
FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR’S THESIS

Study programme / specialisation:

Bachelor in Computer Science

The spring semester, 2023

Open

Author:

Julie Vy Tran, Eirik Reiestad and Asbjørn Stokka

Supervisor at UiS: Karl Skretting

Thesis title: An Introduction to Computer Vision in Autonomous Driving

Norsk tittel: En Introduksjon til Kunstig Syn i Autonom Kjøring

Credits (ECTS): 20

Keywords:

Computer vision, Autonomous driving,
Python, Image processing

Pages: 74
+ appendix/other: 58

Stavanger, 15.05.2023

Approved by the Dean 30 Sep 21
Faculty of Science and Technology

Abstract

Autonomous driving is one of the rising technology in today’s society. Thus, a wide range of
applications uses this technology for the benefits it yields. For instance, an autonomous driving
robot will free up the labor force and increase productivity in industries that require rapid
transportation. However, to gain these benefits, it requires the development of reliable and
accurate software and algorithms to be implemented in these autonomous driving systems. As
this field has been growing over the years, different companies have implemented this technology
with great success. Thus, the increased focus on autonomous driving technology makes this a
relevant topic to perform research on.

As developing an autonomous driving system is a demanding topic, this project focuses solely
on how computer vision can be used in autonomous driving systems. First and foremost, a
computer-vision based autonomous driving software is developed. The software is first imple-
mented on a small premade book-size vehicle. This system is then used to test the software’s
functionality. Autonomous driving functions that perform satisfactorily on the small test vehicle
are also tested on a larger vehicle to see if the software works for other systems. Furthermore, the
developed software is limited to some autonomous driving actions. This includes actions such
as stopping when a hindrance or a stop sign is detected, driving on a simple road, and parking.
Although these are only a few autonomous driving actions, they are fundamental operations
that can make the autonomous driving system already applicable to different use cases.

Different computer vision methods for object detection have been implemented for detecting
different types of objects such as hindrances and signs to determine the vehicle’s environment.
The software also includes the usage of a line detection method for detecting road and parking
lines that are used for centering and parking the vehicle. Moreover, a bird-view of the physical
world is created from the camera output to be used as an environment map to plan the most
optimal path in different scenarios. Finally, these implementations are combined to build the
driving logic of the vehicle, making it able to perform the driving actions mentioned in the
previous paragraph.

When utilizing the developed software for the driving task, hindrance detection, the result
showed that although the actual hindrances were detected, there were scenarios where block-
ades were detected even though there were none. On the other hand, the developed function
of stopping when a stop sign is detected was highly accurate and reliable as it performed as
expected. With regard to the remaining two implemented actions, centering and parking the
vehicle, the system struggled to achieve a promising result. Despite that, the physical validation
tests without the use of a vehicle model showed positive outcomes although with minor deviation
from the desired result. Overall, the software showed potential to be developed even further to
be applicable in more demanding scenarios, however, the current issues must be addressed first.

i

Preface

First, we would like to thank our supervisor Karl Skretting for his advice and support throughout
the project. Also a special thanks to the University of Stavanger for letting us use Lyspæren as
an area for testing and a workspace with access to tools like 3D printers and laser cutters to be
able to do modifications to the vehicle. Thus, making this project possible. Last but not least,
we would like to thank our family and friends who have supported us throughout the project.

ii

Contents

Abstract i

Preface ii

Contents iii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aim and Objectives . 1

