
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

BACHELOROPPGAVE

Studieprogram/spesialisering: Vårsemesteret 2023

Bachelor i ingeniørfag / Åpen

Data

Forfatter(e): Simeon Vyizigiro, Hammad Munir Hussain, Atle Bjørnstadjordet Ericson

Fagansvarlig: Erlend Tøssebro

Veileder(e): Nejm Saadallah & Yngve Heggeland

Tittel på bacheloroppgaven: Web application for energy system integration

Engelsk tittel: Web application for energy system integration

Studiepoeng: 20

Emneord: Sidetall: 51

testing, web app, simulation + vedlegg/annet: 56

Stavanger 15. mai 2023

Contents

Table of contents i

Declaration v

Abstract vii

acknowledgements 1

1 Introduction 1

1.1 Description of task . 1

1.2 Motivation . 1

2 Theory & Development Process 3

2.1 Project Development Process 3

2.1.1 CI/CD . 4

2.1.2 Continuous Integration 4

i

CONTENTS

2.1.3 Continuous Delivery/Deployment 5

2.2 GraphQL . 5

2.3 OAuth2/Open ID Connect 5

2.3.1 Refresh token rotation 8

2.4 Auth0 . 9

2.5 Single-Page Application . 11

2.6 SvelteKit . 11

2.6.1 Server-Side Rendering 12

2.7 Pico.css . 13

2.8 Domain Driven Design . 13

2.8.1 Ubiquitous Language 14

2.8.2 Domain Modeling . 15

2.9 Hyperscalers . 18

2.9.1 Azure . 19

2.9.2 Azure Container Apps 19

2.10 Docker . 19

2.10.1 Infrastructure as Code 20

2.11 Project Management & Agile Methodology 21

2.12 Databases . 23

2.12.1 Relational Databases 23

ii

CONTENTS

2.12.2 NoSQL Databases 23

2.12.3 Cassandra . 23

3 Design and Architecture 25

3.1 Data Architecture . 27

3.1.1 Data Model . 28

3.1.2 Persistence Method 32

3.2 Technical Architecture . 33

3.2.1 Technology Stack . 34

3.2.2 Deployment Environment 35

3.2.3 Authentication . 37

3.3 Application Architecture . 37

3.3.1 Bounded Contexts 38

3.3.2 Event-Driven Messaging 41

4 Results & Discussion 43

4.1 User Story . 43

4.2 Results . 46

4.3 Development Process . 48

4.4 Improvements . 49

iii

CONTENTS

5 Conclusion 51

Bibliografi 55

Appendix 55

A Source Code 56

iv

Declaration

I, Simeon Vyizigiro, Hammad Hussain and Atle Bjørnstadjordet Ericson,
declare that this thesis titled, “Web application for energy system integra-
tion” and the work presented in it is our own. I confirm that:

• This work was done wholly or mainly while in candidature for a bach-
elors’s degree at the University of Stavanger.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work. I have acknowledged all main sources of help.

v

Abstract

This bachelor thesis describes the development of a web application that
allows users to configure and save simulations for an energy system.

The application utilizes a pre-existing simulator pack to generate real-time
results, which are displayed to the user in chart form. The development
stack includes Sveltekit, FastAPI, and GraphQL, with the latter used to
retrieve and display data. The application features a login system and
user-specific configuration options, enabling users to tailor simulations to
their needs.

The system is built to be scalable and easy-to-implement new features such
as a better system for storage and automated test. The team focused on
long term for this project and made sure it would be easy for other people
to work on it later.

The resulting application provides an efficient and user-friendly means of
simulating energy systems, with potential applications in both research and
industry.

vi

Acknowledgements

We would like to thank Nejm Saadallah and Yngve Heggeland for being our
supervisors.

We would also like to thank our families for being supportive and encour-
aging for the last 5 months of work.

Finally, we would like to acknowledge all the individuals who have played
a part in shaping our academic and personal development, including our
professors, colleagues, and friends. Thank you for your guidance, insights,
and friendship.

vii

Chapter 1

Introduction

1.1 Description of task

The Norwegian Research Center (NORCE) has developed a power system
simulator (python package) consisting of a combination of a wind turbine,
wind-speed simulation, battery pack, gas turbines, and power demand sim-
ulation. Each component can be configured separately before running a
simulation and plotting results. The task is creating a web application
where a user can plot real-life data simulating various energy demands and
production scenarios.

The simulation we used for this project was already created by NORCE,
and the project was all about visualizing the data from the simulation with
a free range of technology to do this.

1.2 Motivation

The main objective of this project was to improve the visualization and
user experience of the simulation data. Previously, the data output was
obtained through console logs and required additional software to create
graphs and visuals. Our task was to simplify this process by developing a

1

1.2 Motivation

user-friendly web application that enables users to plot different scenarios
and view real-time results through charts. In addition, there needed to be
implemented a feature that allows users to easily download the data from
the website.

2

Chapter 2

Theory & Development
Process

2.1 Project Development Process

This project required us to use the knowledge gathered from the previous
semesters on how to set up a full-scale working application. This application
required a Database, front-end, and back-end component. We needed to sort
out which database would be best for the deployment of the application
and discuss futuristic scalability possibilities. Every choice we made, was
dependent on how it would work long-term. Was this the best option for
us? What is the upside/downside? Is it easy to make changes if they
want to make some? These are some of the questions we asked ourselves
throughout this project. We also decided to use technologies that were
familiar to us and commonly used. This was done to ensure that there is
enough documentation on how to change the application if someone would
wish to do so.

Throughout this project, we used tools like Miro and Jira to plan ahead.
These tools are widely used to make mind maps and a plan for working
with the project. We set up different tasks that each had a time limit
to be completed. The reason for this is a continuous effort put into the
project to assure that we would be done in time. Jira is one of the most

3

2.1 Project Development Process

widely used development tools to use for teams to work agile. Here you can
create tasks and assign them to each other. It was very easy to use, with
a good modernistic user experience making it clear to us what to do. We
always made sure to update the Jira confluence before and after meetings
to update the questions and answers we had. This was then used to further
plan our application. To develop this application, we got handed a branch
on a GitHub repository where the simulation package was added. Using
GitHub for development is something we were familiar with beforehand,
after having used it for previous projects.

2.1.1 CI/CD

CI/CD stands for Continuous Integration/Continuous Delivery and is a soft-
ware development method that emphasizes the importance of integrating,
testing, and delivering code frequently [38]. During our development of this
application, we continuously pushed code and ran tests to make sure it all
worked at all times. Bugs and lack of function were checked often. We also
had meetings with our supervisors every week, where we got to display our
application and how it developed over time. By continuously having a close
connection with our supervisors, we were able to make necessary changes,
and further improve our application.

2.1.2 Continuous Integration

Practicing continuous integration means that developers constantly merge
changes to the main branch when making a change. This is done so that one
can pick up any errors that may occur when running the main branch after
a change is pushed. Writing automated tests ensure that the application
builds as expected and doesn’t run into any errors. It is also done so that
your partners ensure that they are working with the latest version of the
application when implementing changes [38]. .

4

2.2 GraphQL

2.1.3 Continuous Delivery/Deployment

Continuous Delivery/Deployment builds upon continuous integration since
it automatically deploys all code changes to the testing/production envi-
ronment after the build stage. By releasing as often as possible, you ensure
that the application is working at all times, especially when changes are
made [38]. If you make many changes at once, you risk having build errors
due to many different things merging at once without being tested. We
continuously showed our supervisors what was done, which changes were
made, and what it looked like.

2.2 GraphQL

GraphQL is a query language that was developed by Facebook back in
2012 before being publically released in 2015. GraphQL allows clients to
retrieve only the data they need, reducing the amount of data transferred
over the network. This leads to significantly better performance. GraphQL
is also very flexible when it comes to data structure. Due to its hierarchical
nature, it allows users to retrieve complex data all over one single request.
GraphQL supports real-time updates through subscriptions, which work as
WebSockets. [4].

To use GraphQL, the Python library Strawberry was used. Strawberry is
a GraphQL library for Python designed to be user-friendly, type-safe, and
high performing. It was created due to some complications using regu-
lar GraphQL in Python. Strawberry also integrates with famous Python
frameworks like Django, SQLAlchemy and FastAPI [11]. GraphQL returns
a result in a JSON format. JSON objects work very well with Python due
to Python having built-in functions for JSON [8].

