Check for
Updates

Cost-effective Data Upkeep in Decentralized Storage Systems

Racin Nygaard
University of Stavanger, Norway
racin.nygaard@gmail.com

ABSTRACT

Decentralized storage systems split files into chunks and distribute
the chunks across a network of peers. Each peer may only store a
few chunks per file. To later reconstruct a file, all its chunks must
be downloaded. Chunks can disappear from the network at any
time as peers are untrusted and may misbehave, fail or leave the
network. Current systems lack a secure and cost-effective mecha-
nism for discovering missing chunks. Hence, a client must periodi-
cally re-upload all of the file’s chunks to keep it available, even if
only a few are missing from the network. Needlessly re-uploading
chunks waste significant amounts of the network’s bandwidth,
takes additional time to complete, and forces the client to pay for
unwarranted resources.

To address the above problem, we propose SUP, a novel proto-
col that utilizes proof-of-storage queries to detect missing chunks.
We have evaluated SUP on a large cluster of 1000 peers running
a recent version of Ethereum Swarm. Our contributions include
the design and implementation of SUP and a study of Swarm’s
redundancy characteristics. Our evaluation shows that SUP sig-
nificantly improves bandwidth utilization and time spent on data
upkeep compared to the existing solution. In common scenarios,
SUP can save as much as 94 % bandwidth and reduce the time spent
re-uploading by up to 82 %. While dependent on the storage net-
work’s bandwidth pricing policy, using SUP may also reduce the
overall monetary costs of data upkeep.

CCS CONCEPTS

» Computer systems organization — Maintainability and main-
tenance; Availability; Redundancy; « Information systems —
Distributed storage; Cloud based storage;

KEYWORDS

data upkeep, proof-of-storage, decentralized storage system, re-
upload, peer-to-peer

ACM Reference Format:

Racin Nygaard, Hein Meling, and John Ingve Olsen. 2023. Cost-effective
Data Upkeep in Decentralized Storage Systems. In The 38th ACM/SIGAPP
Symposium on Applied Computing (SAC ’23), March 27-31, 2023, Tallinn,
Estonia. ACM, New York, NY, USA, Article 4, 9 pages. https://doi.org/10.
1145/3555776.3577728

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC °23, March 27-31, 2023, Tallinn, Estonia

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9517-5/23/03.

https://doi.org/10.1145/3555776.3577728

Hein Meling
University of Stavanger, Norway
hein.meling@uis.no

165

John Ingve Olsen
University of Stavanger, Norway
johningveolsen@gmail.com

1 INTRODUCTION

In large-scale decentralized peer-to-peer storage systems such as
Ethereum Swarm [38, 43] and InterPlanetary File System (IPFS) [7],
peers collaborate by storing and serving each other data. These
systems aim to pool the storage and computational resources of the
peers together to create affordable and reliable storage for everyone.
Anyone can upload files to the network, which are split into smaller
chunks, as shown in Figure 1. Each chunk is replicated in a small
subset of the total peers in the network.

File “
Storage v
Network__.'

Local Peer

Figure 1: The local peer split files into chunks. The chunks
are uploaded to different peers in the storage network.

The main challenge with this idea follows from the fact that the
peers are untrusted, and the networks may exhibit significant churn.
The peers may intentionally or by accident delete or corrupt the
data they are tasked to store. Furthermore, a peer may itself be-
come unreachable by the other peers due to issues with network
connectivity, or it may have failed in other ways. To mitigate the
unreliability of the peers, the incentives of the network motivate
correct behavior with cryptographic tokens.

Even though previous work [29] has proposed solutions for data
resilience, both IPFS [37] and Swarm still rely on a high degree of
replication to keep data persistent. Without maintenance, as long
as there are misbehaving peers and churn, the replication degree
of chunks will decrease over time. The minimal replication of a
file’s chunks is also of particular interest, as the unavailability of a
single chunk may cause the de-facto unavailability of the entire file.
We have studied chunk availability in the public Swarm network
and found that chunks can become unavailable as soon as 6 days
after upload.

To maintain a high degree of replication, these systems rely on
the client to continuously re-upload their data [20]. In Swarm, this
process is called Data Stewardship. However, Data Stewardship
always re-uploads all chunks of a file. For large files, this consumes
unnecessarily large amounts of bandwidth. IPFS does not have a
dedicated process for re-uploads [35, 42] and relies solely on its
standard upload functionality.

In this work, we propose Storage Upkeep Protocol (SUP), a light-
weight proof-of-storage system that uses storage proofs to save
bandwidth when re-uploading data. A proof-of-storage system has
three distinct actors, the challenger, the prover and the verifier. It


https://doi.org/10.1145/3555776.3577728
https://doi.org/10.1145/3555776.3577728
https://doi.org/10.1145/3555776.3577728
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555776.3577728&domain=pdf&date_stamp=2023-06-07

SAC ’23, March 27-31, 2023, Tallinn, Estonia

is an essential requirement that the prover cannot pre-compute
the proof before seeing the challenge. As such, each challenge is
coupled with a unique nonce and thus a verified proof ensures
that the prover had the data when the proof was created. SUP is
targeted for usage in decentralized storage systems where the data
is de-duplicated and peers are untrusted.

We evaluate SUP on a large cluster consisting of 1000 Swarm Bee
peers. The results show that SUP can provide up to a 94 % reduction

in the bandwidth consumed in the network when re-uploading.

It also provides faster re-uploads; in common scenarios, the time
spent re-uploading is reduced by up to 82 %.
Our contributions are summarized as follows:

o The design and implementation of SUP, a cost-efficient data
upkeep protocol built for decentralized storage systems.

o A performance evaluation of SUP and Data Stewardship on
a real-world cluster.

o Monitoring data availability over four weeks in the public
Ethereum Swarm network.

2 SWARM OVERVIEW

In this section, we present an overview of the Swarm network and
its data upkeep protocol, Data Stewardship.

Swarm [43] is a global decentralized storage and communication
system that distributes stored data to a network of peers. According
to a monitoring website [17], the public network has more than

2000 active peers in the past month, and over 863 000 total peers.

The peers connect to the Swarm network using the Swarm Bee
client. Swarm’s p2p overlay network used for routing and discovery
is based on the Kademlia distributed hash table (DHT) [26].

Each peer in Swarm is required to deploy a smart contract, called
checkbook, to an EVM-compatible blockchain, e.g., Ethereum or
Gnosis. The smart contract is used to reward peers with BZZ tokens
when they provide resources to the network. In the current version
of Swarm, providing bandwidth is incentivized. Specifically, peers
pay to download chunks and are rewarded for delivering chunks
and forwarding messages. After deploying the smart contract, each
peer generates a unique peer address used to identify it in the
network. The address is generated by hashing the concatenation
of the peer’s Ethereum public key, the network identifier, and the
hash of the block immediately following the one that deployed the
peer’s checkbook smart contract.