1.3 Limitations . 2

1.4 Methodology . 2

1.5 Thesis Outline . 5

2 Computer Vision and Algorithms 6

2.1 Overview of Computer Vision . 6

2.2 Stereoscopic Vision . 7

2.3 Local Binary Pattern Cascade . 8

2.4 Line Detection with Hough Transform . 10

2.5 Classifying and Merge Lines in Lane Detection 11

2.6 Perspective Transform . 11

2.7 Merging Line Segments . 12

iii

CONTENTS

2.8 Bresenham’s Line Algorithm . 14

2.9 A* algorithm . 15

2.10 Catmull-Rom Spline . 16

3 System Design and Development 19

3.1 System Architecture and Components . 19

3.1.1 Hardware Requirements . 19

3.1.2 Hardware Design . 19

3.1.3 Software Requirements . 22

3.1.4 Software Design . 22

3.2 Computer Vision Techniques for Autonomous Driving 29

3.2.1 Camera Calibration and Rectification . 30

3.2.2 Stereoscopic Vision . 31

3.2.3 QR Code Detection . 33

3.2.4 Stop Sign Detection . 36

3.2.5 Line Detection . 38

3.2.6 Lane Detection . 39

3.2.7 Parking Slot Detection . 43

3.3 Environment Mapping . 46

3.4 Path Planning . 50

3.4.1 Modified A* algorithm . 50

3.4.2 Catmull-Rom Spline . 51

3.4.3 Implementation . 53

3.5 Motion Control . 53

3.6 User Interface Design . 55

iv

CONTENTS

3.7 Testing and Validation . 56

4 Results and Analysis 58

4.1 Evaluation of System Performance . 58

4.1.1 Accuracy of Computer Vision Techniques 58

4.1.2 Accuracy of Environmental Mapping . 66

4.1.3 Accuracy of Path Planning . 67

4.1.4 Reliability of the System . 70

4.2 Comparison with Existing Autonomous Driving Systems 71

4.3 Limitations and Areas for Improvement . 71

5 Conclusion and Future Works 73

5.1 Summary of Findings and Contributions . 73

5.2 Recommendations for Future Research and Development 74

Bibliography 78

Appendices 78

A Github Repository 79

B Functionality Testing of Stereoscopic Vision Calibration 80

C Functionality Testing of Stereoscopic Vision Tuning 86

D Functionality Testing of Stereoscopic Vision Blurring 91

E Functionality Testing of QR Code 98

F Functionality Testing of Stop Sign Detection 102

G Functionality Testing of Lane Detection 108

v

CONTENTS

H Functionality Testing of Parking Slot Detection 114

I Determining Mathematical Functions to Map an Object into a 2D Environ-
ment 119

J Determine the Functionality of Mapping QR Code and Lines 125

K Camera Latency, Motor speeds, and Software frame rate tests 129

vi

Chapter 1

Introduction

1.1 Background and Motivation

In today’s society, autonomous driving technology is widely used in many aspects. For instance,
the most well-known usage of autonomous driving is in self-driving cars. This technology is also
used in other applications for both private and industrial usage. For private application areas,
there are for example robots such as lawn movers and vacuum cleaners that use this technology
to carry out tasks that are simple and often need to be performed. On the other hand, for
instance, in industries with logistics operations, automated driving has been used for internal
logistics such as moving packages in a warehouse. One of the advantages of using autonomous
driving for this use case is that it is possible to increase the employees’ productivity by freeing up
their time for more valuable tasks. Overall, there are a lot of opportunities where autonomous
driving can be applied, both for private and industrial usage.

One of the core technologies of autonomous driving is computer vision. This method has been
used in autonomous driving for tasks such as detecting and classifying the vehicle’s surroundings.
Thus, with the ability to identify their own surroundings, the vehicles can safely navigate around
their environment. Despite that, computer vision used alone in autonomous driving has its
challenges. Nevertheless, it is a fundamental start to the process of developing an autonomous
driving system.

1.2 Aim and Objectives

The aim of this thesis is to develop computer vision-based software for autonomous driving and
implement it on prototype vehicles as a proof of concept for further development of computer
vision in the field of autonomous driving. The core objectives of the thesis are the driving actions
the autonomous driving system should be able to deal with without human interactions such as:

• Detecting hindrances within an appropriate distance in front of the vehicle and reacting
to this information by stopping the vehicle to avoid front collisions.

1

1.3 Limitations

• Detecting stop signs and stopping the vehicle when the sign is within an appropriate
distance, e.g., to indicate in an intersection that other autonomous vehicles are nearby to
avoid collisions.

• Centering the vehicle on a simple road indicated by two-lane lines for autonomous vehicles
to, for instance, move around in marked driving tracks.

• Parking in a desired spot that is indicated by two parking lines and a QR code that can be
used for autonomous vehicles to, e.g., drive to a charging spot, parking spot, or destination
point for moving products in a warehouse.

1.3 Limitations

The automated driving functions that will be developed are limited to the functions listed in
Section 1.2. In addition to these limitations, the proposed solution takes into consideration other
limitations such as:

• The vehicles that will be used to implement the software are simple prototype vehicles.

• The vehicles will be tested in a controlled environment, thus the obtained result may not
translate to real-world scenarios.

• The vehicles will only be driving on a simple road that does not include sharp turns or
intersections.

• The vehicles will only perform perpendicular parking.

• The vehicles will only perform parking in scenarios where only one QR code is visible in
the vehicle’s field of view.

• The vehicle will only be driving in flat environments.

Overall, by following the objectives and limitations of this project, a simple yet operational
autonomous driving system can be achieved.

1.4 Methodology

The project is executed with the following methodology to achieve the objectives of the project.

Data Collection

The test vehicle will use a camera for all the objectives as its primary data collection method
except for hindrance detection which uses two cameras. The cameras will in both cases be
restricted to a front-facing view.

2

1.4 Methodology

Data Analysis

Before the information can be extracted from camera frames, they will go through a calibration
process to remove lens distortions. Thereafter, in some scenarios, the relevant information will be
retrieved from the calibrated camera frame directly. In other cases, additional image processing
methods will be performed before the relevant information is perceptible.

Hardware Design

Although the vehicle’s hardware design has been developed prior to this project, minor modifica-
tions on the hardware needed to be done to improve the accuracy of the vehicle’s motion control.
Different computer-aided design (CAD) software like Fusion 360 and kiCad was used to design
additional components for the vehicles and electronics. These modifications were necessary to
customize the vehicles for the project’s specific applications.