2.3 OAuth2/Open ID Connect

OAuth2 is an authentication and authorization framework that enables
third-party applications to access resources on behalf of a user, without

5

2.3 OAuth2/Open ID Connect

the user having to give their password. Instead, the third-party application
receives an access token from the server once the user authenticates with a
server that is trusted by both the user and the program. This access token
can then be used to access the user’s resources. OAuth2 defines four roles:

1. Resource owner: An entity capable of granting access to a protected
resource.

2. Resource server: The server which hosts the protected resources and
is capable of accepting and responding to requests using access tokens.

3. Client: An application making requests on behalf of the resource
owner and with its authorization.

4. Authorization server: The server issuing access tokens to the client
after successfully authenticating the resource owner.

OpenID Connect is a simple identity layer in top of the OAuth2 proto-
col. It allows clients to verify the ID of end-users based on the authen-
tication performed by the authorization server, as well as to obtain basic
profile information about a user. OAuth2.0 was not built for authentica-
tion, so OpenID connect adds several additional features to provide these
authentication abilities. Features like ID tokens and UserInfo are used for
authentication of users.

Both OAuth2 and OpenID connect have very similar flow. To fully under-
stand the flows, we can look at some visual examples. First we have the
flow of OAuth2:

6

2.3 OAuth2/Open ID Connect

Figure 2.1: Visual image of the authorization code flow.

Using this flow our web application (1) redirects users to Auth0’s login site
when they initiate a login request. If the authentication request succeeds it
(2) redirects to the server callback route. At the callback route, the server
obtains an authoriza- tion code from the URL query parameters. Using
this randomly generated code issued by Auth0, the server can use this code
to (3) request the ac- cess, id, and refresh tokens. The server then stores
the refresh token in a cookie. After the server receives the tokens it can
then request a user’s information using the newly received access token. If
the application is able to get the user information successfully the web app
considers the user as authenticated. To explain OpenID connects visually,
there are some components to define. These are:

1. Relying party (RP): The client application that the user is trying to
log in to.

2. OpenID provider (OP): The server that authenticates the user and
provides identity information to the RP.

Now to visualize the process, we have taken a diagram from [16]. This is

7

2.3 OAuth2/Open ID Connect

a bit more complicated to understand, so we will go through each step.
Authentication = AuthN, Authorization = AuthZ.

+--------+ +--------+
	--------(1) AuthN Request--------->			
	+--------+			
		End-	<--(2) AuthN & AuthZ-->	
		User		
RP				OP
	+--------+			
	<--------(3) AuthN Response--------			
	---------(4) UserInfo Request----->			
	<--------(5) UserInfo Response-----			
+--------+ +--------+

1. The RP sends a request to the OpenID provider.

2. The OP authenticates the end-user and obtains authorization.

3. The OP responds with an ID token and an Access token.

4. The RP can send a request to the UserInfo endpoint with the Access
token.

5. The UserInfo endpoint returns information about the end user.

2.3.1 Refresh token rotation

Refresh token rotation is a technique used to get new access tokens using
refresh tokens. Refresh tokens are usually longer-lived and can be used to

8

2.4 Auth0

get new access tokens after short-lived access tokens expire. With refresh
token rotation enabled in Auth0, every time an application exchanges a
refresh token to get a new access token, a new refresh token is also returned.
This way, you don’t have a long-lived refresh token that can be stolen and
used as a security threat [10]. A refresh token is a string granted to the
client from the resource owner. Unlike access tokens, refresh tokens are
intended to be sent directly from Auth0 to the client and never sent to the
server [15].

Figure 2.2: This figure explains how a user obtains refresh tokens.

2.4 Auth0

Auth0 is a cloud-based identity and access management platform that pro-
vides authentication and authorization as a service. It is widely used as a
tool to build websites with secure user authentication, password-less login,
and multi-factor authentication (MFA). Auth0 and OAuth2 are connected
as Auth0 can act as an authorization server that allows applications to
authenticate users and obtain access tokens that can be used to access pro-

9

2.4 Auth0

tected resources. In our application, we use Auth0 to have an overview of
IAM tools. Auth0 supports a free plan available for up to 7500 active users,
which is very fitting to the scale of our application. At no point will the web
simulation application be used by that many users simultaneously. Auth0
is very popular and is used by companies like AMD, Pfizer, and Mozilla [7]

Figure 2.3: We have an overview of users, that can be assigned roles, deleted,
or altered as we wish. This is a good overview of keeping the application safe and
controlled.

10

2.5 Single-Page Application

2.5 Single-Page Application

Traditional websites are built as multi-page applications (MPA). A MPA
is a web application where page navigation and user interactions triggers a
load from the server. In recent years software developers have discovered
that this approach has some disadvantages. Some of these disadvantages
include:

• Bad user experience

• Performance

• High coupling between backend and frontend

• Difficult to maintain large web applications

Single-page applications (SPA) were created to fix some of the problems
with MPAs. In contrast to a MPA, a SPA is run entirely in your browser
using JavaScript (JS) to navigate and handle user interactions. This way
a user only has to request the HTML from the server once and subsequent
requests are made using JS.

When using an SPA the browser requests an empty HTML page and a single
JS file. After the JS is loaded it programmatically changes the HTML DOM
object to show the website. Compared to MPAs this means that the initial
page load may be slower when using an SPA.

2.6 SvelteKit

Sveltekit’s very own Svelte frontend framework is designed to be very devel-
oper friendly, and has many benefits with the main one being performance.
Sveltekit has performance benefits over traditional web development frame-
works, and a more simplified code structure. Sveltekit compiles the appli-
cation code into highly optimized Javascript, CSS, and HTML files that
have a more efficient cooperation with the browser than traditional client-
side frameworks. This approach leads to faster load times, improved page

11

2.6 SvelteKit

rendering, and reduced network latency. The framework also provides a
clean and concise API that is not hard to learn. The built-in serverless
deployment capabilities of Sveltekit includes a set of adapters that allow
applications to be deployed to popular serverless platforms such as AWS
Lambda, Google Cloud Functions, and Azure Functions [13].

2.6.1 Server-Side Rendering

Sveltekit has built-in support for Server-side rendering which allows devel-
opers to easily generate HTML content on the server and send it to the
client’s browser. This means that the response content is generated when
needed, dynamically. On a dynamic website, HTML pages are normally
created by inserting data from a database into placeholders in HTML tem-
plates. A dynamic site can return different data for a URL based on the
information given by the user [6]. Most of the code run to support a dynamic
website must run on the server, hence ’server-side’ rendering.

Figure 2.4: Visual example of server-side rendering

Sveltekit has an SSR implementation that works by generating HTML con-
tent for each route defined in the application. When a user requests a route,
the server generates content for that route and sends it back to the client’s
browser. This is shown in figure 2.4. Sveltekit also provides several opti-
misation techniques such as lazy-loading and data fetching. Lady-loading
loads components only when they are needed, which reduces the amount

12

2.7 Pico.css

of HTML content that needs to be generated on the server. Data fetching
allows the server to pre-fetch data required for a particular route, which
reduces the amount of time required to generate the HTML content [6].

2.7 Pico.css

Pico.css is a minimal CSS framework that offers a clean and lightweight
design system. It was chosen to be used in the project to facilitate quicker
front-end development. The decision to use Pico.css was made early on in
the project to maintain a good look and feel of the website while focus-
ing on implementing functional details. The combination of Pico.css with
TailwindCSS, a utility-first CSS framework, provided flexibility during the
creation of the user interface. [9].

2.8 Domain Driven Design

Domain-driven design (DDD) advocates for a model based on the reality of
a business as relevant to the use case. When we look at it in the context of
building applications, DDD talks about problems as domains. it describes
independent problem areas as bounded contexts and emphasizes a common
language to talk between these problems. DDD’s most important part is
organizing the course so it is aligned to the business problems, and using
the same business terms. It should be structured so that the code is written
specifically for the business problem is it created to solve [2].

13

2.8 Domain Driven Design

Figure 2.5: Figure explaining the different components in DDD.

2.8.1 Ubiquitous Language

Ubiquitous language is a term that is used to describe a language that is
shared and commonly understood by the whole application team, not just
the domain experts. The developers use the ubiquitous language and trans-
late it into code. The use of ubiquitous language in building an application
ensures that everyone is able to understand the different domains and that
different domains share no ambiguity. Making sure to represent your appli-
cation goals in your code is what ubiquitous language is all about [17].

