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ABSTRACT

The increasing energy demand has led to a surge in solar power installations.
However, solar cells are subject to damage and degradation that may not be
visible to the naked eye. Consequently, various techniques have been developed to
monitor solar modules to prevent unknown damages from reducing the efficiency
of a solar power plant. Photoluminescence has several advantages over other
techniques, providing detailed and spatial information on various types of damage
in a solar cell module. The technique has been exploited with several approaches,
but the built-in IV-curve sweep in the inverter is proven to be a non-invasive
diagnostic method that does not disturb the power production.

This thesis explores methods that potentially make photoluminescence
diagnostics more efficient, flexible, and/or accurate. The thesis includes
experiments on imaging four bifacial PERC modules from the rear side under
direct and diffuse light conditions at Søråsjordet in Ås. The thesis also investigates
whether the PCC algorithm can increase the accuracy of the images and whether
the effect is enhanced with a filtered reference signal.

The results indicate that it is possible to obtain a respectable signal-to-noise
ratio from the backside of the modules under both direct and diffuse irradiance,
albeit with lower photoluminescence signals than from the front. However, it has
been observed that high signals are not necessary to perform an analysis of a
processed image of a module.

Several practical challenges were encountered during backside image
acquisition that requires further development for the method to be beneficial.
The methods are not replaceable for front-side module imaging or direct irradiance
image acquisition. However, the analyzable images provide additional information
that can be useful for comprehensive diagnostics.

The PCC algorithm was found to produce less noisy images with better
separated module and background pixels. This effect was enhanced when the
reference signal was smoothed using the Savitzky-Golay filter.
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SAMMENDRAG

Økt etterspørsel etter energi har ført til økt utbygging av solkraft. Solcellepaneler
er utsatt for skader og degradering som ikke alltid er synlige for det blotte øye.
Som et resultat er det utviklet flere teknikker for å overvåke solcellepaneler, slik
at ukjente skader ikke forverrer virkningsgraden i et solcelleanlegg.

Photoluminescence har flere fordeler som andre teknikker ikke har. Teknikken
er brukt med forskjellige tilnærminger, men å bruke den innebygde IV-
kurvesveipen i vekselsretteren har vist seg å være en metode som ikke forstyrrer
produksjonen. Dette er svært fordelaktig i diagnostiseringen av et produserende
anlegg. Samtidig gir teknikken detaljert og romlig informasjon om forskjellge typer
skade i en solcellemodul.

Denne masteroppgaven utforsker metoder som potensielt kan gjøre
diagnostiserngen via photoluminescence mer effektiv, fleksibel og/eller nøyaktig.
Det er i den anledning eksperimentert med avbildning i direkte og diffust sollys
fra baksiden av fire tosidige PERC-moduler på Søråsjordet i Ås. Det er også
udersøkt om PCC-algoritmen kan øke nøyaktigeten i bildene, og om effekten blir
enda sterkere med filtrert referansesignal.

Resultatene viste at det er mulig å få et respektabelt signal-til-støyforhold fra
baksiden i både direkte og diffus irradians, men med lavere photoluminescence-
signaler enn forfra. Det er dog observert at det ikke er nødvendig med høye signaler
for å utrette en analyse av et prosessert bilde av en modul.

Det fremkom flere praktiske utfordringer ved bildetakning fra baksiden av
modulene som krever videre utvikling for at metoden skal være gunstig. Det
er sett at metodene ikke er erstattelige for bildetakning fra fremsiden av modulen
eller bildetakning i direkte irradians, men at de analyserbare bildene gir en annen
informasjon som kan være nyttig for en mer utfyllende diagnostisering.

PCC-algoritmen viste seg å gi mindre støyede bilder med bedre adskilte
modul- og bakgrunnspiksler. Denne effekten ble forsterket da referansesignalet
ble utjevnet med Savitzky-Golay-filteret.
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CHAPTER

ONE

INTRODUCTION

The need for more energy in the world is undeniable and it is increasing rapidly
[1]. It is necessary to find sustainable and renewable energy sources to meet
this demand. Solar power has emerged as a promising and major contributor to
the development of power infrastructure with its ability to provide an abundant
and clean source of energy [2]. The development of solar power infrastructure
has become a critical concern for governments and businesses globally, with the
potential for solar power to become a significant contributor to the world’s energy
supply [3]. According to IEA’s net zero pathway, 20% of the world’s future energy
supply will come from solar energy in 2050, requiring a 20-fold increase [4], which
makes it essential to understand and optimize the technology that supports this
development.

However, the degradation of solar cells is an issue and a significant concern.
During its lifetime, a photovoltaic (PV) module is exposed to various external
stresses in which some being common causes of cell deterioration which leads to
a decrease in the efficiency of the solar cells. The external stresses may come
from sources such as temperature changes (from day to night and from summer
to winter), mechanical stress, stress from agents transported via the atmosphere,
moisture and humidity [5] as well as hot spots caused by partial shading of the
PV module [6]. To avoid that the PV modules are exposed to these factors over
time, it is important to monitor them to ensure that the production of power is
not compromised by unknown defects in the modules, and to ensure that optimal
production efficiency is maintained. Finding methods to monitor the performance
and diagnose solar cells in an accurate and efficient way is crucial. It is important
to develop methods where increasing accuracy and efficiency do not come at the
expense of each other.
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2 CHAPTER 1. INTRODUCTION

Several PV monitoring methods have been developed over the past years; visual
inspection, current-voltage measurements, UV fluorescent (UVF), thermography
(IR), and electroluminescence (EL) imaging are relatively mature techniques [7].
However, these methods involve some disadvantages that can be avoided by using
photoluminescence (PL). When visually inspecting solar PV, only glass breakage,
and other optical degradations are detectable. When measuring the current-
voltage, only the performance data is obtained. Only materials that can absorb
UV can create a UVF effect [7], and UVF only detects cracks if the PV module
has had a longtime exposure to UV [8]. Thermography using infrared cameras
is an efficient way to gain a large-scale overview, using unmanned aerial vehicles
(UAV) for instance, however, the method only detects hot-spots in the solar PV
[8].

In order to achieve high-resolution and spatially resolved information about
the solar module, including potential induced degradation (PID), light induced
degradation (LID), cracks, series resistance effects and bypass diode failure,
luminescence-based methods are fulfilling techniques [8, 9]. EL imaging will result
in detailed information such as with PL, but the method requires that the module
is either disassembled and analyzed in a lab setting, or that the module/string
of modules is disconnected from the power production and connected to a power
supply on site, but with no sun or ambient light [10, 11]. This means that on-site
EL inspections often are carried through at night time when the power production
is low/off and therefore cannot serve as a power supply to the EL inspection.
Because it is less invasive, PL inspection has the potential to be a faster and more
flexible method than EL [12].

Using PL to diagnose PV modules has been executed in different ways using
different image acquisition and illumination techniques. It has been used laser [13,
14], light emitting diode (LED) [14, 15, 16, 17] and metal–oxide–semiconductor
field-effect transistor (MOSFET) [18]. Using a LED device included switching
the current in a contactless way by shading a control cell. This allows only one
substring by one substring to be tested, and the imaging may not happen fast
enough for the irradiance to be constant. By using a MOSFET, one could obtain
images in a shorter time frame to avoid changes in irradiance during the image
acquisition, but the method requires an electrical connection that interrupts power
production. However, the I-V curve sweep of the string inverter has recently been
exploited [19], allowing for more than only two operating points to be acquired.
This method can make the PL image acquisition non-invasive and competitive in
PV module diagnosis techniques.
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To further improve the efficiency and flexibility of PV module diagnosis, it
is desirable to investigate the possibilities of conducting the image acquisition in
different circumstances, and from different perspectives. Outdoor PL imaging has
shown that bifacial PERC modules emit PL signals from the rear [19], which is
a remarkable finding in the context of flexible diagnosis of PV modules. This
opportunity may have advantages that will improve the image acquisition, such
as eliminating risks of shadowing the modules from the front while the image
acquisition is in progress.

EL imaging has shown that different severity of cell damages appear with
different applied currents (ISC and I0.1SC) [20] and that the different currents
correspond to direct and diffuse irradiation (1000 W/m2 and 100 W/m2),
respectively [21]. The opportunity to gain results from images taken in diffuse
irradiance is investigated because a) it will potentially show different damage
severity results than images taken in direct irradiance and b) it will potentially
increase the flexibility of the diagnosis method. Especially in Norway, this would
be an opportunity to reduce the limitation that comes with narrowing down the
image acquisition time to days with steadily direct irradiance only. It is also
assumed that imaging bifacial PV modules from the rear will benefit from diffuse
irradiance because of unwanted effects on the images when the lens is pointed
directly toward the sun.

Using differential PL (dPL) images and the subtraction method as a way of
detecting degradation in solar cells requires manually processing the data. A way
to further streamline image processing is the Pearson correlation coefficient (PCC)
algorithm. The method can contribute to easier implementation of the processing
in real-time because it has the potential to be unsupervised [12].

1.1 Objective and Project Description

The objective of this master’s thesis is to investigate and gain a comprehensive
understanding of the potential and constraints associated with using PL imaging
to monitor degradation mechanisms in photovoltaic modules. Specifically, the
thesis aims to explore methods that can potentially improve the diagnosis of PV
modules by making the implementation more flexible, more accurate and/or more
efficient. The thesis will focus on acquiring images of both the front and rear of
bifacial modules under different lighting conditions, including diffuse and direct
irradiance. These images will be used in the dPL and the PCC algorithms. The
Savitzky-Golay filtering technique will be tested in an attempt to improve image
quality and accuracy. The quality of the results will then be quantified to enable
a comparison of the images, with the aim of answering the research questions.
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1.2 Research Questions

The research questions to be answered in this thesis are

• How strong is the PL signal obtained from the rear, and is it possible to gain
as good or better quality of the PL images taken from the rear as from the
front?

