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Abstract: Digitalization of the failure-probability modeling of crucial components in power-distribution
systems is important for improving risk and reliability analysis for system-maintenance and asset-
management practices. This paper aims to implement a Python programming-based Weibull ap-
proach for digitalization of distribution-transformer (DT) failures, considering a regional section of
DTs in Sri Lanka as a case study. A comprehensive analysis for DT-failure data for six years has been
utilized to derive a Weibull distribution analysis for DTs. The interpretation of the resulting beta
and alpha parameters of the Weibull analysis for different categories of DTs in the selected region
is also presented. The resulting data can be uploaded to computerized maintenance-management
systems (CMMS), to adopt conclusions or resolutions reached by the asset and maintenance man-
agers. Ultimately, failure-probability modeling is beneficial for decision-making processes for higher
management aiming for the digital transformation of power-distribution systems.

Keywords: CMMS; digitalization; distribution transformers; failure probability; risk and reliability;
Weibull approach

1. Introduction

Power-distribution systems are involved in the transport of electricity to consumers
using hierarchical voltage levels, i.e., from high to low [1–5]. Initially, information about
power-distribution networks that had been built decades ago was stored in documents
and detailed maps [3]. With the dawn of the era of computers, that information is pro-
gressively being digitalized [3]. The required amount of information for assets is large,
and the criticality of failures makes operation less complex in low-voltage systems than
in high- and medium-voltage systems [3]. Hence, efforts have been made to digitalize the
high- and medium-voltage systems [3]. Currently, technologies are evolving to digitalize
low-voltage systems [3]. However, power-distribution systems are still far from fully
digitally transformed systems with real-time operation [3,6,7]. In the scientific-research
context, mathematical-programming models are being developed for the digital transfor-
mation of power-distribution systems [3]. This manuscript aims at developing such a
mathematical-programming model, which can be considered a stepping stone towards the
digital transformation of power-distribution systems.

In addition, some electricity-supply contracts with consumers include clauses that
oblige electricity-distribution utilities to pay compensation to consumers in the event of
a disruption in the supply of electricity [8]. This depends on the jurisdiction and the
specific contract between the electricity-distribution utility and consumers [8]. In general,
such clauses, including penalty charges for the electricity-distribution utility, are included
in the contract to protect the consumer from such scenarios, and there can be laws or
regulations in place in a specific jurisdiction that require or allow for such compensation
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to be paid in certain circumstances to the electricity consumers [8]. In addition to the
suppliers’ losses resulting from failure of equipment, those penalty charges and consumer
compensations can be a huge burden to the electricity-distribution utilities [8]. Therefore, in
order to manage the circumstances, it is essential that they carry out optimal operation and
maintenance of equipment with modern technologies. Hence, the reliability of components
in electricity-distribution utilities is very important, as failure of those components is
associated with very high costs [9,10].

The hierarchical structure of power-distribution systems is composed of several dis-
tinct levels of components, such as distribution transformers (DTs), feeders, switches, fuses,
and consumer-side equipment [1]. DTs are crucial equipment in power-distribution utilities,
as they constitute high investments and transform primary distribution voltages to lower
voltages suitable for consumer equipment [2,11,12].

DT failures cause serious problems to distribution-network management, resulting in
comparatively huge expenditure for the repair or replacement of other components in the
distribution system [2,9,10]. The reliability analysis of DTs involves the assessment, avoid-
ance, and governance of failures, along with science, statistics, and risk analysis [9,10,13].
Through the use of failure analysis for DTs, the lifespan can be predicted by managing the
life cycle and the uncertainties involved with the failure [9,10,13].

There is no zero rate of failure for any equipment [14,15]. Reliability analysis requires
time-to-failure data to reveal the patterns of failure occurrences, balancing the reduction
in the cost of failures with performance enhancement for digital transformation from the
pillars of digitization and digitalization [13,14,16]. Predictions of reliability allow the likeli-
hood of the characteristics of failure rates to be evaluated [13,15]. It is necessary to digitize
the wear curves based on the failure data to implement reliability curves of components in
power-distribution systems [13]. In addition, it has been observed that extensive study of
real DT-failure data analysis using reliability wear curves for the digitalization of power-
distribution systems is not addressed in the literature. This manuscript represents the first
step in this endeavor.