2.1 Data Storage in Swarm

Swarm splits files into 4 KB chunks. A unique chunk identifier is
derived for each chunk by passing the chunk’s content through a
cryptographic hash function. Swarm creates a 128-ary Merkle tree
where each of the file’s chunks is a leaf. The internal nodes and
root of the Merkle tree are also stored in 4 KB chunks and contain
a concatenation of the chunk identifiers of their children.

Chunk identifiers and peer addresses share the same address
space. When a chunk is uploaded to the network it is sent to the
closest peer, whose address has the greatest proximity to the chunk’s
identifier. The proximity of two addresses is the number of equal
prefix bits in both addresses [38].

Each chunk is replicated by its storer peers; these are the closest
peer and that peer’s nearest neighborhood. A neighborhood is a

166

R. Nygaard et al.

set of peers that have the same proximity to an address. A peer’s
nearest neighborhood is the neighborhood with 8 or more members
that have the closest proximity to the peer’s address.

Any peer may choose to store any given chunk. However, a
chunk may be irretrievable by other peers unless it is stored by its
storer peers. This follows from how messages are routed in Swarm,
which we discuss next.

2.2 Message Routing in Swarm

The message routing protocol in Swarm, called forwarding Kadem-
lig, differs from the original Kademlia description [26]. In the orig-
inal description, the peer X, which wants to look up a value y in
the DHT, starts by asking the closest peer it knows to y. This peer,
which we call Z, then returns a set of peers Z’ that are closer to
y than itself. This process continues until the closest peer in the
network, Y, is discovered. Finally, the request for y is sent to Y.

In forwarding Kademlia, instead of Z replying to X with a list of
candidates that are closer to y, it will forward the request to one
of them. That peer then forwards the request to the closest peer it
knows. Eventually, the request reaches a peer Y that knows of no
closer peer to y than itself. Then, Y returns y along the same path
as the request, if it has y.

Kademlia allows peers to find chunks in logarithmically many
steps; if the chunk is stored at the correct peers, that is, its storer
peers as defined above. A chunk that is not stored by its storer peers
is not guaranteed to be found through Kademlia routing. Peers may,
however, choose to cache chunks to improve retrievability.

2.3 Data Stewardship

“It is in the nature of Swarm that data eventually disappears” [20].
Swarm clients use a mechanism called Data Stewardship [20] to
mitigate this fact by periodically re-uploading their data to the
storage network. This, of course, requires the client to have the
data that it wishes to re-upload.

The client initiates Data Stewardship by specifying a chunk
identifier. Data Stewardship then uploads the chunk to its storer
peers using the push-sync protocol. If the chunk is the root of a
MerKkle tree, it uploads the entire tree.

2.4 Data Availability in Swarm

We conducted a four-week experiment on the public Swarm net-
work to see how quickly chunks would disappear. We uploaded a
5 MB file to the Swarm gateway [40] and checked the availability of
its chunks once a day. The chunk availability over time is shown in
Figure 2. Green bars indicate that the whole file is retrievable, and
red bars indicate that some chunks were unavailable. On the 6th
day, we observed that some of the chunks were unavailable, but
they returned on the 7th day. After the 16th day, the file remained
unavailable due to missing chunks.

We count chunks in one of 16 buckets (0-f), based on the first
four bits of the chunk identifier, each time they are unavailable.
Then, we normalized the buckets to account for the fact that there is
some variation in how many of the file’s chunks have the same 4-bit
prefix. Finally, we plot the relative size of each bucket in Figure 3
as the accumulated (blue) bars. These bars show the frequency that
chunks belonging to each bucket were found to be unavailable. We



Cost-effective Data Upkeep in Decentralized Storage Systems

also count how many unique chunks fall into each bucket. That is,
if the same chunk is unavailable multiple times, we count it only
once. We normalize and plot the relative size of these counts also
in Figure 3 as the unique (orange) bars.

In Figure 3, we see that chunks in buckets ¢ and e were most
often found to be unavailable. However, buckets 5 and 4 have the
most unique chunks. Almost none of the unavailable chunks were
found in bucket 8. This seems to suggest that certain parts of the
network are less reliable than others.

Chunk Availability [%]

4 6 8 10 12 14 16 18 20 22 24 26
Days

Figure 2: Chunk availability over time.

E Accumulated
—_— Unique
101
>
[®]
c
S s
o
()
—
-

0123456789abcdef
First Nibble of Chunk Identifier

Figure 3: Faulty chunk identifier frequency.

3 SYSTEM MODEL AND REQUIREMENTS

We assume the presence of a p2p network, where each peer is
connected to a subset of the total peers in the network. An overlay
network is used to route messages between unconnected peers.
Each peer generates a private key that is used to digitally sign
messages, and a corresponding public key so that other peers can
verify the signature. The key distribution and management are out
of the scope of this paper.

The public key is further used to generate a unique address for
use in the overlay network. The address serves as the baseline for
the connectivity graph for the overlay network, such that peers are
more likely to be connected to other peers with similar addresses.

There are three distinct actors in the protocol, the Challenger
which issues proof-of-storage challenges, the Prover which receives
the challenges and produces the proofs, and the Verifier which
evaluates the correctness of the proof.

Requirements. 1) We design the protocol to prevent provers
from computing valid proofs before receiving challenges. 2) A valid
proof must ensure with an overwhelming probability that the prover
was in possession of the data when the proof was created. 3) Proofs
are bound to a specific prover, and cannot be reused by others.

167

SAC ’23, March 27-31, 2023, Tallinn, Estonia

4) Proving and verification must be efficient. 5) Proofs should be of
a small constant size.

3.1 Threat Model

Challengers and provers in SUP may attempt to attack the system.
Verifiers only receive proofs and thus cannot attack the system. A
malicious challenger may trigger a Sybil attack by manufacturing
a large number of challenges and sending these to the provers.
The provers would then have to spend computational- and I/O-
resources to compute the proofs, which the attacker would discard.
Individual provers may attempt to construct proofs for data they do
not store. Similarly, a collection of provers may collude to answer
proof-of-storage challenges for the same reason. Provers may also
generate false proofs that verifiers would spend resources to reject.

We address malicious challengers in Section 4.3 and malicious
provers in Section 4.2. We discuss colluding provers in Sections 4.2
and 4.4. Finally, we address false proofs in Section 4.5.

4 THE STORAGE UPKEEP PROTOCOL

SUP is a novel protocol designed to save bandwidth and reduce
time spent re-uploading data to decentralized storage networks
comprised of untrusted peers. Re-uploading is defined as uploading
previously uploaded data to the network and is often necessary to
persist data, e.g., due to network churn or unreliable peers. The
reduction in bandwidth and time spent comes from SUP’s issuing
of storage challenges and awaiting storage proofs before selectively
uploading only those chunks that were missing or had invalid proof.

Our design is flexible, and modularized and does not require
changes in the system’s existing protocols. Instead, we add a new
protocol to significantly reduce the amount of data transmitted
during the re-uploading process.

