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Abstract 
 

This thesis examines how changes in the wheat price, price risk and climate risk affect wheat 

producers’ area decisions in the EU. Numerous studies have estimated the wheat area 

response in the US and in developing countries, but few have focused on the EU. The 

attention to risk in previous studies has also been limited. Greatly influenced by the Common 

Agricultural Policy, it is likely that producers in the EU respond differently to prices and risk 

than producers in the rest of the world. Understanding how these factors affect area allocation 

in the EU is important to be able to predict global food supply, as the EU is one of the world’s 

main wheat producing regions. The study follows the Nerlovian partial adjustment approach 

and is conducted on panel data covering the period 2003 to 2022. The findings suggest that 

the wheat area response to wheat price is inelastic in both the short-run and the long-run. The 

estimated short-run elasticities vary from 0,09 to 0,15 and the estimated long-run elasticities 

vary from 0,57 to 0,82. The effect of climate risk on wheat area is negative, while the effect of 

price risk on wheat area is statistically insignificant. This suggests that risk mitigating 

measures in the EU are effective in terms of reducing price risk. However, with more frequent 

extreme weather events in the future due to climate change, different measures may be needed 

to reduce climate risk for wheat producers.  
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1. Introduction  
 

Since 2003 the world has experienced several surges in the global wheat price. During the 

food price crisis of 2007-2008, the wheat price increased by more than 120%. Then in 2011-

2012, prices rose by 100% compared to 2010. Finally, in 2021-2022 the price reached an all-

time high, doubling again compared to December 2020 (FAO, 2023). It is easy to think that 

an increase in price would give incentives to produce more, and this would push the price 

back down in time. But the speed and magnitude of this reaction depends on why the price 

increases and the responsiveness in supply. An increase in price caused by increased demand 

will obviously give a different reaction than an increase in price caused by higher production 

costs. The wheat price reached historical heights in May 2022, and even though it decreased 

during the second half of 2022 it was still almost 50% higher in the beginning of 2023 than it 

was in 2021(Tradingeconomics, 2023). To be able to predict whether the price will keep 

decreasing or whether it will stabilize at a higher level, we need detailed knowledge about 

how wheat supply responds to price changes.    

Estimating supply response of agricultural commodities has been done in numerous studies. 

However, there has been limited focus on factors that can affect the responsiveness. Risk is 

one of the obvious factors to consider (Lin and Dismukes, 2007). More frequent price spikes 

make the market more volatile, and this will increase the output price risk for the producers. 

Changes in the perceived risk will affect the decisions made by the producers for the next 

period’s investment (Kalkuhl, 2016). If the risk is perceived as high, the producers might alter 

their production. Climate risk may also influence production decisions. As a result of climate 

change, we will experience more extreme weather in the future (IPCC, 2021). More frequent 

extreme weather events will increase the risk of losing parts of the crop for each farmer. It 

may also have a more general effect on the global wheat price. Less stable weather can give 

more fluctuations in the price and increase price volatility.   

Knowing the effect of climate risk and price risk on producers’ production decisions is 

important for two reasons. First and foremost, this information is needed to be able to assess 
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and predict the global food supply situation. It is also important for deciding which measures 

are most effective to incentivize farmers to increase production.  

There is a substantial body of literature on agricultural supply response. Supply response can 

be studied by analyzing the relationship between price and either total output, yield or 

cultivated area (Coyle, 1993). It is important to note that supply response is used as a 

collective term for all these relationships. As yield can be strongly affected by weather and 

plant diseases, i.e., factors that the producer has no control over, this study will only focus on 

producer’s wheat area decisions. The majority of existing literature is conducted on US data 

or from the perspective of different developing countries. Little empirical work has included 

data from the European Union (EU). The EU is one of the world’s largest wheat producing 

and exporting regions. How producers in the EU react to price changes and risk has a big 

influence on the world’s wheat market.  

The main objective in this paper is to analyze how wheat price, price risk and climate risk 

have affected wheat area decisions in the EU during 2003-2022. The research will focus on 

the following questions: (1) How does an increase in the wheat price affect area decisions in 

the EU?; (2) Does increased wheat price volatility reduce the area response to increased 

prices?; and (3) Do more frequent extreme weather events reduce the area response to 

increased prices?  

To estimate these relationships, I have constructed a panel dataset covering 27 EU countries 

over the period 2003 to 2022 and apply a Nerlovian model of agricultural supply response 

(Nerlove, 1956), which consists of estimating a partial adjustment model. This has been the 

most common approach to quantify agricultural supply response in previous literature (Thiele, 

2000). As several of the variables are not observable, different proxies are tested in the model. 

Producer’s price expectations formation is highly debated and requires careful consideration 

to create a proxy for price expectations. Area is used as an output measure and risk variables 

are included in the model to examine the effect of volatility and extreme weather on area 

decisions. In addition, the model includes variables for production costs and public support.  

The EU wheat market is regulated and supported by the Common Agricultural Policy (CAP) 

and the estimated results are also used to examine the effect of CAP measures on area 

decisions. Wheat producers in the EU receive support both through direct payments (income 

support) and market price support (WTO, 2014). The support may cause producers in the EU 

to react differently to price and risk than producers in other countries. Haile et al. (2015) 
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estimated wheat area response to price and volatility in their global supply response study. 

This paper follows the same approach in terms of model and estimation method, and it is of 

interest to compare the estimated EU supply response with the global supply response 

estimated by Haile et al. (2015).  

The study is organized in six sections. The next section dwells upon the background of price 

changes in the global wheat market, and how price volatility creates risk for the producers. It 

also describes the development of wheat production, agricultural support, and climate change 

in the EU since 2003. 

Section 3 provides a discussion of the theory behind supply response analysis and elasticity 

estimation. The cobweb-theorem and its implications for the wheat market is presented, and a 

summary of the different price expectation formation hypotheses is given. It also reviews a 

selection of previous literature on supply response.  

Section 4 explains how the data was collected and the different variables used in the model. It 

discusses the method applied to estimate the final specification and different statistical tests 

conducted to test the validity of the model. Section 5 presents and discusses the results of the 

estimation. A brief summary and the conclusions follow in section 6.  

 

 

2. Background  
 

 

2.1 The global wheat market  
 

Wheat is produced and consumed all over the globe and is one of the world’s most important 

staple foods. Global production was 781 million metric tons (mmt) in 2021/2022 and is 

estimated to increase to 801 mmt in 2022/2023. Both global production and consumption 

have an increasing trend, and since 2003 production has increased by more than 30% (FAO, 

2023). During the last three years consumption has increased more than production, and 

wheat inventories have been drawn to meet the demand (IGC, 2023). As reported in figure 1, 

the tendency has been for about one quarter of total global production to be exported. This 

share remained fairly constant during 2003-22.  
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Figure 1     World production and export     Source: FAO (2023) 

 

  

According to OECD-FAO Agricultural Outlook (2022) the growth in both demand and 

production is expected to slow down in the next decade compared to the study period. The 

increase in demand will mainly be driven by population growth. Production is expected to 

increase by 10% in the next ten years. The cultivated area is projected to increase by 3%. 

Yield improvements are expected to drive the rest of the production growth. But there are 

many uncertainties behind these estimates. These projections are based on normal weather 

and policy assumptions, not accounting for any extreme events. They also assume increased 

investments in yield improving technology and no substantial increase in input prices 

(OECD/FAO, 2022).  

The main part of wheat production is concentrated in a handful of regions. The shares 

remained relatively stable during the study period, with the same five regions as the largest 

producers. China, the EU, India, Russia, and the United States (US) accounted for about 70% 

of global wheat production per year during 2003-2022 (Indexmundi, 2023). The main 

exporters are Russia, the EU, Canada, Australia, and the US. The EU has had an increase in 

exports during the study period, from almost 30 mmt in 2003 to over 50 mmt in 2022. Russia 
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also experienced an increasing trend, while the other countries have remained fairly stable 

(FAO, 2023).  

 

2.2 Wheat prices 
 

The global price of wheat is highly variable. This means that the price is likely to change 

quickly and suddenly. This is because the production level is uncertain and is affected by 

exogenous factors such as weather and plant diseases. A price spike can be described as a 

large and sudden increase in the price. In figure 2, if we compare 2003-2022 with 1980-2002, 

we see that the number of price spikes has increased in frequency and magnitude. Since 2000 

there have been three major price spikes, where the price has increased by more than 100% 

within a year. The first one in 2008, followed by a second in 2011-2012 and third in 2022. 

These three events were all described as food price crises by the Food and Agriculture of the 

United Nations (FAO, 2022). 

The 2008 price spike was caused by a series of events. The main causes were high energy 

prices, low yields caused by a combination of extreme weather events, increased consumption 

due to economic development in Asia, increased biofuel production and export restrictions 

(Mueller et al., 2011). Adverse weather conditions in the EU, Russia, and Australia in 2007 

caused a decline in production. This was combined with an increase in fertilizer and fuel 

prices that drove up production costs. Both events led to a decline in supply. At the same time 

China and India increased their consumption of wheat. Rising biofuel prices and subsidies to 

biofuel production made many wheat producers shift from food production to biofuel 

production (Donald, 2008). This led to an increase in demand. The simultaneous change in 

both supply and demand led to a rapid increase in the global wheat price (Mittal, 2009). 

Export restrictions made less wheat available for the global market and drove the prices even 

higher.  

The 2011-2012 price spike was caused by many similar factors (Coulibaly, 2013). Weather 

events, like the extreme drought in Russia and Ukraine in 2010, had a substantial impact on 

supply. Demand for biofuel was still increasing and energy prices started rising again after a 

decrease in 2009 (Trostle et al., 2011). Export restrictions amplified the effect also at that 

time. To what extent the different factors contributed to the price increase in 2008 and 2011-

2012 is debated in the literature. This debate, however, is beyond the scope of this paper.   
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In 2022 the wheat price was driven up by high natural gas prices, problems with transporting 

wheat out of Ukraine, sanctions on Russia and many countries imposing export restrictions 

(Bentley et al., 2022). These issues were all connected to Russia’s invasion of Ukraine. Both 

Russia and Ukraine are large wheat producers and exporters, and the war in Ukraine caused a 

lot of uncertainty in the wheat marked which drove the price up. The main difference between 

the price spikes in 2008 and 2011-2012 and the one in 2022 is that there was no large 

decrease in production. There was no lack of wheat on the world market, but logistics and 

export restrictions made global trade challenging.  

 

 

Figure 2    Global price of wheat 1980-2022 in US dollars per bushel      Source: Macrotrends (2023) 

 

 

When analyzing the historical wheat price, it is important to distinguish between the price 

level and price variation. A high price level is not necessarily a problem. High prices benefit 

the producers and give them incentives to produce more. In the long run it can also benefit the 

consumers by the need for more employment.  

Volatility describes price variation. It is a directionless measure of the extent of the variation 

(Gilbert & Morgan, 2010). There are a variety of approaches to measure volatility. Standard 

deviation (SD) of price changes is one of the most common. The higher the SD, the higher the 

volatility. Not all variation is bad, but when the changes are rapid and unexpected it causes 
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uncertainty for both the producers and the consumers. Increased price volatility increases the 

price risk for the producers and makes it more difficult to plan production (Kalkuhl et al., 

2016).  

It is also important to distinguish between historical volatility and predicted volatility. 

Historical volatility is a measure of the variation in historical prices. Predicted volatility, also 

known as implied volatility, represents volatility expectations for the future based on the 

historical volatility. This is an important tool in the analysis of the financial markets. Thus, for 

the purpose of this study only measures of historical volatility are used.  

Wheat price volatility has several drivers. Any kind of shock to supply, or demand can be 

transmitted into price volatility (Gilbert & Morgan, 2010). A supply shock can come of events 

such as extreme weather events, an outbreak of plant disease or a spike in input prices. A 

sudden change in demand can happen because of dietary changes, changes in policies (e.g., 

subsidies to biofuel production), or changes in income. Different measures can be taken to 

diminish price volatility. Policy intervention, trade and wheat storage can act as buffers of 

volatility in the global wheat market (Santeramo & Lamonaca, 2019). To what extent these 

different factors contribute to exacerbate or diminish price volatility is still debated.  

In figure 3 wheat price volatility in the EU is measured as SD of monthly wheat prices. The 

volatility varied between 0,03 and 0,12 in the study period and has a slightly increasing trend. 

This is in line with previous studies on wheat price volatility. Steen et al. (2023) found that 

global wheat price volatility, measured as SD of daily prices, has had a small but significant 

upwards trend in the period 1971-2019. They conclude that climate change has had a small 

effect on wheat price volatility so far because of climate-adapted planting decisions, storage, 

trade, and use of risk mitigating instruments. Dawson (2014) estimates the volatility of wheat 

futures prices on Euronext for the period 1996-2012 and finds that wheat futures price has 

become more volatile during this period.  
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Figure 3     Standard deviation of monthly wheat prices     Source: European Commission (2023a)  

 

 

 

2.3 Wheat production in the EU 
 

 
The EU is the second largest wheat producer and exporter in the world, with a total 

production of 133 million tons in 2022 (IGC, 2023). Total production, area, yield, average 

wheat price in the EU and global average wheat price is presented in table 1. The EU has 

increased production by an average of almost two million tons per year during 2003-22. The 

fluctuations in production can be explained by changes in either area or yield. Area is the 

number of hectares where the producers grow wheat. Yield is the amount of wheat harvested 

per hectare. The producers can influence both area and yield, but only to a certain extent. 

