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Abstract

The need for improved precipitation estimations has prompted the explo-
ration of opportunistic alternatives such as utilizing commercial microwave
links (CML), particularly in areas with poor coverage of weather radars
and rain gauges. It has been known that rainfall-induced attenuation in
the microwave signal can be used to determine rainfall intensity accurately.
However, detecting other types of precipitation, such as dry snow, remains
a challenge. This study evaluates the feasibility of using wavelet transform
combined with a random forest classifier to identify rain and snow events.

Real-world signal attenuation data from telecommunication operators
and precipitation data from nearby disdrometers in Norway were used to
develop the classification methods proposed in this study. The rain classifier
was based on data from June 2022, while the snow classifier was evaluated
using data from December 2021. The operating frequency of the CMLs used
in this study was between 30-40 GHz. The algorithm for rain detection
performed similarly to other wet-dry classification methods, with a mean
Matthews correlation coefficient (MCC) of 36 % among 52 CMLs. The snow
detection algorithm, however, showed no correlation between signal attenu-
ation from 41 CMLs and dry snowfall.

In conclusion, the wavelet transforms effectively extract useful informa-
tion from signal attenuation for rain classification but are unsuitable for
detecting snow. Moreover, the study recommends testing commercial mi-
crowave links with higher operating frequencies than those used in this study,
combined with temperature data, to improve the possibilities of dry snow
detection.
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Sammendrag

Behovet for forbedret nedbørestimering har ført til utforskning av oppor-
tunistiske alternativer som bruk av kommersielle radiolinjer (CMLer), spe-
sielt i områder med dårlig dekning av værradarer og regnmålere. Det har
vært kjent at nedbørrelatert demping i radiolinjene kan brukes til å bestemme
nedbørintensiteten nøyaktig. Å oppdage andre typer nedbør, som tørr snø,
er imidlertid fortsatt en utfordring. Denne studien ser på muligheten for å
bruke wavelet-transformasjon kombinert med en random forest klassifiser-
ingsalgoritme for å identifisere regn- og snøhendelser.

Måledata fra signaldemping fra telekommunikasjonsoperatører og ned-
børsdata fra nærliggende disdrometre i Norge ble brukt til å utvikle klassi-
fiseringsmetodene som ble foreslått i denne studien. Metodene for å klas-
sifisere regn var basert på data samlet inn i juni 2022, mens metoden for
å klassifisere snø ble utviklet ved hjelp av data fra desember 2021. Drifts-
frekvensen til CML-ene som ble brukt i denne studien var mellom 30-40
GHz. Algoritmen for regndeteksjon viste tilsvarende resultater som andre
regnklassifiseringsmetoder, med en gjennomsnittlig Matthews korrelasjon-
skoeffisient (MCC) på 36 % blant 52 CMLer. Algoritmen for å oppdag snø
viste imidlertid ingen sammenheng mellom signaldempning fra 41 CMLer og
snøhendelser.

Det kan konkluderes med at wavelet-transformasjon effektivt kan ek-
strahere ut nyttig informasjon fra signaldempning for som kan brukes til
regnklassifisering, men viserer seg å være uegnet for å oppdage snø. I tillegg
anbefaler studien å teste radiolinjer med høyere driftsfrekvenser enn de som
ble brukt i denne studien, kombinert med temperaturdata, for å forbedre
mulighetene for å oppdage snøhendelser.
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1. Introduction and background

In this chapter, the scope and goal of this study, as well as the motivation, are described.
Then an introduction to the principles of how precipitation estimates with the use of
signal attenuation in commercial microwave links are possible, followed by a summary
of existing methods for wet-dry classification and a brief overview of previous research
done on the detection of other precipitation types, such as snow, sleet, and hail. Then
a short introduction to the mathematics behind wavelet transform is given, and lastly,
the theory needed to understand how the random forest classifier can be used to detect
precipitation.

1.1 Motivation

The global water cycle is a complex process that tracks water’s movement, distribution,
and storage. Water can be stored in many forms and can be found underground, in the
oceans, at the surface, and in the atmosphere (Dingman, 2015). Accurate and precise
precipitation measurements are therefore crucial as precipitation is the driving factor
for understanding the water cycle. Traditionally precipitation is measured with point
observation and weather radars. Although this gives a good estimation and precise
single-point observations, it is limited by the rain gauge networks and radar’s spatial
distribution. Many sparsely populated regions are therefore affected by sampling errors
(Sun et al., 2018). According to Kidd et al. (2017), if we let each rain gauge in the world
represent the actual rainfall within an area of a 5.0 km radius, just 1 % of the Earth’s
surface area is covered.

According to estimates from Hirabayashi et al. (2008) and Singh (2001), snowfall only
represents about 5-10 % of the world’s precipitations. However, in mountainous regions
and regions near the poles, snowfall is an essential contributor to the transportation
of latent energy and moisture. In mainland Norway, about 40 % of the runoff comes
from snow melting (Haddeland and Holmqvist, 2015), and snowfall makes up about
one-third of the total precipitation (NVE, 2019). Furthermore, about one-sixth of the
world’s population relies on either snow melting or glaciers as their primary source of
drinking water (Barnett et al., 2005).

1



2 CHAPTER 1. INTRODUCTION AND BACKGROUND

Retrieving accurate snow measurements and estimating snowfall across larger areas is
difficult due to several factors (Rasmussen et al., 2012). Firstly, snow is highly influenced
by turbulence near the surface, making it challenging to measure, which leads to under-
catch in windy conditions (Wolff et al., 2015). Secondly, the uneven distribution of snow,
influenced by topography, further complicates the measurement process (Rasmussen
et al., 2012). Therefore, correct snowfall measurements constitute some of the main
challenges within the field of hydrology (Witze, 2016). Better snow estimates are vital
to improve weather forecasting, predict river floods during spring, estimate the magazine
level for hydropower plants, and gather more information and knowledge about how the
climate changes (Kochendorfer et al., 2022).

During the last two decades, new and opportunistic methods of gathering precipitation
measurements have been explored. This includes the use of satellite images from space
(Kidd, 2001; Bellerby et al., 2000), using sensors in windshield wipers in cars (Rabiei
et al., 2013), and image detection from on-board car cameras (Nashashibi et al., 2010).
Another way to measure precipitation is to exploit signal attenuation in commercial
microwave links (CMLs) intended for telecommunication. For rainfall measurements,
this is already well proven by Messer et al. (2006) and Leijnse et al. (2007). The
relation between the specific attenuation k [dB/km] in the microwave signal and the
rainfall intensity R [mm/h] has shown to have a better correlation than for weather
radars relativity Z [-] and R [mm/h] (Chwala and Kunstmann, 2019). The process of
retrieving good precipitation estimation from CMLs consists of several steps. Some areas
within this field still need to be investigated more as CMLs have almost exclusively been
applied for rainfall measurements in temperate climate zone (Chwala and Kunstmann,
2019). New methods for detecting snowfall are always welcome in countries at higher
latitudes, such as Norway, where precipitation frequently falls as solid particles.

This thesis aims to investigate whether discrete wavelet transformations, combined with
machine learning, can be used to detect rain and snow in the signal attenuation levels
of CMLs using real-world data. The goal is to provide a new and opportunistic way of
measuring snow and explore new ways to improve the process of detecting precipitation
in microwave signal attenuation. To answer this, two research questions have been asked:

• Research question 1: Can wavelet transform and machine learning be used to
detect rain with attenuation data from commercial microwave links?

• Research question 2: Is it possible to distinguish between periods with and with-
out snowfall using the same methodology?
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1.2 Measuring precipitation with microwave links

Precipitation weakens the signals in wireless telecommunication networks. This can
be used to estimate a path-average rainfall between two antenna towers, thus allowing
rain measurement over larger areas with relatively good resolution in both time and
space. (Chwala and Kunstmann, 2019). Figure 1.1 illustrates how the hydrometeors
attenuated the microwave signal. CML networks consist of several antenna towers that
transmit and receive microwave signals from antenna to antenna to form a network that
covers an entire country. They are mainly used by telecommunication operators as part
of the mobile telecommunication network called the backhaul network and are among
the most critical forms of infrastructure in modern society. CML networks typically use
frequencies between 5 GHz and 40 GHz, but with the 5G network under construction,
frequencies up to 80 GHz would be used.CMLs with longer distances between the an-
tenna towers tend to have lower operating frequencies, while the operating frequencies
are higher where the distance is shorter. (Chwala and Kunstmann, 2019).

Figure 1.1: A illustration of a CML, showing two antenna towers transmitting
and receiving the microwave (MW) signal, different types of precipitation that
attenuate the signal. This figure was created with the inspiration of a similar
figure from Chwala and Kunstmann (2019).

