scheduler and the StateManager used for the simulation.
//
// ignoreErrors specifies whether to ignore errors. If errors are ignored the simulation will continue simulating runs even if errors occur in some runs.
// A summary of the errors will be provided at the end.
//
// ignorePanics specifies whether to ignore panics. If panics are ignored the simulation will catch panics that occur when executing events and return them.
//
// maxRuns specifies the maximum number of runs to be simulated.
//
// maxDepth specifies the maximum depth of the simulation, i.e. the number of events in a run
//
// numConcurrent specifies the maximum number of runs that are concurrently simulated.
func NewSimulator[T any, S any](sch scheduler.GlobalScheduler, sm stateManager.StateManager[T, S], ignoreErrors bool, ignorePanics bool, maxRuns int, maxDepth int, numConcurrent int) *Simulator[T, S] {
	return &Simulator[T, S]{
		Scheduler: sch,
		sm: sm,

		ignoreErrors: ignoreErrors,
		ignorePanics: ignorePanics,

		maxRuns: maxRuns,
		maxDepth: maxDepth,
		numConcurrent: numConcurrent,
	}
}

// Run the simulations of the algorithm.
//
// fm configures the failure manager used when simulating.
//
// initNodes is a function that generates the nodes used and returns them in a map with the id as a key and the node as the value.
//
// stopFunc is a function specifying how to stop and cleanup the node after the execution of a run.
//
// requests is a variadic arguments of functions that will be scheduled as events by the scheduler. These are used to start the execution of the argument and can represent commands or requests to the service.
// At least one function must be provided for the simulation to start. Otherwise the simulator returns an error.
//
// Simulate returns nil if the it runs to completion or reaches the max number of runs. It returns an error if it was unable to complete the simulation.
func (s Simulator[T, S]) Simulate(fm failureManager.FailureManger[T], initNodes func(eventManager.SimulationParameters) map[int]*T, stopFunc func(*T), requests ...request.Request) error {
	if len(requests) < 1 {
		return fmt.Errorf("Simulator: At least one request should be provided to start simulation.")
	}

	// Pack the parameters into a runParameter to make it easier to handle
	cfg := &runParameters[T]{
		initNodes: initNodes,
		stopNode: stopFunc,
		requests: requests,
	}

	// Reset the state of modules so that they are ready for a new simulation
	s.sm.Reset()
	s.Scheduler.Reset()

	// Used to signal to start the next run
	nextRun := make(chan bool)
	// used by runSimulators to signal that a run has been completed to the main loop. Errors are also returned
	status := make(chan error)
	// Used by the runSimulators to signal that they have stopped executing runs and have closed the goroutine
	// Main loop stops when all runSimulators have stopped executing runs
	closing := make(chan bool)

	ongoing := 0
	startedRuns := 0
	for ongoing < s.numConcurrent {
		ongoing++
		rsch := s.Scheduler.GetRunScheduler()
		rsim := newRunSimulator(rsch, s.sm.GetRunStateManager(), fm.GetRunFailureManager(rsch), s.maxDepth, s.ignorePanics)
		go rsim.SimulateRuns(nextRun, status, closing, cfg)

		// Send a signal to start processing runs
		startedRuns++
		nextRun <- true

		if startedRuns >= s.maxRuns {
			break
		}
	}

	return s.mainLoop(ongoing, startedRuns, nextRun, status, closing)
}

// The main loop of the simulation.
//
// Manages the simulation of runs and coordinates the runSimulators.
//
// Receives status updates from each of the runSimulators. One status update for each completed run.
// Processes the status updates and signals for the runSimulator to begin simulating the next run.
// Does not start new simulations if more than maxRuns simulations has been started.
// Returns when all runSimulators has stopped running.
func (s *Simulator[T, S]) mainLoop(ongoing int, startedRuns int, nextRun chan bool, status chan error, closing chan bool) error {
	errorSlice := []error{}
	var out error

	// Stop the simulation by closing the nextRun channel if it is not already closed
	stopped := false
	stop := func() {
		if !stopped {
			stopped = true
			close(nextRun)
		}
	}
	// Loop until all runSimulators has stopped simulating
	for ongoing > 0 {
		select {
		case err := <-status:
			// Handle errors depending on whether the ignoreErrors flag is set or not
			if err != nil {
				if !s.ignoreErrors {
					out = err
					stop()
					break
				} else {
					errorSlice = append(errorSlice, err)
				}
			}

			if startedRuns < s.maxRuns {
				nextRun <- true
				startedRuns++
			} else {
				stop()
			}
		case <-closing:
			ongoing--
		}
	}

	stop()

	// Can safely close the closing and status channels, since we know that all runSimulators has completed and will not try to send on them
	close(closing)
	close(status)

	if s.ignoreErrors && len(errorSlice) > 0 {
		return simulationError{
			errorSlice: errorSlice,
		}
	}
	return out
}

GoMC-master/simulator/simulator_test.go

package simulator

import (
	"fmt"
	"gomc/event"
	"gomc/eventManager"
	"gomc/failureManager"
	"gomc/request"
	"gomc/stateManager"
	"reflect"
	"testing"

	"golang.org/x/exp/maps"
	"golang.org/x/exp/slices"
)

func TestSimulatorNoEvents(t *testing.T) {
	sch := NewMockGlobalScheduler()
	sm := NewMockStateManager()
	fm := NewMockFailureManager([]int{}, func(*MockNode) {})
	simulator := NewSimulator[MockNode, State](sch, sm, false, false, 10000, 1000, 1)
	err := simulator.Simulate(
		fm,
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}}
		},
		func(t *MockNode) {},
)
	if err == nil {
		t.Errorf("Expected to receive an error when not providing any functions to simulate")
	}

	err = simulator.Simulate(
		fm,
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}}
		},
		func(t *MockNode) {},
)
	if err == nil {
		t.Errorf("Expected to receive an error when not providing any functions to simulate")
	}
}

func TestAddRequests(t *testing.T) {
	sch := NewMockRunScheduler()
	gsm := NewMockStateManager()
	fm := NewMockRunFailureManager(sch, []int{}, func(mn *MockNode) {})
	sim := newRunSimulator[MockNode](
		sch,
		stateManager.NewRunStateManager[MockNode, State](gsm, GetState),
		fm,
		1000,
		false,
)
	for i, test := range addRequestTests {
		err := sim.scheduleRequests(test.requests, test.nodes)

		isErr := (err != nil)
		if isErr != test.err {
			if isErr {
				t.Errorf("Test %v: Expected no error got: %v", i, err)
			} else {
				t.Errorf("Test %v: Expected to receive an error", i)
			}
			continue
		}

		if len(sch.addedEvents) != len(test.events) {
			t.Errorf("Test %v: Unexpected number of added events. Got %v. Expected %v.", i, len(sch.addedEvents), len(test.events))
		}

		for i, evt := range sch.addedEvents {

			expectedEvent := test.events[i]
			if _, ok := evt.(event.FunctionEvent); !ok {
				t.Errorf("Test %v: Added events of unexpected type. Expected: event.FunctionEvent. Got %T", i, evt)
			}
			if evt.Target() != expectedEvent.Target() {
				t.Errorf("Test %v: Unexpected target of added event. Got: %v. Expected: %v", i, evt.Target(), expectedEvent.Target())
			}
			if evt.Id() != expectedEvent.Id() {
				t.Errorf("Test %v: Unexpected id of added event. Got %v. Expected %v", i, evt.Id(), expectedEvent.Id())
			}
		}
		sch.EndRun()
	}
}

func TestTeardownRun(t *testing.T) {
	sch := NewMockRunScheduler()
	gsm := NewMockStateManager()
	fm := NewMockRunFailureManager(sch, []int{}, func(mn *MockNode) {})
	sim := newRunSimulator[MockNode](
		sch,
		stateManager.NewRunStateManager[MockNode, State](gsm, GetState),
		fm,
		1000,
		false,
)
	for i, test := range teardownTest {
		sim.teardownRun(test.nodes, func(t *MockNode) { t.crashed = true })

		for _, node := range test.nodes {
			if !node.crashed {
				t.Errorf("Test %v: Expected stop function to have been called on all nodes. Got: %v", i, test.nodes)
			}
		}
	}
}

var teardownTest = []struct {
	nodes map[int]*MockNode
}{
	{
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
	},
	{
		map[int]*MockNode{},
	},
	{
		nil,
	},
}

var emptyParams = []reflect.Value{}

var addRequestTests = []struct {
	requests []request.Request
	nodes map[int]*MockNode
	events []event.FunctionEvent
	err bool
}{
	{
		[]request.Request{},
		map[int]*MockNode{},
		[]event.FunctionEvent{},
		true,
	},
	{
		[]request.Request{
			{Id: 0, Method: "Foo", Params: emptyParams},
			{Id: 1, Method: "Foo", Params: emptyParams},
			{Id: 0, Method: "Foo", Params: emptyParams},
		},
		map[int]*MockNode{0: {}, 1: {}},
		[]event.FunctionEvent{
			event.NewFunctionEvent(0, 0, "Foo", emptyParams...),
			event.NewFunctionEvent(1, 1, "Foo", emptyParams...),
			event.NewFunctionEvent(2, 0, "Foo", emptyParams...),
		},
		false,
	},
	{
		[]request.Request{
			{Id: 5, Method: "Foo", Params: []reflect.Value{}},
			{Id: 1, Method: "Foo", Params: []reflect.Value{}},
			{Id: 10, Method: "Foo", Params: []reflect.Value{}},
		},
		map[int]*MockNode{0: {}, 1: {}},
		[]event.FunctionEvent{
			event.NewFunctionEvent(0, 1, "Foo", emptyParams...),
		},
		false,
	},
	{
		[]request.Request{
			{Id: 5, Method: "Foo", Params: []reflect.Value{}},
			{Id: 1, Method: "Foo", Params: []reflect.Value{}},
			{Id: 10, Method: "Foo", Params: []reflect.Value{}},
		},
		map[int]*MockNode{0: {}, 3: {}},
		[]event.FunctionEvent{},
		true,
	},
}

func TestExecuteRun(t *testing.T) {
	for i, test := range executeRunTest {
		sch := NewMockRunScheduler(test.events...)
		gsm := NewMockStateManager()
		fm := NewMockRunFailureManager(sch, []int{}, func(mn *MockNode) {})
		sm := stateManager.NewRunStateManager[MockNode, State](gsm, GetState)
		sim := newRunSimulator[MockNode](
			sch,
			sm,
			fm,
			1000,
			false,
)

		err := sim.executeRun(test.nodes)
		isErr := (err != nil)
		if isErr != test.expectedErr {
			if isErr {
				t.Errorf("Test %v: Expected no error got: %v", i, err)
			} else {
				t.Errorf("Test %v: Expected to receive an error", i)
			}
			continue
		}

		sm.EndRun()

		actual := gsm.receivedRun
		expected := test.expectedStates

		if len(actual) != len(expected) {
			t.Errorf("Test %v: Unexpected length of state. Got: %v. Expected: %v", i, len(actual), len(expected))
		}

		for j := 0; j < len(gsm.receivedRun); j++ {
			if !maps.Equal(actual[j].LocalStates, expected[j]) {
				t.Errorf("Test %v: Unexpected state. Got: %v. Expected: %v. \n Full run: %v", i, actual[j].LocalStates, expected[j], actual)
			}
		}
	}
}

var executeRunTest = []struct {
	nodes map[int]*MockNode
	events []event.Event
	expectedErr bool
	expectedStates []map[int]State
}{
	{
		// Execute 1 event
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
		[]event.Event{
			MockEvent{"0", 0, false, 1},
		},
		false,
		[]map[int]State{
			{0: {1}, 1: {0}, 2: {0}},
		},
	},
	{
		// Execute event on non-existing process
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
		[]event.Event{
			MockEvent{"0", 5, false, 1},
		},
		true,
		[]map[int]State{},
	},
	{
		// Execute 5 correct events on different nodes event
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
		[]event.Event{
			MockEvent{"0", 0, false, 1},
			MockEvent{"1", 1, false, 1},
			MockEvent{"2", 2, false, 1},
			MockEvent{"3", 0, false, 3},
			MockEvent{"4", 0, false, 5},
		},
		false,
		[]map[int]State{
			{0: {1}, 1: {0}, 2: {0}},
			{0: {1}, 1: {1}, 2: {0}},
			{0: {1}, 1: {1}, 2: {1}},
			{0: {3}, 1: {1}, 2: {1}},
			{0: {5}, 1: {1}, 2: {1}},
		},
	},
	{
		// Execute 5 correct events on different nodes event
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
		[]event.Event{
			MockEvent{"0", 0, false, 1},
			MockEvent{"1", 1, false, 1},
			MockEvent{"2", 2, false, 1},
			MockEvent{"3", 4, false, 3},
			MockEvent{"4", 0, false, 5},
		},
		true,
		[]map[int]State{
			{0: {1}, 1: {0}, 2: {0}},
			{0: {1}, 1: {1}, 2: {0}},
			{0: {1}, 1: {1}, 2: {1}},
		},
	},
}

func TestExecuteEventDontIgnorePanics(t *testing.T) {
	sch := NewMockRunScheduler()
	gsm := NewMockStateManager()
	fm := NewMockRunFailureManager(sch, []int{}, func(mn *MockNode) {})
	sm := stateManager.NewRunStateManager[MockNode, State](gsm, GetState)
	sim := newRunSimulator[MockNode](
		sch,
		sm,
		fm,
		1000,
		false,
)

	// The value -1 is hardcoded to trigger a panic
	evt := MockEvent{"0", 0, false, -1}
	n := &MockNode{}
	defer func() {
		if r := recover(); r != nil {
			t.Errorf("Did not expect code to panic")
		}
	}()

	err := sim.executeEvent(n, evt)
	if err == nil {
		t.Errorf("Expected to receive an error")
	}
}

func TestInitRun(t *testing.T) {
	for i, test := range initRunTest {
		sch := NewMockRunScheduler()
		gsm := NewMockStateManager()
		sm := stateManager.NewRunStateManager[MockNode, State](gsm, GetState)
		fm := failureManager.NewPerfectFailureManager(func(t *MockNode) { t.crashed = true }, test.failingNodes)
		sim := newRunSimulator(
			sch,
			sm,
			fm.GetRunFailureManager(sch),
			1000,
			false,
)

		sch.runEnded = test.runEnded

		nodes, err := sim.initRun(test.initNodes, test.requests...)
		isErr := (err != nil)
		if isErr != test.expectedError {
			if isErr {
				t.Errorf("Test %v: Expected no error got: %v", i, err)
			} else {
				t.Errorf("Test %v: Expected to receive an error", i)
			}
			continue
		}

		if !reflect.DeepEqual(nodes, test.expectedNodes) {
			t.Errorf("Test %v: Unexpected node map returned. Got %v. Expected: %v", i, nodes, test.expectedNodes)
		}
		if !slices.EqualFunc(sch.addedEvents, test.expectedEvents, event.EventsEquals) {
			t.Errorf("Test %v: Unexpected events added. Got: %v, Expected: %v", i, sch.addedEvents, test.expectedEvents)
		}
	}
}

var initRunTest = []struct {
	initNodes func(eventManager.SimulationParameters) map[int]*MockNode
	failingNodes []int
	requests []request.Request
	runEnded bool

	expectedError bool
	expectedNodes map[int]*MockNode
	expectedEvents []event.Event
}{
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 1: {}, 2: {}}
		},
		[]int{},
		[]request.Request{
			{
				Id: 0, Method: "Foo", Params: []reflect.Value{},
			},
		},
		false,

		false,
		map[int]*MockNode{0: {}, 1: {}, 2: {}},
		[]event.Event{
			event.NewFunctionEvent(0, 0, "Foo"),
		},
	},
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 1: {}, 2: {}}
		},
		[]int{},
		[]request.Request{},
		false,

		true,
		nil,
		[]event.Event{},
	},
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 1: {val: 3}, 2: {val: 5}}
		},
		[]int{},
		[]request.Request{
			{
				Id: 0, Method: "Foo", Params: []reflect.Value{},
			},
		},
		false,

		false,
		map[int]*MockNode{0: {}, 1: {val: 3}, 2: {val: 5}},
		[]event.Event{
			event.NewFunctionEvent(0, 0, "Foo"),
		},
	},
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}}
		},
		[]int{},
		[]request.Request{
			{
				Id: 0, Method: "Foo", Params: []reflect.Value{},
			},
		},
		false,

		false,
		map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}},
		[]event.Event{
			event.NewFunctionEvent(0, 0, "Foo"),
		},
	},
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}}
		},
		[]int{3, 5},
		[]request.Request{
			{
				Id: 0, Method: "Foo", Params: []reflect.Value{},
			},
		},
		false,

		false,
		map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}},
		[]event.Event{
			event.NewFunctionEvent(0, 0, "Foo"),
			event.NewCrashEvent(3, func(i int) error { return nil }),
			event.NewCrashEvent(5, func(i int) error { return nil }),
		},
	},
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}}
		},
		[]int{3, 5, 10},
		[]request.Request{
			{
				Id: 0, Method: "Foo", Params: []reflect.Value{},
			},
			{
				Id: 2, Method: "Foo", Params: []reflect.Value{},
			},
		},
		false,

		false,
		map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}},
		[]event.Event{
			event.NewFunctionEvent(0, 0, "Foo"),
			event.NewCrashEvent(3, func(i int) error { return nil }),
			event.NewCrashEvent(5, func(i int) error { return nil }),
		},
	},
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}}
		},
		[]int{3, 5, 10},
		[]request.Request{
			{
				Id: 0, Method: "Foo", Params: []reflect.Value{},
			},
			{
				Id: 2, Method: "Foo", Params: []reflect.Value{},
			},
		},
		true,

		true,
		nil,
		[]event.Event{},
	},
	{
		func(sp eventManager.SimulationParameters) map[int]*MockNode {
			return map[int]*MockNode{0: {}, 5: {val: 3}, 3: {val: 5}}
		},
		[]int{},
		[]request.Request{
			{
				Id: 0, Method: "Foo", Params: []reflect.Value{},
			},
		},
		true,

		true,
		nil,
		[]event.Event{},
	},
}

func TestMainLoop(t *testing.T) {
	for i, test := range mainLoopTest {
		sch := NewMockGlobalScheduler()
		sm := NewMockStateManager()
		sim := NewSimulator[MockNode, State](sch, sm, test.ignoreError, false, test.maxRuns, 1000, 10)

		nextRun := make(chan bool)
		status := make(chan error)
		closing := make(chan bool)

		numNextRuns := 0
		go func() {
			for range nextRun {
				if numNextRuns >= len(test.status) {
					break
				}

				status <- test.status[numNextRuns]
				numNextRuns++
			}
			closing <- true
		}()

		nextRun <- true

		err := sim.mainLoop(1, test.startedRuns, nextRun, status, closing)
		isErr := (err != nil)
		if isErr != test.expectedErr {
			if isErr {
				t.Errorf("Test %v: Expected no error got: %v", i, err)
			} else {
				t.Errorf("Test %v: Expected to receive an error", i)
			}
			continue
		}

		if numNextRuns != test.expectedNextRun {
			t.Errorf("Test %v: Unexpected number of performed runs. Got: %v. Expected: %v", i, numNextRuns, test.expectedNextRun)
		}
	}
}

var (
	noError error
	err = fmt.Errorf("Dummy error")
)

var mainLoopTest = []struct {
	ignoreError bool
	maxRuns int
	startedRuns int // Number of started runs before the simulation begins.

	status []error
	expectedNextRun int
	expectedErr bool
}{
	{
		false,
		100,
		1,
		[]error{noError, noError, noError, noError, noError},

		5,
		false,
	},
	{
		false,
		100,
		1,

		[]error{noError, noError, err},
		3,
		true,
	},
	{
		false,
		100,
		1,

		[]error{noError, noError, err, noError, noError},
		3, // Since ignoreError is false it will stop at the error
		true,
	},
	{
		false,
		100,
		99,

		[]error{noError, noError, err},
		2,
		false, // Will never get to the error, since maxRuns is reached first
	},
	{
		true,
		100,
		99,

		[]error{noError, noError, err},
		2,
		false, // Will never get to the error, since maxRuns is reached first
	},
	{
		true,
		15,
		10,

		[]error{noError, noError, err, noError, noError},
		5,
		true, // Will get to the error, but will continue executing since ignoreError is true
	},
}

GoMC-master/simulator/utils_test.go

package simulator

import (
	"gomc/event"
	"gomc/eventManager"
	"gomc/failureManager"
	"gomc/scheduler"
	"gomc/state"
	"gomc/stateManager"
)

// Create some dummy types and states for use when testing
type MockNode struct {
	Id int

	crashed bool
	val int
}

func (n *MockNode) UpdateVal(val int) {
	n.val = val
}

func GetState(n *MockNode) State {
	return State{
		val: n.val,
	}
}

type State struct {
	val int
}

type MockGlobalScheduler struct{}

func NewMockGlobalScheduler() *MockGlobalScheduler {
	return &MockGlobalScheduler{}
}

func (mgs *MockGlobalScheduler) GetRunScheduler() scheduler.RunScheduler {
	return NewMockRunScheduler()
}

func (mgs *MockGlobalScheduler) Reset() {
}

type MockRunScheduler struct {
	eventQueue []event.Event
	addedEvents []event.Event
	index int
	runEnded bool
}

func NewMockRunScheduler(events ...event.Event) *MockRunScheduler {
	return &MockRunScheduler{
		eventQueue: events,
		index: 0,
		addedEvents: make([]event.Event, 0),
	}
}

func (ms *MockRunScheduler) AddEvent(evt event.Event) {
	ms.addedEvents = append(ms.addedEvents, evt)
}

func (ms *MockRunScheduler) GetEvent() (event.Event, error) {
	if ms.index < len(ms.eventQueue) {
		evt := ms.eventQueue[ms.index]
		ms.index++
		return evt, nil
	}
	return nil, scheduler.RunEndedError
}

func (ms *MockRunScheduler) StartRun() error {
	if ms.runEnded {
		return scheduler.RunEndedError
	}
	return nil
}

func (ms *MockRunScheduler) EndRun() {
	ms.addedEvents = make([]event.Event, 0)
}

type MockStateManager struct {
	receivedRun []state.GlobalState[State]
}

func NewMockStateManager() *MockStateManager {
	return &MockStateManager{}
}

func (ms *MockStateManager) GetRunStateManager() *stateManager.RunStateManager[MockNode, State] {
	return &stateManager.RunStateManager[MockNode, State]{}
}

func (ms *MockStateManager) State() state.StateSpace[State] {
	return state.TreeStateSpace[State]{}
}

func (ms *MockStateManager) AddRun(run []state.GlobalState[State]) {
	ms.receivedRun = run
}

func (ms *MockStateManager) Reset() {
	ms.receivedRun = nil
}

type MockEvent struct {
	id event.EventId
	target int
	executed bool
	val int
}

func (me MockEvent) Id() event.EventId {
	return me.id
}

func (me MockEvent) Execute(n any, chn chan error) {
	if me.val == -1 {
		panic("Node panicked during testing")
	}
	tmp := n.(*MockNode)
	if !tmp.crashed {
		tmp.val = me.val
	}
	chn <- nil
}

func (me MockEvent) Target() int {
	return me.target
}

type MockFailureManager struct {
	failingNodes []int
	crashFunc func(*MockNode)
}

func (mfm *MockFailureManager) GetRunFailureManager(ea eventManager.EventAdder) failureManager.RunFailureManager[MockNode] {
	return NewMockRunFailureManager(
		ea, mfm.failingNodes, mfm.crashFunc,
)
}

func NewMockFailureManager(failingNodes []int, crashFunc func(*MockNode)) *MockFailureManager {
	return &MockFailureManager{
		failingNodes: failingNodes,
		crashFunc: crashFunc,
	}
}

type MockRunFailureManager[T any] struct {
	ea eventManager.EventAdder
	failingNodes []int
	crashFunc func(*T)

	correct map[int]bool
}

func NewMockRunFailureManager(ea eventManager.EventAdder, failingNodes []int, crashFunc func(*MockNode)) *MockRunFailureManager[MockNode] {
	return &MockRunFailureManager[MockNode]{
		ea: ea,
		failingNodes: failingNodes,
		crashFunc: crashFunc,
	}
}

func (mrfm *MockRunFailureManager[MockNode]) Init(nodes map[int]*MockNode) {
	for _, id := range mrfm.failingNodes {
		mrfm.ea.AddEvent(event.NewCrashEvent(id, mrfm.nodeCrash))
	}
}

func (mrfm *MockRunFailureManager[MockNode]) CorrectNodes() map[int]bool {
	return mrfm.correct
}

func (mrfm *MockRunFailureManager[MockNode]) Subscribe(nodeId int, callback func(id int, status bool)) {