SUP relies on the underlying P2P network to route messages
between peers. The space-time diagram in Figure 4 illustrates SUP’s
protocol execution. In the figure, one entity acts as both the chal-
lenger and verifier, and three storage peers are labeled P;, Py, and P3.
The challenger, P; and Ps, all store a set of chunks labeled {a, b, c},
while P3 only stores {a, b}. The protocol starts with the challenger
sending a proof-of-storage challenge to the storage peers. Upon
receiving the challenge, each storage peer computes a proof for
those chunks it is storing and sends that proof to the verifier. The
verifier processes each proof, and for P3’s proof, the verifier will
detect that P3 is missing chunk {c}. The verifier will then enter the
re-upload phase and send the missing chunk to Ps.

Challenger/ {a,b,c} {c} >
Verifier
N 7\
Storage P, \\ /{a,b,c} \ >
Peers \ /{a,b,c} \
P3 )
{a,b} f
Challenge Prove Re-upload

Figure 4: The message flow between the challenger, verifier,
and the storage peers.



SAC ’23, March 27-31, 2023, Tallinn, Estonia

Each peer has access to cryptographic keys for digitally signing
and verifying messages. In the following algorithm description, we
let X(m) denote the digital signature of a message m and pub a
peer’s public key. The following subsections will detail the most
significant actors in the protocol.

4.1 Re-upload

Algorithm 1 gives a high-level pseudo-code for SUP. The client
interacts with its local peer and calls Reupload with a list of chunk
identifiers it wishes to persist in the storage network. If no list is
given, the default is to use the identifiers of all chunks stored by
the local peer. Given the list of chunk identifiers, the challenger cre-
ates a proof-of-storage challenge by calling CreateChallenge (Sec-
tion 4.3). The challenge is then sent via the p2p network to the
storage peers responsible for storing the chunks.

Each storage peer awaits challenge messages (Section 4.4) and
generates a proof-of-storage proof for those chunks covered by
the challenge that the peer is storing. Upon receiving a proof, the
verifier will attempt to validate the proof using VerifyProof (Sec-
tion 4.5). For each valid proof, the verifier removes chunk identifiers
covered by the proof from the list of chunks to be re-uploaded.

Once the verifier has processed all proofs, the uploadList vari-
able will only contain chunk identifiers that are missing from the
network and must be re-uploaded. The verifier will iterate over the
uploadList and upload the chunks to the storage peers.

We leave counting the proven chunk identifiers to get informa-
tion about the redundancy in the network for future work.

Algorithm 1 Reuploader

: Local persistent state at challenger/verifier:

C > Set of stored chunks
S > Set of storage peers
: uploadList > Identifiers for chunks to upload
: remaining > Outstanding storage proofs to verify

: func Reupload(chunkIDs)
if chunkIDs = () then
chunkIDs < {c.id¥ c € C}

9:  chal « CreateChallenge (chunkIDs)

0N U W

> Identifiers of all stored chunks
> Algorithm 2

10:  uploadList < chunkIDs

11:  remaining « |S]|

12:  send ( chal) to S > Send chal to storage peers
13: upon receive ( proof ) do > proof verified signature
14: if VerifyProof(proof) then > Algorithm 4
15: for all chunkID € proofdo

16: uploadList < uploadList \ chunkID

17: remaining < remaining — 1

18: upon event remaining = 0 do > All proofs processed or timeout occurred
19: for all chunkID € uploadList do

20: chunk « {c: c € C A c.id = chunkID}

21: send ( chunk ) to S > Upload missing chunk

4.2 Proof Construction

The primary purpose of our storage proof is to assure the challenger
that the peer in question is currently storing the data queried in
the challenge. To ensure that the peer is storing the data when
generating the storage proof, we need to remove any way to pre-
compute proofs before receiving the challenge. Resistance against
pre-computing proofs is achieved by having the challenger embed
a unique nonce (number used once) into each challenge query. The
nonce is unknown to provers before they process the challenge.

168

R. Nygaard et al.

The proof construction assumes the existence of a cryptographic
hash function that is preimage-resistant [34] and puzzle-friendly [27].
The preimage resistance property states that for any given hash
value h, it is computationally infeasible to find y such that H(y) = h.
Puzzle friendliness states that for every possible n-bit output value
y, if k is chosen from a distribution with high min-entropy, then
it is infeasible to find x such that H(k || x) = y, in time signifi-
cantly less than 2. We define chunk a’s chunk proof in (1), as the
cryptographic hash of the concatenation of a nonce and a’s data.

CP, = H(nonce || a) (1)

Hashing fixes the size of chunk proofs to a small constant. Note
that the concatenation order nonce || a in (1) is essential, since
otherwise the chunk proof may be vulnerable to the length extension
attack [14]. This weakness is present in well-known iterative hash
functions based on the Merkle-Damgérd construction, such as MD5,
SHA-1, and SHA-2. In the length extension attack, an attacker with
knowledge of H(m1) and the length of m; can calculate H(m || m2)
for an arbitrary message my without knowing my. If we flipped
the concatenation order in the chunk proof to be H(a || nonce), a
dishonest prover could store only H(a) and the length of a and
delete chunk a. Upon receiving a new challenge, a prover could
use the length extension attack to calculate H(a || nonce) without
knowing a. We recommend computing the chunk proof in (1) using
a strong cryptographic hash function without known weaknesses,
such as the length extension attack.

The chunk proofs are aggregated to form a full storage proof for
the challenge. We chose to aggregate the chunk proofs using XOR.
Using XOR reduces memory consumption, as we only need to keep
a small fixed amount of data in memory. The prover computes the
hash of the concatenation of the aggregated chunk proofs and the
prover’s public key. Concatenating with the public key prevents
other peers from copying the aggregated chunk proof to use it to
claim they are storing the chunks. For a peer with the public key
pub, the base proof for a set of chunks {a, b, c} is given in (2).

BP,pc = H((CPy & CP; ® CPc) || pub) )
Since XOR is both associative and commutative, the order in which
chunk proofs are aggregated does not impact the final result. We
want that our scheme allows a prover to answer subsets of a chal-
lenge. For example, a challenger might issue a challenge for the
chunks {a, b, ¢, d, e}, but the recipient peer can only prove {a, b, c}.
To encode that only the chunks {a, b, c} are included in the proof,
we introduce a bitmap L. The i-th bit in L represents whether or
not the i-th chunk is included in the proof. For example, L = 11100,
means that chunks {a, b, ¢} are included in the proof.

In addition, we need to embed the nonce to allow the verifier
to know which challenge is being proven, as the challenger might
have issued multiple challenges. Lastly, we require that the prover
digitally signs the base proof, providing message integrity and
proof that it is authorized to issue proofs for the included public
key. This allows the verifier to determine that the proof comes
from the intended peer. Given a challenge requesting proofs for
{a,b, c,d, e}, a peer storing chunks {a, b, c} should respond with a
proof according to (3), where bitmap L = 111003.

Proof, p . = {BPg . nonce, L, X(BPgy ), pub} (3)



Cost-effective Data Upkeep in Decentralized Storage Systems

4.3 Challenger

When a client wants to re-upload data using SUP, we send a chal-
lenge to the other storage peers to determine which chunks are
missing from the network and must be uploaded. The challenge
contains a list of chunk identifiers that the challenge concerns.