The fact that precipitation affects telecommunications signals has been known for a long
time. Almost 80 years ago, Robertson and King (1946) showed that rainfall significantly
impacted the attenuation of microwave signals. This is particularly true for signals with
frequencies between 10 GHz and 50 GHz. This corresponds to wavelengths of around
10 mm and is of the same order of magnitude as the raindrops. The attenuation of the
microwave signals is caused by the principle that precipitation has a different dielectric
constant than the atmospheric gasses in the surroundings. Therefore, the signal is
scattered (Leijnse et al., 2007) and induces attenuation. Since hydrometeors, such as
rain and snow, often are irregularly shaped, the geometric diameter of the object is
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defined as the equivalent diameter. When a raindrop has an equivalent diameter smaller
than 1 mm, the shape is assumed to be spherical (Pu et al., 2020). However, when the
equal diameter is greater than 6 mm, the droplet tends to have a more flattened shape
at the bottom, making it asymmetrical across the horizontal axis (Magono, 1954); this
gives the raindrops dielectric polarization that scatters the microwave signal.

The relationship between rainfall intensity R [mm/h] and the specific signal attenuation
k [dB/km] due to rain can be described through a simple power function as Equation
1.1. Here, a [ - ] and b [ - ] are two constants in the equation (Equation 1.1) that will
vary with the frequency and polarization of the signal, as well as the air temperature and
drop size distribution (DSD) in a rainfall event. The International Telecommunication
Union, (ITU, 2003), has done research on microwave signal attenuation for decades and
developed a series of recommended values for the two constants a and b. The value
of a will increase with frequency because high-frequency signals are more affected by
rain. The constant b is shown to vary between 0.86 and 1.38, but for frequencies around
20 GHz to 40 GHz, it is observed to be close to 1. This simplifies Equation 1.2 to a
linear relationship between signal attenuation and rain rate. The accumulated signal
attenuation A [dB] can be expressed as an integral as seen in Equation 1.1.

k = aRb (1.1)

Arain =
∫ L

0
k(l)dl =

∫ L

0
aR(l)b≈1dl = aR̄L (1.2)

1.2.1 Other sources of attenuation

The CML signal is affected differently by melting hydrometeors, such as snow, graupel,
and hail, than by liquid precipitation. This is mainly due to the different physical and
dielectric properties the precipitation got under formation in the atmosphere (Alonso
et al., 2021). The fact that the different precipitation types affect the CML signals dif-
ferently indicates that it is possible to distinguish between different precipitation types.
(Pu et al., 2020). Falling precipitation is not the only source that causes fluctuations in
the transmitted signal between antenna towers. Accumulation of tiny water drops stick-
ing to the transmitting and receiving antenna called wet antenna attenuation (WAA)
also adds an amount of attenuation, which must be adjusted before the rain rate can be
derived (Chwala and Kunstmann, 2019). Baseline attenuation refers to signal loss and
fluctuations occurring in wireless communication systems due to certain atmospheric
conditions and gases in the air. These conditions can cause attenuation during dry and
rainy events, as explained in studies by Chwala and Kunstmann (2019) and Lian et al.
(2022). The baseline attenuation is often calculated using the attenuation before and
after rainfall. Although the baseline attenuation is set to a constant level, Ostrometzky
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and Messer (2018) have developed a more advanced and dynamic method for estimat-
ing the baseline attenuation. In a commercial microwave link, the total attenuation
level can be expressed as in Equation 1.3 and is the sum of the attenuation from the
precipitation, the wet antenna effect, and the baseline.

Atotal = Aprecipiatation + AW AA + Abaseline (1.3)

1.3 The workflow for estimating rainfall

The workflow for using CMLs on larger scales and generating rainfall fields can be
divided into five steps. Step one is to acquire the CML data. This includes getting
the transmitted signal levels (TSL), received signal levels (RSL), polarization, location,
and frequency. Then data quality control and some prepossessing are required to clean
the data. Step two is to identify wet and dry events during the period. The process is
further explained in Section 1.4. Step three is to determine the baseline during the wet
events and do a correction for the WAA effect. After the baseline is determined, the
four is to derive the rain rate for a single link by using the equation for the k-R relation
(Equation 1.1). The fifth step is to repeat steps two to four on multiple CMLs covering
a larger area and then generate rainfall fields using spatial interpolation techniques.
(Chwala and Kunstmann, 2019). Figure 1.2 illustrates the workflow.

Figure 1.2: Schematic illustration of a typical workflow for rainfall estimated
from commercial microwave links (CMLs). Inspired by Chwala and Kunstmann
(2019).
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1.4 Existing wet-dry classification methods

Rain

Numerous approaches have been suggested for detecting rain events in the CML atten-
uation. The research field has two primary methodologies depending on the available
type of data (Polz et al., 2020). One way to retrieve wet and dry events in CML net-
works is to compare links close to each other and classify a period as wet if all the
links experience signals attenuation in the same period. This method is explained in
more detail in work by Overeem et al., 2016. The second methodology, which is also
used in this study, focuses on attenuating from individual links. The most widely used
and simplest single-link method is the rolling standard deviation (RSD) method devel-
oped by Schleiss and Berne (2010), which applies a sliding window over the signal loss
time series. A period is then wet if the standard deviation is above a given threshold
value, typically 0.8. Other single-link methods include the short-time Fourier transform
(STFT) of the signal attenuation levels time series, which classify wet and dry events in
the frequency domain by Chwala et al. (2012), a convolutional neural network (CNN)
method from Polz et al. (2020) and a method using a Markov switching the based model
from Wang et al. (2012).

Common to all methods used for classifying wet events is that they come with a trade-off.
Either being more restrictive and only detecting the more significant rainfall events or
having a greater likelihood of classifying the fluctuations in dry periods as wet (Chwala
and Kunstmann, 2019). Although several methods have been developed for detecting
wet events, most studies have only been used with CML data up to 50 links (Polz et al.,
2020). Furthermore, there are differences in how the signal attenuation data is sampled.
Some telecommunication operators measure the lowest and highest attenuation levels in
15 minutes period of time, and other measures the attenuation level every 10 seconds.
Therefore, variations in sampling techniques can make comparing methods challenging.
Method comparison will hopefully become more accessible in the future as Andersson
et al. (2022) have published some open access CML data for benchmark testing.

Snow

There have been relatively fewer suggested methods for detecting other types of precip-
itation. One way of detecting graupel and wet snow was proposed by Pu et al. (2020).
This method utilizes a network of multi-frequency microwave links where the signal at-
tenuation has been synthetically generated based on signal scattering physics. The drop
size distribution data (DSD) from disdrometers was used as ground truth to then classify
the precipitation types. The study concluded that the accuracy increased proportionally
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with the operating frequency of the CMLs, significantly above 50 GHz, and that dry
snow was difficult to detect. Another method proposed by Ostrometzky et al. (2015)
made a classification algorithm based on a kernel Fisher discriminant analysis (KDA)
combined with a decision tree. The results showed that the algorithm could distinguish
between rain and sleet (wet snow). Due to the relatively low temporal resolution of
the measured signal attenuation of 15 minutes, an entire period of dry snow was never
measured. Therefore it was not clear if the snow would be possible to detect.

1.5 The wavelet transform

Wavelet transform is an advanced form of signal analysis in the field of mathematics
that deals with signal processing and multi-frequency analysis (non-stationary signals).
The key concept of the wavelet transform is that it decomposes a non-stationary signal
into different components in both time and frequency. The term wavelet transform
refers to the transformation of an integrable signal f(t) to the domains of both time
and frequency, meaning that we can obtain the localization of frequencies. The idea of
a wavelet transformation started in the early 1900s (Vistnes, 2016), but was not fully
used until the 1980s and was mainly utilized in the field of seismology to analyze seismic
waves inside the earth. Today wavelet transform is used in multiple fields of science,
including image processing, biomedical engineering, and robotic control systems.

Figure 1.3: Illustration of the time-frequency resolution for the STFT versus the
wavelet transform. It can be seen how the wavelet time-frequency resolution varies
at different frequencies, while the STFT has a constant time-frequency resolution.
Recreation of a figure by Yoo et al. (2022).

A fundamental principle of signal processing is the uncertainty principle, which states
that there is an inevitable trade-off between the precision of time localization and the
precision of frequency localization when analyzing signals (Debnath, 2001). Compared
to short-time Fourier Transform (STFT), where a standard Fourier transform is applied
inside a sliding window with fixed width in time. The wavelet transform will have
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different time-frequency resolutions (Figure 1.3) that change for the different frequency
ranges. The time-frequency relationship in wavelets is designed such that the time
resolution is good where the frequency is high, and the frequency resolution is good
where the frequency is low. This is due to the unique property of wavelets that allows
them to adapt to the varying frequency content of a signal over time. (Debnath and
Shah, 2015). How wavelet transform handles the uncertainty principle between time
resolution and frequency resolution makes it a flexible tool that is computationally
efficient when analyzing non-stationary signals.

Figure 1.4: Examples of three different wavelet basis functions. In red is the Haar
wavelet, also known as the Daubechies level 1 wavelet (db1). In green is the db4
wavelet, and in blue is the symlet level 8 wavelet (modified version of Daubechies
wavelets). The area under the curves for all the wavelets always equals zero. Please
note that the x-axis (time) for these three wavelets is not to scale, as this figure
only tries to show the differences in their shapes.

