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Abstract 

 

Traditional techniques in aquaculture are time-consuming, laborious, has limited 

accuracy and are expensive. They are being replaced by modern day technologies and 

methods like IoT and artificial intelligence. Scientific techniques are more efficient, cost-

effective, autonomous and accurate in the field of aquaculture. Fish classification is one 

of the popular domains where much research is being done. It is being made autonomous 

and more accurate by use of deep learning methods. Fish classification has a vital role in 

aquaculture to make it more sustainable in case of production and maintain a proper 

monitoring system.  

In this thesis, we have studied and proposed a Vision transformer (ViT) deep learning 

model to classify fish images. We have explored the performances of proposed ViT 

model along with other two state-of-the-art performing deep learning architectures like 

VGG16 and Inception V3. The mentioned three deep learning models were trained on 

three different publicly available datasets. Additionally, the three architectures were used 

when pre-trained on large-scale image database (ImageNet) and without pre-training too. 

The pre-trained and non-pretrained frameworks were additionally trained on the three 

image datasets by applying seven different augmentation techniques and also without 

any augmentation. Their performances were studied and compared to evaluate which 

framework gives better results.  

In all the alternate conditions applied, the Vision transformer showed stable results with 

high performance values. VGG16 and Inception V3 also demonstrated promising results 

but under the varying conditions applied ViT is steadier and reliable. We used accuracy 

as performance metrics for all three frameworks.  

 

Keywords: Fish Classification, Smart aquaculture, VGG16, Inception V3, Vision 

Transformer, deep learning  
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1 Introduction 
 

1.1 Fish facts 

 

Fish and seafood products have been one of the important parts of the human diet. 

Nutritionists recommend consuming fish products about two times a week, since they 

are valuable in terms of nutrition to humans [4]. Recent and past studies show that fish 

are rich in fatty acids, proteins, peptides, Vitamins, selenium, calcium and amino acids 

that are well known for positive health effects when consumed [5]. Fish products being 

rich in nutrition and beneficial to human health, the demand for such products has been 

growing intensely. We have described the nutritional facts from fish and its products in 

Figure 1. 

Aquaculture has been one of the major sources of fish and raw materials for various sea-

foods. As per a recent study done by FAO, about 178 million tons of aquatic animals are 

produced globally from which 157 million tons are consumed by humans, that is about 

89% of the total productions [6]. This shows that the human population mostly feeds on 

aquatic products for their diet. In a world fisheries review, FAO has stated that fish covers 

about 20 percent or likely higher amount of animal protein consumption in low-income 

food-deficit countries (LIFDCs) [7]. Fish being affordable and beneficial, its 

consumption will likely continue to increase with time. 

Figure 1: Nutrients available in fish (products). 
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1.2 Aquaculture in general 

 

Aquaculture has been efficient all around the world to produce and supply such huge 

needs. In order to keep it efficient, the aquaculture industry will also be required to adopt 

modern methodology and technologies. Aquaculture is mostly practiced by countries 

with large water bodies such as Norway, Denmark, China, USA, India, Bangladesh and 

so on [8]. Traditional methods in aquaculture will not be able to meet the required 

production level as they are mostly manual and require a longer time period to get results 

for a task. We can take the examples of tasks like detection, segmentation and 

classification of fish in a farm which are still not fully automated. Performing these tasks 

manually can take long, but introducing present day technologies like deep learning 

methods can make those tasks automated and be completed much faster with great 

accuracy and results [9].  

Aquaculture can be generalized as a combined industry which is dependent upon water 

resources and the aquatic animals. It represents the organized nurturing, feeding, 

controlling, protecting and analyzing aquatic resources and animals for commercial or 

research purposes [10].  

 

1.3 Smart Aquaculture 

 

Smart aquaculture can be referred to as the implementation of present day technologies 

such as machine learning and cloud computing in the field of a controlled fish farm [8]. 

Like any other evolving industries, aquaculture is also leading towards a new standard 

of production with application of modern development methods and ideas. Smart 

Aquaculture includes integration of various smart devices in the aquatic environment 

which allows it to monitor the environment and also collect data [11]. Integration of 

smart devices and automatic data collection allows the aquaculture to be controlled and 

managed by application of IoT, artificial intelligence, cloud computing and robotics [12]. 

This all leads smart aquaculture towards automation and smart production with greater 

accuracy and precision. Application of artificial intelligence in aquaculture has been 
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increasing as it is proven to be capable of solving problems of traditional aquaculture 

systems [13]. 

Available data can be considered as one of the major elements to make smart aquaculture 

applicable. Data can be available in many forms like image, text and audio which might 

be high dimensional and complicated to handle [8]. These data can be used by deep 

learning methods that can give the results for specific tasks. There are already numerous 

artificial intelligence models that are dependent on data and can give out valuable 

information for smart aquaculture [14].  

Traditionally, the tasks like monitoring and controlling of an aquaculture farm was 

dependent upon expert knowledge, outlines and heuristics. The traditional methods can 

be time consuming and are continuously exposed to human error. Beside traditional 

methods including human interactions, many traditional machine learning algorithms 

like K-means, Support Vector Machines (SVMs), Random Forest (RF) are already 

applied in the field of aquaculture. However, these methods have not been efficient 

enough to provide expected outputs as they are not capable of extracting deep features 

from available data [9]. Deep learning can overcome the weaknesses of traditional 

machine learning methods and provide significant results. Deep learning methods have 

significant contributions on different applications like object recognition, classification, 

speech recognition, object detection and other fields also [15]. The performance and 

output of these models also depends upon how they are being applied for the given input.  
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1.4 Thesis objective 

 

Detection and classification of fish species in an aquaculture is one of the major tasks. 

Deep neural networks can be used to perform these tasks with various sizes of datasets 

to get desired outputs. Fish classification problem in deep learning has been a topic of 

interest in the field of computer vision and machine learning [16]. Various deep learning 

networks have been studied and applied for the multi-class problem of fish classification. 

However, there has not been much exploration of the popular methods being used for 

such tasks. Many well-known models like ResNet, DenseNet, VGG, RNNs, Inception 

and others have been applied for fish classification for small to large datasets [9]. These 

models are well known for classification and detection tasks with high accuracy. 

The core purpose of our study is to investigate results of the few popular deep learning 

models with different conditions and contrasting datasets. We have also studied and 

applied Vision Transformer (ViT) [3], a recently developed deep learning model in 2021 

for fish image classification. Vision Transformer has gained its popularity for 

outperforming Convolutional Neural Networks (CNNs) [40]. We have studied the results 

of three different deep learning models including ViT for three different publicly 

available datasets under various conditions. From our conclusion, we can sum up that 

ViT performs better in case of fish image classification.  
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2 Related works 

 

Smart aquaculture has been a field of interest for study and application. Many deep 

learning methods have been applied in this field. Some of the most popular applications 

of deep learning in smart aquaculture are: Fish identification, fish species classification, 

fish size estimation, automatic segmentation, and intelligent diagnosis of fish behavior 

[8]. These applications are primarily focused on fish and its production than other aquatic 

animals. Besides fish, shrimps and lobsters are other aquatic animals that has been in 

highlights considering their demands and products. We went through some of the 

publications that have shown the impact of deep learning in aquaculture relative to fish.  

 

2.1 Fish identification 

 

Fish identification is widely used to identify fish under deep water or in their natural 

habitat. Lee et al. have studied the application of fish identification using contour 

extraction under a controlled environment [17]. In their study they used a high-resolution 

underwater color camera to collect the colored images of the fish. The high-resolution 

camera images allowed them to separate fish from the complex background. They have 

mostly used image processing techniques like background subtraction, edge detection 

and contour matching to identify fish. However, their major purpose was to monitor the 

fish migration patterns.  

Moreover, an automated identification of fish was developed with  consideration of 

visual features and using a 32 deep layered convolutional neural network [18]. The 

proposed method first preprocesses fish images to extract visual features using Scale 

Invariant Feature Transform (SIFT) algorithm. Based on the extracted visual features, 

the deep CNN learns to identify fish images. The performance of such deep CNN was 

compared to other deep learning models like VGG16, ResNet-50, LeNet-5 and 

GoogleNet [18].  

Another real-time fish identification was developed using You only look once (YOLO) 

deep learning framework [19]. The authors have used a large dataset of fish images to 
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identify reed fishes in real-time. Unlike other systems, their system could successfully 

identify reef fishes in real-time with high accuracy. Their achievement was the 

identification of reef fish in live video feed. Their system can be improvised by including 

features and data augmentation techniques. Beside these, there are other traditional as 

well as recent studies being done to identify fish more accurately and feasibly. This can 

aid smart aquaculture to be more autonomous and advance under various conditions.   

 

2.2 Fish Species Classification 

 

Fish species classification is another topic that has been of interest for researchers. 

Classification of fish species can contribute to understanding aquaculture more and also 

learn fish behavior in Ichthyology [16]. There have been approaches with and without 

machine learning to detect and classify fish. In case of approaches without machine 

learning, L. M. Wolff et al. [20] proposed a fish detection method using sonar imaging. 

The system was tested and shown to be effective in shallow water environments during 

a field experiment. Such models can be improved by incorporating it with deep learning 

algorithms.  

CNNs are one of the powerful deep learning frameworks for image classification [21]. 