To prevent provers from pre-computing proofs, the challenger
embeds a nonce in the challenge. The nonce is obtained by generat-
ing a random value and then cryptographically committing to the
value by hashing it. The purpose of cryptographically committing
is to be able to dispute any claim over who was the originator of the
challenge, as only the challenger will be able to reveal the preimage
of the committed nonce.

Finally, the list of chunk identifiers is packed together with the
committed nonce and then digitally signed to create the challenge.
By digitally signing the challenge, we can prevent unauthorized or
excessive issuance of challenges. In addition, the signature allows
provers to verify the integrity of the challenge. Algorithm 2 lists
the pseudo-code.

Algorithm 2 Create Challenge

: Local persistent state at challenger:
: commits

: challenges
pub

: func CreateChallenge(chunkIDs)
k < RandomValue()

nonce < H(k)

commits[nonce] < k
challenges[nonce] « chunkIDs
chal « [ nonce, chunkIDs ]
return [ chal, 3(chal), pub]

> Map of nonce pre-images
> Map of chunk identifiers in sent challenges
> Challenger’s public key

> Commit to the nonce

el A AR AN o

JEr—

4.4 Prover

Algorithm 3 lists the pseudo-code for proving chunk possession
after receiving a challenge. The prover initially verifies the integrity
of the challenge, and its digital signature to prevent misuse. For
each chunk identifier contained in the challenge, the prover checks
if it stores the chunk, and if so, it creates a chunk proof for it, as
described in (1), and then aggregates it to the base proof described
in (2). The base proof is initialized to a null vector with the same
length as the hash function.

Including both the committed nonce and the chunk data in the
chunk proof means that the prover must know both simultaneously,
making pre-computation infeasible. To aggregate the chunk proofs,
we use XOR with the base proof. This reduces the algorithm’s mem-
ory consumption, as the chunk’s data can be garbage collected from
memory after creating each chunk proof. The bitmap L indicates
which chunks are included in the proof. As the chunks are pro-
cessed in the same order as the challenge, we add 2¢ to the bitmap
to mark the i-th chunk as included.

After processing all the chunks, we cryptographically hash the
concatenation of the base proof with the prover’s public key to
create the final base proof. Including the prover’s public key pre-
vents other peers from eavesdropping on the communication to
re-use the proof for themselves. We then create the final proof using
the final base proof, the received nonce and L. The final proof is
returned to the challenger together with its digital signature.

169

SAC ’23, March 27-31, 2023, Tallinn, Estonia

Algorithm 3 Prove Data Possession

1: Local persistent state at prover:

2: C > Set of stored chunks
3: pub > Prover’s public key
4: upon receive ( chal ) do > chal verified signature
5: baseProof «— (0]t fength

6: Le0 > Bitmap of chunks included in proof
7: for i « 0 to |chal.chunkIDs| do

8: chunk « {c: ¢ € C A c.id = chal.chunkIDs[i]}

9: if chunk # 0 then

10: baseProof «— baseProof ® H(chal.nonce || chunk)

11: L—L|(1<i) >Add 2/ to L
12: baseProof «— H(baseProof || pub)

13: proof « [ chal.nonce, L, baseProof]

14: reply ( proof, =(proof), pub) > Send proof to challenger

4.5 Verifier

The pseudo-code for the verifier is listed in Algorithms 4 and 5.
Any peer who stores the same chunks the storage proof covers can
verify the proof. To verify a storage proof, the verifier calculates a
new proof for the same chunks and then compares it to the received
proof. When the proof covers fewer chunks than the challenge, we
use the bitmap L to know which chunks are covered by the proof.
The prover claims that the challenge’s i-th chunk is covered by the
proof only if L’s i-th bit is set. The verifier returns true only if the
received proof matches the newly calculated proof.

Typically, a challenge is sent to multiple peers, and for verifica-
tion of multiple proofs, the verifier can leverage caching to amortize
the cost of I/O operations to fetch chunks. That is, the verifier caches
each chunk proof so that it can verify multiple proofs from different
storage peers without accessing its local storage for each of them.
When iterating through the proof, each chunk proof is retrieved
from the cache or computed on the fly and stored in the cache for
future lookups.

Algorithm 4 Verify Proof

1: Local persistent state at verifier:
2: C
3: challenges

> Set of stored chunks
> Map of chunk identifiers in sent challenges
4: func VerifyProof(proof)
5 myProof « [0]f-length

6:  chunkIDs « challenges[proof.nonce] > chunkIDs that may be in proof
7. fori « 0to |proof.L| do > |proof.L| is | log, proof.L] + 1
8: if proof.L & 2 # 0 then > Chunk is included in proof
9: chunkProof « GetChunkProof(proof.nonce, chunkIDs[i])

10: if chunkProof = nil then

11: return false > Error: Must store all proven chunks to verify

12: myProof < myProof ® chunkProof

13:  myProof « H(myProof || proof.pub)

14:  return myProof = proof.baseProof

Algorithm 5 Get Chunk Proof
1: Local persistent state at verifier:
2: C
3: chunkProofs
4: func GetChunkProof(nonce, chunkID)

> Set of stored chunks
> Map of all processed chunk proofs

5. if chunkProofs[nonce || chunkID] = nil then

6: chunk < {c: c € C A c.id = chunkID}

7: if chunk = ( then

8: return nil

9: chunkProofs[nonce || chunkID] < H(nonce || chunk)
10:  return chunkProofs[nonce || chunkID]




SAC ’23, March 27-31, 2023, Tallinn, Estonia

5 IMPLEMENTATION

We have implemented SUP as a package in Swarm Bee version
1.7.0 (released 24 July 2022). The implementation consists of about
700 lines of Go code, plus about 600 lines of code for benchmark-
ing, testing and metrics collection. We have made the source code
available at: (https://github.com/relab/sup).

5.1 Adapting SUP to Swarm

We presented SUP in Section 4 as a protocol suitable for use in
a generalized decentralized storage network. To implement SUP
in Swarm, we had to deviate slightly from the protocol specifi-
cation. The following paragraphs explain how we implemented
SUP in Swarm.

1) Our implementation sends one chunk identifier per challenge
instead of multiple identifiers batched together in a single chal-
lenge. In Swarm, each chunk should be stored by its storer peers,
as defined in Section 2.1. The challenger cannot accurately predict
which chunks will share the same storer peers, due to its incom-
plete view of the network. Furthermore, the probability that any
two chunks will share the same storer peers decreases as the net-
work size increases. A possible way to implement batching is to
split the batches if a forwarder notices that some chunk identifiers
in the batch have different storer peers. Nevertheless, SUP signif-
icantly improves bandwidth use even without this optimization,
compared to Data Stewardship. Therefore, we leave it to future
work to implement this optimization.