The wavelet transform is computed by convolving the input signal f(t) with ψs,τ , which
represents a basis function often called the mother wavelet or just wavelets. The compu-
tation process is illustrated in Figure 1.5, where one can see how the wavelet transform
with the use of the Haar wavelet. The wavelet function is described in a general form in
Equation (1.4) and some examples of different wavelets is seen in Figure 1.4. The wavelet
acts as a filter that passes over the whole signal while the base wavelet is stretched and
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compressed. It is done by changing τ for the time-shift (translation) and changing the
scaling factor s, which is a dilation of the wavelet. This means that the wavelet is
stretched or compressed to match all the frequencies in the signal. In the areas where
the translated and dilated wavelet is similar with f(t), the wavelet transform returns
greater values called wavelet coefficients. The result is a set of decomposed wavelet
coefficients of the original signal that provide information about the time localization
of the frequencies in f(t). In other words, the wavelet transform act as a mathematical
microscope and a useful tool in signal processing for detecting sharp edges, compressing
images, or classifying signals.

Figure 1.5: Convolution of a signal f(t) with a wavelet function ψs,τ . In this
example, the Haar wavelet is used to compute the wavelet transform from a signal
attenuation time series. The better the match between the wavelet and signal, the
greater the output coefficients. This figure is created with inspiration from Pinello
(2012) to illustrate the convolution of a signal.

ψs,τ = 1√
|s|
ψ

(
t− τ

s

)
, s, τ ∈ R, a ̸= 0 (1.4)

The wavelet transform can be divided into two implementation methods. There is the
continuous wavelet transform (CWT) found in Equation 1.5 and the discreet wavelet
transform (DWT) found in Equation 1.6. The a and b in the DWT represent the τ
and s from the CWT, respectively, and are now integers instead of continues values
(Srivastava, 2018). N represents the length of the signal.

CWT (s, τ) = 1√
|s|

∫ +∞

−∞
f(t)ψ

(
t− τ

s

)
dt (1.5)

DWT [a, b] = 1√
b

N∑
m=0

f [tm]ψ
[
tm − a

b

]
(1.6)
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The scaling of the wavelets (1.4) is the key factor that separates the continuous and
discreet wavelet transform. In CWT, the wavelet is time-shifted and compressed contin-
uously until the frequencies in f(t) are covered for the chosen scaling level. However, this
may cause the need for high computational complexity and return many very similar
values that don’t offer much more information. In DWT, the scaling happens at certain
intervals called scaling levels. The τ and s from CWT is now replaced by a and b and
are based on powers of 2 (dyadic) instead of changing continuously. Thus, the transform
is much faster to compute and only includes the most valuable values. The coefficients
a and b is described in Equation 1.7 and Equation 1.8 where the parameters j and k
control how the wavelet transform decomposes the signal.

a = k2−j (1.7)

b = 2−k (1.8)

The resulting values from DWT produce a pair of detail coefficients (cD) and a set of
approximation coefficients (cA). The detail coefficients represent the higher frequencies
and can be interpreted as a high-pass filter bank. In contrast, the approximation coef-
ficients are the smoothed residual values and can be construed as a low-pass filter. For
each level of j, a new pair of cD and cA are computed by taking the DWT of the previous
cA. This can be seen in Figure (1.6). This process can be repeated until the length of
the signal becomes one and is called multiresolution analysis (MRA) (Srivastava, 2018).

Figure 1.6: DWT for three levels of decomposition, filtering the signal into detail
coefficients (cD) and approximation coefficients (cA). For each level of decompo-
sition, the output length is reduced by a factor of two.
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1.6 Machine learning

Machine learning uses statistical methods and algorithms to develop models that can
make decisions or predictions without human instructions and is in the subfield of arti-
ficial intelligence (AI). The machine learning model is learning because it uses its own
set of constraints and rules to make a prediction. Although machines don’t have real
humanlike cognitive properties, their ability to recognize patterns in large data sets is
meant to imitate how the human brain works. Machine learning models learn by giving
them a subset of the data with the correct labels or values (Tidemann, 2023). This
process is called supervised learning and is the method used in this study. There are
numerous machine learning models available for various purposes. This study utilizes
the Random Forest Classifier, a more advanced version of Decision Trees.

1.6.1 Random forest classification

To understand the functioning of the Random Forest Classifier (RFC) algorithm, it is
essential to briefly explain decision trees. A simple decision tree asks multiple yes-no
questions until it has split the data into categories (Breiman, 2001b). The algorithm
starts with a root node and splits the data based on the most informative features into
branches. The splitting of the data ends when a certain criterion is met. At the end of
each branch, we find the leaf nodes. Leaf nodes represent the final prediction made by
the decision tree. A weakness of decision trees is that they are susceptible to overfitting,
meaning they may fit the training data too closely and ends up paying attention to the
variance in the training data set. This may cause the model to perform poorly with new
data.(Criminis et al., 2011).

The RFC algorithm can be used to address the overfitting issue with decision trees.
RFC utilizes several decision trees at the same time, and the predictions of each tree
are combined to determine the most popular result through a major-voting process.
Random forest is an ensemble learning method comprising several classifiers at once.
A simple illustration of the RFC can be seen in Figure 1.7, showing how it combines
several decision trees. The algorithm uses an ensemble method called bootstrap aggre-
gation to build all the subtrees in the random forest. This involves generating multiple
randomized subsets from the original data set and building decision trees from each sub-
set. (Breiman, 2001a). One of the advantages of RFC is that it can find relationships
in non-linear systems. On the other hand, if the RFC gets too complicated, meaning
it consists of many decision trees, it becomes a black box model. Meaning there may
not be any physicality to the model. Although RFC is less exposed to overfitting than
decision trees, overfitting may still be an issue.
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Figure 1.7: An illustration of how a Random Forest Classifier is built consisting
of multiple decision trees. In this case, the wavelet coefficients are used as features
to predict if there is a rainy or non-rainy event. Figure recreated from Khan et al.
(2021), but modifications for the data in this study.

1.6.2 Training and validation of a model

When applying a machine learning model to solve problems, splitting the data into
training and testing sets is common when the available data quantity is low. The
training data includes data with the correct labels, while the testing set only contains
the features and is used to evaluate the model’s performance. The challenge of training
a model in this manner is overfitting. This happens when the model has learned the
training data too well and has essentially memorized the patterns in the data rather
than learning general patterns that can be applied to new data.

A cross-validation method is typically applied to avoid or minimize the risk of overfitting
when training. Cross-validation means to split the data set into K several folds. K − 1
folds are used as the training set, and then the K th fold is used as the testing set for
validation. Then another fold is chosen as the testing set. This process continues till
all the folds have been used as testing sets. A simple illustration is shown in Figure 1.8
with five folds.
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Figure 1.8: Example of how the training data is split into folds when performing
a Cross-validation. In this example, there are five folds. The blue represents the
data used for testing, while the training data is colored gray.

1.6.3 Hyperparameter tuning

Hyperparameter tuning is an essential step in building machine-learning models, and the
goal is to set the best values for the parameters that control the learning process. Every
machine-learning algorithm possesses its unique set of tunable hyperparameters that
specify the behavior and functionality of the algorithm. An example of hyperparameters
in the random forest classification method is how many leaf nodes the tree can split into
or how deep the random forest can be. When hyperparameter tuning is done correctly,
it can improve the overall performance of the machine-learning model.(Koehrsen, 2018).
An explanation of the hyperparameters in the random forest classifier can be found
below (Hoffman, 2020).

• Number of trees: The total number of individual decision trees in the forest.
Often more trees will increase the performance, but it may also lead to overfitting,
increased training time, and memory in the computer.

• Maximum features: The Maximum number of coefficients (wavelet coefficients)
allowed to be considered when looking for the most informative split.

• Maximum depth: Determines how deep every tree can be.

• Minimum samples for split: Minimum number of coefficients required to split
a node further, controlling the complexity within the random forest.

• Minimum samples for leaves: The minimum number of coefficients required
in a leaf node.





2. Methods

The method used in this study can be divided into three steps to address the goal
and research questions proposed in Section 1.1. First, the data used in this study will
be presented and described. The second part explores how to implement the discrete
wavelet transform (DWT) with machine learning and how this can be used to make
algorithms for detecting rain and snow using data from three locations in Norway. Then
the third step will explain how the algorithms were applied to a larger data set and
compared to existing methods.

For rain detection, three other methods were used to compare the classification method
developed in this study, but for snow, there are no available methods to use for com-
parison. Data from June 2022 was used to detect rain events, and data from December
2021 was used for trying to detect snow events. Disdrometer data was used as a ground
truth reference.

2.1 Study areas and data acquisition

Three areas were selected in Norway (Figure 2.1). The primary location was Ås, just
south of Oslo. The two other sites were chosen due to their proximity to CMLs with
nearby disdrometers and because the probability of snow was higher in Trondheim (50
m.a.s.l) and in the high mountains at Dovre (950 m.a.s.l). In Ås, two CMLs were used
for exploring the wavelet’s potential in wet-dry classification. Several rain gauges were
available, including more advanced meteorological climate stations and disdrometers
(about 90 m.a.s.). In Trondheim and at Dovre, only one microwave link was used at
each location, together with weather stations.