Based on these needs, this paper has the following objectives: identify DT-category
failures that are required for reliability analysis, execute pre-processing and database
implementation, determine the probability distributions that can be used, implement
Python programming-based reliability-analysis approaches using Weibull distributions
and survival functions for different categories of DT failures, and interpret the results for
data-driven decisions for the digitalization of the DT-failure analysis.

2. Theoretical Background

This section describes the intentions and interpretations connected with the establish-
ment of the approach suggested by this paper. Although DTs can be repaired and reused,
in this context, they are considered non-repairable components, due to the fact that, when a
failure occurs, they are required to be replaced immediately with a new DT.

2.1. Failure-Rate Model

The reliability of a component is the probability of its successful operation until a
specific time [17]. It is necessary to obtain historical failure data about failure modes to
determine the component reliability [17]. Therefore, it is necessary to study how failures
occur over time for life cycle analysis [17].

In addition, every piece of equipment will fail during its operational life [18]. Accord-
ingly, the failure rate of components is given by the following formula [18]:

failure rate, λ =
number o f f ailures

total operating time o f units
(1)

The relationship between failure, fault, error, and time to failure is illustrated in
Figure 1 for continuous and discrete scenarios [19].
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Figure 1. Graphical relationship between failure and fault for (a) for discrete variables and (b) contin-
uous variables [19].

2.2. Reliability Function

The reliability functions, R(t) for continuous variables and R(k) for discrete variables,
of a component are given by the following formula [20,21]:

R(t) = P(T > t) = 1 − F(t), R(k) = P(T > k) = 1 − F(k),

R(t) =
∫ ∞

t f (t)dt, R(k) = ∑∞
i=k+1 f (ki)

(2)

Here, F(t) indicates the cumulative distribution function (CDF), and f (t) is the prob-
ability density function (PDF) and Pr(T > t) yield the probability of a non-failure over
time [20,21].

2.3. Bathtub Curve

The operational life of a piece of equipment has three important characterizable phases,
namely, the infant-mortality phase, useful-life phase, and wear-out phase [18]. A visual
representation of the failure rate of a component over time is given by a bathtub curve, as
illustrated in Figure 2.
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There are three phases of the bathtub curve, which is so-named due to its characteristic
bathtub shape [21]. The first phase represents early failures due to poor design and
installation. Second-level failures occur in the useful-life period and at random times [18].
The last phase is wear-out failures, where the failure rate rises rapidly due to equipment
deterioration [18].

2.4. Parametric Lifetime Models

Different parametric lifetime models exist because the different types of data and
failure mechanisms occurring over time can be better described graphically by different
distributions [17]. For failure data, a particular distribution is assumed in parametric
lifetime models for non-repairable components [19].

In parametric lifetime models, the alpha, beta, and gamma parameters are used to
characterize the shape of a PDF. Generally, the alpha parameter is the scale parameter that
controls the spread of the distribution, while the beta parameter is the shape parameter,
which controls the skewness of the distribution [17]. The gamma parameter is an additional
shape parameter that allows more flexibility in fitting the data [17]. The selection of a
specific parametric model depends on the availability of data, the convenience of analysis
of the model parameters, and the capability of the model to accurately describe the lifetime
data [17]. Brief details of some of the most common distributions are given below.

2.4.1. Exponential Distribution

This distribution represents the useful-life period in the bathtub curve [19]. The
probability-density function (PDF), cumulative-distribution function (CDF), failure-rate
function (FRF), and the mean time to failure (MTTF) are given by the following formulae,
respectively [19]. Here, the time to failure t is considered a random variable, and λ is the
scale parameter [19].

f (t; λ) =

{
0 f or t < 0
λe−λt f or t ≥ 0

(3)

f (t; λ) =

{
0 f or t < 0
1 − e−λt f or t ≥ 0

(4)

h(t; λ) =
f (t)
R(t)

=
λe−λt

e−λt = λ (5)

MTTF =
∫ ∞

0
R(t) dt =

1
λ

(6)