Dhruv et al. [16] classified fish species on a fish image dataset using CNN with an 

accuracy of 96.29%. An additional step of noise removal was performed on the images 

to get the best results.  Similarly, Parnav et al. [21] proposed and compared two CNN 

based approaches to classify 23 different species of fish. Two versions of VGG16 models 

were studied and compared: scaled-down VGG16 (VGG8) and traditional VGG16. The 

VGG8 gave an accuracy of 98.25% and VGG16 gave 96.07%. The author mentions that 

larger networks can lead to overfitting with smaller datasets. Simpler models like VGG8 

can be applied to classify fish under restricted conditions like limited hardware and small 

datasets [21].  

Additionally, there have been other works that focus towards automatic fish classification 

using other deep learning approaches and integrating other methods with deep learning. 

AlexNet and VGGNet have been implemented and studied with inclusion of dropout 
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layers for automatic fish classification [22]. AlexNet has also been combined with a naïve 

Bayesian layer to enhance classification capability [23].  

 

2.3 Intelligent diagnosis of fish behavior  

 

Another important application of deep learning in aquaculture is fish behavior analysis. 

Regular monitoring, reporting on fish behavior in their habitat can be used to monitor 

water quality and also to get warnings on fish diseases [9]. Fish behavior diagnosis can 

also be used to optimize real-time feed control in an aquaculture [24]. A practical method 

was developed by Zhao et al. [25] by using a modified version of influence map and 

recurrent neural network (RNN) to monitor local unusual fish behavior in a fish farm 

environment. Firstly, the fish were detected and tracked by using a motion influence map. 

Such maps were generated by preprocessing fish images from the farm by application of 

particle advection scheme. They also made use of the minimum distance matrix 

framework for localization and detection. At last, through their customized RNN, they 

successfully localized unusual behavior. They have claimed their method to perform 

better than other state-of-art frameworks. 

An efficient end-to-end CNN was proposed by Iqbal et al. [24] to classify the fish 

behavior into two categories. They defined two classes for fish behavior: Normal 

behavior and starvation behavior. The experiment was carried out by use of a differing 

number of fully connected layers and by including, excluding the max pooling layer. A 

laboratory-based dataset was used in the study where it contained 100 black scrapers. It 

was concluded that CNN architecture with max pooling and extra numbers of fully 

connected layers gave more accurate results. This method can be also used for detection 

and classification of fish species. However, without well study it cannot be concluded as 

the best performing architecture.  
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2.4 Automatic Fish Segmentation 

 

Fish segmentation deals with structure or form of fish which includes fish body length, 

width, eye diameter and other external features. It is one of the critical pieces of 

information required in smart aquaculture and marine-culture [26]. As the fish demand 

is increasing, the rate of fishing in open waters have also increased rapidly. In this race 

of fishing, large number of caught fishes are discarded as they were not the right species 

or size that fishers were looking for. This all leads towards overfishing and endangering 

certain fish species [27].  R Gracia et al. [27] have put forward an image-based method 

for automatic fish segmentation in-order to lower the number of undersized being fished. 

They have used Mask R-CNN to segment the fish images that were preprocessed. In-

order to gain the correct estimation of outline for each fish the segmented images are 

refined by applying local gradients. Mask R-CNN is also seen to be useful to determine 

the boundaries of fish in overlapping fish cases. The segmentation performance in their 

work is measured by using Intersection of Union (IoU) and pixel accuracy metrics. 

Similarly, Yu, Chuang, et al. [26] have also implemented Mask R-CNN for fish 

segmentation and extraction of morphological features of fish in fish images. They have 

conducted the study with images having varying backgrounds.  

Alshdaifat et al. [28] have put forward an improved deep learning framework for fish 

segmentation, stating the issue with other ideas that used static images instead for 

segmenting fish in their natural habitat or under water. They have overcome the issues 

with underwater videos like presence of noise, other underwater creatures and bad 

lighting environments. Their work is divided into four major steps which includes pre-

processing of videos to enhance detection, use of RESNET deep learning model to 

increase the detection, application of Region Proposal Network (RPN) framework to 

detect multiple fish in the video and lastly, use of dynamic instance segmentation [28]. 

While comparing their model performance with other highly used models like Mask R-

CNN, LACT, and CASCADE R-CNN, their model showed better performance with 

higher accuracy rate. 
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2.5 Fish size estimation and counting  

 

In-order to maintain a required number of stock and profit in the fish farm sector, the 

farm needs to have a proper way of counting and estimating the number and size of the 

fish present. The traditional methods of doing so are manual, time consuming and 

expensive [29]. Recently, Petrellis, N. [30] provided a method for estimating fish’s 

length, height and area by combining edge detection and pattern stretching methods. He 

took four fish species in account for the study and application of the proposed method 

where the morphological features were extracted using image processing techniques. 

After feature extraction the segmentation was carried out using Mask R-CNN. Since 

neither Mask R-CNN nor Mask R-CNN with GrabCut was able to detect the counter, he 

used an implementation of OpenCV with GrabCut [31]. He then used annotated 

landmarks to calculate the fish length and height. Similarly, Álvarez-Ellacuría, Amaya, 

et al. [29] have also implemented Mask R-CNN for the estimation of European hake 

length without any image preprocessing techniques.  

Deep learning methods have also been implemented in counting fish which has made the 

job autonomous and less costly. CNN has been applied by French et al. [32] to count and 

monitor the fish from available video data. They have used N4-fields image 

transformation method for foreground segmentation to distinct fish from its background 

and foreground pixels. A CNN based regressor was used to map input patches and output 

patches we added back to output images. The output images were scaled base on the 

mean of corresponding pixels. This method is proposed for real time counting and even 

for high resolution video streams.  

All above-mentioned categories have been well studied and various methods have been 

put forward. Although there are frameworks that are claimed to have highest accuracy, a 

comparative study of such methods with newly introduced algorithms are required. Table 

1 gives a general informative summary of the works that were published in the past which 

is related to our study. They have provided their own applications of deep learning 

methods in the field of aquaculture to solve various issues. These ideas and works are 

taken as references for our study to grab ideas and information. 
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Table 1: Summary on relative studies done for deep learning with aquaculture. 

Title Application Method used Accuracy  Dataset details 
Publishe

d year 

Contour 

Matching for 

Fish Species 

Recognition 

and Migration 

Monitoring 

[17] 

Fish 

identification

, fish 

migration 

monitoring 

TADA 

(Trace-

Augmented 

Discriminativ

e Analysis) 

(not deep 

learning but 

an 

introduction 

to 

possibilities 

in 

advancement)

,  

73.3 % 

Video recording 

of fish in 

natural habitat 

2008 

Visual features 

based 

automated 

identification 

of fish species 

using deep 

convolutional 

neural 

networks [18] 

Fish 

identification  

31 layered 

deep CNN 
96.63 % 

images of 11 

species of fish 

found in the 

local market. 

2019 

Real-time reef 

fishes 

identification 

using deep 

learning [19] 

Fish 

identification 

You only 

look once 

(YOLO) 

90.70% 

images of 24 

species of reef 

fish 

2020 

Imaging sonar-

based fish 

detection in 

shallow waters 

[20] 

species 

classification 

Sonar-based 

fish detection 

Not 

mentioned 

but 

data are 

collected by 

BlueView 

imaging sonar 

system  

2014 
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Underwater 

Fish Species 

Classification 

using 

Convolutional 

Neural 

Network and 

Deep Learning 

[16] 

fish species 

classification 
CNN 96.29% 

Fish4Knowledg

e dataset was 

created by 

researchers at 

the University 

of Girona 

2017 

Towards 

Designing the 

Best Model for  

Classification 

of Fish Species 

using Deep 

Neural  

Networks [21] 

classification 

of fish 

species 

VGG16 and 

VGG8 

98.25 % for 

VGG16 and 

96.07 % for 

VGG8 

Fish4Knowledg

e  

Project at the 

University of 

Edinburgh 

2020 

Automatic 

Fish Species 

Classification 

Using Deep 

Convolutional 

Neural 

Networks [22] 

Fish species 

classification 
AlexNet 86.65% 

QUT fish 

dataset 
2021 

Naive 

Bayesian 

fusion based 

deep learning 

networks for 

multisegmente

d classification 

of fishes in 

aquaculture 

industries [23] 

Fish species 

classification 

AlexNet with 

Bayesian 

fusion 

98.64 % 

‘Fish-Pak’ image 

dataset 

2021 

Modified 

motion 

influence map 

and recurrent 

neural 

network-based 

monitoring of 

the local 

fish 

detection, 

localization 

and 

recognition 

Customized 

RNN 

98.91%, 

91.67% and 

89.89% 

dataset from 

Zhejiang 

University 

2018 
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unusual 

behaviors for 

fish school in 

intensive 

aquaculture 

[25] 

Intelligent 

Diagnosis of 

Fish Behavior 

Using Deep  

Learning 

Method [24] 

Fish 

behavior 

diagnosis 

end-to-end 

CNN 
98% 

dataset from 

China 

Agricultural 

University, 

Beijing. F 

2022 

Automatic 

segmentation 

of fish using 

deep learning 

with 

application to 

fish size 

measurement 

[27] 

fish 

detection, 

localization 

and 

recognition 

Mask R-CNN 99.40% 

data obtained 

from cruises in 

North Atlantic 

2020 

Segmentation 

and 

measurement 

scheme for 

fish 

morphological 

features based 

on Mask R-

CNN [26] 

Fish 

segmentation 
Mask R-CNN 

based on 

segmentatio

n 

samples from 

Hainan 

University 

Marine College 

Aquaculture 

Professional 

Production and 

Research Base 

2020 

Improved deep 

learning 

framework for 

fish 

segmentation 

in underwater 

videos [28] 

Fish 

segmentation 
RESNET 3 95.16 

Fish4Knowledge 

dataset 

2020 

Measurement 

of Fish 

Morphological 

Features 

through Image  

Fish size 

estimation 

Mask R-

CNN, 

VGG16 

various 

accuracies 

as per the 

fish height, 

dataset of four 

Mediterranean 

fish species 

2021 
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Processing and 

Deep Learning 

Techniques 

[30] 

length and 

area 
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3 Theoretical background  

 

This thesis involves terminologies mostly related to deep learning frameworks. This 

section consists of general explanation of terms like deep learning, image augmentation 

and transfer learning with their working mechanisms. 