Producers do not have unlimited access to area, at least not in the short run. Therefore, they 

might not be able to extend their production as much as they believe is optimal. Yield can be 

affected by fertilizing and watering decisions made by the producers but is constrained by 

factors such as weather and technology improvements. Total supply is production plus last 

year’s ending stocks. Since wheat can be stored, surplus from one year can be stored for 

several years and used in years with deficit.  

 The EU has the highest average yield in the world (Enghidad, 2017), with an average yield of 

5,2 during the study period. Until the late 1990’s the EU’s increased production was driven by 
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both area expansions and yield improvements (Erenstien, 2022). As we see from table 1, yield 

improvements have driven the increase in production since 2003. If we compare the first half 

of the period with the second half, the average yield has increased from 4,8 during 2003-2012 

to 5,6 during 2013-2022. The wheat area has varied during this period, but with a slightly 

decreasing trend. The average area has decreased from 24,2 million hectares during 2003-

2012 to 23,8 million hectares during 2013-2022.  

We see that area exceeds 25 million hectares three times during the study period; in 2008, 

2011 and 2012. These increases in area match the increases in average price and might 

suggest that higher prices incentivize producers to expand planted area. However, during the 

price spike in 2021-2022 the effect on area is not as prominent. The average wheat price in 

the EU increased by more than 50% from 2021 to 2022, while the increase in area was less 

than 0,5%. One explanation might be that the fertilizer price increased more, relative to the 

wheat price, in 2021-2022 than in 2008 and 2011-2012 (Baffes & Koh, 2022). This made 

wheat production less profitable despite higher wheat prices, compared to the two previous 

periods.  

In table 1 the wheat price in the EU moves relatively close to the global wheat price. The 

Nominal Protection Coefficient (NPC) is the ratio between domestic price and global price 

(OECD, 2011). During the study period EU NPC is 1,03, which means that EU prices on 

average are 3% higher than global prices during this period. All three price spikes discussed 

above are obvious in both price series. In 2006 and 2007 we see that low yields in the EU 

drove total production down. Low production two years in a row resulted in low ending 

stocks, and a decrease in total supply. This, together with the factors discussed in 2.1, resulted 

in an increase in the wheat price in the EU in 2007. In 2008 production in the EU increased 

and the price decreased in the second half of 2008. The global price increased slower than the 

EU price in 2007. However, in 2008 the global price was 15% higher than the EU price. This 

might be due to policy adjustments made by the EU to mitigate the price increase (Mittal, 

2009). Both the obligation of a 10% set-aside of arable land for wheat farmers and import 

duties on wheat were suspended (European Commission, 2008). These measures might have 

led to a faster decrease in the EU price than in the global price. 

In 2011-2012 the global price was above the EU price in both years. A reason for this could 

be that unlike in 2008, the reductions in yield happened outside the EU. In 2021-2022 there is 

no reduction in yield in the EU that can explain the increase in the price series. The world 

price is above the EU price in the period 2020-2022. It is worth noticing that the EU price is 
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above the global price during “normal” years, and below the global price during the periods 

we refer to as food price crises. In the remainder of this paper, the EU price series will be used 

when referring to the wheat price if nothing else is stated.  

 

 

Table 1   Wheat production and prices from 2003 to 2022 

Year    Production (m.tons)    Area (m.ha)    Yield (t/Ha)    Avg. price EU (€)    Avg. price global (€) 

2003          100.89                        22.65                      4.4                    143                      123   

2004          130.72                        23.77                      5.4                    120                      116 

2005          117.14                        23.72                      4.9                    131                      121 

2006          112.79                        23.96                      4.7                    150                      148 

2007          106.84                        24.16                      4.4                    205                      195 

2008          134.10                        25.65                      5.2                    190                      220 

2009          125.71                        24.12                      5.2                    130                      129 

2010          122.50                        24.17                      5.0                    184                      180 

2011          123.63                        25.00                      4.9                    200                      228  

2012          117.34                        25.21                      4.7                    241                      261 

2013          132.51                        24.67                      5.4                    183                      229 

2014          140.73                        23.80                      5.9                    165                      165 

2015          144.77                        24.90                      5.8                    170                      161 

2016          130.23                        23.19                      5.6                    148                      143 

2017          137.50                        24.21                      5.6                    150                      145 

2018          125.51                        23.75                      5.2                    190                      184 

2019          139.43                        23.21                      5.9                    173                      170 

2020          126.37                        22.76                      5.5                    183                      193 

2021          138.07                        24.02                      5.7                    222                      280 

2022          133.79                        24.12                      5.5                    338                      387 

Note: Both price series are average annual prices in EUR pr ton. Area is the total area under cultivation.  

Source: FAO (2023); European Commision (2023a); International monetary fund (2023a); IGC (2023) 
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France, Germany, and the UK were the main wheat producing countries in the EU until the 

UK withdrew from the EU in 2020. With an average production of respectively 26%, 15% 

and 10% of total production in the EU during 2003-2022 (FAO, 2023). After 2020, France, 

Germany and Poland have been the largest producers. France has the highest yield in the EU 

with an average yield of over 7 during 2003-22 (World Bank, 2023). Both winter wheat and 

spring wheat are cultivated in the EU. However, winter wheat accounts for almost 90% of the 

production (Schils, 2018). Winter wheat is planted in September/October and harvested in 

July/August, while spring wheat is planted in April/May and harvested in August/September 

(USDA, 2023). Estonia and Finland are the only two countries where winter wheat is most 

common. More than 50% of grain production in the EU is wheat, the remaining part consists 

of one third barley, one third maize and one third other grains (European Commision, 2022).  

The EU supports wheat production through different measures. The World Trade 

Organization’s Agreement on Agriculture classifies the measures into different “boxes” 

(WTO, 2023a). Amber box denotes the trade distorting measures, blue box denotes the 

measures that have some distorting effect on trade, but also have production requirements 

embedded in them and green box denotes the measures that has minimal trade or production 

distorting effects. There has been a transformation of the support program during the study 

period. Through the CAP farmers in the EU receive support from all three boxes (European 

Commision, 2023b). However, since the CAP reform in 2003 (gradually implemented 

between 2005 and 2007) the amount of amber box and blue box support has been reduced 

(European commission, 2023c) Figure 4 shows the amount of support received per year by the 

agricultural sector and distribution between the different boxes. Support from the blue box 

and amber box combined decreased from approximately 55 billion Euro in 2003 to 12 billion 

Euro on average per year for the rest of the study period (WTO, 2023b) 
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To understand the implications of the 2003 reform for the wheat producers, it is necessary to 

know how the different measures in the CAP function. The primary objectives of the CAP are 

to increase productivity, stabilize markets, guarantee stable food supply and reasonable prices 

for consumers (USDA, 2021). Historically, the CAP has mainly supported wheat farmers 

through market price support (MPS) (European Commision, 2023b). MPS is used to create a 

gap between prices within the EU and global prices, with the objective of protecting farmers 

from low prices. This is done by intervention buying through the government (Swinbank, 

2008). Intervention buying implies an intervention price, often set far above the global price, 

that works as a guaranteed minimum price. If the wheat price falls below a certain threshold, 

the government will intervene. 

MPS is considered to be one of the policies with the largest trade distorting effects and is 

classified as an amber box measure. It increases the producer surplus, and therefore has a 

strong effect on production (OECD, 2011). Since MPS can stimulate over-production, and the 

high prices make exports uncompetitive, MPS is often used in combination with export 

subsidies (WTO, 2014). Until 1992, MPS gave producers incentives to increase production of 

many commodities beyond what could be economically justified, and surplus was exported at 

prices below production cost (Bureau & Gohin, 2009). Export dumping has a highly 

distortional effect on global trade. MPS also affects consumers negatively through higher 

prices and higher tax burden (Pindyck & Rubinfeld, 2018). These negative consequences 

motivated the shift away from MPS.  

Figure 4     Agricultural support in the EU        Source: European commission (2023); WTO (2023) 
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Through CAP reforms in 1992 and 1999 the MPS for most products was reduced (Kelch & 

Normile, 2004). The intervention price for wheat was reduced by almost 50% between 1990 

and 2000 (Pe’er et al., 2017). The 2003 reform further reduced MPS for some products, but 

the reduction was small for wheat. Export subsidies also declined after the 2003 reform, and 

after 2006 there were no export subsidies on wheat. Import tariffs have not been directly 

affected by the reform (WTO, 2014). During the study period the amount spent on MPS for 

wheat is fairly stable between 1,8 and 2,1 billion EUR pr year (WTO, 2023b). For the period 

before the reform (2003-2007) and the period after the reform (2008-2022) the support 

accounts for respectively 12% and 8% of the value of total wheat production in the EU per 

year on average. There is a clear consensus that MPS has a positive impact on production 

(OECD, 2011), but to what extent it affects area decisions during the study period is 

uncertain.  

In addition to price support the farmers receive direct payments. Before 2003 the direct 

payments were coupled to production, and therefore classified as blue box. The new reform 

introduced a single farm payment (SFP), which is a payment to farmers based on historical 

payments. The SFP is not bound to any specific product and gives the farmers more flexibility 

in their planting decisions (Sckokai & Antòn, 2005). Since SPF is decoupled from production, 

it can be classified as green box (Binfield et al., 2004).  

The changes made in 2003 resulted in a large shift of expenditure from blue box and amber 

box to green box for the agricultural sector in total. This made domestic markets in the EU 

more open to the global market and more responsive to international price variations. 

However, wheat farmers were mainly affected by the transition from direct payments that 

were coupled to production to SFP. With only a small reduction in MPS the wheat market is 

still protected during times of low global wheat prices. The introduction of SFP might affect 

wheat production both through changes in area and through changes in yield. Decoupling 

payments from production can result in a decrease in area since payments no longer require 

production of specific crops. If this is the case, it is likely that the area taken out of production 

is the area of lowest quality. Thus, transition to SFP might also lead to a yield increase (Kelch 

& Normile, 2004). It is debated in the literature how strong these effects are and to what 

extent SFP creates production incentives (Urban et al., 2016; Scokai & Moro, 2009).  
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2.4 Climate change and wheat production  
 

Climate variations are a key driver of variability in wheat supply (Ray et al. 2015). There is a 

wide consensus that wheat production will, like all other agricultural production, be affected 

by climate change in the future. According to the Intergovernmental Panel on Climate Change 

(IPCC, 2021) it is very likely that global average temperature will increase by more than 2 

degrees Celsius within the next 30 years. There is a lot of uncertainty related to how an 

increase in average temperature will affect wheat production (Zhang et al., 2022; Jägermeyr et 

al., 2021; Wilcox & Makowski, 2014). In addition to global warming, we will experience 

more frequent episodes of extreme weather in the future (IPCC, 2021). Heatwaves and 

droughts are often considered the most damaging consequence of climate change for wheat 

production. Liu et al. (2021) concludes that the frequency of extreme low yields will increase 

for several of the major wheat producers because of droughts and heat stress. The most 

obvious effect of more frequent episodes of extreme weather is the effect on yield but 

increased yield risk can also affect area decisions. If there is an increase in perceived risk of 

losing part of the crop due to extreme weather, this might dampen the effect of price increase 

on area.  

However, extreme weather can increase the risk for producers even if they are not directly 

affected by the weather events. In addition to the direct effect on yield for each producer, the 

frequency of extreme weather events can affect the volatility of the wheat price. Zhang et al. 

(2022) estimates that even if the net effect of global warming on wheat yield is positive, 

increased frequency of extreme weather events and climate variability will make global wheat 

price spikes more frequent. Extreme weather can therefore affect production decisions in two 

ways, through increased yield risk and through increased price risk.  

Bràs et al. (2021) found that the average impact of droughts and heatwaves on crop 

production in Europe has tripled over the last 50 years. The analysis was based on a crop 

response model using weather data from the Extreme Weather Disaster database (EM-DAT). 

This is in line with the findings of Lesk et al. (2016), which is also based on data from EM-

DAT. In their global crop response study, they conclude that the negative effect of heatwaves 

and droughts on crops has increased in the period 1964-2007. They also find that production 

losses are due to a reduction in both yield and area. Thus, more common episodes of extreme 

drought and heatwaves can be a major threat to wheat production in Europe. Trnka et al. 

(2014) analyzes the possibility of increased frequency of weather events that negatively 
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affects wheat production in Europe, based on climate models and different greenhouse gas 

emission estimates. They conclude that it is very likely that the frequency of such events will 

increase, and that this will lead to more frequent crop failure in Europe.  

Figure 5 shows a summary of all reported droughts and heat waves in the EU from EM-DAT 

during the study period. The frequency of droughts and heat waves has an increasing trend in 

the figure. With a noticeable higher number of events in the last five years compared to the 

average.  

 

 

Figure 5     Number of droughts and heat waves in the EU reported in EM-DAT     Source: EM-DAT (2023) 

 

 

3. Theory and related literature  
 

 

3.1 Producer theory  
 

The supply response refers to the relationship between the expected price of the commodity 

and the quantity supplied. A fundamental principle of economic theory is the law of supply. 

This states that an increase in the price of a product leads to an increase in the quantity 

supplied, given that all other factors are constant. In economic theory, supply is defined as the 

total amount of a good that is available to consumers at a given time and at given prices. It is 
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important to distinguish between this definition and the supply term used in supply response 

studies, as this term refers to the total output from the producers regardless of how much is 

released into the market (Coleman, 1983).  

As discussed in chapter 2, supply can be decomposed into area and yield. As a measure of 

output in supply response models, it is possible to use total quantity, yield, or area. From the 

producer’s perspective the total quantity is the crucial measure. An increase in quantity can be 

achieved by increasing yield, area or a combination of both. Applying area as an output 

measure in supply response functions will therefore capture only parts of the response. 