2.4.2. Weibull Distribution

This distribution represents the whole curve in the bathtub curve [21], with shape
parameter α and scale parameter β, where α > 0 and β > 0 are defined for the probability-
density function f (t), cumulative-distribution function F(t), and failure-rate function h(t), as
provided below [17,19].

f (t; α; β) =

0 f or t < 0
α
β

(
t
β

)α−1
exp[−

(
t
β

)α
] f or t ≥ 0

(7)

f (t; α; β) =

0 f or t < 0

1 − exp[−
(

t
β

)α
] f or t ≥ 0

(8)

h(t; α; β) =
α

β
(

t
β
)

α−1
f or t > 0 (9)
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2.4.3. Other Parametric Distributions

There are several other parametric distributions, such as normal distribution, logistic
distribution, lognormal distribution, gamma distribution, beta distribution, loglogistic
distribution, Gumbel distribution, etc. [13,17,19]. For the exponential, Weibull, gamma,
lognormal and loglogistic distributions, there is a location-shifting parametrization using
the gamma γ parameter [13].

Some distributions are preferred to others, depending on the scientific context of the
advantages and disadvantages [19]. Exponential distribution is a memoryless distribu-
tion and is used to model the lifetime of electronic and electrical equipment that fails
randomly [17]. It considers that the past history of the component has no effect on its future
lifetime [17]. The normal distribution is capable of describing some dynamic component
failures or failures that occur in a specific period of time, including some deviations [17].
The graphical plot of the logistic distribution is analogous to the normal distribution [17].
The failures that happen at the beginning of the life cycle in projects, startups, installations,
or operations are mostly represented by the lognormal distribution [17]. It can model both
random and wear-and-tear failure mechanisms. The loglogistic distribution and lognormal
distributions have the same shape [17]. The Weibull distribution is frequently used to model
the lifetime of components that fail due to wear and tear, and it depends on parameters of
exponential, lognormal, or normal distributions [17]. The Weibull distribution is flexible
and can be used to model increasing and decreasing failure rates [17]. When the data are
right-skewed and the failure rate decreases over time, then the gamma distribution can
be used for modeling [17]. The component failures that occur at the end-of-life cycle of
pipelines, vessels, and towers, etc. can be represented by the Gumbel distribution [17].

2.4.4. Goodness of Fit

There are several methods for measuring the goodness of fit of a Weibull model [22].
The methods used are log likelihood, Akaike information criteria (AIC), Bayesian informa-
tion criterion (BIC) and Anderson-Darling goodness of fit statistic (AD). Log likelihood
is the logarithm of the likelihood function, which is the probability of observing the data,
given the parameters. Log likelihood is used to compare different models and to determine
the best-fitting parameters for a given model [22].

The AIC is a model-selection criterion that balances the goodness of fit of a model
with the complexity of the model. It is defined as −2 times the log likelihood of the model
plus twice the number of parameters in the model [22]. The goal is to find the model with
the smallest AIC. Lower AIC values indicate a better model [22].

The BIC is similar to the AIC but also takes into account the number of observations
in the data set. It is defined as −2 times the log likelihood of the model plus the number of
parameters in the model times the natural logarithm of the number of observations. The
BIC also aims to find the model with the smallest value [22].

The AD is a statistical test that compares the sample data to a specific probability
distribution, such as the Weibull distribution [22]. It measures the difference between the
CDF of the sample data and the CDF of the hypothesized distribution, providing a measure
of the goodness of fit of the hypothesized distribution to the sample data [22].

2.5. Reliability Indices

The ability to maintain continuous service of an electricity-supply system is an indi-
cation of the reliability [23]. The following reliability indices are incorporated to measure
system performance [19,23]. The failure rate is denoted by λi, the number of customers is
given by Ni, the annual unavailability is denoted by Ui, and the average load connected to
load point i is given by La(i) [19,23]:

System Average Interruption Frequency Index (SAIFI):

SAIFI =
total number o f customer interruptions

total number o f customers served
=

∑ λiNi
∑ Ni

(10)
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System Average Interruption Duration Index (SAIDI):

SAIDI =
sum o f customer interruption durations

total number o f customers
=

∑ UiNi
∑ Ni

(11)

Consumer Average Interruption Duration Index (CAIDI):

CAIDI =
sum o f customer interuption durations
total number o f customer interruptions

=
∑ UiNi
∑ λiNi

(12)

Energy Not Supplied Index (ENS):

ENS = total energy not supplied by the system = ∑La(i)Ui (13)

2.6. Digitization, Digitalization, and Digital Transformation

The establishment of the digital representation of non-digital things and attributes is
known as digitization and is considered a foundational approach for a digital-transformation
pyramid [16]. The digital-transformation pyramid is depicted in Figure 3. In this paper, the
DT-failure data were converted from paper documents to electronic data for digitization.