}

func (mrfm *MockRunFailureManager[T]) nodeCrash(id int) error {
	mrfm.correct[id] = false
	return nil
}

GoMC-master/state/eventRecord.go

package state

import (
	"fmt"
	"gomc/event"
)

// A Record of an event
//
// Stores the id and the string representation of the event
type EventRecord struct {
	Id event.EventId
	Repr string
}

func (er EventRecord) String() string {
	return er.Repr
}

// Create a EventRecord from an event.
//
// If the event is nil, create a EventRecord with zero value for all fields.
func CreateEventRecord(evt event.Event) EventRecord {
	if evt != nil {
		return EventRecord{
			Id: evt.Id(),
			Repr: fmt.Sprint(evt),
		}
	}
	return EventRecord{
		Id: "",
		Repr: "",
	}
}

GoMC-master/state/globalState.go

package state

import "fmt"

// The global state of the nodes at one time slot of the simulation
type GlobalState[S any] struct {
	// A map storing the local state of the nodes.
	//
	// The map stores (id, state) combination.
	LocalStates map[int]S

	// A map storing the status of the node.
	//
	// The map stores (id, status) combination.
	// If status is true, the node with id "id" is running, otherwise the node is crashed.
	// The map stores global status which can differ from the local views of individual nodes.
	// The global status represent the actual status of the node, while the local view of a node can be wrong.
	// All nodes are represented in the map.
	Correct map[int]bool

	// A record of the event that caused the transition into this state
	Evt EventRecord
}

func (gs GlobalState[S]) String() string {
	crashed := []int{}
	for id, status := range gs.Correct {
		if !status {
			crashed = append(crashed, id)
		}
	}
	return fmt.Sprintf("Evt: %v\t States: %v\t Crashed: %v\t", gs.Evt, gs.LocalStates, crashed)
}

GoMC-master/state/stateSpace.go

package state

import (
	"fmt"
	"gomc/tree"
	"io"
)

// A representation of the discovered State Space.
//
// The state space is represented as a set of nodes, each with references to their children.
// A path from the root of the state space to a terminal node should be a run of the algorithm.
type StateSpace[S any] interface {
	// Get the GlobalState stored in the node
	Payload() GlobalState[S]

	// Get the children of the current node.
	Children() []StateSpace[S]

	// Returns true if the state is the last state in a run.
	// Returns false otherwise.
	IsTerminal() bool

	// Export the state space to a writer.
	Export(io.Writer)
}

// A StateSpace that organizes the states in a tree structure.
//
// The root of the tree is the initial state of the system.
// The children of a node is the states that came after the current state in some of the runs.
// Exports the StateSpace as a Newick representation of the tree, with parenthesis around the payload.
// A wrapper around the Tree structure so that it implements the StateSpace interface
type TreeStateSpace[S any] struct {
	*tree.Tree[GlobalState[S]]
}

// Get the children of the current node.
func (tss TreeStateSpace[S]) Children() []StateSpace[S] {
	children := tss.Tree.Children()
	out := make([]StateSpace[S], len(children))
	for i, child := range children {
		out[i] = TreeStateSpace[S]{
			Tree: child,
		}
	}
	return out
}

// Returns true if the state is the last state in a run.
// Returns false otherwise.
func (tss TreeStateSpace[S]) IsTerminal() bool {
	return tss.IsLeafNode()
}

// Export the state space to a writer.
//
// Exports the StateSpace as a Newick representation of the tree, with parenthesis around the payload.
func (tss TreeStateSpace[S]) Export(w io.Writer) {
	fmt.Fprint(w, tss.Newick())
}

GoMC-master/stateManager/runStateManager.go

package stateManager

import (
	"gomc/event"
	"gomc/state"

	"golang.org/x/exp/maps"
)

// A type that manages the state of a single run at a time.
//
// Should only be accessed from a single goroutine at a time.
// When the run has been completed and the EndRun function is called the run is sent on the send channel and the state is reset.
// The RunStateManager can then safely be used on a new run.
type RunStateManager[T, S any] struct {
	sm StateManager[T, S]
	getLocalState func(*T) S

	run []state.GlobalState[S]
}

// Create a new RunStateManager
//
// Is initialized with a reference to the StateManager that created it
// and a function specifying how to collect the state from the node.
func NewRunStateManager[T, S any](sm StateManager[T, S], getLocalState func(*T) S) *RunStateManager[T, S] {
	return &RunStateManager[T, S]{
		sm: sm,
		getLocalState: getLocalState,

		run: make([]state.GlobalState[S], 0),
	}
}

// Collect the state from the nodes and add the GlobalState to the current run
//
// Aggregate the local states, the status, and the event into the GlobalState and add it to the run.
// nodes is the map of nodes used in this run.
// correct is a map of the status of the nodes.
// evt is the event that caused the transition into the current state.
func (rss *RunStateManager[T, S]) UpdateGlobalState(nodes map[int]*T, correct map[int]bool, evt event.Event) {
	states := map[int]S{}
	for id, node := range nodes {
		states[id] = rss.getLocalState(node)
	}

	rss.run = append(rss.run, state.GlobalState[S]{
		LocalStates: states,
		Correct: maps.Clone(correct),
		Evt: state.CreateEventRecord(evt),
	})
}

func (rss *RunStateManager[T, S]) EndRun() {
	rss.sm.AddRun(rss.run)
	rss.run = make([]state.GlobalState[S], 0)
}

GoMC-master/stateManager/runStateManger_test.go

package stateManager

import (
	"gomc/event"
	"gomc/state"
	"os"
	"strconv"
	"sync"
	"testing"
)

func TestStateMangerMerge(t *testing.T) {
	for i, test := range mergeTest {
		sm := NewTreeStateManager(
			func(t *MockNode) int { return t.Id },
			func(i1, i2 int) bool { return i1 == i2 },
)
		inChan := make(chan []int)
		var wait sync.WaitGroup
		wait.Add(len(test.runs))
		for j := 0; j < test.numProcesses; j++ {
			go func(numNodes, i int) {
				for runLength := range inChan {
					rst := sm.GetRunStateManager()
					for _, k := range runLength {
						nodes, correct, evt := generateMockData(numNodes, k)
						rst.UpdateGlobalState(nodes, correct, evt)
					}
					rst.EndRun()
					wait.Done()
				}
			}(test.numNodes, i)
		}
		for _, runLength := range test.runs {
			inChan <- runLength
		}
		wait.Wait()
		close(inChan)
		state := sm.State().(state.TreeStateSpace[int])
		size := state.Len()
		if size != test.expectedLen {
			state.Export(os.Stdout)
			t.Errorf("Test %v: Unexpected Size of the state tree. Got %v. Expected %v", i, size, test.expectedLen)
		}
	}
}

// Generate mock data for the run. The content of the data is not important, what is important is that it is properly stored
func generateMockData(numNodes, i int) (map[int]*MockNode, map[int]bool, MockEvent) {
	nodes := map[int]*MockNode{}
	correct := map[int]bool{}
	for id := 0; id < numNodes; id++ {
		nodes[id] = &MockNode{Id: i}
		correct[id] = true
	}
	evt := MockEvent{event.EventId(strconv.Itoa(i)), 0, false, 0}
	return nodes, correct, evt
}

var mergeTest = []struct {
	numProcesses int
	numNodes int
	runs [][]int // A slice of runs, where a run is represented by a slice of the ordered ids in the run
	expectedLen int
}{
	{
		numProcesses: 1,
		numNodes: 3,
		runs: [][]int{{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}},
		expectedLen: 5,
	},
	{
		numProcesses: 3,
		numNodes: 3,
		runs: [][]int{{}, {0}, {0}},
		expectedLen: 1,
	},
	{
		numProcesses: 5,
		numNodes: 3,
		runs: [][]int{{}, {0}, {0}},
		expectedLen: 1,
	},
	{
		numProcesses: 5,
		numNodes: 3,
		runs: [][]int{{0, 1, 2, 3, 4}, {0, 1, 2, 7, 8}, {0, 1, 2, 9, 10}},
		expectedLen: 9,
	},
}

GoMC-master/stateManager/stateManager.go

package stateManager

import (
	"gomc/state"
)

// Manages the global state across several runs.
type StateManager[T, S any] interface {
	// Create a RunStateManager to be used to simulate a run.
	//
	// The RunStateManager will collect the state of a run and report it back to the StateManager
	GetRunStateManager() *RunStateManager[T, S]

	// Add a run to the runs collected during this simulation.
	//
	// Will be called from multiple goroutines
	AddRun(run []state.GlobalState[S])

	// Collect the StateSpace that was discovered during the simulation.
	State() state.StateSpace[S]

	// Reset the StateSpace and prepare for a new simulation.
	Reset()
}

GoMC-master/stateManager/treeStateManager.go

package stateManager

import (
	"fmt"
	"gomc/state"
	"gomc/tree"
	"io"
	"sync"

	"golang.org/x/exp/maps"
)

// Organizes the discovered StateSpace as a tree structure
//
// Collect the discovered runs as a tree with the initial state as the root.
// A path from the root to a leaf node is one run.
type TreeStateManager[T, S any] struct {
	sync.RWMutex
	stateRoot *tree.Tree[state.GlobalState[S]]

	getLocalState func(*T) S
	stateEq func(S, S) bool
}

// Create a new TreeStateManager
//
// The TreeStateManager is configured with a function collecting the local state from a node
// and a function checking the equality of two states.
func NewTreeStateManager[T, S any](getLocalState func(*T) S, stateEq func(S, S) bool) *TreeStateManager[T, S] {
	return &TreeStateManager[T, S]{
		getLocalState: getLocalState,
		stateEq: stateEq,
	}
}

// Adds the run to the discovered state space.
//
// Ïs safe to call from multiple goroutines.
func (sm *TreeStateManager[T, S]) AddRun(run []state.GlobalState[S]) {
	sm.Lock()
	defer sm.Unlock()

	if len(run) < 1 {
		return
	}

	currentTree := sm.stateRoot
	// If the tree has not been initialized:
	// Initialize it with the initial state as the root
	if currentTree == nil {
		currentTree = sm.initStateTree(run[0])
		sm.stateRoot = currentTree
	}
	for _, state := range run[1:] {
		// If the state already is a child of the current state, retrieve it and set it as the next state
		if nextState := currentTree.GetChild(state); nextState != nil {
			currentTree = nextState
			continue
		}
		// Otherwise add it as a child to the state tree
		currentTree = currentTree.AddChild(state)
	}
}

// Initializes the state tree with the provided state as the initial state
func (sm *TreeStateManager[T, S]) initStateTree(s state.GlobalState[S]) *tree.Tree[state.GlobalState[S]] {
	cmp := func(a, b state.GlobalState[S]) bool {
		if a.Evt.Id != b.Evt.Id {
			return false
		}
		if !maps.EqualFunc(a.LocalStates, b.LocalStates, sm.stateEq) {
			return false
		}
		return maps.Equal(a.Correct, b.Correct)
	}
	stateRoot := tree.New(s, cmp)
	return stateRoot
}

// Create a RunStateManager to be used to collect the state of the new run
func (sm *TreeStateManager[T, S]) GetRunStateManager() *RunStateManager[T, S] {
	return NewRunStateManager[T, S](sm, sm.getLocalState)
}

// Write the Newick representation of the state tree to the writer
func (sm *TreeStateManager[T, S]) Export(wrt io.Writer) {
	sm.RLock()
	defer sm.RUnlock()
	fmt.Fprint(wrt, sm.stateRoot.Newick())
}

func (sm *TreeStateManager[T, S]) State() state.StateSpace[S] {
	sm.RLock()
	defer sm.RUnlock()
	return state.TreeStateSpace[S]{Tree: sm.stateRoot}
}

func (sm *TreeStateManager[T, S]) Reset() {
	sm.RLock()
	defer sm.RUnlock()
	sm.stateRoot = nil
}

GoMC-master/stateManager/utils_test.go

package stateManager

import (
	"gomc/event"
	"gomc/scheduler"
	"gomc/state"
)

// Create some dummy types and states for use when testing
type MockNode struct {
	Id int

	crashed bool
	val int
}

func (n *MockNode) UpdateVal(val int) {
	n.val = val
}

func GetState(n *MockNode) State {
	return State{
		val: n.val,
	}
}

type State struct {
	val int
}

type MockGlobalScheduler struct{}

func NewMockGlobalScheduler() *MockGlobalScheduler {
	return &MockGlobalScheduler{}
}

func (mgs *MockGlobalScheduler) GetRunScheduler() scheduler.RunScheduler {
	return NewMockRunScheduler()
}

type MockRunScheduler struct {
	eventQueue []event.Event
	addedEvents []event.Event
	index int
	runEnded bool
}

func NewMockRunScheduler(events ...event.Event) *MockRunScheduler {
	return &MockRunScheduler{
		eventQueue: events,
		index: 0,
		addedEvents: make([]event.Event, 0),
	}
}

func (ms *MockRunScheduler) AddEvent(evt event.Event) {
	ms.addedEvents = append(ms.addedEvents, evt)
}

func (ms *MockRunScheduler) GetEvent() (event.Event, error) {
	if ms.index < len(ms.eventQueue) {
		evt := ms.eventQueue[ms.index]
		ms.index++
		return evt, nil
	}
	return nil, scheduler.RunEndedError
}

func (ms *MockRunScheduler) StartRun() error {
	if ms.runEnded {
		return scheduler.RunEndedError
	}
	return nil
}

func (ms *MockRunScheduler) EndRun() {
	ms.addedEvents = make([]event.Event, 0)
}

type MockStateManager struct {
	receivedRun []state.GlobalState[State]
}

func NewMockStateManager() *MockStateManager {
	return &MockStateManager{}
}

func (ms *MockStateManager) GetRunStateManager() *RunStateManager[MockNode, State] {
	return &RunStateManager[MockNode, State]{}
}

func (ms *MockStateManager) State() state.StateSpace[State] {
	return state.TreeStateSpace[State]{}
}

func (ms *MockStateManager) AddRun(run []state.GlobalState[State]) {
	ms.receivedRun = run
}

type MockEvent struct {
	id event.EventId
	target int
	executed bool
	val int
}

func (me MockEvent) Id() event.EventId {
	return me.id
}

func (me MockEvent) Execute(n any, chn chan error) {
	if me.val == -1 {
		panic("Node panicked during testing")
	}
	tmp := n.(*MockNode)
	if !tmp.crashed {
		tmp.val = me.val
	}
	chn <- nil
}

func (me MockEvent) Target() int {
	return me.target
}

GoMC-master/tests/benchmark_test.go

package gomc_test

import (
	"gomc"
	"gomc/eventManager"
	"testing"
)

func Benchmark(b *testing.B) {
	numNodes := 5
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *BroadcastNode) BroadcastState {
				return BroadcastState{
					delivered: node.Delivered,
					acked: node.Acked,
				}
			},
			func(s1, s2 BroadcastState) bool {
				return s1 == s2
			},
),
		gomc.PrefixScheduler(),
)
	for i := 0; i < b.N; i++ {
		sim.Run(
			gomc.InitNodeFunc(
				func(sp eventManager.SimulationParameters) map[int]*BroadcastNode {
					send := eventManager.NewSender(sp)
					nodes := map[int]*BroadcastNode{}
					nodeIds := []int{}
					for i := 0; i < numNodes; i++ {
						nodeIds = append(nodeIds, i)
					}
					for _, id := range nodeIds {
						nodes[id] = &BroadcastNode{
							Id: id,
							send: send.SendFunc(id),
							Delivered: 0,
							Acked: 0,
							nodes: nodeIds,
						}
					}
					return nodes
				},
),
			gomc.WithRequests(gomc.NewRequest(0, "Broadcast", []byte("Test Message"))),
			gomc.WithPredicateChecker[BroadcastState](),
)
	}
}

GoMC-master/tests/config_test.go

package gomc_test

import (
	"fmt"
	"gomc"
	"gomc/eventManager"
	"testing"
)

func TestConfig(t *testing.T) {
	sim := gomc.PrepareSimulation(
		gomc.WithTreeStateManager(
			func(node *BroadcastNode) BroadcastState {
				return BroadcastState{
					delivered: node.Delivered,
					acked: node.Acked,
				}
			},
			func(s1, s2 BroadcastState) bool {
				return s1 == s2
			},
),
		gomc.PrefixScheduler(),
		gomc.MaxDepth(10000),
)
	resp := sim.Run(
		gomc.InitNodeFunc(
			func(sp eventManager.SimulationParameters) map[int]*BroadcastNode {
				send := eventManager.NewSender(sp)
				nodes := map[int]*BroadcastNode{}
				nodeIds := []int{}
				for i := 0; i < 2; i++ {
					nodeIds = append(nodeIds, i)
				}
				for _, id := range nodeIds {
					nodes[id] = &BroadcastNode{
						Id: id,
						send: send.SendFunc(id),
						Delivered: 0,
						Acked: 0,
						nodes: nodeIds,
					}
				}
				return nodes
			},
),
		gomc.WithRequests(
			gomc.NewRequest(0, "Broadcast", []byte("Test Message")),
),
		gomc.WithPredicateChecker[BroadcastState](),
)

	if ok, txt := resp.Response(); !ok {
		fmt.Println(txt)
		resp.Export()
	}

}

GoMC-master/tests/utils_test.go

package gomc_test

type DeliverMsg struct {
	From int
	To int
	Message []byte
}

type AckMsg struct {
	From int
	To int
	Message []byte
}

type BroadcastNode struct {
	Id int
	nodes []int
	Delivered int
	Acked int
	send func(int, string, ...any)
}

func (n *BroadcastNode) Broadcast(message []byte) {
	for _, id := range n.nodes {
		n.send(
			id,
			"Deliver",
			message,
)
	}
}

func (n *BroadcastNode) Deliver(message []byte) {
	n.Delivered++
	for _, id := range n.nodes {
		n.send(
			id,
			"Ack",
			message,
)
	}
}

func (n *BroadcastNode) Ack(message []byte) {
	n.Acked++
}

type BroadcastState struct {
	delivered int
	acked int
}

GoMC-master/tree/tree.go

package tree

import (
	"fmt"
	"strings"
)

type Tree[T any] struct {
	payload T
	parent *Tree[T]
	children []*Tree[T]
	depth int
	eq func(a, b T) bool
}

func New[T any](payload T, eq func(a, b T) bool) *Tree[T] {
	return &Tree[T]{
		payload: payload,
		parent: nil,
		children: []*Tree[T]{},
		depth: 0,
		eq: eq,
	}
}

// Returns the total number of elements in the tree
func (t *Tree[T]) Len() int {
	len := 1
	for _, child := range t.children {
		len += child.Len()
	}
	return len
}

// Adds a new child with the provided payload as a child of the current Tree
// Returns the child when done
func (t *Tree[T]) AddChild(payload T) *Tree[T] {
	treeNode := &Tree[T]{
		payload: payload,
		parent: t,
		children: []*Tree[T]{},
		depth: t.depth + 1,
		eq: t.eq,
	}
	t.children = append(t.children, treeNode)
	return treeNode
}

// Returns true if the TreeNode has a child with the provided payload.
// Otherwise returns false
func (t *Tree[T]) HasChild(payload T) bool {
	for _, node := range t.Children() {
		if t.eq(payload, node.Payload()) {
			return true
		}
	}
	return false
}

// Returns the first child node with the provided payload.
// If no such child node exists returns nil
func (t *Tree[T]) GetChild(payload T) *Tree[T] {
	for _, node := range t.Children() {
		if t.eq(payload, node.Payload()) {
			return node
		}
	}
	return nil
}

// String representation of a TreeNode
func (t *Tree[T]) String() string {
	out := strings.Builder{}
	for i := 0; i < t.Depth(); i++ {
		out.WriteString("-")
	}
	out.WriteString(fmt.Sprintf("%v\n", t.Payload()))
	for _, child := range t.Children() {
		out.WriteString(fmt.Sprintf("%v", child))
	}
	return out.String()
}

// Returns true if this is a Root node.
func (t *Tree[T]) IsRoot() bool {
	return t.Parent() == nil
}

// Returns true if this is a leaf node.
func (t *Tree[T]) IsLeafNode() bool {
	return len(t.Children()) == 0
}

// Returns a slice of all tree nodes that are a descendent of this tree node
func (t *Tree[T]) GetAllLeafNodes() []*Tree[T] {
	leafNodes := []*Tree[T]{}
	if t.IsLeafNode() {
		leafNodes = append(leafNodes, t)
		return leafNodes
	}
	for _, child := range t.Children() {
		leafNodes = append(leafNodes, child.GetAllLeafNodes()...)
	}
	return leafNodes
}

// Returns true if the search function is true for some leaf node
func (t *Tree[T]) SearchLeafNodes(search func(T) bool) bool {
	if t.IsLeafNode() {
		if search(t.Payload()) {
			return true
		}
	}
	for _, child := range t.Children() {
		if child.SearchLeafNodes(search) {
			return true
		}
	}
	return false
}

// Returns true if the search function is true for some node
// Performs a DFS to find the node
func (t *Tree[T]) DepthFirstSearch(search func(T) bool) bool {
	if search(t.Payload()) {
		return true
	}
	for _, child := range t.Children() {
		if child.DepthFirstSearch(search) {
			return true
		}
	}
	return false
}

// Returns the payload
func (t *Tree[T]) Payload() T {
	return t.payload
}

// Returns the parent node
func (t *Tree[T]) Parent() *Tree[T] {
	return t.parent
}

// Returns the depth of the node
func (t *Tree[T]) Depth() int {
	return t.depth
}

// Returns the children of the node
func (t *Tree[T]) Children() []*Tree[T] {
	return t.children
}

// Create a Newick representation of the tree.
//
// The payload is surrounded by parenthesis.
func (t *Tree[T]) Newick() string {
	out := strings.Builder{}
	if len(t.Children()) > 0 {
		out.WriteString("(")
		for i, child := range t.Children() {
			if i > 0 {
				out.WriteString(",")
			}
			out.WriteString(child.Newick())
		}
		out.WriteString(")")
	}
	out.WriteString(fmt.Sprintf("\"%v\"", t.Payload()))
	if t.IsRoot() {
		out.WriteString(";")
	}
	return out.String()
}

GoMC-master/tree/tree_test.go

package tree

import "testing"

func TestTreeAddChild(t *testing.T) {
	// Basic test to make sure that it works. Add some nodes and check some basic properties to ensure that they have been added correctly
	tree := New("Tree 1", func(a, b string) bool { return a == b })
	tree.AddChild("Tree 1-1")
	child := tree.AddChild("Tree 1-2")
	child.AddChild("Tree 1-2-1")

	if !tree.IsRoot() {
		t.Fatalf("Tree should be root node")
	}
	if tree.Len() != 4 {
		t.Fatalf("Added four elements to the tree. Has length: %v", tree.Len())
	}
	if len(tree.Children()) != 2 {
		t.Fatalf("Added two children to the tree. Got: %v", len(tree.Children()))
	}
	if child.IsRoot() {
		t.Fatalf("This should be a child node. IsRoot(): %v", child.IsRoot())
	}

	// Check that the Value has been added
	if !tree.DepthFirstSearch(func(s string) bool {
		return s == "Tree 1-2-1"
	}) {
		t.Fatalf("The value \"Tree 1-2-1\" should be a descendant of this node, but it cant be found with a depth first search")
	}

	if tree.SearchLeafNodes(func(s string) bool {
		return s == "Tree 1-2"
	}) {
		t.Fatalf("There is no element with value \"Tree 1-2\" in a leaf node")
	}

	if !tree.SearchLeafNodes(func(s string) bool {
		return s == "Tree 1-1"
	}) {
		t.Fatalf("There should be an element with value \"Tree 1-1\" in a leaf node")
	}
}

https://github.com/erthbison/GoMC
https://github.com/erthbison/GoMC

has either decided or crashed. The algorithm uses a Perfect Failure Detector to
detect when a node has crashed. Figure 4 shows the two possible execution of
the Hierarchical Consensus algorithm with three nodes and no crashes.