Software Development

Working as a software development team, the project team will utilize a LEAN methodology by
continuously following the cycle of:

• Identifying the needed concept.

• Discussing and planning what would give the most value to the project.

• Implementing the most valuable feature at this time.

• Run tests to get feedback on the result.

This is to optimize development time and other resources [52]. In addition, Github is used as a
version control and project collaboration tool to have a structured way of collaborating.

Scalability

The software is aimed to be modular and scalable. First and foremost, it should be easy to
implement new autonomous actions for the software without any modifications to existing im-
plementations. Furthermore, the software should be able to be utilized for different vehicle
constructions and motion control systems with a minimal amount of modifications of the soft-
ware.

Implementation and Testing

The software implementation will be divided into modules. This makes the software scalable by
making it easier to implement additional autonomous functions as new modules. The modular

3

1.4 Methodology

design also makes it easier to create a set of unit tests for each module to test the core func-
tionality. This will help to locate errors early, as well as secure functionality when refactoring
codes.

Integration tests will be performed as it is an important testing method to see if the software
works as intended when multiple modules are combined. There will also be conducted experi-
mental tests for the different autonomous driving functions and the test results will be used to
analyze and determine essential improvements in the system for future works. The experimen-
tal tests will be first conducted on a small test vehicle. Afterward, the functions that perform
sufficiently will be tested on a larger test vehicle to verify that they can operate for other vehicle
models as well.

Evaluation Criteria

The results of this project’s experimental tests will be assessed against some metrics to determine
their accuracy and reliability, making it easier to conclude if the result of the project is sufficient
and acceptable.

Accuracy

Through the experimental tests, the accuracy of the modules will be tested. The accuracy will
be measured with the criteria that the calculated values should only have a maximum of 10%
deviation from the desired metric information. This number is selected for several reasons:

• For hindrance detection, the accuracy of calculating the distance to the object is not
critical, as long as the interval of distances the vehicle should stop when the object is
within this interval is large enough. However, it is still desirable to approximately know
what interval of distances the vehicle will stop when an obstacle is detected, e.g., if the
vehicle is instructed to stop when an object is observed within 50cm distance from the
vehicle. Then, by using a 10% deviation, it will not affect the result significantly as
the deviation is minimal compared to a higher deviation value. Thus, the result will be
consistent. The same reasoning is valid for stop sign detection.

• For the other objectives such as lane centering and parking, a high deviation value is more
critical as the desired result is more complex. A high deviation value can for example
cause the vehicle to not center itself in the lane, and in the worst-case scenario move out
of the lane. Whereas for parking, a high deviation value can cause the vehicle to park
outside of the desired parking slot, which is also not an ideal outcome. Thus, a maximum
deviation of 10% will ensure that the function of centering and parking the vehicle will
have high accuracy.

Although a maximum deviation of 10% for each module is set as a criterion, it is important
to be alerted that when combining the different modules together, a higher deviation value can
emerge.

4

1.5 Thesis Outline

Reliability

The reliability of the autonomous driving system including the usage of the driving logic and the
computer vision modules is also tested through experimental tests. The system must be reliable
by being predictable and functioning as planned. Therefore, for detecting hindrances and stop
signs, the vehicle should stop a minimum of 90% of the time. In terms of driving between lanes,
it should not deviate more than 10% from the center. Furthermore, it should be able to park at
a specific spot 90% of the time at different start positions. By defining such a high success rate
and low deviation rate, it is possible to be certain that the vehicle will be consistent.

1.5 Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2 - Computer Vision and Algorithms: This chapter gives an introduction and
overview of computer vision, the theoretical basis of computer vision algorithms, and other
algorithms needed for the software.

Chapter 3 - System Design and Development: This chapter presents the system design
in both hardware and software aspects, the use cases of the algorithms given in Chapter 2 in
the software, the motion control of the vehicle, and tests that have been performed to determine
and evaluate the result of the project.

Chapter 4 - Results and Analysis: This chapter presents the result of the tests that were
introduced in Chapter 3 and analyzes the test result of each test to evaluate the performance of
the solution.

Chapter 5 - Conclusion and Future Works: This chapter summarizes the findings of the
project and deduces a conclusion based on whether the objectives have been achieved. It also
proposes future works based on the project’s result.

5

Chapter 2

Computer Vision and Algorithms

This section will first present an introduction and overview of computer vision. Thereafter, the
algorithms and techniques that will be used to develop the software for the autonomous driving
system, including computer vision and path planning algorithms are presented.

2.1 Overview of Computer Vision

Computer vision is a subfield of computer science that aims to extract useful information from
images [46]. Through computer vision, computers can analyze and interpret the world visually,
enabling them to determine their environments and take appropriate actions based on various
situations. Examples of computer vision techniques include image segmentation, object de-
tection, facial recognition, edge detection, pattern detection, image classification, and feature
matching [16]. These techniques are used to extract the desired information from the images in
different scenarios.