In Ås, the annual precipitation rate was 1082 mm (Wolff et al., 2021), with a continental
type of climate (Dannevig and Harstveit, 2022). Trondheim’s climate is characterized
by copious amounts of precipitation and moderately mild winters, known as a maritime
climate (Dannevig, 2020). The average temperature is approximately 0°C in January,
and the annual precipitation rate in Trondheim ranges from 750 mm up to as much as
1500 mm depending on where you are in Trondheim (seNorge.no, 2023). In the mountain
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ranges at Dovre, the climate is characterized by an open environment with few trees,
strong winds, and a polar climate (Dannevig and Harstveit, 2022). The annual rainfall
rate barely exceeds 500 mm per year, and the mean temperatures range from +5°C in
the summer and -10°C in the winter months (SeNorge.no, 2023).

Figure 2.1: Map of Norway’s three main study areas: Ås, Trondheim, and Dovre.
More details of the study areas can be seen in Appendix A.

The CML data used in this study was supplied by Ericsson and Telia by a personal
agreement and should only be used for research purposes. Data from two time periods,
June 2022 and December 2021, was provided. The data from the network providers
consist of six measurements per minute of received signal levels (RSL) and transmit-
ted signal levels (TSL), each with a resolution of 0.1 dB. The lowest RSL (min RSL)
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Table 2.1: The four CMLs from the study areas were used when developing the
algorithms. The polarization V means a vertical polarization.

Link name Length [km] Polarization Frequency [GHz] Location
AKH007 1.47 V 32 Ås
AKHa01 4.48 V 21 Ås
STR437 1.16 V 39 Trondheim
OPL080 12.8 V 11 Dovre

value and the highest TSL (max TSL) for each minute were extracted for further use.
By subtracting the min RSL values from the max TSL, the transmitted-received-signal
level (TRSL) was found and is used as the main input data for the classification models.
The CML data also included the distance of the link, operating frequency, location, and
polarization. The data set was further organized into two channels. Channel 1 from
location A to B and channel 2 from location B to A. Despite originating from the same
link but in opposite directions, the TRSL values exhibited some differences between
the two channels that could be useful for wet-dry detection. Information on the four
CMLs used for this part can be seen in Table 2.1. Disdrometers were used to label the
precipitation types. Like the traditional pluviometers (rain gauges), the disdrometer is
a device used for point observation of precipitation. Compared to measuring the mass
of the precipitation like pluviometers that fall into a funnel, the disdrometer typically
uses an optical sensor to detect the DSD and velocity of precipitation to classify the
precipitation type. Thus the disdrometers are not vulnerable to clogging due to drifting
debris or freezing issues. (Islam et al., 2012). Disdrometers were chosen as they can
detect rain and snow and are available sources of ground truth in Norway. The data
from the disdrometers used in this study were provided by the Norwegian Meteorolog-
ical Institute (MET) and are owned by the Norwegian Public Roads Administration
(SVV). The data was received through the Frost application programming interface
(API, https://frost.met.no/index.html) operated by MET. The main reason for
choosing disdrometers by SVV was to ensure that all the disdrometers were of the same
type (or almost the same) and that they were placed in proximity to roads so that they
covered most parts of Norway. The main disdrometers type used by SVV, and thus the
main disdrometer used in this study, is the OTT Parsivel with a time resolution of 10
minutes. Table 2.2 shows simplified classification codes for the different precipitation
types. A period is classified as wet if the disdrometers give a value of 512, and periods
with snow result in a value of 2048. The location of the disdrometers relative to CMLs
can be seen in the Appendix A.

https://frost.met.no/index.html
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Table 2.2: Simplifies disdrometers codes for the different precipitation types with
the OTT Parsivel.(Tangen, 2020). This study used the disdrometers as a ground
truth reference for rain and snow when classifying what caused attenuation in the
microwave signal.

Code Precipitation type
0 No Precipitation
256 Drizzle
512 Rain
1024 Hail
2048 Snow
4096 Unspecified

2.2 The discrete wavelet scalogram

A multilevel decomposition of the discreet wavelet transform (DWT) was performed
directly on data from the CMLs from three locations to try to understand how to
utilize its properties in rain and snow detection. The discreet wavelet transform (DWT)
was chosen over the continuous wavelet transform (CWT) to reduce computational
complexity. The Haar wavelet (Figure 1.4) was selected for the mother wavelet as it is
the most straightforward wavelet to work with. The Haar-wavelets scaling is exactly
2J for each level J of decomposition, meaning that the length of the signal is divided
by a factor of two for every scaling step. This process is also known to as a dyadic
wavelet transform. Thus the total input signal length must be a factor of 2J when using
a dyadic down sampling. In Figure 2.2, a DWT was applied to the TRSL values from
the link AKHa01-AKH016 from Ås in June 2022. The DWT was computed through
the PyWavelets library for Python with the multilevel decomposition function called
wavedec. The figures below 2.2 show nine decomposition levels, resulting in the detail
coefficients (cD). Figure 2.2 also show the TRSL values in black and the detected rain
events in blue. With the length of the input signal being 40960 minutes, the first
decomposition (cD1) yielded an array of the finest frequencies filtered out with a length
of 40960/21. The following detail coefficients were computed all the way down to cD9
with a length of 40960/29 for the last level. After the DWT were computed, all the
detail coefficient from cD1 to CD9 were re-sampled up so that they all had the same
length and a rectangular scalogram with dimensions of 9 by 40960. The time-frequency
resolutions of the scalogram are seen in Figure 1.3.
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Figure 2.2: Discreet wavelet transform of CML during June 2022 in Ås, Norway.
The wavelet coefficients are set to absolute values and then taken to the square
root of them for better visualization.

Figure 2.3: Discreet wavelet transform of CML during December 2021 in Trond-
heim, Norway. The wavelet coefficients are set to absolute values and then taken
to the square root of them for better visualization.
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As seen in the scalogram (Figure 2.2), the attenuation caused by precipitation is clearly
visible, especially at the 4th (cD4) to 8th (cD8) level of decomposition. Greater am-
plitudes of wavelet coefficients on the lower decomposition levels (cD1 - cD3) capture
the finest fluctuations (higher frequencies), possibly due to noises and background fluc-
tuations. In the higher decomposition levels (cD4 - cD9), the frequencies with more
extended periods are captured (lower frequencies), and the fluctuation that was induced
by rain might be found here. If the signal were further decomposed, it would result
in a less informative coefficient and capture only longer trends of frequencies which do
not give any information about rain. A wavelet transform of the link STR437-STR139
from Trondheim in December 2021 was also computed (Figure 2.3) to determine if the
snowfall was visible in the scalogram. However, results are not as clear as with rainfall.

2.3 Developing the algorithms for classification

As the input length of the attenuation timer series is the main parameter for both DWT
and CWT, using the scalogram itself was impossible when trying to develop an algorithm
to be versatile for the different lengths of TRSL data. For example, an input length
of 40960 minutes at decomposition level 6 would have a length of 640 minutes, while
an input signal with a length of 20480 minutes (about two weeks of TRSL data) has a
length of 320 minutes at 6 levels of decomposition. Furthermore, when computing the
higher levels (e.g., cD8 and cD9) of DWT coefficients, the time resolution was drastically
decreased due to the time-frequency trade-off. This means that if the algorithm would
need, for example, eight decomposition levels, the input signal would need to be of such
length that it was divisible with 28 (256). This length issue can be solved through a
more sophisticated method that considers the input length and finds the correct scaling
level s from Equation 1.5. Then the wet periods can be found by setting the suitable
threshold to the scalogram, but using the CWT may need more computational work.

Another way to solve this issue is by applying a sliding window technique that slides over
the TRSL values and performs a DWT inside the window frame as a feature extraction
method that could be combined with various machine-learning classification techniques.
This technique was inspired by Asman et al. (2022) (transient overvoltage in and power
quality controllers), Bennet et al. (2014) (classification of heartbeat sounds), and Mei
et al. (2021) (DNA microarray technology) where they did a wavelet transform inside a
sliding window in combination with machine learning. The sliding window approach lets
the algorithm be independent of the input length of the TRSL time series. This study
selected the sliding window DWT approach, which had the most promising potential



2.3. DEVELOPING THE ALGORITHMS FOR CLASSIFICATION 21

in the early testing period. This method will be called the Sliding Window Wavelet
Transform (SWWT) method. It will be used for rain and snow classification, with small
modifications for each precipitation type, meaning that two algorithms were developed.

Therefore, the sliding window approach was investigated and developed further to ad-
dress the challenges described above. With a short window frame, R consisting of k time
steps that slide along the TRSL time series (Equation 2.1), one could ensure a DWT of
a signal with constant length L [minutes] independently of the total length of the TRSL
time series. We obtain Equation 2.2 by taking the DWT inside the sliding window, and
the resulting wavelet coefficients become comparable for every CML. The a and b are
described in Section 1.5 and describe how the base wavelet ψa,b shall behave. Utilizing
the information in the wavelet coefficients, an RFC model could be used to classify
whether the signal scalogram inside the window was due to a precipitation event (rain
or snow) or a non-precipitation event. The RFC would create multiple decision trees to
find suitable thresholds to distinguish between precipitation and no precipitation.