• If yes, will it result in higher quality if the image acquisition is conducted in
diffuse or direct irradiance?

• Will PL images acquired from diffuse and direct irradiance correspond to
EL images acquired with I0.1SC and ISC , respectively, and hence provide
different information about the solar cells?

• Will the PL images be of better quality if they are processed with PCC or
dPL?

• Are the PCC images of better quality if the reference signal is smoothed via
the Savitzky Golay filtering?



CHAPTER

TWO

THEORY

This chapter elaborates on the theoretical principles behind PV technology, as
well as the underlying mechanisms of photoluminescence. The theory behind the
methods that are used to analyze and improve PL images is presented.

2.1 Working Principle of Solar Cells

Semiconductors

A solar cell consists of semiconductors, which are a type of material that has an
electrical conductivity between that of a conductor and an insulator. Silicon is one
of the most commonly used semiconductors in the electronics industry due to its
abundance and predictable behavior. Silicon is the second most abundant element
in the Earth’s crust, making up almost 30% of its mass [22]. Its occurrence on
Earth is primarily in the form of silicon dioxide, which is found in rocks, sand,
and quartz.

The band gap energy of silicon is 1.12 electron volts (eV) at room temperature
(300K), which is the energy required to move an electron from the valence band to
the conduction band [23]. This property makes it a suitable material for producing
electronic devices such as transistors, solar cells, and microprocessors.

The pn - junction

A pn-junction is a type of semiconductor junction formed by doping a region
of a semiconductor material with impurities such as boron or phosphorous to
create two regions of opposite electrical conductivity. Boron is used as an acceptor
impurity in the doping process, which creates p-type material. On the other hand,
phosphorous is used as a donor impurity to create n-type material. When the two

5



6 CHAPTER 2. THEORY

regions are brought into contact, a depletion region is formed at the interface due
to the diffusion of electrons and holes across the junction. The depletion region
is depleted of mobile charge carriers, which creates an electric field that prevents
further diffusion of carriers. When the pn-junction is exposed to light, photons are
absorbed, and electron-hole pairs are generated in the bulk region. The separated
electron-hole pairs are then collected by the electric field and produce a current,
which is the basis for solar cells. By controlling the doping concentrations and
thickness of the depletion region, the efficiency of the solar cell can be optimized.

Recombination mechanisms

Recombination in a silicon solar cell occurs when separated electrons and
holes recombine, which reduces the efficiency of the cell. One of the most
significant recombination mechanisms is band-to-band recombination, which is an
unavoidable process that occurs when electrons in the conduction band recombine
with holes in the valence band. This mechanism is illustrated in Figure 2.1.1. This
process can occur through different channels such as radiative and non-radiative
recombination. Radiative recombination involves the emission of a photon with an
energy similar to the band gap energy, while non-radiative recombination involves
phonon release which increases heat loss. For instance will silicone with a band
gap energy of 1.12 eV emit photons with a wavelength that complies with this
energy. While some non-radiative recombination can be reduced through careful
cell design and processing, band-to-band recombination is an inherent property of
the material and cannot be eliminated.

Figure 2.1.1: Band-to-band recombination mechanism.



CHAPTER 2. THEORY 7

Luminescence

Luminescence is a result of radiative recombination and is the process by which
a substance emits light as a result of energy absorption. It is a broad term
that encompasses different mechanisms such as fluorescence, phosphorescence,
and bioluminescence. Luminescence has many applications, including in imaging,
sensing, and lighting technology. In photoluminescence, the band-to-band
recombination is exploited and the photoluminescence is a result of electron-hole-
pair recombination which leads to emitting photons.

Knowing that light consists of energy quanta, or photons, one can calculate
the wavelength of the photons emitted from recombination in silicone, using the
following equation [24]:

E = hν =
hc

λ
(2.1)

where E is the quantum energy, h is Planck’s constant, λ is the wavelength of
the photon and ν is the frequency of the electromagnetic radiation. Using Equation
2.1 to convert the band gap energy of 1.12 eV, a wavelength of approximately 1150
nm is obtained.

Imaging with a camera that can capture radiation with a wavelength of 1150
nm, one can perceive the radiative recombination effects happening in a solar cell.

2.2 Solar Spectre and Water Absorption

The wavelength range of 1100-1150 nm has a low occurrence in the global solar
irradiance, as shown in Figure 2.2.1a [25]. This is due to the absorption of
electromagnetic radiation in water, which coincides with the wavelength of PL
signals. However, more than 95% of the radiation that the camera captures in
this wavelength range is due to sunlight reflected on the silicon solar module, and
5% is the actual PL signal emitted from the solar cells, as illustrated in figure
2.2.1b. This implies that most of the electromagnetic radiation between 1100-
1150 nm captured by the camera is noise and not the PL signal we are looking
for. Therefore, it is desired to extract noise and reflections from the sun.
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(a) Standard solar spectre [25]. (b) Spectral distribution of PL signal and reflectance
of a silicon solar module [19].

Figure 2.2.1: The standard solar spectre provided by The American Society for
Testing and Materials [25] is shown in (a), where the red line is the global solar
irradiance. A spectral distribution of the PL signal (blue) and the reflectance
(red) of a silicon solar module is shown in (b).

2.3 Photoluminescence Signal

In order to extract the actual PL signal from noise and reflections from the sun
(or other illumination sources), one must consider the extracted current density.
However, signals with other wavelengths than the emitted PL signal can be
excluded through optical filters.

The extracted current density, J , of a solar cell is given by

J = JSC − J0exp
Vd,A
Vt (2.2)

where JSC is the short circuit current density, J0 is the dark current density,
Vd,A is the diode/junction voltage of region A and Vt is the thermal voltage [19,
26].

The average PL signal of a solar cell area A is given by

PLA = C · exp(Vd,A

Vt

) + PLoffset,A (2.3)

where C is a calibration constant depending on i.e. the carrier lifetime and
geometry and PLoffset is the PL signal caused by diffusion-limited carriers [19,
26].

Rearranging equation (2.3) and solving for Vd,A, in order to replace Vd,A in
equation (2.2) results in

J = JSC − J0
C
(PLA − PLoffset,A). (2.4)

Equation 2.4 describes the level of current extraction in the solar cell and can
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be adjusted to different operating points of the solar cell. Naming two different
operating points 1 and 2, equation 2.4 can be written as

J1 = JSC,1 −
J0,1
C1

(PLA,1 − PLoffset,A1). (2.5)

and

J2 = JSC,2 −
J0,2
C2

(PLA2 − PLoffset,A2). (2.6)

respectively. The calibration constant C remains unchanged through the
different operating points, and can be determined from an image in open circuit
condition and from the open circuit voltage, which means that C1 = C2 = C [19].
The same occurs for the illumination condition. It remains unchanged through the
operating points and JSC is therefore considered constant; JSC,1 = JSC,2 = JSC .

The dark current density is also considered constant; J0,1 = J0,2 = J0 [19]. The
PL signal caused by diffusion-limited carriers, PLoffset,A, is considered constant
through the two operating points so that PLoffset,A1 = PLoffset,A2 = PLoffset,A.
PLoffset,A can be found with an image taken during short circuit (SC) conditions.

Calculating the difference in extracted current density between the operating
point by subtracting equation 2.6 from equation 2.5 we obtain the equation

PLA2 − PLA1 =
C

J0
(J1 − J2), (2.7)

which shows that the difference in PL signal intensity, dPL, between two
operating points is inversely proportional to the extracted current density in the
same two operating points. This means that the noise can be extracted and the
PL signal can be captured when images in two different operating points, i.e. open
circuit (OC) and SC or maximum power point (MPP), are subtracted from each
other.

2.4 I-V Curves

An I-V curve is a graphical representation of the relationship between the
current (I) flowing through a device and the voltage (V) applied to it. In the
context of solar cells, an I-V curve shows how the solar cell responds to different
levels of irradiance and temperature, providing a measure of the cell’s electrical
performance.

The curve typically starts at the open-circuit voltage (VOC), where the current
is zero and the voltage is at its maximum, and then the voltage decreases as the
current increases due to the load. At short-circuit conditions, the current is at
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its maximum, and the voltage is zero. A point in between these points is the
maximum power point, which is illustrated in Figure 2.4.1. The shape of the
curve depends on the device’s electrical properties, such as its internal resistance
and the presence of shunt and series resistance.

The I-V curve is a crucial tool for analyzing and optimizing the performance
of solar cells, as it provides information on the cell’s maximum power point, where
the product of the current and voltage is at its highest, and the fill factor, which
is a measure of the cell’s efficiency.

Figure 2.4.1: Characteristic I-V curve of a solar cell.

Maximum Power Point Tracking

The maximum power point tracker is not a physical component but a built-in
functionality in string inverters. The operating point is defined as the voltage
and current values in which the PV module operates. Looking at Figure 2.4.1,
this point on the I-V curve correlates to a point on the power-voltage curve, as
P = I · V . In order to obtain the MPP, one should find the current and voltage
values correlating to the apex of the power-voltage curve.

For the module to operate in MPP, the voltage needs to be forced to operate
at the MPP (VMPP ). It is important to remember that the MPP is dependent
on ambient conditions such as temperature and irradiance, and the MPP will
therefore fluctuate as the circumstances change. Therefore, the MPP trackers
exist so that the module is adjusted to the MPP.

There are several ways and algorithms to find VMPP , but experimental studies
[19, 12] have found that some type of inverters will sweep through the complete
I-V curve in order to find the MPP. This will give insight into several operating
points, which are needed when imaging photoluminescence.
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2.5 Bifacial Solar Cells

The monofacial silicon solar cell with an aluminum back surface field (Al-BSF)
was dominant on the market for a long time[27]. This is a crystalline silicon cell
made of p-type silicon and a back surface that is opaque to light [27], as seen on
the left side of Figure 2.5.1. This means that only light entering from the front
will affect the cell.