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

 

2.6. Digitization, Digitalization, and Digital Transformation 
The establishment of the digital representation of non-digital things and attributes is 

known as digitization and is considered a foundational approach for a digital-transfor-
mation pyramid [16]. The digital-transformation pyramid is depicted in Figure 3. In this 
paper, the DT-failure data were converted from paper documents to electronic data for 
digitization.  

 
Figure 3. Digital-transformation pyramid [16]. 

Digitalization enables or improves processes, by supporting digital technologies and 
digitized data, and converts processes from human-driven to software-driven [16]. Hence, 
digitalization hypothesizes digitization, improves current processes without transform-
ing, and increases productivity and efficiency with a reduction of costs [16]. Digital trans-
formation involves changing business processes by using digitalization technologies [16].  

3. Case-Study Methodology and Development 
3.1. Use of Case-Study Methodology 

Usually, case-study methodology is used for research questions with “how” and 
“why” questions [24]. In this case study, the answers to “how” and “why” aim at analyz-
ing DT-failure data, which were considered with an inductive approach.  

Inductive research is a method of reasoning in which the researcher begins with a 
specific observation and uses it to form a general conclusion. From this approach, the re-
searcher can move from specific observations to a more general theory [24].  

“How” and “why” research questions are types of questions that researchers use to 
guide their research [24]. “How” questions are used to understand the processes or mech-
anisms that underlie a phenomenon and can be used in inductive research to generate 
hypotheses or theories based on the observed data [24]. They are frequently used to in-
vestigate cause-and-effect relationships and often begin with words such as “how,” 
“what,” or “which” [24]. “Why” questions are used to understand the reasons or causes 
behind a phenomenon [24]. They frequently begin with the word “why” and are used to 
investigate the underlying reasons for a particular event or outcome [24]. For the inductive 
approach, the researcher may begin with observations of a certain phenomenon, using 
them to generate possible explanations or causes for that phenomenon [24]. In both cases, 

Figure 3. Digital-transformation pyramid [16].

Digitalization enables or improves processes, by supporting digital technologies and
digitized data, and converts processes from human-driven to software-driven [16]. Hence,
digitalization hypothesizes digitization, improves current processes without transforming,
and increases productivity and efficiency with a reduction of costs [16]. Digital transforma-
tion involves changing business processes by using digitalization technologies [16].

3. Case-Study Methodology and Development
3.1. Use of Case-Study Methodology

Usually, case-study methodology is used for research questions with “how” and
“why” questions [24]. In this case study, the answers to “how” and “why” aim at analyzing
DT-failure data, which were considered with an inductive approach.

Inductive research is a method of reasoning in which the researcher begins with a
specific observation and uses it to form a general conclusion. From this approach, the
researcher can move from specific observations to a more general theory [24].
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“How” and “why” research questions are types of questions that researchers use
to guide their research [24]. “How” questions are used to understand the processes or
mechanisms that underlie a phenomenon and can be used in inductive research to generate
hypotheses or theories based on the observed data [24]. They are frequently used to
investigate cause-and-effect relationships and often begin with words such as “how,”
“what,” or “which” [24]. “Why” questions are used to understand the reasons or causes
behind a phenomenon [24]. They frequently begin with the word “why” and are used to
investigate the underlying reasons for a particular event or outcome [24]. For the inductive
approach, the researcher may begin with observations of a certain phenomenon, using
them to generate possible explanations or causes for that phenomenon [24]. In both cases,
the researcher uses the observations as the basis for generating hypotheses or explanations,
which can then be tested through further research [24]. Accordingly, this approach involves
providing general conclusions based on specific observations of “how” and “why” DT
failures occur.