R(t) =
{
Rk|k ∈

{
t− L

2 , ..., t+ L

2

}}
(2.1)

DWT [a, b] = 1√
b

k−1∑
m=0

R(tm) ∗ ψ
[
tm − a

b

]
(2.2)

By testing with different sizes for the window length, wavelet decomposition levels,
and which wavelet coefficients to include, a window length of 256 minutes was shown to
perform well with the wavelet coefficients from levels 4 to 8 (cD4 - cD8) for rain detection.
For snow detection, a shorter window of length 32 minutes with wavelet coefficients from
levels 1 to 4 (cD1 - cD4). This was done to try to look for snow-induced attenuation in
the finer frequencies as it was clear that it was not to be found in similar frequencies as
rain as seen in the scalograms from Figure 2.2 and Figure 2.3. The extracted wavelet
coefficients w were placed vertically in a 1 by 256-minute vector for each minute in the
total TRSL series from a design matrix X. Corresponding correct labelled precipitation
types by disdrometer was used as the target vector y. The X matrix is then given to a
random forest classifier and evaluated against the correct labels in vector y. Figure 2.5
illustrates the input data.

In Figure (2.4), the process for the method is schematically illustrated from input to
output. In Figure D.1 found in Appendix D, the Python code for the Sliding window
part and Wavelet feature extraction part can be seen. The code shows the rain
detection version, but the method for detecting snow was done similarly.
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Figure 2.4: A schematic illustration of the classification process. The TRSL
(Transmitted-received signal levels) are given as inputs, and the sliding window
takes a portion of the signal and applies a discrete wavelet transform. A selected
set of wavelet coefficients is then given to a random forest classification model for
binary prediction. The illustration was inspired by a figure from Cherkassky et al.
(2014).

Figure 2.5: This figure shows how to extracted wavelet coefficients from the
SWWT algorithm could look like. As the length of the coefficients gets divided by
two for every decomposition, there are more cD4 values than cD5 values, and so on.
For cD8, there is only one coefficient. Due to the sliding window, the coefficients
drift along the window. The coefficients are transformed for better visualization.
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2.4 Evaluation of the performance

For evaluating the performance of the classification of rain or snow, the Matthews Cor-
relation Coefficient (MCC) was used. Matthews Correlation Coefficient (MCC) is a
statistical measure that ranges from -1.0 to 1.0 and is suitable for binary classification
problems. A perfect prediction would have an MCC score of 1.0, whereas a random
prediction would have a score close to zero. An MCC score of -1 indicates a perfect
negative classification. The MCC-score is high when the numerator in Equation 2.3 has
a greater product between the true positives (TP) and the true negatives (TN) than the
product of the false positives (FP) and false negatives (FN). The denominator in the
MCC is used to scale the MCC score between -1.0 to 1.0. The reason for choosing the
MCC-scoring method for evaluation is that it is more robust than the accuracy score
(Equation 2.4) when the data is imbalanced (Chicco and Jurman, 2020). In the case
of wet-dry classification, the data is often heavily imbalanced against non-precipitation
events and is used in other studies for classification methods of wet-dry detection.

MCC = TP × TN − FP × FN√
TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN)

(2.3)

Accuracy = TP + TN

TP + TN + FP + FN
(2.4)

2.5 Model training and validation

The smaller data set from Ås, Trondheim, and Dovre served mainly as a testing and
developing data set for the methods used in this study. The purpose was to see if
there was any potential for using disdrometers and wavelet transform. A larger data
set would be needed to evaluate the SWWT method’s performance on a more extensive
scale. As shown in Figure 2.2 and Figure 2.3, rain affected the CMLs much more than
snow. Therefore the two different methods of the SWWT were developed. For rainfall
detection, the SWWT was modified to use wavelet coefficients from cD4 to cD8, and for
snow, the SWWT was modified to use cD1 to cD4. For the rain classification method,
the goal was to make it perform well on several different CMLs. Since there are no
methods for detecting dry snow from TRSL fluctuations yet, the goal was to determine
if there was any correlation between all the data sets. Both data sets for rain and snow
detection were collected from various areas in Norway. The CMLs are given three-letter
code names to indicate their location in Norway. The explanations for the CML-code
names can be found in Table (2.3).
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Table 2.3: The explanations for the code names for the CMLs in the data sets

Link name code County (Old County name)
AAD Agder (Aust-Agder)
AKH Viken (Akershus)
BSK Viken (Buskerud)
FIM Troms og Finnmark (Finnmark)
HRD Vestland (Hordaland)
MOR Mør og Romasdal (Møre og Romasdal)
NOR Nordland (Nordland)
NTR Trøndelag (Nord-Trøndelag)
OPL Innlandet (Oppland)
OSL Oslo (Oslo)
SOF Vestland (Sogn og Fjordane)
STR Trøndelag (Sør-Trøndelag)
TLM Vestfold og Telemark (Telemark)
TRM Troms og Finnmark (Troms)
VAD Agder (Vest-Agder)

Rain classification

A data set of 165 CMLs from the Norwegian CML network was provided by Ericsson
and Telia for June 2022. Then some of the insufficient disdrometer data was removed
by eliminating disdrometers with a large amount of Unspecified data with the code 4096
from Table 2.2. CMLs with larger baseline shifts resulted in sharper edges in the signal
attenuation levels were also removed. A total of total, 28 CMLs were removed. The rest
of the CMLs were filtered so that only CMLs within a 4.0 km range of a disdrometer
were left, resulting in 58 CMLs for the evaluation part. In CMLs where it could be
found missing data, the nearest neighbor interpolation technique was used. A map of
the location for the CMLs used for training and validation for the wavelet-based rain
model can be found in Appendix B in Figure B.1.

The CML data was split into two parts. One part is for training and testing (training
set), and one part is for an independent validation test (validation set). The training
set consisted of six CMLs that were selected by links having a good correlation between
the rolling standard deviation of the TRSL and the rain events classified. This selection
method ensured the model’s training on good CML data with less noise and prevented
the model from learning from noisy CML data or disdrometer data. The six CMLs used
in the training set were removed from the whole CML data set to form the validation
subset of 52 CMLs. The selected CMLs from the training set can be seen in Table 2.4.

To further ensure that the validation set was independent of the training and testing
data, the first ten days of June 2022 (from June 1st to June 10th) were used for the
training data, and the time interval from June 12th to June 29th for the validation data.
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The reason for this was that several CMLs from the same region that was to be found
in both the training set and validation set had similar precipitation patterns and TRSL
patterns. The random forest classifier could learn from the patterns in the noise rather
than from learning what wavelet coefficients correspond to rain or not rain. To avoid
this, the described separation of the data was applied.

Table 2.4: CMLs included in the training of the SWWT classifier for rain. It
shows the CMLs name, location, and gigahertz (GHz) operating frequency. The
last digit in the link name indicates if the signal is horizontal (1) or vertically (2)
polarized.

Link name Location Frequency [GHz]
AKH806_1/1/2.AKH210_1/1/2 Viken (Akershus) 32
HRD892_1/1/1.HRD107_1/1/1 Vestland (Hordaland) 38
AAD107_1/1/1.AAD057_1/1/1 Agder (Aust-Agder) 39
AAD107_1/1/2.AAD057_1/1/2 Agder (Aust-Agder) 39
NOR181_1812.NOR101_1012 Nordland (Nordland ) 38
NOR073_0732.NOR007_0072 Nordland (Nordland) 37

After the training subset and validation subset were separated, the training set was
given to a hyperparameter tuning- and cross-validation algorithm from Scikit-learn.
A method, called grid search, was done with the GridSearchCV function (Pedregosa
et al., 2011). The GridSearchCV were given a set of different hyperparameters, and all
possible combination was tested. For each combination, a 5-fold CV (cross-validation)
was performed with a custom MCC function with 10-minutes time aggregation for eval-
uation instead of the default accuracy score. The time aggregation technique will be
described later in Section 2.6. The tested and optimal values can be seen in Table 2.5.
Figure 2.6 shows how the model’s performance reaches a maximum performance level
after about 30 trees in the random forest model. This is called the optimum level of
model complexity. If the number of trees is further increased, the model will start to
overfit and struggle with new validation data (Olteanu, 2018).

Table 2.5: Hyperparameters included in the tuning of the model. It shows the
range of the values tested and the result of the best parameter combination. The
explanation of the hyperparameters is found in Section 1.6.3

Hyperparameter Values tested Optimal
Number of trees 5, 10, 20, 30, 80, 120 30
Maximum features log2, auto, sqrt auto
Maximum depth 10, 30, 60, None 30
Minimum samples for split 2, 4, 8 2
Minimum samples for leafs 1, 2, 4 1

Once the model had been tuned and fitted with the training data, it was applied to the
52 CMLs in the validation data. It was applied to both channels (both signal directions),
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and a logical or-gate was used to classify wet events. The MCC score for 1, 10, 20, 30,
40, 50, 60, and 120 minutes of time aggregation was computed. The location of the
CMLs used for the rain classification is found in Figure B.1 in the Appendix B.

Figure 2.6: A learning curve for the SWWT random forest classifier (RFC) for
rain detection. The figure shows how the model performs as the complexity of the
model increases (number of trees). The blue line shows the mean MCC score after
a 5-fold cross-validation (CV) with test data. The shaded area shows the standard
deviation. In red, one can see how the model performs with training data.