Figure 2.5.1: Bifacial solar cells are partially metalized on the rear side, and do
not have an aluminum back surface that prevents the light to enter from the rear
side [27].

Bifacial solar cells are a more advanced type of cell design, illustrated on
the right-hand side of Figure 2.5.1. This type of solar cell only requires partial
metallization on the rear side of the cell, allowing more light to enter from the rear
as well as light entering the front, as illustrated in Figure 2.5.2. This is beneficial
especially in areas with high albedo, as the scattered light from the ground will
increase the light entering the rear side of the cell.

Figure 2.5.2: Bifacial solar cells absorb direct sunlight on the front side as well
as scattered light from the ground and reflected light from other PV modules on
the rear side.

The Passivated Emitter and Rear Cell can be made bifacial and therefore able
to absorb light from both the rear and the front side of the solar module. This
typically increases the efficiency by 25-30 % [27].
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2.6 Pearson Correlation Algorithm

Using correlation analysis is shown to be robust and useful when trying to reduce
and exclude noise [12, 28], and also has the potential to be an unsupervised method
of processing PL images. This means that an image series can be processed
through the algorithm without any pre-processing [12]. The main goal of the
PCC algorithm is to separate PL signals coming from the PV module from other
signals in the background. This is possible by calculating the correlation between
two variables; the intensity values from one pixel in a series of images, Xi, and
the reference values, Y . The following equation is used in order to calculate the
correlation [12]:

ρ =

∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2
√∑N

i=1(Yi − Ȳ )2
(2.8)

where, in this context, Y is the mean image count which is used as the reference,
Xi is the intensity value of one specific pixel in a series of images, ρ is the correlation
coefficient and N is the number of images in the image series.

The method is applicable when the PL signal undergoes a distinct change in
intensity compared to the background, which is the case during the I-V curve
sweep process. The correlation coefficient, ρ, is quantifying the extent of linear
similarity between the variables and is a number between -1 ≤ ρ ≤ 1 [28]. This
means that the pixels in the PV module should correlate more with the reference
than the pixels in the background correlates with the reference, as seen in Figure
2.6.2. The variables in the series of images are illustrated in Figure 2.6.1, which
shows that the background pixels will have a lower ρ value than the module pixel.

Figure 2.6.1: Pearson Correlation Coefficient. The images have x*y pixels and
the number of images is t [12].
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(a) The correlation between the background
pixels and the reference values [12].

(b) The correlation between the module pixels and
the reference values [12].

Figure 2.6.2: The correlation coefficient ρ is higher between the module pixel
and reference than between background pixel and reference.

This theory is more clear when the module is dominant in the image, i.e. the
module contains more pixels than the background. According to an experiment on
what extent the module needs to be dominant in order to reduce background noise,
one can obtain a high PCC value with as little as 20% of the module covering the
image [12].

Savitzky Golay Smoothing

Savitzky-Golay filtering is a smoothing technique used for retrieval of a signal
structure while also excluding noise [29]. The mean image intensity may have some
noise, even with 640x512 pixels. It is therefore recommended that the reference
signal is smoothed out in order to retain the shape of the PL signal, but remove
the outliers [12]. In order to determine the trend signal, one must choose a window
size and a polynomial order [30]. The window size represents the number of values
taken into account when replacing the original value with the new one, which is
fitted with the chosen degree of polynomial.
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2.7 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) can be used as a measure of quality in an image by
analysing the power of the signal in a noisy environment [31, 32, 33]. This is
important in order to validate the obtained signals and to distinguish the signal
from the noise that might distort the signal.

The SNR evaluation in this thesis is based on the equation [33]:

SNRavg =

∑
k(avgi∈N(OCi(k)− SCi(k)))∑

k(|avgi∈N1(OCi(k))− avgj∈N2(OCj(k))| ·
√
0.5 · ( 2

π
)−0.5)

(2.9)

where N represents the number of images in an OC or SC image stack as a
whole, N1 represents the first half of the OC images and N2 is the second half.
The equation is derived from [31] and [32] where k is the pixel count, OC(k) is the
intensity values in all pixels of the OC image and SC(k) is the intensity values in
all pixels of the SC image, which is used as the background parameter.

According to SNR criteria from [31] there are some guidelines for minimal
SNR values dependent on the measurement application and circumstances. For
outdoor measurements the SNR50 should be greater or equal to 5. In this thesis,
it is assumed that the same number accounts for SNRavg and for outdoor PL
imaging.

[33]
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METHODS

This chapter will firstly list and explain the equipment used to conduct the
experiments, secondly explain the methods that are used both practically and
theoretically for each experiment. This includes image processing and analysis.

3.1 Instruments and Set Up

This section explains how the images were acquired, how the data was collected
and which equipment was used to carry out the data collection. The experiments
in this thesis were conducted on the PV modules on Søråsjordet in Ås.

PV Modules

The PV modules that were used to analyze and assess the methods were of the
type JA Solar JAM72D20, which is a bifacial passivated emitter and rear cell
(PERC) module [34]. The rated nominal power is 460 W, the open circuit voltage
(VOC) is 49.91 V (0.693 V per cell) and the short circuit current (ISC) is 11.5 A.
All modules, both on the north side and south side of the site, are of the same
type, which is shown in Figure 3.1.1 and Figure 3.1.2. On the north side of the
site, there are three modules connected to the same string inverter, hereby referred
to as the PERC3 modules. Each module consists of 144 (6 x 24) cells which all
appear healthy.

On the south side of the site, there is one single JA Solar JAM72D20 PERC
module, hereby referred to as the PERC1 module, which is connected to the same
type of inverter. The other modules (of another type) are disconnected from the
string inverter during these experiments. The module is severely damaged, which
is visible to the eye as cracks and broken glass surface over the solar cells, seen in
Figure 3.1.2a.

15
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(a) Rear side of the healthy modules,
PERC3.

(b) Front side of the healthy modules, PERC3.

Figure 3.1.1: Figure (a) shows the rear side of PERC3, connected to the string
inverter on the north side of the site, and Figure (b) shows the same modules from
the front.

(a) Front side of the damaged module,
PERC1.

(b) Rear side of the damaged module,
PERC1.

Figure 3.1.2: Figure (a) shows the front side of PERC1 connected to the string
inverter on the south side of the site and Figure (b) shows the same module from
the rear.
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Inverter

The string inverter that is used on the north string connected to PERC3, and on
the south string connected to PERC1, is of the type Fronius Primo 3.0, which is
depicted in Figure 3.1.3 (grey box on top).

Figure 3.1.3: All modules used in the experiments are connected to a string
inverter of the type Fronius Primo 3.0.

The inverter has a built-in function that tracks the maximum power point,
causing the inverter to carry through an I-V curve sweep in order to find the point
that results in maximum power output. It then forces the voltage to stay at the
spot that induced the current and voltage of maximum power (VMPP and IMPP ).
The I-V curve sweep happens approximately every 10 minutes. The I-V curve
sweeps are allowing us to acquire images in several operation points, continuously,
without invading the power production.

Camera

A short-wave infrared camera was used to acquire the images of the PV modules.
The camera type was Raptor Photonics Owl 640S, including an InGaAs detector.
It has an optical range of 900–1700 nm and a 640x512 resolution. The camera
is capable of running at a high frame rate, up to 300 Hz (frames per second) in
full frame resolution, enabling high speed digital video rates [35]. The camera is
shown in Figure 3.1.4.

The lens was covered with a filter in order to filter out the reflected light with
wavelengths that were not of interest. The filter is from Edmund Optics and has
an optical density of ≥ 4.0. The filter includes an optical range of 1125-1175 nm.
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Several images were first acquired during direct sunlight onto the PV modules.
This resulted in the sunlight hitting directly on the camera lens, causing an
unwanted effect on the images. An extra, detachable lens hood was therefore
attached in order to carry out the experiment in direct sunlight again, without
the sunlight making reflections on the camera lens. The lens hood is shown in
Figure 3.1.4 as the red tube on the tip of the camera lens.

Figure 3.1.4: The camera that was used to conduct the experiments was the
Raptor Photonics Owl 640S. The external triggering box is attached to the tripod
below the camera.

Pyranometer

A pyranometer from Apogee (SP-212) was mounted on the same rig that the
modules were mounted on and was moved to the same side of the site (north and
south) where the image acquisition took place. The pyranometer was screwed
as close to the modules as possible, in order to have as accurate irradiation
data as possible. The mount of the pyranometer is shown in Figure 3.1.5. The
pyranometer was used in order to compare variation in current flow through the
PV modules and variation in irradiance. This is helpful when assessing signals
and noise, and distinguishing between the current increasing or decreasing due to
the I-V curve sweep induced by the inverter and due to irradiation fluctuations.
All measured irradiances are summarised in Table A.1 in Appendix A.
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Figure 3.1.5: The Apogee pyranometer that was used is screwed right below the
modules in order to capture the same irradiance as the modules.

Set Up

The camera is placed at a distance as close to the modules as possible so that the
resolution is still high, but so that the objects (the modules) are fully captured. At
the same time, the angle is such that the direct sunlight does not hit the camera
lens. This had to be taken into account, even with the lens hood on. In diffuse
light, the camera was directed directly toward the PV modules.

The camera was connected to a frame grabber, an external trigger and to
power via the computer. The frame grabber made the computer able to grab the
high frequency frame rate of the camera, which can be as high as 300 frames per
second. The external trigger is a device used to trig the camera to capture images
at a desired rate. The external trigger is also connected to power. The external
trigger device is shown in Figure 3.1.4 as a blue plate with an orange box on it,
attached to the camera tripod.