1 package main

2

3 type Value[T any] struct

4

5 func NewHierarchicalConsensus[T any](id int, nodes []int, send

func(int, string, ...any))↪→

6

7 type HierarchicalConsensus[T any] struct

8 func (hc *HierarchicalConsensus[T]) Crash(id int, _ bool)

9 func (hc *HierarchicalConsensus[T]) Propose(val Value[T])

10 func (hc *HierarchicalConsensus[T]) Decided(from int, val

Value[T])↪→

11 func (hc *HierarchicalConsensus[T]) decide()

Listing 4.1: Signature of the Hierarchical Consensus implementation. For a
full overview of the implementation of the Hierarchical Consensus algorithm see
Appendix A.1.

We configure the algorithm for testing with three nodes, where node 1 re-
ceives a Propose request and we want all correct nodes to agree on the same
value (Listing A.2). We first configure the simulation by selecting a Scheduler
and what state should be collected. Then we run the simulation by specifying
how to start the nodes, what requests will be used to start the simulation, which
nodes should fail and what properties should hold for the algorithm.

(a) (b)

Figure 4: Space-Time diagrams showing the two possible executions of the
Hierarchical Consensus Algorithm with three nodes and no crashes.

4.1 Main Loop - Linearizing the Execution

To ensure that we get consistent results when running the tests we need to
execute every possible run of the algorithm and verify that the properties holds

15

for each of the states that are generated. To do this we need a mechanism that
control the random variable to manually decide the order in which the events
are executed.

First, we formalize the notion of events in our simulation as actions that
changes the state of a node. Events target a specific node and can not change
the state of any other nodes. An event is executed when the action is taken and
the state of the node is changed. The execution of an event must be atomic,
i.e. it is not possible to pause an event and begin executing a different event,
and deterministic, i.e. executing the same event on two equivalent input states
should result in the same output state. Delivering a message and executing the
corresponding message handler is an example of an event.

This notion of events matches well with the traditional model of an algo-
rithm as nodes each performing a sequential execution of events, but an actual
implementation might want to execute events concurrently on the same node
to increase efficiency. The Go concurrency scheduler could then pause the ex-
ecution of one event on one goroutine to execute another event on another
goroutine, thus breaking the atomicity of events. To ensure that this does not
happen during the simulation of the algorithm we impose rule 1 on the execution
of events. The rule is enforced by the simulator by waiting for an event to signal
that its execution is done before starting the execution of a new event on the
same node. This ensures that the Go concurrency scheduler can not break the
atomicity of events since there are no other events to switch to. This rule makes
it hard to find local concurrency bugs during concurrent execution of events on
a node, but Go-MC focuses on identifying distributed concurrency bugs and we
therefore consider identifying local concurrency bugs as out of scope.

Rule 1. Each node execute events in a sequential manner.

Rule 1 ensures the atomicity of events on a node, but since events that
are executed on different nodes can still be executed concurrently it is not a
linearization of the events. To ensure that the execution is deterministic we
want to perform a linearization of the events. We therefore introduce Rule 2,
which strengthen rule 1. Rule 2 is also enforced by the simulator in a similar
manner as rule 1, but it only allows one event to run at the same time, instead
of allowing multiple events to be started as long as they targets different nodes.

Rule 2. All events are executed in a sequential manner.

Conceptually, we create a global clock and assign one event to each time slot
until there are no more available events. The simulator then executes the event
of the current time slot and advances the clock to the next time slot when the
event has been completely executed. This continues until the end of the clock.
The sequence of events formed by the clock correspond to one possible run of
the algorithm.

The runs generated by Go-MC must be finite in length, otherwise the sim-
ulation will never complete. In practice some algorithms are designed to run
forever, like failure detectors, or can not guarantee progress under the conditions

16

that are tested. To ensure that the simulation progresses even when infinite runs
are simulated Go-MC enforces a maximum length on runs. If a run is longer
than the maximum length the simulation of the run is stopped.

As an example of how Go-MC linearizes the execution let us consider the
example algorithm with three nodes (Figure 5). Say that node 1 receives a
Propose request and begins executing the event at time slot 1. During the
execution of the event node 1 sends Decided messages to node 2 and node 3.
During the normal execution of the algorithm the messages would arrive at their
respective nodes and the nodes would begin executing the events concurrently,
possibly before the Propose request on node 1 has been completely executed.
During the simulation only one event can be executed at a time, so the simulator
first waits until node 1 has completed executing the Propose request. It then
selects one of the two pending events to execute next. In this example it selects
the the Decided messages to Node 2 in time slot 2. During the handling of the
Decided message Node 2 sends a Decided message to node 3. There are now two
pending events in the simulation: The Decided message from Node 1 to Node
3 and the Decided message from Node 2 to Node 3. After the previous event
is completed, the simulation selects one of the pending events, in this case the
Decided message From Node 1 to Node 3, in time slot 3. It selects and executes
the final event in time slot 4 after the event in time slot 3 has been completed.

4.2 Event Managers - Discovering and Executing Events

Conceptually events are created during normal execution of an algorithm when a
node performs some action that triggers a node to perform an action in response.
The response is the event that is created and it is executed when the algorithm
performs the action. Go-MC needs to be able to discover these events as they
are created. This is done using Event Managers.

Event Managers are hooks that are inserted into the implementation to re-
place primitives that would cause an event to be created. Consider the send

function of the example implementation. When the algorithm is executed it will
provide the functionality of a perfect link by sending messages to nodes. Dur-
ing simulation the regular send function can be replaced with a modified send

function that is connected to the simulator. It will still provide the functionality
of a perfect link, but it will also report any created events to the simulator and
wait until the event is executed before actually delivering the message to the
target node.

Event Managers can be used to cover many cases where we want to test
the ordering of events. Consider, for example, a case where we want to check
if a message arrives within a certain time. In this case we can create an event
manager for timeouts which will add a timeout event to the simulator when it
is called. The simulator can then control when the timer will fire, allowing it
to create both a run where the timer fires before the message arrives and a run
where the timer fires after the message arrives, allowing us to verify that the
algorithm works for both scenarios. The event manager can easily be designed
to have the same signature as the time.Sleep function, and inserting it into

17

Figure 5: Example of global clock. The time slots are shown in the left column.
The right column shows the pending events after the event assigned to the
previous time slot has been executed, but before an event is assigned to the
next time slot. The figure shows how one of the pending events is assigned to
each time slot where it is executed, while the others wait until they are assigned
to a time slot.

18

the implementation will therefore only require that the function is stored as a
variable that can be replaced.

One of the advantages of the Event Managers is that they can be inserted
at a high level of the implementation which reduces noise and prevents the cre-
ation of more events than necessary. Consider for example a network library
that passes messages between nodes by performing calls to an underlying net-
work connection. The network library might choose to split the message into
several calls, merge multiple messages to the same call or transmit additional
data that is unrelated to any specific message. If the events are captured in
a low level, such as at the underlying network connection or at the OS layer,
all these separate calls would be interpreted as individual events. This could
create scenarios where certain events have no impact on the algorithm, where
one event carries multiple messages or where you need multiple events to fire
before a message can be delivered. This could break the atomicity or the deter-
minism of events depending on how the network library choose to handle the
message. Adding more events than necessary is also undesirable since it would
increase the number of possible runs, and therefore increase simulation time,
while not increasing the accuracy of the simulation. If we instead insert the
Event Managers at a high level we can ignore the details of sending the message
over a network and focus on capturing and executing the event.

Another advantage of using Event Managers is that they are adaptable and
versatile. A new event manager can be created to handle new instances where
we need to test the ordering of events or support new frameworks. This allows
us to take advantage of the features of each specific framework, which will reduce
the number of event created compared with a more general approach, and makes
sure that all the features that are needed by the implementation are properly
modeled.

This also makes it possible to use Event Managers to mock other services,
similar to how we would mock services when testing non-distributed software.
As an example, consider a scenario where we are testing an algorithm that
uses a consensus instance. Instead of simulating the algorithm with the actual
implementation of the consensus module we can use Event Managers to mock it.
The Event Manager would add an event that represent the consensus module
deciding on a value, and when the consensus module would have decided on
a value the event fires. This has two important advantages. Firstly, it allows
us to take a modular approach to testing distributed systems, which simplifies
testing and makes it easier to identify faults. Secondly, it reduce the size of
the state space: instead of scheduling all the events that would be necessary
for the module, we only need to schedule the event representing the end of the
operation.

Event Managers can also be used to represent different abstractions. The
Event Manager that provides the send function used in the example implemen-
tation is based on the perfect link abstraction, but new event managers could
be created to represent other abstractions. For example we could create an
event manager that represent the fair-loss link abstraction by creating some
mechanism for dropping messages or we could create an event manager that

19

ensures that messages from the same node are delivered in the same order as
they where sent. This allows us to better represent the assumptions we make
about the system and ensures that we don’t need to implement the relevant
functionality directly into the algorithm.

4.3 Scheduler - Assigning Events to Time Slots

In Go-MC a scheduler is responsible for deciding the order of events in each run.
Different scheduler can be implemented based on different algorithms and the
specific goals of the scheduler varies between different implementations, but it
should attempt to order the events in such a way that the most errors can be
found while also reducing the number of equivalent runs that are executed, to
keep the simulation time as low as possible.

The scheduler receives events as they are discovered by the Event Managers
and maintains a list of all pending events. A pending event is an event that
has been discovered by an Event Manager in this run, but have not yet been
executed. For each time slot the Scheduler select one of the pending events
and assigns it to that time slot. After the event is executed the Scheduler
proceeds to the next time slot, where it receives new events that was created by
the execution of the previous event and selects an event from all the pending
events. The selected event is assigned to the new time slot. Since the events
are received during the execution of the algorithm the schedule is also created
live, while executing the algorithm.

Conceptually, the Scheduler builds a tree of events, where each node repre-
sents an event and the depth of the node represent the time slot of the event
in this run. The children of a node are the pending events after the event has
been executed. The root of the tree is an empty init event and its children are
the pending events at the first time slot. The same event will occur multiple
times in the tree, since it will be part of multiple runs. One path from the root
of the tree to a leaf node represent one run of the distributed system, and the
complete tree represent all runs created by the Scheduler.

An example of an event tree can be seen in figure 6. After receiving the
Propose request Node 1 broadcasts a Decided message to nodes 2 and 3. There
are therefore two pending events that can be executed in time slot two: 1 →
2 : Decided or 1 → 3 : Decided. When 1 → 2 : Decided is executed a new
event is added to the pending events: 2 → 3 : Decided. This can either occur
in time slot 2 or in time slot 3, depending on which of the two pending events
are scheduled to be executed in time slot 2.

There are many different scheduling algorithms and the work of developing
new, more efficient, algorithms is still ongoing. Go-MC therefore uses a modular
design where different scheduling algorithms can easily be designed and used
while running simulations. We provide a set of basic scheduling algorithms as
a proof of concept, but leave the development of more advanced schedulers for
future work.

20

Figure 6: Event tree that is created when sending Propose request to example
algorithm with three nodes. The specification a → b : t specifies that a message
of type t was sent from node a to node b. The event in Time Slot 1 is a request
event and the number specifies the target node.

4.4 State Manager - Collecting State From Nodes

To be able to verify that the properties of the algorithm holds we need to be
able to collect the state of the system after each event has been executed. One
solution is to record all state by creating copies of each node at each time slot.
This is very costly and, since many of the variables stored in the node handles
practical matters such as sending messages, it is an unnecessarily comprehen-
sive approach. When verifying an algorithm we are interested in key variables
showing that the algorithm progresses and that it takes the expected actions.
We therefore only record a set of key variables that are specified by the user.

In addition to storing some selected variables we also store the status of each
node and a record of the event that cause the transition into the current state.
The status indicates whether a node has crashed or not and is therefore needed
to verify the properties of a system. Storing events allows us to store each run
as an alternating sequence of states and the event that caused transition from
one state to the next, ensuring that we have both the information to verify and
reproduce runs.

The event that caused the transition into this state and the local state and
status of each node form the global state of the algorithm at a time slot. The
global state of each time slot of each run is stored by the State Manager. By
default, a State Manager that organizes the states into a tree is used, but Go-
MC can use other implementations of State Managers for other representations
of the state space.

Let us again consider the example implementation. One of the properties

21

that should hold for the algorithm is the Termination property, which states
that every correct process eventually decides some value. To be able to test this
property we need to know the decided values for a Node. We therefore store a
slice of all decided values of a node as the local state of the node. Later, we will
use this variable to verify that the property holds for the algorithm.

4.5 Checker - Verifying the Implementation

When checking the implementation we want to be able to provide the state space
and a set of properties and we expect to get a boolean value indicating whether
all the properties hold or not. If some property did not hold, the system should
also return an example of a run that where the property did not hold, so that
it is easier to identify and correct the error in the implementation.

Go-MC uses Checkers to verify that properties hold. The Checker uses the
states space discovered during simulation of the algorithm and verifies that the
specified properties hold for all states. The provided Checker specifies properties
using Go functions. This ensures that the process of testing distributed systems
is as similar as possible to the process of testing software. We also considered
using a type of temporal logic, such as linear temporal logic or computation
tree logic, to specify the properties, however temporal logic is not necessarily a
subject that is familiar to all developers. We therefore believe that by specifying
the properties using code we make it easier for all users to define and understand
the properties.

We will now return to our task of verifying the Termination property of our
example implementation. The local state stores a slice of all the values that a
node has decided on. To define the property we create a Go function checking
that the all nodes has decided on at least one value. Since the property is a
liveness property we only check the states at the end of a run. To only check
correct nodes we first check the status of a node, which is stored as a part of
the global state, and only proceeds to check the rest of the property if the node
is correct.

4.6 Failure Manager - Crashing nodes and detecting fail-
ures

An important part of testing distributed systems is ensuring that they work in
the presence of failures. Go-MC therefore provide the option of triggering node
crashes during the simulation of the algorithm. This is handled by the Failure
Manager. The Failure Manager has three primary responsibilities: perform node
crashes, notify nodes of changes in the status of other nodes and maintain global
information about the status of nodes.

The Failure Manager performs node crashes by creating crash events for
each of the faulty nodes at the start of the simulation. The Scheduler will then
schedule the crash events among the other events, ensuring that all possible
timings of crashes are tested. The user must configure how a node crash should

22

manifest on the node depending on the implementation used. For example, a
node crash might close the network connection used to receive messages.

Distributed algorithms normally use the failure detector abstractions to iden-
tify crashed nodes. This usually involves sending additional messages which
would increase the state space and increase the simulation time. Failure detec-
tors are usually infinite, in the sense that they continuously send new messages,
which would result in infinite runs causing the simulation to run for much longer
than required. The Failure Manager therefore provides the functionality of a
failure detector, where nodes can subscribe to the Failure Manager and be up-
dated when the status of nodes change.

The Failure Manager maintains the global status of all nodes. This means
that whenever the Failure Manager performs a change in the status of a node it
also updates the global status of nodes that are reported to the State Manager.
The global status of a node reflect whether it has actually crashed or not and
can be different to the local view presented to the individual nodes. If the
Failure Manager provides the Eventually Perfect Failure Detector abstraction
the local view can for example show that a node crashes and later recovers –
or, more correctly, that a node is suspected and then later restored – while in
fact it might not have crashed at all. The global status would then show that
the node was correct at all times during the run.

The default Failure Manager provided by Go-MC provides the crash-stop
failure abstraction in a synchronous system. Different implementations of the
Failure Manager can be created to represent different timing and failure abstrac-
tions. For example, the crash-recovery failure abstraction can be supported by
implementing a mechanism for recovering crashed nodes. An asynchronous sys-
tem could be represented by nodes not subscribing to status updates.

The example algorithm uses a Perfect Failure Detector to detect if a node has
crashed and to advance to the next phase if it has. To use this provided failure
detector abstraction, each node subscribe to the Failure Manager by providing
a callback function that is called when a node is detected to have crashed. We
also configure the simulation to trigger node 2 to crash during the simulation.

4.7 Runner - Capturing a Live Run

In addition to providing a simulator that simulates the execution of the algo-
rithm, Go-MC also provides a Runner which runs the algorithm while recording
the messages that are sent between the nodes and the local executions per-
formed on a node. The Runner also provide functionality to pause and resume
the execution of an algorithm on a specified node, to crash a specified node
or to send requests to a specified node. The goal of the Runner is to gener-
ate a visualization that can be used to better understand and troubleshoot the
algorithm.

The Runner does not enforce Rule 2. Instead it enforces the weaker Rule
1, where each nodes execute its events sequentially, but multiple nodes execute
events simultaneously. Rule 1 allows us to produce the sequence of events that
was executed on each node, which is useful when producing visualizations of the

23

algorithm such as a space-time diagram. It also enforces the common modeling
of nodes as executing events in a sequential manner. The rule is enforced in a
similar way as in the simulator, where the simulator waits for an event to signal
that is has been completely executed before starting to execute the next event,
but the runner maintains one such loop for each node, instead of one global loop
for all nodes. The loop is maintained by by a Node Controller, which maintains
the incoming event for a node and assigns them to the time slots in a first in
first out order.

The Runner records when a node sends or receive a message or when a node
performs some local execution. After a node executes some event, i.e. receive
a message or perform local execution, the Runner record the new state of the
node. The Runner does not store the state of the nodes, instead it sends the
collected records to subscribed users. The sequence of records represent a partial
ordering of the events that was executed during the run and the order of events
that was executed concurrently on different nodes is arbitrary.

24

5 Implementation

This section will provide a technical overview of Go-MC. It presents a overview
of the types used to implement Go-MC and its modules. Sections 5.1 provides
details on how to configure the Go-MC simulator and runner to test an algo-
rithm. The remaining sections details the implementations of each module.

Conceptually, the system works as described in section 4, but the modules
are designed to be able to simulate multiple runs in parallel. This allows us to
take advantage of stronger processors and multi-threaded computing to reduce
the overall simulation time. To be able to do this many of the modules are split
into two parts: a global part, which manages global state across several runs,
and a run-specific part, which manages the information of a single run at a time
and communicates with the global part of the module when necessary.

Go-MC uses two generic types to make it easy to use the system with dif-
ferent algorithms. The first generic type is represented by the name T and it
represents the node that runs the algorithm. All nodes in the simulation must
be represented by the same type. For the purpose of the simulation all nodes are
considered to have a unique integer id. The second generic type is represented
by the name S and it is a type storing the local state that is collected by the
simulation. The use of generics make it easy to create functions to collect and
compare state, and to perform actions on a node without having to change the
implementation of the system.

5.1 Configuring Go-MC

Go-MC provides the PrepareSimulation function (Listing 5.1, gomc/configS
imulator.go) to simplify the configuration of the simulation. The function
provides default values for several parameters that are required by the Simu ⌋

lator. A full overview of the available options, their default values and the
functions used to configure them is provided in Appendix B.1.

1 func PrepareSimulation[T, S any](smOpts StateManagerOption[T,

S], opts ...SimulatorOption) Simulation[T, S]↪→

Listing 5.1: Signature of the PrepareSimulation function. The function initial-
izes the simulation with the provided configuration. The returned Simulation

type can be used to start several simulation with different parameters. The
smOpts is mandatory and configures the State Manager that should be used.
All other parameters are optional.

The instance of the Simulation type returned by the function contains the
configured simulator. The simulator can be used to run a simulation by calling
the Run method (Listing 5.2, gomc/configSimulator.go) and providing the
required parameters. One Simulation instance can be used to perform multiple
simulations, but multiple simulations can not be performed in parallel.

25

gomc/configSimulator.go
gomc/configSimulator.go
gomc/configSimulator.go

1 func (sr Simulation[T, S]) Run(InitNodes InitNodeOption[T],

requestOpts RequestOption, checker CheckerOption[S], opts

...RunOptions) checking.CheckerResponse

↪→

↪→

Listing 5.2: Signature of the Simulation.Run method. The method starts a
simulation with the provided nodes and requests. InitNodeOption specifies
how the nodes are initialized. RequestOption configures a list of the requests
that will be sent to the nodes and which are used to start the simulation. The
CheckerOption configures the checker used to test the algorithm. The RunOp ⌋

tions are optional parameters that can be configured. The simulation will use
default values if they are not configured.

The Run method has three mandatory parameters (Appendix B.1.3) and the
RunOptions which are optional parameters (Appendix B.1.4). These parameters
configure the scenario used to run the simulation, such as how many nodes are a
part of the system, what requests are sent to the system and how to collect the
state from the nodes. The simulation will use default values for the RunOptions
if no configuration is provided.

The InitNodeOption configures a function used to create the nodes that are
used in each run. The function should create the nodes and register any Event
Managers that are used during the simulation. It returns a map, containing
(node id, node) key-value pairs for each of the nodes in the simulation. The Sim ⌋

ulationParameters(gomc/event/simulationParameter.go) variable contains
run specific parameters provided by the simulator. These parameters are used
to initialize the Event Managers.

1 func(sp SimulationParameters) map[int]*T

Listing 5.3: Signature of the function used to create the nodes. The returned
map contains (node id, node) key-value pairs. The function should be used to
create the nodes and initialize the Event Manager used during the initialization
of a run.

RequestOption configures the simulation to use the provided set of Reque ⌋

sts when running the simulation. A Request represent some incoming request
to the system and is used to start the simulation. Requests are created by the
gomc.NewRequest function (Listing 5.4, gomc/requests.go). The function is
called with the id of the node receiving the request, a string which is the name
of the method of the node that will be called to handle the request and any
parameters that should be provided to the method.

The Simulation.Run method returns a CheckerResponse type. The Chec ⌋

kerResponse contains the results from the simulation. It contains information
about which properties held as well as counterexamples if some of the properties

26

gomc/event/simulationParameter.go
gomc/requests.go

1 func NewRequest(id int, method string, params ...any) Request

Listing 5.4: Signature of the NewRequest function. The function creates a Req ⌋

uest type. The id parameter specifies the node that receives the request. The
method parameter specifies the method that will be called to handle the request
and the params parameter specifies the parameters that will be provided to the
method.

where broken. More details about the CheckerResponse can be found in Section
5.8.

Go-MC also provides the PrepareRunner function to simplify the configu-
ration of the Runner (Listing 5.5, gomc/configRunner.go). The function takes
two mandatory parameters and three optional parameters (Appendix B.2).

1 func PrepareRunner[T, S any](initNodes InitNodeOption[T],

getState GetStateOption[T, S], opts ...RunOptions)

*Runner[T, S]

↪→

↪→

Listing 5.5: Signature of the PrepareRunner function. The function starts the
Runner with the provided configuration. The running of the algorithm can be
started by calling the provided functions on the returned Runner type. More
details about the available functionality can be found in section 5.9.

The PrepareRunner function returns a configured and running instance of
the Runner type. It is ready for use and commands can be sent to the nodes by
calling the respective methods on the provided Runner.

5.2 Simulator

The Simulator is the controller of the simulation. It maintain the main loop
used to perform the simulation of each run and controls the execution of the
various modules. It consists of a global type, the Simulator (gomc/simulator
/simulator.go), and a run specific type, the runSimulator (gomc/simulator
/runSimulator.go).

The Simulator manages the global information about the runs that are
simulated. It coordinates the multiple runSimulators as they each simulate a
run, by signaling to the runSimulators when to start a new run and managing
the errors that occur during simulation of a run.

The Simulator start the simulation by initializing the runSimulators with
their own instances of a runScheduler, a runStateManager and runFailureM ⌋

anager. The number of runSimulators, and therefore the number of concurrent
runs that can be executed, is decided by the numConcurrent variable.

27

gomc/configRunner.go
gomc/simulator/simulator.go
gomc/simulator/simulator.go
gomc/simulator/runSimulator.go
gomc/simulator/runSimulator.go

After the runSimulators have been initialized the main loop of the Sim ⌋

ulator is started. The main loop receives the status of completed runs from
the runSimulator and signals to the runSimulator to start new runs. It keeps
track of the number of runs that have been simulated and stops the simulation
if the maximum number of runs have been reached. The maximum number of
runs can be configured by the maxRuns variable.