To explain what we mean by ubiquitous language, let’s have a look at an
example. For instance, imagine you are creating a site where a client should
be able to change email. How should this goal be represented in the code?
You can for instance write the code like this:

14

2.8 Domain Driven Design

1 class People(Entity):
2 def __init__(self, name, email):
3 self.name = name
4 self.email = email
5

6 def update(self, name=None, email=None):
7 if name:
8 self.name = name
9

10 if email:
11 self.email = email

This does not look like ubiquitous language because it is very general in for
example the function language. The update() function is a general function
that can be used not only for email change but also for other parameters.
If this function was to be used by for example aggregates, domain services,
or events that also need to express a ubiquitous language, then this would
ruin the connection. To make it appear in a ubiquitous manner, something
like this would work:

1 class Client(Entity):
2 def __init__(self, name, email):
3 self.name = name
4 self.email = email
5

6 def change_email(self, email):
7 self.email = email

The difference in writing code like this is that it resembles the goal it is
created to fulfill. This is important in DDD to create a structured, well-
organized code readable to everyone working on a project.

2.8.2 Domain Modeling

Domain modeling is an approach used in software engineering to create
a conceptual model of a system. The idea behind this is to find entities
and the relationships between them. You can then use this to create your
codebase based on the different objects. In order to guarantee that specific
relationships and objects are established and user demands are addressed,

15

2.8 Domain Driven Design

this is typically done early in the project development process. There are
four well-known objects in domain modeling:

• Boundary object: These are objects that are at the boundary of your
application. Any object that takes input from or produces output to
another system can be labeled as a boundary object.

• Controller object: These objects coordinate activities of a collection
of entity objects and interface with the boundary objects to produce
a default behavior of the system. These are the object that "control"
and make use of other objects.

• Entity object: These are the objects that correspond to real-world
entity in a problem space. For example Simulations, Books, User, etc.

• Value objects: Value objects represent a value in your domain. They
are immutable and have no identity [33].

After a domain model is created, it can then be used in the development
process to make sure the structure remains intact. This also helps developers
when creating the application to stay effective and efficient.

Context Mapping & Aggregates

Context mapping in DDD represents a global vision of business ideas. For
example, if we look at a theatre, we have two contexts: Operational (staff,
movies, schedules) and Sales (customer, purchase tickets). In the opera-
tional context, the employee is the main actor and controls which movies to
play and the schedule. In the sales context, the customer is the main actors
and does the ticket purchase. Every time a ticket is bought, it affects the
amount of space in the theatre room for that movie [26].

16

2.8 Domain Driven Design

Figure 2.6: Operational and sales context in a context map. Figure is taken
from [26]

Having this displayed as a visual figure helps developers understand what
there is to build, and how to structure the code. It also displays the rela-
tionship between the contexts which is very important to create ubiquitous
language.

Aggregates, within the context of Domain-Driven Design, are clusters of
entities and value objects that represent complex real-world concepts that
involve multiple entities. The primary goal of an aggregate is to accurately
model the intricate relationships between these entities in the domain.

Figure 2.7: Aggregates of the entities from figure 2.6.

17

2.9 Hyperscalers

Domain Events

In Domain-Driven Design, a Domain event refers to an occurrence within a
particular domain that triggers a notification to other components within
the same domain. The notified components typically have specific pro-
tocols to follow when such events occur, and the communication between
components happens asynchronously. The use of Domain events enables
the expression of domain rules based on a common, ubiquitous language,
while also promoting better separation of concerns among classes within the
domain [35].

Event storming is a collaborative workshop where a group works together
to identify the domain events and the corresponding commands required to
execute them, to create a complete domain model for a project. Typically, a
mind map is used to visualize the relationships between entities, aggregates,
and events. The main objective is to establish a shared understanding of
the application’s domains among all participants [22].

2.9 Hyperscalers

As mentioned earlier in chapter 2.6, Sveltekit has built-in support for server-
less deployment capabilities which makes it easier to connect it with a hy-
perscaler. A hyperscaler is a large cloud service provider, that provides
services such as computing and storage at larger scales. It is a way to scale
and grow software architecture. Hyperscalers are able to support services
like computing, storage, and other workloads on a grand scale while using
multiple datacenters around the world with thousands of physical servers
running millions of virtual machines. This type of outsourcing of infrastruc-
ture management allows developers to fully focus on building applications
without worries of maintenance [18]. There are several famous cloud ven-
dors such as Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud Platform (GCP).

18

2.10 Docker

2.9.1 Azure

Through Microsoft’s extensive network of data centers, businesses may cre-
ate, test, deploy, and manage apps and services using the Microsoft Azure
cloud computing platform. Azure offers a variety of services such as virtual
machines, storage, analytics, and networking. It also supports a huge range
of programming languages, including Sveltekit. The flexibility of Azure is
one of its strengths. Businesses can use Azure to support a public cloud
service, a private cloud service, and also a hybrid cloud service. Due to this
flexibility, Azure is very famous and widely used. Cloud computing has its
benefits in paying-as-you-use deals and the easy options to scale and enlarge
an application. Azure also has integration with a range of Microsoft appli-
cations such as Power BI, Office 365, and Dynamics 365. For businesses
that use Office applications, using Azure will come naturally [23].

2.9.2 Azure Container Apps

Using Azure container apps, deploying the application, and managing it
became simplified. It gives the ability to contain the application in an envi-
ronment where you have an overview of different components such as API
endpoints, background processing applications, and microservices. This
technology allows developers to focus on creating the application, rather
than thinking about infrastructure management such as patching, scaling,
and availability [19]. Kubernetes can be used with Azure container apps to
provide a fully managed platform for deploying and managing applications
on Azure. Kubernetes is a technology that automates the deployment, scal-
ing, and management of containerized applications. It comes with a set of
useful tools such as load balancing, automatic scaling, and self-healing [20].

2.10 Docker

Azure container apps use Docker containers as the underlying technology
to deploy and run containerized applications[19]. Docker is a platform that
allows developers to build, ship, and run containerized applications. This
is a method of virtualization that allows multiple isolated environments,

19

2.10 Docker

and containers, to run on a single host operating system. The whole idea
behind Docker is to allow an application to run similarly on all computers
regardless of the operating system. The applications are packaged within a
container to make this possible [12].

Figure 2.8: Visual example of what Docker looks like.

2.10.1 Infrastructure as Code

Infrastructure as code (IaC) is a way to approach IT infrastructure where
configurations are defined and managed using code, rather than manual
processes. By doing this, developers and operations teams can automate
the creation, deployment, and management of infrastructure. There are
many benefits with IaC such as speed, consistency, and agility [28]. In
order to have IaC in our application, we used Terraform. Terraform is a
tool that allows you to define your infrastructure in a simple configuration
file which can be version controlled and then shared with team members.
This configuration file specifies the different resources you want to create,
their properties, and dependencies if there are any. Terraform then creates,

20

2.11 Project Management & Agile Methodology

modifies, or deletes the resources to match the desired state as given by the
configuration file [14].

2.11 Project Management & Agile Methodology

To create an application in a team, you need to break it up into smaller
problems and solve them one by one. To be the most efficient while doing
this, requires a team to be on the same wavelength when it comes to building
an application. Having a plan on how to structure the project is very widely
used, so there are different techniques on how to do this. The most famous
one is by working "Agile".

Agile methodology is designed for project management and software devel-
opment. The goal of Agile is to find a method on how to reach from point
A to B in a project and do so in the most efficient way possible. There are
different ways of doing this, such as shorter work cycles, sprints, or extreme
programming (XP). The two most famous Agile methodologies are Scrum
and Kanban[30].

Scrum is a method in which work that needs to be done is broken into
smaller pieces known as sprints. These sprints encourage quick production.
You also have daily scrum meetings where a team will have a short meeting
at the beginning of the day to discuss what has been done and what the
daily goals are. There is often a sprint backlog with different tasks that
need to be implemented, where you plan on which ones to work on each
day [30].

21

2.11 Project Management & Agile Methodology

Figure 2.9: How Scrum works in a business context.

Kanban is a method in which you use a visual system of cards to track work.
The theory behind this method is to split work into smaller tasks, and then
assign these tasks to the ones who work on solving them. The tasks are
then put in different stages such as ’tasks, in progress, done’ where team
members have an overview of what is being done and what is left [30].

Figure 2.10: A Kanban board can look like this.

22

2.12 Databases

2.12 Databases

Most web applications use databases to store different types of data. There
are a lot of different options to choose from when it comes to database and
structuring of data.

Setup of a database can take time if you have a lot of data and different
types of relations, and data types.

2.12.1 Relational Databases

Traditionally you would use a relational database such as MySQL, Oracle
DB, or PostgreSQL. The conventional approach to representing data in a
database involves using two-dimensional tables with strict consistency in
transactions. Real-time reading and writing capabilities allow for complex
SQL queries, including those involving multiple tables. However, when deal-
ing with large amounts of data, multi-table queries can become inefficient[44].