2) We introduce a forwarder role to relay challenges from chal-
lengers to provers that are not directly connected. A challenger
sends a challenge to the directly connected peer closest to the chal-
lenge’s chunk identifier. A peer receiving a challenge becomes a
forwarder of that challenge if it is directly connected to a peer
in even closer proximity to the target chunk identifier; otherwise,
the peer becomes the prover. Proofs are returned to the challenger
through each forwarder who helped deliver the challenge.

3) The challenger is unlikely to be directly connected to the
prover. A mechanism is needed for the challenger to verify that
the proof comes from the correct part of the network, that is, the
chunk’s storer peers. As discussed above, the challenger cannot
accurately predict the storer peers for a chunk. However, it can make
an informed guess about the storer peers’ proximity to the chunk.
Peer addresses are uniformly distributed in Swarm. Challengers can
expect storer peers to have at least the same proximity to the chunk
identifier as the challenger’s proximity to its nearest neighbors.
Therefore, we require provers to include a block hash with each
chunk proof. This should be the block hash used to generate the
prover’s peer address. The verifier can then recover the public key
from the signature of the proof and combine it with this block
hash to recover the peer address of the prover. The verifier can
compute the prover’s proximity to the chunk identifier using the
recovered peer address. Based on the verifier’s view of the network,
the verifier can ensure that the prover is at least as close as the
chunk’s storer peers should be.

4) Finally, our implementation omits signatures of challenges.
We note that the request messages in other Swarm protocols, such
as push-sync and the retrieval protocol, do not include such sig-
natures. We believe that including signatures would compromise

170

R. Nygaard et al.

sender anonymity, as the prover must identify the signer to verify a
signature. Sender anonymity is a “crucial feature of Swarm” [43].
Therefore, as explained above, we chose to omit signatures on
challenges, but they are still necessary on proofs. We believe an
incentive system would encourage forwarder peers to forward
challenges without modification. However, implementing such an
incentive system is beyond the scope of this paper.

5.2 Structure

In our SUP implementation in Swarm Bee, the same peer acting on
behalf of the client fulfills the roles of challenger and verifier. Other
peers may assume the role of forwarder or prover, depending on
their proximity to the target chunk in a challenge.

We expose a private HTTP API endpoint in the Swarm Bee peer
as a direct replacement for Data Stewardship. When invoking the
API, the client specifies the identifier of the chunk, or the root
chunk of a file, to be re-uploaded. This chunk identifier is input into
a Reupload function, which performs the roles of the challenger
and verifier.

SUP registers a new protocol with the libp2p runtime. libp2p [25],
is the networking library used by Swarm Bee. Whenever a peer
receives a new connection using this protocol, the libp2p runtime
invokes a handler function specified by SUP. This handler performs
the functions of the forwarder and prover.

5.3 Challenger and Verifier

When SUP is invoked through the API, the challenger computes
the list of chunks to re-upload. The client can specify an entire file
by inputting the identifier of the file’s root chunk. In this case, the
challenger traverses down the entire Merkle tree that composes
the file to collect all the chunk identifiers. Then, for each chunk
identifier, the challenger invokes the reuploadChunk function.

The reuploadChunk function creates a challenge, consisting of
a nonce and the chunk identifier, and then sends it to the closest
peer and waits for a response. If a proof is received in response,
the challenger verifies it and checks the address of the prover, as
explained in Section 5.1. If no response was received, or the proof
was invalid, reuploadChunk invokes push-sync to re-upload the
chunk to the network.

5.4 Forwarder and Prover

SUP’s libp2p handler function implements the forwarder and prover
roles. The handler’s job is to receive a challenge and then respond
with a proof, if possible. As explained in Section 5.1, it takes on
the forwarder role if it is directly connected to a peer closer to
the chunk identifier. Otherwise, it takes on the role of prover and
generates a storage proof for the chunk if it has the chunk. In either
case, the handler eventually sends the proof back to the peer from
whom it received the challenge.

If a proof could not be obtained, the handler closes the communi-
cation stream instead. This causes a cascade where every previous
forwarder in the chain between the challenger and the handler
closes their communication streams also. Eventually, the challenger
detects that its communication stream with its closest peer was
closed and re-uploads the chunk.


https://github.com/relab/sup

Cost-effective Data Upkeep in Decentralized Storage Systems

6 EVALUATION

In this section, we present our evaluation of SUP. We measured
and compared the message sizes of SUP and Data Stewardship to
estimate SUP’s theoretical bandwidth savings. We ran experiments
with both protocols on a network of 1000 Swarm peers to mea-
sure the bandwidth use and re-upload duration in several different
scenarios. Our results show that SUP saves up to 94 % bandwidth
and uses up to 82 % less time than Data Stewardship. Its band-
width use and re-upload duration scale linearly with the number of
lost chunks.

6.1 Experimental Setup

To run our experiments, we used a cluster of 30 physical machines.
Each machine is installed with Ubuntu 18.04.4 LTS and has 32 GB
RAM, an Intel Xeon E-2136 3.30 GHz CPU, a 1.5 TB SSD disk, and
1 Gbit/s NIC. To orchestrate the cluster and manage 1000 Swarm Bee
peers, we used Kubernetes [23] and Helm [19]. We distributed the
Swarm Bee peers on 28 of the machines, used one to host a private
Ethereum network, and the last one to manage the experiment
execution. In our setup, we used version 1.7.0 [39] of Swarm Bee
with our modifications and SUP implementation.

6.2 Evaluation Framework

To measure the practical bandwidth savings of SUP in comparison
with Data Stewardship, we ran the two re-upload protocols on
files with different chunk loss rates. We developed an evaluation
framework that facilitates the uploading of files to Swarm and the
random removal of a percentage of chunks.

Our evaluation framework improves upon previous work eval-
uating Swarm [28]. The previous work required all peers to be
terminated before the evaluation tool could modify the state of
each peer. Our framework, however, can operate directly on online
peers. We accomplish this by adding new features to Swarm Bee’s
debug API and integrating our framework with the APL

We used the framework to write a program for running our ex-
periments. The program is given a set of file addresses to re-upload,
arange of chunk-loss percentages, and snapshots listing the chunks
stored by each peer. For each file, it applies a modified snapshot with
a percentage of the chunk identifiers belonging to the file removed.
Then, it performs a re-upload for the file using one of the two re-
upload protocols. Lastly, it measures the re-upload duration and
gathers metrics from each peer to calculate the bandwidth usage.

The evaluation program uses the Kubernetes port-forwarding
API to connect to peers from outside the Kubernetes cluster. When
running experiments using our framework, we discovered and
reported a memory leak in the Kubernetes port-forwarding API
client (https://github.com/kubernetes/kubernetes/issues/112032).

6.3 Message Sizes

We measured the message sizes for the request and response mes-
sages in SUP and push-sync (used by both SUP and Data Steward-
ship). SUP’s requests (challenges) are 68 bytes, and its responses
(proofs) are 205 bytes. Push-sync’s requests (chunk deliveries) are
4256 bytes, of which 4104 bytes is the chunk itself, and its responses
(receipts) are 135 bytes. In Table 1, we use these message sizes
to estimate the bandwidth usage of a single instance of SUP and

171

SAC ’23, March 27-31, 2023, Tallinn, Estonia

Data Stewardship when the chunk is available and unavailable.
We do not consider the unexpected case where an invalid proof is
received, in which the transmission of the invalid proof comes in
addition to the challenge, delivery, and receipt.