 

3.1 Deep learning  

 

Deep learning is an extension of a machine learning algorithm that is based on an 

artificial neural network [8]. It provides learning ability to machines through a series of 

algorithms which enables them to perform various tasks. Deep learning and machine 

learning were built to make tasks autonomous and more machine dependent. The most 

distinct characteristic of deep learning is, it uses multiple levels of representation for 

learning. It also enables deep learning to extract features from input and represent them 

in higher form of representation [9]. Deep learning (DL) can be viewed as a derivation 

from the concept of artificial intelligence (AI) and machine learning (ML). They are 

similar in a way since they all are used to provide intellectual characteristics to a machine 

through various ways. 

Figure 2: Contrast between machine learning and deep learning. 
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Both DL and ML are subspace of AI but they are different in case of techniques and 

scope. As shown in Figure 2, ML has more of a manual task like solving each task by 

dividing it into smaller pieces and adding them at the end to get output or a solution. This 

trait of ML makes it slow and costly for applying it into real world large problems [33]. 

However, DL on the other hand overcomes this issue and is much more flexible. It has 

complicated neural network layers that increases its computational power and enables it 

to handle complex problems of the real world. Traditional ML lacks the feature to extract 

essential features of data which is fulfilled by DL by automatically extracting those 

important features [9].  

DL is further categorized into supervised and unsupervised learning. Supervised learning 

in DL uses labeled data for learning and to map the input to output. Whereas in 

unsupervised learning, it deals with data that have no labels and finds patterns without 

any supervision [8]. CNNs and recurrent neural networks (RNN) are popular supervised 

deep learning frameworks. Generative adversarial network (GAN), Restricted 

Boltzmann machine (RBM) and Autoencoders (AE) are few unsupervised DL models. 

RNN and CNN are widely used in the field of machine vision which enables machines 

to detect, segment and classify images or videos [8]. They are also popular in the field of 

aquaculture. We have applied three different frameworks to give a conclusive, best 

performing model by comparing them with different conditions.  

 

3.2 Transfer learning  

 

Deep learning is setting a base for most of the artificial intelligent applications. Image 

classification is among such applications where deep learning is being applied to classify 

images to a set of possible categories [34]. Classification of images through deep learning 

can be eased by use of transfer learning. Transfer learning is a method used in a deep 

learning model where the model uses knowledge which is learned from its previous task 

to a new task. A model including transfer learning can be referred to as a pre-trained 

model. Use of such a pre-trained model saves resources, time and improves the efficiency 

while a new model is being trained [34].  
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Image classification for a large dataset can be a challenging task, it can be simplified by 

using models that are already trained with a set of another large image dataset. For this 

specific study we have used pre-trained models that are already trained with the 

ImageNet [35] database. We have also compared the performance of such models 

without transfer learning. The following four general steps are used during transfer 

learning: [36] 

i. A pre-trained model is initialized. The model learns from a larger dataset, like 

ImageNet in our case.  

ii. The final layer of the desired model is set with the number of classes present in 

the new dataset. 

iii. The layers are tuned or changed as per desire.  

iv. Model is trained on a new dataset to get the results.  

Transfer learning comes along with its drawbacks too. One big limitation of transfer 

learning is, it also transfers the non-relative knowledge which can also be called negative 

transfer. Negative transfer causes decrease in performance of the new model if the target 

problems of both models are not quite similar [37]. Overfitting is another highlighted 

drawback of transfer learning. Overfitting in deep learning is when the model gets a good 

fit for the seen training data but fails to fit on new, unseen data. In transfer learning, 

Figure 3: Transfer learning in a picture. 
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overfitting occurs when the pre-trained model learns noises and details from a large 

dataset and overly fits on the new training data [37].  

 

3.3 Image Augmentation 

 

Performance of a deep learning model also depends upon the amount and variety of data 

that is provided while training it. So, in-order to enhance its performing capacity we can 

bring alterations in data making it large in number and variations. Augmentation is one 

of the solutions to bring such alterations in data. Image augmentation deals with one or 

many alternating processing steps applied to image data. Rotation, shifts, shear and flips 

are some of the popular image augmentation techniques being used in DL.  

APIs like ImageDataGenerator [38] from Keras can be used to generate the augmented 

images in real-time. We have used the same to generate images using various image 

augmentation techniques. Figure 4 shows results of the mentioned augmentation methods 

applied to an input fish image. From this it can be visualized that through this method a 

single data can be used in various forms. These newly augmented images can be used by 

the proposed model for pre-training which as a result can enhance the performance. 

Moreover, there are other data augmentation techniques but the ones we have chosen are 

most commonly used and bring variations in input images also.  

train_gen = ImageDataGenrator( 

rotation_range=20, 

width_shift_range=0.1, 

height_shift_range=0.1, 

shear_range=0.1, 

zoom_range=0.2, 

horizontal_flip=True, 

vertical_flip=True) 

The block of code above shows the use of image augmentation techniques like rotation, 

width shift, height shift, shear range, horizontal flip and vertical flip through the use of 

ImageDataGenerator. The given values show the amount of such techniques being 

applied to the input images.  
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Figure 4: Various image augmentation methods. A: Original Image, other images are results of 

augmentation methods applied to original image. B: with rotation range 20, C: with height shift 

range 0.1, D: with width shit range 0.1, E: with shear range 0.1, F: with zoom range 0.1, G: with 

horizontal flip set as and H: with vertical flip set as true. 
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4 Methodology 

 

As mentioned in thesis objectives, we have used three different deep learning and tried 

to understand and compare the performances of those models under different conditions 

using three different publicly available datasets. The three different models are: Vision 

Transformer (ViT), Visual Geometry Group 16 (VGG16) and Inception V3. This section 

gives more information about those models and insights to their operations. The results 

of these models will be explained later in the result section of the thesis.  

 

4.1 Vision Transformer  

 

Vision Transformer (ViT) is the implementation of transformer architecture in the 

domain of computer vision. Transformer architecture is well known for its impressive 

results in the field of natural language processing through the implementation of attention 

[3]. Dosovitskiy et al. [3] with aim to classify images with better performance results 

than the state-of-art model like CNN, applied the transformer architecture directly to 

images. In short, the model works by splitting the image into patches and a transformer 

gets the linear embeddings of such patches as input. The patches are handled as tokens, 

like words are handled in Natural language processing applications [3].  

Figure 5: Architecture of the Vision Transformer (ViT) [3]. 
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Figure 5 illustrates the steps involved in a ViT proposed by Dosovitskiy et al. Moreover, 

they have also explained how CNN can be used before the transformer encoder in their 

model. As per them, CNN feature maps can be used to generate image patches by feeding 

the original image as input before it passes through the transformer encoder. In order to 

handle various data sizes, they proposed three different variants of ViT: ViT-Base, ViT-

Large and ViT-Huge with 12, 24 and 32 layers respectively. ViT models can also be pre-

trained with larger training datasets like ImageNet and also fine-tuned.  

In this thesis, we have used the keras implementation of the vision transformer model 

present in GitHub repository [39]. It reflects the models explained by Dosovitskiy et al. 

in their paper, an image is worth 16x16 words: Transformers for Image recognition at 

scale. We have used the 32 layered ViT-Huge model from the mentioned github 

repository. In-order to use the package it was first installed by using the pip install 

vit-keras command. A clear picture of this model being used is shown in Figure 6. It 

has transformer architecture, self-attention layer and feed-forward layer. 

First of all, the input image of height H, width W, and C number of channels is divided 

into patches. This is done to match the structure of input of the transformer model. This 

Figure 6: Architecture of proposed ViT model. 
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gives the number of patches N as an output where 𝑁 =
𝐻𝑊

𝑃2
 and (𝑃, 𝑃) pixels are the 

resolution of each patch.  

A series of operations are applied to the input data before it is fed into the transformer. 

The operations are [40]: 

1. All image patches are flattened into a vector, 𝑋𝑝
𝑛 whose length is 𝑃2 × 𝐶, where 

𝑛 = 1,… , … ,𝑁. 

2. The flattened patched with a trainable linear projection, E are mapped to D 

dimensions and a sequence of embedded patches are generated.  

3. 𝑋𝑐𝑙𝑎𝑠𝑠 , a learnable class embedding is arranged to sequence image patches. 

4. Finally, the patch embeddings are augmented with 𝐸𝑝𝑜𝑠  , one-dimensional 

positional embeddings.  

The output from these operations is the sequence of embedding vectors [40] [3]: 

𝑧0 = [𝑥𝑐𝑙𝑎𝑠𝑠: 𝑥𝑝
1𝐸;… ; 𝑥𝑝

𝑁𝐸] + 𝐸_𝑝𝑜𝑠 

The classification is carried out by passing 𝑧0 as input to the transform encoder consisting 

of L layers. Afterwards, the classification head gets the value of 𝑥𝑐𝑙𝑎𝑠𝑠 present at 𝐿𝑡ℎ 

layer of encoder output [40]. 