However, yield can be affected by external shocks and technological progress. The farmer has 

more control over decisions about area expansion and re-allocation. Area is therefore 

considered a better proxy for planned production than yield and total production (Coyle, 

1993). Area has been the favorable output measure in supply response literature, but it is 

important to emphasize that this is only a lower bound for the total response (Halie et al., 

2015).  

One of the aims of supply response studies is to estimate the quantitative response in supply 

relative to price, i.e., the price elasticity of supply. Another aim is to investigate the effect of 

other explanatory variables, and supply response models normally include several different 

independent variables, like production costs, risk variables or policy variables (Thiele, 2000).   

Price elasticity of supply is defined as the percentage change in quantity supplied resulting 

from a 1 percent increase in price (Pindyck & Rubinfeld, 2018). If the elasticity is greater than 

1, it means that a 1 percent increase in price will result in more than 1 percent increase in 

supply. We refer to this as elastic supply. If the elasticity is less than 1, it means that a 1 

percent increase in price will result in less than 1 percent increase in supply. We refer to this 

as inelastic supply. Elastic, inelastic and unitary supply are illustrated in figure 6.  
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Figure 6     Elasticities           Source: Economics (2023) 

 

The elasticities of both supply and demand will decide how different shocks affect the wheat 

price. Empirical studies find that the elasticity of both wheat supply and wheat demand are 

low, i.e., relatively inelastic, at least in the short run (Bond, 1983; Rao, 1989). This means that 

a given change in supply or demand will have a relatively larger effect on the price. Looking 

back at the food price crises discussed in chapter 2, this explains the sharp increase in the 

wheat price caused by the shifts in supply and demand. Figure 7 illustrates a shift in supply 

when demand is elastic, unitary and inelastic. A shift in supply when demand is inelastic will 

result in a change in price that is larger relative to the change in quantity. When several 

countries in the EU were affected by extreme drought in 2007 supply decreased. This is 

illustrated in figure 7 by a shift of the supply curve to the left. If demand were elastic (graph 

to the left), the consumer would be price sensitive and a small increase in price would lead to 

a large decrease in quantity. However, since wheat is inelastic, the shift in supply results in a 

small decrease in quantity and a large increase in the wheat price (graph to the right).  
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Figure 7      Inelastic, unitary and elastic demand       Source: EzyEducation (2023) 

 

Figure 8 illustrates a shift in demand when supply is inelastic, unitary and elastic. An increase 

in demand for wheat in Asia in combination with increased biofuel production, resulted in a 

shift in demand in 2008. Since the wheat supply is also inelastic, this led to a large increase in 

the price while the increase in production was modest. When supply is inelastic the shift in 

demand results in a relatively small change in quantity produced and a relatively large change 

in the price. This is explained by the fact that most factors in wheat production are fixed in the 

short-run (Binswanger, 1989).  

 

 

Figure 8      Elastic, unitary and inelastic supply    EzyEducation (2023) 

 

 

 

The wheat market differs from many other markets because production decisions are made a 

long time before the product is released to the market. Each farmer must allocate his land in 

the planting season, based on expectations about the future. The farmer does not get to alter 
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his production until the next planting season. This makes it impossible to react fast to changes 

in price and supply is therefore inelastic in the short run. Reasons for wheat supply to be 

inelastic in the long run might be that land availability, climate or land degradation sets a cap 

on production (Roberts & Schlenker, 2013). 

Another result of the time lag between production decisions and consumption is explained by 

the Cobweb theorem (Ezekiel, 1938). This economic model describes how a shift in supply or 

demand can lead to a cycle of rising and falling prices. Figure 9 shows how an increase in 

price in period 1 leads to increased production in period 2. The increase in production makes 

the price decrease in period 2. When production decisions are made in period 3, these are 

based on the low price in period 2. The decrease in production leads to an increase in price 

again and this cycle will continue.  

 

 

Figure 9       The cobweb theorem         Source: EconomicsHelp (2023) 

 

 

 

The outcome depends on the slope of the demand curve and the supply curve. If the supply 

curve is steeper than the demand curve, the market will eventually return to equilibrium 

(Poitras, 2023). For the Cobweb theorem to hold we must assume that production decisions 
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are based solely on previous prices. This depends on how farmers form their price 

expectations. Expected prices might be different than current prices and, as we will see in the 

next chapter, there are different hypotheses regarding how price expectations are formed.  

 

3.2 Formation of price expectations  
 

The formation of price expectations is heavily debated in the supply response literature 

(Chavas, 2000; & Bessler, 2001). The most commonly applied expectations formation 

hypotheses are: (1) naïve expectations, where the expected price is set equal to the latest 

observed value of the price (Ezekiel, 1938; Houck & Gallagher, 1976); (2) adaptive 

expectations, where the expected price is assumed to be revised over time depending on the 

latest prediction error (Nerlove, 1956); (3) rational expectations, where producers are assumed 

to make efficient use of market information (Muth, 1961); and (4) quasi-rational expectations, 

where expected price is formed by a price prediction from a reduced-form dynamic regression 

equation (expectations are formed based on the observed historical pattern) (Nelson & 

Bessler, 1992; Nerlove et al., 1979).  

Previous work suggests there is no a priori method to identify the correct price expectations. 

Both naïve and adaptive expectations have been criticized for underestimating the producer’s 

ability to be forward-looking (Hommes, 1998). Using prices from past time periods also raises 

the question of which previous prices to use, and the literature does not give an unambiguous 

answer to this. The argument for using these types of expectations formations is often that 

market information is difficult or costly for producers to obtain. This might be the case for 

small-scale farmers in developing countries. For producers in the EU, obtaining relevant 

market information requires little resources. 

Both the rational and quasi-rational expectations hypothesis assumes that producers utilize a 

variety of information when forming price expectations (Holt & McKenzie, 2003). Quasi-

rational expectations partly correspond to fully rational expectations but differs in how it is 

based on historical data (Nelson & Bessler, 1992). Thus, quasi-rational expectations can be 

said to be more backward-looking than rational expectations. Rational expectations as 

described by Muth (1961), have been criticized for being too stringent (Nerlove & Fornari, 

1998). This method implies that producers efficiently utilize all market information. This is a 

strong assumption. One approach that lies within the rational expectations framework is the 
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use of futures prices as a proxy for price expectations. This builds on the hypothesis that 

futures prices reflect the market’s estimate of the future cash price (Gardner, 1976). Following 

the rational expectations theory there is no reason for producers to have different expectations 

than the rest of the market.  

 

 3.3 Previous literature  
 

There is a substantial literature on estimation of agricultural supply response (Bond, 1983; 

Lee & Helmberger, 1985; Rao, 1989). Previous literature provides a variety of approaches 

which may be employed to estimate supply response.  The most common are different 

variations of the Nerlovian partial adjustment model. Following Coleman’s (1983) 

classification, the Nerlovian model falls into the category of directly estimated models. The 

other two categories being two-stage procedures and directly estimated systems. These 

approaches build on the utility- and profit-maximizing framework. Which approach is most 

appropriate depends on available data and the objectives of the study. According to Coleman 

(1983) directly estimated models may be preferred if the objective is short-run supply 

forecasting of one or a subset of products. Models that build on the profit-maximizing 

framework are more time consuming and require more detailed data (Haile et al., 2015). This 

section will review some of the most influential supply response studies within all three 

categories, particularly focusing on which proxies are being used for price expectations and 

studies that include different risk variables.  

Nerlove (1956) formulates the agricultural supply response model, known as the Nerlove 

model. This is one of the most frequently applied models in agricultural economics (Braulke, 

1982). In addition to formulating the relationship between desired output and actual output, 

Nerlove (1956) focuses on how producers form their expectations of future prices and how 

this affects their decisions. He estimates short-run supply elasticities for wheat to 0,93. His 

estimates are based on US data from 1909-1932 and total production is used as an output 

measure. He criticizes earlier work that applies the price lagged one year as the price variable 

in their supply response models. Arguing that adaptive expectation formation gives a better 

proxy for expected price, and that naïve expectations formation will result in elasticity 

estimates that are biased downwards. Even though the Nerlovian method subsequently has 

been adopted by numerous authors, there has been a lot of variation in how the method has 

been applied.  
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Askari and Cummings’ (1977) meta study contains more than 100 studies that follow the 

Nerlovian approach. They compare estimates on price responsiveness derived from the 

Nerlovian formulation from studies conducted between 1958 and 1976. There is a great 

diversity in the estimates. The short-run elasticity estimates for wheat vary from 0,01 to 0,96 

and the long-run elasticities vary from 0,03 to 3. The studies differ in which control variables 

they include, what proxy they use for price expectations, and which measure they use for 

output. Askari and Cummings conclude that the wide range of estimates, also within the same 

type of crop or within similar countries, reveals a need for more research concerning which 

factors affect the responsiveness.  

Several studies have been conducted to compare different proxies for price expectations. 

Gardner (1976) criticizes all use of lagged prices as a proxy for price expectations, also the 

way they are used in adaptive expectations formation. He argues that futures price is a better 

proxy. He compares soybean elasticity estimates from a model including lagged price with the 

estimates from a model including futures price, using data from the US for the period 1950-

1974. Futures price as a proxy gives elasticity estimates of 0,73 and lagged price as a proxy 

gives elasticity estimates of 0,45. The standard error is lower when futures price is used. He 

concludes that futures price performs better than lagged price as a proxy for expected price. 

Shideed & White (1989) compare alternative specifications in their study of corn and soybean 

area response in the US, using data covering the 1951-1968 period. They compare naïve price 

expectations, futures price and support price using a two-stage procedure. They find that the 

estimated elasticities are sensitive to the choice of proxy, but the performance of the 

alternative proxies are not consistent between corn and soybeans. Their conclusion is that the 

preferred proxy will vary from crop to crop. Chavas (2000) investigates different expectation 

formations, based on aggregate data on the US beef market covering 1948-92. Developing 

and estimating a model of price determination and dynamic market allocation he finds that 

47% of producers based their production decisions on naïve expectations, 35% on quasi-

rational expectations and 18% on rational expectations.  

More recent supply response literature has focused on incorporating different explanatory 

variables. Risk variables have been included in several studies. Lin & Dismukes (2007) 

investigates the role of price risk and yield risk in their estimation of elasticities of corn, 

soybeans and wheat. To capture both price risk and yield risk they construct a variable for 

expected revenue variance. In addition to the risk variable, they include USDA estimates of 

production costs and a policy variable. The study is conducted on US data from 1991 to 2001, 
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using two different utility-maximation models and with area as an output measure. The short-

run area elasticity for wheat ranges from 0,248 to 0,336. The coefficient for the revenue 

variance variable was negative and statistically significant for soybeans, but not statistically 

significant for wheat and corn.  

Roberts & Schlenker (2009) estimates supply elasticities for corn, soybeans, rice and wheat, 

based on global data from 1960 to 2007. They aggregate the four crops based on calories and 

follow a profit-maximation approach. They include yield shocks as an instrument for futures 

price in their model, measured as the deviation from country-specific trends in yield, arguing 

that futures prices incorporate yield expectations and therefore are endogenous to supply. 

They recommend the use of weather variables, instead of deviation from yield trends, if data 

on this is available. Short-run supply elasticities for wheat are estimated to lie between 0,078 

and 0,116.  

Hendricks et al. (2015) examines the use of instrumental variables (IV) in supply response 

models further. They replicate the work done by Roberts & Schlenker (2009) and show that 

the use of IV for futures price is not necessary, and that the preferred method is to add 

previous yield shocks or weather data as a control variable. They conclude that omitting this 

control variable when estimating the response of total production will give substantially 

biased estimates. This is due to the correlation between futures prices and expected yield. The 

bias will be reduced if area instead of total production is applied as the dependent variable, 

but it will not be eliminated. The recommended method for bias reduction is to use area as 

dependent variable, futures price as price expectation, and yield shocks as control variable.  

Haile et al. (2015) estimates global aggregate yield and area response for wheat, rice, corn and 

soybeans. They follow the Nerlovian approach with a partial adjustment model, using both 

global and country-specific data covering the period 1961-2010. To estimate the model, they 

apply a generalized method of moments (GMM) estimator (Blundell & Bond, 1998). In 

addition to the lagged dependent variable and the price expectation variable, they include the 

fertilizer price as a proxy for production costs and price volatility measured as SD of monthly 

returns. As a proxy for price expectation, they use both the spot price at the time of planting 

and futures price. They fail to find a statistically significant relationship between area and 

futures price for wheat, corn and rice. Applying spot prices, they find a statistically significant 

relationship with area for all crops. According to the authors this might be due to lack of 

participation in the futures market by farmers in developing countries. The estimated short-

run area elasticity of wheat is 0,075 and price volatility is found to have a statistically 
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significant negative effect on area. The price volatility coefficient is estimated to -0,3. This 

estimate is not an elasticity, and is difficult to compare with the price elasticity. By 

standardizing the effect size of both volatility and price, they find that the positive effect of a 

one percent price increase on area is about twice as strong as the negative effect of a one 

percent increase in volatility.  