Table 1: Estimated bandwidth usage for one chunk.

Chunk Availability SUP  Data Stewardship SUP Savings
Available 273 B 4391 B 93.78 %
Unavailable 4459 B 4391 B -1.55 %

Based on the estimates in Table 1 we derive a linear expression for
bandwidth usage in SUP: 273 + 4186l bytes, given chunk loss rate
I € [0,1]. From this expression, we calculate that SUP should use
less bandwidth than Data Stewardship until 98.38 % chunk loss.

6.4 Cost-effectiveness of SUP

We demonstrate that SUP is cost-effective by comparing it against
Data Stewardship in Swarm Bee. The evaluations were made on our
cluster with 1000 Swarm Bee peers. We varied the file sizes from
1 to 100 MB, and the chunk loss rates from 0 to 100 %. The chunk
loss rate is defined as the percentage of chunks that are missing
in the network. Each experiment was repeated 22 times, and the
results are presented in Figure 5. As expected, the results show that
the benefit of SUP deteriorates as the chunk loss rate increases. Our
results show that when the chunk loss rate reaches around 90 %, it
is more cost-effective to re-upload the chunk, without checking if it
is already stored. A previous study of file availability in Swarm [29]
shows that even with a high replication degree, the storage system
breaks down long before reaching such extreme rates of chunk
loss. Our experiment on the data availability in the public Swarm
network conducted over four weeks, presented in Section 2.4, shows
that the chunk loss rate peaked at 12 % on a single day and was less
than 10 % on all other days.

As forecasted in Section 6.3, we observe in Figure 5a that band-
width usage in SUP scales linearly for files of 1 MB, 5 MB, and
10 MB. As expected, bandwidth usage is not affected by chunk loss
in Data Stewardship for the same file sizes. We observe the same
effect in Figure 5b, which shows the relative bandwidth used by SUP
compared to Data Stewardship for files ranging from 1 to 100 MB.
The eight lines representing SUP are more or less completely over-
lapping and range from 6.3 % bandwidth usage at 0 % chunk loss to
104 % bandwidth usage at 100 % chunk loss. The bandwidth usage
of SUP and Data Stewardship is similar when around 95 % of the
network’s chunks are missing.

Figure 5c¢ shows our results when evaluating the protocol ex-
ecution duration of SUP and Data Stewardship for files of 1 MB,
5 MB, and 10 MB. By protocol execution duration, we mean the
total time elapsed since the client initiated the protocol until all
missing chunks have been re-uploaded. We see that SUP has a lower
execution duration than Data Stewardship until the chunk loss rate
reaches 90 %. Interestingly, Data Stewardship is slower when the
chunk loss rate is low. We believe this effect is due to storage peers
updating their prioritized list of chunks to garbage collect when
receiving a chunk they already have. When comparing the relative
protocol execution duration, we see in Figure 5d, that SUP only


https://github.com/kubernetes/kubernetes/issues/112032

SAC ’23, March 27-31, 2023, Tallinn, Estonia

R. Nygaard et al.

= SUP 1 MB m— SUP 10 MB = SUP 40 MB m— SUP 80 MB == = Steward 1 MB = = Steward 10 MB
=== SUP 5 MB SUP 20 MB = SUP 60 MB SUP 100 MB == = Steward 5 MB = = Steward 1-100 MB
120 120
21 = P 25{"N
18 R100 == —————————————— 7 \"""'\./-\,_._,_ __ 100
515 $ 80 ~~ 20 ) £ g0
§12 2 60 - g 60
B9 g . 2 40
= - £
6 3 E
3 5 20 20
0

0 10 20 30 40 50 60 70 80 90 100
Chunk Loss Rate %

(a) Bandwidth usage

Chunk Loss Rate %
(b) Relative bandwidth usage

0
0 10 20 30 40 50 60 70 80 90 100

0
0 10 20 30 40 50 60 70 80 90 100
Chunk Loss Rate %

(d) Relative execution duration

0 10 20 30 40 50 60 70 80 90 100
Chunk Loss Rate %

(c) Protocol execution duration

Figure 5: Cost-effectiveness for different chunk-loss rates. (a,c) The red vertical lines show the standard error.

uses 20 % of the time that Data Stewardship uses when the chunk
loss rate is low, and that SUP remains superior for all file sizes until
between 85 to 90 % chunk loss rate.

7 RELATED WORK

This section will discuss how other proof-of-storage (PoS) algo-
rithms relate to the one presented in SUP. The earliest relevant
works were published in 2007 [4, 21, 31]. Since that time, there
has been considerable work to construct schemes with additional
features and improved properties [1-3, 5, 6, 8—13, 15, 16, 18, 22, 30,
32, 33, 41, 44-48, 50-52].

Proof-of-storage algorithms provide a way to outsource storage
to a remote server while being able to verify that the peer is cor-
rectly storing the data. The verifications are done via three actors,
a challenger, a prover, and a verifier. PoS algorithms are closely
related to proof-of-retrievability, which not merely asserts that the
data is stored but also can be retrieved. The variety of PoS algo-
rithms differs in performance, as summarized in [49]. The three
actors must share the computational burden of the PoS algorithm.
However, the algorithms divide the computational share differently.
Some algorithms also require some pre-processing and additional
metadata at one or more of the actors and thus has some storage
overhead. Lastly, the number of bits required to transmit a challenge
or a proof differs between the algorithms.

The PoS algorithm in SUP stands out in a few ways. First, there
is no storage overhead on any of the actors. Second, the proofs
generated by our algorithm verify the entire chunk, as opposed
to a few specific bits or random samples. Third, our algorithm
targets decentralized storage systems where peers are untrusted
and unreliable. Lastly, as we have targeted the re-uploading use
case, there are several features that our algorithm does not require.

The first feature is public verifiability, allowing anyone, not just
the data owner, to query the remote server with storage challenges.
Such schemes require that the data owner generates some prov-
ing metadata that other peers can use to generate challenges and
verify proofs. Other definitions for public verifiability, sometimes
called public auditability, allows a peer to assert the correctness of
a challenge or proof to a third-party. Typically, such a feature is
desired in protocols where peers want to prove the misbehavior
of other peers. One example is FileCoin [24], where storage peers
must periodically prove data possession and integrity. Other peers
can verify the storage peer’s proofs, and if found invalid, they can

172

punish the storage peer by excluding it from the network or taking
its collateral.

The next feature is updatable, which allows metadata to be par-
tially modified on the storage peers. An updatable scheme is well
suited for use cases where data updates are frequent and comput-
ing the metadata needed for proving is expensive. As previously
mentioned, SUP does not need any additional metadata. Moreover,
the decentralized storage systems that we target are immutable.