3.2. Weibull Cumulative-Distribution Function and Reliability Function

In this paper, two distribution functions, namely, the Weibull cumulative-distribution
function (CDF) and the corresponding reliability function, have been used for the digital-
ization of transformer failures [22,25,26]. DT-failure data have been recorded in databases
from 1 September 2016 to 31 October 2022 from the Western Province South II branch of
Ceylon Electricity Board, and those data have been used for the analysis. The Western
Province South II branch is having similar geographical and weather conditions in all
over the region. Therefore, this region has been considered as acceptable for the reliability
analysis of the DT-failure data.

The following categories of transformers were recorded as showing failures for the
past six years. The apparent power categories of DTs with failure data for the DT voltages
11 kV/0.4 kV are provided in Table 1.

Table 1. The apparent power categories of 11 kV/0.4 kV DTs with failure data.

Apparent power (kVA) category 100 160 250 400 630

The apparent power categories of DTs with failure data for the DT voltages 33 kV/0.4 kV
are provided in Table 2.

Table 2. The apparent power categories of 33 kV/0.4 kV DTs with failure data.

Apparent power (kVA) category 100 160 250 400 630 800 1000

The failure data of the above categories of DTs were analyzed using Python program-
based Weibull analysis. Weibull CDF analysis was selected due to its versatility and
modeling capability for a variety of life cycle behaviors of crucial components [13].

The alpha and beta parameters for Weibull distributions can be calculated using
maximum likelihood estimation (MLE) or the method of moments, in which sample
moments (e.g., mean, standard deviation, etc.) are matched with the theoretical moments
of the distribution [19]. The “fitters” library in the Python programming language provides
easy-to-use interfaces for fitting Weibull distributions, as well as estimates for the alpha
and beta parameters, including other useful features such as goodness-of-fit tests, plots,
and confidence intervals with optimization algorithms [19]. Hence, the “fitter” library in
the Python programming language -has been used to plot the Weibull CDFs and survival
functions in this manuscript. The resulting Weibull CDF plots for DT-failure analysis are
provided in Figures 4–9.
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The corresponding survival (reliability) functions were developed using the Python
programming language for the different categories of transformer-failure data, as shown in
Figures 10–15. To investigate the performance comparison of the different Weibull models
for each category of distribution transformer, a single Weibull CDF has been used. The
resulting plot is provided in Figure 16.

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

  

Figure 10. Weibull survival functions for 11 kV/0.4 V–100 kVA, 160 kVA DT failures. 

  

Figure 11. Weibull survival functions for 11 kV/0.4 V–250 kVA, 400 kVA DT failures. 

  

Figure 12. Weibull survival functions for 11 kV/0.4 V–630 kVA and 33 kV/0.4 kV–100 kVA DT fail-
ures. 

Figure 10. Weibull survival functions for 11 kV/0.4 V–100 kVA, 160 kVA DT failures.

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

  

Figure 10. Weibull survival functions for 11 kV/0.4 V–100 kVA, 160 kVA DT failures. 

  

Figure 11. Weibull survival functions for 11 kV/0.4 V–250 kVA, 400 kVA DT failures. 

  

Figure 12. Weibull survival functions for 11 kV/0.4 V–630 kVA and 33 kV/0.4 kV–100 kVA DT fail-
ures. 

Figure 11. Weibull survival functions for 11 kV/0.4 V–250 kVA, 400 kVA DT failures.

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

  

Figure 10. Weibull survival functions for 11 kV/0.4 V–100 kVA, 160 kVA DT failures. 

  

Figure 11. Weibull survival functions for 11 kV/0.4 V–250 kVA, 400 kVA DT failures. 

  

Figure 12. Weibull survival functions for 11 kV/0.4 V–630 kVA and 33 kV/0.4 kV–100 kVA DT fail-
ures. 
Figure 12. Weibull survival functions for 11 kV/0.4 V–630 kVA and 33 kV/0.4 kV–100 kVA DT failures.



Future Internet 2023, 15, 45 11 of 17Future Internet 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

  

Figure 13. Weibull survival functions for 33 kV/0.4 kV–160 kVA, 250 kVA DT failures. 