Computer vision is used in various fields. In the context of autonomous vehicles, the subfield is
critical for detecting and classifying objects within the vehicle’s field of view. However, computer
vision is not limited to the automotive industry. It has also found applications in the medical
field where it has been used for X-ray testing [24] and detecting different types of cancer. For
instance, Howard Lee and Yi-Ping Phoebe Chen’s study, “Image-based computer-aided diagnosis
system for cancer detection,” demonstrates how computer vision can improve the accuracy of
cancer diagnosis [15].

Computer vision is also being integrated into the retail industry. One example is Amazon Go,
a chain of self-checkout stores that rely on computer vision, sensor fusion, and deep learning
technologies to track the products customers purchase [44]. As such, computer vision has the
potential to revolutionize not only transportation but also various industries and applications.

6

2.2 Stereoscopic Vision

2.2 Stereoscopic Vision

Stereoscopic vision is the brain’s ability to perceive three-dimensional shapes and forms from
visual inputs [41]. By using this method on vehicles, it allows the vehicles to also be able to
detect three-dimensional shapes. Thus, it can accurately measure the location of objects and
obstacles in the physical world, which is essential for making informed decisions regarding the
best path to navigate around them [4]. In computer science, this process is referred to as stereo
vision when a computer does these calculations.

Although the method has the capacity of performing the previously mentioned action, for this
project a simpler use case of stereoscopic vision will take place in Section 3.2.2. The goal of
using stereoscopic vision in this project is to only detect objects that get too close in front of
the vehicle, not measuring the distance of the objects. This approach is sufficient enough to
showcase that this method can prevent collisions and other accidents which results in improving
the safety of autonomous vehicles.

Even though stereoscopic vision is ideal for object detection, it has limitations in real-life sce-
narios. For instance, objects must have texturally rich features and be of a different color from
the surface background [57], making them unsuitable for some depth scenarios. Therefore, other
methods may be necessary for achieving more accurate results for specific tasks like calculating
the distance to lines.

Concept

The concept of stereoscopic vision is akin to human visual perception, where we rely on the
simultaneous input of two eyes to determine depth and distance to objects. In the case of
stereoscopic vision, two cameras are used instead of eyes, and a triangle is created between the
object and the cameras to calculate the object’s distance. This process is visualized in Figure
2.1.

In the figure, point P of an object is detected in both image frames given by the two cameras.
The distance between the cameras is the baseline, which can be adjusted for improved accuracy
or view by reducing or increasing the baseline. For each image frame, the object with the
point P is spanned over an area in the frame. Thus in this area, there exist numerous pixels
that correspond to positions on object P which the other image frame can also spot although
at a different pixel position. These pixels are then matched to their corresponding pixels in
the other image frame. To expedite the computational process, only the pixel at the epipolar
line is checked which is the section where the corresponding pixel is likely to be located in the
image. This line represents the intersection of the epipolar plane with the image plane, where
the epipolar plane is the plane defined by object P and the epipoles 1 [1].

1An epipole is where the center of one camera shows up in the picture of another camera.

7

2.3 Local Binary Pattern Cascade

Figure 2.1: P represents a point on the desired object for detection. p1 and p2 represent the point P
in the left and right camera images. The baseline is the distance between the two cameras. The green
line in the image indicates the epipolar line, which is where the epipolar plane intersects with the image
plane defined by point P and the epipoles.

Once the corresponding points on the images have been identified, the positional difference
between the corresponding points is used to calculate the distance to the object. In short, objects
closer to the cameras give a greater positional difference in camera images. This positional
difference can then be used to generate a disparity map2. This map is thereafter used to create
a depth map3 that can be used to determine the distance to the object. More details about the
process of creating the different maps will be presented in Section 3.2.2.

2.3 Local Binary Pattern Cascade

The ability to detect signs is crucial for autonomous driving systems because different signs can
be used to inform what actions the system need to take. In order to detect these signs, the
computer vision method called object detection can be used. For autonomous driving system
use cases, high computational speed and accuracy are needed in object detection to achieve
real-time performance with it such that systems can react as soon as possible. In this project,
as one of the objectives is to detect stop signs and react to them, the following method of object
detection presented in this section has been used in Section 3.2.4 to detect and locate the stop
signs.

There exist many approaches to achieve object detection, for instance, Convolutional Neural
Network is a widely used approach. However, Local Binary Pattern Cascade is selected to be
used in this project because of its simplicity in creating the model with less need for GPU
resources and time-consuming training compared to the previously mentioned approach [3]. A
consequence is that the result of using LBP is slower detecting and less accurate than the CNN
methods [23]. However, the decline in speed and accuracy is tolerable in this project because

2The disparity is the distance between a pixel and its corresponding horizontal match in the other image [40].
3A depth map is an image reflecting the depth of the objects in the frame.