2.12.2 NoSQL Databases

A new wave in database storage is NoSQL databases. This is necessary
because of the rapid increase in the amount of data needed to store.

The majority of NoSQL systems prioritize high performance, availabil-
ity, data replication, and scalability in distributed databases or data stor-
age. This differs from traditional relational databases, which prioritize im-
mediate data consistency, powerful query languages, and structured data
storage.[39]

2.12.3 Cassandra

Cassandra is a NoSQL database that is made to manage large amounts of
data, it can even manage petabytes of data (1M GB). It is decentralized

23

2.12 Databases

and has high scalability.

Cassandra is designed across multiple servers, this provides high availability
without single points of failure. Cassandra also consistently outperforms
other NoSQL databases because of the fundamental architectural setup.[32]
Cassandra is used by huge companies like Netflix, Apple, and Reddit. [1]

24

Chapter 3

Design and Architecture

The design phase of the software development process is of paramount im-
portance, as it lays the foundation for the entire project and heavily influ-
ences the system’s quality, maintainability, and overall success [25]. During
this critical stage, developers translate requirements into a detailed design,
ensuring that the system’s structure and components are well-defined, effi-
cient, and robust [37]. The design phase also enables developers to identify
potential challenges and make informed decisions, thereby reducing risks
and minimizing rework during later stages of development [41]. Further-
more, research has shown that investing time and effort in the design phase
can lead to significant cost savings, as a majority of software defects can
be traced back to inadequate design [24]. In summary, the design phase
is integral to the software development process, as it sets the stage for a
successful, high-quality software system.

Creating a good and sufficient architecture became a top priority for us.
To achieve this there was a need for understanding of the domain and the
application requirements better by collaborating closely with the domain
experts. Involving stakeholders in the development process, particularly
during the design phase, is of paramount importance as it fosters a col-
laborative environment and ensures that the resulting system meets the
needs and expectations of its users and other parties [21]. Engaging stake-
holders facilitates a better understanding of the requirements, allows for
early identification of potential risks, and helps in establishing a shared vi-

25

Design and Architecture

sion of the project’s goals and priorities [31]. This collaborative approach
leads to more accurate and complete requirements, reducing the likelihood
of costly rework and enhancing overall project outcomes [45]. Moreover,
stakeholder involvement promotes a sense of ownership and commitment,
fostering a smoother adoption process and enhancing the long-term success
of the software system [40]. In summary, engaging stakeholders throughout
the software development process, and especially during the design phase, is
crucial for ensuring that the resulting software system is both relevant and
effective in addressing the needs of its users and other interested parties.

Upon acquiring a more comprehensive understanding of the various require-
ments, refining the requirements and scope of the project scope accordingly
became imperative. Continuous refinement of requirements and scoping
during the design phase is crucial as this iterative approach facilitates the
identification and incorporation of new requirements or changes in exist-
ing requirements, as a response to evolving user needs [34]. Continuous
refinement also enables teams to address issues and potential risks early
in the design phase, leading to improved project outcomes [27]. Moreover,
this practice allows for the ongoing adjustment of project scope, ensuring
alignment with stakeholder expectations and avoiding scope creep, which
can result in cost overruns and delays [29]. In essence, the continuous re-
finement of requirements and scoping during the design phase is vital for
ensuring the software system remains relevant and adaptable in the face of
changing circumstances, ultimately contributing to project success.

The ultimate requirements for the application remained consistent with the
initial specifications. Nevertheless, through collaborative sessions with do-
main experts, it became evident that the application’s objective was to mit-
igate the intricacies associated with managing data input files and executing
simulations. Consequently, functionalities were incorporated to enable users
to upload input files for demand and wind speed data.

• The user has to authenticate before usage (login)

• Predefined simulations cases should be made available for the end-use
for a “quick-start”

• The user should be able to configure wind speed simulation parame-
ters.

26

3.1 Data Architecture

• The user should be able to configure gas turbine parameters.

• The user should be able to configure wind turbine parameters.

• The user should be able to configure battery pack parameters.

• The user should be able to pause, run, stop, start, fast forward, and
fast backward a simulation case.

• The user should be able to export the results to appropriate file for-
mats (CSV, images,. . .).

It was determined that certain additional properties, such as high main-
tainability and scalability, were important to achieve. High maintainability
was essential due to the uncertainty surrounding the project’s future main-
tenance personnel. Consequently, it is important to establish a solid foun-
dation that enables subsequent developers to comprehend and maintain the
code effectively. Furthermore, high scalability emerged as a vital property,
as the system is anticipated to process substantial amounts of data stem-
ming from simulations and input files. Collaborative sessions with domain
experts revealed that a single simulation could generate gigabytes of data,
and the input files provided by these experts contained megabytes of data.

In the context of this paper, Information Technology (IT) architecture is
comprehensively defined as a composition of technical architecture, appli-
cation architecture, and data architecture [43]. Additionally the term "do-
main experts" refers specifically to our supervisors, who possess extensive
knowledge and understanding of the particular domain in question.

3.1 Data Architecture

The data architecture is an abstract representation of the data
files, databases, and relationships to the application architec-
ture. [43]

27

3.1 Data Architecture

3.1.1 Data Model

Given that the task was supplied with the core simulation code, our pri-
mary task involved constructing our application to complement the existing
implementation. This approach allowed us to focus on ancillary aspects of
the system without the need to devote resources to the development of the
central functionalities.

As the project proceeded to design the data model, it relied heavily on the
code snippet furnished by our supervisors to establish a foundation for our
application’s structure.

Kode 3.1: Snippet from demo simulation code provided by our supervisors.
1 control=Control(nwtr=2,nb=2,bat_MaxE=10e6,bat_Initial=30, ...

low=30,high=90)
2 steps=3600*4
3 dt=1
4 wind_speed=np.zeros(steps)
5 wind_speed.fill(20)
6

7 Demand=np.zeros(steps)
8 Demand.fill(-15e6)
9

10 policy = Policy(LowBatteryPolicy.DYNAMIC_LIMIT, ...
ChargingPolicy.LIMITED, 0.1)

11 result_df = control.simulate(WS=wind_speed, D=Demand, ...
steps=steps, dt=dt, policy=policy)

In the design phase of our project, we substantially leveraged the princi-
ples and concepts of DDD 2.8. Our primary aim was to create a flexible
data model that would support the evolving needs of our application. Two
critical DDD concepts that were incorporated into our design strategy were
Bounded Contexts 3.3.1 and Aggregates. Furthermore, we pursued to attain
a loosely coupled system - a characteristic that enhances the modularity and
flexibility of the application architecture. Adhering to these DDD practices
is crucial as they significantly enhance the maintainability of the project by
promoting clear boundaries, reducing dependencies, and facilitating a more
robust, evolvable system. As a result of this design strategy, we identified
and developed the following aggregates:

28

3.1 Data Architecture

• User

• Simulation

• Configuration

• WindSpeed

• Demand

The Simulation entity encapsulates a single instance of a simulation case
within our system. This entity holds the necessary configuration properties
to instantiate a Control object and invoke its simulate method. These
properties were identified and defined through a thorough examination of
the simulation code examples, generously provided by our supervisors (3.1).
In addition to the configuration properties, the Simulation entity maintains
reference IDs for both wind speed and demand input files. These references
facilitate the retrieval and utilization of the required input data for each
simulation case.

Kode 3.2: JSON representation of the Simulation aggregate.
{

"id": "350bd848-e290-4257-9217-a1811db5fa85",
"name": "Sim 3",
"user_id": "user id",
"configuration": {

"steps": 50,
"dt": 1,
"nr_batteries": 2,
"nr_wind_turbines": 3,
"battery_max_energy": 10000000,
"battery_initial_charge": 30,
"policy": {

"low_battery_policy": "FIXED_LIMIT",
"charging_policy": "FULL",
"charging_limitation": 0.1

}
},
"ws_file_id": "a3649424-19f2-4d20-b510-5d2f70b61cba",
"demand_file_id": "86cde126-53d7-47e0-bca0-9317e6654817"

}

29

3.1 Data Architecture

The WindSpeed and Demand entities are designed to encapsulate metadata
and information related to the respective stored files within our system.
At the current stage of implementation, these entities incorporate three
key pieces of data: the name of the entity, a user’s identifier, and the
entity’s unique identifier. This encapsulation ensures efficient access and
manipulation of data associated with wind speed and demand files.