Iqbal & Babcock (2018) also conducts an analysis of global area response of wheat, rice, corn 

and soybeans to global prices and price volatility. Their study differs from Haile et al. (2015) 

by applying the mean group (MG) estimator suggested by Pesaran and Smith (1995) instead 

of the GMM estimator. The study relies on data from 1961 to 2014 and follows the Nerlovian 

approach. They test the model with both futures price and spot price as a proxy for price 

expectations. In contrast to Haile et al. (2015), they find that only futures price is statistically 

significant. They estimate their model both with and without fertilizer price as a control 

variable. The estimated elasticities for wheat area are between 0,032-0,038 in the short run 

and 0,345-0,398 in the long run. The effect of price volatility on wheat area is not statistically 

significant.  

Following a large part of previous literature, this study will use the Nerlovian partial 

adjustment model. It follows the work of Haile et al. (2015) closely, with the obvious 

distinction being the use of EU data instead of global data. Conducting the analysis based on 

the same model and method will make it easier to compare the estimated area response in the 

EU to the global area response estimated in their study. Based on the available literature there 

is no consensus regarding which price expectation formation is preferred. It gives reason to 

believe that further research is needed and that any supply response analysis should be 

conducted with alternative proxies for price expectations to compare the results. Both spot 

price and futures price have yielded statistically significant estimates. In this study both 

proxies will therefore be tested in the model.  

There are a few examples of supply response studies that include price risk in their models, 

but the results are conflicting. Haile et al. (2015) obtained a statistically significant, negative 

effect of price risk on wheat area using SD of monthly prices as a measure of price risk. Iqbal 

& Babcock (2017) obtain statistically insignificant results with the same volatility measure. 

Lin & Dismukes (2007) use a variable that combines price risk and yield risk and does not 

obtain statistically significant results. Based on this I will use SD of prices as price risk 

variable. The supply response literature accounting for weather shocks is thin, which gives 

motivation to explore this further. Roberts & Schlenker (2009) argue that weather data 
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preferably could be applied instead of a yield shock variable and Hendricks et al. (2015) 

concludes that a variable accounting for weather shocks should be included. I will therefore 

include a weather variable in the model. The reviewed studies include different control 

variables. Most common seems to be fertilizer price, to account for production costs. As 

discussed in 2.2, the wheat market in the EU is supported by different measures through the 

CAP. Following Lin & Dismukes (2007) I will also include a variable to account for public 

support.    

  

3 Method and data 
 

 

4.1 Data  
 

The data used in this study consists of a constructed panel dataset covering 27 countries in the 

EU during 2003-2022. The UK is included, despite withdrawing from the EU in 2020. Malta 

is the only EU country not included, as they have minimal wheat production during the study 

period (no production reported in eight of the years). Data on planted area are obtained from 

the International Grains Council (IGC, 2023) and the Food and Agriculture Organization of 

the United Nations (FAO, 2023). Wheat prices in the EU are obtained from the European 

Commision (European Commision, 2023a) and Urea prices are obtained from the 

International Monetary Fund (2023b). Volatility measures are constructed by the author as SD 

of monthly prices based on the wheat price data from the European Commission (2023a). 

Alternative volatility estimates are obtained from IFPRI’s Food Security Portal (2023). 

Futures prices on wheat are collected from Euronext (Euronext, 2023) and data on extreme 

weather events are obtained from the International Disaster Database (EM-DAT, 2023). EM-

DAT is a comprehensive global database containing data on all events that reach a pre-

determined level of severity. The level of severity is defined by the impact the event has on 

humans and infrastructure, e.g., loss of lives or economic cost. Prices are deflated using the 

Harmonized Index of Consumer Prices (HICP), which is obtained from Eurostat (Eurostat, 

2023).  
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4.2 Variables  
 

Area is used as an output measure, as this is the measure that is least affected by factors that 

cannot be controlled. Area is measured in hectares (ha). For the countries with no available 

data on planted area, the next year’s harvested area is used as a proxy.  

As described in 3.2, the price expectation variable has been a subject of debate. In the 

estimated models both a naïve and a rational expectations formation has been applied. The 

specification based on naïve expectations uses the monthly EU spot price of the month before 

planting, and the specification based on rational expectations uses harvest-time futures price 

of the month before planting. The futures price is the price of Euronext milling wheat no.2 

(former Matif milling wheat). This contract is commonly used as an indication of wheat 

futures prices in the EU (Euronext, 2023). All countries except Spain starts the planting 

season in September (USDA, 2023). August prices are used for these countries. Spain starts 

the planting season in November. Thus, October prices are used for Spain. Finland and 

Estonia are the only two countries where spring wheat accounts for most of the production, 

respectively 80% and 70%. Their planting season starts in April and March prices are used.  

The Urea price (EUR/t) is used as a proxy for production costs. Urea is the most common 

fertilizer for wheat production in the EU, and fertilizer accounts for approximately 50% of 

operating costs for wheat producers (Ericsson et al., 2009). The monthly Urea price one 

month before planting is used.  

Price volatility is included as a proxy for price risk. As a measure of volatility SD of monthly 

prices in the last 12 months before planting is being used. SD is one of the standard measures 

of historical volatility (Diop & Traore, 2021). It measures the dispersion of values in a series 

relative to the mean, and it is easy to calculate and interpret. The SD can be expressed as 

 

(1)     SD = √
∑ (𝑃𝑡−�̅�)2𝑇

𝑡−1

𝑇−1
 

 

Where Pt is monthly wheat price in the EU at time t, �̅� is the mean price in the sample and T 

is the number of months in the sample. Each sample is the last 12 months before planting. 

Time series with price data are often non-stationary because of seasonal patterns or trends. In 
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a non-stationary time series, the statistical properties change over time. The standard 

deviation measure of volatility depends on the stationarity assumption. To avoid the issue of 

trends and seasonality volatility is measured as the SD of changes in logarithmic prices.  

As an alternative proxy for price risk, the volatility measure derived by International Food 

Policy Research Institute (IFPRI) in their Excessive Food Price Variability Early Warning 

System (Food Security Portal, 2023) is used. When using the IFPRI measure, the volatility 

variable reflects the number of days ranked as “high volatility” by the warning system during 

the last 12 months before planting.  

An extreme weather variable is included as a proxy for yield risk. Extreme weather is 

restricted to droughts and heat waves, as the previous literature has found no significant 

relationship between wheat production and other extreme weather events (Bras et al., 2021; 

Lesk et al., 2016). This is reflected by a dummy variable with the value 1 if the country has 

experienced episodes with extreme drought or heat waves reported in EM-DAT the last 12 

months before planting and zero otherwise. As an alternative proxy for yield risk a variable 

reflecting yield shocks is being used. This is derived by estimating country-specific deviations 

from yield trends, following the method of Roberts & Schlenker (2009).  

Support from the CAP is included by two variables. Amber box support is included by a 

variable that reflects the level of price support as a percentage of total production value. The 

shift from blue box payments to green box payments is included by a dummy variable 

reflecting the policy change following the 2003 CAP reform. This implies the implementation 

of SFP for wheat producers. The variable has a value of zero until 2006 and 1 all years after 

2006. From 2007 the SFP was fully implemented, and the majority of wheat producers no 

longer received direct payments coupled to production.    

 

 

 

4.3 General model 
 

Following a substantial part of the most influential literature on agricultural supply response, 

the Nerlovian supply response model is applied in this paper. One of the advantages of this 
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model is that it enables the determination of both short-run and long-run elasticities, and it is 

flexible in terms of which independent variables to include. The general form of the model is 

 

(2) 𝑌𝑡
∗ = 𝛽0 + 𝛽1 𝑃𝑡

𝑒 + 𝛽2Z + 𝑢𝑡   

 

where 𝑌𝑡
∗ is the desired output at time t and 𝑃𝑡

𝑒
 is expected price at time t and Z is other 

exogenous factors affecting 𝑌𝑡 . 𝑌𝑡
∗ cannot be observed, since most farmers have limitations 

on how fast they can change their production. We can only observe 𝑌𝑡, which is the actual 

output. The actual change in Y is given by a parameter λ times the difference between 𝑌𝑡
∗ and 

𝑌𝑡−1 

 

(3)  𝑌𝑡- 𝑌𝑡−1 = λ (𝑌𝑡
∗- 𝑌𝑡−1)  

 

 

The parameter λ, i.e., the adjustment coefficient, is between 0 and 1. If λ = 1 there would be 

a full, not a partial, adjustment. Because of adjustment costs, the change between the two 

periods is only a fraction of the change needed to achieve the optimal level of Y. If we replace 

𝑌𝑡
∗ in equation (2) with the expression from equation (3) we get 

 

(4) 𝑌𝑡 = λ𝛽0 + λ 𝛽1 𝑃𝑡
𝑒 + λ 𝛽2Z + (1-λ) 𝑌𝑡−1 

 

Equation (4) can be rewritten as  

 

(5) 𝑌𝑡 = 𝛿0 + 𝛿1 𝑃𝑡
𝑒 + 𝛿2Z + 𝛿3 𝑌𝑡−1 
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Where 𝛿1 can be interpreted as the supply elasticity in the short run. 1-𝛿3 is equal to λ, and 

𝛽1 is equal to 𝛿1 divided by λ. Thus, 𝛿1 divided by 1-𝛿3 can be interpreted as the supply 

elasticity in the long run. The short-run estimate is the annual response, as it captures the 

change in area from year to year. The long-run response must be interpreted with some 

caution. It gives a good indication of the direction the estimate will move in, i.e., whether the 

elasticity will be higher or lower in the long term. The adjustment coefficient also tells us 

something about how fast the adjustment will happen. However, Peterson (1979) and 

Binswanger (1989) argue that more sophisticated lag structures are needed to be able to 

estimate the response to a permanent price increase.  

 

4.4 Estimated model 
 

The final model is estimated first with monthly spot price as a proxy for price expectations 

and then with futures price as a proxy for price expectations. The final specification of the 

model is 

 

(6) 𝑙𝑜𝑔 𝑌𝑖𝑡 =  𝛼𝑙𝑜𝑔𝑌𝑖𝑡−1 +  𝛽𝑙𝑜𝑔𝑃𝑖𝑡 +  𝛾𝑙𝑜𝑔𝐹𝑖𝑡 +  𝛿𝑉𝑖𝑡 +  𝜀𝐸𝑖𝑡 +  𝜖𝑀𝑃𝑆𝑡 +  𝜃𝑆𝐹𝑃𝑡 +

 𝜑𝑇𝑡 +  𝜇𝑖 +  𝜎𝑖𝑡         

 

Where 𝑌𝑖𝑡 is planted acreage in time t for country i and 𝑌𝑖𝑡−1 is planted acreage lagged one 

year; 𝑃𝑖𝑡 is the proxy for expected price; 𝐹𝑖𝑡 is the Urea price as a proxy for production costs; 

𝑉𝑖𝑡 is volatility as a proxy for price risk; 𝐸𝑖𝑡 is the extreme weather-dummy as a proxy for 

climate risk; 𝑀𝑃𝑆𝑡 is the variable for price support as % of production; 𝑆𝐹𝑃𝑡 is the dummy 

for SFP; 𝑇𝑖𝑡 is a time dummy to account for time-specific fixed effects; 𝜇𝑖 is the country 

specific and time invariant part of the error term; and 𝜎𝑖𝑡 is the idiosyncratic error term. The 

dependent variable and all price variables are transformed into logarithms. By conducting log 

transformations, the parameter β can be interpreted as the short-run supply elasticity. The 

long-run supply elasticity can be calculated as α divided by 1-β.  
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4.5 Estimation strategy 
 

Before estimating the model, the data is tested for unit roots to determine whether the series 

are stationary. Because N is larger than T, the Harris-Tzavalis test for panel data is being used 

(Harris & Tzavalis, 1999). This test is suitable for datasets with few time periods and many 

units (Stata, 2023).  

In the next step, to detect possible multicollinearity, Pearsons correlation is computed for all 

combinations of all variables. Multicollinearity could cause less reliable results from the 

estimation and occurs if the independent variables are strongly correlated. If a strong 

correlation between any of the variables is detected, variance inflation factor (VIF) is used to 

further investigate the magnitude of the correlation. VIF computes an estimate of the severity 

of multicollinearity (O’brien, 2007).  

After examining the data for stationarity and multicollinearity, a suitable estimator must be 

applied. The Nerlovian partial adjustment model includes a lagged dependent variable and 

therefore represents a dynamic panel model. Applying Ordinary Least Squares (OLS) to 

estimate a dynamic panel model will result in biased and inconsistent estimates because of the 

correlation between the lagged dependent variable and the time invariant part of the error term 

(Nickell, 1981). A solution to this problem could be to apply the Fixed Effects estimator (FE). 

This will transform the data and remove the fixed effects. However, this approach will also 

result in biased estimates, since the constructed de-meaned version of the lagged dependent 

variable still will be correlated with the idiosyncratic error term. Hence, the exogeneity 

assumption will still be violated (Phillips & Sul, 2007).  

Andersen & Hsiao (1982) developed an IV approach for dynamic panel data. They applied 

First Difference (FD) to remove the fixed effects and used the second lag of the dependent 

variable as IV for the lagged dependent variable. This approach provides consistent estimates 

but is inefficient for a panel with a short time dimension (T). The Anderson-Hsiao estimator 

might be preferred if T is substantially large, but there is no consensus in the literature on how 

large T must be (Judson & Owen, 1996; Kiviet, 1995).   

Arellano & Bond (1991) and Blundell & Bond (1998) suggest two alternative methods using 

GMM estimators. The general GMM method was first suggested by Hansen (1982) and these 

two methods are an extension of this framework. They are called difference GMM and 



34 
 

System GMM. The GMM approach has proven to have efficiency gains compared to the 

Anderson-Hsiao estimator (Arellano & Bond, 1991). Both difference and system GMM are 

designed for dynamic panel models with small T and a large number of units (N). In 

particularly the panel must have N>T to apply the GMM estimators. The estimators are 

suitable for situations with fixed individual effects, where some of the regressors are not 

strictly exogenous, and with heteroskedasticity and autocorrelation within individuals but not 

across them (Roodman, 2009).  