The main function used to define the model is: 

model = vit.vit_l32( 

    image_size = (224, 224), 

    activation = 'softmax', 

    pretrained = True, 

    include_top = False, 

    pretrained_top = False, 

    classes = 20) 

‘vit_132’ specifies the architecture of ViT being used, here we are using the 32 layered 

architecture. ‘image_size’ defines the size of input images to the model, ‘activation’ is 

used to specify the activation function as per the case model is being used. ‘pretrained’ 

specifies whether the model uses the pre-trained model, ‘include_top’ defines if the 

classification layer of the pre-trained model is included or not. ‘pretrained_top’ describes 
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whether to include pre-trained weights for the layer and finally ‘classes’ shows the 

number of classes present in the target dataset.  

 

4.2 VGG16  

 

VGG16 is one of the best performing convolutional neural net architectures that performs 

better than architectures like AlexNet [21]. It is known for its performance on ImageNet 

competition during 2014. It was developed by K. Simonyan and A. Zisserman with an 

accuracy score of 92.7% on ImageNet dataset and had more capability with improvement 

[1]. VGG16 is a deep convolutional network with 16 layers in which the input layer is 

224x224 RGB having convolutional layers of 3x3 filter and stride1. They have the same 

max-pooling layer of 2x2 filter and stride 2 where the input images are reduced. VGG16 

has  contributed for image classification tasks with positive improvement in CNN [1]. 

Figure 7 shows an overview of VGG16 architecture.  

In this study, we have used the keras implementation of VGG16. We have used the 

imagenet weights for transfer learning and for without transfer learning, we have built 

the VGG16 model from scratch.   

 

 

Figure 7: VGG16 model architecture [1]. 
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4.3 Inception V3 

 

After development of deep CNNs like VGG16, Szegedy, Christian, et al. [2] proposed a 

modified inception architecture that is deep CNN and focused on less use of 

computational power. It is primarily used for image analyses and object detection. Figure 

8 shows a diagram of inception v3 architecture with the layers involved.  

The input for the model is of size 229x229 RGB, which is preprocessed by subtracting 

the mean RGB value from the training set from each pixel. The first convolutional and 

pooling layers are responsible for extraction of low-level features from the input image. 

The inception architecture used in inception v3 are concatenations of various blocks of 

convolutional layers that differ in filter sizes. Such combinations of convolutional layers 

contribute the model to learn features at inconsistent scales and resolutions. It is also the 

main reason for the lower number of parameters in this architecture. Auxiliary classifiers 

are also used by the models to aid the training process. These classifiers empower model 

to learn important features and outline the output beforehand. Output layer of the model 

consists of a softmax layer that gives the probability distribution of different classes.  

We have used the keras implementation of Inception V3 proposed by Szegedy, Christian, 

et al. in their paper Rethinking the Inception architecture for computer vision [2]. Like 

ViT and VGG16 we have used weights of imagenet for transfer learning.  

 

Figure 8: Inception V3 architecture with its layers [2]. 
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5 Experimental results 

 

Most of the model and analysis were done on a personal computer with an Intel(R) core 

(TM) i5-8265U CPU @ 1.60GHz 1.80GHz and 8.00GB of RAM. The PC has windows 

10 as base operating system and google colab was used. However, for deep convolutional 

networks like Inception v3 without pre-trained weights, Orion server provided by the 

university was used. Inception V3 without transfer learning took a longer time period to 

train, hence Orion was used. In this chapter of the thesis, we will discuss datasets and 

results of various models with conditions that we tried.  

 

5.1 Dataset description 

 

The datasets used in this study were publicly available in Kaggle, a public online platform 

for data scientists. We have selected three fish image datasets that have different species 

of fish images.  

 

5.1.1 Fish species dataset 

 

The first image dataset was published by Giannis Georgiou [41] in 2020 titled fish 

species. The fish species dataset consists of images of 20 different Mediterranean fish 

species. It contains train and test set each having 34,000 and 6,000 images respectively. 

There are 1,700 images of each species in the train test whereas, in the test set there are 

300 images per species. This was a big number of images for us so we decided to further 

select 100 images from each species in the train set and 20 images from each species in 

the test set. So, for training our models we had 2,000 images for the train and 400 images 

for the test. The sub division of images into desired numbers was done by simply creating 

a function that randomly selects the defined number of images into the sub folder that 

was defined in the function itself. The species of fish present in dataset are: Solea solea, 

Pseudocaranx dentex, Polyprion americanus, Chlorophthalmus agassizi, Rhinobatos 

cemiculus, Coris julis, Gobius niger, Squalus acanthias, Mugil cephalus, Tetrapturus 
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belone, Trachinus draco, Anthias anthias, Atherinomorus lacunosus, Boops boops, 

Trigloporus lastoviza, Belone belone, Phycis phycis, Dasyatis centroura, Epinephelus 

caninus and Scomber japonicus. The images had varying backgrounds and conditions 

while taken. Figure 9 shows the sample images of each species present in the dataset.  

 

5.1.2 Fish Dataset 
 

The second image dataset is also taken from Kaggle. It was published by Mark Daniet 

Lampa et al. [42] that had images of 31 fish species present in Marinig fishing port in 

Cabuyao city. The dataset has a train, test and validation set which contains a different 

number of images of each species. There are a total 13,304 images in which train, test 

and validation has 8791, 2751 and 1760 numbers respectively. For this dataset we didn’t 

Figure 9: Random images from each class of fish species image dataset. 
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do further selection as the number was fairly enough and our aim was to study the 

performance of models in various dataset sizes too. The species of fishes included in this 

dataset are: Bangus, Big Head Carp, Black Spotted Barb, Catfish, Climbing Perch, 

Fourfinger Threadfin, Freshwater Eel, Glass Perchlet, Goby, Gold Fish, Gourami, 

Grass Carp, Green Spotted Puffer, Indian Carp, Indo-Pacific Tarpon, Jaguar Gapote, 

Janitor Fish, Knifefis', Long-Snouted Pipefish, Mosquito Fish, Mudfish, Mullet, 

Pangasius, Perch, Scat Fish, Silver Barb, Silver Carp, Silver Perch, Snakehead, 

Tenpounder and Tilapia. Figure 11 shows the images of each species present in the train 

set of the fish dataset. From there we can see that the fish dataset images also have 

varying backgrounds with noises too. 

  

5.1.3 A large-scale fish dataset 

 

Our final image dataset is also taken from the Kaggle platform which was published by 

Ulucan O, Karakaya D, Turkan M. [43] in 2020. This dataset consists of images of 9 

different species of fish including shrimp. The previous datasets had a larger number of 

classes for fish whereas this has comparatively less. The images are taken from a fish 

market in Turkey using Kodak Easyshare Z650 and Samsung ST60 cameras [43]. The 

Figure 10: Images of each species of fish present in the large-scale fish image dataset. 
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large-scale fish dataset has two sets of images for each class, one with RGB images and 

another for their pairwise ground truth labels. We have used only RGB images in which 

each class has 1000 images. 

So, we have a total of 9,000 images which are divided into train, test and validation sets 

by using train_test_split from sklearn. After the train test split, we have 6,349 images for 

train, 1,350 images for test and 1,301 images for validation. Figure 10 shows the images 

of each class of fish present in the dataset where we have images of trout, red mullet, 

hourse mackerel, sea bass, glit head bream, shrimp, red sea bream, black sea sprat and 

stripped red mullet.  

Table 2: Summary of datasets used in the thesis. 

 

Table 2 shows the summary of all three datasets that were used in this study. We can see 

that the datasets show variations in size, number of classes and sets of images present. 

Use of such a diverse dataset helps to understand more about the performance of  deep 

learning models. We will further discuss the results of three different deep learning 

models on these datasets.  

 

Dataset 
Number 

of classes 

Total 

number of 

images 

Train 

size 

Test 

size 

Validation 

size 
Source 

Fish 

species 
20 40,000 2,000 400 - 

Giannis 

Georgiou [41] 

Fish 

Dataset 
31 13,304 8,791 2,751 1,760 

Mark Daniet 

Lampa et al. 

[42] 

Large-

scale fish 

image 

9 9,000 6,349 1,350 1,301 
Ulucan O et al. 

[43] 
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Figure 11: Random images from each species present in fish dataset. 
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5.2 ViT with varying conditions 

 

After collection and overview of all the datasets, we used the ViT model with all the 

varying conditions like: with and without transfer learning as explained on section 3.2, 

training the models further with and without data augmentation like explained on section 

3.3. In this section, we will go through the results obtained with such conditions. We 

have used accuracy and loss as our performance metrics. We have also included plots 

and tables to compare and study the influence of transfer learning and augmentation.  

 

5.2.1 ViT with transfer learning but with and without 

augmentation 

 

Vision transformer (ViT) like described in section 4.1 is known for its excellent 

performance in image classification tasks. In this section, we will discuss performance 

of the ViT model with and without transfer learning using both augmented and non-

augmented image datasets. We took three different image datasets mentioned in section 

5.1 as input for the pre-trained ViT model. The input images went through all the 

augmentation processes as declared in section 3.3 and for without augmented dataset 

images were used as inputs with no alternations.   

5.2.1.1 On fish species dataset 

ViT was successful to classify the images with high accuracy on the fish species dataset. 

For this dataset with augmentation it gave test accuracy of 96.75% and for without 

augmentation, it gave 94.113%.  Figure 12 shows comparative plots of loss and accuracy 

of pre-trained ViT models when using augmented images and non-augmented images. 