The main loop handles errors reported by the runSimulators according
to how the ignoreErrors flag is set. If the ignoreErrors flag is true, the
error will be recorded, but the simulation will continue to the end. After the
simulation have been completed a summary of all the errors that occurred will
be provided. If the ignoreErrors is false the simulation will stop immediately
and return the error.

The main loop runs until all runSimulator have stopped. This can happen
for three reasons: The maximum number of runs have been reached and the
main loop is no longer starting new runs, there are no more runs to simulate, or
an error occurred during the simulation of a run and the ignoreErrors is set
to false.

The runSimulator performs the simulation of each run. Before starting the
simulation of a run the runSimulator waits for a signal from the Simulato ⌋

r. When the signal is received it begins simulating a run. The simulation of
a run consists of three phases: initialization of the run, execution of the run
and teardown of the run. After the simulation of a run has been completed any
errors that occurred during the simulation is sent to the Simulator. If no errors
occurred a nil is sent instead.

The initialization of the run consists of creating the nodes that constitutes
the distributed system and initializing the modules for a new run. The State
Manager collects the initial state of the system and the configured requests and
crashes are added to the scheduler. The nodes are created using the initNodes
function provided by the user.

The execution of a run consists of running the main loop described in section
4.1 until either all events have been executed or the maximum depth have been
reached. The main loop consists of getting the next event from the Scheduler,
executing the event and collecting the global state of the system. If any errors
is detected during the execution of a run the execution is ended and the error
is returned.

The maximum depth of the simulation is set by the maxDepth parameter. It
ensures that the simulation has a finite size, even if we are simulation an infinite
run. This is important to ensure that the simulation completes. It also assists
us in reducing the size of the state space in complex algorithms. If the maximum
depth is reached, we can not guarantee that the algorithm is correct, even if no
states violating the properties are found, because there are valid states which
we have not discovered in which the properties might be violated.

By default runSimulator will not recover from panics that occur during the
execution of an event on a node. This can be changed by setting the ignoreP ⌋

anic flag to true, which will cause the panic to be reported as an error and the
simulation of other runs can potentially continue, depending on other settings.

28

The teardown of the run is always performed at the end of the run, even if an
error occurs during the initialization or execution of a run. The teardown signals
to the runScheduler and the runStatemanager that the run is over and closes
all the created nodes. This prepares the runSimulator for the next run and
sends information about the run to the global Scheduler and StateManager.

5.3 Events

In Go-MC an event represent an action that causes a transition from one state
to another. In general an event correspond to a block of code in the algorithm
that is executed.

Each event (Listing 5.6, gomc/event/event.go) is identified by an id. Two
events that have the same effect, that is two events which given the same input
state produces the same output, should have the same id. The id can be accessed
by the Event.Id method. Good practice is to add an identifier of the event type
in the id, to avoid unintended collision with other implementations of events.

After the event has been completely executed it must send a signal to the
simulator that the event is completed and that the simulator can continue. This
is done using the nextEvt channel. If any errors occurred during the execution
the error is sent on the channel, otherwise nil is sent. Events are executed in
a separate goroutine. This allows events, such as the SleepEvent, to split a
message or request handler into two events.

1 type Event interface {

2 Id() EventId

3 Execute(node any, nextEvt chan error)

4 Target() int

5 }

Listing 5.6: Interface of Event. The Id returns the id of the event. Two events
that, given the same input state, produces the same output state should have
the same id. Execute, executes the event on the provided node. Target returns
the id of the target node.

Go-MC also provides an interface for MessageEvents (Listing 5.7, gomc/eve
nt/event.go). MessageEvents are events that represent messages. In addition
to the methods provided by the Event interface, MessageEvents also provide
methods returning the id of the sender and the receiver of the message. Message
events are created when the message is sent and executed when it is received
on the target node. They are not used by the simulation, but can be used to
identify when an event was sent, for example when visualizing the simulation.

29

gomc/event/event.go
gomc/event/event.go
gomc/event/event.go

1 type MessageEvent interface {

2 Event

3

4 To() int

5 From() int

6 }

Listing 5.7: Interface of MessageEvent. The To() int method returns the id
of the target of the message and From() int returns the id of the sender of the
message.

5.4 Event Manager

Event Managers are types or functions that are inserted into the algorithm.
They form the interface between the simulator and the algorithm. They do
not implement a specific interface, but they often adopt the signature or inter-
face of primitives used by the algorithm, to make it easy to insert them into
the algorithm. They replicate the behaviour of these primitives and provides
functionality that allows the simulator to record and control the execution of
events.

The Event Managers uses the EventAdder interface (Listing 5.8, gomc/e
ventManager/eventAdder.go) to add events that are discovered during the
execution of the algorithm. The EventAdder are an interface representing some
type that the Event Manager can add events to. The Simulator uses Schedulers
as EventAdders while the runner uses RunnerController.

1 type EventAdder interface {

2 AddEvent(event.Event)

3 }

Listing 5.8: Interface of EventAdder. Represent some type that can receive
events.

Some Event Managers also uses the NextEvent(error, int) function to
signal to the system that the execution of an event is completed. The first
parameter passed to the function is any error that occurred during the execution
of the event. If no error was occurred, the value is nil. The second parameter
is the id of the node that completed the event.

The Event Managers are configured when the nodes are initialized. The
SimulationParameters variable that is passed to the function contains the
instance of EventAdder and NextEvent function that is used to simulate the
run. The Event Managers should be initialized with these variables to be able
to add events to the correct run.

30

gomc/eventManager/eventAdder.go
gomc/eventManager/eventAdder.go

5.4.1 Sender

Go-MC provides Event Managers that represents several common primitives
used to design distributed systems. The Sender(gomc/eventManager/send
er.go) event manager represent the perfect link abstraction. It assumes that
the nodes have a set of message handlers, which are methods used to handle
incoming messages. The message contains a set of parameters, which are used to
call the method on the node. The Sender Event Manager provides an abstract,
but convenient, representation of a network link and can therefore represent
many different solutions for sending messages between nodes.

There are two reasons that the Sender does not represent the fair loss
links. Firstly, many commonly used technologies guarantees delivery of mes-
sages. Therefore, there is no strong need to provide functionality that simulate
fair loss links. Secondly, it is not obvious how to implement such a link without
dramatically increasing the size of the state space. For the simulation to be
correct we must test all possible combinations of message drops, in addition to
the different ordering of the messages. This dramatically increases the size of
the state space, for little gain in the applicability of the simulation.

The Sender is initialized with the EventAdder that is used for this run. It
provides one method, which is a factory method that returns the send function.
The send function is then used by the node to send the messages. The factory
method configures the send function with the id of the node, so that the messages
can be created with the correct sender. One Sender can be used to create
multiple send functions for different nodes.

The send function created by the Sender creates a MessageHandlerEvent

for the message and adds it to the EventAdder. When the event is executed
it calls the specified message handler on the target node with the provided
parameters.

5.4.2 gRPC Manager

gRPC is a multi-environment framework that handles many aspects of commu-
nication between nodes. This includes guaranteed delivery of messages, calling
the correct message handler, etc [9]. Go-MC provides an Event Manager that
can be used to control messages sent using the gRPC framework for Go. The
Event Manager can be used when the RPC are made asynchronously, using
goroutines, and where we do not wait for a response. An example of this can
be seen in listing 5.9. This pattern is a common way of using RPCs to send
messages in a distributed systems, since it makes it possible to concurrently
send messages to multiple nodes simultaneously and because the execution can
continue without waiting for a response. Which makes it easy to use and more
efficient than traditional RPC calls.

The Event Manager is implemented as a client side unary interceptor that
can be inserted into the gRPC client when it is configured. The Event Manager
waits until the event is executed before the message message is sent to the server,
it then waits until an (empty) response is received before signaling that the event

31

gomc/eventManager/sender.go
gomc/eventManager/sender.go

1 go ExampleGrpcService.ExampleRpc(context.Background(), msg)

Listing 5.9: Example of an asynchronous RPC call. Note that the ExampleRpc
call is made in a separate goroutine and that it does not wait for a response.

is completed. Since physical time is not accurately simulated it is important
that functionalities that uses timeouts, such as contexts, are not used.

Since messages are sent in individual goroutines it is possible that the call-
ing method returns before the RPC call has been made and the corresponding
events have been added to the EventAdder. This would cause the event to signal
its completion before the event was actually completed. This could be solved by
waiting an arbitrary amount of time after the event signals that the event has
been completed, but this does not actually guarantee that all events have been
added and it causes unnecessary delay which would slow down simulation. In-
stead, the Event Manager uses a waitForSend method. The method waits until
it receives confirmation from the unary interceptor that the specified number of
events have been added before it continues, thus ensuring that all events have
been added before continuing. This function must be called by the algorithm,
with the number of events to wait for as the parameter. An example of how the
WaitForSend method is used can be seen in Listing 5.10.

1 for _, node := range p.nodes {

2 go node.Accept(context.Background(), msg)

3 }

4 p.waitForSend(len(p.nodes))

Listing 5.10: Example usage of the wait for send function. The function is called
after sending a number of asynchronous RPC calls. It is used to ensure that all
messages are properly added before continuing.

5.4.3 Sleep Manager

Timeouts are an important part of many algorithms, but since physical time
is not represented in the simulation it is hard to accurately test algorithms
containing timeouts. Go-MC therefore provide the SleepManager (gomc/event
Manager/sleepManager.go), which is an event manager that can be used to
represent timeouts. The Event Manager provides a sleep function that imitates
the signature of the time.Sleep function, making it easy to replace the Event
Manager with the actual function after testing.

When the sleep function is called it creates a SleepEvent (gomc/event
/sleepEvent.go) and informs the system that the previous event has been
completed. The function does not return until the event is executed, at which
point the rest of the code block that called the sleep function will be executed.

32

gomc/eventManager/sleepManager.go
gomc/eventManager/sleepManager.go
gomc/event/sleepEvent.go
gomc/event/sleepEvent.go

The SleepEvent splits a code block into two pieces. The first piece that started
the timeout and is a part of the previous event, and the second piece which is
the code that is executed after the timeout fires and is a part of the SleepEvent.
When the sleep function is called it will therefore call the NextEvent function
to signal to the simulation that the previous event has been completed. Other
events can then be executed before the SleepEvent is executed. This represent
that events can be executed while the node is waiting for the timeout to fire and
allows us to interleave the firing of the timeout with the receipt of messages.

5.5 Scheduler

The scheduler is responsible for managing the events and controlling the order
in which they are executed. It receives events as they occur during the execution
of a run and continuously returns the next event in the run from the events it
has received, until all events have been returned. The mechanism for selecting
the next event to return is dependent on the specific implementation of the
scheduler, but the goal should be to select events in such a way that the most
errors can be detected using the least amount of time.

The scheduler is divided into two parts: the GlobalScheduler and the Ru ⌋

nScheduler (gomc/scheduler/scheduler.go). The main role of the Globa ⌋

lScheduler is creating and configuring the corresponding RunSchedulers and
coordinating between the RunSchedulers. It maintains the global scheduling
information, for example which runs have been explored and which runs have
not been explored.

The RunSchedulerd are created by the GlobalScheduler and they are re-
sponsible for performing the local scheduling of a run. They communicate with
the GlobalScheduler when necessary. A RunScheduler might for example re-
port a run that it discovered but did not explore to the GlobalScheduler. The
GlobalScheduler can then instruct the next RunScheduler to explore this run.
A RunScheduler can be used to simulate multiple runs, but only one run at a
time.

Go-MC provides four basic schedulers: The Prefix scheduler, the Random
scheduler, the Replay scheduler and the Guided Search scheduler. They do not
implement the state of the art within scheduling techniques, but are intended
as proof of concepts, showcasing the different types of schedulers that can be
created and providing a basic suite of schedulers that can be used to simulate
algorithms. The development of more advanced schedulers that utilize state of
the art state space minimization techniques is left for future work.

The prefix scheduler (gomc/scheduler/prefix.go) is a stateful, determin-
istic scheduler that completely explores the state space. It guarantees that all
possible states are visited. The scheduler operates by systematically testing all
possible permutations of runs. As it simulates runs it builds a view of the state
space, which it uses to ensure that all possible runs are executed. It relies on
the determinism of events to be able to build a view of the events and correctly
explore the entire state space. The algorithm used by the prefix scheduler is
explained in Appendix C.

33

gomc/scheduler/scheduler.go
gomc/scheduler/prefix.go

The Random scheduler(gomc/scheduler/random.go) is a randomized,
stateless scheduler. It does not explore the entire state space, but randomly
samples possible runs. Thus, it does not provide any guarantees to discover
all errors, but provide larger variation in the runs it produces compared with
a Prefix Scheduler. This makes the Random scheduler useful for simulations
where there is not enough time to explore the entire state space. It operates by
randomly selecting the next event from the pending events.

The replay scheduler(gomc/scheduler/replay.go) replays a single run.
The run is provided as a sequence of event ids and can be retrieved from a
CheckerResponse (See section 5.8 for more details on the CheckerRespons ⌋

e). The replay scheduler is intended as a tool that helps when troubleshooting
algorithms and it might be desirable to replay a specific run and debug the
execution of the algorithm. When using the replay scheduler it is important
that the configuration of the simulation is the same as the configuration of the
simulation that was used to generate the original run.

The guided search scheduler (gomc/scheduler/guidedSearch.go) is a
variation of the replay scheduler. The scheduler initially follows a provided run
until all the events in the run has been selected, then it begins searching using
some other scheduler. The guided search scheduler makes it possible to guide
the search towards some interesting state before the proper exploration of the
state space begins.

5.6 State Manager

The State Manager is responsible for collecting, storing and organizing the global
state of the system during the simulation.

The State Manager consists of a StateManager (gomc/stateManager/st
ateManager.go) and a RunStateManager. The StateManager maintains the
state across multiple runs. It collects the state from the individual runs and
organizes it into some state space representation. It consists of four methods:
GetRunStateManager, which creates a RunStateManager that can be used to
simulate runs; AddRun, which is called by the RunStateManager when a run
have been completed and which should add the provided run to the globally
discovered state space; State, which returns a representation of the discovered
state space; and Reset which reset the collected state, so that the StateMan ⌋

ager can be used for a new simulation. The AddRun method will be called by
multiple RunStateManager, so it must be concurrency safe.

Go-MC provides an implementation of the StateManager interface, called
the TreeStateManager (gomc/stateManager/treeStateManager.go). This
state manager organizes the state space as a tree. It is initialized with two
variables: getLocalState, which collects the local state of a node, and stat ⌋

eEq, which compares two local states and returns true if they are equal. The
two functions ensures that the State Manager can easily be adapted to different
algorithms. The root of the tree is the initial state, captured before any event
is executed. Each path from the root to a terminal node represents one run of
the algorithm.

34

gomc/scheduler/random.go
gomc/scheduler/replay.go
gomc/scheduler/guidedSearch.go
gomc/stateManager/stateManager.go
gomc/stateManager/stateManager.go
gomc/stateManager/treeStateManager.go

The RunStateManger (gomc/stateManager/runStateManager.go) is re-
sponsible for collecting the global state of the system and managing it across a
run. It manages the run variable, which is a sequence of the global states that
have been recorded in this run.

The UpdateGlobalState method is called in each time slot, after the event
has been executed, and it collect the global state of the system and adds it
to the run. It is also called at the start of each run, before the first event
is executed, to capture the initial state of the system. The global state is
created from the local state of the nodes, the map of correct processes and
the event that caused the transition into this state, that is the event that was
executed in this time slot, and it is stored as a variable of type GlobalState

(gomc/state/globalState.go).
The EndRun method is called at the end of each run and it sends the sequence

of events collected as a part of the run to the StateManager, by calling the S ⌋

tateManager.AddRun method with the collected run. The method then resets
the run variable, preparing for the next run.

5.7 Failure manager

The Failure Manager is used to perform node failures and manage information
about the status of the nodes. It also provides the functionality of a failure
detector where nodes can subscribe to notifications on changes in the status
of the nodes. Different implementations of Failure Managers can be used to
represent different abstractions of failure detectors.

The global part of the Failure Manager is the FailureManger (gomc/fai
lureManager/failureManager.go). It manages the global information across
runs, for example the configuration of the Failure Manager, and creates the Ru ⌋

nFailureManagers. The GetRunFailureManager methods creates a configured
RunFailureManager that can be used when simulating a run.

The RunFailureManager is the run specific part of the Failure Manager. The
FailureManager contains a Subscribemethod, which allows nodes to subscribe
to notifications about changes in status of the nodes in the system. The Subs ⌋

cribe method is exposed to the nodes through the SimulationParameter type
that is provided when initializing the nodes.

Go-MC provides an implementation of the FailureManager called the ⌋

PerfectFailureManager (gomc/failureManager/perfectFailureManage
r.go). The PerfectFailureManager represents the Perfect Failure Detector
abstraction. It is configured with a set of faulty nodes which will crash at some
point during the simulation. The PerfectFailureManager will create and add
a CrashEvent(gomc/event/crashEvent.go) for each of these faulty nodes and
the scheduler will interleave the crashes with the other events.

The PerfectFailureManager is configured with a crashFunction which
performs the crash on the provided node. This allows users to specify how a
crash manifests on the specific implementation. The crashFunction should
ensure that the node does not execute any events or respond to any received
messages.

35

gomc/stateManager/runStateManager.go
gomc/state/globalState.go
gomc/failureManager/failureManager.go
gomc/failureManager/failureManager.go
gomc/failureManager/perfectFailureManager.go
gomc/failureManager/perfectFailureManager.go
gomc/event/crashEvent.go

When the CrashEvent is executed it calls the nodeCrash method of the ⌋

PerfectFailureManager with the node id of the crashing node. The method
sets the node as crashed in its internal structure. It then calls the configured
crashFunction on the target node, triggering the crash of the node. Finally
it adds an CrashDetection (gomc/event/crashDetection.go) event for each
of the nodes that have subscribed to the status notifications. When the Cras ⌋

hDetection event is executed it calls the provided crash callback provided by
the node when it subscribed to the Failure Manager. CrashDetection events
will be interleaved with the other events. This represents the fact that a node
can not discover that another has crashed immediately, but will only eventually
detect that a node has crashed.

When configuring the PerfectFailureManager a user must provide the node
id of the nodes that will crash during the simulation. Another option would
be to automatically try all combinations of crashed nodes. This is inefficient,
since many nodes in a distributed system perform the same task and any of
these nodes crashing will have the same impact on the overall system. It would
therefore be inefficient to simulate runs where each of them crashes, since it
causes the same outcome. By relying on the user to configure the nodes that
will crash we can use the users knowledge of the algorithm to make smart
decisions. This will ensure that the simulation is focused on the parts of the
algorithm where we expect to find errors.

5.8 Checker

The Checker(gomc/checking/checker.go) is responsible for verifying that
the algorithm is correct. It is invoked on the discovered state space after the
simulation has been completed and verifies that a set of properties holds for all
the states that where discovered during the simulation of the system. It returns
a CheckerResponse (gomc/checking/checker.go) object which hold the result
for the simulation.

The CheckerResponse stores the result of the checking. It provides two
methods that are used to provide and explain the results to the user. The
formatted text that is returned from the Response method should provide a
detailed description of which property is violated and which sequence of events
caused the state where the property is violated. The sequence of events that
are returned from the Export method can be used with the ReplayScheduler

to recreate the run that caused the property to be violated.
Go-MC provides the PredicateChecker (gomc/checking/predicateChe

cker.go), which is a Checker that uses predicates defined as Go functions
to specify properties. The PredicateChecker performs a depth-first search
through the state space and runs all predicates on each of the discovered states
(gomc/checking/state.go). If the checker finds a state for which a predicate
does not hold the search is stopped and a PredicateCheckerResponse is cre-
ated. The PredicateCheckerResponse contains the index of the predicate that
failed and the sequence of global states that resulted in the failed predicate. It
can also export the sequence of events that caused the failed predicate, which

36

gomc/event/crashDetection.go
gomc/checking/checker.go
gomc/checking/checker.go
gomc/checking/predicateChecker.go)
gomc/checking/predicateChecker.go)
gomc/checking/state.go

can be used to replay the run.
To simplify the process of specifying properties Go-MC provides two helper

functions (gomc/checking/predicate.go). Eventually ensures that the
provided predicate is only run on terminal states. This makes it useful when
specifying properties that are eventually true. These properties can not be
tested on all states, since there is still the possibility that it will be true in
the future, but they can be tested on the terminal state, since this is the state
after the system has completed its execution. If the depth of a run reach the
configured maxDepth the last recorded state of the run will not be the state
after the system has completed its execution and the predicate can not be used
to verify properties that are eventually true, since it is still possible that the
property would be true at some point after the simulation stopped. ForAllN ⌋

odes checks that a condition holds for all nodes. It is also possible to use it to
check that a condition holds for all correct nodes.

5.9 Runner

The Runner provides functionality for running the algorithm and recording the
messages that are sent between the nodes using the Event Managers. The runner
gives a more realistic view of the algorithm by executing events on multiple
nodes concurrently and can be used to visualize and increase understanding of
the algorithm.

The Runner(gomc/runner/runner.go) initializes the running of the algo-
rithm and provides an interface that can be used to send commands to the
nodes. It uses a Runner Controller to manage the running of the algorithm and
the Node Controller to control individual nodes. The Runner allows a user to
pause and resume nodes, crash nodes and send requests to nodes. A user can
also subscribe to Records collected during the running of the algorithm.

The running of an algorithm is started with the Start method. The user
provides a function that creates the nodes that will be used during the simula-
tion. This is the same function that is used to start the nodes in the Simulator.
The getState is a function that collects the local state from a node, similar to
the function used to create the TreeStateManager, and the stop parameter is
a function specifying how to stop a node, similar to the stop function passed
to the Simulator. The stop function is used to both stop and crash the node.

Records (gomc/runner/records.go) are information collected during the
running of the algorithm and reported to the user. They represent messages that
are sent or received by nodes, local executions on nodes and the local states
of nodes. ExecutionRecord and MessageRecord represent different types of
events, while StateRecord is the new state after some event has been executed
on the node. MessageRecord are created by both the sending node when it
sends the message and on the receiving node when it receive the message.

The Runner Controller(gomc/runner/runnerController.go) performs the
actions instructed by the Runner, manages the Node Controllers and relays the
Records received from the nodes to the subscribed users. It also implements
the EventAdder interface (gomc/eventManager/eventAdder.go) and provides

37

gomc/checking/predicate.go
gomc/runner/runner.go
gomc/runner/records.go
gomc/runner/runnerController.go
gomc/eventManager/eventAdder.go

the variables used to create the SimulationParameters (gomc/eventManager/
simulationParameter.go).

The Runner Controller exposes the four commands that are given to the
nodes. When the Runner Controller receives the command it selects the spec-
ified node and executed the command on the node. The commands that are
exposed by the Runner Controller is: Pause, which pauses the execution of
events on a node; Resume, which resumes the execution of events on a node;
CrashNode, which triggers the node to crash; and NewRequest, which sends a
request to the node. The CrashNode method first selects the node and closes it.
It then adds a CrashDetection event to all subscribed nodes.

The Runner Controller provides the methods used to create the Simulati ⌋

onParameters type. The AddEvent method receives the events from the event
managers. It then selects the target node of the event and adds the event to
the pending events of the node by calling the addEvent method of the node.
Similarly, when an Event Manager calls the NextEvent method with the error
and the id of the node the Runner Controller selects the specified node and calls
the nextEvent method on that node. The CrashSubscribe method registers
the provided callback function under the provided node id.

The Node Controller (gomc/runner/nodeController.go) manages the
execution of events on a single node. The events are executed in first-in first-
out order, according to when they where added to the node. The node controller
maintains the pending events for the node and execute the pause, resume and
crash commands on the node. One Node Controller is created for each node.

