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A B S T R A C T   

This study proposes an innovative method for predicting extreme values in offshore engineering. 
This includes and is not limited to environmental loads due to offshore wind and waves and 
related structural reliability issues. Traditional extreme value predictions are frequently con
structed using certain statistical distribution functional classes. The proposed method differs from 
this as it does not assume any extrapolation-specific functional class and is based on the data set’s 
intrinsic qualities. To demonstrate the method’s effectiveness, two wind speed data sets were 
analysed and the forecast accuracy of the suggested technique has been compared to the Naess- 
Gaidai extrapolation method. The original batch of data consisted of simulated wind speeds. The 
second data related to wind speed was recorded at an offshore Norwegian meteorological station.   

1. Introduction and motivation 

Over the years, there have been various strategies suggested for more accurate prediction of wind speeds. The countless strategies 
endeavoured included the method presented by Mohande [26], which predicts wind speeds using neural networks or the different 
approaches to analyse wind speed estimates by Yan et al., as in Refs. [1–26]. Similarly, the authors of this paper have also previously 
used different statistical approaches to estimate better extreme statistical values such as, i.e. wind speed, wave height, response and 
load [1–26]. Furthermore, the authors developed a novel reliability approach to forecast COVID-19 epidemic levels, indicating the 
approach’s versatility and reliability in various fields [14,16,26]. Similarly, other authors, as in Refs. [1–26], have attempted to use 
novel statistical approaches to estimate wind speed or pattern more accurately. Meanwhile, two recent and pertinent scientific articles 
[8,26] illustrated the importance of wind forecasting and strategies adopted to maximise efficiency. Like many of the papers 
mentioned above, the deconvolution methods implemented in this paper hope to accomplish better extreme offshore wind speed 
prediction. 

With decades of studies in the field of extreme wind speed prediction in wind engineering, an accurate prediction of extreme values 
for engineering dependability tasks has become existential. It is significantly more critical whenever the data is insufficient. Thus, the 
need to develop new, reliable, efficient, and precise wind speed distribution tail extrapolation methods is of tremendous practical 
value. A dynamic statistical approach will give better estimates and results, which is the aim of the following approach. 

Storms like tornadoes, hurricanes, gales, etc., create extreme wind speeds at turbine locations. These extreme wind speeds exert 
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excessive loads on wind turbine parts, which can fail. In engineering design, such as a wind turbine, it is essential to obtain detailed 
information on the likelihood of extreme wind speeds. The suggested method is clear-cut and easy to understand when estimating 
extreme wind speed. It is envisaged that its application will be a valuable tool in future engineering design. 

Consider a stationary stochastic process X(t) that is made up of the sum of two independent, component-level, stochastic processes, 
X1(t) and X2(t).

X(t) =X1(t) + X2(t) (1) 

X(t) can be obtained either using simulations or measurements or a combination of both over a time period 0 ≤ t ≤ T . 
It is possible to derive the marginal probability density function (PDF) pX of X(t) in two ways. The first method is to measure directly 

pA
X from the available data measured in X(t); pA

X is the measured counterpart of the actual pX. The second method is to obtain the 
component-level PDFs pX1 and pX2 independently from X1(t) and X2(t). In this case, convolution can be applied on the measured 
counterpart pB

X = conv(pX1 , pX2 ) of the actual pX. The actual pX can therefore be approximated by both pA
X and pB

X. 
It is intuitive to understand that it is much easier to obtain pA

X as it is a direct measurement from the data available in X(t). pB
X, on the 

other hand, would require sufficiently accurately estimated pX1 and pX2 in order to perform an accurate convolution. However, that 
being said, even though the calculation process for pA

X is much more straightforward, a much longer time series is required to represent 
the extreme values. The extreme values are variables of low probability occurrence and do not appear in shorter time series. The 
convolution pB

X = conv(pX1 , pX2 ) provides for extrapolation and, therefore, could accurately represent the extreme values of the actual 
pX. The convolution technique also does not assume any specific extrapolation functional class. This is in contrast to many traditional 
extrapolation methods widely used in engineering practice where an assumed probability function is used [1–6,30]. Some other ex
amples also include the Pareto-based distribution peak over the threshold (POT) [1], The Naess-Gaidai (NG) method fitting procedure 
was used in averaged conditional exceedance rate (ACER) method [7–11], bivariate ACER fitting method [12–16,47], Weibull 
distribution-based fitting method [38] and Gumbel distribution based fitting method [17]. 