Kode 3.3: JSON representation of the WindSpeed and Demand aggregate.
{

"id": "00000000-0000-0000-0000-000000000000"
"user_id": "user id",
"name": "Some Name"

}

The Configuration entity essentially mirrors the configuration property of
the Simulation entity. The purpose of this entity is to enable users to gen-
erate predefined templates that can be leveraged when creating new sim-
ulations. Interestingly, the Configuration entity is not directly referenced
by the Simulation entity. This design choice permits users to indepen-
dently modify configurations and simulations, fostering greater flexibility
and control over the simulation parameters. In addition to the configu-
ration parameters, the Configuration entity also includes properties that
encapsulate the user’s identifier and the name of the configuration. These
attributes further enhance the functionality and user-centric nature of our
application.

Kode 3.4: JSON representation of the Configuration aggregate.
"id": "00000000-0000-0000-0000-000000000000",
"name": "Some Name",
"user_id": "user id",
"steps": 50,
"dt": 1,
"nr_batteries": 2,
"nr_wind_turbines": 3,
"battery_max_energy": 10000000,
"battery_initial_charge": 30,
"policy": {

"low_battery_policy": "FIXED_LIMIT",
"charging_policy": "FULL",
"charging_limitation": 0.1

30

3.1 Data Architecture

The User entity serves to track the resources created by each user within
the system. Originally, we aspired for the User entity to reside entirely
within Auth0, thereby maintaining clear boundaries and reducing redun-
dancy. However, due to time constraints, we opted to include a User entity
within our application as well, in addition to the user information housed in
Auth0. This decision allowed us to decrease the complexity of our applica-
tion, thereby enabling us to make further progress in its development. The
data that we store within our application for each User entity includes the
user’s identifier, which we retrieve from the access token 3.5 provided by
Auth0. Additionally, we maintain arrays of reference identifiers linking the
user to the other entities within our system. This arrangement facilitates
efficient tracking and retrieval of user-associated resources.

Kode 3.5: JSON representation of the User aggregate
{

"id": "auth0 obtained id",
"simulations": [

"00000000-0000-0000-0000-000000000000",
"00000000-0000-0000-0000-000000000000"

],
"configurations": [

"00000000-0000-0000-0000-000000000000",
"00000000-0000-0000-0000-000000000000"

],
"ws_files": [

"00000000-0000-0000-0000-000000000000",
"00000000-0000-0000-0000-000000000000"

],
"demand_files": [

"00000000-0000-0000-0000-000000000000",
"00000000-0000-0000-0000-000000000000"

]
}

This data model contains the minimal amount of data needed for the ap-
plication to function correctly. It also facilitates for each entity to develop
separately which is of importance as they live in different contexts. If the
aggregates are highly coupled they wouldn’t be able to develop entirely on
their own, thus also reducing the maintainability of the application.

31

3.1 Data Architecture

3.1.2 Persistence Method

Given our observations from the collaboration sessions, it became evident
that both the input files and the data generated from simulations were
quite large. Considering this, we identified a hybrid persistence mechanism
as the most optimal approach for data management. Using a relational
database (RDBMS) for storing aggregates would yield performance bene-
fits during data querying and offer superior data integrity compared to file
storage. Given that the application doesn’t modify the content of any in-
put files, these files are essentially immutable. As such, storing these files
in file storage introduces the least complexity while adequately meeting the
application’s requirements.

Conversely, the data emanating from simulation runs constitutes the ma-
jority of the data managed by the application, with a single simulation run
often reaching gigabytes in file size. Through our discussions with domain
experts, we also understood that the data output for each simulation case
could vary based on the number of specified gas turbines. These require-
ments make Cassandra the most optimal storage method for the simulation
generated data. Cassandra offers a scalable and reliable persistence method
and is capable of handling petabytes of data. And being a NoSQL database,
Cassandra offers a flexible database schema that allows for storing unpre-
dictable data.

Nevertheless, time constraints necessitated a simplification of our implemen-
tation approach. As a result, we decided to resort to file storage for all data,
thereby reducing the complexity and expediting the development process.
Consequently, our approach to data storage is as follows: the aggregates are
retained as JSON files, providing a structured and human-readable format.
The input files are directly stored as text files, maintaining their original
state for unaltered access. Lastly, the data generated from simulations is
preserved in CSV files, offering a tabular and easily manipulable format for
large datasets.

To successfully preserve the bounded contexts it is important to establish
the boundaries at the storage level as well. Therefore each bounded context
is assigned its own directory. Within this directory, only data related to
that context will be stored.

32

3.2 Technical Architecture

Figure 3.1: Each bounded context is assigned a directory where all its respective
data lives.

Figure 3.2: The exact folder structures of each directory. The data.json and
the id.json files store the aggregate entities. The result.csv file in the simu-
lations folder store the data generated from a simulation run. The .txt in the
wind-speeds/ and demand/ folders are the input files that users can upload.

3.2 Technical Architecture

The technical architecture is an abstract representation of the
platforms, languages, and supporting technological structures
that provide the “plumbing” that keeps the environment func-
tioning. [43]

33

3.2 Technical Architecture

3.2.1 Technology Stack

The application consists of a frontend created using SvelteKit, Auth0 as an
Identity Access Management (IAM) service, and a Python backend written
with the FastAPI and Strawberry GraphQL frameworks. The communica-
tion between the frontend and backend happens mostly over GraphQL and
all other communication happens using REST.

The application architecture comprises a frontend developed utilizing the
SvelteKit framework, supplemented by Auth0, serving as an Identity Access
Management (IAM) service. The backend is built with Python, employing
the FastAPI framework for building APIs and the Strawberry GraphQL
framework for constructing a GraphQL API. The primary mode of commu-
nication between the front and backend is through GraphQL, while any re-
maining interactions are conducted using REST. The term ’frontend’ refers
to both the browser-based application, often referred to as the client, and
the server-side component that manages frontend operations.

Figure 3.3: The technical architecture. Each arrow represents network commu-
nication. All network communication happens over HTTP.

The technologies chosen were chosen to enhance our development speed and
performance. As the application would be running real-time simulations
performance is essential to provide a smooth user experience. By choosing
Auth0 we didn’t have to implement any authorization and authentication
logic ourselves. We chose SvelteKit both for its performance advantages, but
also the reputation for its excellent developer experience. For our backend,

34

3.2 Technical Architecture

we chose to use Python frameworks because the code we were provided was
already written in Python. Since performance and development speed was
our main priorities we decided to utilize the FastAPI framework. FastAPI
applications running under Uvicorn are benchmarked as one of the fastest
Python frameworks available[3]. FastAPI also lists development speed as a
key feature of the framework in its documentation [3].

Finally, we chose to use GraphQL to communicate between the frontend and
backend application. GraphQL’s strongly-typed schema and introspection
feature allows the API to be self-documenting, making it easier for devel-
opers to understand the available data, queries, types, and interfaces, ulti-
mately leading to increased developer productivity. Moreover, GraphQL’s
strongly-typed schema provides a contract for the data, enabling tools to
leverage these schemas for better developer tooling, automation, and opti-
mization. This type of safety also enhances error handling and debugging,
offering more precise and informative error messages. To query the API we
used HoudiniClient [5] as a GraphQL client in our frontend application.

Additionally, we utilized TailwindCSS and Pico.css [9] to help improve the
UI and UX.

3.2.2 Deployment Environment

Our software application has been constructed with containerization in
mind, utilizing Docker technology as the foundation for this approach. This
containerization strategy ensures the application’s portability and compat-
ibility across diverse execution environments.

In our deployment experiments, we successfully deployed the containerized
application to Microsoft Azure via Azure Container Apps (ACA). After
comprehensive evaluation and research, we determined that ACA was a
cost-effective and straightforward solution for hosting our application.

One of the critical features of ACA is its serverless architecture. This ar-
chitecture allows the service to dynamically scale the application resources
in response to the incoming traffic. In periods of high demand, ACA can
increase resources to maintain performance, while in low-demand periods,
ACA can automatically scale down to zero.

35

3.2 Technical Architecture

Importantly, the ability of ACA to scale down to zero during periods of no
traffic presents a significant cost advantage. When the application is not in
use and scales down to zero, it does not incur any operational costs.

Figure 3.4: The application in the deployment environment.

As a result of our decision to use file storage for our application, it becomes
necessary to utilize volume mounts. This measure ensures that files persist
across different instances of the container. Within the Azure infrastructure,
this persistence is achieved by mounting directories and files to Azure File
Shares. This is a reliable mechanism for our application to store and access
data across container instances.

Additionally, ACA provides a distinct advantage in terms of its integrated
network infrastructure. All containers in ACA are positioned behind a
managed reverse proxy, which offers automatic support for secure HTTP
connections (HTTPS). This arrangement simplifies our development process
significantly as it obviates the need for us to implement any specific HTTPS
handling logic within our application, thereby enhancing both security and
efficiency.