  

Figure 14. Weibull survival functions for 33 kV/0.4 kV–400 kVA, 630 kVA DT failures. 

  

Figure 15. Weibull survival functions for 33 kV/0.4 kV–800 kVA, 1000 kVA DT failures. 

Figure 13. Weibull survival functions for 33 kV/0.4 kV–160 kVA, 250 kVA DT failures.

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

  

Figure 13. Weibull survival functions for 33 kV/0.4 kV–160 kVA, 250 kVA DT failures. 

  

Figure 14. Weibull survival functions for 33 kV/0.4 kV–400 kVA, 630 kVA DT failures. 

  

Figure 15. Weibull survival functions for 33 kV/0.4 kV–800 kVA, 1000 kVA DT failures. 

Figure 14. Weibull survival functions for 33 kV/0.4 kV–400 kVA, 630 kVA DT failures.

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

  

Figure 13. Weibull survival functions for 33 kV/0.4 kV–160 kVA, 250 kVA DT failures. 

  

Figure 14. Weibull survival functions for 33 kV/0.4 kV–400 kVA, 630 kVA DT failures. 

  

Figure 15. Weibull survival functions for 33 kV/0.4 kV–800 kVA, 1000 kVA DT failures. Figure 15. Weibull survival functions for 33 kV/0.4 kV–800 kVA, 1000 kVA DT failures.

3.3. Methodology and Analysis

The data were taken from the past six-year history of the transformer-category failure
data from the case-study region of the case-study organization. The data were in manual
format, and their digitization and digitalization were carried out for the analysis. Initially,
the DT-category failure data were recorded in an Excel file. Then, using the Python program,
the data from Excel were extracted and plotted in Weibull CDFs and in survival functions,
using the reliability library of the Python program. The Python program calculated the
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alpha and beta values for the Weibull-plot failure data. In addition, the goodness-of-fit
values were generated by the same Python program.
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Figures 4–9 above represent the Weibull CDFs of six years of failure data for 12 different
categories of DTs of the selected region of the case-study organization. The data were fitted
with complete data and not with incomplete (right censored) data.

In the above Weibull CDF plots, the horizontal scale provides measures of failure years
for each category of DT. The vertical scale provides the cumulative percentage of the failed
category of DTs. The shape factor (beta) provides an indication of the physics of the failure,
and the scale (alpha) factor estimates the lifespan of DTs’ characteristics. It can be either
infant mortality, early wear-out, random failures, or rapid wear-out.

In addition, in the above Weibull CDF plots, the dots represent the data points that
were collected as failure data for each category of DT. The line represents the theoretical
CDF that was fitted to the data points based on the plotted data. The shaded area represents
the uncertainty or confidence interval of the fitted Weibull distribution. It shows the range
of possible values for the CDF given the uncertainty in the data and the estimation of
the parameters. The thickness of the shaded area varies, depending on the amount of
DT-failure data that were collected and the degree of uncertainty in the data.

Figures 4–9 above also show that, when a large amount of failure data were recorded,
the uncertainty in the data were smaller and the shaded area ended up thinner in the
Weibull CDFs. This is because, with more data points, the fitted Weibull distribution was
able to better approximate the true underlying distribution of the DT-failure data, resulting
in a more precise estimation of the parameters of the Weibull distribution. On the other
hand, a small amount of DT-failure data were observed to be highly variable, and the
uncertainty in the data were larger, resulting in a thicker shaded area.
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Additionally, the level of confidence chosen to construct the shaded area affected how
thick or thin it was. A higher level of confidence resulted in a thinner shaded area and
vice versa.

The above survival functions from Figures 10–15 provide estimates of the lifespan of
DTs. The survival function is plotted on the y-axis as a function of time on the x-axis. It is a
decreasing function that starts at 1 and declines to 0 as time increases. The shape of the
survival function is determined by the shape parameter of the Weibull distribution, and
the slope of the survival function at any point is determined by the scale parameter [17,22].
These survival functions represent the probability that DTs will remain functional beyond a
certain time. The survival functions are the complement of the Weibull CDFs of DTs and
demonstrate the probability that the time to failure of a DT is greater than a given time t,
given that the DT has not failed before time t.