For augmented images we can see that the model learns quickly in the first few epochs, 

approximately upto 10th epoch but later the model starts to memorize the data. The loss 

drops throughout the epochs and the accuracy rises fast during the beginning of a few 

epochs. 

Whereas, for pre-trained ViT models without image augmentation, although the plot 

seems to be similar, we can see that the model overfits much more quickly than the other 
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model. The model performs not as well as compared with when the images were 

augmented. We can say that a pre-trained ViT model is overfitted more quickly on not 

augmented datasets than on augmented datasets given the property of the dataset is less 

in size and large in the number of classes present.  

 

 

 

 

 

 

 

Figure 12: Comparative plots for training vs validation loss (left side) and accuracy (right side) 

of pre-trained ViT model with augmentation (top twos) and without augmentation (bottom twos). 
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5.2.1.2 On the fish dataset 

ViT is known for performing well in large size datasets. Fish dataset can be considered 

as the largest dataset (in case of size and number of classes present) we have for this 

study and ViT gives a good performance result on this specific dataset. Pre-trained ViT 

model with augmented images as input gives test accuracy of 97.443% and for not 

augmented images as input it gives 98.75%.  

We can compare the performance of pre-trained ViT model from Figure 13, where we 

can see that it is somehow similar to each other. The model does not seem to over fit at 

all but we can notice that it executes smoothly on augmented image dataset than on 

without augmentation. However, pre-trained model performs similarly for large datasets 

in both cases.  

 

Figure 13: Comparative plots of training vs validation loss (on the left) and accuracy 

(on the right) from pre-trained ViT model with (top twos) and without (bottom twos) 

image augmentation. 
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5.2.1.3 On A large-scale fish dataset 

Large-scale dataset had a simple non-varying background for fish images compared to 

the other two datasets. It also has a smaller number of classes of fish but higher number 

of images. Pre-trained ViT models perform well on this dataset as well. It gives test 

accuracy of 94.133% and 100% on dataset with augmentation and without augmentation 

respectively. The validation accuracy is a strong 100% for both datasets. 

 As shown in Figure 14, the performance is similar but we can tell that it performs best 

with augmented dataset. We can also observe that the model reaches 100% accuracy at 

around 5th epoch, which is fastest among other two datasets. One of the reasons might be 

the fewer number of classes to classify with a higher number of data given.  

 

Figure 14: Comparison of training vs validation loss (on the left) and accuracies (on the 

right) of pre-trained ViT model on large scale fish image dataset with (top twos) and 

without (bottom twos) image augmentation. 
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The overall performance comparisons of pre-trained ViT models with augmented images 

and without augmented images is shown in Table 3. We can compare the train, validation 

and test accuracies and losses of the models on all three datasets. We can see that the pre-

trained ViT model has only little difference values for test accuracy on all three datasets 

whereas, it has high train and validation accuracies on the one with image augmentation 

than without augmentation. Moreover, all the values are the same for the third dataset 

without image augmentation.  

Table 3: Summary of performance of pre-trained ViT model with and without 

augmentation on all three datasets. 

 

 

 

 

 

 

 

 

  

Pre-trained  

Vision Transformer 

Fish species Fish Dataset Large-scale dataset 

Accuracy 

(%) Loss 

Accuracy 

(%) Loss  

Accuracy 

(%) Loss (%) 

With 

Augmentation 

Train 99.9 1.073 98.339 1.199 99.905 0.824 

Val 96.75 1.147 98.11 1.211 100 0.841 

Test 96.29 1.575 97.443 1.226 99.852 0.842 

Without 

Augmentation 

Train 100 1.068 99.886 1.162 100 0.841 

Val 96 1.148 99.1 1.178 100 0.841 

Test 94.133 1.987 98.75 1.193 100 0.841 
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5.2.2 Vit without transfer learning but with and without 

image augmentation 

In this section we will discuss the performance of a non-pretrained ViT model on three 

different datasets. In a non-pretrained ViT model, like any other deep learning models 

without transfer learning the weights are initialized randomly. The model is trained from 

the scratch with the available dataset unlike pre-trained models where the pre-trained 

weights are used. 

5.2.2.1 On fish species dataset 

Fish species dataset has a comparatively lower number of images and 20 fish classes. A 

non-pretrained ViT framework gives test accuracy of 34.02% on augmented dataset and 

25.02% on non-augmented dataset.  Since the model has no pre-trained weights it can be 

expected to give lower performance.  

Figure 15: comparison of training vs. validation losses (on the left) and accuracies (on the right) 

for a non-pretrained ViT model with augmented data (top twos) and with non-augmented data 

(bottom twos) on the fish species dataset. 
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The performance of non-pretrained ViT can be seen through the training vs. validation 

loss and accuracy plot as shown in Figure 15. We have trained the model up to 100 epochs 

from which we can tell that the non-pretrained ViT model overfits more on the one 

without image augmentation. Since the image data is already small in number, the non-

pretrained model without image augmentation starts to memorize the training data as it 

cannot find other alterations and patterns in the data.  

Moreover, the model trained with augmented images also looks like beginning to overfit 

after the 90th epoch. Although from image augmentation we can obtain variations in same 

the data, with small dataset size the overfitting cannot be avoided.  

 

5.2.2.2 On the fish dataset 

Unlike fish species dataset, fish dataset is bigger in number of images and classes. A test 

accuracy of 56.66% was obtained when training a non-pretrained ViT framework with 

image augmentation. Similarly, test accuracy of 87.045% was obtained when trained 

without image augmentation. Comparatively, on a large dataset like the fish species 

dataset, the non-pretrained model seems to perform better without image augmentation. 

As per our observation, the reason behind this can be: since the dataset was already 

diverse with a bigger number of images and classes, addition of augmentation on such 

dataset added noise to input data. Also, the non-pretrained model learns all the features 

from raw input images and the augmentation should not have been necessary.  

A comparative plot of losses and accuracies for non-pretrained ViT on datasets with and 

without augmentation is shown in Figure 16. It is observable that the loss on both with 

and without augmentation increases at first then falls down rapidly at the beginning of 

the first 10 epochs. Also, on the side of accuracy it can be seen that the model without 

augmentation is a little bit overfitted than the one with augmentation even though the 

accuracy score is high. The accuracy of model with augmentation can be seen to be on 

an increasing trend. We can increase the number of epochs and study more on this but 

by comparison we can conclude that the actual performance of a non-trained ViT model 

is better on data with augmentation although the learning process might be somehow 

slower. Furthermore, a non-trained ViT model tends to overfit without augmented 

images even though we have a large number of input images belonging to numbers of 

classes.  



36 

 

 

5.2.2.3 On A large-scaled fish dataset 

Performance of a non-pretrained ViT model on a large-scaled fish dataset was high in 

comparison to other two datasets. We obtained a test accuracy of 92.074% when input 

images were augmented and a test accuracy of 95.926% when they were not augmented. 

These results drive to the same conclusion as that of the fish species dataset. We have a 

small number of classes to classify with varying sets of images. For more detailed study 

we can look at the comparative plots of losses and accuracies of the model on datasets 

with and without augmentation as shown in Figure 17. The losses are high at the start of 

epochs like on other datasets as the model without any pre-trained weights have not 

learned any features. But the loss gradually climbs down and on the other side we can 

see accuracies build up gently too.  

Figure 16: Losses (on the left) and accuracies (on the right) comparison of non-pretrained ViT 

model on fish dataset, with and without image augmentation applied. 
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In the case of a large scaled fish dataset, the model is not overfitted on both conditions. 

It performs better on the dataset without augmentation as the images were already variant 

and when the images were augmented it made them noisier hence affecting the 

performance of the model. From this we can see that a non-pretrained ViT model 

performance can be affected by the type of input data and conditions. Augmentation 

mainly helps the model to learn more features gradually. As it is not pre-trained the 

execution time is surely affected, it takes longer to train the model than using pre-trained 

weights.  

Moreover, a wholesome comparison can be done on the performance of non-pretrained 

ViT models on all three datasets too. Table 4 shows all the train, valid and test losses and 

accuracies of the model on all three datasets, with and without augmentation. The results 

were gathered after training all the models on the desired input datasets.  

Figure 17: comparative plots of losses (on the left) and accuracies (on the right) for non-

pretrained ViT model with augmentation (top twos) and without augmentation (bottom twos) on 

a large-scaled fish dataset. 
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Table 4: Summary of performance of non-pretrained ViT model, with and without augmentation 

on all three datasets.  

Non-pretrained  

Vision Transformer 

Fish species Fish dataset Large-scale dataset 

Accuracy 

(%) Loss 

Accuracy 

(%) Loss 

Accuracy 

(%) Loss 

With 

Augmentation 

Train 42.35 2.379 56.66 2.202 91.731 1.014 

Val 35.25 2.64 57.143 2.195 91.929 1.011 

Test 34.02 2.98 58.295 2.176 92.074 1.012 

Without 

Augmentation 

Train 62.65 2.117 96.769 1.278 98.598 0.889 

Val 25.75 3.797 92.039 1.407 96.618 0.022 

Test 25.02 3.93 87.045 1.561 95.926 0.933 

 

Collectively, we can notice that the performance metrics of a non-pretrained ViT model 

is higher on a dataset without augmentation when it is trained up to 100 epochs. The 

performance is not so bad when data is augmented either, the plots on the other hand 

provided a clear picture that when images are not augmented the model is more likely to 

overfit than when augmented.  
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5.2.3 Overall comparison of ViT 

Performance of a deep learning model not only upon the accurate results but also factors 

like computational time and resources required. We have trained and tested the vision 

transformer model using with and without transfer learning with conditions like with and 

without image augmentation. As per our observation, the model performs better with 

transfer learning or we can say that transfer learning improves the performance of a 

vision transformer model. In addition, the pre-trained ViT with augmented images as 

input has better performance. Image augmentation does not always enhance the 

performance of models. Incase of dataset with maximum variations, the addition of 

augmentation can lead to overfitting like we saw in case of fish species dataset in section 

5.2.1.1 and 5.2.2.1.  