36

3.3 Application Architecture

3.2.3 Authentication

One requirement of the The application employs the Authorization Code
Flow for user authentication, a standardized authorization procedure out-
lined in the OAuth2 specification [15]. Upon initiating a login request,
the user is directed to the Auth0 login page. Following a successful login
attempt, the client receives an access token, which encapsulates relevant
information about the authenticated user. The obtained access token can
be utilized to access the backend API. When the user initiates a request
to our backend, the access token is validated. Should the access token be
invalid, the request is consequently unsuccessful.

Figure 3.5: Abstract representation of how to get and use an access token

3.3 Application Architecture

The application architecture is an abstract representation of the
applications, subsystems, services, and orchestration structures
and their relationship to each other and to the data. (W. Ulrich,
2010)[43]

In this section, our focus will be solely on the architectural design of the
backend. We have not made any specific architectural design decisions
regarding the frontend application, and hence it will not be addressed in the
subsequent discourse. The structure of our codebase can be comprehended
utilizing a general mental model illustrated in figure 3.6.

37

3.3 Application Architecture

Figure 3.6: Upon initiating a request to the backend API, the first point of
contact is a resolver. Each module in our architecture is divided into a service
layer and a data access layer. The resolver should solely interact with the service
layer of any given module. The service layer’s responsibility is the conversion of
internal objects into Data Transfer Objects (DTOs) and vice versa. Conversely,
the data access layer functions as an abstraction layer to the storage mechanism,
primarily entrusted with the transformation of data into the requisite internal
objects.

Because all our data is stored on the file system, each Storage object cur-
rently depends on a FileStorage object internally. The FileStorage object
operates as an abstraction layer to the file system, contributing primarily
for convenience. A significant detail to note is that the boundaries of the
modules are meticulously maintained down to the storage level, further em-
phasizing the discrete nature of each module.

3.3.1 Bounded Contexts

To attain high maintainability, we employed concepts and principles derived
from various architectural styles, primarily Domain-Driven Design (DDD)
and Hexagonal Architecture. Our principal objective was to develop a mod-
ular monolith, known for offering exceptional maintainability. A modular
monolithic architecture bears a resemblance to a microservice architecture,
with the primary distinction being that a modular monolith encompasses
all the modules or microservices within a single monolithic structure.

We conducted a context map of the business domain to identify suitable
modules to divide our application into. The context map delineates the
distinct subdomains, or bounded contexts, present within our business do-
main. Each subdomain assumes complete responsibility for a portion of the
business logic.

38

3.3 Application Architecture

Figure 3.7: The subsequent context map depicts our final domain classifica-
tion. The color yellow denotes a core domain, green denotes a supporting domain,
and gray denotes a generic domain. The interconnecting lines between each con-
text provide a visual representation of the communication dynamics among the
contexts. In this setup, an upstream context (U) initiates communication to a
downstream context (D).

In DDD, subdomains can be categorized as core, supporting, or generic
domains. Core domains embody the essence of the business, encapsulat-
ing its unique value proposition and competitive advantage. In contrast,
supporting domains, although not as critical as core domains, play a vital
role in facilitating the effective functioning of core domains. They typically
represent essential yet non-differentiating aspects of the business. The de-
sign of supporting domains should focus on enhancing and facilitating the
operation of core domains. Generic domains offer standard and reusable
functionality across diverse applications and industries, addressing com-
mon concerns such as authentication, logging, or data storage. They can be
modeled utilizing established patterns and pre-existing solutions, allowing
developers to concentrate on designing and refining the core and supporting
domains.

In our software architecture, the application identifies the simulation con-
text as a core domain since it addresses the primary purpose of the appli-
cation: running simulations. The demand, wind speed, and configuration
contexts are classified as supporting domains, as they assist users in man-
aging resources necessary for running a simulation. Finally, we recognize
the user domain as a generic domain, where we employ Auth0 to manage

39

3.3 Application Architecture

our users.

At the data level each bounded context has a single aggregate attached to it.
Each bounded context defines a boundary between different segments of the
business logic, resulting in each context assuming complete responsibility
for its respective entities. These entities encapsulate the data consumed and
stored by the context, thereby promoting a clear separation of concerns and
facilitating the maintenance of the associated business logic.

The entities are internal objects that should never be used outside of the
context. Outside of their contexts entities should be represented as data
transfer objects (DTO). A DTO is used as a certain representation of an
entity outside of it’s respective context. This means that each context’s
service layer, figure 3.6, should always digest and emit DTOs. The purpose
of using DTOs is to allow the internal implementations to develop freely
without breaking other applications that depend on the already established
interface. Using DTOs therefore further enhances the maintainability of the
application.

Domain Events

Together with the context map we also conducted an event storming ex-
ercise in order to identify the domain events, chapter 2.8. The exercise
resulted in the domain events visualized in figure 3.8. The most noticeable
characteristic is that most of the domain events are consumed by the user
context. This is because the user context is responsible of tracking the re-
sources that a user owns, thus whenever a user stores or deletes a resource
it should be reflected in the user context as well.

Additionally the simulation context consumes domain events whenever a
wind speed or demand file is deleted. This is to remove any reference to
that input file and ensure that no simulation tries to access the deleted file.

40

3.3 Application Architecture

Figure 3.8: Visualization of the domain events and an overview of which contexts
consume each event. A consuming context is referred to as the downstream context
and the emitting context is referred to as the upstream context, figure 3.7.

3.3.2 Event-Driven Messaging

A messaging bus is a way to achieve loose coupling between ap-
plications in a distributed system by exchanging messages via
a logical bus. The bus transmits messages between the con-
nected applications; the listening applications decide what mes-
sages they will listen to. Software participating in the system
only needs to be aware of how to connect to the bus and how
to publish or consume appropriate messages. Applications that
publish information to the bus do not need to know about which
applications are consuming that information, and similarly the
applications consuming data do not need to know about those
publishing it. - (P. Onyisi 2015) [36]

If a context were to handle the change in a different context directly it would
require for the upstream context to know about the downstream context,
and thus breaking the boundary between the two contexts. Because the
bounded contexts establishes a boundary within our code, and if this is
implemented correctly, the implementation within any bounded context can
be changed without affecting any other context. As a result the application
would get a truly modular and loosely coupled software system.

41

3.3 Application Architecture

However, sometimes it is necessary for one context to communicate with
another context. In order to react to domain events in a way that con-
serves the boundary between contexts, the team wanted to use a message
bus. When designing our domain model we wanted the only communica-
tion between contexts to be domain events. Therefore the application can
utilize a messaging bus to communicate between bounded contexts whilst
preserving the boundaries. A consequence of this is that our software sys-
tem would become eventually consistent. Even though messaging systems
are most commonly used in distributed software systems, utilizing them in
our application will enhance modularity and flexibility. These properties
are highly desirable as it facilitates for a smoother and incremental transi-
tion to a microservice architecture. Moving an application to a microservice
architecture becomes relevant when the application becomes large and/or
complex.

Figure 3.9: The architecture of our application facilitates the extraction of any
bounded context into a microservice without influencing the other contexts. The
solitary necessary refactor would entail the resolver forwarding the incoming re-
quest to the microservice and subsequently returning the response. The dotted
lines in the illustration symbolize a network request.

42

Chapter 4

Results & Discussion

4.1 User Story

In this section, you will go through the process by which a user would
interact with our application. Initially, the user would be required to create
a user/login by providing the requisite information. Following this, the user
would proceed to navigate to the profile page.

Figure 4.1: Here is how our login looks, and the ability to change it very easily
using Auth0.

43

4.1 User Story

All the functions available in this application can be conveniently accessed
through the user’s profile page. This is where the user can add simulations,
wind speeds, and different configurations. These configurations can serve
as "quick start" templates for new simulations.

Figure 4.2: Here is how our Profile page looks, easy to navigate and use.

Before you can create your simulation both a wind-speed text file and a
demand text file need to be uploaded.

Figure 4.3: This is how you upload a wind-speed file, add a .txt file.

44

4.1 User Story

After configuring the desired settings, the user can proceed to create a
simulation by selecting the "add simulation" option. The user can then
specify the number of steps or iterations to go through, as well as any other
specific data values required for the simulation.

Figure 4.4: Here you have all the values to create a simulation.

Upon completing the input of all relevant information, the user can initiate
the simulation by selecting the "create" button. This will generate two ta-
bles with graphs that represent the simulation. The user can manipulate the
simulation by selecting the "start, stop, fast forward, and slow down" op-
tions. The simulation result can also be downloaded, and the configuration
can be edited to generate different results.

45

4.2 Results

Figure 4.5: Here you have the simulation in progress.