Each node controller maintains one main loop for its node which ensures
that events are executed sequentially. The main loop is similar to the main loop
used by the runSimulator to simulate one run of a simulation, but it does not
utilize a Scheduler. It waits for an event to be added to the Node Controller.
The event is recorded and executed in a separate goroutine and the loop waits
until it have been completed by waiting on the nextEvtChan. After the event
has been executed the new state of the node is recorded. The Node Controller
pauses the execution of event on a node by pausing the main loop. It simulates
a crash of the node by stopping the main loop and preventing the execution of
new events. The crashFunc is then called on the node.

38

gomc/eventManager/simulationParameter.go
gomc/eventManager/simulationParameter.go
gomc/runner/nodeController.go)

6 Evaluation

We performed two tests that will help us evaluate the ability of Go-MC to verify
distributed algorithms. In the first test we investigated the time required to run
simulations on simple scenarios and in the second test we investigated the ability
to find errors in a distributed algorithm.

6.1 Simulation Time

In the first test we investigated the time required to perform the simulation.
We created six implementations of distributed algorithms and used Go-MC to
simulate the execution of a simple scenario for each of the implementations
(Table 1). We created two implementations of the Hierarchical Consensus al-
gorithms (Algorithm 5.2[5]): one using the Sender Event Manager and one
using the GrpcEventManager Event Manager. We also implemented the Ea-
ger Reliable Broadcast (Algorithm 3.3 [5]) and the Majority Voting Regular
Register(Algorithm 4.2 [5]) using the Sender Event Manager. Finally we im-
plemented two versions of the Paxos algorithm using the GrpcEventManager,
one using the basic version, where phase 1 is performed for each value(Paxos),
and one using the optimization where phase 1 is only performed once when a
new leader is elected(Multipaxos)[14]. For more details about the algorithm see
Appendix A.1. We benchmarked each scenario with 10 repetitions and recorded
the total time for executing all repetitions.

Name Scheduler Nodes Faulty Nodes
Hierarchical Consensus (Sender) Prefix {1, 2, 3} {2}
Hierarchical Consensus (gRPC) Prefix {1, 2, 3} {2}
Eager Reliable Broadcast Prefix {1, 2, 3} {2}
Majority Voting Regular Register Random {1, 2, 3} ∅
Paxos Random {1, 2, 3} {2}
Multipaxos Prefix {1, 2, 3} {2}

Table 1: Summary of configuration for test of simulation time. All simulations
have been run with default paramters, unless otherwise states. When using the
random scheduler the seed was set to 0. For a full overview of the configuration
see D.1.

The results (Figure 7) shows that Go-MC can simulate small scenarios in a
relatively short time. The results also show that there is a notable difference in
the simulation time between algorithms that used the Sender Event Manager
and the algorithms that used the GrpcEventManager. This could be caused by
the additional overhead of using the gRPC framework.

39

Figure 7: Simulation time of each algorithm. The simulation time is the total
time to perform 10 simulations.

6.2 Finding Bugs

To evaluate how good Go-MC is at identifying and reporting bugs we have
applied it to the example algorithm from 4. We then inserted a known bug into
the algorithm, and ran several scenarios to see if Go-MC was able to identify
the bug.

We used an implementation of the Hierarchical Consensus algorithm intro-
duced in section 4. Recall, that the algorithm works by having each node decide
its value in a specified round, and that all nodes impose the value it selects on all
subsequent nodes. We introduce a bug where the algorithm does not progress
multiple times to the next round if a node crashes and the algorithm enters a
round where the node has already crashed or decided a value (Listing 6.1, Figure
8). This causes the algorithm to freeze and violates the Termination property.

We ran the simulation of the algorithm six times with different configurations
(Table 2). We ran the scenarios with both a Prefix scheduler and a Random

scheduler, to compare how different scheduling techniques affects the results.
Since the bug only occurs when a node has crashed, we do not expect any errors
to be detected when the simulation is configured with no faulty nodes. We
configure the simulation with different number of nodes to investigate how the
size of the distributed system affected the simulation. We measured the time
used to run each simulation to compare how different configurations affected
the simulation time.

The results from the test of the Hierarchical Consensus algorithm (Table 3,
Figure 9) shows that Go-MC is able to find bugs in distributed systems, but
that the configuration that is used affect the effectiveness. In the simulations
with seven nodes we can see that the Prefix scheduler is unable to find the bug,

40

Figure 8: Space-Time diagram showing one run where the bug introduced in the
Hierarchical Consensus algorithm occurs. The dotted boxes shows which round
of the algorithm each Node is currently in. Node 1 crashes immediately. Node
2 detects this and decides on its value. Node 3 receives the decided message
from Node 2 before it detects that Node 1 has crashed. It is therefore still in
round 1 and it does not decide on a value. Node 3 then detects that Node 1 has
crashed and enters round 2. The algorithm should have detected that Node 2
has already decided and Node 3 should therefore enter round 3, where it should
decide on the same value. However due to the bug it will only change round
once after a node crash and it will therefor never leave Round 2.

Simulation Scheduler Nodes Faulty Nodes
1 Prefix {1, 2, 3} ∅
2 Prefix {1, 2, 3} {1}
3 Prefix {1, 2, 3, 4, 5, 6, 7} {2}
4 Random {1, 2, 3} ∅
5 Random {1, 2, 3} {1}
6 Random {1, 2, 3, 4, 5, 6, 7} {2}

Table 2: Testing of the Hierarchical Consensus algorithm. The algorithm was
modified to include a bug. A Propose request was made by each node. When
using a random scheduler the seed was set to 0. Unless states otherwise, default
values for parameters was used. The full configuration of the tests can be found
in Appendix D.2.

41

1 func (gc *GrpcConsensus) Crash(id int, _ bool) {

2 if gc.stopped {

3 return

4 }

5 gc.detectedRanks[int32(id)] = true

6 // Violates C1: Termination

7 // The algorithm does not advance the round again if it

enters a round where the node has already crashed↪→

8 // The correct implementation would be:

9 // for gc.delivered[gc.round] || gc.detectedRanks[gc.round]

{↪→

10 if gc.delivered[gc.round] || gc.detectedRanks[gc.round] {

11 gc.round++

12 gc.decide()

13 }

14 }

Listing 6.1: The bug introduced in the gRPC version of the Hierarchical Con-
sensus algorithm. The algorithm does not increase the round if a node crashe
causing the algorithm to advance to a round where the node for this round has
already decided on a value or crashed.

while the Random scheduler do find it. We also see that the Random scheduler uses
approximately the same amount of time to schedule all scenarios with the same
amount of nodes (simulation 4 and simulation 5), while the Prefix scheduler
uses significantly less time in simulation 1 compared with simulation 2.

Simulation Expected Error Found Error
1 No No
2 Yes Yes
3 Yes No
4 No No
5 Yes Yes
6 Yes Yes

Table 3: Results from Testing of the Hierarchical Consensus algorithm. The
bug can only appear when a node crashes. We therefore do not expect to find
an error in simulation 1 and 4.

42

Figure 9: Simulation time of each scenario. N specifies the number of nodes in
the scenario, while C specifies the number of faulty nodes.

43

7 Discussion

In this section we will summarize some experiences and observations from work-
ing with Go-MC. We will first discuss the results of the tests. Then, we will
discuss some of our experiences from working with Go-MC and some thoughts
about the design of Go-MC. Finally we will propose improvements that could
be applied to Go-MC.

7.1 Tests

The first test shows that Go-MC is able to perform simulations of simple sce-
narios in a relatively short time, but that the simulation times varies depending
on which Event Managers are used. This is somewhat expected, since the differ-
ent Event Managers hooks into different frameworks, which will have different
levels of overhead. It is however a significant difference, and it might indicate
that it is infeasible to perform simulation with more complex frameworks that
introduces large amount of overhead.

There are two interesting observations from the second test. Firstly the
Prefix scheduler was unable to identify the fault in the complex scenario with
seven nodes and one faulty node. We believe this is because the prefix scheduler
only performs minor changes between runs. Since the size of the state space is
much larger than the number of simulated runs it did not explore the particular
runs where the bug occurred and was therefore unable to find the bug. The
Random Scheduler schedules runs that are much more varied, and it is therefore
able to find the bug. One solution to this would naturally be to increase the
maximum number of runs to simulate, but doing this will also increase the time
used and the memory required to maintain the entire discovered state space.

Another observation is that the simulation time of the Simulations 4 and
5 is approximately equal, despite the simulation time of Simulations 1 and 2
being very different. Simulation 1 and 2 uses the Prefix Scheduler, which keep
track of the discovered state space and stops when it has explored all possible
runs. Simulation 4 and 5 uses the Random Scheduler which is stateless and
will continue to schedule runs until the maximum number of runs have been
scheduled, even if it has already explored all possible runs. In simple scenarios,
such as simulation 1 and 4, where there are only three nodes and no crashes,
the state space is smaller than the maximum number of runs and the Prefix
Scheduler can therefore stop significantly earlier than the random scheduler.

In conclusion, Go-MC is capable of finding bugs in distributed systems, but
that the choice of scheduling algorithm has a significant impact on the results.
The Prefix scheduler can guarantee that all runs have been simulated and will
stop once it has simulated all runs. It is therefore good when the distributed
system is simple and the state space is relatively small. The Random scheduler
can sample more evenly from the state space and it is therefore useful when the
state space is large.

44

7.2 Experiences

Go-MC proved useful when implementing the distributed algorithms, particu-
larly in simple scenarios. We used Go-MC extensively when implementing the
example algorithms and it provided good feedback that was useful during the
implementation process. It was capable of providing results quickly when the
maximum number of runs was low, e.g. 1000, and was still able to identify
obvious errors in the algorithms. More complex scenarios could be run later to
increase the chance of finding edge cases and complex bugs.

In our experience, implementing the algorithms for testing in Go-MC is
relatively straightforward, but does impose some limitations. Firstly, when
implementing algorithms it is important to keep in mind that events must be
atomic. Thus, it is not possible to pause the handling of some event to wait for
some condition to apply before performing some action. Instead the handling
of the event must end and the action must be performed in the event where
the condition is satisfied. This is a minor limitation to how algorithms can
be implemented, but it also enforces the event driven model that is commonly
used to describe algorithms. This makes it easier to implement and understand
the algorithms, since the implementations are similar to the specification of the
algorithm.

Another limitation that is imposed when using Go-MC is that the events
must be deterministic. This has not been a problem for the algorithms we have
implemented and tested, but it would limit the use of Go-MC on algorithms
that rely on randomness. Go-MC does not currently provide any methods of
simulating randomness, but it might be desirable to implement such mechanisms
in the future to increase the applicability of Go-MC to randomized algorithms.

The choice to intercept events at a high level by using Event Manager has
proven to have both advantages and disadvantages. The design makes it rel-
atively easy to define events and it is flexible, which allows Go-MC to take
advantage of the different frameworks that are used. It is also possible to define
new Events for a specific use case, instead of relying on the existing events.
On the other hand, the requirement for new Event Managers makes it harder
to utilize new frameworks, since the user would first need to implement a new
Event Manager for the framework. However, this is only a problem the first
time a new framework is utilized. After that, the same Event Managers can be
used, which reduces the impact of the problem.

7.3 Future Work

The tests shows that the state explosion problem is still a large factor in the
efficiency of Go-MC. For Go-MC to be viable when testing larger number of
nodes and more advanced algorithms it is necessary to develop it’s ability to
handle this problem. We believe that the approach to solving the problems
should be twofold: It should work to reduce the memory usage of each run of
the simulation and it should focus on reducing the size of state space by applying
state of the art state space reduction techniques.

45

The effort to reduce the memory usage of each run can take multiple ap-
proaches. It can improve the efficiency in which state is stored, for example by
only storing changes to the state instead of storing the state of each time slot, or
by implementing a new State Manager that stores states more efficiently than
a tree representation. Another approach could be to perform the checking of
the states live, instead of performing the checking after the state space has been
discovered. Using this solution we could check each run individually and if all
properties hold we could discard the run. Thus we would not have to store the
entire state space, which would significantly reduce the memory use.

The development of Go-MC so far has not focused on implementing advanced
schedulers and the schedulers that are provided does therefore not utilize state
space reduction techniques. The development of new schedulers can therefore
significantly increase the efficiency of the Go-MC by reducing the size of the state
space and by providing approaches that increase the likelihood of finding errors.
New schedulers can utilize different approaches and can easily be inserted into
the simulation. In particular, a scheduler that implements some form of state
space reduction technique would significantly reduce the number of redundant
runs that are simulated, and therefore increase the efficiency of Go-MC

Finally, when a node crashes all current and future events targeting that
node are still scheduled as normal, but they are expected to have no impact on
the target node. This causes the simulation to interleave events that should have
no impact on the simulation, which increases the number of redundant runs that
are simulated. To prevent this we could ignore all events that target a crashed
node. However, some frameworks might provide errors when messages are sent
to a crashed node, and removing the event might therefore have unintended
consequences. It is therefore necessary to investigate the consequences of such
a change further.

46

8 Conclusion

We have presented Go-MC, an implementation level model checker that uses
a modular design to enable us to test distributed systems in a deterministic
manner, similar to how sequential software is tested. We have presented two
primary design choices used in Go-MC: The modular design and the use of
Event Managers. The modular approach used by Go-MC makes it easy to use
different implementations of modules when running simulations. This makes it
easy to implement and compare state space reduction techniques for Go-MC. It
also makes it easy to represent different abstractions, allowing the user to select
the abstractions that fit best for the algorithm that they are testing. The use of
Event Managers means that events are collected in an efficient manner. Event
Managers are flexible and new implementations can be created for different
frameworks. Event Mangers can also be used to mock the behavior of modules,
enabling an modular approach to testing. Thus, reducing the simulation time
and allowing modules to be tested separately.

47

References

[1] Bowen Alpern and Fred B. Schneider. “Defining liveness”. en. In: Infor-
mation Processing Letters 21.4 (Oct. 1985), pp. 181–185. issn: 00200190.
doi: 10.1016/0020-0190(85)90056-0. url: https://linkinghub.else
vier.com/retrieve/pii/0020019085900560 (visited on 05/09/2023).

[2] Vaastav Anand. “Dara The Explorer: Coverage Based Exploration for
Model Checking of Distributed Systems in Go”. en. PhD thesis. Aug.
2020. url: https://vaastavanand.com/assets/pdf/msc_thesis.pdf.

[3] M. Ben-Ari. Principles of the Spin model checker. en. OCLC: ocn170042062.
London: Springer, 2008. isbn: 978-1-84628-770-1.

[4] R. Boichat and R. Guerraoui. “Reliable broadcast in the crash-recovery
model”. In: Proceedings 19th IEEE Symposium on Reliable Distributed
Systems SRDS-2000. Oct. 2000, pp. 32–41. doi: 10.1109/RELDI.2000.8
85390.

[5] Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction to
reliable and secure distributed programming. Second edition. Berlin ; New
York: Springer, 2011. isbn: 978-3-642-15259-7.

[6] Tushar Deepak Chandra and Sam Toueg. “Unreliable failure detectors for
reliable distributed systems”. In: Journal of the ACM 43.2 (Mar. 1996),
pp. 225–267. issn: 0004-5411. doi: 10.1145/226643.226647. url: https
://dl.acm.org/doi/10.1145/226643.226647 (visited on 05/09/2023).

[7] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the
presence of partial synchrony”. en. In: Journal of the ACM 35.2 (Apr.
1988), pp. 288–323. issn: 0004-5411, 1557-735X. doi: 10.1145/42282.42
283. url: https://dl.acm.org/doi/10.1145/42282.42283 (visited on
05/09/2023).

[8] Cormac Flanagan and Patrice Godefroid. “Dynamic partial-order reduc-
tion for model checking software”. In: ACM SIGPLAN Notices 40.1 (Jan.
2005), pp. 110–121. issn: 0362-1340. doi: 10 . 1145 / 1047659 . 104031
5. url: https : / / doi . org / 10 . 1145 / 1047659 . 1040315 (visited on
01/25/2023).

[9] gRPC. en. url: https://grpc.io/ (visited on 05/12/2023).

[10] Huayang Guo et al. “Practical software model checking via dynamic in-
terface reduction”. In: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. SOSP ’11. New York, NY, USA: Asso-
ciation for Computing Machinery, 2011, pp. 265–278. isbn: 978-1-4503-
0977-6. doi: 10.1145/2043556.2043582. url: https://doi.org/10.11
45/2043556.2043582 (visited on 01/11/2023).

[11] Charles Killian et al. “Life, Death, and the Critical Transition: Finding
Liveness Bugs in Systems Code”. en. In: (Jan. 2007). url: https://w
ww.usenix.org/legacy/event/nsdi07/tech/killian/killian.pdf

(visited on 01/11/2023).

48

https://doi.org/10.1016/0020-0190(85)90056-0
https://linkinghub.elsevier.com/retrieve/pii/0020019085900560
https://linkinghub.elsevier.com/retrieve/pii/0020019085900560
https://vaastavanand.com/assets/pdf/msc_thesis.pdf
https://doi.org/10.1109/RELDI.2000.885390
https://doi.org/10.1109/RELDI.2000.885390
https://doi.org/10.1145/226643.226647
https://dl.acm.org/doi/10.1145/226643.226647
https://dl.acm.org/doi/10.1145/226643.226647
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://dl.acm.org/doi/10.1145/42282.42283
https://doi.org/10.1145/1047659.1040315
https://doi.org/10.1145/1047659.1040315
https://doi.org/10.1145/1047659.1040315
https://grpc.io/
https://doi.org/10.1145/2043556.2043582
https://doi.org/10.1145/2043556.2043582
https://doi.org/10.1145/2043556.2043582
https://www.usenix.org/legacy/event/nsdi07/tech/killian/killian.pdf
https://www.usenix.org/legacy/event/nsdi07/tech/killian/killian.pdf

[12] Charles Edwin Killian. “Systems and language support for building cor-
rect, high performance distributed systems”. en. PhD thesis. UC San
Diego, 2008. url: https : / / escholarship . org /uc / item / 4gj3z4tw
(visited on 01/11/2023).

[13] L. Lamport. “Proving the Correctness of Multiprocess Programs”. In:
IEEE Transactions on Software Engineering SE-3.2 (Mar. 1977). Con-
ference Name: IEEE Transactions on Software Engineering, pp. 125–143.
issn: 1939-3520. doi: 10.1109/TSE.1977.229904.

[14] Leslie Lamport. “Paxos Made Simple”. en-US. In: ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number 121, December
2001) (Dec. 2001), pp. 51–58. url: https://www.microsoft.com/en-us
/research/publication/paxos-made-simple/ (visited on 05/09/2023).

[15] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System”. en. In: 21.7 (1978).

[16] Leslie Lamport and P. M. Melliar-Smith. “Synchronizing clocks in the
presence of faults”. en. In: Journal of the ACM 32.1 (Jan. 1985), pp. 52–
78. issn: 0004-5411, 1557-735X. doi: 10.1145/2455.2457. url: https:
//dl.acm.org/doi/10.1145/2455.2457 (visited on 05/10/2023).

[17] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
Generals Problem”. en-US. In: ACM Transactions on Programming Lan-
guages and Systems (July 1982), pp. 382–401. url: https://www.micro
soft.com/en-us/research/publication/byzantine-generals-probl

em/ (visited on 05/09/2023).

[18] Tanakorn Leesatapornwongsa et al. “SAMC: Semantic-Aware Model Check-
ing for Fast Discovery of Deep Bugs in Cloud Systems”. en. In: (2014).
url: https://www.usenix.org/conference/osdi14/technical-sessi
ons/presentation/leesatapornwongsa.

[19] Jeffrey F. Lukman et al. “FlyMC: Highly Scalable Testing of Complex
Interleavings in Distributed Systems”. In: Proceedings of the Fourteenth
EuroSys Conference 2019. EuroSys ’19. New York, NY, USA: Association
for Computing Machinery, Mar. 2019, pp. 1–16. isbn: 978-1-4503-6281-8.
doi: 10.1145/3302424.3303986. url: https://doi.org/10.1145/3302
424.3303986 (visited on 01/11/2023).

[20] Ellis Michael et al. “Teaching Rigorous Distributed Systems With Efficient
Model Checking”. In: Proceedings of the Fourteenth EuroSys Conference
2019. EuroSys ’19. New York, NY, USA: Association for Computing Ma-
chinery, Mar. 2019, pp. 1–15. isbn: 978-1-4503-6281-8. doi: 10.1145/3
302424.3303947. url: https://doi.org/10.1145/3302424.3303947
(visited on 01/12/2023).

[21] A. Mostefaoui, E. Mourgaya, and M. Raynal. “Asynchronous implementa-
tion of failure detectors”. In: 2003 International Conference on Dependable
Systems and Networks, 2003. Proceedings. June 2003, pp. 351–360. doi:
10.1109/DSN.2003.1209946.

49

https://escholarship.org/uc/item/4gj3z4tw
https://doi.org/10.1109/TSE.1977.229904
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/2455.2457
https://dl.acm.org/doi/10.1145/2455.2457
https://dl.acm.org/doi/10.1145/2455.2457
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/leesatapornwongsa
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/leesatapornwongsa
https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1145/3302424.3303947
https://doi.org/10.1109/DSN.2003.1209946

[22] Madanlal Musuvathi et al. “Finding and reproducing Heisenbugs in con-
current programs”. In: Proceedings of the 8th USENIX conference on Op-
erating systems design and implementation. OSDI’08. USA: USENIX As-
sociation, 2008, pp. 267–280. (Visited on 04/11/2023).

[23] Burcu Kulahcioglu Ozkan et al. “Randomized testing of distributed sys-
tems with probabilistic guarantees”. In: Proceedings of the ACM on Pro-
gramming Languages 2.OOPSLA (2018), 160:1–160:28. doi: 10.1145/327
6530. url: https://doi.org/10.1145/3276530 (visited on 01/17/2023).

[24] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. USA:
Prentice Hall PTR, Jan. 1981. isbn: 978-0-13-661983-3.

[25] Richard D. Schlichting and Fred B. Schneider. “Fail-stop processors: an
approach to designing fault-tolerant computing systems”. en. In: ACM
Transactions on Computer Systems 1.3 (Aug. 1983), pp. 222–238. issn:
0734-2071, 1557-7333. doi: 10.1145/357369.357371. url: https://dl
.acm.org/doi/10.1145/357369.357371 (visited on 05/09/2023).

[26] Fred B. Schneider, David Gries, and Richard D. Schlichting. “Fault-tolerant
broadcasts”. en. In: Science of Computer Programming 4.1 (Apr. 1984),
pp. 1–15. issn: 0167-6423. doi: 10.1016/0167-6423(84)90009-1. url:
https://www.sciencedirect.com/science/article/pii/0167642384

900091 (visited on 05/10/2023).

[27] Maarten van Steen and Andrew S. Tanenbaum. “A brief introduction to
distributed systems”. en. In: Computing 98.10 (Oct. 2016), pp. 967–1009.
issn: 0010-485X, 1436-5057. doi: 10.1007/s00607-016-0508-7. url:
http://link.springer.com/10.1007/s00607-016-0508-7 (visited on
03/31/2023).

[28] Junfeng Yang et al. “MODIST: Transparent Model Checking of Unmodi-
fied Distributed Systems”. en. In: (2009). url: https://www.cs.columb
ia.edu/~junfeng/papers/modist-nsdi09.pdf.

[29] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. “Model Checking
TLA+ Specifications”. en. In: Correct Hardware Design and Verification
Methods. Ed. by Laurence Pierre and Thomas Kropf. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1999, pp. 54–66. isbn:
978-3-540-48153-9. doi: 10.1007/3-540-48153-2_6.

[30] Xinhao Yuan and Junfeng Yang. “Effective Concurrency Testing for Dis-
tributed Systems”. In: Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operat-
ing Systems. ASPLOS ’20. New York, NY, USA: Association for Comput-
ing Machinery, Mar. 2020, pp. 1141–1156. isbn: 978-1-4503-7102-5. doi:
10.1145/3373376.3378484. url: https://doi.org/10.1145/3373376
.3378484 (visited on 01/11/2023).