A clamp meter was connected to the module’s power cable and to an ampere
meter that would send the current data to be read off of the computer. A simplified
illustration of the setup is shown in Figure 3.1.6.
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Figure 3.1.6: An illustration of the instruments and how it is set up.

Software

EPIX XCAP and EPIX PIXCI were used to adjust the frame rate, number of
images acquired and integration time (exposure time) as well as to display the
object/live capture of the Raptor camera on site. Labview was used to display the
current and irradiance data, which was converted to a tdms-file in order to read the
data into Python. This made it possible to collect the images that corresponded
to the I-V curve sweeps. Python was used to process, display and analyze the
images.

3.2 Procedure

Images of the PV modules were collected on three different days. The first data
set was collected on a day with no direct sunlight, only diffuse irradiance. The
second and third data sets were collected with cloudless conditions and direct
sunlight. The second data set was discarded because of some unforeseen and
unwanted effects concerning the direct sunlight on the camera lens. This was
fixed by 3D-printing a customized lens hood for the third data collection.

When all equipment was set up and connected, the camera and software had
to be adjusted and prepared for the image acquisition. This included adjusting
the focus of the lens, adjusting the lens hood, and adjusting the exposure time
(integration time in XCAP). The exposure time adjustment has to account for the
sun’s movement, which could affect the saturation of the image.

Then the number of images and the rate at which the images were to be
captured was chosen. The choice of values should account for the time it takes
between every I-V curve sweep that the string inverter performs, and the desired
amount of images for the different operation points in the I-V curve sweep. The
Fronius Primo 3.0 inverter performs an I-V curve sweep to track the maximum
power point every 10 minutes, and the sweep has a duration of approximately
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2 seconds. To make sure that at least two I-V curve sweeps were captured, the
image acquisition needed a durability of at least 20 minutes. In order to capture
100-200 images of the I-V curve sweep, the frame rate was set to a minimum of
150 Hz. The number of images captured was 200,000 so the duration was 1,333
seconds or 22.2 minutes, which covered two to three I-V curve sweep samples.

Because of the extensive amount of images and the high frame rate, the images
were saved as a video file on site, which was later unpacked into separate images.
When this procedure was conducted on both the PERC3 modules and the PERC1
module, in direct and diffuse irradiance, all images were unpacked and LabView
was used to visualize which images corresponded to the drop of current (i.e. the
I-V curve sweep). 1,000-2,000 images around the current drop were collected for
each case. The image folders, the current files and the irradiance files were then
read into Python and were ready to be processed and analyzed.

Images from the front of the PV modules were received from previous projects
and are collected in the same way, so that the processing and analysis are
conducted in the same way.

3.3 Image Processing

Figure 3.3.1 demonstrates how the images look like when they are unpacked and
before they are processed.

(a) Raw image of the damaged module. (b) Raw image of the healthy modules.

Figure 3.3.1: Raw and unprocessed images of all four modules taken in diffuse
irradiation conditions.

The folder with the images from around the I-V curve sweep is read into Python
and the mean image intensity values through the entire image series are plotted
in a graph in order to visualize where the PL signal is high and low, i.e. where
the extracted current is low and high. The selection of images was based on the
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PL intensity graph.
After the image processing, all images are to a certain extent adjusted in

the brightness scale in order for the PL signals to be observable, but without
reaching saturation in any pixels. In order to compare some of the images, they
are perspective transformed and flipped, so that the solar cells in the images from
front and back correlate.

dPL images

In order to obtain the dPL images, a shorter snippet of the operation points (high
and low PL signal, respectively) is chosen for each case. The values are averaged
in a new image. These two images are subtracted from each other to obtain the
dPL image. The operation points are called OC and SC.

PCC images

In order to obtain the PCC images, a snippet of the whole I-V curve sweep, and
a few images before and after, are chosen as the image range to undergo the PCC
algorithm. The image range is called N.

PCC Images with Savitzky-Golay Smoothing

In order to investigate whether the smoothing filter has a positive effect on the
PCC image from the rear of the modules, the mean pixel intensity value, i.e. the
reference signal, is smoothed using the SG smoothing filter. The new reference
signal is then used in the PCC algorithm, resulting in different PCC images.

3.4 Image Analysis

The SNR is calculated in order to analyze and compare the image qualities.
The cumulative histograms are plotted in order to compare the pixel intensity
distribution. Scatter plots and regression lines are plotted with the corresponding
correlation coefficient in order to analyze the effect of applying the SG smoothing
filter.

SNR Calculation

Prior to the SNR calculation, the background was cropped so that the calculation
was in accordance with the EL imaging standard [31]. The images from the rear,
especially PERC1, were further cropped in order to comply with the requirement
of only containing principally active cell area, meaning that the poles and the
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damaged cells were excluded. The same images that were used to obtain the dPL
images (OC and SC) were used in Equation 2.9. The images from the OC condition
were first split in half, and then the average was calculated for the denominator
of Equation 2.9. The SNR values are summarised in Table C.1 in Appendix C.

Cumulative Histograms

The dPL and PCC images are normalized prior to the cumulative histogram
calculation and plotting. The normalized cumulative histogram will visualize the
pixel intensity distribution and is a tool to quantify how well the dPL and PCC
images are able to distinguish between module pixels and background pixels.

Correlation coefficient and regression

The Pearson correlation coefficient is calculated, and a regression line is plotted to
visualize the correlation between a) the reference (mean intensity) and a module
pixel and b) the reference and a background pixel.

In order to illustrate the impact that the SG smoothing filter constitutes,
a scatter plot and a corresponding regression line are made. The correlation
coefficient is calculated for a comparison of the PCC image before and after the
smoothing filter is applied. The correlation coefficients are summarised in Table
B.1 in Appendix B.
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RESULTS

In this chapter, the results are divided into four sections. Section 4.1 compares
front and rear imaging. Section 4.2 presents the results from imaging in direct
and diffuse irradiance, and compares them with EL images with ISC and 10% of
ISC . Section 4.3 presents the differences between dPL images and PCC images.
Lastly, Section 4.4 compares PCC images with and without smoothed reference
signal.

4.1 Front vs Rear Imaging

This section will show the results of PL imaging from the rear, and compare it
to the front imaging that has been conducted in an earlier study. The PL signal
intensities from PERC3 and PERC1 in both direct and diffuse irradiance are
compared. The dPL images are visually assessed and compared.

Direct Irradiance

Figure 4.1.1 shows a comparison of PERC3 acquired in direct sunlight. The image
processing method that is used in order to obtain these images is dPL. The SNR
was calculated for both images and the calculated SNR for the front image was
4.6 and the SNR for the rear image was 6.9.

Figure 4.1.1a is obtained from images acquired from the rear side of the
modules. The range of images that are used is marked with red in Figure 4.1.2a,
where the PL signal intensity and current flow are plotted. Figure 4.1.1b is
obtained from images acquired from the front side. The range of images that
are used for this image is marked with red in Figure 4.1.2b.

25



26 CHAPTER 4. RESULTS

Both images of PERC3 are perspective transformed, meaning that the pixel
coordinates are manipulated from the original images. The images are also flipped
vertically so that they are directly visually comparable. However, it is noticed that
the top row of cells in Figure 4.1.1a is occluded by the top pole, and several cells
are partially covered by the diagonal poles.

The intensity of the front image in Figure 4.1.1b is higher than in the rear image
in Figure 4.1.1a, thus the scale of the color bar is different. This is illustrated in
Figure 4.1.2 where the PL signal has a higher peak in intensity for the image from
the front than from the back. It is observed that the PL signal intensity peaks at
approximately 1180 for the rear images and 1860 for the front images.

(a) Rear dPL image of PERC3 in direct
sunlight.

(b) Front dPL image of PERC3 in direct
sunlight.

Figure 4.1.1: Comparison of dPL image on PERC3 in direct sunlight from both
sides of the modules.

The current graphs are plotted above the PL signal intensity graphs in Figure
4.1.2 for both images of PERC3. The current graph is data from the ampere meter
and the PL signal graph is the intensity value of the average pixel in the entire
range of images. The graphs illustrate the correspondence between low extracted
current values and high PL intensity values.
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(a) Rear side of PERC3 in direct sunlight. (b) Front side of PERC3 in direct sunlight.

Figure 4.1.2: Comparison of the PL signal intensity and current of PERC3 in
direct sunlight. Red areas represent the range of images used to produce the dPL
image.

Each data point in the graphs corresponds to one image, meaning that the
plots contain 500 images and 500 current data points. The images collected in
order to constitute the SC image are marked with red to the left, which contained
60 images for the rear side of the module and 50 images for the front side of the
module. The images collected in order to constitute the OC image are marked
with red to the right. The number of images to constitute the OC image is the
same amount as for the SC image; 60 images for the rear side and 50 images for
the front side.

The index and amount of images for the OC image are chosen with the intention
of covering the images with as high PL intensity as possible, i.e. as low extracted
current as possible. The opposite accounts for the SC images, where the intention
is to cover images with low PL signal intensity and high extracted current. The
amount of SC images and OC images are similar in order for the SNR calculation
to be in accordance with the imaging procedure criteria from [31], so there are as
many background pixels as there are signal pixels.

It is noticed that the PL signal intensity graph has a higher value both in SC
and OC conditions for the front side than the rear side of the modules. However,
the current graph has a lower value for the front side of the modules, meaning
that the modules operated with a lower current on the day that the front images
were acquired. The average irradiance measured with the pyranometer mounted
adjacent to the modules was 955 W/m2 on the day of the rear imaging. This is
the average irradiance during the analyzed I-V sweep. The average irradiance of
the I-V curve sweep from the front was 841 W/m2. All measured irradiances are
summarised in Table A.1.
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Figure 4.1.3 shows PERC1 acquired in direct irradiance from the front side and
the rear side. Both images are obtained using the dPL algorithm. The range of
images that are used to obtain the front image in Figure 4.1.3a is marked with red
in Figure 4.1.4a. Figure 4.1.3b is obtained from images acquired from the front
side and the range of images that are used for this image is marked with red in
Figure 4.1.4b.