8

2.3 Local Binary Pattern Cascade

the tested environments are controlled.

By using LBP Cascade, it is possible to provide the method with a camera frame and in return,
obtain the location of the signs if there exist any in the camera frame. The locations obtained
can thereafter be used to calculate the distance from the vehicle to the different signs if the sizes
of the signs are known. Thus, the vehicle can then react to stop signs if the signs are within a
certain distance.

The original version of LBP is based on calculating the 3-by-3 neighborhood threshold of each
pixel based on the center pixel of the 3-by-3 [6]. Table 2.1 shows the LBP calculation for a 3-by-3
neighborhood. Table 2.1a is the original 3-by-3 neighborhood while Table 2.1b is the threshold
calculated by comparing each element in the neighborhood to the center. If it is larger or equal
to the center, then the threshold will be one, otherwise zero. Table 2.1c is the weighted binary
value for each cell which is multiplied by the corresponding value in Table 2.1b. The result of
the multiplications is shown in Table 2.1d. Summing up the cell values in Table 2.1d gives the
LBP value of the center cell. In the following example the sum is equal to 209.

6 5 2
7 6 1
9 3 7

(a) Original

1 0 0
1 0
1 0 1

(b) Threshold
1 2 4

128 8
64 32 16

(c) Weight

1 0 0
128 0
64 0 16
(d) Result

Table 2.1: An example of an LBP calculation.

For each 3-by-3 neighborhood of the image, an LBP value is calculated with the method above.
Therefore, a histogram can be made out of all these LBP values which counts how many times
the same LBP value is calculated. By comparing the different histograms, it is possible to detect
the different types of features such as edges or corners, etc [45].

After calculating all the features, the next step is to classify which feature is relevant as most of
the features that have been calculated are irrelevant for detecting the desired object. A training
method called AdaBoost that can be used to classify which feature is relevant is therefore uti-
lized. The training method uses positive and negative images which are respectively images with
the desired object and images without the desired object to detect the applicable features. Con-
sequently, all the relevant features detected by AdaBoost combined together will be a classifier
model that can be used to detect the desired object [28].

The last step in this algorithm is the concept of Cascade of Classifiers. Instead of applying all
the relevant features to every sub-part of the image, the features are divided into different stages
for classifying. For example, if the first stage’s features do not pass on a region of an image,
then the next planned stages on that region are aborted. By aborting, the method saves time
in applying the remaining features as it already knows that it is not the desired object. Those
regions which have all features passed are the desired object and thus the location of the target
has been obtained [28].

9

2.4 Line Detection with Hough Transform

2.4 Line Detection with Hough Transform

In this project, two of the objectives concern adjusting the autonomous vehicle to physically
indicated lines: centering the vehicle within two-lane lines and parking the vehicle at a spot
enclosed by two parking lines. Line detection is therefore necessary. By performing line detection
on an image frame, the method will return all the visible lines in the frame which can then be
used for further use cases. The newly mentioned method will therefore be used in Section 3.2.6
and Section 3.2.7 as one of the steps to determine lane lines and parking lines.

An approach to achieve line detection is to utilize two image processing methods, edge detection
and Hough transform [32]. Besides these two methods, there exist image processing methods
that are prerequisites for edge detection and also image processing methods that are optional
to improve the performance of the two main techniques.

For edge detection, there are multiple algorithms for the same purpose. For instance, the Canny
edge detection method is favorable for edge detection in noise conditions [51]. Thus, as camera
frames usually includes noise, the Canny edge detection is selected to be used. The algorithm
is divided into five steps: Noise reduction, gradient calculation, non-maximum suppression,
double threshold, and edge tracking by Hysterisis. More information about the different steps
can be found at [27] as this is out of the scope of the thesis. However, it is important to note
that the first step Noise reduction uses Gaussian Blur to reduce noise on the image and that
the Hysterisis step consists of two threshold values, minVal and maxVal. The edges that have
intensity gradient values above maxVal are considered real edges. The edges that are below
minVal are discarded while those that are between these two thresholds are considered edges
too if they are connected to the edges that are above maxVal [27].

There are multiple steps that need to take place before applying the edge detection method
to the image. First, the image should be converted to grayscale as this is a prerequisite for
edge detection [2]. After performing the edge detection, the output of the edge detection step
should go through an extra image processing method called morphological closing. This is a
morphological transformation method used to fill elements without affecting the shape and size
of the elements [34]. The method is based on performing two other morphological transformation
methods. Dilation is performed first in the process and is an image-processing method used to
grow the edges of an image. Afterward, erosion is carried out to discard pixels near the edges
[34]. By applying morphological closing to the Canny output, the lines given from the Canny
edge detection method will be more visible. Thus, it will improve the result of the next step.