50

https://doi.org/10.1145/3276530
https://doi.org/10.1145/3276530
https://doi.org/10.1145/3276530
https://doi.org/10.1145/357369.357371
https://dl.acm.org/doi/10.1145/357369.357371
https://dl.acm.org/doi/10.1145/357369.357371
https://doi.org/10.1016/0167-6423(84)90009-1
https://www.sciencedirect.com/science/article/pii/0167642384900091
https://www.sciencedirect.com/science/article/pii/0167642384900091
https://doi.org/10.1007/s00607-016-0508-7
http://link.springer.com/10.1007/s00607-016-0508-7
https://www.cs.columbia.edu/~junfeng/papers/modist-nsdi09.pdf
https://www.cs.columbia.edu/~junfeng/papers/modist-nsdi09.pdf
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1145/3373376.3378484
https://doi.org/10.1145/3373376.3378484
https://doi.org/10.1145/3373376.3378484

A Distributed Algorithms

A.1 Hierarchical Consensus

Figure 10: The Hierarchical Consensus algorithm as presented by Cachin, Guer-
raoui, and Rodrigues [5]. (Algorithm 5.2)

A.1.1 Sender

1 package main

2

3 type Value[T any] struct {

4 Val T

51

5 }

6

7 type HierarchicalConsensus[T any] struct {

8 detectedRanks map[int]bool

9 round int

10 proposal Value[T]

11 proposer int

12 proposed bool

13

14 DecidedSignal chan Value[T]

15

16 // Test values used to verify algorithm

17 DecidedVal []Value[T]

18 ProposedVal Value[T]

19

20 delivered map[int]bool

21 broadcast bool

22

23 crashed bool

24

25 id int

26 nodes []int

27 send func(int, string, ...any)

28 }

29

30 func NewHierarchicalConsensus[T any](id int, nodes []int, send

func(int, string, ...any)) *HierarchicalConsensus[T] {↪→

31 return &HierarchicalConsensus[T]{

32 detectedRanks: make(map[int]bool),

33 round: 1,

34 proposal: Value[T]{},

35 proposer: 0,

36 proposed: false,

37 delivered: make(map[int]bool),

38 broadcast: false,

39

40 DecidedSignal: make(chan Value[T], 1),

41 DecidedVal: make([]Value[T], 0),

42

43 id: id,

44 nodes: nodes,

45 send: send,

46 }

47 }

48

49 func (hc *HierarchicalConsensus[T]) Crash(id int, _ bool) {

52

50 if hc.crashed {

51 return

52 }

53 hc.detectedRanks[id] = true

54 for hc.delivered[hc.round] || hc.detectedRanks[hc.round] {

55 hc.round++

56 hc.decide()

57 }

58 }

59

60 func (hc *HierarchicalConsensus[T]) Propose(val Value[T]) {

61 if hc.crashed {

62 return

63 }

64 hc.ProposedVal = val

65 if !hc.proposed {

66 hc.proposed = true

67 hc.proposal = val

68 }

69 hc.decide()

70 }

71

72 func (hc *HierarchicalConsensus[T]) Decided(from int, val

Value[T]) {↪→

73 if hc.crashed {

74 return

75 }

76 if from < hc.id && from > hc.proposer {

77 hc.proposed = true

78 hc.proposal = val

79 hc.proposer = from

80 hc.decide()

81 }

82 hc.delivered[from] = true

83 for hc.delivered[hc.round] || hc.detectedRanks[hc.round] {

84 hc.round++

85 hc.decide()

86 }

87 }

88

89 func (hc *HierarchicalConsensus[T]) decide() {

90 if hc.id != hc.round {

91 return

92 }

93

94 if hc.broadcast {

53

95 return

96 }

97 if !hc.proposed {

98 return

99 }

100

101 hc.broadcast = true

102 for _, target := range hc.nodes {

103 if target > hc.id {

104 hc.send(int(target), "Decided", hc.id, hc.proposal)

105 }

106 }

107 // Decide on value

108 hc.DecidedSignal <- hc.proposal

109 hc.DecidedVal = append(hc.DecidedVal, hc.proposal)

110 }

Listing A.1: Implementation of the Hierarchical Consensus Algorithm using the
Sender Event Manager. The Crash method is called when a node crashes. The
Propose method is called when a node proposes a value. The Decided method
is a message handler that handles a decided message.

1 package main

2

3 import (

4 "bytes"

5 "encoding/json"

6 "os"

7 "testing"

8

9 "golang.org/x/exp/slices"

10

11 "gomc"

12 "gomc/checking"

13 "gomc/eventManager"

14)

15

16 type state struct {

17 proposed Value[int]

18 decided []Value[int]

19 }

20

21 var predicates = []checking.Predicate[state]{

22 checking.Eventually(

23 // C1: Termination

54

24 func(s checking.State[state]) bool {

25 return checking.ForAllNodes(func(s state) bool {

26 return len(s.decided) > 0

27 }, s, true)

28 },

29),

30 func(s checking.State[state]) bool {

31 // C2: Validity

32 proposed := make(map[Value[int]]bool)

33 for _, node := range s.LocalStates {

34 proposed[node.proposed] = true

35 }

36 return checking.ForAllNodes(func(s state) bool {

37 if len(s.decided) < 1 {

38 // The process has not decided a value yet

39 return true

40 }

41 return proposed[s.decided[0]]

42 }, s, false)

43 },

44 func(s checking.State[state]) bool {

45 // C3: Integrity

46 return checking.ForAllNodes(func(s state) bool { return

len(s.decided) < 2 }, s, false)↪→

47 },

48 func(s checking.State[state]) bool {

49 // C4: Agreement

50 decided := make(map[Value[int]]bool)

51 checking.ForAllNodes(func(s state) bool {

52 for _, val := range s.decided {

53 decided[val] = true

54 }

55 return true

56 }, s, true)

57 return len(decided) <= 1

58 },

59 }

60

61 func TestConsensus(t *testing.T) {

62 sim := gomc.PrepareSimulation(

63 gomc.WithTreeStateManager(

64 func(node *HierarchicalConsensus[int]) state {

65 return state{

66 proposed: node.ProposedVal,

67 decided: slices.Clone(node.DecidedVal),

68 }

55

69 },

70 func(a, b state) bool {

71 if a.proposed != b.proposed {

72 return false

73 }

74 return slices.Equal(a.decided, b.decided)

75 },

76),

77 gomc.PrefixScheduler(),

78)

79

80 nodeIds := []int{1, 2, 3}

81 resp := sim.Run(

82 gomc.InitSingleNode(nodeIds,

83 func(id int, sp eventManager.SimulationParameters)

*HierarchicalConsensus[int] {↪→

84 send := eventManager.NewSender(sp)

85 node := NewHierarchicalConsensus[int](

86 id,

87 nodeIds,

88 send.SendFunc(id),

89)

90 sp.CrashSubscribe(id, node.Crash)

91 return node

92 },

93),

94 gomc.WithRequests(

95 gomc.NewRequest(1, "Propose", Value[int]{1}),

96 gomc.NewRequest(2, "Propose", Value[int]{2}),

97 gomc.NewRequest(3, "Propose", Value[int]{3}),

98),

99 gomc.WithPredicateChecker(predicates...),

100 gomc.WithPerfectFailureManager(

101 func(t *HierarchicalConsensus[int]) { t.crashed =

true },↪→

102 1,

103),

104 gomc.Export(os.Stdout),

105)

106 if ok, out := resp.Response(); !ok {

107 t.Errorf("Expected no errors while checking. Got: %v",

out)↪→

108

109 var buffer bytes.Buffer

110 json.NewEncoder(&buffer).Encode(resp.Export())

111 os.WriteFile("FailedRun.txt", buffer.Bytes(), 0755)

56

112 }

113 }

Listing A.2: Configuration of the simulation of the Hierarchical Consensus using
the Sender Event Manager. The simulation is configured with three nodes that
each propose a value. It uses a prefix scheduler to schedule the events. Node 1
is configured to crash during the simulation. Lines 20-58 define the properties
that must hold for the algorithm.

A.1.2 gRPC

1 package main

2

3 import (

4 "context"

5 pb "gomc/examples/grpcConsensus/proto"

6 "net"

7

8 "google.golang.org/grpc"

9)

10

11 type state struct {

12 proposed string

13 decided []string

14 }

15

16 type Client struct {

17 pb.ConsensusClient

18 id int32

19 conn *grpc.ClientConn

20 }

21

22 type GrpcConsensus struct {

23 pb.UnimplementedConsensusServer

24

25 detectedRanks map[int32]bool

26 proposal *pb.Value

27 proposer int32

28

29 round int32

30 delivered map[int32]bool

31 broadcast bool

32

33 id int32

34 nodes []*Client

57

35

36 stopped bool

37

38 DecidedVal []string

39 ProposedVal string

40

41 waitForSend func(num int)

42

43 srv *grpc.Server

44 }

45

46 func NewGrpcConsensus(id int32, lis net.Listener, waitForSend

func(int), srvOpts ...grpc.ServerOption) *GrpcConsensus {↪→

47 srv := grpc.NewServer(srvOpts...)

48 gc := &GrpcConsensus{

49 detectedRanks: make(map[int32]bool),

50 proposer: 0,

51 round: 1,

52 delivered: make(map[int32]bool),

53 broadcast: false,

54 id: id,

55 nodes: make([]*Client, 0),

56

57 DecidedVal: make([]string, 0),

58 ProposedVal: "",

59

60 waitForSend: waitForSend,

61

62 srv: srv,

63 }

64 pb.RegisterConsensusServer(srv, gc)

65 go func() {

66 srv.Serve(lis)

67 }()

68 return gc

69 }

70

71 func (gc *GrpcConsensus) DialServers(addrMap map[int32]string,

dialOpts ...grpc.DialOption) {↪→

72 for id, addr := range addrMap {

73 conn, err := grpc.Dial(addr, dialOpts...)

74 if err != nil {

75 panic(err)

76 }

77 gc.nodes = append(gc.nodes, &Client{

78 id: id,

58

79 ConsensusClient: pb.NewConsensusClient(conn),

80 conn: conn,

81 })

82 }

83 }

84

85 func (gc *GrpcConsensus) Crash(id int, _ bool) {

86 if gc.stopped {

87 return

88 }

89 gc.detectedRanks[int32(id)] = true

90 // Violates C1: Termination

91 // The algorithm does not advance the round again if it

enters a round where the node has already crashed↪→

92 // The correct implementation would be:

93 // for gc.delivered[gc.round] || gc.detectedRanks[gc.round]

{↪→

94 if gc.delivered[gc.round] || gc.detectedRanks[gc.round] {

95 gc.round++

96 gc.decide()

97 }

98 }

99

100 func (hc *GrpcConsensus) Propose(val string) {

101 hc.ProposedVal = val

102 protoVal := &pb.Value{Val: val}

103 if hc.proposal == nil {

104 hc.proposal = protoVal

105 }

106 hc.decide()

107 }

108

109 func (gc *GrpcConsensus) Decided(ctx context.Context, in

*pb.DecideRequest) (*pb.DecideResponse, error) {↪→

110 if in.GetFrom() < gc.id && in.GetFrom() > gc.proposer {

111 gc.proposal = in.GetVal()

112 gc.proposer = in.GetFrom()

113 gc.decide()

114 }

115 gc.delivered[in.GetFrom()] = true

116 for gc.delivered[gc.round] || gc.detectedRanks[gc.round] {

117 gc.round++

118 gc.decide()

119 }

120 return &pb.DecideResponse{}, nil

121 }

59

122

123 func (gc *GrpcConsensus) decide() {

124 if gc.id != gc.round {

125 return

126 }

127

128 if gc.broadcast {

129 return

130 }

131 if gc.proposal == nil {

132 return

133 }

134

135 gc.broadcast = true

136 gc.DecidedVal = append(gc.DecidedVal, gc.proposal.GetVal())

137 msg := &pb.DecideRequest{

138 Val: gc.proposal,

139 From: gc.id,

140 }

141 num := 0

142 for _, node := range gc.nodes {

143 if node.id > gc.id {

144 num++

145 go node.Decided(context.Background(), msg)

146 }

147 }

148 gc.waitForSend(num) // Wait until all messages has been

sent, but do not wait until an answer is received↪→

149 }

150

151 func (gc *GrpcConsensus) Stop() {

152 gc.srv.Stop()

153 for _, node := range gc.nodes {

154 node.conn.Close()

155 }

156 gc.stopped = true

157 }

Listing A.3: Implementation of the Hierarchical Consensus Algorithm using
gRPC. The Crash method is called when a node crashes. The Propose method
is called when a node proposes a value. The Decided method is a message
handler that handles a decided message.

60

A.2 Eager Reliable Broadcast

Figure 11: The Eager Reliable Broadcast algorithm as presented by Cachin,
Guerraoui, and Rodrigues [5]. (Algorithm 3.3)

1 package main

2

3 import (

4 "fmt"

5)

6

7 type message struct {

8 From int

9 Index int

10 Payload string

11 }

12

13 func (m message) String() string {

14 return fmt.Sprintf("{F:%v, i:%v}", m.From, m.Index)

15 }

16

17 type Rrb struct {

18 id int

19 nodes []int

20

61

21 delivered map[message]bool

22 sent map[message]bool

23 send func(to int, msgType string, msg ...any)

24

25 crashed bool

26

27 deliveredSlice []message

28 }

29

30 func NewRrb(id int, nodes []int, send func(int, string,

...any)) *Rrb {↪→

31 return &Rrb{

32 id: id,

33 nodes: nodes,

34

35 delivered: make(map[message]bool),

36 sent: make(map[message]bool),

37 send: send,

38 }

39 }

40

41 func (rrb *Rrb) Broadcast(msg string) {

42 if rrb.crashed {

43 return

44 }

45 message := message{

46 From: rrb.id,

47 Index: len(rrb.sent),

48 Payload: msg,

49 }

50

51 for _, target := range rrb.nodes {

52 rrb.send(target, "Deliver", message)

53 }

54 rrb.sent[message] = true

55 }

56

57 func (rrb *Rrb) Deliver(message message) {

58 if rrb.crashed {

59 return

60 }

61

62 // violation of RB2:No Duplication

63 rrb.deliveredSlice = append(rrb.deliveredSlice, message)

64 if !rrb.delivered[message] {

65 rrb.delivered[message] = true

62

66 for _, target := range rrb.nodes {

67 rrb.send(target, "Deliver", message)

68 }

69 }

70 }

Listing A.4: Implementation of the Eager Reliable Broadcast Algorithm. The
Broadcast method is called when a node should broadcast a message. The
Deliver method is a message handler that handles a message.

63

A.3 Majority Voting Regular Register

Figure 12: The Majority Voting Regular Register algorithm as presented by
Cachin, Guerraoui, and Rodrigues [5]. (Algorithm 4.2)

1 package main

2

64

3 type Value struct {

4 Ts int

5 Val int

6 }

7

8 type BroadcastWriteMsg struct {

9 Val Value

10 }

11

12 type AckMsg struct {

13 Ts int

14 }

15

16 type BroadcastReadMsg struct {

17 Rid int

18 }

19

20 type ReadValueMsg struct {

21 Rid int

22 Val Value

23 }

24

25 type onrr struct {

26 val Value // Current value stored in the

register↪→

27 wts int // Write timestamp

28 acks int // Number of acks received for the

current value↪→

29 rid int // A read request identifier

30 readList map[int]Value // A slice of all values

31

32 WriteIndicator chan bool

33 ReadIndicator chan int

34

35 // Used for testing.

36 ongoingRead bool

37 ongoingWrite bool

38 possibleReads []int

39

40 // Id of the current node

41 id int

42 // Used to keep track of all nodes

43 nodes []int

44 // Used to send messages to other types.

45 send func(to int, msgType string, params ...any)

46 }

65

47

48 func NewOnrr(id int, send func(to int, msgType string, params

...any), nodes []int) *onrr {↪→

49 return &onrr{

50 val: Value{Ts: 0, Val: 0},

51 wts: 0,

52 acks: 0,

53 rid: 0,

54 readList: make(map[int]Value),

55

56 // Indicator channels

57 WriteIndicator: make(chan bool, 1),

58 ReadIndicator: make(chan int, 1),

59

60 ongoingRead: false,

61 ongoingWrite: false,

62 possibleReads: []int{0},

63

64 id: id,

65 nodes: nodes,

66 send: send,

67 }

68 }

69

70 func (onrr *onrr) Write(val int) {

71 onrr.wts++

72 onrr.acks = 0

73

74 onrr.possibleReads = []int{onrr.val.Val, val}

75

76 value := Value{

77 Ts: onrr.wts,

78 Val: val,

79 }

80

81 onrr.ongoingWrite = true

82

83 msg := BroadcastWriteMsg{Val: value}

84 for _, target := range onrr.nodes {

85 onrr.send(target, "BroadcastWrite", onrr.id, msg)

86 }

87 }

88

89 func (onrr *onrr) BroadcastWrite(from int, msg

BroadcastWriteMsg) {↪→

90 bwMsg := msg

66

91 if bwMsg.Val.Ts > onrr.val.Ts {

92 onrr.val = bwMsg.Val

93 }

94 ackMsg := AckMsg{

95 Ts: bwMsg.Val.Ts,

96 }

97 onrr.send(from, "AckWrite", ackMsg)

98 }

99

100 func (onrr *onrr) AckWrite(msg AckMsg) {

101 ackMsg := msg

102 if ackMsg.Ts != onrr.wts {

103 return

104 }

105 onrr.acks++

106 if onrr.acks > len(onrr.nodes)/2 {

107 if onrr.ongoingWrite {

108 onrr.possibleReads = onrr.possibleReads[1:]

109 }

110 onrr.ongoingWrite = false

111 onrr.acks = 0

112 onrr.WriteIndicator <- true

113 }

114 }

115

116 func (onrr *onrr) Read() {

117 onrr.ongoingRead = true

118

119 onrr.rid++

120 onrr.readList = make(map[int]Value)

121 msg := BroadcastReadMsg{

122 Rid: onrr.rid,

123 }

124 for _, target := range onrr.nodes {

125 onrr.send(target, "BroadcastRead", onrr.id, msg)

126 }

127 }

128

129 func (onrr *onrr) BroadcastRead(from int, msg BroadcastReadMsg)

{↪→

130 readMsg := msg

131 valMsg := ReadValueMsg{

132 Rid: readMsg.Rid,

133 Val: onrr.val,

134 }

135 onrr.send(from, "ReadValue", onrr.id, valMsg)

67

136 }

137

138 func (onrr *onrr) ReadValue(from int, msg ReadValueMsg) {

139 valMsg := msg

140 if valMsg.Rid != onrr.rid {

141 return

142 }

143 onrr.readList[from] = valMsg.Val

144 if len(onrr.readList) > len(onrr.nodes)/2 {

145 val := getvalue(onrr.readList)

146 onrr.readList = make(map[int]Value)

147

148 onrr.ongoingRead = false

149 onrr.ReadIndicator <- val.Val

150 }

151 }

152

153 func getvalue(valueMap map[int]Value) Value {

154 var highest Value

155 for _, val := range valueMap {

156 if val.Ts > highest.Ts {

157 highest = val

158 }

159 }

160 return highest

161 }

Listing A.5: Implementation of the Hierarchical Consensus Algorithm. The W ⌋

rite method is called when a node write a value and the Read method is called
when a node reads the value . The BroadcastWriteMsg, AckWrite, Broadcas ⌋

tRead and ReadValue methods are message handlers handling their respective
messages in the algorithm.

A.4 Paxos

1 package paxos

2

3 import (

4 "gomc/examples/paxos/proto"

5 "net"

6

7 "google.golang.org/grpc"

8)

9

10 type paxosClient struct {

68

11 conn *grpc.ClientConn

12

13 proto.ProposerClient

14 proto.AcceptorClient

15 proto.LearnerClient

16 }

17

18 func newPaxosClient(conn *grpc.ClientConn) *paxosClient {

19 return &paxosClient{

20 ProposerClient: proto.NewProposerClient(conn),

21 AcceptorClient: proto.NewAcceptorClient(conn),

22 LearnerClient: proto.NewLearnerClient(conn),

23 }

24 }

25

26 type paxos struct {

27 *Proposer

28 *Acceptor

29 *Learner

30

31 Proposal string

32 Decided string

33

34 stopped bool

35

36 Id int64

37 correct map[int64]bool

38 leader int64

39 }

40

41 func newPaxos(id int64, nodes map[int64]string, waitForSend

func(int)) *paxos {↪→

42 nodeId := &proto.NodeId{Val: id}

43 var leader int64

44 correct := make(map[int64]bool)

45 for nodeId := range nodes {

46 if nodeId > leader {

47 leader = nodeId

48 }

49 correct[nodeId] = true

50 }

51 l := NewLearner(nodeId, len(nodes))

52 p := &paxos{

53 Proposer: NewProposer(nodeId, waitForSend),

54 Acceptor: NewAcceptor(nodeId, waitForSend),

55 Learner: l,

69

56

57 Id: id,

58 leader: leader,

59 correct: correct,

60 }

61

62 l.Subscribe(p.decided)

63 return p

64 }

65

66 func (p *paxos) NodeCrash(id int, _ bool) {

67 if p.stopped {

68 return

69 }

70 p.correct[int64(id)] = false

71 if int64(id) == p.leader {

72 p.newLeader()

73 }

74 }

75

76 func (p *paxos) newLeader() {

77 p.Proposer.IncrementCrnd()

78 p.leader = p.nextLeader()

79 if p.leader == p.Id && p.Proposal != "" {

80 p.performPrepare(p.Proposal)

81 }

82 }

83

84 func (p *paxos) nextLeader() int64 {

85 var leader int64

86 for id, ok := range p.correct {

87 if ok {

88 if id > leader {

89 leader = id

90 }

91 }

92 }

93 return leader

94 }

95

96 func (p *paxos) Propose(val string) {

97 if p.stopped {

98 return

99 }

100 p.Proposal = val

101 if p.leader == p.Id {

70

102 p.performPrepare(p.Proposal)

103 }

104 }

105

106 func (p *paxos) decided(val string) {

107 p.Decided = val

108 }

109

110 type Server struct {

111 srv *grpc.Server

112 connections []*grpc.ClientConn

113 addrMap map[int64]string

114

115 *paxos

116 }

117

118 func NewServer(id int64, addrMap map[int64]string, waitForSend

func(int), srvOpts ...grpc.ServerOption) (*Server, error) {↪→

119 srv := grpc.NewServer(srvOpts...)

120 paxos := newPaxos(id, addrMap, waitForSend)

121 proto.RegisterProposerServer(srv, paxos)

122 proto.RegisterAcceptorServer(srv, paxos)

123 proto.RegisterLearnerServer(srv, paxos)

124 return &Server{

125 srv: srv,

126 paxos: paxos,

127 addrMap: addrMap,

128 }, nil

129 }

130

131 func (p *Server) StartServer(lis net.Listener) error {

132 return p.srv.Serve(lis)

133 }

134

135 func (p *Server) Stop() {

136 p.srv.Stop()

137 for _, c := range p.connections {

138 c.Close()

139 }

140 p.stopped = true

141 }

142

143 func (p *Server) DialNodes(dialOpts ...grpc.DialOption) error {

144 nodes := make(map[int64]*paxosClient)

145 for id, addr := range p.addrMap {

146 conn, err := grpc.Dial(addr, dialOpts...)

71

147 if err != nil {

148 return err

149 }

150 nodes[id] = newPaxosClient(conn)

151 p.connections = append(p.connections, conn)

152 }

153 p.paxos.Proposer.nodes = nodes

154 p.paxos.Acceptor.nodes = nodes

155 return nil

156 }

Listing A.6: Implementation of the Paxos Algorithm. The type implements the
basic paxos algorithm as presented by Lamport [14]. It performs phase 1 first
when proposing a value. It is designed to only decide on one value.