One can observe that the bus bars are more prominent in the figures of the
module from the rear than in the figures of the module from the front, both on
PERC1 and PERC3. Both of the images of PERC1 are perspective transformed,
and Figure 4.1.3a is flipped vertically so that it corresponds to Figure 4.1.3b.
However, it is noticed that the top one-and-a-half row of cells in figure 4.1.3a is
occluded by the top pole, and several cells are partially covered by the diagonal
pole on the right-hand side of the figure.

The scale of the color bar is different in this case as well, due to the difference
of intensity of the rear image in Figure 4.1.3a, which is lower than in the front
image in Figure 4.1.3b. The intensity difference is illustrated in Figure 4.1.4. It
is observed that the PL signal intensity peaks at approximately 1240 for the rear
images and 1890 for the front images.

(a) Rear image of PERC1 in direct sunlight. (b) Front image of PERC1 in direct sunlight.

Figure 4.1.3: Comparison of dPL image on PERC1 in direct sunlight from (a)
rear side and (b) front side.
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The current graphs and PL intensity graphs associated with PERC1 are shown
in Figure 4.1.4. The graphs illustrate great correspondence between the low
extracted current and high PL signal intensity. The current level in Figure 4.1.4a
and Figure 4.1.4b are in the same range and the irradiance measured on PERC1
in the case with direct irradiance and rear imaging was 1016 W/m2. This is an
average of the irradiance during the I-V curve sweep. For the front image, the
irradiance was 792 W/m2.

The images collected in order to constitute the SC image are marked in red to
the left in Figure 4.1.4a and Figure 4.1.4b, which contained 25 images for the rear
side of the module and 35 images for the front side of the module. The images
collected in order to constitute the OC image are marked with red to the right.
An equivalent amount of images are selected to constitute the OC image as for
the SC image; 25 images for the rear side and 35 images for the front side.

(a) Rear side of PERC1 in direct
irradiance.

(b) Front side of PERC1 in direct irradiance.

Figure 4.1.4: Comparison of the PL signal intensity and current of PERC1 in
direct sunlight. Red areas represent the range of images used to produce the dPL
image.
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Diffuse Irradiance

Figure 4.1.5 shows a comparison of PERC3 acquired in diffuse irradiance from the
front and rear, both obtained with the dPL algorithm. The SNR was calculated
to be 7.5 for the front image and 1.5 for the rear image.

The range of images that are used to obtain the rear image in Figure 4.1.5a is
marked with red in Figure 4.1.6a, where the PL signal intensity and current flow
are plotted. Figure 4.1.5b is obtained from images acquired from the front side.
The range of images that are used for this image is marked with red in Figure
4.1.6b, which is the graphs of the associated current and PL signal intensity.

Both images of PERC3 in diffuse irradiance are perspective transformed.
Figure 4.1.5a is flipped vertically in order to be directly visually comparable to
Figure 4.1.5b. It is noticed that in this case as well, the top row of cells is covered
by the top pole and several cells are partially covered by the diagonal poles.

Such as with the above cases, the intensity of the front image in Figure 4.1.5a
is higher than in the rear image in Figure 4.1.5b, thus the scale of the color bar is
different. This is illustrated in Figure 4.1.6 where the PL signal has a higher peak
in intensity for the image from the front than from the rear. In this case, the PL
signal intensity peaks at approximately 1534 for the rear images and 1985 for the
front images.

(a) Rear dPL image of PERC3 in diffuse
irradiance.

(b) Front dPL image of PERC3 in diffuse
irradiance.

Figure 4.1.5: Comparison of dPL image of PERC3 in diffuse sunlight from (a)
rear side of the module and (b) front side of the module.

Figure 4.1.6 shows the corresponding current graphs and the PL signal intensity
graphs, both for PERC3. The images collected in order to constitute the SC image
are marked in red to the left in Figure 4.1.6a and Figure 4.1.6b, which contained
40 images for the rear side of the module and 30 images for the front side of the
module. The images collected in order to constitute to OC image are marked in
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red to the right. The number of images to constitute the OC image is the same
amount as for the SC image; 40 images for the rear side and 30 images for the
front side.

The current level in Figure 4.1.6a and Figure 4.1.6b are in the same range but
are slightly lower when the front images were captured. The irradiance measured
on PERC3 in diffuse conditions from the rear was 72.3 W/m2. This is an average
of the irradiance during the I-V curve sweep. For the front image, the irradiance
was 45.2 W/m2, which explains the difference in current.

(a) Rear side of PERC3 in diffuse irradiance. (b) Front side of PERC3 in diffuse irradiance.

Figure 4.1.6: Comparison of the PL signal intensity and current of PERC3 in
direct irradiance. Red areas represent the range of images used to produce the
dPL image.

Figure 4.1.7 shows a comparison of PERC1 acquired in diffuse irradiance. The
image processing method that is used in order to obtain these images is dPL.
Figure 4.1.7a is obtained from images acquired from the rear side of the modules
and the range of images that is used is marked with red in Figure 4.1.8a, where the
PL signal intensity and current flow are plotted. Figure 4.1.7b is obtained from
images acquired from the front side. The range of images that is used for this
image is marked with red in Figure 4.1.8b. Both images of PERC1 is perspective
transformed.

The intensity of the front image in Figure 4.1.7a is higher than in the rear image
in Figure 4.1.7b, thus the scale of the color bar is different. This is explained from
Figure 4.1.8 where the PL signal has a higher peak in intensity for the image from
the front than from the back; the PL signal intensity peaks at approximately 1710
for the rear images and 1988 for the front images.
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The current graphs shown above the intensity graphs for PERC1 in diffuse
irradiance are represented in Figure 4.1.8. In both Figure 4.1.8a and Figure 4.1.8b
the images chosen to create the SC image are highlighted in red on the left side.
For the rear side of the module, 20 images were selected, and for the front side,
25 images were chosen. The OC image is composed of images marked in red on
the right side. The number of images used to create the OC image is equal to the
number used for the SC image.

(a) Rear image of PERC1 in diffuse irradiance (b) Front image of PERC1 in diffuse irradiance

Figure 4.1.7: Comparison of dPL image of PERC1 in diffuse sunlight from (a)
rear side and (b) front side.

The current level in Figure 4.1.8a and Figure 4.1.8b are in the same range but
the current is slightly lower when the front images were captured than when the
rear images were captured. The irradiance measured in diffuse conditions from
the rear was 40 W/m2. This is an average of the irradiance during the I-V curve
sweep. For the front image, the irradiance was 53 W/m2. Other conditions such
as temperature may have had an effect on the current on the different days of
measurement.
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(a) Rear side of PERC1 in diffuse irradiance. (b) Front side of PERC1 in diffuse irradiance.

Figure 4.1.8: Comparison of the PL signal intensity and current of PERC1 in
diffuse sunlight. Red areas represent the range of images used to produce the dPL
image.

It is noticed that the PL signal intensity in Figure 4.1.8a is constantly
increasing before and after the current drop. However, the current is constantly
operating around MPP before and after the I-V curve sweep, so that one can
assume that the irradiance is constant.
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4.2 Rear Imaging in Direct vs Diffuse Irradiance

This section presents a comparative analysis between images obtained under direct
irradiance and those acquired under diffuse irradiation. Additionally, this section
includes a comparison of an image captured in diffuse irradiance with an EL image
with 10% of ISC applied, followed by a comparison of an image captured in direct
irradiance with an EL image with ISC applied.

dPL Images of PERC1

Figure 4.2.1 demonstrates the distinction between imaging from the rear under
diffuse irradiance and under direct irradiance. The calculated SNR was 7.8 for the
image in diffuse irradiance and 4.6 for the image in direct irradiance.

The images exhibit diverse cell information as the high intensity pixels are
distributed spatially dissimilarly in the two images. Figure 4.2.1a shows that the
two middle strings of cells in the lower half have a higher PL intensity than the
rest, except for some of the cells on the upper half which partially have a high pixel
intensity. The bus bars are more prominent in the image from direct irradiance
but are quite visible in both.

The selections of images utilized for SC and OC in Figure 4.2.1a are illustrated
in Figure 4.1.4a. Similarly, the images chosen for SC and OC in Figure 4.2.1b are
illustrated in Figure 4.1.8a.

An observation made is that Figure 4.2.1b displays a greater number of cells
that have become entirely dark, indicating low current flow or its absence through
these regions. On the other hand, in Figure 4.2.1a, cells that have visible cracks
show some observable current flow despite the damage. This particular detail is
depicted in Figure 4.2.2, which is the area marked with green in Figure 4.2.1.

Figure 4.2.2 demonstrates that a cell with multiple cracks exhibits distinct
characteristics under direct and diffuse irradiance. The region surrounding the
crack in the cell appears to possess a current flow that is comparable to the
surrounding cells in the direct irradiance image. Conversely, in the diffuse
irradiance image, the same cell appears darker in comparison to the surrounding
cells, indicating that the cell has a lower current flow than the others. Nevertheless,
the comparison between the two images is challenging due to the differences in PL
signal intensity and extracted currents, making direct comparison infeasible.
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(a) Direct irradiance. (b) Diffuse irradiance.

Figure 4.2.1: Rear dPL image of PERC1.

(a) Patch: Rear dPL image of PERC1 in direct
irradiance.

(b) Patch: Rear dPL image of PERC1 in
diffuse irradiance.