After completing a simulation, the user can return to their profile page to
select their next action, whether it be adding additional wind-speed files
or creating and saving a new simulation with similar configurations. The
previously generated simulation will also be available on the profile page,
with the option to delete it if required.

We are happy with the application we developed. There were times when the
communication between us and the supervisors was a bit challenging, but
we ended up completing all the sub-tasks that we were assigned. Visually, it
is a simple application that is functional. Thanks to Pico.css, the front-end
was not something we had to worry about. Using Sveltekit and FastAPI
came naturally to us, with the challenge being GraphQL. Since GraphQL
was a new type of technology for us, it took some time to get used to it and
utilize its potential.

4.2 Results

All of our assessment are based on the teams opinions and none of them are
based on any quantitative measure.

Whilst designing our architecture we used multiple concepts and princi-
ples from different, however related, architectural styles in order to fit our
needs. Our most important goal was to create a modular backend API. We
managed to achieve this goal, and the mental model illustrated in figure
3.6 fits very well with the final implementation. In order to verify this we

46

4.2 Results

track the dependencies in each file. This modular architecture was vital to
make the system both flexible and maintainable. However this modularity
is highly dependent on each developer being disciplined and understanding
how changes may affect the modularity. We believe this is largely due to
our inexperience of using Python.

Python posed multiple challenges when implementing the architecture. The
biggest challenge we encountered was Python being a dynamic programming
language. Because of this, whenever we made changes to a the signature of
a function or method, we wouldn’t get a warning in our code editor. This
led to us having to manually verify that the dependent code was changed
to fit the new signature. However, the way Python handles modules helped
to prevent us from creating circular references in our code.

All in all if we could’ve chosen any programming language for our back-
end we probably would’ve chosen to use a strongly typed language. Most
likely C# as the entire development team is more experienced with the lan-
guage. However, many of the challenges that we faced could be mitigated
by utilizing automated tests. The lack of automated tests is a big flaw in
our system. During development we mitigated testing our application to
increase our development speed, but in hindsight it most likely slowed us
down. This led to manually testing the application every time we made
extensive changes to our code base, an approach that proved to be error
prone and time consuming.

The rest of the technical architecture ended up being a great fit for the ap-
plication. Using SvelteKit combined with Pico.css and TailwindCSS allowed
us to create a beautiful UI and UX easily. Pico.css was especially useful as
we didn’t have to spend an extensive amount of time to create a beautiful
and cohesive styling for the website. Using Pico.css is one of the technologies
that enhanced our frontend development speed comprehensively.

Another tool that was important in our development was Houdini. Houdini
utilizes Svelte being a compiler and GraphQL APIs being strongly typed to
auto generate types and code to interact with the backend API. Houdini’s
most significant advantage was it ensuring type safety between our backend
and frontend. Any changes that was made to our API was instantly reflected
in our frontend.

47

4.3 Development Process

The finished application ended up being more extensive than the initial re-
quirements. As previously mentioned, throughout our development process
we refined and redefined the project requirements which led to a better un-
derstanding of the problems the application ought to solve. Consequently
the application also became a resource management tool for demand and
wind speed input files.

Simultaneously we also had to reduce the architectural complexity in order
to enhance our development speed. Doing so made it possible for us to fulfill
all the requirements. The biggest architectural compromise was to switch
the persistence method to be entirely file based. This generally reduces any
read/write performance, but we hope this persistence method is sufficient
during the early stages of the application. During manual testing of the
application we have not encountered any performance issues, however these
tests were not extensive enough to test the applications performance when
the directories become large. The biggest disadvantages that we see from
using a file base persistence method is losing out on the scalability of using
Cassandra and losing the data integrity that an RDBMS offer.

Another architectural compromise we made to reduce complexity was not to
utilize a messaging system to react to domain events. In order to preserve
the boundaries between each module, we had to directly invoke the service
layer of the downstream context from the resolver. We wanted to utilize
a messaging system, however due time constraints we decided to mitigate
having to implement this.

4.3 Development Process

Our development process did not go as we expected. Even though we wanted
to be Agile, we cannot say we achieved this goal. The design phase of the
development process took a little longer than desirable due to our lack of
knowledge of the domain. Since we wanted to understand the domain and
the requirements clearly we had many discussions with the domain experts,
our supervisors, early in the development stage. However, they did not
have a clear idea of exactly what they wanted whilst we wanted a clear
understanding before making any architectural choices.

48

4.4 Improvements

This led to weeks where we couldn’t manage to produce any useful pro-
gression. Ultimately we decided to make architectural choices based on the
knowledge we had at the time. After this point we got a better idea of what
the desired goal was as it became easier for our domain experts to envision
what the application would do. This led to us continuously making design
choices throughout the development process.

However, because we didn’t have a clear understanding of the different use
cases and feature set when we started it became difficult to clearly define
which tasks needed to be implemented in order to fulfill the requirements.
Therefore we were not able to continuously integrate with our code in a
successful manner, rather each integration often ended up introducing many
code changes.

4.4 Improvements

Overall we assess the outcome of the application as successful. It is able
to fulfill all the requirements set for it and we managed to successfully
implement our architectural goals. This being said, there are many areas
where the application could improve.

Firstly, and most importantly, the lack of automated tests decreases the
application’s maintainability significantly. Adding automated tests to the
application brings more benefits as the application grows larger or becomes
more complex.

Secondly, our domain model does not resemble the ubiquitous language
properly. In our domain model we identify Configurations, Demands and
WindSpeed as three supporting domains. However, a better domain model
would be to unite these three subdomains into a single Resource Manage-
ment subdomain. Within the Resource Management subdomain Configu-
rations, Demands and WindSpeed would remain as aggregates however. In
our opinion this would make the domain model resemble the domain more
accurately, however we believe that the current domain model is sufficiently
understandable. Additionally our current domain model offers more gran-
ularity and may be preferable as a result of that. Therefore, the current
domain should be reassessed in order to figure out if it is sufficient or needs

49

4.4 Improvements

to be changed.

As previously mentioned we do not employ any messaging system. This
is something that may be necessary to further establish the modularity of
the application, however this introduces a lot of complexity and potentially
costs. Because of that it is important to carefully evaluate the necessity of
introducing a messaging system. If not implemented all developers have to
be mindful of how changes made affect the modularity of the system.

A suggestion is to use a dependency injection framework to incorporate
dependency injection and dependency inversion. These design patterns en-
hances the testability of the code and reduces tight coupling between com-
ponents [42]. Due to time constraints, complexity and inexperience with
Python web development we did not prioritize utilizing these design pat-
terns.

50

Chapter 5

Conclusion

In conclusion, we have successfully developed a web application for configur-
ing and displaying power system simulations, using the latest technologies to
ensure optimal speed and performance. Despite the absence of a database,
we were able to create an efficient and well-structured application that can
be easily maintained and updated.

We understand that there is always room for improvement, and we ac-
knowledge that the use of automated testing and a database would greatly
enhance the application’s functionality and ease of use. However, we are
proud of what we have accomplished in the given timeframe, and we are
confident that with further development, this application can become a
valuable tool for the energy industry.

Through this project, we have gained a deeper understanding of the impor-
tance of writing clean, readable code that is easily maintainable and under-
standable by other developers. We have also demonstrated our ability to
adapt to new technologies and overcome challenges, ultimately delivering a
successful project.

Overall, we are proud of the work we have done and the skills we have devel-
oped throughout this project. We are excited to see where this application
goes in the future.

51

Bibliography

[1] Cassandra applications. https://data-flair.training/blogs/
cassandra-applications/. Accessed at: 11/05/2023.

[2] Design a ddd-oriented microservice. https://learn.
microsoft.com/en-us/dotnet/architecture/microservices/
microservice-ddd-cqrs-patterns/ddd-oriented-microservice.

[3] Fastapi. https://fastapi.tiangolo.com/.

[4] Graphql. https://graphql.org/. Accessed at: 29/04/2023.

[5] Houdini or: How i learned to stop worrying and love graphql. https:
//houdinigraphql.com/.

[6] Introduction to the server side. https://developer.mozilla.org/
en-US/docs/Learn/Server-side/First_steps/Introduction.

[7] It all starts with customer identity (ciam). https://auth0.com/.

[8] Json encoder and decoder. https://docs.python.org/3/library/
json.html. Accessed at: 07/05/2023.

[9] Minimal css framework for semantic html. https://picocss.com/.
Accessed at: 06/05/2023.

[10] Refresh token rotation. https://auth0.com/docs/secure/tokens/
refresh-tokens/refresh-token-rotation.