Snow classification

The procedure utilized to eliminate bad CML and disdrometer data from the June 2022
data set for the rain detection method was also done for the snow detection methods.
The December data set consisted of 128 CMLs, but after removing the bad data and
restricting the distance to 4 km between CML and the disdrometer, 41 CMLs were left.

The challenge was to find good CMLs for the training of the SWWT model for snow, the
data set from December 2021 was divided into two parts. Part one started from Decem-
ber 1st to December 15th, and part two started from December 16th to December 30th.
The first part was used for training, and the second one for validation. This was done to
find at least some CMLs that could show some correlation between signal attenuation
and snowfall. The reason for this was to see which CMLs were more suited for capturing
snow-induced attenuation and that these CMls could help train the model better. Three
models (A, B, and C) based on the SWWT were used. The three models had different
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RFC hyperparameters and are found in Table 2.6 to test different model complexities.
At the same time, the MCC scores of the results were aggregated to amplify to MCC
score, so it should be easier to pick out the links with better performance.

Based on the results from the training and testing with snow data from December 2021
seen in Figure 3.4 found in the results in Section 3.2. Eight CMLs with a greater MCC
score than 0.1 was selected as the new training data for retraining the SWWT model for
snow classification. The training CMLs are shown in Table 2.7. The hyperparameter set
from model B (Table 2.6) was shown to be the most promising with respect to overfitting.
As with the rain classification, both signal directions were used with a logical or-gate was
used to classify wet events. Then the mean MCC scores were computed. The location
of the CMLs used for the snow classification is found in Figure B.2 in the Appendix (B).

Table 2.6: The table shows the different settings for the random forest classifier
used. Resulting in 3 model combinations (A, B, and C). Then each model was
aggregated in time for 1, 10, and 60 minutes

Model Number of trees Max depth
A 5 5
B 10 25
C 50 None

Table 2.7: CMLs included in the training of SWWT for snow detection. It shows
the CMLs name, location, and gigahertz (GHz) operating frequency. The last digit
in the link name indicates if the signal is horizontal (1) or vertically (2) polarized.

Link name Location Frequency [GHz]
AKH806_1/1/2.AKH210_1/1/2 Viken (Akershus) 32
AAD107_1/1/2.AAD057_1/1/2 Agder (Aust-Agder) 39
MOR356_3562.MOR193_1932 Møre og Romsdal (Møre og Romsdal) 26
STR420_1/1/1.STR168_1/2/1 Nordland (Nordland ) 29
VAD152_1/1/2.VAD002_1/1/2 Agder (Vest-Agder) 39
VAD229_1/1/2.VAD002_1/3/2 Agder (Vest-Agder) 39
NOR073_0732.NOR007_0072 Nordland (Nordland) 37
MOR394_3942.MOR013_0132 Møre og Romsdal (Møre og Romsdal) 32

2.6 Time aggregation

Time aggregation of the disdrometer and TRSL time series was done because a small dis-
crepancy in time between the measured precipitation by the disdrometers and the rain-
induced TRSL fluctuation in the CMLs was discovered. The discrepancy was mainly
caused by the distance from the disdrometer to the CMLs, resulting in a spatial-temporal
bias that would lower the actual correlation. A correction method was used on both
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the disdrometer and predicted precipitation for rain and snow events to ensure the over-
lapping events that most likely should happen simultaneously. Additionally, the time
aggregation helps to amplify the MCC score for the methods and it becomes easier to
differentiate between various methods. The goal was not to achieve a higher correlation
but rather to correct the distance between the links and CMLs. Due to the tempo-
ral resolution of the disdrometer data of 10 minutes, a time aggregation of 10 minutes
was found most suitable when comparing and validating the result. The correction be-
comes unrealistic if the time aggregation is extended beyond hundreds of minutes. The
aggregation technique is illustrated in Figure 2.7.

Figure 2.7: Illustration of the temporal aggregation technique. A 1-min resolu-
tion is aggregated up to a 5-min resolution to ensure some overlap and yields a
more realistic MCC score.

2.7 Comparison of methods for rain detecting

As Section 1.4 mentions, multiple methods exist for detecting rain events. Therefore it
was natural to compare the SWWT with some of the existing methods. The classification
methods used to compare the SWWT rain method was the simple yet efficient method
from Schleiss and Berne, 2010 that computes the rolling standard deviation (RSD)
and sets a threshold for detecting parts of the TRSL signal with great fluctuations.
The short-time Fourier transform method (STFT) from Chwala et al., 2012, and a
convolutional neural network (CNN) developed by Polz et al., 2020 in Germany.

When selecting a method for detecting wet and dry events for a larger set of CMLs, it is
advantageous that the method doesn’t have too many parameters to optimize because
of the differences in the operating frequencies of the CMLs, length, polarization, and
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much more. For the RSD method, a standard window size was set to 50 minutes, and
the threshold was set to 0.8. The STFT method has four parameters to adjust for
each CML: The window size, the fdivide, a dry mean, and the threshold limit (σ). The
fdivide and σ depend on the individual length and frequency of the CMLs. In the study
from Chwala et al. (2012), a window size of 256 minutes was recommended, and the
optimum values for fdivide and σ were found for four CMLs. The average link length for
the data set used was about 1.5 km, therefor fdivide was set to 0.0031 Hz and σ to 1.0.
The dry mean could be calculated by manually defining a dry period’s start and end
or by defining an interval and automatically letting the algorithm find the dry period.
The STFT method was not fully optimized in the comparison and will probably give
better results if it was. The CNN doesn’t need any parameters applied directly to the
Norwegian data set. A challenge for the CNN method is that it was trained on hourly
precipitation data, therefore may have some difficulties when evaluated against 10-min
precipitation data.

Both the STFT and CNN method was imported through the Python-based Pycomlink
library version 0.3.4 developed by Chwala (2017).





3. Results

This chapter presents the results from the rain and snow classification. The results will
be presented in two sections. Section one will focus on the wavelet-based rain detection
method and how the SWWT method developed in this study compares against three
other classification methods. The results from the wavelet-based snow detection method
will be presented in the second section of this chapter. Additional results are found in
Appendix C.

3.1 Rain detection

The results from the rain event detection are shown in Figure 3.1. The four methods
for detecting rain events were applied to the validation data set of 82 CMLs. The mean
MCC score was computed for time aggregation from 1 minute (no time aggregation) to
120 minutes. The SWWT and CNN methods show similar results at 1-minute aggre-
gation, but the CNN method quickly outperforms the SWWT after 30 minutes of time
aggregation. The STFT method performed somewhat well for 1-minute time aggrega-
tion but did not improve much with time aggregation above 30 minutes. Out of the four
methods, the RSD method did score the lowest.

In Figure 3.2, the MCC scores were plotted against the distance between the link and
the disdrometers to see if the MCC would decrease with the distance. From the figures
(Figure 3.2), it could be seen that up to a distance of 4 km, there was no clear sign of
decreasing performance with distance in predicting wet events, and none of the methods
stood out.

To see how the different methods predict wet events, they were compared over a short
period shown in Figure 3.3. For a week, from June 14th to June 21st, a CML in
the Trøndelag region was selected to further investigate. The CML from Trøndelag
was selected because it had rain, snow, and mixed events. The rain events and all
the predictions from the models were time aggregated up to 10 minutes. The true
positive events are indicated in green, where the methods predict a wet event when
the disdrometers measure the rain. The false negative events are in red and indicate
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missed rain events from the models, while the disdrometer recorded a rain event. The
false positive events are in yellow and indicted the false alarms, where the models would
predict rain in a non-rain event. From Figure 3.3, it can be seen that both the CNN
method and the STFT method do predict many of the rain events but also cause the
most false alarms among the models, especially the STFT. The CNN got an MCC score
of 42 %, and the STFT received a score of 31 % in the selected period. The SWWT
method misses some wet events but did not label too many dry events as wet according
to the disdrometer reference. The SWWT method got an MCC score of 36 %. As
expected, the RSD method seems to be the worst of the methods. With several missed
rain events and with an MCC score of 23 %, it is shown in Figure 3.1.

Figure 3.1: The average MCC score (line) and variance (shaded area) across
the 52 links. As the time aggregation increased, the MCC scores also rose but
slowly flattened out when aggregated. The CNN (convolutional neural network)
network) colored in green has shown to have the best performance. The SWWT
(sliding window wavelet transform) in blue was right behind the CNN method for
shorter time aggregations (>30 min). The STFT (short-time Fourier transform)
in red achieved medium results. The RSD (rolling standard deviation) had the
lowest MCC score.



3.1. RAIN DETECTION 33

Figure 3.2: MCC-score as a function of distance to disdrometer for three differ-
ent time aggregations, 1 minute, 10 minutes, and 60 minutes, and with the four
different methods. The SWWT (sliding window wavelet transform) method in
blue, the STFT (short-time Fourier transform) method in red, the RSD (rolling
standard deviation) method is in yellow, and the CNN (convolutional neural net-
work) method in green. There was no sign of a decrease in the MCC score as a
function of distance from the disdrometer.