The component-level PDFs pX1 and pX2 often not directly available, i.e., they are unlikely to be directly measurable. However, they 
can be artificially estimated using the following approach. In the simplest case, X1(t) and X2(t) can be defined to be identical stochastic 

Fig. 1. Map of Norway and neighbourhood with Svenner Fyr wind speed measurement station located offshore in Vestfold county, indicated by 
a star. 
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processes that are equally spaced. This means pX1 = pX2 and now the convolution can be written as 

pX = conv
(
pX1 , pX1

)
(2) 

This is now a convolution of a single PDF and, therefore, only pX1 needs to be estimated. 
The above is demonstrated using two example cases.  

I) synthetic wind speed data – 100 independent and synthetically manufactured annual wind speed measurements  
II) measured wind speed data – real wind speed measurements from Svenner Fyr 

Case I) uses Monte Carlo simulations to synthetically manufacture annual peak events. Following [27–31], it is reasonable to 
assume the use of a stationary Gaussian process U(t) with mean = 0 and standard deviation = 1 to represent this case. Correspondingly, 
ν+(0)T = 103 where ν+(0) is the mean value up-crossing rate and T = 1 year. Assuming that the up-crossing events are independent, 
the Poisson assumption can be used, and the following extreme value distribution over 3.65 days can be used to construct the synthetic 
data time series 

F3d(ξ)= exp
{

− q exp
(

−
ξ2

2

)}

(3)  

where it was assumed q = ν+(0)T3d = 10. Eq. (3) therefore, represents the cumulative density function of a single wind speed 
maximum over a period of T3d = 3.65 days. This means an annual occurrence of 103 mean zero up-crossings per year. Note that Eq. (3), 
i.e., case I) provides a method to generate synthetic data time series, having a purely illustrative purpose, and does not contain any 
particular engineering interpretation. The latter engineering interpretation will be addressed in case II). 

For case II) the authors utilised actual wind speed observations collected from Norwegian wind speed measurement station Svenner 
Fyr, located offshore in Vestfold county, Fig. 1. 6 h of wind speed maxima, recorded from 2008 to 2017, were downloaded from the 
Norwegian Meteorological Institute open-source, eKlima, [29]. Similar data can be obtained online for US offshore winds [46]. 

2. Discrete convolution 

Convolution, w of two vectors, u and v can be represented using the following equation: 

w(k) =
∑m

j=1
u(j)v(k − j+ 1) (4)  

where j and k are vector indices, m = length(u) and n = length(v). This means that w has a total length of m+ n − 1. The summation is 
performed for all values of j in u(j) and v(k − j + 1); specifically j = max(1,k + 1 − n) : 1 : min (k,m). Referring back to Eq. (4) where 
pX1 = pX2 , therefore, m = n since and therefore, this leads to Eq. (5) 

w(1)= u(1) • v(1)

w(2)= u(1) • v(2) + u(2) • v(1)

w(3)= u(1) • v(3) + u(2) • v(2) + u(3) • v(1) (5)  

w(n)= u(1) • v(n)+ u(2) • v(n − 1)+… + u(n) • v(1)

w(2n − 1)= u(n) • v(n)

Having discovered u = v = (u(1), ..,u(n)), in Eq (5), one may progressively derive the w-components w(n + 1), ..,w(2n − 1), as the 
index grows from n + 1 to 2n − 1. The latter would extend vector w into double the length of the support domain of the original 
distribution, doubling the pX distribution support length (2n − 1) • Δx ≈ 2n • Δx = 2XL relative to the original distribution support 
length n • Δx = XL where Δx is the constant length of each discrete bin of the distribution. The convolution procedure extrapolates the 
distribution tail properties, i.e., the distribution tail is fitted and extended towards the direction of the very low probabilities of ex
ceedance values. The values of u and v are defined to be zero outside of the vector. The last statement is false. See Section 3 for the 
linear extrapolation of vectors u and v on the logarithmic scale; u and v will be represented by the probability distribution function, fX1 , 
and w will be represented by, fX. w = (w(1), ..,w(n)) is a discrete representation of the target empirical distribution. pX from Section 1, 
and n are representing the length of distribution support, [0,XL]. Therefore, for simplicity in this paper, a one-sided distribution with 
only positive valued random variables is assumed, i.e., X ≥ 0. This also suits well for wind speeds which are only positive. Further in 
accordance with Eq. (5), u = v. Therefore in accordance with Eq. (2), pX and pX1 are the corresponding estimated PDFs for w and u, 
respectively. 