After performing edge detection, the next step is to perform the Hough transformation. This
is a transformation technique that can be used to detect straight lines. In short, the method is
based on creating a parameter space using either the Cartesian or polar coordinate system and
counting how many times an intersection point is intersected. Thereafter, a threshold is defined
and it holds the value of how many times an intersection point needs to be intersected for it to
be determined as a point. More information about how the transformation works can be found
in [32].

Finally, although the algorithm returns all visible lines in the image frame, a drawback of
this algorithm is that in cases where the physical lines are wide, the algorithm will return
multiple lines which together actually represent one physical line. The algorithm, therefore,
needs additional merging or classifying algorithms to resolve this problem.

10

2.5 Classifying and Merge Lines in Lane Detection

2.5 Classifying and Merge Lines in Lane Detection

As mentioned in Section 2.4, the line detection method has the drawback of returning multiple
lines that present the same physical line when the physical lines are wide. The following algo-
rithm will therefore be used in Section 3.2.6 to resolve this drawback. By using this algorithm,
the set of lines returned by the line detection algorithm given in Section 2.4 will be reduced to
two lines that correspond to the lane lines.

The solution is proposed by Kanagaraj, et. al [10] and is based on using the value of the slope
to determine one single line for each lane line from a set of lines. By defining a slope value range
for each side of the lane, it is possible to classify the lines into these two groups. Thereafter,
the average line of each group is calculated and used as the representative of the lane lines. The
algorithm, however, it is notable that the method is susceptible to noise lines4 if the slope range
is too wide, which can cause the result lines from this algorithm to deviate from the physical
lines.

2.6 Perspective Transform

An approach for centering the vehicle within a road is to create a point in the center at further
parts of the path and use this point as the destination for the vehicle. However, when two-lane
lines have been detected, depending on the vehicle’s position, the two-lane lines might be of
different sizes. This makes it difficult to determine the center of the road at further places as
the camera image is in a three-dimensional view. The perspective transformation method which
can be used to change the perspective of an image or a part of an image to a desired perspective
will be used in Section 3.2.6 to resolve this problem and determine this point.

The transformation method is based on creating a transformation matrix and using this matrix
to convert points to points in the desired perspective. The details of the linear algebra part of
creating the transformation matrix and the derived equations for usage will not be presented as it
is beyond the thesis’ scope but can be read about in Chapter 2.2 from [18]. However, it is essential
to mention that the matrix needs eight points to be created: four points defining the source
perspective and four points defining the destination perspective. Furthermore, Equation 2.1 can
be used to transform a single point from the source perspective to a destination perspective [31].

(
x′, y′) =

(
M11x + M12y + M13
M31x + M32y + M33

,
M21x + M22y + M23
M31x + M32y + M33

)
(2.1)

Equation Description

– (x’, y’): the transformed point
– M: transformation matrix
– (x, y): the source point that needs to be transformed

4Noise lines are the same as irrelevant lines in the image frame.

11

2.7 Merging Line Segments

2.7 Merging Line Segments

In Section 3.2.6, the proposed method of classifying and merging lines given in Section 2.5 was
presented to resolve the drawback of the line detection method given in Section 2.4. However,
the proposed solution only takes into account cases where there are only two physical lines with
different slope signs. On the other hand, in the use case of parking, there might exist more
than two physical parking lines. In addition, the two parking lines which together indicate
one parking spot might have the same slope sign depending on the vehicle’s orientation to the
lines. The following approach of merging two close lines presented by Tavares and Padilha [55]
will therefore be implemented in Section 3.2.7 to resolve the drawback from the line detection
algorithm.

The method is based on comparing two lines with each other and returns a merged line if the
method’s criteria are met. It starts with defining a centroid xG, yG which the merged line will go
through, and the orientation θr of the merged line by using Equations 2.2 and 2.3, respectively.
The two lines that are being evaluated for merging are defined by two points each. a and b
are defined as the points for the first line and c and d are defined as the points for second line.
The length and orientation of the first line are defined as li and θi. Similarly, the length and
orientation of the second line are defined as lj and θj .

xG = li(ax + bx) + lj(cx + dx)
2(li + lj)

yG = li(ay + by) + lj(cy + dy)
2(li + lj)

(2.2)

θr =

liθi+ljθj

li+lj
, if |θi − θj | ≤ π/2

liθi+lj

(
θj−π

θj

|θj|
)

li+lj
, otherwise

(2.3)

It is now possible to define a new coordinate system G where the centroid is the origin and the
orientation calculated earlier is the orientation for the x-axis of the new coordinate system. The
four given points representing the two lines can be converted to this new coordinate system by
using the equations from Equation 2.4.

δXG = (δy − yG)sinθr + (δx − xG)cosθr

δY G = (δy − yG)cosθr − (δx − xG)sinθr
(2.4)

An example of the setup, after the points have been converted to the new coordinate system G,
is shown in Figure 2.2.

12

2.7 Merging Line Segments

Figure 2.2: An example with the new coordinate system G represented by the red lines. The black
dashed line on the XG-axis is the merged line. The black lines define the two lines defined by respectively
a and b, and c and d.