Figure 3.3: An example of how the different methods performed compared to
each other. The TRSL levels are shown in (a), the ground truth from the disdrom-
eter is shown in (b), the RSD method from Schleiss and Berne (2010) is shown in
(c), the SWWT method is shown in (d), the CNN method from Polz et al. (2020)
is shown in (e), and lastly, the STFT by Chwala et al. (2012) is shown in (f). The
figure inspired by Polz et al. (2020).
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3.2 Snow detection

The results from the method for finding CMLs to use for training data of the SWWT
for snow classification are shown in Figure 3.4. This method is described in Section
2.5. Figure 3.4 shows all the combinations of the hyperparameters (Table 2.6) and
time aggregation. The three models combined with time aggregations for 1, 10, and 60
minutes resulted in nine plots. The model complexity is increasing from the top row
plots to the bottom, and the time aggregation is increasing from the left column of plots
to the right. The eight best (MCC>0.1) CMls from the data set were further used to
retrain the SWWT model for snow classification. The purple line shows the MCC score
of the validation set (second half of December 2021). The gray line showed the MCC
score of the testing data (first half of December 2021).

Figure 3.4: Training and testing for all of the 41 of CMLs from December 2021.
In gray is the training data set evaluation, and in purple is the test data evaluation.
The plots from top to bottom have increasing maximum depth and number of trees
of the random forest model, and the plots from left to right have an increasing
time aggregation. This figure was used to find CMLs with the best correlation
between snow and signal attenuation. CMLs with an MCC score greater than 10
% were selected for training data

The results of the retrained SWWT method trained with the best-performing CMLs for
snow classification are shown in Figure 3.5. The results show a very poor MCC score
that stays close to 0 % for all the time aggregations from 1 to 120 minutes. The first
and second standard deviation is also shown as shaded areas.
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Figure 3.5: The resulting MCC scores from the SWWT model trained with best-
performing CMLs from Figure 3.4. The shaded areas show the first two standard
deviations. From this figure, no correlation between snow and TRSL can be seen.

As with the rain detection method, a figure of a selected period for a CML in Trondheim
can be seen in Figure 3.6 with the predicted outcomes from the SWWT method (e).
The figure shows one of the CMLs from the validation set plotted with rain (b), snow
(c), and temperature (d) from the nearby disdrometer and weather stations. Again the
predicted values for snow are indicated in green, yellow, and red for true positives, false
positives, and false negatives, respectively. The figure shows a high amount of missed
snow events. Most correct and false predictions occur when the disdrometers show rain
events or higher air temperatures, indicating that the model did not learn how to detect
snow events. Showing the difficulties of detecting dry snow events.

To see the MCC scores of each CML from both the SWWT model for rain detection
and the SWWT for snow detection, they can be found in Figure C.2 and Figure C.1 in
Appendix C. The CMLs are ordered alphabetically by their name, which indicates the
region where to find the CMLs.
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Figure 3.6: An example of the snow classification method on a single CML. The
TRSL levels are shown in (a), in (b), the rainfall from the disdrometer is shown,
and snow events are shown in (c). The temperature is shown in (d), and the
predictions from the SWWT are shown in (e). Time aggregation of 10 minutes.
The figure is inspired by Polz et al. (2020).



4. Discussion

This chapter will discuss the results of rain and snow detection to address the thesis’s
primary goals on how wavelet transform can be used to classify rain and snow and how
CMLs can supplement snow measurements. The proposed research questions will be
discussed consecutively, starting with Research question 1 (Can wavelet transform
and machine learning be used to detect rain with attenuation data from commercial
microwave links?) followed by Research question 2 (Is it possible to distinguish
between periods with and with- out snowfall using the same methodology?) found in
Section 1.1. As there are some similarities between the rain and snow algorithms,
common uncertainties will be discussed more generally at the end of this chapter.

4.1 Wavelet transform as feature extraction

The results from Figure 3.1 showed that a discrete wavelet transform (DWT) as a
method for feature extraction coupled with a random forest classifier could detect rain.
This means that extracting useful information from the attenuation time series with
wavelet transform could be a viable option. CMLs have almost exclusively been applied
for rainfall-only situations, and as previously mentioned in this study, several rainfall
detection methods already exist. Testing a wavelet approach for rain detection was still
interesting, as it would serve as a feasibility check and give an idea of how it could be
used for other types of precipitation, such as snow.

Comparing the SWWT method to other methods showed that it did score better than
the STFT and RSD methods. Compared to the CNN method, the SWWT was not
far away for time aggregations up to 20 minutes. The differences between the SWWT
and CNN were apparent when aggregated further. As the temporal resolution of the
disdrometers was 10 minutes, the models were mainly compared at a 10-minutes time
aggregation. Therefore, the SWWT performed well compared with existing methods.
On the other hand, it is important to remember that the STFT method needed to
be fully optimized for large-scale usage, and it is unknown whether the STFT could
outperform the SWWT method.
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Usually, a classification algorithm’s MCC score between 0.2 and 0.5 would be considered
poor. In the papers by Chwala et al. (2012) and Polz et al. (2020), where they proposed
the STFT and CNN methods, respectively, both methods showed better results than in
this study. As seen in Figure (3.3), there are rain events that are captured by neither
method. Better data pre-processing routines could be done for the CML and disdrometer
data to improve the correlation scores. The result from the SWWT method compared
with the other three methods gave enough evidence that wavelet transform could pick
up important information that could be used for wet-dry classification.

Another important finding from the rainfall classification methods was that the MCC
score showed no apparent decrease with the increasing distance between the CML and
its closest disdrometer. This can be seen in Figure 3.2, where the MCC score for the four
wet-dry methods is plotted against the distance between CMLs and the disdrometers.
This may indicate that using CMLs could be useful when rain events cover larger areas
in space.

Looking closer into the differences between the methods, as exemplified in Figure 3.3,
it can be seen how the four methods work in a given case. The STFT and the CNN
methods tend to predict wetness for extended periods once they first find a wet event.
This is seen as there is a lot more yellow to be seen. This type of error is usually not
that bad, as the events colored yellow by the STFT and CNN often occur when there is
low attenuation anyway. On the other hand, if there is measured high attenuation, this
may lead to an overestimation in the rain intensity calculations.

For the SWWT method, it can be seen that it misses some rain events and that the
predictions made are sometimes delayed compared to ground truth observations. The
SWWT method also predicts shorter rain events compared with CNN and STFT meth-
ods. This could be an important feature that can further improve baseline estimation.
By being more exact in the prediction, it could be possible to model a more dynamic
baseline during a rain event compared to the current methods, where the baseline often
is set to a given attenuation level during the whole period.

4.2 The challenges with detection of dry snow

The results seen in Figure 3.5 from the SWWT model for snow detection showed no
correlation between TRSL and snowfall. Although the results from the example shown
in Figure 3.6 show that dry snow is difficult to detect, wet snow (a mixture of snow and
rain) may be possible to classify. Still, almost all the dry snow alone was undetectable.
During the few instances where the model predicts snow correctly, rainfall was also
present in the disdrometer data before or after. Although few studies have tried to
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classify dry snow in TRSL data previously, similar results found in this were found by
Pu et al. (2020). They concluded that dry snow had too little effect on attenuation
when using synthetic data.

It is likely that dry snow was not detected because it cannot be differentiated from the
surrounding air at the frequencies used in the CMLs found in the data. Most likely
due to the dielectric properties of dry snow particles, and when dry snow is compared
with liquid precipitation such as rain or wet snow, dry snow has a much lower dielectric
permittivity (Ori et al., 2014). This can also be seen below in Figure 4.1, where a
histogram from a single CML from Trøndelag shows the number of times a given level
of signal attenuation was measured and colored with respect to the precipitation type
classified by the nearby disdrometer.

Figure 4.1: The figures shows that snow (purple) and non-precipitation (gray)
events occur at the same attenuation levels most of the time. While higher levels
of attenuation are mostly caused by rain (blue). A nearby disdrometer made the
precipitation classification.

The operating frequencies for the available CMLs used in this study were between 30
GHz and 40 GHz. In a study by Amaya et al. (2014), where they conducted an exper-
iment on snow attenuation in Canada at a 20.2 GHz terrestrial microwave signal, they
found that snow-induced attenuation was somewhat modest with a 1-2 dB of attenu-
ation. According to a study by Renaud and Federici (2019), where they theoretically
investigated high-frequency attenuation using the Mie theory approach for electromag-
netic radiation, it was concluded that dry snow, rain, and air would be distinguishable
from around 100 GHz and above. Still, this may lead to challenges as detecting snow
with high-frequency (>80GHz) satellite microwave observations increase the noise levels
in the data (Liu and Seo, 2013).
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It is possible that the dry snow was not detected due to the snow-induced attenuation
having a pattern of attenuation that was not accurately captured in the low-resolution
sampling of the CML signal attenuation data. The CMLs used for this study use
a sampling rate of six instantaneous measurements per minute with an attenuation
resolution of 0.3 dB. If the snow had a very small but recognizable pattern, it could
have been seen if the sampling resolution of the RSL and TSL were higher.