1 package paxos

2

3 import (

4 "context"

5 "gomc/examples/paxos/proto"

6

7 "github.com/golang/protobuf/ptypes/empty"

8 "google.golang.org/protobuf/types/known/emptypb"

9)

10

11 type Proposer struct {

12 proto.UnimplementedProposerServer

13

14 id *proto.NodeId

15

16 v *proto.Value

17

18 // Current round

19 crnd *proto.Round

20 // Constrained consensus value

21 cval *proto.Value

22

23 numPromise int

24 largestVal *proto.Value

25

26 phaseOne chan bool

27

28 nodes map[int64]*paxosClient

29 waitForSend func(num int)

30 }

72

31

32 func NewProposer(id *proto.NodeId, waitForSend func(num int))

*Proposer {↪→

33 return &Proposer{

34 id: id,

35

36 crnd: &proto.Round{Val: id.GetVal()},

37

38 nodes: make(map[int64]*paxosClient),

39 waitForSend: waitForSend,

40 }

41 }

42

43 func (p *Proposer) performPrepare(propsedVal string) {

44 // Use a zero value for round. This will always be smaller

than any value returned by the acceptor.↪→

45 // This ensures that the value is only chosen if no value

is returned by an acceptor↪→

46 p.largestVal = &proto.Value{

47 Val: propsedVal,

48 }

49

50 msg := &proto.PrepareRequest{

51 Crnd: p.crnd,

52 From: p.id,

53 }

54 for _, n := range p.nodes {

55 go n.Prepare(context.Background(), msg)

56 }

57 p.waitForSend(len(p.nodes))

58 }

59

60 func (p *Proposer) Promise(_ context.Context, in

*proto.PromiseRequest) (*empty.Empty, error) {↪→

61 if in.GetRnd().GetVal() != p.crnd.GetVal() {

62 return &emptypb.Empty{}, nil

63 }

64

65 p.numPromise++

66 if in.GetVal().GetRnd().GetVal() >

p.largestVal.GetRnd().GetVal() {↪→

67 p.largestVal = in.GetVal()

68 }

69

70 if p.numPromise <= len(p.nodes)/2 {

71 return &emptypb.Empty{}, nil

73

72 }

73

74 msg := &proto.AcceptRequest{

75 Val: &proto.Value{

76 Rnd: p.crnd,

77 Val: p.largestVal.GetVal(),

78 },

79 From: p.id,

80 }

81

82 for _, node := range p.nodes {

83 go node.Accept(context.Background(), msg)

84 }

85 p.waitForSend(len(p.nodes))

86

87 p.numPromise = 0

88 p.largestVal = nil

89

90 return &emptypb.Empty{}, nil

91 }

92

93 func (p *Proposer) IncrementCrnd() {

94 newRnd := p.crnd.GetVal() + int64(len(p.nodes))

95 p.crnd = &proto.Round{Val: newRnd}

96 }

Listing A.7: Implementation of the Proposer in the Paxos Algorithm.

1 package paxos

2

3 import (

4 "context"

5 "gomc/examples/paxos/proto"

6

7 "github.com/golang/protobuf/ptypes/empty"

8 "google.golang.org/protobuf/types/known/emptypb"

9)

10

11 type Acceptor struct {

12 proto.UnimplementedAcceptorServer

13

14 id *proto.NodeId

15

16 // Current round

17 rnd *proto.Round

74

18

19 // The last accepted value and the round in which it was

accepted↪→

20 vval *proto.Value

21

22 nodes map[int64]*paxosClient

23 waitForSend func(num int)

24 }

25

26 func NewAcceptor(id *proto.NodeId, waitForSend func(num int))

*Acceptor {↪→

27 return &Acceptor{

28 id: id,

29

30 nodes: make(map[int64]*paxosClient),

31 waitForSend: waitForSend,

32 }

33 }

34

35 func (a *Acceptor) Prepare(_ context.Context, in

*proto.PrepareRequest) (*empty.Empty, error) {↪→

36 if in.GetCrnd().GetVal() > a.rnd.GetVal() {

37 a.rnd = in.GetCrnd()

38 }

39

40 go a.nodes[in.GetFrom().GetVal()].Promise(

41 context.Background(),

42 &proto.PromiseRequest{

43 Rnd: a.rnd,

44 Val: a.vval,

45 From: a.id,

46 },

47)

48 a.waitForSend(1)

49 return &emptypb.Empty{}, nil

50 }

51

52 func (a *Acceptor) Accept(_ context.Context, in

*proto.AcceptRequest) (*empty.Empty, error) {↪→

53 if in.GetVal().GetRnd().GetVal() < a.rnd.GetVal() {

54 return &emptypb.Empty{}, nil

55 }

56 a.vval = in.GetVal()

57

58 msg := &proto.LearnRequest{

59 Val: in.GetVal(),

75

60 From: a.id,

61 }

62 for _, node := range a.nodes {

63 go node.Learn(context.Background(), msg)

64 }

65 a.waitForSend(len(a.nodes))

66 return &emptypb.Empty{}, nil

67 }

Listing A.8: Implementation of the Acceptor in the Paxos Algorithm.

1 package paxos

2

3 import (

4 "context"

5 "gomc/examples/paxos/proto"

6

7 "github.com/golang/protobuf/ptypes/empty"

8 "google.golang.org/protobuf/types/known/emptypb"

9)

10

11 func ValEquals(a, b *proto.Value) bool {

12 if a.GetRnd().GetVal() != b.GetRnd().GetVal() {

13 return false

14 }

15 if a.GetVal() != b.GetVal() {

16 return false

17 }

18 return true

19 }

20

21 type Learner struct {

22 proto.UnimplementedLearnerServer

23

24 id *proto.NodeId

25

26 recvLrn map[int64]*proto.Value

27

28 numNodes int

29

30 // Consensus Value

31 learnSubscribe []func(string)

32 }

33

34 func NewLearner(id *proto.NodeId, numNodes int) *Learner {

76

35 return &Learner{

36 id: id,

37

38 numNodes: numNodes,

39 recvLrn: make(map[int64]*proto.Value),

40

41 learnSubscribe: make([]func(string), 0),

42 }

43 }

44

45 func (l *Learner) Learn(_ context.Context, in

*proto.LearnRequest) (*empty.Empty, error) {↪→

46 l.addValue(in.GetFrom().GetVal(), in.GetVal())

47 numLrn := 0

48 freqVal := &proto.Value{

49 Rnd: &proto.Round{Val: -1},

50 }

51 for _, val := range l.recvLrn {

52 if val.GetRnd().GetVal() > freqVal.GetRnd().GetVal() {

53 freqVal = val

54 numLrn = 0

55 }

56 if ValEquals(freqVal, val) {

57 numLrn++

58 }

59 }

60 if numLrn > l.numNodes/2 {

61 l.emmitLearn(freqVal)

62 }

63 return &emptypb.Empty{}, nil

64 }

65

66 // Add the value to the received value map, if it is the

highest round number received from that node↪→

67 func (l *Learner) addValue(from int64, val *proto.Value) {

68 oldVal, ok := l.recvLrn[from]

69 if !ok {

70 l.recvLrn[from] = val

71 return

72 }

73 if val.GetRnd().GetVal() > oldVal.GetRnd().GetVal() {

74 l.recvLrn[from] = val

75 }

76 }

77

78 func (l *Learner) Subscribe(f func(val string)) {

77

79 l.learnSubscribe = append(l.learnSubscribe, f)

80 }

81

82 func (l *Learner) emmitLearn(val *proto.Value) {

83 for _, f := range l.learnSubscribe {

84 f(val.GetVal())

85 }

86 }

Listing A.9: Implementation of the Learner in the Paxos Algorithm.

A.5 Multipaxos

1 package multipaxos

2

3 import (

4 "gomc/examples/multipaxos/proto"

5 "net"

6

7 "google.golang.org/grpc"

8)

9

10 type server struct {

11 srv *grpc.Server

12 conns []*grpc.ClientConn

13 }

14

15 func (s *server) StartServer(mp *MultiPaxos, lis net.Listener,

srvOpts ...grpc.ServerOption) error {↪→

16 s.srv = grpc.NewServer(srvOpts...)

17 proto.RegisterProposerServer(s.srv, mp)

18 proto.RegisterAcceptorServer(s.srv, mp)

19 proto.RegisterLearnerServer(s.srv, mp)

20 return s.srv.Serve(lis)

21 }

22

23 func (s *server) Stop() {

24 s.srv.Stop()

25 for _, c := range s.conns {

26 c.Close()

27 }

28 }

29

30 func (s *server) DialNodes(addrMap map[int64]string, dialOpts

...grpc.DialOption) (map[int64]*multipaxosClient, error) {↪→

78

31 nodes := make(map[int64]*multipaxosClient)

32 for id, addr := range addrMap {

33 conn, err := grpc.Dial(addr, dialOpts...)

34 if err != nil {

35 return nil, err

36 }

37 nodes[id] = NewMultipaxosClient(conn)

38 }

39 return nodes, nil

40 }

Listing A.10: Implementation of the Multipaxos Algorithm. The type imple-
ments the optimized variant of the paxos algorithm presented by Lamport [14].
It decides on one value for each time slot. Phase 1 is run once every time a new
leader is elected.

1 package multipaxos

2

3 import (

4 "context"

5 "gomc/examples/multipaxos/proto"

6 "sync"

7 "time"

8

9 "github.com/golang/protobuf/ptypes/empty"

10)

11

12 type proposer struct {

13 proto.UnimplementedProposerServer

14

15 sync.Mutex

16

17 nodeId int64

18 qourum int

19

20 Adu int64

21 nextSlot int64

22

23 crnd int64

24 cval *proto.Value

25

26 completedPhase1 bool

27

28 leader *LeaderElector

29

79

30 promises map[int64]*proto.PromiseRequest

31

32 pendingProposals []string

33

34 nodes map[int64]*multipaxosClient

35 waitForSend func(num int)

36 wait func(time.Duration)

37 }

38

39 func newProposer(id int64, waitForSend func(num int), l

*LeaderElector) *proposer {↪→

40 p := &proposer{

41 nodeId: id,

42

43 crnd: id,

44

45 leader: l,

46

47 pendingProposals: make([]string, 0),

48

49 promises: make(map[int64]*proto.PromiseRequest),

50 waitForSend: waitForSend,

51 }

52 l.LeaderSubscribe(p.newLeader)

53 return p

54 }

55

56 func (p *proposer) performPhaseOne() {

57 p.nextSlot = p.Adu

58 msg := &proto.PrepareRequest{

59 Crnd: p.crnd,

60 Slot: p.Adu,

61 From: p.nodeId,

62 }

63

64 for _, n := range p.nodes {

65 go n.Prepare(context.Background(), msg)

66 }

67 p.waitForSend(len(p.nodes))

68 }

69

70 func (p *proposer) Propose(_ context.Context, prop

*proto.ProposeRequest) (*empty.Empty, error) {↪→

71 p.Lock()

72 defer p.Unlock()

73

80

74 if !p.leader.IsLeader() {

75 return &empty.Empty{}, nil

76 }

77

78 if !p.completedPhase1 {

79 // Store this value for when phase 1 is completed

80 p.pendingProposals = append(p.pendingProposals,

prop.GetVal())↪→

81 return &empty.Empty{}, nil

82 }

83

84 p.nextSlot++

85 // create accept message

86 acc := &proto.AcceptRequest{

87 Val: &proto.Value{

88 Val: prop.GetVal(),

89 Rnd: p.crnd,

90 },

91 Slot: p.nextSlot,

92 From: p.nodeId,

93 }

94

95 // Send accept message

96 for _, n := range p.nodes {

97 go n.Accept(context.Background(), acc)

98 }

99 p.waitForSend(len(p.nodes))

100

101 return &empty.Empty{}, nil

102 }

103

104 func (p *proposer) Promise(_ context.Context, prm

*proto.PromiseRequest) (*empty.Empty, error) {↪→

105 p.Lock()

106 defer p.Unlock()

107

108 // Wrong round: ignore

109 if prm.GetRnd() != p.crnd {

110 return &empty.Empty{}, nil

111 }

112

113 // We have already received a promise from this node: ignore

114 if _, ok := p.promises[prm.GetFrom()]; ok {

115 return &empty.Empty{}, nil

116 }

117

81

118 // We have already completed phase1, so we just ignore this

message↪→

119 if p.completedPhase1 {

120 return &empty.Empty{}, nil

121 }

122

123 p.promises[prm.GetFrom()] = prm

124

125 // Still have not reached qourum size

126 if len(p.promises) < p.qourum {

127 return &empty.Empty{}, nil

128 }

129

130 accepts := p.getValues()

131

132 // Accept messages are added to the front of the queue

133 for _, val := range accepts {

134 p.nextSlot++

135 // create accept message

136 acc := &proto.AcceptRequest{

137 Val: &proto.Value{

138 Val: val,

139 Rnd: p.crnd,

140 },

141 Slot: p.nextSlot,

142 From: p.nodeId,

143 }

144

145 // Send accept message

146 for _, n := range p.nodes {

147 go n.Accept(context.Background(), acc)

148 }

149 p.waitForSend(len(p.nodes))

150 }

151

152 for _, val := range p.pendingProposals {

153 p.nextSlot++

154 // create accept message

155 acc := &proto.AcceptRequest{

156 Val: &proto.Value{

157 Val: val,

158 Rnd: p.crnd,

159 },

160 Slot: p.nextSlot,

161 From: p.nodeId,

162 }

82

163

164 // Send accept message

165 for _, n := range p.nodes {

166 go n.Accept(context.Background(), acc)

167 }

168 p.waitForSend(len(p.nodes))

169 }

170

171 p.pendingProposals = make([]string, 0)

172

173 p.completedPhase1 = true

174 p.promises = make(map[int64]*proto.PromiseRequest)

175

176 return &empty.Empty{}, nil

177 }

178

179 func (p *proposer) getValues() []string {

180 slots := make(map[int64]*proto.PromiseSlot)

181 highestSlot := p.Adu

182 for _, prm := range p.promises {

183 for _, slot := range prm.Slots {

184 if slot.GetSlot() > highestSlot {

185 highestSlot = slot.GetSlot()

186 }

187

188 oldSlot, ok := slots[slot.GetSlot()]

189 if !ok {

190 slots[slot.GetSlot()] = oldSlot

191 continue

192 }

193

194 if slot.GetVal().GetRnd() >

oldSlot.GetVal().GetRnd() {↪→

195 slots[slot.GetSlot()] = slot

196 }

197 }

198 }

199

200 if len(slots) == 0 {

201 return []string{}

202 }

203

204 length := highestSlot - p.Adu

205 vals := make([]string, length)

206 for i := 0; i < int(length); i++ {

207 slot := slots[p.Adu+int64(i)]

83

208 vals[i] = slot.GetVal().GetVal()

209 }

210 return vals

211 }

212

213 func (p *proposer) ProposeVal(val string) {

214 // Send value to leader

215 go p.nodes[p.leader.Leader()].Propose(

216 context.Background(),

217 &proto.ProposeRequest{Val: val},

218)

219 p.waitForSend(1)

220 }

221

222 func (p *proposer) newLeader(newLeader int64) {

223 p.Lock()

224 defer p.Unlock()

225

226 p.completedPhase1 = false

227 p.IncrementCrnd()

228

229 if p.leader.IsLeader() {

230 p.performPhaseOne()

231 }

232 }

233

234 func (p *proposer) IncrementCrnd() {

235 p.crnd += int64(len(p.nodes))

236 }

237

238 func (p *proposer) IncrementAdu() {

239 p.Adu++

240 }

Listing A.11: Implementation of the Proposer in the Multipaxos Algorithm.

1 package multipaxos

2

3 import (

4 "context"

5 "gomc/examples/multipaxos/proto"

6 "sync"

7

8 "github.com/golang/protobuf/ptypes/empty"

9)

84

10

11 type acceptor struct {

12 proto.UnimplementedAcceptorServer

13

14 sync.Mutex

15

16 nodeId int64

17

18 rnd int64

19

20 slots map[int64]*proto.PromiseSlot

21

22 nodes map[int64]*multipaxosClient

23 waitForSend func(num int)

24 }

25

26 func newAcceptor(id int64, waitForSend func(num int)) *acceptor

{↪→

27 return &acceptor{

28 nodeId: id,

29

30 slots: make(map[int64]*proto.PromiseSlot),

31 waitForSend: waitForSend,

32 }

33 }

34

35 func (a *acceptor) Prepare(_ context.Context, prp

*proto.PrepareRequest) (*empty.Empty, error) {↪→

36 a.Lock()

37 defer a.Unlock()

38

39 if prp.GetCrnd() <= a.rnd {

40 return &empty.Empty{}, nil

41 }

42

43 a.rnd = prp.GetCrnd()

44

45 slots := make([]*proto.PromiseSlot, 0)

46 for _, slot := range a.slots {

47 if slot.Slot >= prp.Slot {

48 slots = append(slots, slot)

49 }

50 }

51

52 go a.nodes[prp.GetFrom()].Promise(

53 context.Background(),

85

54 &proto.PromiseRequest{

55 Rnd: a.rnd,

56 Slots: slots,

57 From: a.nodeId,

58 },

59)

60 a.waitForSend(1)

61

62 return &empty.Empty{}, nil

63 }

64

65 func (a *acceptor) Accept(_ context.Context, acc

*proto.AcceptRequest) (*empty.Empty, error) {↪→

66 a.Lock()

67 defer a.Unlock()

68

69 if acc.GetVal().GetRnd() < a.rnd {

70 return &empty.Empty{}, nil

71 }

72

73 a.rnd = acc.GetVal().GetRnd()

74 a.slots[acc.GetSlot()] = &proto.PromiseSlot{

75 Slot: acc.GetSlot(),

76 Val: acc.GetVal(),

77 }

78

79 lrn := &proto.LearnRequest{

80 Val: acc.GetVal(),

81 Slot: acc.GetSlot(),

82 From: a.nodeId,

83 }

84

85 for _, n := range a.nodes {

86 go n.Learn(context.Background(), lrn)

87 }

88 a.waitForSend(len(a.nodes))

89

90 return &empty.Empty{}, nil

91 }

Listing A.12: Implementation of the Acceptor in the Multipaxos Algorithm.

1 package multipaxos

2

3 import (

86

4 "context"

5 "gomc/examples/multipaxos/proto"

6 "sync"

7

8 "github.com/golang/protobuf/ptypes/empty"

9)

10

11 type learntSlots struct {

12 learnt bool

13 rnd int64

14 votes map[int64]*proto.Value

15 }

16

17 type learner struct {

18 proto.UnimplementedLearnerServer

19

20 sync.Mutex

21

22 nodeId int64

23

24 learns map[int64]*learntSlots

25

26 learnSubscribe []func(string, int64)

27

28 qourum int

29 }

30

31 func newLearner(id int64) *learner {

32 return &learner{

33 nodeId: id,

34

35 learns: make(map[int64]*learntSlots),

36 }

37 }

38

39 func (l *learner) Learn(_ context.Context, lrn

*proto.LearnRequest) (*empty.Empty, error) {↪→

40 l.Lock()

41 defer l.Unlock()

42

43 slotId := lrn.GetSlot()

44 slot, ok := l.learns[slotId]

45 if !ok {

46 slot = &learntSlots{}

47 l.learns[slotId] = slot

48 }

87

49

50 if slot.learnt {

51 return &empty.Empty{}, nil

52 }

53

54 // If the round of the stored slot is higher than the round

of the received slot.↪→

55 if lrn.GetVal().GetRnd() < slot.rnd {

56 return &empty.Empty{}, nil

57 }

58

59 // The new learn is larger then the current. Set the

current to the new and reset votes↪→

60 if lrn.GetVal().GetRnd() > slot.rnd {

61 slot.rnd = lrn.GetVal().GetRnd()

62 slot.votes = make(map[int64]*proto.Value)

63 }

64

65 // The learn is for the current round. Add it to the slot

66 if lrn.GetVal().GetRnd() == slot.rnd {

67 // We have already received a learn from this node for

this slot and this round.↪→

68 // Ignore this one

69 if _, ok := slot.votes[lrn.GetFrom()]; ok {

70 return &empty.Empty{}, nil

71 }

72

73 slot.votes[lrn.GetFrom()] = lrn.GetVal()

74 if len(slot.votes) >= l.qourum {

75 slot.learnt = true

76 l.emmitLearn(lrn.GetVal(), slotId)

77 }

78 }

79 return &empty.Empty{}, nil

80 }

81

82 func (l *learner) emmitLearn(val *proto.Value, slotId int64) {

83 for _, callback := range l.learnSubscribe {

84 callback(val.GetVal(), slotId)

85 }

86 }

87

88 func (l *learner) LearnSubscribe(callback func(string, int64)) {

89 l.learnSubscribe = append(l.learnSubscribe, callback)

90 }

88

Listing A.13: Implementation of the Learner in the Multipaxos Algorithm.

1 package multipaxos

2

3 type LeaderElector struct {

4 id int64

5 correct map[int64]bool

6 leader int64

7

8 leaderSub []func(int64)

9

10 stopped bool

11 }

12

13 func NewLeaderElector(id int64, addr map[int64]string)

*LeaderElector {↪→

14 var leader int64

15 correct := make(map[int64]bool)

16 for id := range addr {

17 correct[id] = true

18 if id > leader {

19 leader = id

20 }

21 }

22 return &LeaderElector{

23 id: id,

24 correct: correct,

25 leader: leader,

26 }

27 }

28

29 func (l *LeaderElector) NodeCrash(id int, _ bool) {

30 if l.stopped {

31 return

32 }

33

34 l.correct[int64(id)] = false

35

36 if int64(id) == l.leader {

37 leader := l.nextLeader()

38 l.leader = leader

39 for _, f := range l.leaderSub {

40 f(leader)

41 }

89

42 }

43 }

44

45 func (l *LeaderElector) nextLeader() int64 {

46 var leader int64

47 for id, ok := range l.correct {

48 if ok {

49 if id > leader {

50 leader = id

51 }

52 }

53 }

54 return leader

55 }

56

57 // Subscribe to leader change calls

58 func (l *LeaderElector) LeaderSubscribe(f func(id int64)) {

59 l.leaderSub = append(l.leaderSub, f)

60 }

61

62 func (l *LeaderElector) IsLeader() bool {

63 return l.leader == l.id

64 }

65

66 func (l *LeaderElector) Leader() int64 {

67 return l.leader

68 }

Listing A.14: Implementation of the Leader Elector in the Multipaxos Algo-
rithm.

90

B Configuration Details

B.1 Configuring the Simulation

B.1.1 Parameters for PrepareSimulation

• StateManagerOption: Export the discovered state space after simulation.
The default value is to not export the state.

– WithTreeStateManager: Configure a TreeStateManager to be used
during the simulation. The option must be configured with a function
that collects the local state of a node and a function that checks the
equality of two states.

– WithStateManager: Configure a custom State Manager to be used
during the simulation.

B.1.2 Simulator Option

• schedulerOption: Select the scheduler to be used during the simulation.
The default value is a PrefixScheduler. The functions that can be used
to provide this option are:

– PrefixScheduler: A systematic scheduler that searches the entire
state space.

– RandomWalkScheduler: A randomized scheduler that randomly se-
lects the next event from the available events. Does not guarantee to
search all states, but samples more varied runs compared to a prefix
scheduler. Is configured with a seed.

– ReplayScheduler: A scheduler that replays a specific run. Does
not explore the state space, but can be used to retry a specific run.
Returns an error if it is unable to replay the run.

– WithScheduler: An option that can be used to provide a different
implementation of the scheduler.

• ignoreErrorOption: If true will ignore errors while the simulation runs.
A summary of all collected errors will be provided at the end. If false the
simulation will stop when an error is encountered. Default value is false.

– IgnoreError: Configure the simulation to ignore errors during the
simulation.

• ignorePanicOption: If true will ignore panics that occurs when executing
an event on a node. If false the simulation will recover from the panic and
return it as an error. The simulation may continue or return depending
on the value of the ignoreErrorOption. Default value is false.

– IgnorePanic: Configure the simulation to ignore panics during the
simulation.

91

• maxRunsOption: Maximum number of runs to be simulated. The maxi-
mum number of runs to be simulated is an important factor in the total
simulation time, but only simulating a limited amount of runs will impact
the guarantees of the simulation. Default value is 1000.

– MaxRuns: Set the maximum number of runs to the provided value.

• maxDepthOption: Maximum depth of the runs that are simulated. Default
value is 1000.

– MaxDepth: Set the maximum depth of runs to the provided value.

• numConcurrentOption: Maximum number of runs that are concurrently
simulated. Default value is the value of the GOMAXPROCS environmental
variable.

– NumConcurrent: Set the maximum number of concurrent runs to the
provided value.