For the following calculations, the converted values of the four points will be used in the cal-
culations, denoted with a G in the subscript. During the merging of two lines there exist three
scenarios as presented in Figure 2.3.

(a) No overlap (b) Total overlap (c) Partial overlap

Figure 2.3: An example of the three different cases when comparing two lines.

The first case is when the two lines have no overlap which can be presented by condition 2.5. lr is
the length of the merged line where the merged line. The start and the end point of the merged
line are defined by the two furthest orthogonal projections onto the new coordinate system’s
x-axis of the four points a, b, c, and d.

|lr| ≥ (|aXG
− bXG

| + |cXG
− dXG

|) (2.5)

The two criteria of proximity for accepting the merging of the two lines are shown in Equation
2.6. dMAXXG

and dMAXY G
are two self-defined threshold to accept the merge. The higher these

values are, the further apart the lines can be but still within the criteria for merging. δYG and
κYG

are the two furthest points from each other relative to the new coordinate system’s y-axis.

13

2.8 Bresenham’s Line Algorithm

|lr| − (|aXG
− bXG

| + |cXG
− dXG

|) ≤ dMAXXG

and
|δYG − κYG

| ≤ dMAXY G

(2.6)

The second case is when the two lines totally overlap each other. This case can be presented by
the condition given in Equation 2.7. The criterion of proximity for accepting the merging of the
two lines in this case is the second criterion in Equation 2.6.

|lr| = |aXG
− bXG

| or |lr| = |cXG
− dXG

| (2.7)

The third case is when the two lines only partially overlap each other. This case can be presented
by the condition in Equation 2.8. Similar to case two, the criterion of proximity for accepting
the merging of the two lines is the second criterion in Equation 2.6

|lr| < (|aXG
− bXG

| + |cXG
− dXG

|) (2.8)

Thus, if the two lines do not conform with the criteria in its case, then the lines will not be
merged.

Although this method resolves the drawback of the line detection algorithm in the use case
of parking, it does not propose a solution to classify the different lines but solely focuses on
merging. This limitation is therefore the reason why this method has not been used in Section
3.2.6 to resolve the same drawback as the method will presumably return more than two lines
because of noise lines. By using the method given in Section 2.5 instead, it is possible to classify
and merge the lines with fewer and simpler calculations. Furthermore, the most fundamental
equations and description of the algorithm have been included to show what the implementation
in Section 3.2.7 has been based on. However, a more descriptive description of the method can
be found at [55].

2.8 Bresenham’s Line Algorithm

In Section 3.3, a two-dimensional matrix will be used to present the vehicle’s environment. To
map the lane and parking lines from Section 3.2.6 and Section 3.2.7 respectively into the two-
dimensional matrix, the lines need to be converted into a list of integer points corresponding to
the matrix indexing approach. Bresenham’s line algorithm is therefore suitable for this use case
as it can convert two endpoints of a line to a list of points that combined together represents
the original line. Thus, this algorithm is used in Section 3.3 to map lines that are represented
by two endpoints into the two-dimensional environment.

The algorithm is based on selecting each subsequent pixel of the line using integer calculations
based on the least distance between the pixel and the actual line within the two endpoints
[9]. Since further details about the algorithm are beyond the scope of this study, only a brief
description of the algorithm has been presented here. More information on the algorithm can
be found in [17].

14

2.9 A* algorithm

2.9 A* algorithm

Considering the system will use a path-planning approach to help with decision making such as
letting the system plan ahead in case no decisions can be made based on the information from
the real-time moment [53]. A path-finding algorithm is therefore needed. There exists different
graph-traversal and path-finding algorithms that are suited for this use case. For example, the
Depth-first-search algorithm or Dijkstra’s algorithm can be both used to find a path between a
desired start and endpoint [53]. However, the A* algorithm is selected to be used in this project
because of its simplicity and optimal efficiency [7]. A descriptive outline for this approach with
modifications will take place in Section 3.4.

The A* algorithm is a modification to Dijkstra’s algorithm and is optimized for a single destina-
tion [53]. Moreover, it is a shortest-path algorithm that creates a graph with an edge between
the eight neighbors. In this project, a matrix is used, where each square represents a graph
node. Figure 2.4 illustrates an example of an A* algorithm use case.

(a) Path without hindrances. (b) Path with hindrances.

Figure 2.4: Result of using the A* algorithm to calculate a path between two points.

Matrix description

Green square is the start node.
Purple square is the end node.
Black square are the hindrances.

The calculation process of the A* algorithm is illustrated in Figure 2.5. The algorithm is based
on calculating three values to decide the next node in the path. The first value denoted as
g is the distance from the start to each specific node. This value is calculated by each node
adding the distance to the parent with the parents’ distance g. The second value denoted as h is
calculated concerning the direct distance to the end position with no regard for obstacles, which
is found with the use of the Pythagoras theorem. The third value denoted as f corresponds to
the sum of the g and h values of each node and defines the total cost to travel to that node,
which is used to find the cheapest path.