In reliability and failure analysis, the survival function is more informative than the
CDF, since it yields the probability of DTs still working at a certain time [21].

4. Results and Discussion

This section presents the results obtained with the Weibull plots implemented in this
study. Comparisons of the resulting maximum likelihood estimations (MLE) presented with
a truncated Newton method (TNC) optimizer for each category of distribution-transformer
failures with a 96% confidence interval (CI) are shown in Table 3.

Table 3. Results of the Weibull analysis of DT-failure data.

Transformer
Category No. of Failures Parameter Point

Estimate
Standard
Error

Lower
CI

Upper
CI

11 kV to 400 V
100 kVA

4
Alpha 11.4954 4.41194 5.41794 24.3902
Beta 1.37384 0.555899 0.621607 3.0364

11 kV to 400 V
160 kVA

3
Alpha 12.7236 3.20768 7.7628 20.8546
Beta 1.48876 0.410304 0.86743 2.55515

11 kV to 400 V
250 kVA

18
Alpha 20.573 2.40769 16.3562 25.8771
Beta 2.10485 0.426645 1.41477 3.13153

11 kV to 400 V
400 kVA

7
Alpha 22.1934 2.19919 18.2758 26.9508
Beta 4.01613 1.28084 2.14951 7.50373

11 kV to 400 V
630 kVA

3
Alpha 28.1318 3.12802 22.623 34.9819
Beta 5.52089 2.44696 2.31601 13.1607

33 kV to 400 V
100 kVA

37
Alpha 15.2267 1.41542 12.6905 18.2696
Beta 1.8654 0.229805 1.46525 2.37485

33 kV to 400 V
160 kVA

44
Alpha 16.3943 1.33623 13.9738 19.234
Beta 1.9358 0.240369 1.51763 2.46919

33 kV to 400 V
250 kVA

42
Alpha 17.9555 1.20517 15.7422 20.48
Beta 2.41537 0.303852 1.88757 3.09075

33 kV to 400 V
400 kVA

19
Alpha 15.2044 2.49815 11.0183 20.981
Beta 1.46352 0.28023 1.00557 2.13002

33 kV to 400 V
630 kVA

8
Alpha 16.9269 3082971 10.8641 26.3731
Beta 1.62459 0.49219 0.897143 2.94189

33 kV to 400 V
800 kVA

4
Alpha 10.4237 3.3206 5.5829 19.4618
Beta 1.66328 0.639442 0.782936 3.53352

33 kV to 400 V
1000 kVA

6
Alpha 16.7628 2.74205 12.1649 23.0986
Beta 2.62885 0.880714 1.36332 5.06914

By identifying beta and alpha parameters and checking the goodness of fit, decisions
can be made about the nature of the failure and its prevention. Table 4 provides informa-
tion about the interpretation of the Weibull-analysis data considering the beta and alpha
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parameters [27]. The shape parameter (beta) of the above Weibull distributions of the DT
failures provides insight into the nature of the failure. In the above plots, a beta value less
than 1 indicates that the failure rate was high at the beginning and decreased over time,
which is known as infant mortality or early-life failure in the bathtub curve. In addition, a
beta value equal to 1 indicates that the failure rate was constant over time, which is known
as random failure. A beta value greater than 1 indicates that the failure rate was low at the
beginning and increased over time, which is known as wear-out failure or late-life failure.

Table 4. Interpretation of Weibull CDF analysis data for DT failures [22,27].

Beta Value Alpha Value Typical Failure Mode Interpretation of Cause of Failure

>4
Low compared with standard
values for failed parts
(less than 20%)

Old age, rapid wear-out
(systematic, regular) Poor machine/material design

Between 1 and 4
Low compared with standard
values for failed parts
(less than 20%)

Early wear-out Poor system design

Between 1 and 4 Low Early wear-out Construction problem

<1 Low Infant mortality
Production problems, design
problems, misassembled, quality
control, overhaul problems

Between 1 and 4 Between 1 and 4
Less than
manufacturer-recommended
preventive maintenance cycle

Inadequate preventive-maintenance
schedule

Around 1 Much less Random failures with
definable causes Inadequate operating procedure

The scale parameter (alpha) of the above Weibull distributions of DT failures provides
insight into the overall reliability of the system. A larger alpha value indicates a larger time
to failure and higher reliability, whereas a smaller alpha value indicates a shorter time to
failure and lower reliability.