Given w = (w(1), ..,w(n)) it is evident that one may successively discover the unknown components w = (w(1), ..,w(n)) beginning 
with the first component u(1) =

̅̅̅̅̅̅̅̅̅̅
w(1)

√
, then the second u(2) =

w(2)
2u(1), and so on until u(n). The extrapolation scheme proposed by the 

authors is one that linear, i.e., the simplest form of extrapolation. This means (u(1), .., u(n)) will be deconvoluted with (u(n + 1), ..,
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u(2n − 1)), i.e., linear extrapolation to the range of (XL, 2XL) will be performed on the tail of PDF pX1 . It is highlighted that pX1 is the 
deconvoluted PDF that estimates u. Subsequently, w is extended and extrapolated into twice the length of pX, i.e., (2n − 1) • Δx ≈ 2n •

Δx = 2XL, where n • Δx = XL is the original length of pX. 
The interpolation of the distribution pX(x) ≡ pX tail was carried out because the CDF’s tail is often highly regular for large values of 

x. Owning to this regularity, the Naess-Gaidai (NG) approach can be used for x ≥ x0, where the tail is found to behave close to 
exp{ − (ax + b)c

+d} with a, b, c, d being constants appropriate for x0, see Eqs. (7) and (8); for further information, see Refs. [32–37]. 
The authors have considered linear extrapolation of pX1 tail as the simplest unbiased option. That being said, other non-linear 
extrapolation methods may also be used, but their appropriateness in relation to their inherent biases and assumptions must be 
considered when evaluating the accuracy [7]. 

3. Numerical results 

This section presents the numerical results from two examples. The first example is a synthetic wind example, while the second is an 
actual field measurement case of wind speeds recorded at Svenner Fyr, a lighthouse in Southern Norway. The rationale for choosing 
synthetic wind is that the actual analytical solution and the actual extreme value statistics are known analytically. This would therefore 
allow for accurate validation of the proposed method. 

The probability of exceedance (1-CDF) is assigned the notation fX in this paper. 1-CDF is also referred to in the literature as the 
complementary CDF (CCDF), and its estimation is essential in engineering reliability assessments. It is worthwhile to mention that fX is 
also similar to the marginal probability density function pX discussed in Section 1. Further, the proposed method can deal with both 
concave and convex CCDF function tails as long as they are sufficiently regular and monotonous decreasing. 

The validation procedure is as follows. First, a «shorter » data subset is selected from the complete « longer » data set. Second, 
predictions are performed using the proposed method on the «shorter » dataset. Lastly, the predicted values are then compared and 
validated against the «longer » data set. In this paper, the «shorter » wind speed time series was set to be 10 to 100 times shorter than 
the original « longer » time series. In doing so, the paper would have proven that the proposed method has an efficiency of at least two 
orders of magnitude. The previously-discussed phenomenon of distribution tail almost linear dependence is confirmed in the case of 

the synthetic wind speed distribution given by Eq. (3), namely F = exp
{
− q exp

(
− ξ2

2

)}
⇒ ln(1 − CDF) ≈ ln q − ξ2

2 , ln f = ln F′

≈

ln q − ξ2

2 + ln ξ, and it is clear that ln ξ varies much more slowly in the tail (i.e. for larger ξ) than a parabolic term − ξ2

2 . Due to the 
marginal PDF tail irregularity, there is a clear advantage of extrapolating 1− CDF instead of the marginal PDF. It is possible to perform 
this extrapolation using an iterative scheme like in the NG method [41]. Alternatively, it is also possible to use integration, e.g., 
deconvolution, to generate an artificial smoother CDF. This latter approach makes extrapolation easier in the case where the distri
bution is reasonably irregular due to insufficient data at the lower probabilities of exceedances. 