The difference GMM method was first introduced by Holtz-Eakin et al. (1988) and developed 

further by Arellano & Bond (1991). This method transforms the variables by first differencing 

before using GMM. Since it subtracts each observation from the following one, it will create 

larger gaps in unbalanced panels. The system GMM allows for more instruments by adding 

the assumption that the transformed IVs are uncorrelated with the fixed effects. It transforms 

the instruments by subtracting the average off all future available observations of the variable. 

This creates minimal loss of data. The increased number of instruments can improve the 

efficiency of system GMM compared to the difference GMM (Blundell & Bond, 1998). Since 

the dataset in this study contains 27 countries (N=27) over 20 years (T=20), the GMM 

estimators is applied. Because of the possible efficiency gain, the system GMM estimator is 

chosen over the difference GMM estimator.  

The model is estimated as a two-step system GMM and finite-sample correction for the 

covariance matrix is used, following Windmeijer (2005), to avoid downward biased standard 

errors. The results from system GMM will be biased downwards if the number of instruments 

outnumber the number of units (N). To avoid this, the instrument set is “collapsed”. Without 

collapsing there will be created one instrument for each time period, variable and lag distance. 

With collapsing there will not be created instruments for each time period (Roodman, 2009).  

Finally, different statistical tests are conducted to check the robustness of the model and the 

validity of the instruments. The Hansen test is used to test for overidentifying restrictions, and 

the difference-in-Hansen test is conducted to test the validity of the additional instruments 

necessary for system GMM. The Arellano-Bond test for autocorrelation is applied to test for 

first-order and second-order autocorrelation.  

Following Roodman (2009) and Bond (2002), a robustness check of GMM is to also estimate 

the model using OLS and the FE estimator to compare the coefficient of the lagged dependent 

variable. The OLS estimate works as an upper bound, as this has proven to be biased upwards. 
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The FE estimate works as a lower bound, as this has proven to be biased downwards. A 

credible result from the GMM estimator should therefore lie between the OLS and the FE 

estimates. 

 

 

4 Results  
 

In this section I will evaluate the results from the statistical tests conducted on the data and the 

model. I will present the results from the two estimations and discuss these estimates 

considering the relevant background and theory.  

The data was tested for stationarity using the Harris-tzavalis (1999) test. The null hypothesis 

is that the series contains a unit root and is therefore non-stationary. All variables provide a p-

value below 0,05, and the null hypothesis is rejected at the 5% level. I therefore conclude that 

the series are stationary.  

By computing the Pearson correlation, I find that spot price and futures price have a 

statistically significant correlation with volatility and Urea price. The correlation coefficient 

(CC) reflects the magnitude and direction of the correlation. For futures price and Urea price 

the CC is 0,42, for futures price and volatility the CC is 0,32, for spot price and Urea price the 

CC is 0,53 and for spot price and volatility the CC is 0,25. There is no exact limit for the 

strength of correlation, but following the guidelines provided by Cohen (1988) CC between 

0,1 and 0,3 can be considered as small correlation, and CC between 0,3 and 0,5 can be 

considered as moderate correlation. VIF is calculated for all four combinations. A rule of 

thumb is to remove the variable if VIF is above 5. All VIF values are below the threshold of 

5, which indicates that correlation between the variables is not a serious problem in the model. 

To investigate the validity of the instruments and the robustness of the model, several tests 

were conducted. The Hansen test for exogeneity of the instruments fails to reject the null 

hypothesis of exogeneity with a p-value of 0,23. This supports the choice of instruments. 

Roodman (2009) recommends to not take comfort in p-values below 0,1 or above 0,25. The p-

value of 0,21 is within the recommended limits. The Difference-in-Hansen test gives a p-

value of 0,26. This supports the choice of system GMM as estimator.  
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The Arallano-Bond test for autocorrelation in the error term gives a p-value for AR (2) of 

0,81.  If AR (2) is significant it indicates that some of the lags of the dependent variable, that 

is used as instruments, are endogenous. A p-value above 0,05 indicates that the error term is 

serially uncorrelated and that the instruments are correctly specified.  

By running the regression using OLS the coefficient of lagged area was estimated to 0,97. By 

using FE the coefficient was estimated to 0,20. Thus, the GMM estimate lies between the 

upper and lower bound. This gives confidence in the validity of the estimates.  

Table 2 presents the results of the estimation and a summary of the test results. The estimation 

was done with different alternative proxies for price expectation, volatility, and extreme 

weather. No significant results were obtained with the IFPRI volatility measure as volatility 

variable or deviation from yield as extreme weather variable. These are therefore excluded in 

the final specification. SD of monthly returns and the extreme weather dummy based on 

events registered in EM-DAT are used instead in both the regressions. Regression (1) is a 

model with naïve expectations and includes spot price as a proxy for price expectations. 

Regression (2) is a model with rational expectations and includes futures price as a proxy for 

price expectations. Results for both regressions are reported in table 2.  

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

 

Table 2     Estimation results of EU wheat area response 

Variable                                                 (1)                                                   (2)                 

Lagged dependent  

variable                                                 0,841***                                       0,830*** 

                                                             (0,017)                                          (0,006) 

Spot price                                              0,092*                                          - 

                                                             (0,032) 

Futures                                                 -                                                      0,151** 

                                                                                                                   (0,029) 

Urea                                                     -0,070                                            -0,133 

(0,042)                                          (0,023) 

Volatility                                             - 0,212                                           -0,420 

                                                             (0,087)                                          (0,090) 

MPS                                                      0,021*                                           0,032*  

 

SFP                                                      -0,037*                                          -0,042** 

                                                             (0,018)                                          (0,020) 

Extreme weather                                 - 0,017**                                       -0,012** 

                                                             (0,021)                                          (0,024) 

Year dummy                                         Yes                                                Yes 

 

Hansen test                                          0,21                                      

Difference-in-Hansen                          0,26 

Arallano-Bond test AR(1)                   0,02 

Arallano-Bond test AR(2)                   0,81 

Number of instruments                        20 

Number of countries                            27 

Note: *, ** and *** indicate significance levels at 10%, 5% and 1%. Standard errors are reported in parentheses.  

Estimates are obtained using STATA’s xtabond2 command.  
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Both regressions give identical results when it comes to signs and significance of the 

estimated coefficients. In line with previous studies on wheat area response, price 

expectations and area have a positive and statistically significant relationship. This indicates 

that an increase in price expectations gives incentives to increase production via area 

expansion. With the spot price as a proxy for price expectations the estimated short run area 

elasticity is 0,092. With the futures price as a proxy for price expectations the estimated short 

run area elasticity is 0,151. This suggests that a 10% increase in the pre planting spot price 

will result in a 0,9% increase in the area for wheat production and that a 10% increase in the 

harvest time future price will result in a 1,5% increase in the area for wheat production. Both 

results lie slightly above the global short-run elasticity at 0,07 estimated by Haile et al. 

(2015).  

The response of area to changes in futures price is stronger than the response to changes in 

spot price. This might indicate that futures prices form price expectations to a larger extent 

than spot prices. This is in line with the results from Iqbal & Babcock (2018) and Gardner 

(1976). The estimated short-run elasticities are below 1 and therefore inelastic. This explains 

the large fluctuations in price discussed in chapter 2. An inelastic area response in the short 

run implies that high wheat prices will not be mitigated by increased production through area 

expansions in the short-run.  

The long-run area elasticity is estimated to 0,57 when spot price is applied and 0,82 when 

futures price is applied. This accounts for an increase in area of respectively 5,7% and 8,2% if 

prices increase by 10%. As expected, wheat area is more elastic in the long run than in the 

short run. This is in line with economic theory and implies that an increase in price over time 

eventually will result in larger area expansions. The long-run elasticity is higher than 

comparable estimates from previous studies. Haile et al., (2015) did not estimate long-run 

elasticities, so these cannot be compared. However, Iqbal & Babcock (2018) estimated global 

long-run elasticities for wheat to 0,35. As mentioned above, the long-run elasticities should be 

interpreted with some caution. The key insight from these estimates is that the area response 

will be larger if the price increase lasts longer.  

Maize and Barley prices were tested as additional variables in the model, as it is reasonable to 

assume that the wheat price relative to the prices of competing crops affects land allocation 

decisions. These variables turned out to be statistically insignificant and highly correlated 
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with the wheat price. With multicollinearity it can be difficult to separate own price 

elasticities from cross price elasticity (Roberts & Schlenker, 2013). They were therefore not 

included in the final specification. This limits the analysis to some extent, as we cannot tell if 

the area expansions come from substitution within these crops or from expansions into new 

land.  

The first research question of interest was how an increase in the wheat price affects area 

decisions in the EU. From the estimated results I find that farmers respond by increasing 

planted area when prices increase. The wheat area response to prices is inelastic, both in the 

short-run and the long-run. When the results are compared to previous studies, it looks like 

both the short-run and the long-run response is stronger in the EU than in what is found in 

global studies. The abolishment of the compulsory 10% set-aside for producers in response to 

the price increase in 2008 made more land available and might affect the results. According to 

Iqbal & Babcock (2017), countries with high yield also respond more to price in terms of area 

expansion compared to countries with low yield.  

The Urea price is not statistically significant in the model. According to economic theory, an 

increase in production costs is expected to have a negative effect on area. This might suggest 

that Urea price is not a good proxy for production costs. If obtained, a more general fertilizer 

price index may be a better proxy. It is also possible that other costs should have been 

included. Fertilizer only accounts for parts of the production cost. Other input prices, like 

those of pesticides and energy, will also have a large effect. Fluctuations in fertilizer price 

alone might not have a significant effect on planting decisions. By using a variable that 

includes different input prices and captures total production costs better, the model would 

more likely obtain a significant result. Iqubal and Babcock (2018) estimated their area 

response model both with and without controlling for fertilizer price. They found that the 

estimated area response was marginally higher without fertilizer as control variable. This 

might suggest that the estimated elasticities in this model are slightly overestimated.  

The volatility estimates are not statistically significant in any of the specifications. This was 

not the expected result, as economic theory shows that price uncertainty has a negative effect 

on production (Sandmo, 1971). This also contradicts the findings of Haile et al. (2015). A 

possible explanation might be that price risk affects producers in the EU differently than the 

global average. By participating more in the futures market and absorbing risk through 

different risk management tools, EU producers are able to mitigate price risk to a greater 

extent than producers in developing countries. The substantial amount of public support 
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through both price support and SFP might also mitigate price risk for EU producers to the 

extent that price volatility does not affect area decisions (Tangermann, 2011). When 

comparing the global wheat price to the EU wheat price it was obvious that the EU price was 

higher in general, except for the three periods of abnormal price spikes. If EU wheat 

producers are protected against very low prices and have come to expect this support, price 

risk will affect area decisions to a limited extent. Lin & Dismukes (2007) explains the limited 

risk response found in their study by structural changes in the agricultural sector. Arguing that 

the transition to larger, commercial farms has shifted the farmers focus away from avoiding 

risk in the short-run and towards wealth accumulation in the long-run. These producers might 

associate price risk with the opportunity for higher returns. This might also be part of the 

explanation of the limited risk response for EU farmers. An alternative explanation is that the 

chosen volatility measures do not capture price risk as intended. SD of monthly prices and the 

IFPRI volatility measure might not reflect the risk in the same way as it is perceived by the 

farmers. However, as SD is the most common measure of volatility it is likely that producers’ 

assessment of price risk will not deviate too far from this.  

How price risk affects wheat area decisions in the EU was the second research question of 

interest. Based on the volatility estimates it seems like price risk does not affect area decisions 

to a large extent. Haile et al. (2015) found a statistically significant, negative effect of price 

risk on global wheat area. This suggests that wheat area decisions in the EU are less affected 

by price variation than what is found in the global study. This has implications for policy 

design, as it is obvious that the response to price risk is not homogenous across markets. 

Measures to reduce food price volatility might have a positive effect on production in some 

markets, but not in others.  

MPS has a statistically significant, positive effect on planted area. This result is supported by 

economic theory, as an increase in support should give incentives to increase area. It also 

implies that despite several rounds of reduction, MPS still influences wheat production 

decisions. A reduction of the MPS variable equal to 1, with everything else constant, would 

result in a reduction of wheat area of approximately 2%. The transition from payments 

coupled to production to SFP turns out to have a negative effect on area. The effect is small, 

but statistically significant. The coefficients suggest that the shift to SFP, if all other factors 

were fixed, would have resulted in a reduction in wheat area of between 3.7% and 4.2%. This 

indicates that when farmers are no longer bound to produce wheat to receive payments, some 

of the area is taken out of production. One of the aims of the CAP reform in 2003 was to 
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decouple the direct payments from production. These findings support the idea that 

introducing SFP is at least a step in the right direction. This study does not consider the effect 

of SFP on yield, but it is easy to assume that the land taken out of production is the least 

productive land. If this is the case, SFP has also led to an increase in yield, which is one of the 

aims of the CAP. What these estimates do not capture is to what extent SFP influences 

production. As previously stated, SPF’s degree of decoupling is debated. This study only 

examines the effect of shifting from coupled direct payments to SFP.   