Table 5: Overall comparison on test accuracies and losses of a ViT model based on varying 

conditions. 

 

Pre-trained  

Vision Transformer 

Non-pretrained  

Vision Transformer 

With 

Augmentation 

Without 

Augmentation 

With 

Augmentation  

Without 

Augmentation 

Test Test 

Accuracy Loss Accuracy Loss Accuracy  Loss Accuracy Loss 

Fish Species 
96.29 1.575 94.133 1.987 34.02 2.98 25.02 3.93 

Fish dataset 
97.443 1.226 98.75 1.193 58.295 2.176 87.045 1.561 

Large scale 

fish dataset 99.852 0.842 100 0.841 92.074 1.012 95.926 0.933 

 

In contrast to the pre-trained ViT model, the ViT model without transfer learning is much 

slower in execution as it is needed to be trained from the scratch. However, the non-

pretrained ViT model can be used for smaller datasets and fine tuning. Table 5 shows 

comparative results of test accuracies for Vision transformer in various conditions and 

datasets. It is apparent that the results of the pre-trained model are better in all three 

datasets.  
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5.3 VGG16 and Inception V3 with varying conditions 
 

In-order to get a better comparison on the performance of ViT model with varying 

techniques and datasets, other deep learning models like VGG16 and Inception V3 were 

also used with the same techniques involved. Outputs of ViT models only cannot be 

considered as the best solution. VGG16 and Inception V3 are the Convolutional neural 

networks that are well known for their performances, comparing their performance with 

that of ViT can give us more insights and room for improvements.  

5.3.1 With transfer learning but with and without image 

augmentation 

 

ImageNet dataset was used to pre-train both VGG16 and Inception V3. Also, keras 

implementation of VGG16 and Inception V3 was used to initialize the models. Later, the 

input images were augmented using the same techniques for both models and raw images 

were given as input for case of without data augmentation.  

5.3.1.1 On fish species dataset 

In-case of the fish species dataset, we got test accuracies of 65% and 94.75% for VGG16 

and Inception V3 respectively when images were augmented. Inception being a much 

deeper network than VGG16 performs better as its multiple deep layers are capable of 

extracting important features. Despite being a very deep convolutional network, ViT 

outperformed both models when fish species image dataset was augmented.  

Similarly, we got test accuracies of 60.598% and 82.75% for VGG16 and Inception V3 

models respectively when images were not augmented. Here also, inception v3 beats 

VGG16 with its ability to learn extra features from deeper CNN architecture. Figure 18 

and Figure 19 shows the plots of losses and accuracies of pre-trained VGG16 and 

Inception V3 models respectively when input images are augmented and not augmented. 

On the side of pre-trained VGG16 as shown in Figure 18 we can observe that the model 

overfits more when the input images are not augmented. A little overfitting is seen when 

images are augmented but while comparing with pre-trained ViT models as discussed on 

section 5.2.1.1, ViT performs better in both cases.  
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Inception V3 also displays similar results as of VGG16 for both conditions. The 

accuracies are higher than that of VGG16 but the model still overfits when the images 

are not augmented. A sudden drop of accuracy can be seen around the 80th epoch under 

non-augmented condition but the model training could have been halted after the 20th 

epochs as we can see that it started to overfit continuously. So, for a dataset having a 

large number of classes and few numbers of input images, deep CNN architectures like 

VGG16 and Inception V3 when trained with transfer learning tend to overfit. They are 

outperformed by the Vision transformer model which is less likely to overfit. Table 6 

shows the overall summary for performance on train, test and valid data of pretrained 

ViT, VGG16 and Inception V3 models. It is noticeable that the ViT model is better at 

classifying images that are unseen and not involved while training a model.  

Figure 18: Plots of losses (on left) and accuracies (on right) for pre-trained VGG16 model with 

augmentation (top twos) and without (bottom twos) augmentation. 
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Table 6: Summary of train, test and valid accuracies and losses of all three models when trained 

with fish species dataset. 

Fish Species Dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Pre-

Trained 

With 

Augmentation 

Train 99.9 1.073 73.3 1.023 99.937 0.059 

Val 96.75 1.147 61 1.314 93.75 0.379 

Test 96.29 1.575 65 1.178 94.75 0.339 

Without 

Augmentation 

Train 100 1.068 99.55 0.246 100 0.639 

Val 96 1.148 58.75 1.298 83.3 0.604 

Test 94.133 1.987 60.598 1.799 82.75 0.639 

 

 

Figure 19: Plots of losses (on left) and accuracies (on right) for pre-trained Inception V3 

model with augmentation (top twos) and without (bottom twos) augmentation. 
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5.3.1.2 On the fish dataset 

While training pre-trained VGG16 and Inception V3 models with fish dataset using 

image augmentation, we obtained test accuracies of 87.841% and 99.954% respectively. 

Likewise, we got test accuracies of 95.625% and 97.898% for pre-trained VGG16 and 

Inception V3 models when using fish dataset without augmentation. Fish dataset being a 

comparatively larger dataset, the models seem to be performing better when images are 

not augmented. As seen in section 5.2.1.2 where pre-trained ViT models also performed 

better when the images were not augmented, the results are similar with pre-trained 

VGG16 and Inception V3 models. Since the images already contained variations, 

introducing augmentation was not necessary. 

We can look at Figure 20 that gives a comparative plot of losses and accuracies of a pre-

trained VGG16 model under conditions when images are augmented and not augmented. 

The model overfits a little bit in both cases but in case of use of images without 

augmentation, the model memorizes the features faster as there are not many variations. 

We can halt the training at about the 20th epoch but on the side where image augmentation 

is being used the train and validation accuracies are in increasing trend but with sight 

overfitting.  

Also, the pre-trained Inception V3 model has much less overfitting as shown in Figure 

21. The model learns faster when images are not augmented than when images are 

augmented. The reason is the same as that for pretrained ViT and VGG16 models. The 

extensions of CNNs in Inception V3 is reason for exclusion of overfitting that was seen 

in VGG16. In addition, Table 7 shows a comparative score of all three models when 

trained using a fish dataset with and without image augmentation. Here, the pre-trained 

ViT model exceeds both state-of-art performing VGG16 and Inception V3 models.  
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Table 7: Overall train, test and valid losses and accuracies of pre-trained ViT, VGG16 and 

Inception V3 models when the fish dataset is used with and without augmentation. 

 

The fish dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Pre-

Trained 

With 

Augmentation 

Train 98.339 1.199 83.438 0.594 99.113 0.139 

Val 98.11 1.211 88.481 0.421 99.055 0.154 

Test 97.443 1.226 87.841 0.464 98.253 0.195 

Without 

Augmentation 

Train 99.886 1.162 99.966 0.007 99.954 0.035 

Val 99.1 1.178 98.001 0.097 99.055 0.079 

Test 98.75 1.193 95.625 0.203 97.898 0.133 

Figure 20: Losses (on left) and accuracies (on right) of a pre-trained VGG16 model when using 

fish dataset with augmentation (top twos) and without augmentation (bottom twos). 
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Figure 21: Losses (on left) and accuracies (on right) of a pre-trained Inception V3 model when 

using fish dataset with augmentation (top twos) and without augmentation (bottom twos). 
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5.3.1.3 On A large-scale fish dataset 

Pre-trained VGG16 and Inception V3 models when trained on a large-scale fish dataset 

with image augmentation applied gave test accuracies of 99.778% and 100% 

respectively. A large-scale fish dataset being relatively small in number of classes and 

variations allows the deep CNN models like Inception V3 to classify images accurately. 

Also, when image augmentation was not applied pre-trained VGG16 and Inception V3 

models gave test accuracy of 99.741% and 100% respectively. Their performance 

doesn’t differ much when the large-scale fish dataset is augmented and not augmented. 

The overall performance of all three pre-trained models (ViT, VGG16 and Inception V3) 

on a large-scale dataset are similar. They all exhibit identical results which can be seen 

from the plots of losses and accuracies as shown in Figure 22 and Figure 23.  

Figure 22 shows performance of pre-trained VGG16 model with and without 

augmentation on large-scale dataset, where it shows no overfitting and model learns 

Figure 22: comparison of losses (on left) and accuracies (on right) curves of pre-trained VGG16 

model on large-scale fish dataset with augmentation (top twos) and without augmentation 

(bottom twos). 
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quickly under both conditions. Whereas, Figure 23 shows performance of pre-trained 

Inception V3 model, where on both conditions the model’s learning rate is faster than 

VGG16 and begins with high validation accuracy. The pre-trained deep learning models 

like VGG16 and Inception V3 are also exceptional at image classification but ViT can 

also be more prominent when it comes to a larger dataset.  

Table 8 shows comparative scores of train, test and validation accuracies and losses of all 

three deep learning architectures while classifying images from large-scale fish dataset. 

The execution of all three models are high and homogeneous.  