Figure 4.2.2: Patches with details from the rear dPL image of PERC1 in direct
and diffuse irradiance.
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EL Images of PERC1

The EL images utilized in this study were obtained from a previous investigation
where ISC and 10% of ISC were applied to the PERC modules. In Figure 4.2.3,
the distinction between EL images obtained with the application of ISC and 10%
of ISC is demonstrated. 20 images in each operation point are included in the EL
images.

The difference in applied current results in a variation in EL intensity, which
is represented by a distinct color scale in the images. Additionally, the images
contain varied information, particularly in the upper half of Figure 4.2.3b, where
several cells exhibit higher PL signal intensity in comparison to the surrounding
cells. This pattern is akin to the observations made in Figure 4.2.1b obtained
under diffuse irradiance.

(a) ISC applied. (b) 10% of ISC applied.

Figure 4.2.3: EL images from the front side of PERC1.
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Adjusted dPL in Diffuse Irradiance

The expected objective of Figure 4.2.1a was to produce a PL image from direct
irradiance that closely resembled the ISC EL image in Figure 4.2.3a. However,
upon inspection, it was observed that the current flow patterns in the two images
did not exhibit any obvious similarities. To address this issue, adjustments were
made to the OC and SC image ranges for PERC1 in direct irradiance, in order to
generate an image that more closely resembled the EL image with ISC applied.

The image processing method for the modified image was the dPL algorithm,
and the PL signal intensity and extracted current for the new ranges are plotted
in Figure 4.2.4b. While the OC and SC range for Figure 4.2.1a were selected to
maximize the difference in PL signal intensity, the ranges for the modified image
were chosen to be closer to each other. This resulted in the final image shown in
Figure 4.2.4a, where the green markers to the left and right indicate the SC and
OC image ranges, both including 15 images.

It should be noted that the rear dPL image in Figure 4.2.4a exhibits a greater
level of noise compared to the front EL image. Nonetheless, the current flow
pattern in the dPL image more closely resembles that of the EL image in Figure
4.2.3a.

(a) dPL image of PERC1 in direct
irradiance.

(b) Current and PL intensity graph with the adjusted
images ranges marked in green.

Figure 4.2.4: dPL image of PERC1 in direct irradiance with adjusted image
ranges for OC and SC.
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4.3 dPL vs PCC Algorithm

This section will show a comparison of images that are processed and obtained
using the dPL equation and images obtained using the PCC algorithm. The images
and the corresponding current and PL signal intensity graphs will be presented.
Normalized cumulative histograms are plotted in order to quantify the differences
between the two images.

PERC3 in Direct Irradiance

Figure 4.3.1 shows a comparison of PERC3 in direct irradiance. The image
processing method that is used to obtain Figure 4.3.1a is dPL, and the method
that is used to obtain Figure 4.3.1b is PCC. The range of the color bar in Figure
4.3.1a is representing the pixel intensity in the dPL image. The range of the color
bar in Figure 4.3.1b is representing the correlation coefficient, ranging from 0 to
1.

One can see that the PCC image has fewer background pixels with high
intensity and that the module pixels are brighter and more uniform, while the
dPL image has more variations in the module pixel’s intensity and that several
background pixels are with high intensity.

The color scale is set to range from 0 in both Figure 4.3.1a and Figure 4.3.1b,
in order to emphasize that the background becomes darker in the PCC image.
The color scale of the PCC image is further adjusted in order to entirely exclude
the background and to emphasize the variations in the cell intensities within the
module. This is shown in Figure 4.3.1c, where the color scale is ranging from 0.700
to 0.900.
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(a) dPL.

(b) PCC.

(c) Adjusted PCC.

Figure 4.3.1: PERC3 from the rear in direct irradiance.
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The range of images that constitutes the SC and OC image in the dPL image
is marked with red in Figure 4.1.2a. The range of images N that is applied to
the PCC algorithm is marked with blue in Figure 4.3.2. 200 images around the
current drop are selected in order to include the shape of the increased PL signal
intensity.

Figure 4.3.2: Image range N for the PCC image.

In order to quantify the differences between the dPL and PCC images, the
normalized cumulative histograms were plotted and are shown in Figure 4.3.3. The
intensity distributions of the pixels in the two images were found to be different
based on the shapes of their respective histograms. Figure 4.3.3a illustrates that
the dPL image has a steeper curve than the PCC image in Figure 4.3.3b.

(a) Histogram of the dPL image. (b) Histogram of the PCC image.

Figure 4.3.3: Normalised cumulative histograms of PERC3 from the rear in
direct irradiance.
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PERC3 in Diffuse Irradiance

Figure 4.3.4 shows a comparison of PERC3 in diffuse irradiance. The image in
Figure 4.3.4a is processed with the dPL algorithm and Figure 4.3.4b is processed
with the PCC algorithm.

Figure 4.3.4 exhibits the difference in pixel intensities of the background
pixels, particularly the background above the modules. The color scale is set
to range from 0 in both Figure 4.3.4a and Figure 4.3.4b, in order to show that the
background becomes darker in the PCC image. The color scale of the PCC image
is further adjusted in order to entirely exclude the background and to emphasize
the variations in the cell intensities within the module. This is shown in Figure
4.3.4c.
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(a) dPL.

(b) PCC.

(c) Adjusted PCC.

Figure 4.3.4: Rear images of PERC3 in diffuse irradiance.



CHAPTER 4. RESULTS 43

The ranges of images that constitute the SC and OC operating points in the
dPL image are marked with red in Figure 4.1.6a. The range of images, N , that
is applied to the PCC algorithm is marked with blue in Figure 4.3.5. In order to
include the entire shape of the PL signal intensity increase, 140 images are selected
to constitute N .

Figure 4.3.5: PCC image range (N) for PERC3 from the rear in diffuse
irradiance.

The normalized cumulative histograms are plotted in Figure 4.3.6. The shapes
are similar to the histograms from direct irradiance, and show the different
intensity distribution of a dPL image and a PCC image.

(a) Histogram of the dPL image. (b) Histogram of the PCC image.

Figure 4.3.6: Normalised cumulative histograms of PERC3 from the rear in
diffuse irradiance.
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4.4 Smoothed vs Non-Smoothed PCC Images

In this section, the Savitzky-Golay smoothing filter is applied to the reference
signal in the PCC algorithm. The PCC images are shown before and after the
filter is applied. The Pearson correlation coefficient of the image is calculated in
order to demonstrate the effect that the filter may have on the image.

PERC1 is chosen to be compared in this section, as the changes appear more
visible on the damaged area than on healthy cells.

PERC1 in Direct Irradiance

Figure 4.4.1 shows different intensities from PERC1 in direct irradiance conditions.
The green graph illustrates the intensity on one arbitrary background pixel, the
blue graph illustrates one arbitrary module pixel, the yellow graph illustrates
the mean image intensity (hereby referred to as the reference signal) before it
is smoothed, and the red graph illustrates the smoothed reference signal. It is
observed that the module pixel has a somewhat similar pattern to the reference
signal, but the values of the reference signal are highly affected by both the module
and the background pixels.

Figure 4.4.1: Direct irradiance: Background pixel, module pixel and reference
signal intensities
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Figure 4.4.2 illustrates how the reference signal smoothing affects the image.
The background and the areas with damage are darker and the active cell pixels
are brighter after the smoothing is applied. This is better visualized in the details
in Figure 4.4.3.

(a) PCC algorithm applied without smoothing. (b) PCC algorithm applied with smoothing.

Figure 4.4.2: Comparison of smoothed vs non-smoothed PCC image of PERC1
in direct irradiance.

.

(a) PCC algorithm applied without smoothing. (b) PCC algorithm applied with smoothing.

Figure 4.4.3: Patch: Comparison of smoothed vs non-smoothed PCC image of
PERC1 in direct irradiance.
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Scatter plots and regression lines are plotted in order to visualize and quantify
the differences that the smoothing makes. Figure 4.4.4 illustrates the change in
correlation between the module and reference, and the background and reference,
respectively

It is observed that for the module pixel, the scatter in Figure 4.4.4b is more
collected than in Figure 4.4.4a, hence the correlation coefficient increases from
0.50 to 0.60. For the background pixel in Figure 4.4.4c, the scatter becomes
more spread after the smoothing and hence the correlation coefficient decreases
from 0.28 to 0.09. The correlation coefficients are summarised in Table B.1 in
Appendix B.

(a) Module pixel without smoothing (b) Module pixel with smoothing

(c) Background pixel without smoothing (d) Background pixel with smoothing

Figure 4.4.4: Scatter plots and regression lines of module pixel and background
pixel before and after smoothing. PERC1 in direct irradiance.
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PERC1 in Diffuse Irradiance

Figure 4.4.5 shows different intensities from PERC1 in direct irradiance conditions.
The green graph illustrates the intensity on one arbitrary background pixel, the
blue graph illustrates one arbitrary module pixel, the yellow graph illustrates the
reference signal before it is smoothed, and the red graph illustrates the smoothed
reference signal.

It is observed that the module pixel has a somewhat similar pattern to the
reference signal in this case as well and that the values of the reference signal are
highly affected by both module and background pixels.

Figure 4.4.5: Diffuse irradiance: Background pixel, module pixel and reference
signal intensities.
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Figure 4.4.6 illustrates the effect of smoothing the reference signal in the
diffuse condition image. The background is darker and the active cell areas are
more prominent with a higher intensity value after the smoothing than before the
smoothing. The color scale is shown in the detailed images in Figure 4.4.7, which
are equivalent to their corresponding image.

(a) PCC algorithm applied without smoothing. (b) PCC algorithm applied with smoothing.

Figure 4.4.6: Comparison of smoothed vs non-smoothed PCC image of PERC1
in diffuse irradiance.

(a) Patch: PCC algorithm applied
without smoothing.

(b) Patch: PCC algorithm applied
with smoothing.