Extreme weather is estimated to have a small, but statistically significant, negative effect on 

area. Producers that have experienced extreme droughts or heat waves during the last 12 

months before planting are expected to reduce wheat area by between 1.2% and 1.7%. This is 

in line with the findings of Lesk et al. (2016), who found that droughts and heat waves had 

caused reductions in wheat area in their global study. The effect is small but knowing that 

extreme weather events will become more frequent, this might have an impact on production 

development in the EU in the future. One thing to keep in mind is that yield risk (caused by 

weather events) and price risk might be negatively correlated. Especially as the frequency of 

extreme weather events increases. If several large wheat producers experience yield loss in 

the same season, the wheat price will increase. This might diminish the total risk for the 

producers. However, there is no correlation between these two variables in this dataset. Local 

extreme weather events can be devastating for the affected farmers without having an impact 

on the price in the EU.  

Due to lack of available data, the climate risk variable is a dummy variable. This limits the 

analysis, as it only allows us to compare the response of farmers who have experienced some 

sort of extreme weather during the last year with farmers who have not experienced any 

extreme weather. More detailed data would have allowed us to distinguish between different 

sorts of weather, severity of the event and to what extent it affected wheat production.  

The final, stated research question was how climate risk affected farmers area decisions. The 

results implies that the farmers that have experienced extreme weather during the previous 

crop season are less incentivized to increase cultivated area when the price increases, 

compared to other farmers. In other words, if the perceived risk of losing parts of the crop 

increases, a higher price is needed to give incentives for area expansions. 
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6 Summary and conclusions  
 

The aim of this study is to examine to what extent wheat producers in the EU reallocates area 

as a response to price changes, price risk and climate risk. The EU is one of the main wheat 

producers and exporters in the world, and changes in their production level have big 

implications for the global wheat market. A more detailed understanding of how area 

decisions are made is important to design effective policies and to be able to predict future 

production levels.  

The study is conducted using panel data for the period 2003-2022, and the estimations are 

done by system GMM on a dynamic panel data model. The model is a Nerlovian partial 

adjustment model, which makes it possible to derive both short-run and long-run area 

responses. An important consideration in area response models is which price expectations 

proxy to use. The model therefore is estimated with both naïve expectations (spot price) and 

rational expectations (futures price) to compare the results. During the study period the EU 

has experienced three periods defined as food price crises. In addition, the wheat price 

volatility and the number of droughts and heat waves have increased. By examining the wheat 

producer’s area response to these events, we gain valuable information.  

The specification with naïve expectations and the specification with rational expectations give 

the same results in terms of sign and statistical significance of the coefficients. Using spot 

price as a price expectations proxy, the estimated short-run elasticity is 0,09 and the estimated 

long run elasticity is 0,57. Using futures price, the estimated short-run elasticity is 0,15 and 

the estimated long-run elasticity is 0.82. Thus, the area response to price is inelastic. The 

short-run elasticities are similar to those obtained from global area response studies. The low 

elasticity explains why the periods with high wheat prices have not resulted in a large increase 

in production. There is more uncertainty related to the long-run estimates, but they suggest 

that area responds more to prices in the long-run.  

Area response to price risk, measured as wheat price volatility, turns out to be statistically 

insignificant. This does not correspond with previous, global studies and implies that price 

risk has not affected farmers area decisions in the EU during the study period. This can be 

explained by the widespread use of risk mitigating instruments in the EU and by the high 

level of protection through the CAP. There is also a possibility that some producers see high 
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price risk as an opportunity to gain higher returns. Price volatility has been found to have a 

negative effect on wheat area decisions globally, but the result from this study gives reason to 

believe that the picture is more nuanced. Measures that reduce price volatility might not have 

the same impact on wheat production in the EU as in developing countries.  

Climate risk, measured as the frequency of extreme droughts and heat waves, has a 

statistically significant and negative effect on area. The effect is small, but as the frequency of 

extreme weather is expected to increase due to climate change, this might have a larger effect 

on area allocation in the future. Public support, like SFP and MPS, is likely to protect farmers 

from climate risk to some extent. However, if extreme weather creates more risk for the 

farmers in the future, other types of insurance might be necessary to keep the same level of 

production.  

The main limitation of the study is the assumptions made about the producer’s perception of 

the market. Both in terms of price expectations and in terms of risk assessment. It is assumed 

in the model that farmers have either naïve or rational price expectations, and that their risk 

assessment is based on events that have occurred during the preceding 12 months. If these 

assumptions do not hold, and the price and risk variables do not capture the real expectations 

of the producers, we cannot have confidence in the results. Another limitation is that only the 

area response is estimated. Inclusion of yield response would give a more nuanced picture. 

Lack of available data also limits the analysis. Preferably, more detailed data on weather and 

production costs would have been used.  

Further research should focus on differences within the EU. There might be a great diversity 

in area response across the different countries. The relationship between exports and area 

response should also be examined further. If the trend of more frequent extreme weather 

continues, more detailed weather data should be used to analyze the effect on wheat area. 

Based on the results of this study, risk mitigating measures in the EU have a better effect on 

price risk in the EU than on climate risk. Future research should therefore examine how 

climate risk can be reduced for wheat producers.   



44 
 

 

 

References   
 

 

Anderson, T.W., Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. 

Journal of Econometrics, 18 (1), 47-82. https://doi.org/10.1016/0304-4076(82)90095-1  

Arellano, M., Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence 

and an Application to Employment Equations. The Review of Economic Studies, 58(2), 277–

297. https://doi.org/10.2307/2297968  

Askari, H., & Cummings, J. T. (1977). Estimating Agricultural Supply Response with the Nerlove Model: 

A Survey. International Economic Review, 18(2), 257–292. https://doi.org/10.2307/2525749  

Baffes, J., Koh, W.C. (2022, May 11). Fertilizer prices expected to remain higher for longer. World bank 

blogs. https://blogs.worldbank.org/opendata/fertilizer-prices-expected-remain-higher-longer  

Bentley, A.R., Donovan, J., Sonder, K. Baudron, F., Lewis, J.M., Voss, R., Rutsaert, P., Poole, N., 

Kamoun, S., Saunders, D.G., Hodson, D., Hughes, P.D., Negra, C., Ibba, M.I., Snapp, S., 

Sida, T.S., Jaleta, M., Tesfaye, K., Reshef, I., Govaerts, B. (2022).  Near- to long-term 

measures to stabilize global wheat supplies and food security. Nat Food 3, 483–486. 

https://doi.org/10.1038/s43016-022-00559-y  

Binfield, J., Donnellan, T., Hanrahan, K., Hart, C., Westhoff, P. (2004). CAP reform and the WTO: 

Potential impacts on EU agriculture. FAPRI-UMC, Report 08-04. http://hdl.handle.net/10355/3066  

Binswanger, H. (1989). The policy response of agriculture. The world bank economic review, 4(1). 

http://dx.doi.org/10.1093/wber/3.suppl_1.231  

Blundell, R. & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data 

models. Journal of Econometrics, 87(1), 115-143. https://doi.org/10.1016/S0304-

4076(98)00009-8.  

Bond, M.E. (1983). Agricultural Responses to Prices in Sub-Saharan African Countries. Staff papers 

(international monetary fund), 30(4). 703-726. https://doi.org/10.2307/3866783  

Bond, S. (2002). Dynamic panel data models: A guide to micro data methods and practice. Working 

Paper CWP09/02, Cemmap, Institute for Fiscal Studies. 

https://www.cafed.sssup.it/~federico/etrix_allievi/Bond2002.pdf  

Braulke, M. (1982). A Note on the Nerlove Model of Agricultural Supply Response. International 

Economic Review, 23(1), 241–244. https://doi.org/10.2307/2526474  

Bràs, T.A., Seixas, J., Carvalhais, N., Jägermeyr, J. (2021). Severity of drought and heatwave crop 

losses tripled over the last five decades in Europe. Environmental research letters, 16(6). 

https://iopscience.iop.org/article/10.1088/1748-9326/abf004/meta#erlabf004s2  

https://doi.org/10.1016/0304-4076(82)90095-1
https://doi.org/10.2307/2297968
https://doi.org/10.2307/2525749
https://blogs.worldbank.org/opendata/fertilizer-prices-expected-remain-higher-longer
https://doi.org/10.1038/s43016-022-00559-y
http://hdl.handle.net/10355/3066
http://dx.doi.org/10.1093/wber/3.suppl_1.231
https://doi.org/10.1016/S0304-4076(98)00009-8
https://doi.org/10.1016/S0304-4076(98)00009-8
https://doi.org/10.2307/3866783
https://www.cafed.sssup.it/~federico/etrix_allievi/Bond2002.pdf
https://doi.org/10.2307/2526474
https://iopscience.iop.org/article/10.1088/1748-9326/abf004/meta#erlabf004s2


45 
 

Bureau, J. C. & Gohin, A. (2009). Farm support policies in the European Union: an appraisal of their non-

distortionary effects. FAO. Trade and Markets, 978-92-5-106388-0. 

https://www.fao.org/3/i1098e/i1098e10.pdf  

Chavas, J.P., (2000). On information and market dynamics: The case of the U.S. beef market. Journal 

of Economic Dynamics and Control, 24 (5), 833-853. https://doi.org/10.1016/S0165-

1889(99)00027-5.  

Cohen, J. (1988). Set Correlation and Contingency Tables. Applied Psychological 

Measurement, 12(4), 425–434. https://doi.org/10.1177/014662168801200410  

Coleman, D.R. (1983). A review of the arts of supply response analysis. Review of marketing and 

agricultural economics. 51(3), 201-230. https://ageconsearch.umn.edu/record/12516/ 

Coulibaly, A.L. (2013). The food price increase of 2010-2011. Causes and impacts. Library of 

parlament. Canada. Publication No. 2013-02-E.  

https://publications.gc.ca/collections/collection_2016/bdp-lop/bp/YM32-2-2013-2-eng.pdf  

Coyle, B.T., (1993), On modeling systems of crop acreage demands, Journal of Agricultural and 

Resource Economics, 18(1). https://EconPapers.repec.org/RePEc:ags:jlaare:30823 

Dawson, P.J. (2014). Measuring the volatility of wheat futures prices on the LIFFE. Journal of 

agricultural economics, 66(1), 20-35. https://onlinelibrary.wiley.com/doi/abs/10.1111/1477-

9552.12092  

Diop, I. & Traore, F. (2021). Measuring food price volatility. Agrodep, Technical note 0019. 

https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134399/filename/134607.pdf  

Donald, M. (2008). A note on rising food prices. World Bank Policy Research Working Paper. 

No.4682. https://ssrn.com/abstract=1233058  

Economics (2023, February 18). Price elasticity of supply. https://www.learn-economics.co.uk/Price-

elasticity-of-supply.html  

EconomicsHelp (2023, March 17). Cobweb theory. 

https://www.economicshelp.org/blog/glossary/cobweb-theory/  

EM-DAT (2023, January 27). The international disaster database. CRED/UCLouvain. 

https://public.emdat.be/  

Enghiad, A., Ufer, D., Countryman, A.M., Thilmany, D.D. (2017). An Overview of Global Wheat 

Market Fundamentals in an Era of Climate Concerns. International Journal of Agronomy, 

Article ID 3931897,  https://doi.org/10.1155/2017/3931897  

Erenstein, O., Jaleta, M., Mottaleb, K.A., Sonder, K., Donovan, J., Braun, HJ. (2022). Global Trends 

in Wheat Production, Consumption and Trade. In: Reynolds, M.P., Braun, HJ. (eds) Wheat 

Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-90673-3_4  

Ericsson, K., Rosenqvist, H., Nilsson, L.J. (2009). Energy crop production costs in the EU. Biomass 

and Bioenergy, 33(11), 1577-1586. https://doi.org/10.1016/j.biombioe.2009.08.002  

https://www.fao.org/3/i1098e/i1098e10.pdf
https://doi.org/10.1016/S0165-1889(99)00027-5
https://doi.org/10.1016/S0165-1889(99)00027-5
https://doi.org/10.1177/014662168801200410
https://ageconsearch.umn.edu/record/12516/
https://publications.gc.ca/collections/collection_2016/bdp-lop/bp/YM32-2-2013-2-eng.pdf
https://econpapers.repec.org/RePEc:ags:jlaare:30823
https://onlinelibrary.wiley.com/doi/abs/10.1111/1477-9552.12092
https://onlinelibrary.wiley.com/doi/abs/10.1111/1477-9552.12092
https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134399/filename/134607.pdf
https://ssrn.com/abstract=1233058
https://www.learn-economics.co.uk/Price-elasticity-of-supply.html
https://www.learn-economics.co.uk/Price-elasticity-of-supply.html
https://www.economicshelp.org/blog/glossary/cobweb-theory/
https://public.emdat.be/
https://doi.org/10.1155/2017/3931897
https://doi.org/10.1007/978-3-030-90673-3_4
https://doi.org/10.1016/j.biombioe.2009.08.002


46 
 

European Commision (2008, April 17). Tackling the challenge of rising food prices; The direction 

for EU action. Brussels, COM (2008) 321 final. https://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0321:FIN:EN:PDF  

European Commision (2022). Agriculture and rural development. Cereals, oilseeds, protein crops and 

rice. https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-

products/cereals_en  

European Commission (2023a, February 7). Directorate-general for agriculture and rural 

development. Cereals prices. 

https://agridata.ec.europa.eu/extensions/DashboardCereals/ExtCerealsPrice.html 

European Commission (2023b, February 20). Agriculture and rural development. Common 

agricultural policy. https://agriculture.ec.europa.eu/common-agricultural-policy_en   