 

 

 

 

Figure 23: comparison of losses (on left) and accuracies (on right) curves of pre-trained 

Inception V3 model on large-scale fish dataset with augmentation (top twos) and without 

augmentation (bottom twos). 
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Table 8: Train, test, validation losses and accuracies of all three pre-trained models on large 

scale-fish dataset when image augmentation is applied and not applied. 

A large-scale fish dataset 
Vision Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Pre-

trained 

With 

Augmentation 

Train 99.905 0.824 99.127 0.067 99.984 0.027 

Val 100 0.841 99.762 0.034 99.923 0.028 

Test 99.852 0.842 99.778 0.03 100 0.027 

Without 

Augmentation 

Train 100 0.841 100 0.007 100 0.017 

Val 100 0.841 99.286 0.03 100 0.017 

Test 100 0.841 99.741 0.024 99.926 0.018 
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5.3.2 Without transfer learning but with and without image 

augmentation  

 

In order to train a VGG16 and Inception V3 without any transfer learning we used the 

keras model by setting weights as None. This means that the models will be trained with 

random weights rather than using pre-trained weights. Like in non-pretrained ViT models 

the VGG16 and Inception V3 models will also have the input datasets weights only.  

5.3.2.1 On fish species dataset 

Training non-pretrained deep learning models is a time-consuming process as the models 

need to initialize and update a large number of parameters. It will also have very low 

performance in comparison to the pre-trained models. While training a non-pretrained 

VGG16 and Inception V3 models on augmented fish species dataset, we obtained test 

accuracies of 30.156% and 45.734% respectively. Correspondingly, while training the 

non-pretrained models on non-augmented fish species dataset we got test accuracies of 

28.465% and 42.174% respectively.  

We can compare the performances of these non-pretrained models from the plots shown 

in Figure 24 and Figure 25 too. The figures show that non-pretrained VGG16 and Inception 

V3 models overfit when trained with non-augmented images and with augmentation their 

accuracy is in increasing trend but no improvement of validation accuracy is seen when 

trained without augmentation. Their performances on non-augmented images leads to 

the conclusion that the deep learning models tend to overfit when images are not 

augmented. The reasons can be that the models when trained without any pre-trained 

weights need diversity with the input data in order to learn more complex features. 

Without such diversity the model simply memorizes the training set and no 

generalization will be seen.  

We can also look at Table 9 to get information on train, test and validation accuracies and 

losses of non-pretrained ViT, VGG16 and Inception V3 models where the overall 

accuracy score for all three models on test data is lower than when pre-trained weights 

were used. All the models were trained upto 100 epochs but we can check further by 

increasing the number of epochs as the non-pretrained models were still learning.  
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Table 9: Train, test and validation accuracies and losses of all three non-pretrained deep 

learning models when trained with augmented and non-augmented Fish species dataset 

Fish Species dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Non-

Pre-

trained 

With 

Augmentation 

Train 42.35 2.379 37.6 1.896 59.813 0.728 

Val 35.25 2.64 29.25 2.139 43.617 2.518 

Test 34.02 2.98 30.156 2.556 45.734 2.967 

Without 

Augmentation 

Train 62.65 2.117 98.85 0.061 98.663 0.249 

Val 25.75 3.797 25.5 7.079 39.418 4.517 

Test 25.02 3.93 28.465 3.523 42.174 3.936 

 

Figure 24: Plots of losses (on left) and accuracies (on right) for a non-pretrained VGG16 model 

when trained with fish species dataset with augmentation (top twos) and without augmentation 

(bottom twos). 
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5.3.2.2 On the fish dataset 

When using the fish dataset with augmentation on a non-pretrained VGG16 and 

Inception V3 deep learning models, test accuracies of 87.102% and 39.886% was 

obtained. Correspondingly, when using the same dataset without augmentation we got 

90.909% and 79.148% of test accuracies. Here we can observe that the models are 

performing better when data is non-augmented but the non-pretrained VGG16 model has 

a little overfitting than Inception V3. Since there are no pre-trained weights involved, the 

models need to train from scratch using the weights of input images. Considering the size 

of the dataset, we can expect overfitting to occur.  

In addition, we can look at the plots shown in Figure 26 to evaluate the overall 

performance of a non-pretrained VGG16 model both with and without image 

Figure 25: Plots of losses (on left) and accuracies (on right) for a non-pretrained Inception V3 

model when trained with fish species dataset with augmentation (top twos) and without 

augmentation (bottom twos). 
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augmentation applied. The model overfits in both cases but with augmentation the 

learning rate is a bit slower than without augmentation. For models without 

augmentation, the training can be halted at around 30th epochs as we are not seeing any 

improvements in performance but on the other hand, the model with augmentation seems 

to be learning continuously. The execution rate with both conditions are slower than that 

with transfer learning.  

Likewise, in Figure 27 we can see the performance of a non-pretrained Inception V3 

model. The model doesn’t overfit as much as that of VGG16 but performs better when 

images are not augmented. The model is memorizing the features as no other general 

forms are present to extract additional features. Learning trend is also higher when the 

images are not augmented and pick increases and decreases validation loss and accuracy 

can be seen when augmented images are used. The results can be compared with non-

pretrained ViT models as shown in Table 10 where we can see that the deep CNN 

Figure 26: Accuracies (on right) and losses (on left) plots of non-pretrained VGG16 model 

when trained on augmented (top twos) and non-augmented (bottom twos) fish dataset. 
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networks outperform ViT on this dataset. In contrast, ViT model doesn’t show overfitting 

hence it can be considered while pre-training weights are not available.  

Table 10: Train, test and validation losses and accuracies of non-pretrained VGG16 and 

Inception V3 models when using Fish dataset with and without augmentation. 

Fish Dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Non-

pretrained 

With 

Augmentation 

Train 56.66 2.202 83.403 0.524 42.919 2.336 

Val 57.143 2.195 89.24 0.368 39.513 2.602 

Test 34.02 2.98 87.102 0.47 39.8886 2.589 

Without 

Augmentation 

Train 96.769 1.278 99.977 95.856 99.813 0.081 

Val 92.039 1.407 95.856 0.335 46.25 3.418 

Test 25.02 3.93 90.909 0.755 79.148 1.29 

 

Figure 27: Accuracies (on right) and losses (on left) plots of non-pretrained Inception V3 model 

when trained on augmented (top twos) and non-augmented (bottom twos) fish dataset. 
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5.3.2.3 On A large-scale fish dataset 

A non-pretrained VGG16 and Inception V3 models gave test accuracies of 98.296% and 

72.333% when training with augmented large-scale fish dataset. In the same way, the 

models had test accuracies of 95.852% and 86.963% when trained without augmentation. 

In comparison to non-pretrained ViT model, the VGG16 model executes similar results 

but it excels Inception V3. Like other models discussed above, we can visualize the 

results on plots of graphs shown in Figure 28 and Figure 29.  

As evidenced by Figure 28, the non-pretrained VGG16 model has some overfitting when 

training with non-augmented images which was not present in non-pretrained ViT model. 

On the side of training with image augmentation, the validation accuracy is higher than 

training accuracy. On the other hand, as depicted by plot in Figure 29, the non-pretrained 

Inception V3 model overall overfits when trained with both augmented and non-

augmented images.  

Figure 28: Comparative plots of accuracies (on right) and losses (on left) for non-pretrained 

VGG16 model when trained on augmented (top twos) and non-augmented (bottom twos) large-

scale fish dataset. 
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We can also compare the results of all three deep learning models on the large-scale fish 

dataset with the defined conditions. As indicated by Table 11, non-pretrained ViT and 

VGG16 have high test accuracy scores but as discussed above ViT does not exhibit 

overfitting conditions.  

 

 

 

 

 

Figure 29: Comparative plots of accuracies (on right) and losses (on left) for non-pretrained 

Inception V3 model when trained on augmented (top twos) and non-augmented (bottom twos) 

large-scale fish dataset. 
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Table 11: Accuracies and losses of non-pretrained deep learning models on a large-scale fish 

dataset with and without image augmentation. 

A large-scale fish dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Non-

pretrained 

With 

Augmentation 

Train 91.731 1.014 96.897 0.088 76.389 1.217 

Val 91.929 1.011 98.616 0.043 73.016 1.342 

Test 92.074 1.012 98.296 0..059 72.333 1.419 

Without 

Augmentation 

Train 98.598 0.889 99.433 0.02 92.738 0.321 

Val 96.618 0.022 95.542 0.148 87.778 0.592 

Test 95.926 0.933 95.852 0.122 86.963 0.622 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

6 Discussion and further work 

 

The primary purpose of this thesis is to study the performance of deep learning neural 

network models on three different image datasets under varying conditions like with, 

without transfer learning and image augmentation and conclude their influence and 

propose a suitable deep learning architecture. After going through the results from all 

three models we can discuss the core outcome of the study. Transfer learning has been 

supportive for several deep learning models to give state-of-the-art performance [34].  In 

this study, we have implemented transfer learning with all three deep learning 

architectures and also compared their performance with each other and also with the 

models that do not use transfer learning. Along with transfer learning, we have also 

included image augmentation methods. That is, models with and without transfer 

learning were trained with and without data augmentation. The effects if these methods 

on all the datasets are discussed in this chapter.  

 

6.1 On fish species dataset 

In section 5.3.1.1 and section 5.3.2.1 we explained about the results from training deep 

CNNs like VGG 16 and Inception V3 with conditions like with and without transfer 

learning and image augmentation. The models were mostly overfitted when transfer 

learning was involved. The fish species dataset was comparatively small in size as we 

selected small number of images for training and testing purpose and as per our 

observation, the pre-trained models tend to overfit while being trained on a small dataset. 