Figure 4.4.7: Patch: Comparison of smoothed vs non-smoothed PCC image of
PERC1 in diffuse irradiance.
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Figure 4.4.8d illustrates the change in correlation between the module and
reference and the background and reference, respectively. It is observed that the
correlation coefficient for the module pixel remains unchanged at 0.84 and that the
scatter plots are slightly different but all scatter points are relatively close to the
regression line. The background pixel becomes slightly affected by the smoothing,
and the correlation coefficient decreases from 0.27 to 0.25.

(a) Module pixel without smoothing. (b) Module pixel with smoothing

(c) Background pixel without smoothing. (d) Background pixel with smoothing.

Figure 4.4.8: Scatter plots and regression lines of module pixel and background
pixel before and after smoothing. PERC1 in diffuse irradiance.
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CHAPTER

FIVE

DISCUSSION

This chapter encompasses an interpretation of the results presented in Chapter
4, with the primary objective of addressing the research questions presented in
Chapter 1. Furthermore, uncertainties pertaining to data collection and processing
are addressed and discussed.

5.1 Interpretation

This section analyses the results as sectioned in Chapter 4. Section 5.1.1 comprises
an analysis of Section 4.1 and assesses rear imaging as an alternative method of
image acquisition. Section 5.1.2 analyses the potential and limitation of image
acquirement in diffuse irradiance. Section 5.1.3 will discuss the benefits of the
PCC algorithm and the last section will interpret the results from smoothing the
PCC images.

5.1.1 Front vs Rear Imaging

It has been shown that it is possible to achieve a signal-to-noise ratio greater
than 5 (up to 7.8), as calculated and presented in Table C.1 in Appendix C. This
indicates that rear imaging can yield analysable results according to the technical
specification of EL imaging and analysis. It is also proven in Figures 4.1.1-4.1.8
that the PL signals from the rear were of sufficient magnitude to generate an image
that resembled the images obtained from the front side of the module.

According to the results in section 4.1, and the encounters that occurred
during the experiments, PL imaging from the rear of a solar module has both
advantages and disadvantages. One advantage is that diagnosing PV modules
using PL becomes more flexible with the opportunity to image from the rear in
addition to front imaging and opens new avenues to monitoring and inspection

51
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of PV modules. Additionally, it might be advantageous in certain situations that
rear imaging will not cause shadowing on the PV module.

As observed in Figure 4.1.1 the images display slightly different information.
Most cells in Figure 4.1.1 show the same pattern in extracted current (only the
intensity scale is different). However, some cells such as the one in the top right
corner in Figure 4.1.1a seem to be discrepant from the corresponding cell in
Figure 4.1.1b, meaning that rear images might complement the front imaging when
diagnosing and analysing damages of a PV module. In a bifacial module, the rear
and front sides might degrade at different rates, due to the difference in exposure
to environmental factors such as snow, hail, pollutants and partial shadowing
from leaves, trees and other circumstantial elements. To obtain a comprehensive
understanding of what affects the efficiency of the solar cell module and what the
diagnosis may be, it may be necessary to capture images from both sides.

The results demonstrate that all rear images of the PV modules have more
prominent bus bars than the images from the front.

When visually inspecting the images, bus bars may complicate the
identification of cracks and bus bars as they both appear dark. However,
the development of computer vision technologies will enable tracking defects in
different types of technologies in order to improve the efficiency and reliability
that lacks in manual surface defects inspection [36]. The technology is further
developed in order to detect bus bar defects such as scratches, hole spots and
broken fingers/bus bars [37]. The deep convolutional neural network (CNN)
method is based on image analysis of the bus bars whereas the rest of the cell
(background) is color masked and excluded in order to analyse the bus bars and
detect surface defects. It can be a great opportunity for technologies such as CNN
to image from the rear as the bus bars are more visible and the distinction is
more facile. Assessing the bus bars and identifying damages using CNN from rear
imaging is a task that would have been interesting to explore in future work, but
is beyond the scope of this thesis.

However, there are some restrictions and disadvantages to the method that
one should be aware of when imaging from the rear of the PV modules, which are
divided into practical challenges and challenges in the analysis.

First of all, an obvious challenge is how the modules are mounted on poles
that will somehow cover some of the cells regardless of the angle when imaging
from the rear. The mounting might be different in other power plants, but in this
case, there is one pole at the top that covers the top one or one and a half rows of
cells of the PV modules. This inhibition is constant throughout all rear images in
these experiments. In addition to the top pole, there are diagonal poles that cover
several cells. It is possible to adjust the angle of the camera when capturing the
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Figure 5.1.1: The unwanted effects appeared as circular lines on the module,
and two corners were shaded.

images so that the diagonal pole covers different cells in the PV module. However,
there will always be some degree of obstruction present if the image is captured at
an angle that also shall render analyzable solar cells. Although this inhibition was
unavoidable in these experiments, it is conceivable that the mounting of bifacial
PV modules is conducted in a different way in order to exploit diagnosis from the
rear in a setting with a larger scale.

One issue that will make large-scale rear monitoring of PV modules strenuous,
pertains to the angle at which the modules are mounted relative to the ground.
Large-scale imaging of solar power plants requires a large distance which is not
feasible at the angle that most modules are mounted. The angle that can be
achieved when capturing images of the module using aerial inspections, results in
less distortion when applying perspective transformation during image processing.
However, the row of solar cell modules positioned behind will limit the distance
that can be achieved in the image when approaching from the rear. Nevertheless,
if there were enough space behind the module row, the angle would still be non-
optimal and result in great distortion of the perspective transformed images in the
image processing.

The third concern regarding the angle of the rear PL image capturing is the
sun’s position. In direct sunlight conditions, the sun radiated directly on the PV
modules but also on the camera lens in the rear of the modules, as Figure 3.1.6
illustrated. The effect that appeared on the discarded images is shown in Figure
5.1.1. This practical issue will propagate to an analysis issue if it is not taken into
account in the data collection.

The last concern that was elucidated through the practical part of these
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experiments is the risk of saturated images. The rapid change of the sun’s position
constitutes a risk of saturating parts of the image that shall be analyzed. This
means a risk of losing information on the pixel intensities in certain pixels and how
they are distributed in the saturated area. It is therefore important to also consider
the direct sunlight for the whole period that the imaging will take place. In this
case, the imaging procedure had a duration of over 20 minutes and the sunlight
was therefore not a problem initially, but after a while the exposure changed and
the saturation would disturb the images. In general, it is important to measure
the irradiance due to sudden movements in the clouds or their change in opacity,
which can affect the irradiance. This accounts for front imaging as well.

As for the analytical part of the interpretation, there are a few elements to
be aware of. The information obtained from the graphs and images of the front
and back of the module is not directly comparable due to the higher proportion
of incoming irradiance received by the front. The irradiance received by the rear
side is dependent on ground-reflected irradiance (Albedo) and diffuse/scattered
irradiance, e.g. from the surrounding clouds or buildings. Based on this
information, it can be assumed that the PL signal intensities from the front
and back will be closer to each other under diffuse irradiance than under direct
irradiance, as a higher proportion of the incoming radiation will be impinging the
rear side. Although the front and rear imaging might be more comparable under
diffuse than direct irradiance, the PL signal is still much weaker, which can make
defect detection more challenging.

5.1.2 Rear Imaging in Direct vs Diffuse Irradiance

It has been investigated whether it is possible to achieve a respectable SNR value
from the back of solar cell modules under diffuse and direct irradiance, and the
results showed that it was possible to obtain an SNR of up to 7.8 from the rear
under diffuse irradiance, and 6.9 from the rear under direct irradiance. This means
that the signal is strong enough to obtain analyzable images from the rear in diffuse
irradiance, although it has been shown in Figure 4.1.6 and in Figure 4.1.8 that
the PL signal is consistently weaker in diffuse irradiance than in direct irradiance.
However, as discussed in the previous section, it is not necessary to have a strong
PL signal in order to generate an image that resembles the front images.

Achieving a signal with a sufficient SNR under diffuse irradiance presents
several advantages for rear-side image acquisition. One advantage is the ability
to take pictures head-on, unlike in direct sunlight where consideration must be
given to sunlight in the camera lens. The effects discussed in the previous section
and shown in Figure 5.1.1, which was also a problem although a camera lens hood
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was attached, can be avoided in diffuse conditions. Taking pictures head-on also
avoids distorting images during perspective transformation, resulting in images
that are closer to the "true" images since they are manipulated to a lesser extent.

Regarding the analysis of the images, the information obtained depended on
the desired outcome, as both diffuse and direct irradiance has shown to provide
different information about the modules. It has been observed that the EL images
captured with 10% of ISC in Figure 4.2.3b has similarities and are comparable to
the PL images captured in diffuse irradiance in Figure 4.2.1b. Moreover, it was
found that after some experimentation with the selection of OC and SC, an image
resembling the EL image at ISC in Figure 4.2.3a can also be obtained. This was
shown in Figure 4.2.4a. The image appears to have slightly lower quality compared
to the EL image, possibly due to the reduced number of images selected. However,
it is noteworthy that the image bears similarities to the EL image with SC applied,
particularly in terms of current flow.

Capturing images in both direct and diffuse irradiance can greatly enhance
the capabilities of diagnosing PV modules. EL imaging has been shown to detect
different types of cracks/degradation modes (DM) through the different current
levels ISC and 10% of ISC [38]. In order to identify these types of cracks through
different current levels, imaging under both diffuse (100 W) and direct (1000 W)
irradiance has been shown to correlate to the two different current levels [21],
which is also shown in this thesis. Identifying and categorizing different DM is a
task that would have been interesting to explore in future work, but is beyond the
scope of this thesis.

In general, imaging under diffuse irradiance cannot replace or be equivalent
to imaging under direct irradiance, as we have observed that they provide
substantially different information about PV modules. However, the images
obtained under diffuse irradiance can complement the images obtained under
direct irradiance and provide more comprehensive diagnostic information.