European Commission (2023c, April 14). Agriculture and rural development. The WTO and EU 

agriculture. https://agriculture.ec.europa.eu/international/agricultural-trade/wto-and-eu-

agriculture_en  

Euronext (2023). MATIF milling wheat price. Retrieved from ZMP. 

https://www.zmp.de/en/exchanges/matif-milling-wheat-no-2-price_future  

Eurostat (2023, April 2). Harmonized Index of Consumer Prices. Retrieved from FRED, Federal 

Reserve Bank of St. Louis (CP0000EZ19M086NEST). 

https://fred.stlouisfed.org/series/CP0000EZ19M086NEST  

Ezekiel, M. (1938). The Cobweb Theorem. The Quarterly Journal of Economics, 52 (2), 255–

280, https://doi.org/10.2307/1881734  

EzyEducation (2023, May 2). EzyEconomics, Elasticity. 

https://www.ezyeducation.co.uk/ezyeconomicsdetails/ezylexicon-economic-glossary/1304-

elasticity-of-demand.html  

FAO (2022). 2022 Global Report on Food Crises. https://www.fao.org/3/cb9997en/cb9997en.pdf  

FAO (2023, January 10). Faostat, compare data. https://www.fao.org/faostat/en/#compare  

Food Security Portal (2023, January 8). Volatility warning. https://www.foodsecurityportal.org/  

Gardner, B. L. (1976). Futures Prices in Supply Analysis. American Journal of Agricultural 

Economics, 58(1), 81–84. https://onlinelibrary.wiley.com/doi/abs/10.2307/1238581  

Gilbert, C. L. & Morgan, C. W. (2010). Food price volatility. Phil. Trans. R. Soc. 365(1554). 3023-

3034. https://doi.org/10.1098/rstb.2010.0139   

Haile, M. G., Kalkuhl, M., Braun, J. V. (2013). Inter- and intra-seasonal crop acreage response to 

international food prices and implications of volatility. Agricultural economics. 45(6). 

https://doi.org/10.1111/agec.12116   

Haile, M.G., Kalkuhl, M., Braun, J.V. (2015). Worldwide acreage and yield response to international 

price change and volatility: A dynamic panel data analysis for wheat, rice, corn and soybeans. 

Food price volatility and its implications for food security and policy. Springer, Cham. 

https://doi.org/10.1007/978-3-319-28201-5_7    

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0321:FIN:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0321:FIN:EN:PDF
https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/cereals_en
https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/cereals_en
https://agridata.ec.europa.eu/extensions/DashboardCereals/ExtCerealsPrice.html
https://agriculture.ec.europa.eu/common-agricultural-policy_en
https://agriculture.ec.europa.eu/international/agricultural-trade/wto-and-eu-agriculture_en
https://agriculture.ec.europa.eu/international/agricultural-trade/wto-and-eu-agriculture_en
https://www.zmp.de/en/exchanges/matif-milling-wheat-no-2-price_future
https://fred.stlouisfed.org/series/CP0000EZ19M086NEST
https://doi.org/10.2307/1881734
https://www.ezyeducation.co.uk/ezyeconomicsdetails/ezylexicon-economic-glossary/1304-elasticity-of-demand.html
https://www.ezyeducation.co.uk/ezyeconomicsdetails/ezylexicon-economic-glossary/1304-elasticity-of-demand.html
https://www.fao.org/3/cb9997en/cb9997en.pdf
https://www.fao.org/faostat/en/#compare
https://www.foodsecurityportal.org/
https://onlinelibrary.wiley.com/doi/abs/10.2307/1238581
https://doi.org/10.1098/rstb.2010.0139
https://doi.org/10.1111/agec.12116
https://doi.org/10.1007/978-3-319-28201-5_7


47 
 

Halvorsen, R. & Palmquist, R. (1980). The interpretation of dummy variables in semilogaritmic 

equations. American economic review, 70(3), 474-475. 

https://econpapers.repec.org/article/aeaaecrev/v_3a70_3ay_3a1980_3ai_3a3_3ap_3a474-

75.htm  

Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments 

Estimators. Econometrica, 50(4), 1029–1054. https://doi.org/10.2307/1912775  

Harris, R. & Tzavalis, E. (1999). Inference for unit roots in dynamic panels when time dimension is fixed. 

Journal of econometrics, 19(2), 201-226. 

https://econpapers.repec.org/RePEc:eee:econom:v:91:y:1999:i:2:p:201-226  

Hausman, C. (2012). Biofuels and Land Use Change: Sugarcane and Soybean Acreage Response in 

Brazil. Environ Resource Econ, 51, 163–187. https://doi.org/10.1007/s10640-011-9493-7  

Hendricks, N. P., Janzen, J. P., & Smith, A. (2015). Futures Prices in Supply Analysis: Are Instrumental 

Variables Necessary? American Journal of Agricultural Economics, 97(1), 22–39. 

http://www.jstor.org/stable/24476999  

Holt, M. T., & McKenzie, A. M. (2003). Quasi-Rational and Ex Ante Price Expectations in Commodity 

Supply Models: An Empirical Analysis of the US Broiler Market. Journal of Applied 

Econometrics, 18(4), 407–426. http://www.jstor.org/stable/30035343  

Holtz-Eakin, D., Newey, W., & Rosen, H. S. (1988). Estimating Vector Autoregressions with Panel 

Data. Econometrica, 56(6), 1371–1395. https://doi.org/10.2307/1913103  

Hommes, C. H. (1998). On the consistency of backward-looking expectations: The case of the 

cobweb. Journal of Economic Behavior & Organization, 33 (3), 333-362. 

https://doi.org/10.1016/S0167-2681(97)00062-0.  

Houck, J. P., & Gallagher, P. W. (1976). The Price Responsiveness of U.S. Corn Yields. American Journal 

of Agricultural Economics, 58(4), 731–734. https://doi.org/10.2307/1238817  

Indexmundi (2023, January 24). Wheat production by country. 

https://www.indexmundi.com/agriculture/?commodity=wheat  

IGC (2023, January 8). Market data. Wheat. https://www.igc.int/en/members-

site/markets/igc_markets_ayp.aspx  

International monetary fund (2023, January 10). Global price of wheat. Retrieved from FRED, 

Federal reserve bank of St. Louis (PWHEAMTUSDM). 

https://fred.stlouisfed.org/series/PWHEAMTUSDM  

International monetary fund (2023, January 10). Global price of natural gas, EU. Retrieved from 

FRED, Federal reserve bank of St. Louis (PNGASEUUSDM). 

https://fred.stlouisfed.org/series/PNGASEUUSDM  

IPCC (2021). Sixth assessment report. Working group 1: The physical science basis. 

https://www.ipcc.ch/report/ar6/wg1/  

Iqbal M. Z. & Babcock, B.A. (2018). Global growing-area elasticities of key agricultural crops 

estimated using dynamic heterogenous panel methods. Agricultural economics, 49(6), 681-

690. https://doi.org/10.1111/agec.12452   

https://econpapers.repec.org/article/aeaaecrev/v_3a70_3ay_3a1980_3ai_3a3_3ap_3a474-75.htm
https://econpapers.repec.org/article/aeaaecrev/v_3a70_3ay_3a1980_3ai_3a3_3ap_3a474-75.htm
https://doi.org/10.2307/1912775
https://econpapers.repec.org/RePEc:eee:econom:v:91:y:1999:i:2:p:201-226
https://doi.org/10.1007/s10640-011-9493-7
http://www.jstor.org/stable/24476999
http://www.jstor.org/stable/30035343
https://doi.org/10.2307/1913103
https://doi.org/10.1016/S0167-2681(97)00062-0
https://doi.org/10.2307/1238817
https://www.indexmundi.com/agriculture/?commodity=wheat
https://www.igc.int/en/members-site/markets/igc_markets_ayp.aspx
https://www.igc.int/en/members-site/markets/igc_markets_ayp.aspx
https://fred.stlouisfed.org/series/PWHEAMTUSDM
https://fred.stlouisfed.org/series/PNGASEUUSDM
https://www.ipcc.ch/report/ar6/wg1/
https://doi.org/10.1111/agec.12452


48 
 

Judson, R.A., Owen, A.L. (1999). Estimating dynamic panel data models: a guide for 

macroeconomists. Economics Letters, 65 (1), 9-15. https://doi.org/10.1016/S0165-

1765(99)00130-5.  

Jägermeyr, J., Müller, C., Ruane, A.C. et al. (2021). Climate impacts on global agriculture emerge 

earlier in new generation of climate and crop models. Nature food, 2. 873–885. 

https://doi.org/10.1038/s43016-021-00400-y  

Kalkuhl, M., Braun, J., Torero, M. (2016). Food price volatility and its implications for food security 

and policy. Springer Cham, 1. https://doi.org/10.1007/978-3-319-28201-5  

Kelch, D., Normile, M.A. (2004). CAP reform of 2003-04. USDA, WRS-04-07. 

https://view.ckcest.cn/AllFiles/ZKBG/Pages/285/Csgk0FvYNBiAezaQAAFWvbwD1wc413.

pdf   

Kiviet, J.F. (1995). On bias, inconsistency, and efficiency of various estimators in dynamic panel 

data models. Journal of Econometrics, 68 (1), 53-78. https://doi.org/10.1016/0304-

4076(94)01643-E.  

Lee, D.R., Helmberger, P.G. (1985). Estimating supply response in the presence of farm programs. 

American journal of agricultural economics. 67(2). https://doi.org/10.2307/1240670  

Lesk, C., Rowhani, P., Ramankutty, N. (2016). Influence of extreme weather disasters on global crop 

production. Nature 529, 84–87. https://doi.org/10.1038/nature16467  

Liang, Y., Miller, J.C., Harri, A., Coble, K.H. (2011). Crop Supply Response under Risk: Impacts of 

Emerging Issues on Southeastern U.S. Agriculture. Journal of Agricultural and Applied 

Economics, 43(2), 181-194. https://ageconsearch.umn.edu/record/104615/  

Lin, W., & Robert Dismukes. (2007). Supply Response under Risk: Implications for Counter-Cyclical 

Payments’ Production Impact. Review of Agricultural Economics, 29(1), 64–86. 

http://www.jstor.org/stable/4624821  

Liu, W., Ye, T., Jagermeyr, J., Muller, C., Chen, S (2021). Future climate change significantly alters 

interannual wheat yield variability over half of harvested areas. Environmental research letters, 

16(9), 45-62. https://iopscience.iop.org/article/10.1088/1748-9326/ac1fbb  

Macrotrends (2023, January 24). Wheat prices. https://www.macrotrends.net/2534/wheat-prices-

historical-chart-data   

Mittal, A. (2009) The 2008 food price crisis: Rethinking food security policies. G-24 discussion 

paper series. United nations publications. https://unctad.org/system/files/official-

document/gdsmdpg2420093_en.pdf  

Mueller, S. A., Anderson, J.E., Wallington, T.J. (2011). Impact of biofuel production and other 

supply and demand factors on food price increases in 2008. Biomass and Bioenergy, 35 (5), 

1623-1632. https://doi.org/10.1016/j.biombioe.2011.01.030  

Muth, J. F. (1961). Rational Expectations and the Theory of Price Movements. Econometrica, 29(3), 315–

335. https://doi.org/10.2307/1909635 

Nelson, R., & Bessler, D.A. (1992). Quasi‐rational expectations: Experimental evidence. Journal of 

Forecasting, 11, 141-156. https://doi.org/10.1002/for.3980110205  

https://doi.org/10.1016/S0165-1765(99)00130-5
https://doi.org/10.1016/S0165-1765(99)00130-5
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1007/978-3-319-28201-5
https://view.ckcest.cn/AllFiles/ZKBG/Pages/285/Csgk0FvYNBiAezaQAAFWvbwD1wc413.pdf
https://view.ckcest.cn/AllFiles/ZKBG/Pages/285/Csgk0FvYNBiAezaQAAFWvbwD1wc413.pdf
https://doi.org/10.1016/0304-4076(94)01643-E
https://doi.org/10.1016/0304-4076(94)01643-E
https://doi.org/10.2307/1240670
https://doi.org/10.1038/nature16467
https://ageconsearch.umn.edu/record/104615/
http://www.jstor.org/stable/4624821
https://iopscience.iop.org/article/10.1088/1748-9326/ac1fbb
https://www.macrotrends.net/2534/wheat-prices-historical-chart-data
https://www.macrotrends.net/2534/wheat-prices-historical-chart-data
https://unctad.org/system/files/official-document/gdsmdpg2420093_en.pdf
https://unctad.org/system/files/official-document/gdsmdpg2420093_en.pdf
https://doi.org/10.1016/j.biombioe.2011.01.030
https://doi.org/10.2307/1909635
https://doi.org/10.1002/for.3980110205


49 
 

Nerlove, M. (1956). Estimates of the elasticities of supply of selected agricultural commodities. 

Journal of farm economics, 38(2). https://doi.org/10.2307/1234389  

Nerlove, M. (1979). The dynamics of supply: Retrospect and prospect. American journal of 

agricultural economics, 61(5). https://doi.org/10.2307/3180340  

Nerlove, M., Fornari, I. (1998). Quasi-rational expectations, an alternative to fully rational 

expectations: An application to US beef cattle supply. Journal of Econometrics, 83(1), 129-

161, https://doi.org/10.1016/S0304-4076(97)00067-5  

Nerlove, M., Grether, D.M., Carvalho, J.L. (1979). Analysis of Economic Time Series. Academic 

Press, New York. https://www.sciencedirect.com/book/9780125157506/analysis-of-

economic-time-series  

Nerlove, M & Bessler D.A. (2001). Chapter 3 Expectations, information and dynamics, Handbook of 

Agricultural Economics, Elsevier, 155-206, https://doi.org/10.1016/S1574-0072(01)10006-X.  