A reason for this can be, as the model is already pre-trained with a huge image dataset 

like ImageNet, it fits the limited number of inputs using the pre-trained features.  

In addition, on a dataset like fish species dataset where the number of classes are high 

but the number of training data is few, the pre-trained models overfit with and without 

image augmentation. This might be due to the large number of parameters that the model 

learns from large dataset like ImageNet. The models might be memorizing the small 

training data instead of learning. The learning process is fast when transfer learning is 

used as the models already have pre-trained weights.   
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Vision Transformer on the other hand displayed less overfitting than the other two 

models. Results from section 5.2.1.1 and section 5.2.2.1 shows the performance of ViT 

on fish dataset with varying conditions applied. The cause behind this output can be due 

to the presence of self-attention mechanism in ViT. ViT models use the self-attention 

mechanism to learn the features from the input images. Hence, maximum overfitting is 

seen with deep CNN networks than in ViT, which makes ViT more preferable. 

Table 12 lists the overall train, test and validation accuracy and loss of all three models 

on fish species dataset. We can observe that the test accuracy is different as per the 

condition and learning model. Like in the study conducted by Parnav et al. [21] where 

two different versions of VGG model was experimented on dataset of 23 classes of fish, 

the result of scale-down VGG was better, in our case deep CNN performs well but ViT 

shines through by excluding the overfitting issue seen on those models. As seen in Table 

12, the ViT has high test accuracy in compare to other two models when pre-trained 

weights are used for training.  

Table 12: Overall train, test and validation accuracy and loss of all three deep learning models 

on fish species dataset with and without image augmentation. 

Fish species dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Pre-

Trained 

With 

Augmentation 

Train 99.9 1.073 73.3 1.023 99.937 0.059 

Val 96.75 1.147 61 1.314 93.75 0.379 

Test 96.29 1.575 65 1.178 94.75 0.339 

Without 

Augmentation 

Train 100 1.068 99.55 0.246 100 0.639 

Val 96 1.148 58.75 1.298 83.3 0.604 

Test 94.133 1.987 60.598 1.799 82.75 0.639 

Not Pre-

Trained 

With 

Augmentation 

Train 42.35 2.379 37.6 1.896 59.813 0.728 

Val 35.25 2.64 29.25 2.139 43.617 2.518 

Test 34.02 2.98 30.156 2.556 45.734 2.967 

Without 

Augmentation 

Train 62.65 2.117 98.85 0.061 98.663 0.249 

Val 25.75 3.797 25.5 7.079 39.418 4.517 

Test 25.02 3.93 28.465 3.523 42.174 3.936 
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6.2 On Fish dataset 

With datasets like fish dataset where the number of classes and training images are high, 

the models are less overfitted on both cases. The cause for this can be since the input 

images were already high in number and contained variations, addition of further 

transformation might have added noise.  Although image augmentations add variations 

to input data allowing models to learn more features, sometimes it is subjected to add 

noise to input data as well, which leads to overfitting. 

When factors like execution cost and period are considered, ViT architecture is more 

suitable than the deep CNNs. ViT having transformer architecture with attention 

mechanism as its core can be favorable in varying conditions like addition of more data 

and classes during the image classification task. Moreover, attention mechanism of ViT 

allows it to acknowledge the complex relationships and patterns of an image [3]. 

Moreover, ViT has less parameters comparison to CNN models which decreases its 

capacity to memorize data.  

We can also look at Table 13 which shows performance report of all three architectures 

under defined circumstances and conditions. The performances of models when pre-

trained does not show much difference but like mentioned when taking abilities and 

conditions on to account ViT is preferable.  
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Table 13: Overall train, test and validation accuracy and loss of all three deep learning models 

on fish dataset with and without image augmentation. 

Fish Dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Pre-

Trained 

With 

Augmentation 

Train 98.339 1.199 83.438 0.594 99.113 0.139 

Val 98.11 1.211 88.481 0.421 99.055 0.154 

Test 97.443 1.226 87.841 0.464 98.253 0.195 

Without 

Augmentation 

Train 99.886 1.162 99.966 0.007 99.954 0.035 

Val 99.1 1.178 98.001 0.097 99.055 0.079 

Test 98.75 1.193 95.625 0.203 97.898 0.133 

Not Pre-

Trained 

With 

Augmentation 

Train 56.66 2.202 83.403 0.524 42.919 2.336 

Val 57.143 2.195 89.24 0.368 39.513 2.602 

Test 34.02 2.98 87.102 0.47 39.8886 2.589 

Without 

Augmentation 

Train 96.769 1.278 99.977 95.856 99.813 0.081 

Val 92.039 1.407 95.856 0.335 46.25 3.418 

Test 25.02 3.93 90.909 0.755 79.148 1.29 

 

 

6.3 On a large-scale fish dataset 

Further, the third dataset had fewer classes and training images. The outcomes of all three 

models under pre-trained and non-pretrained conditions were resembling. ViT and deep 

CNN models demonstrate quite similar results when they are trained under a smaller 

dataset with few numbers of classes. Since the models were pretrained on a large dataset 

like ImageNet which contains millions of images with thousands of classes, the models 

will have learned a large set of features allowing them to classify input images more 

precisely. Also, for the not-pretrained models, although they don’t have any pre-trained 

features, the deep architectures with number of layers allows them to learn the abstract 

features from a relatively smaller dataset as well. The performance of the non-pretrained 

models also depends on the size of dataset being used.  

 Rauf, H. T. et al. [18] also included a comparative study of their 32-layerd CNN 

architecture with other eight traditional CNN models. In their study, they compared and 

concluded their architecture to outperform all the other models. To compare the 32-layerd 
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with other traditional CNN models they tested with varying conditions like changing 

number of epochs, learning rate and momentum rate. An overall performance was 

considered rather than results from a specific condition.  

Similarly, in our case although VGG16 and Inception V3 have good performances on 

certain condition, overall performance of ViT has been exceptional. In a large-scale fish 

dataset, it shows similar stability, which can be seen in  

Table 14 which shows the list of train, test and validation accuracy and loss of all three 

models under the applied conditions.  

Table 14: Overall train, test and validation accuracy and loss of all three deep learning models 

on a large-scale fish dataset with and without image augmentation. 

A large-scale fish dataset 

Vision 

Transformer VGG16 Inception V3 

Accuracy Loss Accuracy Loss Accuracy Loss 

Pre-

Trained 

With 

Augmentation 

Train 99.905 0.824 99.127 0.067 99.984 0.027 

Val 100 0.841 99.762 0.034 99.923 0.028 

Test 99.852 0.842 99.778 0.03 100 0.027 

Without 

Augmentation 

Train 100 0.841 100 0.007 100 0.017 

Val 100 0.841 99.286 0.03 100 0.017 

Test 100 0.841 99.741 0.024 99.926 0.018 

Not Pre-

Trained 

With 

Augmentation 

Train 91.731 1.014 96.897 0.088 76.389 1.217 

Val 91.929 1.011 98.616 0.043 73.016 1.342 

Test 92.074 1.012 98.296 0..059 72.333 1.419 

Without 

Augmentation 

Train 98.598 0.889 99.433 0.02 92.738 0.321 

Val 96.618 0.022 95.542 0.148 87.778 0.592 

Test 95.926 0.933 95.852 0.122 86.963 0.622 
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6.4 Further work 

 

Deep CNN models like VGG16, Inception V3, DenseNet and others are already popular 

and used for computer vision for image classification. However, as studied earlier, the 

changing conditions can change the performance of these models. ViT has shown 

promising results in all the diverse conditions and can be considered for image 

classification tasks.  

The study can be extended in future with more study of ViT model under other different 

conditions. We can study the effects of mutual hyperparameters of ViT and other deep 

learning models. Patch size is one of the hyper parameters that can affect the results of 

ViT transformer architecture. Num layers which denote the number of layers in 

transformer architecture can be changed and tested. Besides image classification, the ViT 

architecture can also be tested for other tasks like fish identification, detection and 

behavior analysis. We can further study the performances of other high performing deep 

learning models that are popular.  
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7 Conclusion 

 

Automatic classification of fish is advantageous to modern aquaculture as it promotes 

efficiency, provides better accuracy, allows enhanced monitoring of fish population and 

can support better decision making. This study proposed an effective deep learning 

model for fish classification which can be more flexible than popular deep CNNs. We 

also compared the proposed vision transformer model with other two deep learning 

models with changing conditions and three different datasets. Such a test and study of 

ViT model shows its versatility on changing conditions of an aquaculture. We trained 

and compared the ViT model with and without transfer learning with deep CNNs like 

VGG16 and Inception V3 models. In addition, we also applied conditions like input 

images being augmented and not augmented to all these models. The three models with 

such varying conditions were then trained on three different fish image datasets that 

contained different numbers of images and species of fish.  

The proposed Vision transformer is effective and stable on large to small datasets as it 

reveals stable output in such conditions applied. It can be tuned as per requirement by 

changing the hyper parameters. More study needs to be done regarding how the hyper 

parameters influence the performance of the model. Another study regarding fusion of 

other models on the vision transfer is also possible. The application and scope of the 

Vision transformer in aquaculture is hopeful and carries an optimistic future.  

In summary, Vision transformers are effective to all sets of datasets and can execute in 

changing conditions. It surpasses deep CNNs in the majority of conditions and has 

versatile characteristics.  
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