Table 4 has been developed to include the above information on actual failure data
of the distribution transformers of the case-study region of the case-study organization
considering related alpha and beta values in the literature.

Table 5 provides the log likelihood, AIC, BIC, and AD for the goodness of fit of the
Weibull model to the actual failure data set of the distribution transformer. This has been
used to evaluate how well the Weibull distribution fits a given set of data. Checking
the goodness of fit of the data provides valuable information. A good fit of the Weibull
distribution to the data indicates that the Weibull distribution is an appropriate model
for the data and that the estimated parameters had a good degree of accuracy. On the
other hand, if the goodness of fit is poor, this suggests that the Weibull distribution is not a
suitable model for the data and that other models should be considered.

Therefore, by identifying the beta and alpha parameters and checking the goodness of
fit of the Weibull distribution to the data, a responsible officer can make better decisions
about the nature of the failure and how to prevent it.

The resulting Weibull analyses of DT-failure data are to be uploaded to computerized
maintenance-management systems (CMMS) for data-driven decision-making for relevant
managers. With this data, corrective (reactive) maintenance work or the frequency of pre-
ventive (proactive) maintenance work can be determined for different categories of DTs. In
addition, ineffective maintenance-program issues with high failure rates of DTs could easily
be identified, and reliability indices (SAIDI, SAIFI, CAIDI, and ENS) of power-distribution
systems could be improved with cost optimization. Also, depending on the electricity
supply contracts, prioritization of the scarce resources by giving due considerations on
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consumer compensations and penalty charges at the event of electricity disruptions can
also be determined with this approach.

Table 5. Goodness of fit for the Weibull analysis of DT-failure data.

Transformer
Category Log Likelihood AIC BIC AD

11 kV to 400 V
100 kVA −13.1355 42.2709 29.0435 2.91429

11 kV to 400 V
160 kVA −26.59 59.5801 12.7236 2.25092

11 kV to 400 V
250 kVA −65.1467 135.093 136.074 1.48386

11 kV to 400 V
400 kVA −22.1699 51.3398 48.1316 2.2968

11 kV to 400 V
630 kVA −9.18554 NA 20.5683 3.76559

33 kV to 400 V
100 kVA −19.3341 46.6682 42.2517 2.17347

33 kV to 400 V
160 kVA −151.298 306.889 310.165 0.627865

33 kV to 400 V
250 kVA −141.136 286.58 289.747 0.655464

33 kV to 400 V
400 kVA −67.2275 139.205 140.344 1.05074

33 kV to 400 V
630 kVA −28.8044 64.0089 61.7678 1.92899

33 kV to 400 V
800 kVA −12.2087 40.4173 27.1899 2.99284

33 kV to 400 V
1000 kVA −19.3341 46.6682 42.2517 2.17347

5. Conclusions

This manuscript has been developed to implement risk and reliability analysis of
DTs, using failure data for maintenance planning, scheduling, and optimization by using
digitalization of DT failures. The results obtained with each Weibull analysis have been
compared using the MLE metrics. Digitalization of the DT data helps to determine the
most suitable repair/replace strategy for DTs to improve reliability while decreasing the
risk of unavailability, by making more confident data-driven decisions. Digitalization can
be carried out using CMMS. From the digitalization of DT-failure data, a maintenance
or reliability manager can identify maintenance strategies by leveraging historical data
to improve the reliability indices (SAIDI, SAIFI, CAIDI, and ENS) of power-distribution
systems without increasing costs. Furthermore, scarce resources could be managed with
this approach depending on the electricity supply contracts. Hence, this methodology can
be implemented at an early stage for digital transformation of power-distribution systems.

Future Works

Future research should be carried out to evaluate the application of the other probability-
distribution functions that fit the failure data of DT failures and the failures of other major
components in power-distribution systems for data-driven decision-making using CMMS.
This would help to adopt the optimum maintenance scheduling for power-distribution
systems aiming for digital transformation.
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