Nickell, S. (1981). Biases in Dynamic Models with Fixed Effects. Econometrica, 49(6), 1417–1426. 

https://doi.org/10.2307/1911408  

O’brien, R.M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality 

and Quantity 41, 673–690. https://doi.org/10.1007/s11135-006-9018-6  

OECD (2011). Evaluation of agricultural policy reforms in the European Union. 

https://doi.org/10.1787/9789264112124-en  

OECD/FAO (2022). OECD-FAO Agricultural Outlook 2022-2031. OECD Publishing, Paris. 

https://doi.org/10.1787/f1b0b29c-en  

Pe’er, G., Lakner, S., Passoni, G., Azam, C., Berger, J., Hartmann, L., Schüler, S., Müller, R., von 

Meyer-Höfer, M., Zinngrebe, Y. (2017). Is the CAP Fit for purpose? An evidence-based, 

rapid Fitness-Check assessment - Preliminary Summary of key outcomes. Leipzig, EEB. 

https://www.idiv.de/fileadmin/content/iDiv_Files/Documents/peer_et_al_2017_cap_fitness_c

heck_final_20-11.pdf   

Pesaran, M. H., Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous 

panels. Journal of Econometrics, 68(1), 79-113. https://doi.org/10.1016/0304-4076(94)01644-

F.  

Peterson, W. L. (1979). International Farm Prices and the Social Cost of Cheap Food Policies. American 

Journal of Agricultural Economics, 61(1), 12–21. https://doi.org/10.2307/1239495  

Phillips, P.C.B., Sul, D. (2007). Bias in dynamic panel estimation with fixed effects, incidental trends 

and cross section dependence. Journal of Econometrics, 137(1), 162-188. 

https://doi.org/10.1016/j.jeconom.2006.03.009.  

Pindyck, R. & Rubinfeld, D. (2018). Microeconomics, 9th edition. Pearson Education. 58-62.  

Poitras, G. (2023). Cobweb theory, market stability, and price expectations. Journal of the History of 

Economic Thought, 45(1), 137-161. https://doi:10.1017/S1053837222000116  

Rao, J.M., (1989). Agricultural supply response: A survey. Agricultural economics, 3(1). 1-22. 

https://doi.org/10.1111/j.1574-0862.1989.tb00068.x  

https://doi.org/10.2307/1234389
https://doi.org/10.2307/3180340
https://doi.org/10.1016/S0304-4076(97)00067-5
https://www.sciencedirect.com/book/9780125157506/analysis-of-economic-time-series
https://www.sciencedirect.com/book/9780125157506/analysis-of-economic-time-series
https://doi.org/10.1016/S1574-0072(01)10006-X
https://doi.org/10.2307/1911408
https://doi.org/10.1007/s11135-006-9018-6
https://doi.org/10.1787/9789264112124-en
https://doi.org/10.1787/f1b0b29c-en
https://www.idiv.de/fileadmin/content/iDiv_Files/Documents/peer_et_al_2017_cap_fitness_check_final_20-11.pdf
https://www.idiv.de/fileadmin/content/iDiv_Files/Documents/peer_et_al_2017_cap_fitness_check_final_20-11.pdf
https://doi.org/10.1016/0304-4076(94)01644-F
https://doi.org/10.1016/0304-4076(94)01644-F
https://doi.org/10.2307/1239495
https://doi.org/10.1016/j.jeconom.2006.03.009
https://doi:10.1017/S1053837222000116
https://doi.org/10.1111/j.1574-0862.1989.tb00068.x


50 
 

Ray, D., Gerber, J., MacDonald, G., West, P.C. (2015). Climate variation explains a third of global 

crop yield variability. Nature communictions, 6. 5989. https://doi.org/10.1038/ncomms6989  

Roberts, M.J. & Schlenker, W. (2009). World Supply and Demand of Food Commodity Calories. 

American Journal of Agricultural Economics, 91(5). http://www.jstor.org/stable/20616288   

Roberts, M.J., & Schlenker, W. (2013). Identifying Supply and Demand Elasticities of Agricultural 

Commodities: Implications for the US Ethanol Mandate. American Economic Review, 103 

(6), 2265-95. https://www.aeaweb.org/articles/pdf/doi/10.1257/aer.103.6.2265  

Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The 

Stata Journal, 9(1), 86-136. https://journals.sagepub.com/doi/pdf/10.1177/1536867X0900900106  

Sandmo, A. (1971). On the theory of the competitive firm under price uncertainty. The American  

economic review, 61(1), 65-73. https://www.jstor.org/stable/pdf/1910541.pdf  

Santeramo, F.G. & Lamonaca, E. (2019). On the drivers of global grain price volatility: An empirical 

investigation. Agricultural economics – Czech, 65. 31-42. https://www.old-

aj.cz/publicFiles/76_2018-AGRICECON.pdf  

Schils, R., Olesen, J. E., Kersebaum, K., Rijk, B., Oberforster, M., Kalyada, V., Khitrykau, M., Gobin, A., 

Kirchev, H., Manolova, V., Manolov, I., Trnka, M., Hlavinka, P., Palosuo, T., Peltonen-Sainio, P., 

Jauhiainen, L., Lorgeou, J., Marrou, H., Danalatos, N., Archontoulis, S., … Ittersum, M. (2018). 

Cereal yield gaps across Europe. European Journal of Agronomy, 101, 109-120. 

https://doi.org/10.1016/j.eja.2018.09.003.   

Sckokai, P., & Antón, J. (2005). The Degree of Decoupling of Area Payments for Arable Crops in the 

European Union. American Journal of Agricultural Economics, 87(5), 1220–1228. 

http://www.jstor.org/stable/3697698 

 

Sckokai, P & Moro, D (2009). Modelling the impact of the CAP Single Farm Payment on farm 

investment and output. European Review of Agricultural Economics, 36 (3), 395–

423, https://doi.org/10.1093/erae/jbp026 

 

Shideed, K. H., & White, F. C. (1989). Alternative Forms of Price Expectations in Supply Analysis For 

U.S. Corn and Soybean Acreages. Western Journal of Agricultural Economics, 14(2), 281–292. 

http://www.jstor.org/stable/40988107  

Sowell, A., Swearingen, B., Sauer, C. & Hutchins, C. (2022). Wheat outlook: December 2022. 

USDA. https://www.ers.usda.gov/publications/pub-details/?pubid=105461  

Stata (2023). Panel-data unit-root tests. https://www.stata.com/features/overview/panel-data-unit-

root-tests/  

Steen, M., Bergland, O., Gjølberg, O. (2023). Climate Change and Grain Price Volatility: Empirical 

Evidence for Corn and Wheat 1971–2019. Commodities, 2(1), 1-12. 

https://doi.org/10.3390/commodities2010001  

Subervie, J. (2008). The Variable Response of Agricultural Supply to World Price Instability in 

Developing Countries. Journal of Agricultural Economics. 59. 72-92. 

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-9552.2007.00136.x  

https://doi.org/10.1038/ncomms6989
http://www.jstor.org/stable/20616288
https://www.aeaweb.org/articles/pdf/doi/10.1257/aer.103.6.2265
https://journals.sagepub.com/doi/pdf/10.1177/1536867X0900900106
https://www.jstor.org/stable/pdf/1910541.pdf
https://www.old-aj.cz/publicFiles/76_2018-AGRICECON.pdf
https://www.old-aj.cz/publicFiles/76_2018-AGRICECON.pdf
https://doi.org/10.1016/j.eja.2018.09.003
http://www.jstor.org/stable/3697698
https://doi.org/10.1093/erae/jbp026
http://www.jstor.org/stable/40988107
https://www.ers.usda.gov/publications/pub-details/?pubid=105461
https://www.stata.com/features/overview/panel-data-unit-root-tests/
https://www.stata.com/features/overview/panel-data-unit-root-tests/
https://doi.org/10.3390/commodities2010001
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-9552.2007.00136.x


51 
 

Swinbank, A. (2008). Potentil WTO challenges to the CAP. Canadian journal of agricultural 

economics, 56(4), 445-456. https://doi.org/10.1111/j.1744-7976.2008.00140.x  

Tangermann, S. (2011). Risk management in agriculture and and the future of the EU’s common 

agricultural policy. International center for trade and sustainable development. Issue paper no. 

34. https://www.files.ethz.ch/isn/138400/tangermann_risk_management.pdf  

Thiele, R. (2000). Estimating the aggregate agricultural supply response: a survey of techniques and 

results for developing countries, Kiel Working Paper, No. 1016, Kiel Institute of World 

Economics. https://www.econstor.eu/bitstream/10419/2516/1/kap1016.pdf  

Tradingeconomics (2023, January 11). Wheat. https://tradingeconomics.com/commodity/wheat  

Trnka, M., Rötter, R., Ruiz-Ramos, M. Kersebaum, K.C., Olesen, J.E., Zalud, Z., Semenov, M.A. 

(2014). Adverse weather conditions for European wheat production will become more 

frequent with climate change. Nature Climate Change, 4. 637–643. 

https://doi.org/10.1038/nclimate2242  

Trostle, R., Marti, D., Rosen, S., Westcott, P. (2011). Why have food commodity prices risen again? 

WRS-1103, Economic research service/USDA.  

https://d35t1syewk4d42.cloudfront.net/file/1934/USDA-food-prices.pdf  

Urban, K., Jensen, H.G., Brockmeier, M. (2016). How decoupled is the Single Farm Payment and 

does it matter for international trade? Food Policy, 59, 126-138. 

https://doi.org/10.1016/j.foodpol.2016.01.003.  

USDA (2021). International markets and US trade. European Union. 

https://www.ers.usda.gov/topics/international-markets-u-s-trade/countries-regions/european-

union/  

USDA (2023). Crop calendar. Europe. https://ipad.fas.usda.gov/rssiws/al/crop_calendar/europe.aspx  

Wilcox, J. & Makowski, D. (2014). A meta-analysis of the predicted effects of climate change on 

wheat yields using simulation studies. Field Crops Research, 156. 180-190. 

https://doi.org/10.1016/j.fcr.2013.11.008  

Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM 

estimators. Journal of Econometrics, 126 (1), 25-51. 

https://doi.org/10.1016/j.jeconom.2004.02.005.  

World Bank (2023). Data. Cereal yield. https://data.worldbank.org/indicator/AG.YLD.CREL.KG  

WTO (2014). Trends in domestic support – Market price support. Doc. 14-3238, G/AG/W/131. 

https://docs.wto.org/dol2fe/Pages/FE_Search/FE_S_S006.aspx?MetaCollection=WTO&Seria

l=%2214-

3238%22&Language=ENGLISH&SearchPage=FE_S_S001&languageUIChanged=true#  

WTO (2023). Agreement on Agriculture. https://www.wto.org/english/docs_e/legal_e/14-

ag_01_e.htm  

WTO (2023). Agriculture Information Management System. 

https://www.wto.org/english/tratop_e/agric_e/transparency_toolkit_e.htm  

https://doi.org/10.1111/j.1744-7976.2008.00140.x
https://www.files.ethz.ch/isn/138400/tangermann_risk_management.pdf
https://www.econstor.eu/bitstream/10419/2516/1/kap1016.pdf
https://tradingeconomics.com/commodity/wheat
https://doi.org/10.1038/nclimate2242
https://d35t1syewk4d42.cloudfront.net/file/1934/USDA-food-prices.pdf
https://doi.org/10.1016/j.foodpol.2016.01.003
https://www.ers.usda.gov/topics/international-markets-u-s-trade/countries-regions/european-union/
https://www.ers.usda.gov/topics/international-markets-u-s-trade/countries-regions/european-union/
https://ipad.fas.usda.gov/rssiws/al/crop_calendar/europe.aspx
https://doi.org/10.1016/j.fcr.2013.11.008
https://doi.org/10.1016/j.jeconom.2004.02.005
https://data.worldbank.org/indicator/AG.YLD.CREL.KG
https://docs.wto.org/dol2fe/Pages/FE_Search/FE_S_S006.aspx?MetaCollection=WTO&Serial=%2214-3238%22&Language=ENGLISH&SearchPage=FE_S_S001&languageUIChanged=true
https://docs.wto.org/dol2fe/Pages/FE_Search/FE_S_S006.aspx?MetaCollection=WTO&Serial=%2214-3238%22&Language=ENGLISH&SearchPage=FE_S_S001&languageUIChanged=true
https://docs.wto.org/dol2fe/Pages/FE_Search/FE_S_S006.aspx?MetaCollection=WTO&Serial=%2214-3238%22&Language=ENGLISH&SearchPage=FE_S_S001&languageUIChanged=true
https://www.wto.org/english/docs_e/legal_e/14-ag_01_e.htm
https://www.wto.org/english/docs_e/legal_e/14-ag_01_e.htm
https://www.wto.org/english/tratop_e/agric_e/transparency_toolkit_e.htm


52 
 

Zhang, T., van der Wiel, K., Wei, T., Screen, J., Yue, X., Zheng, B., Selten, F., Bintanja, R., 

Anderson, W., Blackport, R., Glomsrød, S., Liu, Y., Cui, X., Yang, X. (2022). Increased 

wheat price spikes and larger economic inequality with 2°C global warming. One Earth, 5(8). 

892-906. https://doi.org/10.1016/j.oneear.2022.07.004  

 

 

https://doi.org/10.1016/j.oneear.2022.07.004


 

 

 