B.1.3 Parameters for Simulation.Run

• InitNodeOption: Provide the function used to create the nodes that are
used in the simulation. The function should initialize the Event Managers
used during the run. It returns a map with (node id, node) key-value
pairs.

– InitNodeFunc: Provide a function that initializes all nodes and re-
turns the node map.

– InitSingleNode: The Provide a slice of the node ids that will be
created and a function that creates a single node with a provided
node id. The option uses the provided function to create each of the
specified nodes and add it to the map.

• RequestOption: Specify the requests sent to the system. The requests
are used to start the simulation.

– WithRequests: Configure a list of requests that are sent to the system
during the simulation.

• CheckerOption: Set the Checker used to test the algorithm.

– WithPredicateChecker: Use a PredicateChecker to check the algo-
rithm. The function takes a set of properties defined as Go functions
of the type Predicate as parameters.

– WithChecker: use a custom checker to check the algorithm.

92

B.1.4 Run Options

• failureManagerOption: Select and configure the Failure Manager to be
used during simulation. Default value is PerfectFailureManager with
no crashes configured.

– WithPerfectFailureManager: Configure the simulation to use a Pe ⌋

rfectFailureManager. The function is configured with a crashFunc
specifying how the crash manifests on the node and a slice of node
ids of the nodes that will crash during the simulation.

– WithFailureManager: An option that can be used to provide a dif-
ferent implementation of the Failure Manager.

• stopOption: Function used to close a node after a run has been com-
pleted. The function should completely clean up a node after the simula-
tion. Should be configured to close network connections, stop goroutines
etc. The default value is an empty function.

– WithStopFunction: Set the function used to stop the nodes.

• exportOption: Export the discovered state space after simulation. The
default value is to not export the state.

– Export: Configure a list of io.Writers that that the state will be
exported to.

B.2 Configuring The Runner

B.2.1 Parameters for PrepareRunner

• InitNodeOption: Provide the function used to create the nodes that are
used in the simulation. The function should initialize the Event Managers
used during the run. It returns a map with (node id, node) key-value
pairs.

– InitNodeFunc: Provide a function that initializes all nodes and re-
turns the node map.

– InitSingleNode: The Provide a slice of the node ids that will be
created and a function that creates a single node with a provided
node id. The option uses the provided function to create each of the
specified nodes and add it to the map.

• GetStateOption: Configure a function that is used to to collect the state
of a local node. Similar to the function used to configure the TreeStat ⌋

eManager.

– WithStateFunction: Configure a function used to collect the state
of a node.

93

B.2.2 Runner Options

• stopOption: Function used to close a node after a run has been com-
pleted. The function should completely clean up a node after the simula-
tion. Should be configured to close network connections, stop goroutines
etc. The default value is an empty function.

– WithStopFunction: Set the function used to stop the nodes.

• eventChanBufferOption: Specify the size of the channel used to store
pending events on each node. Default value is 100.

– EventChanBufferSize: Set the the event channel buffer size

• recordChanBufferOption: Specify the size of the channel used to send
records. Default value is 100.

– RecordChanSize: Set the the record channel buffer size.

94

C Prefix Scheduler

The prefix scheduler works by maintaining a set of unexplored prefixes. A prefix
is some sequence of the first n events of a run, where n can be any number
between 0 and the total length of the run. In each run the scheduler selects one
of the unexplored prefixes and schedules the first n events of the run so that it
matches the prefix. Then, for all the pending events it creates new sequences
with the pending event appended to the current run. These are discovered
prefixes, that the scheduler knows are possible to schedule, but that it has not
explored yet. It selects one of the prefixes to continue to explore in this run, and
adds the remaining to the set of unexplored prefixes. If there are no pending
events then the run is over. If there are no more unexplored prefixes then the
entire state space has been visited. The first run uses an empty prefix and the
scheduler immediately starts adding new unexplored prefixes.

Consider an example where there are two pending events, e1 and e2. We
name the set of unexplored prefixes as U . The simulation start and the first run
is therefore empty. The scheduler creates two prefixes, P1 = e1 and P2 = e2,
it selects one of them to be explored in this run, say P1, and adds the other
to U . When e1 is executed the event e3 is added to the pending events. The
pending events are now e2 and e3. e2 is a pending event since it has not been
executed in this run. The scheduler now creates two new prefixes: P3 = e1e2
and P4 = e1e3. It selects P3 to be explored in this run, selecting the event e2,
and adds P4 to U . Now there is only one pending event, e3, which is added to
a new prefix, P5 = e1e2e3, which is then executed. There are no more pending
events and the run is therefore completed. For the next run the scheduler selects
one of the prefixes from U , say P4. It follows the prefix, selecting e1 for the first
event and e3 for the second. There is only one pending event, e2, which is used
to create a new prefix P6 = e1e3e2, which is the second completed run. For the
third run it selects P2 from U and using the same process it explores the prefix
and schedules the final run P7 = e2e1e3.

95

D Test Configuration

D.1 Simulation Time

1 package main

2

3 import (

4 "gomc"

5 "gomc/eventManager"

6 "testing"

7

8 "golang.org/x/exp/slices"

9)

10

11 func BenchmarkConsensus(b *testing.B) {

12 sim := gomc.PrepareSimulation(

13 gomc.WithTreeStateManager(

14 func(node *HierarchicalConsensus[int]) state {

15 return state{

16 proposed: node.ProposedVal,

17 decided: slices.Clone(node.DecidedVal),

18 }

19 },

20 func(a, b state) bool {

21 if a.proposed != b.proposed {

22 return false

23 }

24 return slices.Equal(a.decided, b.decided)

25 },

26),

27 gomc.PrefixScheduler(),

28)

29

30 nodeIds := []int{1, 2, 3}

31 b.ResetTimer()

32 for i := 0; i < b.N; i++ {

33 sim.Run(

34 gomc.InitSingleNode(nodeIds,

35 func(id int, sp

eventManager.SimulationParameters)

*HierarchicalConsensus[int] {

↪→

↪→

36 send := eventManager.NewSender(sp)

37 node := NewHierarchicalConsensus[int](

38 id,

39 nodeIds,

40 send.SendFunc(id),

96

41)

42 sp.CrashSubscribe(id, node.Crash)

43 return node

44 },

45),

46 gomc.WithRequests(

47 gomc.NewRequest(1, "Propose", Value[int]{1}),

48 gomc.NewRequest(2, "Propose", Value[int]{2}),

49 gomc.NewRequest(3, "Propose", Value[int]{3}),

50),

51 gomc.WithPredicateChecker(predicates...),

52 gomc.WithPerfectFailureManager(

53 func(t *HierarchicalConsensus[int]) { t.crashed

= true },↪→

54 2,

55),

56)

57 }

58 }

Listing D.1: Configuration of the simulation of the Hierarchical Consensus al-
gorithm using the Sender Event Manager.

1 package main

2

3 import (

4 "gomc"

5 "testing"

6)

7

8 func BenchmarkConsensus(b *testing.B) {

9 sim := gomc.PrepareSimulation(

10 gomc.WithTreeStateManager(getState, cmpState),

11 gomc.PrefixScheduler(),

12)

13

14 b.ResetTimer()

15 for i := 0; i < b.N; i++ {

16 sim.Run(

17 gomc.InitNodeFunc(

18 createNodes(addrMap),

19),

20 gomc.WithRequests(

21 gomc.NewRequest(1, "Propose", "1"),

22 gomc.NewRequest(2, "Propose", "2"),

97

23 gomc.NewRequest(3, "Propose", "3"),

24),

25 gomc.WithPredicateChecker(predicates...),

26 gomc.WithPerfectFailureManager(

27 func(t *GrpcConsensus) { t.Stop() }, 2,

28),

29 gomc.WithStopFunctionSimulator(func(t

*GrpcConsensus) { t.Stop() }),↪→

30)

31 }

32 }

Listing D.2: Configuration of the simulation of the Hierarchical Consensus al-
gorithm using gRPC.

1 package main

2

3 import (

4 "gomc"

5 "gomc/eventManager"

6 "testing"

7

8 "golang.org/x/exp/maps"

9 "golang.org/x/exp/slices"

10)

11

12 func BenchmarkRrb(b *testing.B) {

13 nodeIds := []int{0, 1, 2}

14 crashedNodes := []int{1}

15

16 sim := gomc.PrepareSimulation(

17 gomc.WithTreeStateManager(

18 func(node *Rrb) State {

19 return State{

20 delivered: maps.Clone(node.delivered),

21 sent: maps.Clone(node.sent),

22 deliveredSlice:

slices.Clone(node.deliveredSlice),↪→

23 }

24 },

25 func(s1, s2 State) bool {

26 if !maps.Equal(s1.delivered, s2.delivered) {

27 return false

28 }

98

29 if !slices.Equal(s1.deliveredSlice,

s2.deliveredSlice) {↪→

30 return false

31 }

32 return maps.Equal(s1.sent, s2.sent)

33 },

34),

35 gomc.PrefixScheduler(),

36)

37

38 b.ResetTimer()

39 for i := 0; i < b.N; i++ {

40 sim.Run(

41 gomc.InitNodeFunc(

42 func(sp eventManager.SimulationParameters)

map[int]*Rrb {↪→

43 send := eventManager.NewSender(sp)

44 nodes := map[int]*Rrb{}

45 for _, id := range nodeIds {

46 nodes[id] = NewRrb(

47 id,

48 nodeIds,

49 send.SendFunc(id),

50)

51 }

52 return nodes

53 },

54),

55 gomc.WithRequests(

56 gomc.NewRequest(0, "Broadcast", "Test Message"),

57),

58 gomc.WithPredicateChecker(predicates...),

59 gomc.WithPerfectFailureManager(

60 func(t *Rrb) { t.crashed = true },

61 crashedNodes...,

62),

63)

64 }

65 }

Listing D.3: Configuration of the simulation of the Eager Reliable Broadcast
algorithm.

1 package main

2

99

3 import (

4 "gomc"

5 "gomc/eventManager"

6 "testing"

7

8 "golang.org/x/exp/slices"

9)

10

11 func BenchmarkOnrr(b *testing.B) {

12

13 nodeIds := []int{1, 2, 3}

14

15 sim := gomc.PrepareSimulation(

16 gomc.WithTreeStateManager(

17 func(node *onrr) State {

18 reads := []int{}

19 reads = append(reads, node.possibleReads...)

20

21 // If there has been a read indication store

it. Otherwise ignore it↪→

22 read := 0

23 currentRead := false

24 select {

25 case read = <-node.ReadIndicator:

26 currentRead = true

27 default:

28 }

29

30 return State{

31 ongoingRead: node.ongoingRead,

32 ongoingWrite: node.ongoingWrite,

33 possibleReads: reads,

34 read: read,

35 currentRead: currentRead,

36 }

37 },

38 func(a, b State) bool {

39 if a.ongoingRead != b.ongoingRead {

40 return false

41 }

42 if a.ongoingWrite != b.ongoingWrite {

43 return false

44 }

45 if a.currentRead != b.currentRead {

46 return false

47 }

100

48 if a.read != b.read {

49 return false

50 }

51 return slices.Equal(a.possibleReads,

b.possibleReads)↪→

52 },

53),

54 gomc.RandomWalkScheduler(1),

55 gomc.MaxRuns(10000),

56)

57

58 b.ResetTimer()

59 for i := 0; i < b.N; i++ {

60 sim.Run(

61 gomc.InitNodeFunc(

62 func(sp eventManager.SimulationParameters)

map[int]*onrr {↪→

63 send := eventManager.NewSender(sp)

64

65 nodes := make(map[int]*onrr)

66 for _, id := range nodeIds {

67 nodes[id] = NewOnrr(id,

send.SendFunc(id), nodeIds)↪→

68 }

69 go func() {

70 for {

71 <-nodes[1].WriteIndicator

72 }

73 }()

74 return nodes

75 },

76),

77 gomc.WithRequests(

78 gomc.NewRequest(1, "Write", 2),

79 gomc.NewRequest(2, "Read"),

80 gomc.NewRequest(3, "Read"),

81),

82 gomc.WithPredicateChecker(predicates...),

83)

84 }

85 }

Listing D.4: Configuration of the simulation of the Majority Voting Regular
Register algorithm.

101

1 package paxos

2

3 import (

4 "context"

5 "gomc/eventManager"

6 "net"

7 "testing"

8

9 "gomc"

10

11 "google.golang.org/grpc"

12 "google.golang.org/grpc/credentials/insecure"

13 "google.golang.org/grpc/test/bufconn"

14)

15

16 func BenchmarkPaxos(b *testing.B) {

17 addresses := map[int64]string{

18 1: ":1",

19 2: ":2",

20 3: ":3",

21 }

22

23 sim := gomc.PrepareSimulation(

24 gomc.WithTreeStateManager(

25 func(t *Server) State {

26 return State{

27 proposed: t.Proposal,

28 decided: t.Decided,

29 }

30 },

31 func(s1, s2 State) bool {

32 return s1 == s2

33 },

34),

35 gomc.RandomWalkScheduler(1),

36)

37

38 addrToIdMap := map[string]int{}

39 for id, addr := range addresses {

40 addrToIdMap[addr] = int(id)

41 }

42

43 b.ResetTimer()

44 for i := 0; i < b.N; i++ {

45 sim.Run(

102

46 gomc.InitNodeFunc(func(sp

eventManager.SimulationParameters) map[int]*Server {↪→

47 lisMap := map[string]*bufconn.Listener{}

48 for _, addr := range addresses {

49 lisMap[addr] = bufconn.Listen(bufSize)

50 }

51 gem :=

eventManager.NewGrpcEventManager(addrToIdMap, sp)↪→

52

53 nodes := make(map[int]*Server)

54 for id, addr := range addresses {

55 srv, err := NewServer(id, addresses,

gem.WaitForSend(int(id)))↪→

56 if err != nil {

57 b.Errorf("Error while starting

simulation: %v", err)↪→

58 }

59 go srv.StartServer(lisMap[addr])

60 sp.CrashSubscribe(int(id), srv.NodeCrash)

61 nodes[int(id)] = srv

62 }

63

64 for id, node := range nodes {

65 node.DialNodes(

66 grpc.WithUnaryInterceptor(gem.UnaryClie ⌋

ntControllerInterceptor(id)),↪→

67 grpc.WithContextDialer(

68 func(ctx context.Context, s string)

(net.Conn, error) {↪→

69 return

lisMap[s].DialContext(ctx)↪→

70 },

71),

72 grpc.WithBlock(),

73 grpc.WithTransportCredentials(insecure. ⌋

NewCredentials()),↪→

74)

75 }

76 return nodes

77 }),

78 gomc.WithRequests(

79 gomc.NewRequest(1, "Propose", "1"),

80 gomc.NewRequest(2, "Propose", "2"),

81 gomc.NewRequest(3, "Propose", "3"),

82),

83 gomc.WithPredicateChecker(predicates...),

103

84 gomc.WithPerfectFailureManager(func(t *Server) {

t.Stop() }, 1),↪→

85 gomc.WithStopFunctionSimulator(func(t *Server) {

t.Stop() }),↪→

86)

87 }

88 }

Listing D.5: Configuration of the simulation of the Paxos algorithm.

1 package multipaxos

2

3 import (

4 "gomc"

5 "testing"

6)

7

8 var nodes = map[int64]string{

9 1: ":1",

10 2: ":2",

11 3: ":3",

12 }

13

14 func BenchmarkMultipaxos(b *testing.B) {

15 sim := gomc.PrepareSimulation(

16 gomc.WithTreeStateManager(getState, cmpState),

17 gomc.PrefixScheduler(),

18)

19

20 b.ResetTimer()

21 for i := 0; i < b.N; i++ {

22 sim.Run(

23 gomc.InitNodeFunc(

24 InitNodes(nodes),

25),

26 gomc.WithRequests(

27 gomc.NewRequest(1, "ProposeVal", "1"),

28 gomc.NewRequest(2, "ProposeVal", "2"),

29 gomc.NewRequest(3, "ProposeVal", "3"),

30),

31 gomc.WithPredicateChecker(predicates...),

32 gomc.WithPerfectFailureManager(

33 func(t *MultiPaxos) { t.Stop() }, 2,

34),

104

35 gomc.WithStopFunctionSimulator(func(t *MultiPaxos)

{ t.Stop() }),↪→

36)

37 }

38 }

Listing D.6: Configuration of the simulation of the Multipaoxs algorithm.

D.2 Finding Bugs

1 package main

2

3 import (

4 "context"

5 "net"

6 "testing"

7 "time"

8

9 "gomc"

10 "gomc/checking"

11 "gomc/eventManager"

12 "gomc/request"

13

14 "golang.org/x/exp/slices"

15 "google.golang.org/grpc"

16 "google.golang.org/grpc/credentials/insecure"

17 "google.golang.org/grpc/test/bufconn"

18)

19

20 var predicates = []checking.Predicate[state]{

21 checking.Eventually(

22 // C1: Termination

23 func(s checking.State[state]) bool {

24 return checking.ForAllNodes(func(s state) bool {

25 return len(s.decided) > 0

26 }, s, true)

27 },

28),

29 func(s checking.State[state]) bool {

30 // C2: Validity

31 proposed := make(map[string]bool)

32 for _, node := range s.LocalStates {

33 proposed[node.proposed] = true

34 }

35 return checking.ForAllNodes(func(s state) bool {

105

36 if len(s.decided) < 1 {

37 // The process has not decided a value yet

38 return true

39 }

40 return proposed[s.decided[0]]

41 }, s, false)

42 },

43 func(s checking.State[state]) bool {

44 // C3: Integrity

45 return checking.ForAllNodes(func(s state) bool { return

len(s.decided) < 2 }, s, false)↪→

46 },

47 func(s checking.State[state]) bool {

48 // C4: Agreement

49 decided := make(map[string]bool)

50 checking.ForAllNodes(func(s state) bool {

51 for _, val := range s.decided {

52 decided[val] = true

53 }

54 return true

55 }, s, true)

56 return len(decided) <= 1

57 },

58 }

59

60 func createNodes(addrMap map[int32]string) func(sp

eventManager.SimulationParameters) map[int]*GrpcConsensus {↪→

61 var addrToIdMap = map[string]int{}

62 for id, addr := range addrMap {

63 addrToIdMap[addr] = int(id)

64 }

65 return func(sp eventManager.SimulationParameters)

map[int]*GrpcConsensus {↪→

66 gem := eventManager.NewGrpcEventManager(addrToIdMap, sp)

67 lisMap := map[string]*bufconn.Listener{}

68 for _, addr := range addrMap {

69 lisMap[addr] = bufconn.Listen(bufSize)

70 }

71

72 nodes := map[int]*GrpcConsensus{}

73 for id, addr := range addrMap {

74 gc := NewGrpcConsensus(id, lisMap[addr],

gem.WaitForSend(int(id)))↪→

75 sp.CrashSubscribe(int(id), gc.Crash)

76 nodes[int(id)] = gc

77 }

106

78

79 for id, node := range nodes {

80 node.DialServers(

81 addrMap,

82 grpc.WithContextDialer(

83 func(ctx context.Context, s string)

(net.Conn, error) {↪→

84 return lisMap[s].DialContext(ctx)

85 },

86),

87 grpc.WithBlock(),

88 grpc.WithTransportCredentials(insecure.NewCrede ⌋

ntials()),↪→

89 grpc.WithUnaryInterceptor(gem.UnaryClientContro ⌋

llerInterceptor(int(id))),↪→

90)

91 }

92 return nodes

93 }

94 }

95

96 func getState(node *GrpcConsensus) state {

97 return state{

98 proposed: node.ProposedVal,

99 decided: slices.Clone(node.DecidedVal),

100 }

101 }

102

103 func cmpState(a, b state) bool {

104 if a.proposed != b.proposed {

105 return false

106 }

107 return slices.Equal(a.decided, b.decided)

108 }

109

110 var simulations = []struct {

111 nodes map[int32]string

112 crashedNodes []int

113 }{

114 {

115 map[int32]string{

116 1: ":1",

117 2: ":2",

118 3: ":3",

119 },

120 []int{},

107

121 },

122 {

123 map[int32]string{

124 1: ":1",

125 2: ":2",

126 3: ":3",

127 },

128 []int{1},

129 },

130 {

131 map[int32]string{

132 1: ":1",

133 2: ":2",

134 3: ":3",

135 4: ":4",

136 5: ":7",

137 6: ":6",

138 7: "127:0:0:1",

139 },

140 []int{2},

141 },

142 }

143

144 func TestGrpcConsensusPrefix(t *testing.T) {

145 sim := gomc.PrepareSimulation(

146 gomc.WithTreeStateManager(getState, cmpState),

147 gomc.PrefixScheduler(),

148)

149

150 for i, test := range simulations {

151 requests := []request.Request{}

152 for id, addr := range test.nodes {

153 requests = append(requests,

gomc.NewRequest(int(id), "Propose", addr))↪→

154 }

155 start := time.Now()

156 resp := sim.Run(

157 gomc.InitNodeFunc(createNodes(test.nodes)),

158 gomc.WithRequests(requests...),

159 gomc.WithPredicateChecker(predicates...),

160 gomc.WithPerfectFailureManager(func(t

*GrpcConsensus) { t.Stop() }, test.crashedNodes...),↪→

161 gomc.WithStopFunctionSimulator(func(t

*GrpcConsensus) { t.Stop() }),↪→

162)

163 duration := time.Since(start)

108

164 _, desc := resp.Response()

165 t.Logf("Test %v - Duration %v: %v", i, duration, desc)

166 }

167 }

168

169 func TestGrpcConsensusRandom(t *testing.T) {

170 sim := gomc.PrepareSimulation(

171 gomc.WithTreeStateManager(getState, cmpState),

172 gomc.RandomWalkScheduler(0),

173)

174

175 for i, test := range simulations {

176 requests := []request.Request{}

177 for id, addr := range test.nodes {

178 requests = append(requests,

gomc.NewRequest(int(id), "Propose", addr))↪→

179 }

180 start := time.Now()

181 resp := sim.Run(

182 gomc.InitNodeFunc(createNodes(test.nodes)),

183 gomc.WithRequests(requests...),

184 gomc.WithPredicateChecker(predicates...),

185 gomc.WithPerfectFailureManager(func(t

*GrpcConsensus) { t.Stop() }, test.crashedNodes...),↪→

186 gomc.WithStopFunctionSimulator(func(t

*GrpcConsensus) { t.Stop() }),↪→

187)

188 duration := time.Since(start)

189 _, desc := resp.Response()

190 t.Logf("Test %v - Duration %v: %v", i, duration, desc)

191 }

192 }

Listing D.7: Configuration of the simulation of the Hierarchical Consensus algo-
rithm using gRPC. createNodes is a factory function that initializes the nodes
used for the simulation. The simulatios variable defines the scenarios used
for the tests. The TestGrpcConsensusPrefix test runs the simulation with a
prefix scheduler while the TestGrpcConsensusRandom test runs the simulation
with a random scheduler.

109

	Abstract
	Acknowledgements
	Introduction
	Background
	Common Abstractions
	Randomness in Distributed Systems

	Related Works
	Go-MC
	Main Loop - Linearizing the Execution
	Event Managers - Discovering and Executing Events
	Scheduler - Assigning Events to Time Slots
	State Manager - Collecting State From Nodes
	Checker - Verifying the Implementation
	Failure Manager - Crashing nodes and detecting failures
	Runner - Capturing a Live Run

	Implementation
	Configuring Go-MC
	Simulator
	Events
	Event Manager
	Sender
	gRPC Manager
	Sleep Manager

	Scheduler
	State Manager
	Failure manager
	Checker
	Runner

	Evaluation
	Simulation Time
	Finding Bugs

	Discussion
	Tests
	Experiences
	Future Work

	Conclusion
	Bibliography
	Distributed Algorithms
	Hierarchical Consensus
	Sender
	gRPC

	Eager Reliable Broadcast
	Majority Voting Regular Register
	Paxos
	Multipaxos

	Configuration Details
	Configuring the Simulation
	Parameters for PrepareSimulation
	Simulator Option
	Parameters for Simulation.Run
	Run Options

	Configuring The Runner
	Parameters for PrepareRunner
	Runner Options

	Prefix Scheduler
	Test Configuration
	Simulation Time
	Finding Bugs