[11] Strawberry is a new graphql library for python 3, inspired by data-
classes. https://strawberry.rocks/. Accessed at: 29/04/2023.

52

https://data-flair.training/blogs/cassandra-applications/
https://data-flair.training/blogs/cassandra-applications/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-oriented-microservice
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-oriented-microservice
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-oriented-microservice
https://fastapi.tiangolo.com/
https://graphql.org/
https://houdinigraphql.com/
https://houdinigraphql.com/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction
https://auth0.com/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://picocss.com/
https://auth0.com/docs/secure/tokens/refresh-tokens/refresh-token-rotation
https://auth0.com/docs/secure/tokens/refresh-tokens/refresh-token-rotation
https://strawberry.rocks/

BIBLIOGRAPHY

[12] Use containers to build, share and run your applications. https://www.
docker.com/resources/what-container/. Accessed at: 01/05/2023.

[13] web development, streamlined. https://kit.svelte.dev/.

[14] What is terraform? https://developer.hashicorp.com/terraform/
intro. Accessed at: 02/05/2023.

[15] The oauth 2.0 authorization framework. https://datatracker.ietf.
org/doc/html/rfc6749, 2012.

[16] Openid connect core 1.0 incorporating errata set 1. https://openid.
net/specs/openid-connect-core-1_0.html, 2014.

[17] Developing the ubiquitous language. https://
thedomaindrivendesign.io/developing-the-ubiquitous-language/,
2019.

[18] What is a hyperscaler? https://www.redhat.com/en/topics/cloud/
what-is-a-hyperscaler, 2022.

[19] Azure container apps overview. https://learn.microsoft.
com/en-us/azure/container-apps/overview, 2023. Accessed at:
01/05/2023.

[20] This page is an overview of kubernetes. https://kubernetes.io/
docs/concepts/overview/, 2023. Accessed at: 02/05/2023.

[21] Ian F Alexander and Ljerka Beus-Dukic. Discovering requirements:
how to specify products and services. John Wiley & Sons, 2009.

[22] Steven A.Lowe. An introduction to event storm-
ing: The easy way to achieve domain-driven de-
sign. https://techbeacon.com/app-dev-testing/
introduction-event-storming-easy-way-achieve-domain-driven-design.

[23] Stephen J. Bigelow. Microsoft azure. https://www.techtarget.com/
searchcloudcomputing/definition/Windows-Azure.

[24] B. Boehm and V.R. Basili. Top 10 list [software development]. Com-
puter, 34(1):135–137, 2001.

[25] B. W. Boehm. A spiral model of software development and enhance-
ment. Computer, 21(5):61–72, 1988.

53

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://kit.svelte.dev/
https://developer.hashicorp.com/terraform/intro
https://developer.hashicorp.com/terraform/intro
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://thedomaindrivendesign.io/developing-the-ubiquitous-language/
https://thedomaindrivendesign.io/developing-the-ubiquitous-language/
https://www.redhat.com/en/topics/cloud/what-is-a-hyperscaler
https://www.redhat.com/en/topics/cloud/what-is-a-hyperscaler
https://learn.microsoft.com/en-us/azure/container-apps/overview
https://learn.microsoft.com/en-us/azure/container-apps/overview
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://techbeacon.com/app-dev-testing/introduction-event-storming-easy-way-achieve-domain-driven-design
https://techbeacon.com/app-dev-testing/introduction-event-storming-easy-way-achieve-domain-driven-design
https://www.techtarget.com/searchcloudcomputing/definition/Windows-Azure
https://www.techtarget.com/searchcloudcomputing/definition/Windows-Azure

BIBLIOGRAPHY

[26] Alana Brandão. Domain-Driven Desing: Context Mapping and Tacti-
cal Design, October 2021.

[27] Lan Cao and Balasubramaniam Ramesh. Agile requirements engineer-
ing practices: An empirical study. IEEE Software, 25(1):60–67, 2008.

[28] Armon Dadgar. Infrastructure as code: What is it? why
is it important? https://www.hashicorp.com/resources/
what-is-infrastructure-as-code, 2018.

[29] T. DeMarco and T. Lister. Risk management during requirements.
IEEE Software, 20(5):99–101, 2003.

[30] Kate Eby. Agile methodologies: What is best for project management
and software development? https://www.smartsheet.com/content/
agile-methodologies, 2022.

[31] Ellen Gottesdiener and Mary Gorman. Discover to deliver: agile prod-
uct planning and analysis. EBG Consulting, Incorporated, 2012.

[32] Eben Hewitt. Cassandra: the definitive guide. " O’Reilly Media, Inc.",
2010.

[33] Stanislav Kozlovski. A short overview of object oriented
software design. https://www.freecodecamp.org/news/
a-short-overview-of-object-oriented-software-design-c7aa0a622c83/,
2018.

[34] C. Larman and V.R. Basili. Iterative and incremental developments. a
brief history. Computer, 36(6):47–56, 2003.

[35] James Montemagno. Domain events: Design and imple-
mentation. https://learn.microsoft.com/en-us/dotnet/
architecture/microservices/microservice-ddd-cqrs-patterns/
domain-events-design-implementation, 2022.

[36] Peter Onyisi, ATLAS Collaboration, et al. Event-driven messaging
for offline data quality monitoring at atlas. In Journal of Physics:
Conference Series, volume 664, page 062045. IOP Publishing, 2015.

[37] David Lorge Parnas and Paul C. Clements. A rational design process:
How and why to fake it. IEEE Transactions on Software Engineering,
SE-12(2):251–257, 1986.

54

https://www.hashicorp.com/resources/what-is-infrastructure-as-code
https://www.hashicorp.com/resources/what-is-infrastructure-as-code
https://www.smartsheet.com/content/agile-methodologies
https://www.smartsheet.com/content/agile-methodologies
https://www.freecodecamp.org/news/a-short-overview-of-object-oriented-software-design-c7aa0a622c83/
https://www.freecodecamp.org/news/a-short-overview-of-object-oriented-software-design-c7aa0a622c83/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/domain-events-design-implementation
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/domain-events-design-implementation
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/domain-events-design-implementation

BIBLIOGRAPHY

[38] Sten Pittet. Continuous integration vs. delivery vs. deployment.
https://www.atlassian.com/continuous-delivery/principles/
continuous-integration-vs-delivery-vs-deployment. Accessed
at: 30/04/2023.

[39] Kosovare Sahatqija, Jaumin Ajdari, Xhemal Zenuni, Bujar Raufi, and
Florije Ismaili. Comparison between relational and nosql databases,
2018.

[40] H. Sharp, A. Finkelstein, and G. Galal. Stakeholder identification in the
requirements engineering process. In Proceedings. Tenth International
Workshop on Database and Expert Systems Applications. DEXA 99,
pages 387–391, 1999.

[41] Ian Sommerville. Software Engineering. 2016.

[42] Kelvin Tan. Overcoming the Tight Coupling Anti-Pattern in Swift
Development, May 2023.

[43] William Ulrich. Introduction to architecture-driven modernization. In
Information Systems Transformation, pages 3–34. Elsevier, 2010.

[44] Zhu Wei-ping, Li Ming-xin, and Chen Huan. Using mongodb to im-
plement textbook management system instead of mysql, 2011.

[45] Karl Wiegers and Joy Beatty. Software requirements. Pearson Educa-
tion, 2013.

55

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

Appendix A

Source Code

GitHub

Website

56

https://github.com/NORCE-Energy/OESCSim/tree/bachelor
https://windsim-frontend.whitefield-b0644afb.norwayeast.azurecontainerapps.io

	Table of contents
	Declaration
	Abstract
	acknowledgements
	Introduction
	Description of task
	Motivation

	Theory & Development Process
	Project Development Process
	CI/CD
	Continuous Integration
	Continuous Delivery/Deployment

	GraphQL
	OAuth2/Open ID Connect
	Refresh token rotation

	Auth0
	Single-Page Application
	SvelteKit
	Server-Side Rendering

	Pico.css
	Domain Driven Design
	Ubiquitous Language
	Domain Modeling

	Hyperscalers
	Azure
	Azure Container Apps

	Docker
	Infrastructure as Code

	Project Management & Agile Methodology
	Databases
	Relational Databases
	NoSQL Databases
	Cassandra

	Design and Architecture
	Data Architecture
	Data Model
	Persistence Method

	Technical Architecture
	Technology Stack
	Deployment Environment
	Authentication

	Application Architecture
	Bounded Contexts
	Event-Driven Messaging

	Results & Discussion
	User Story
	Results
	Development Process
	Improvements

	Conclusion
	Bibliografi
	Appendix
	Source Code