As with the rain detection methods, some interesting observations can be seen when
looking closely into the results from a given period, as seen in Figure 3.6. There was a
time interval without rainfall observation right before the 19th of December. At the same
time, there was a significant level of TRSL and fluctuations and snow measurements from
the disdrometer. The cause of this phenomenon is not exactly clear. It would likely be
due to a transition phase between rain and snow, ice accumulation on the antenna, or
simply missing rain data from the disdrometer.

In an effort to simplify the snow classification model and, let it only rely on the TRSL
time series, the model did not use air temperature data. However, air temperature is an
important physical parameter when distinguishing between rain and snow. Figure 4.2
shows two plots. At the top, the hourly mean air temperature from a nearby weather
station of a CML and disdrometer in Trondheim was plotted against a set of wavelet
coefficients representing the fluctuations in the TRSL time series. Each point in that
figure represents a one-minute observation that is colored based on the prediction made
by the SWWT for snow classification. The bottom plot of Figure 4.2 shows the correct
precipitation types labeled by the disdrometer.

Figure 4.2 shows that very few of the snow events were correctly classified. Between
-7.5°C and -5°C, most of the measured snow can likely be considered dry snow, making
it difficult to detect. Between -2.5°C and +2.5°C, some snow-induced attenuation could
be seen, but this was most likely due to wet snow in a transition phase from cold to
warm weather. Therefore, it might have been possible to improve the detection of wet
snow if the air temperature had been included in the model. The SWWT for snow
detection did not mislabel many rain events.

For comparison, the SWWT model trained for rain was tested on the same December
2021 data from Trondheim. This is seen in Figure (4.3) and shows that the SWWT
model mislabels many dry events as rain where the temperature is between -2.5°C to
+2.5°C. This indicated that CMLs for precipitation estimation should only be considered
if the temperature is above +3°C. No time aggregation was used in both Figure 4.2 and
Figure 4.3. Therefore, the prediction from Figure 4.2 is somewhat different from what
is seen in Figure 3.6, where a 10-minute time aggregation was used.
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Figure 4.2: The figure shows two plots. At the top, the air temperature is
plotted against one of the wavelet coefficients, and the observations are colored
by the prediction made by the SWWT for snow classification. The bottom plot
shows the correct precipitation types labeled by the disdrometer.

Figure 4.3: The figure shows two plots. At the top, the air temperature is
plotted against one of the wavelet coefficients, and the observations are colored by
the prediction made by the SWWT for rain classification. The bottom plot shows
the correct precipitation types labeled by the disdrometer.
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Lastly, Norway’s two largest telecommunications network providers, Telenor and Telia,
are building and planning to expand their 5G coverage in Norway (Telia Norge AS,
2023; Telenor Norge, 2023). Although optical fibers are more common when expanding
telecommunication networks today, antenna towers with wireless communication are
currently being built. This may lead to more CMLs with higher operating frequencies
than those used in this study and could improve snow detection in the future.

4.3 Additional discussion
The rain and snow detection methods are based on the same algorithm, so they share
some common aspects that could be improved. Even though the main objective of this
thesis was to classify precipitation events in CML time series, the SWWT methods for
rain and snow need to be optimized with respect to the choice of a base wavelet function,
window size, and which wavelet coefficients to include. There are many base wavelet
functions to choose from. Wavelet transform offers an advantage over short-time Fourier
transform as it is not restricted to sine and cosine functions. It enables the selection of
various wavelet functions that can be customized according to the specific requirements
of the task. For this study, no testing with different wavelets other than the then Haar
wavelet was done.

When using the Haar wavelet, the window size was restricted to powers of two (Figure
1.4). There was a direct connection between how many wavelet coefficients are produced
and the selected decomposition levels. If, for instance, the method had included all the
decomposition levels from level 1 to level 10, a window size of 1024 minutes would be
needed, and there would be 1023 detail coefficients. This would have provided more
information but also miscellaneous details. Optimizing the window size and wavelet
function may not necessarily lead to a significant improvement in snow detection.

There also exist uncertainties in the data used in this study. In a study by Haugen
(2015), the OTT Parsivel disdrometer, used by SVV, scored the lowest compared with
other disdrometer models. The same study also shows that all the disdrometer models
have poor accuracy when detecting frozen precipitation, such as snow. The wind is the
main driver of the uncertainties in disdrometers and may increase the falling velocity of
the snow so that it is categorized as a heavier hydrometeor. Regarding the CML data,
there are some sources of uncertainties. Although an attempt was made to remove
the CMLs with the most noise and missing data, some CMLs in the data behaved
abnormally, had blackouts, or were generally more sensitive to atmospheric fluctuations.
Sometimes high rainfall intensities may cause blackouts in the CML attenuation time
series, leaving an empty gap. Even though more sophisticated methods for detecting
and filling the missing gaps exist (Polz et al., 2023), this was not done in this study. As
a result, a couple of high-attenuation events have probably been missed.



5. Conclusions

This study developed a new method for wet-dry detection in commercial microwave links
and tested the model for the rain and snow classification method using real-world data.
A frequency analysis technique was developed utilizing the discrete wavelet transform
to extract informative features from the signal attenuation time series in the microwave
links. Nearby disdrometers were used as ground truth reference as they could detect
both snow and rain and were available across Norway.

The method for detecting rain events was shown to perform at similar levels to other wet-
dry algorithms when tested on the data used in this study. Therefore research question
1 is answered, concluding that wavelet transform combined with simple machine learning
techniques can be used to distinguish between rain and no rain events. Still, it does not
perform better than advanced deep-learning techniques.

To answer research question 2, the methods from this study were tested on data from
a cold Norwegian winter period of December 2021. The findings suggest the correlation
between signal attenuation in microwave links with lower operating frequencies and
snowfall is low and that other parameters, such as air temperature, should be considered.

5.1 Further work

It remains to be seen whether CMLs could be used to detect snow at high frequencies
(>80GHz) and supplement traditional snow measurements. Therefore it is suggested
that high-frequency CMLs are looked into individually to see if any snow-induced atten-
uation can be found. Temperature data can also be included, as temperature models are
available on a larger spatial scale and could help indicate the precipitation type. Fur-
thermore, the absence of attenuation during snow events can be combined with other
remote-sensing techniques, such as weather radars. As the disdrometers are not an ac-
curate source of precipitation classification, especially for snow, further work should also
include better ground truth measurements.
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Appendix A. Maps of study the areas

Figure A.1: The map shows the ground instrumentation and CMLs from Ås.
In blue, one can see the rain gauges; in yellow, one can see disdrometers from
FROST API https://frost.met.no/index.html. In green, one can see four
wireless rain gauges from Barani design https://www.baranidesign.com/. The
true CMLs (red) coordinates have been fuzzed to hide their real locations.
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Figure A.2: The map shows the ground instrumentation and CMLs from Trond-
heim. In blue, one can see the rain gauges; in yellow, one can see disdrometers
from FROST API https://frost.met.no/index.html. The true CMLs (red)
coordinates have been fuzzed to hide their real locations.

https://frost.met.no/index.html
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Figure A.3: The map shows the ground instrumentation and CMLs from Dovre.
In blue, one can see the rain gauges; in yellow, one can see disdrometers from
FROST API https://frost.met.no/index.html. The true CMLs (red) coordi-
nates have been fuzzed to hide their real locations.

https://frost.met.no/index.html




Appendix B. Spatial distribution of CMLs

Figure B.1: A map illustrating the spatial distribution of the training/testing
CMLs (red) and validation CMLs (blue) for the rain detection method. The maps
do not show the true location of the CMLs.
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Figure B.2: A map illustrating the spatial distribution of the training/testing
CMLs (red) and validation CMLs (purple) for the snow detection method. The
maps do not show the true location of the CMLs.



Appendix C. Validation of each CML
This text is white.

Figure C.1: Results from the SWWT for all CMLs for snow classification
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Figure C.2: Results from the four methods for all CMLs for rain classification



Appendix D. Python code: SWWT

1 def DWT(window_frame):
2 coeffs = pywt.wavedec(window_frame,'haar',level=8)
3 # level=4 for the snow detection version

4 cA8,cD8,cD7,cD6,cD5,cD4,cD3,cD2,cD1=coeffs
5 # cD1,cD2,cD3,cD4 used in snow method

6 return np.concatenate((cD4,cD5,cD6,cD7,cD8))
7

8 def sliding_window_DWT(signal):
9 window_size=2**8 # Power of 8 because of 8-level

decomposition↪→

10 nWindows = len(signal) # Number of windows

11 # Empty array for the results

12 result = np.empty((nWindows,2**5-1)) # 31 detail coefficients

13 x=np.empty(window_size//2,dtype=object) # Center the window

frame↪→

14 vec=np.concatenate((x,signal,x))
15 # Sliding the window over the signal.

16 for i in range(nWindows):
17 startIdx = i
18 endIdx = startIdx + window_size
19 tempIdx = slice(startIdx, endIdx) # indexing the window

20 result[i] = DWT(vec[tempIdx]) # Store the result in an

array↪→

21 # Pad the start and ending to keep the same size

22 result[0:window_size//2]=np.nan
23 result[-window_size//2:]=np.nan
24 return result
25

Figure D.1: The two Python functions that were used when extracting wavelet
coefficients for the SWWT method. The wavelet coefficients are then given to a
Random forest classifier.
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