5.1.3 dPL vs PCC Algorithm

In the dPL image in Figure 4.3.1, the background pixels exhibit high PL intensity
values for some unknown reason. This may be attributed to either reflection from
the module on the grass, which would have the same variation in PL signal as
the module, or it could be due to random noise and fluctuations that result in
radiative emission in the PL wavelength range.

The PCC method was utilized to eliminate the background noise by measuring
the correlation between each pixel and the reference signal of the image. The
PCC images in Figure 4.3.1b and Figure 4.3.4b show a reduction in background
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intensity. The scale was set from zero to one in order to display the entire range of
intensities. The background and poles did not have zero correlation with the
reference signal, which may be due to the proportion of the module and the
background in the image. This means that the background affects the reference
signal enough for the background pixels to have some correlation with the reference
signal.

Since the module appears relatively uniform in Figure 4.3.1b and Figure 4.3.4b,
the scale was adjusted to show the variations in the module while completely
excluding the background and poles. The result was shown in Figure 4.3.1c and
Figure 4.3.4c, which resulted in the module cells corresponding to the distribution
of pixel intensity as shown in Figure 4.3.1a and Figure 4.3.4a, but with better
exclusion of the background. It is possible that this method also removes noise
in front of the module that cannot be distinguished from the module in a dPL
image, making the diagnosis more precise.

As shown in Figure 4.3.3, the plotted histograms of the dPL image and PCC
image were of different characteristics. The shape of the PCC histogram in
Figure 4.3.3b Figure 4.3.6b can be interpreted as the algorithm being better at
distinguishing pixels with low intensity from those with high intensity. This can
be seen in the "dump" in the graph for the middle range of pixel intensities. The
fact that it does not increase here means that it does not count any pixels with
a medium intensity. In the steep region, i.e. around 0.0-0.25, there are many
counted pixels (about 60%) before it flattens out for intermediate intensity pixels.
Where it becomes steep again (around 0.75-1.0), the remaining pixels are located.
Thus, the algorithm counts about 60% of the pixels with values from 0.0-0.25 in
intensity (dark pixels) and about 40% of the pixels with 0.75-1.0 (bright pixels).

In Figure 4.3.3a, this dump is less elongated and distinct. Thus, there is not
a large range of intermediate and high intensity pixels, as almost all pixels are
counted in the low intensity range (approximately 0.0-0.25), which is interpreted
as the dPL algorithm not being able to clearly distinguish between dark and
bright pixels, i.e. background and module pixels. Figure 4.3.6a illustrates that
the pixels are evenly distributed between 0 and 1, also with a less elongated and
distinct dump as in Figure 4.3.3a, meaning that the algorithm does not distinguish
between module and background.

In addition to improving the accuracy of diagnostics, PCC can make the
imaging process more efficient by eliminating the need for manual processing of
the data after acquisition and before analysis. The method removes the manual
selection of two operating points in the image series and instead enables the feeding
of the entire data collection into the algorithm. This approach can speed up the
completion of an exhaustive amount of processing, contributing to the streamlining
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of PL-based diagnostics. Relative to the dPL algorithm, the PCC algorithm "will
contribute to an efficient, unsupervised image processing and thus easier real-time
implementation" [12].

5.1.4 SG smoothing effect on PCC images

Figure 4.4.1 and Figure 4.4.5 illustrated the impact of smoothing on the signal
intensity. The plot clearly indicated a significant change in the signal intensity
graph as a result of the smoothing with most of the outliers removed. It could
be conjectured that the considerable effect of the module pixels on the initial
graph would lead to a reduction in correlation between the module and the new
reference graph. The observed increase in correlation suggests that the distinctive
shape of the graph played a crucial role in the correlation increase. Additionally,
it should be noted that the outliers did not have a huge impact. Specifically,
for the background pixel graph, it can be inferred that only the outliers in the
original reference graph were correlated, and when these outliers were removed by
smoothing, the correlation would decrease.

In Figures 4.4.2 and Figure 4.4.6, as well as in the detailed images in Figure
4.4.3 and Figure 4.4.7, it can be observed that the dark pixels in the background
and cracks become darker, while the active cells in the module have higher
intensity as a result of smoothing. This is consistent with the results shown in the
scatter plots in Figure 4.4.4 and Figure 4.4.8. Figure 4.4.4 and Figure 4.4.8 also
demonstrate that the image in diffuse irradiance resulted in a higher correlation
for the module and a lower correlation for the background than the image in direct
irradiance.

The results demonstrate that the SG smoothing filter can enhance image clarity
and highlight active cells, while providing contrast to the images, making it visually
easier to distinguish between active and inactive parts of the cells.

5.2 Uncertainties and Limitations

Outdoor imaging is subject to sources of human measurement errors and
uncertainties. These can include wind and unstable ground surfaces that lead
to noisy, blurry and/or inaccurate images, as well as the sun’s movement in
the sky that can cause saturation in the image. These factors should be taken
into consideration when capturing outdoor images. However, such factors are
accounted for in an SNR analysis. If an SNR analysis is conducted in accordance
with the EL imaging standard and meets the SNR requirements, the resulting
images should be analyzable.
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Perspective transformation is a source of uncertainty as it involves
manipulations in the image. However, awareness of this manipulation makes it
easier to perform a correct analysis. From a spatial perspective, it may cause
a shift in the regions of interest, but it will not provide erroneous information
regarding non-existent damages or extracted current.

In comparisons between front and rear as well as direct and diffuse images,
the difference in irradiances is not corrected. The various irradiances have been
measured and mentioned throughout the thesis, but the values of current and PL
signal intensity are as measured on-site. Therefore, there may be inaccuracies in
the analysis concerning irradiance.

It cannot be definitively stated whether direct or diffuse irradiance is better,
as discussed in Section 5.1.4. The pixels selected for comparing the correlation
between module/background and reference are randomly chosen and subject to
variation, given the thousands of pixels available for selection.

Lastly, it is emphasized that the different SNR values are not the only values
that can be obtained from a large range of images. There can be innumerable
amount of combinations of image ranges resulting in different SNR values and
different dPL images. An SNR of 1.5 does not necessarily mean that there is no
existing range of images that can be selected to obtain a greater value. The table
of SNR values serves as a guideline for good-quality images according to the EL
standard. For images with SNR lower than 5, it is recommended to keep in mind
the SNR when analyzing the image.
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SIX

CONCLUSIONS

Although rear imaging offers certain advantages, it also poses practical and
analytical challenges that must be carefully considered when using this technique.
Solutions need to be developed to overcome these challenges in order for rear
imaging to be beneficial. However, it presents an opportunity to increase flexibility
and expand the PL diagnosis of PV modules. Several factors have been identified
as causing lower PL signals at the rear side than at the front side, but it has been
demonstrated that a high and strong signal is not necessary to generate images
and analyze damages in a solar cell module, as many adjustments can be made in
the image processing.

Overall, rear imaging may not replace large-scale imaging from the front side,
but it can provide supplementary information about the module and further
experimentation is warranted, particularly as the utilization of bifacial modules
is progressively gaining momentum. This means that rear imaging contributes to
increased flexibility and accuracy in the image diagnosis of PV modules.

Another possibility for increasing flexibility and expanding the PL method
is imaging in diffuse irradiance. In this case too, it was observed a lower PL
signal, but it was still a sufficient signal in order to analyze the image. Similarly,
adjustments can be made in the image processing.

Through some experimentation and examination of the OC and SC image
ranges, it was found that dPL images can provide the same patterns as EL images
in ISC and I0.1SC . As discussed, this could open some new avenues in the analysis
as images in different current/irradiation conditions can be used to categorize
different defect modes.

Overall, imaging in diffused irradiance can not replace imaging in direct
irradiance, as we have observed that they provide completely different information,
but they can complement the method and provide supplementary information
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about the PV modules. This means that imaging in diffuse irradiance contributes
to increased flexibility and accuracy in PL diagnosis.

The PCC algorithm has the potential to make PL imaging more efficient, as
it does not need to be supervised and does not require manual pre-processing.
Additionally, it has been observed that by being aware of the selected image range
N included in the PCC algorithm, the method has the potential to make PL
imaging more accurate as well.

The results showed that the algorithm is better at removing background noise
and distinguishing between module pixels and background pixels. SG-smoothing
was found to amplify these advantages by providing even less correlation to the
background and a higher correlation to the module, in addition to enhancing the
visual effect of the damages on the module in the images. Therefore, it can be
concluded that the smoothing process contributed to increased accuracy in the PL
images.
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A - IRRADIANCE

All irradiance values are given in Table A.1. The irradiances are the average value
of the irradiances measured during the I-V curve sweep that is used in the analysis.

Table A.1: Average of measured irradiance

Front [Wm-2] Rear [Wm-2]

Direct
Irradiance

PERC3 841 955
PERC1 792 1016

Diffuse
Irradiance

PERC3 45 73
PERC1 53 40
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B - CORRELATION COEFFICIENT

All correlation coefficients are summarised in Table B.1. Table B.1 summarises
the PCC values calculated between the module/background pixel signal and the
reference and smoothed reference signals.

Table B.1: Pearson Correlation Coefficients. All values are measurements from
the south module imaged from the rear.

Irradiance Smoothing Module Background

Direct Yes 0.6 0.09
Direct No 0.5 0.28
Diffuse Yes 0.84 0.25
Diffuse No 0.84 0.27
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C - SIGNAL-TO-NOISE RATIO

Table C.1 summarises all calculated SNR values.

Table C.1: Signal-to-Noise Ratio

Front Rear

Direct
Irradiance

PERC3 4.6324 6.9452
PERC1 9.3682 4.5875

Diffuse
Irradiance

PERC3 7.4662 1.4933
PERC1 7.7209 7.8342
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