The objective of solving of Eq. (5), i.e., the discrete convolution procedure, is to find fX1 given fX, i.e., the deconvoluted 1 − CDF and 
the actual 1-CDF, respectively. Note that u = (u(1), .., u(n)) is normally monotonously decreasing and is the same for fX. This means 
(u(n − L), .., u(n)) for some L < n may become negative. This is obviously a numerical error since there are only positive values in 
probabilities, and a scaling procedure as described has been introduced to mitigate this. 

The pivot value is defined as the minimum positive value fL of fX’s distribution tail. The scaling is performed in the y-direction on 
the decimal logarithmic scale in accordance with Eq. (6) 

gX = μ(log10(fX) − log10(fL)) + log10(fL) (6)  

with gX(x) being the scaled log10 version of the empirical base distribution fX, with the reference level fL being intact. The scaling 
coefficient μ = 1/3 is chosen in this paper for both examples presented to avoid negative values in fX1 . After estimating fX1 , convolution 
is performed by calculating f̃X = conv(fX1 , fX1 ) according to Eq. (2). Note that f̃ X is the extrapolated counterpart of fX, see Eq (6). 
Further, inverse scaling to the original scale is performed with μ− 1. 

Finally, interpolation was necessary on the «shorter» fX because the empirical fX distribution is naturally highly irregular at the 
terminal tail section, thus making the empyrical fX distribution unsuitable input for Eq (5). The NG (Naess-Gaidai) method is used for 
the interpolation 

fX(x)≈ exp{ − (ax + b)c
+ d}, x ≥ x0 (7)  

where a, b, c, d are variables to be minimised with respect to the mean square error. 
The integral form of Eq (7) is used for the extrapolation in this paper 

F(a, b, c, d)=
∫ XL

x0

w(x){ln(fX(x)) − d + (ax + b)c
}

2

dx, x ≥ x0 (8)  

where x0 is the tail marker, defining the start of the extrapolation tail area. This is shown by the green squares in the right diagram of 
Fig. 3. It is mentioned that a, b, c, d in Eq. (8) are optimised using the Levenberg-Marquardt non-linear least squares algorithm [43–45]. 
Further, there exist alternative regression models [2] which also can be used. 
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3.1. Synthetic wind speed data 

The 3.65-day maximum speed wind X(t) is considered in this example case. X(t) is generated for [0,T] where T = 1 year. As 
mentioned previously in Section 1, the underlying process U(t) is assumed to be normal Gaussian with mean = 0 and standard de
viation = 1. Therefore, the mean zero up-crossing rates of U(t) will satisfy ν+U(0) = 103/T which is a common assumption used for 
offshore wind problems, [4]. The data set is divided into a «shorter» and a «longer » data record. The « shorter » record has 104 data 
points (100 years) while the «longer » record is the complete data set and has 106 data points (10,000 years). This means the data set 
for X(t) has 365/3.65 = 102 data points (1 year). 

The normal Gaussian U(t) then results in F3d
X (x) = exp

{
− q exp

(
− x2

2

)}
, where q = 10. F3d

X (x) is the analytical expression for the 

CDF of the 3.65-day maximum wind speed X(t). Correspondingly, the non-dimensional X value for the 100-year 3.65-day maximum 
wind speed is x100 yr = 4.80. An artificial horizontal axis shift x → x − xshift with xshift = 1.5 is used ensure operating within the dis
tribution tail. Further xshift = x0 in Eq. (7), i.e., xshift = 1.5 is selected as the cut-on tail market. Correspondingly, x100 yr = 4.80 −

xshift = 3.3. 
Fig. 2 presents the «shorter» and «longer » data sets. The « shorter » data set is scaled to present the results on the same horizontal 

scale as the «longer » data set. Fig. 3 presents the predicted distribution obtained by deconvolution extrapolation, the original 
analytical distribution, and the «shorter» (unscaled) and «longer » data sets. To recap, the «shorter» and «longer » data sets were 
generated using Monte Carlo simulations based on the exact analytical distribution. The « shorter » data set is also 100 times shorter 
than the «longer » one. Further, the NG extrapolation method [13] was used for additional comparison and validation. The results 
show that the 10,000-year 3.65-day maximum wind speed predicted by deconvolution is within 5% of the value predicted by the NG 

Fig. 2. Synthetic wind speed data. Scaled f X1 
tail for the «shorter » data (cyan squares) and «longer » data (blue squares). Presented in decimal 

log scale. 