Lastly, some schemes can detect the data’s replication degree.
Typically, these schemes work by encoding the data differently
for each storage peer. For our use case, this is not sufficient, as
storage peers are untrusted and may collude in answering storage
challenges. In addition, such a design requires additional metadata,
which is undesirable for SUP.

8 CONCLUSION

This paper presents SUP, a protocol for cost-effective data upkeep
in decentralized storage networks. The need for data upkeep is
well documented in both IPFS [36] and Swarm [20]. We monitored
the data availability in the public Swarm network over four weeks.
We found that clients can be expected to re-upload their files 6
days after the previous upload to keep the file available. Current
protocols for re-upload waste resources, as they require clients to
upload the entire file, even though only a few chunks may have
been lost. SUP employs a novel proof-of-storage algorithm, which
is used to determine what is already stored in the network before
unnecessarily uploading existing data. In addition, SUP does not
incur additional storage overhead at the peers.

We have demonstrated a working solution in a large P2P network
with 1000 peers running a recent version of Ethereum Swarm. SUP
saves up to 94 % bandwidth and reduces re-uploading time by up to
82 %. This reduction benefits the client as bandwidth consumption
is linked to monetary cost, and it also improves the entire network
resource utilization. The source code is made available to support
the adoption of SUP in other decentralized storage networks.

ACKNOWLEDGMENTS

We would like to thank members of the Swarm team for helpful
discussions and technical assistance. This work is partially funded
by the BBChain and Credence projects under grants 274451 and
288126 from the Research Council of Norway.



Cost-effective Data Upkeep in Decentralized Storage Systems

REFERENCES

(1]

A

(3

=

[4

=

[10

[11]

[12

[13]

[14

[15]

[16]

[17

[18]

[19

[20]

[21

[22]

[23

[24]

[25

[26]

Frederik Armknecht, Jens-Matthias Bohli, David Froelicher, and Ghassan Karame.
2017. Sharing Proofs of Retrievability across Tenants. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security. Association
for Computing Machinery, New York, NY, USA, 275-287.

Frederik Armknecht, Jens-Matthias Bohli, Ghassan O Karame, Zongren Liu, and
Christian A Reuter. 2014. Outsourced Proofs of Retrievability. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
Association for Computing Machinery, New York, NY, USA, 831-843.

Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Osama Khan,
Lea Kissner, Zachary Peterson, and Dawn Song. 2011. Remote Data Checking
Using Provable Data Possession. ACM Transactions on Information and System
Security (TISSEC) 14, 1 (2011), 1-34.

Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. 2007. Provable Data Possession at Untrusted
Stores. In Proceedings of the 14th ACM conference on Computer and communications
security. Association for Computing Machinery, New York, NY, USA, 598-609.
Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. 2008.
Scalable and Efficient Provable Data Possession. In Proceedings of the 4th Interna-
tional Conference on Security and Privacy in Communication Netowrks. Association
for Computing Machinery, New York, NY, USA, 1-10.

Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. 2009. Proofs of Storage from
Homomorphic Identification Protocols. In Advances in Cryptology — ASIACRYPT
2009. Springer, Berlin, Heidelberg, 319-333.

Juan Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. arXiv
abs/1407.3561 (2014), 11.

Kevin D Bowers, Ari Juels, and Alina Oprea. 2009. HAIL: A High-Availability and
Integrity Layer for Cloud Storage. In Proceedings of the 16th ACM Conference on
Computer and Communications Security. Association for Computing Machinery,
New York, NY, USA, 187-198.

Kevin D Bowers, Ari Juels, and Alina Oprea. 2009. Proofs of Retrievability:
Theory and Implementation. In Proceedings of the 2009 ACM Workshop on Cloud
Computing Security. Association for Computing Machinery, New York, NY, USA,
43-54.

David Cash, Alptekin Kiipgii, and Daniel Wichs. 2017. Dynamic Proofs of Re-
trievability Via Oblivious RAM. Journal of Cryptology 30, 1 (2017), 22-57.

Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese. 2008. MR-
PDP: Multiple-Replica Provable Data Possession. In 2008 The 28th International
Conference on Distributed Computing Systems. IEEE, New York, NY, USA, 411-420.
Ivan Damgard, Chaya Ganesh, and Claudio Orlandi. 2019. Proofs of Replicated
Storage Without Timing Assumptions. In Advances in Cryptology — CRYPTO 2019.
Springer, Cham, 355-380.

Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. 2009. Proofs of Retrievability via
Hardness Amplification. In Theory of Cryptography. Springer, Berlin, Heidelberg,
109-127.

Thai Duong and Juliano Rizzo. 2009. Flickr’s API Signature Forgery Vulnera-
bility. https://dl.packetstormsecurity.net/0909-advisories/flickr_api_signature_
forgery.pdf Accessed: 2022-12-29.

C Chris Erway, Alptekin Kiip¢ii, Charalampos Papamanthou, and Roberto Tamas-
sia. 2015. Dynamic Provable Data Possession. ACM Transactions on Information
and System Security (TISSEC) 17, 4 (2015), 1-29.

Chaowen Guan, Kui Ren, Fangguo Zhang, Florian Kerschbaum, and Jia Yu. 2015.
Symmetric-Key Based Proofs of Retrievability Supporting Public Verification. In
Computer Security — ESORICS 2015. Springer, Cham, 203-223.

Janos Guljas. 2022. Network Statistics - Swarm Scan. https://swarmscan.resenje.
org Accessed: 2022-12-28.

Zhuo Hao, Sheng Zhong, and Nenghai Yu. 2011. A Privacy-Preserving Remote
Data Integrity Checking Protocol with Data Dynamics and Public Verifiability.
IEEE Transactions on Knowledge and Data Engineering 23, 9 (2011), 1432-1437.
Helm. 2022. The package manager for Kubernetes. https://helm.sh/ Accessed:
2022-12-29.

Rinke Hendriksen. 2021. Data stewardship #1508.
ethersphere/bee/issues/1508 Accessed: 2022-12-29.
Ari Juels and Burton S Kaliski Jr. 2007. PORs: Proofs of Retrievability for Large
Files. In Proceedings of the 14th ACM Conference on Computer and Communications
Security. Association for Computing Machinery, New York, NY, USA, 584-597.
Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-Size
Commitments to Polynomials and Their Applications. In Advances in Cryptology
- ASIACRYPT 2010. Springer, Berlin, Heidelberg, 177-194.

Kubernetes. 2022. Production-Grade Container Orchestration. https://kubernetes.
io/ Accessed: 2022-12-29.

Protocol Labs. 2017. Filecoin: A Decentralized Storage Network. https://filecoin.
io/filecoin.pdf Accessed: 2022-12-29.

libp2p. 2022. libp2p - A modular network stack. https://libp2p.io Accessed:
2022-12-29.

Petar Maymounkov and David Maziéres. 2002. Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric. In International Workshop on Peer-to-Peer

https://github.com/

173

[27]

[28

[29

%
&

(39]
[40]

[41

[42

[43

[44

[45]

[46

[47

[48

[49

[50

[51

(52

SAC ’23, March 27-31, 2023, Tallinn, Estonia

Systems. Springer, Berlin, Heidelberg, 53-65.

Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. 2016. Bitcoin and Cryptocurrency Technologies: A Comprehensive
Introduction. Princeton University Press, Princeton, NJ, USA.

Racin Nygaard. 2022. Lessons Learned from a Bare-metal Evaluation of Erasure
Coding Algorithms in P2P Networks. arXiv abs/2208.12360 (2022), 3.

Racin Nygaard, Vero Estrada-Galifianes, and Hein Meling. 2021. Snarl: Entangled
Merkle Trees for Improved File Availability and Storage Utilization. In Proceedings
of the 22nd International Middleware Conference (Middleware "21). Association for
Computing Machinery, New York, NY, USA, 236-247.

Hovav Shacham and Brent Waters. 2008. Compact Proofs of Retrievability. In
Advances in Cryptology - ASIACRYPT 2008. Springer, Berlin, Heidelberg, 90-107.
Mehul A Shah, Mary Baker, Jeffrey C Mogul, and Ram Swaminathan. 2007. Au-
diting to Keep Online Storage Services Honest. In Proceedings of the 11th USENIX
Workshop on Hot Topics in Operating Systems. USENIX Association, USA, 6.
Jian Shen, Jun Shen, Xiaofeng Chen, Xinyi Huang, and Willy Susilo. 2017. An
Efficient Public Auditing Protocol With Novel Dynamic Structure for Cloud Data.
IEEE Transactions on Information Forensics and Security 12, 10 (2017), 2402-2415.
Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. 2013. Practical Dy-
namic Proofs of Retrievability. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security. Association for Computing Machinery,
New York, NY, USA, 325-336.

William Stallings. 2017. Cryptography And Network Security: Principles and
Practice, 7th Edition. Pearson Education, Upper Saddle River, NJ, USA.

IPFS team. 2020. "ipfs add" calculate CID and check for it *before* uploading to
API server. https://github.com/ipfs/kubo/issues/7586 Accessed: 2022-12-29.
IPFS team. 2022. Garbage collection. https://docs.ipfs.tech/concepts/persistence/
#garbage-collection Accessed: 2022-12-29.

IPFS team. 2022. Persistence, permanence, and pinning. https://docs.ipfs.io/
concepts/persistence/#persistence-permanence-and-pinning Accessed: 2022-12-
29.

Swarm team. 2021. Storage and Communication Infrastructure for a Self-
Sovereign Digital Society. https://www.ethswarm.org/swarm-whitepaper.pdf
Accessed: 2022-12-29.

Swarm team. 2022. Bee is a Swarm client implemented in Go. https://github.
com/ethersphere/bee Accessed: 2022-12-29.

Swarm team. 2022. Swarm Gateway. https://gateway.ethswarm.org/ Accessed:
2022-12-29.

Hui Tian, Yuxiang Chen, Chin-Chen Chang, Hong Jiang, Yongfeng Huang,
Yonghong Chen, and Jin Liu. 2017. Dynamic-Hash-Table Based Public Auditing
for Secure Cloud Storage. IEEE Transactions on Services Computing 10, 5 (2017),
701-714.

Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro, Will Scott,
Moritz Schubotz, Bela Gipp, and Yiannis Psaras. 2022. Design and Evaluation
of IPFS: A Storage Layer for the Decentralized Web. In Proceedings of the ACM
SIGCOMM 2022 Conference. Association for Computing Machinery, New York,
NY, USA, 739-752.

Viktor Trén. 2020. The Book of Swarm - v1.0 pre-release 7 November 17, 2020.
https://www.ethswarm.org/The-Book-of-Swarm.pdf Accessed: 2022-12-29.
Boyang Wang, Baochun Li, and Hui Li. 2014. Oruta: Privacy-Preserving Public
Auditing for Shared Data in the Cloud. IEEE Transactions on Cloud Computing 2,
1(2014), 43-56.

Cong Wang, Sherman SM Chow, Qian Wang, Kui Ren, and Wenjing Lou. 2013.
Privacy-Preserving Public Auditing for Secure Cloud Storage. IEEE Trans. Comput.
62, 2 (2013), 362-375.

Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. 2010. Toward Publicly Auditable
Secure Cloud Data Storage Services. IEEE Network 24, 4 (2010), 19-24.

Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. 2012. Toward
Secure and Dependable Storage Services in Cloud Computing. [EEE Transactions
on Services Computing 5, 2 (2012), 220-232.

Hao Yan, Jiguo Li, Jinguang Han, and Yichen Zhang. 2017. A Novel Efficient
Remote Data Possession Checking Protocol in Cloud Storage. IEEE Transactions
on Information Forensics and Security 12, 1 (2017), 78-88.

Anjia Yang, Jia Xu, Jian Weng, Jianying Zhou, and Duncan S Wong. 2021. Light-
weight and Privacy-Preserving Delegatable Proofs of Storage with Data Dynamics
in Cloud Storage. IEEE Transactions on Cloud Computing 9, 1 (2021), 212-225.
Kan Yang and Xiaohua Jia. 2012. Data storage auditing service in cloud computing:
challenges, methods and opportunities. World Wide Web 15, 4 (2012), 409-428.
Jiawei Yuan and Shucheng Yu. 2013. Proofs of Retrievability with Public Verifi-
ability and Constant Communication Cost in Cloud. In Proceedings of the 2013
International Workshop on Security in Cloud Computing. Association for Comput-
ing Machinery, New York, NY, USA, 19-26.

Yan Zhu, Huaixi Wang, Zexing Hu, Gail-Joon Ahn, Hongxin Hu, and Stephen S
Yau. 2011. Dynamic Audit Services for Integrity Verification of Outsourced Stor-
ages in Clouds. In Proceedings of the 2011 ACM Symposium on Applied Computing.
Association for Computing Machinery, New York, NY, USA, 1550-1557.


https://dl.packetstormsecurity.net/0909-advisories/flickr_api_signature_forgery.pdf
https://dl.packetstormsecurity.net/0909-advisories/flickr_api_signature_forgery.pdf
https://swarmscan.resenje.org
https://swarmscan.resenje.org
https://helm.sh/
https://github.com/ethersphere/bee/issues/1508
https://github.com/ethersphere/bee/issues/1508
https://kubernetes.io/
https://kubernetes.io/
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://libp2p.io
https://github.com/ipfs/kubo/issues/7586
https://docs.ipfs.tech/concepts/persistence/#garbage-collection
https://docs.ipfs.tech/concepts/persistence/#garbage-collection
https://docs.ipfs.io/concepts/persistence/#persistence-permanence-and-pinning
https://docs.ipfs.io/concepts/persistence/#persistence-permanence-and-pinning
https://www.ethswarm.org/swarm-whitepaper.pdf
https://github.com/ethersphere/bee
https://github.com/ethersphere/bee
https://gateway.ethswarm.org/
https://www.ethswarm.org/The-Book-of-Swarm.pdf


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20120516081844
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     320
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     9
     8
     9
      

   1
  

 HistoryList_V1
 qi2base