Fig. 3. Unscaled « shorter» f X tail, raw (red squares) and fitted (solid blue line, along with «longer » data (green line) and analytic (solid red line). 
Presented in decimal log scale. 
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method and the actual value calculated using the analytical distribution. 
As already mentioned, the advantage of the deconvolution extrapolation technique is that it is not confined to the pre-chosen 

decimal logarithmic scale form given by Eq. (7). Therefore, it offers more potential flexibility and accuracy in more challenging 
applications. 

3.2. Measured wind speed data, Norway 

The Svenner Fyr wind station is located offshore in the Norwegian Vestfold county where 6-h intervals of wind speed maxima were 
measured for a period of 10 years from 2008 to 2017 were used. The « shorter » data set is created by selecting 1 in every 10 data point, 
i.e., only 1 year long of wind speeds, while the «longer » data set contains the full 10 years of wind speeds. Fig. 4 presents the scaled 
results. The method is applied to proper time duration stationarity windows, with the mean subtracted. According to the scattered 
diagram, seasonal wind speed variations are averaged – a standard engineering procedure linking short-term to long-term analysis. 

Similar to Figs. 2 and 3, Figs. 4 and 5 present (i) «shorter» (scaled) and «longer » data sets and (ii) the predicted distribution 
obtained from extrapolation and the «shorter» (unscaled) and «longer » data sets respectively, when applied to the actual wind speeds 
measured at Svenner Fyr. As observed in Figs. 4 and 5, both deconvolution extrapolation approaches lead to predictions that are 
reasonably similar to the «longer » data set. The authors acknowledge that only a single measured wind speed data set is used in this 
paper, and more validation studies are required to conclude the accuracy of the method proposed here robustly. 

Fig. 4. Measured wind speed data from the wind station Svenner Fyr. Scaled f X1 
tail for the «shorter » data (cyan squares) and longer data (blue 

squares). Presented in the decimal log scale. 

Fig. 5. Unscaled « shorter » decimal log scale f X tail, raw (red squares) and extrapolated by deconvolution (solid blue line, along with «longer » data 
(green line). The horizontal axis is in m/sec. 
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3.3. Measured wind speed data, Hawaii 

An additional real-world example is presented to illustrate the proposed deconvolution method further. This example is the 10-min 
average wind speeds measured at Station 51,101 (LLNR 28006.3) in northwestern Hawaii, operated by National Oceanic and At
mospheric Administration (NOAA). 

Fig. 6 exhibits good agreement between both compared methods. However, NG method yields slightly less conservative results than 
the suggested deconvolution method. 

4. Conclusions 

The major benefit of the deconvolution method proposed in this paper, which in contrast to most other traditional extrapolation, 
utilises the inherent statistical properties of the data set and does not utilise any assumed distribution functional class. This paper 
examines two sets of wind speed data, a synthetic and a measured set, to demonstrate the method’s accuracy and efficiency. The 
prediction accuracy is benchmarked against the NG method. For the case of synthetic wind speed, the proposed approach produced 
forecasts that agreed with both the analytical solution and the NG method. For the case of the actual wind speed measurements at 
Norwegian and Hawaii measurement stations, the deconvolution method can produce a distribution close to the complete ten-year 
data set by extrapolating the one-year data set. Further, the predictions provided by deconvolution were also consistent with the 
predictions obtained via the Naess-Gaidai method. Being an unbiased extrapolation method, the deconvolution method can be utilised 
specifically in instances where an unbiased characteristic design value is highly sought after. Lastly, the proposed deconvolution 
method is general and can be applied to a broad range of possible technical applications. 
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