15

2.10 Catmull-Rom Spline

Figure 2.5: The values calculated for each node around the start node illustrate the calculation of the
g value, h value, and f value. The red triangle showcases the distance from the green-outlined square to
the purple square.

2.10 Catmull-Rom Spline

The path that is obtained by the A* algorithm presented in Section 2.9 consists of points
corresponding to squares in the two-dimensional matrix environment map in Section 3.3. By
moving through these squares, it will cause the vehicle’s movement to be strained to eight
different movements corresponding to each neighboring square. It is therefore preferred to move
between the squares in a smoother way which is not too sharp and not too flat. In addition, as
each square in the matrix is identified using indexes and will correspond to a real distance, a
continuous path is needed for performing motion control on the vehicle. Thus, the Catmull-Rom
spline is used in Section 3.4.2 to define a path with a smooth trajectory that is continuous and
goes through the points given by the shortest path algorithm for path planning.

Splines, in general, are formed by several curve segments with each one being defined by a set
of points. There exist several types of spline such as B-spline, Bezier spline, and Hermite spline,
the last being the most suitable for this use case because this type of spline passes through
all the points that have been used to calculate the spline. Although this characteristic is not
necessary for environments without obstacles, however, in environments with obstacles, a path
defined by a spline type without this characteristic could lead to collisions. Therefore, by using
Hermite splines in path planning, the possibility of the spline function being deviated from the
desired path is removed. However, a drawback with this type of spline is that generally when
calculating the spline, the derivative is needed to be able to calculate it [11]. The Catmull-Rom
which is a specialized version of the Cardinal spline which itself is a type of Hermite spline, on
the other hand only needs four points to define a curve [42]. Thus, easier computations can be
made. Furthermore, the Catmull-Rom spline also takes into consideration that there should not
be too flat sections and not too sharp sections which are suitable for use cases like pathing.

As previously mentioned, the Catmull-Rom spline defines each curve segment using four points:

16

2.10 Catmull-Rom Spline

P0, P1, P2, and P3, as illustrated in Figure 2.6.

Figure 2.6: An example of a Catmull-Rom spline. The blue line is the curve made by the four points
P0, P1, P2, and P3. The green lines is structured by intersecting linear lines through t0, t1, t2 and t3,
which are parameterized points from Equation 2.10.

The curve constructed by the four points can be calculated using a set of equations as shown
in Equation 2.9 [58]. The set of equations consists of three levels, denoted subsequently as A,
B, and C in order. Level C represents the final curve. The calculation starts from the first level
and is then iteratively inserted into the next level until the final curve C is obtained.

C = t2 − t

t2 − t1
B1 + t − t1

t2 − t1
B2

B1 = t2 − t

t2 − t0
A1 + t − t0

t2 − t0
A2

B2 = t3 − t

t2 − t0
A2 + t − t1

t3 − t1
A3

A1 = t1 − t

t1 − t0
P0 + t − t0

t1 − t0
P1

A2 = t2 − t

t2 − t1
P1 + t − t1

t2 − t1
P2

A3 = t3 − t

t3 − t2
P2 + t − t2

t3 − t2
P3

(2.9)

Parameter t0 from the equations above is equal to 0 while t1, t2 and t3 are calculated by using
Equation 2.10 [58]. The parameter α from Equation 2.10 is a value between 0 to 1 where the
different values of α correspond to different types of Catmull-Rom splines. The value α set to
0.5 corresponds to the centripetal version. This Catmull-Rom spline type guarantees no self-
intersections within the curve segment which is suitable in pathing use case. The t parameter
in all the equations above is defined as the values between t1 and t2 and depends on how many
points are desired on this curve segment.

ti+1 = |Pi+1 − Pi|α + ti (2.10)

17

2.10 Catmull-Rom Spline

In order to fully understand how Equation 2.9 and Equation 2.10 are derived, a greater under-
standing of the algorithm is needed, which is beyond the scope of the thesis. However, as it will
be used for the implementation in Section 3.4.2, it has been included in this section to illustrate
what the implementation will be based on. More information about the equations can be read
at [58] and [14].

18

Chapter 3

System Design and Development

3.1 System Architecture and Components

This section presents the system architecture and components that have been developed or
selected for usage to achieve the objectives.

3.1.1 Hardware Requirements

Certain hardware is required to be able to test the software practically. The proposed hardware
requirements are therefore as follows:

• Vehicle with a size and weight that can be easily physically stopped if it goes out of control
when testing.

• Vehicle with motors that can be autonomously controlled through the onboard computer.

• A low-cost, small form-factor computer with decent performance that can run on a battery
power source as an onboard computer.

• A setup of one and two camera sensors, preferably cameras with low latency.

3.1.2 Hardware Design

Based on the hardware requirements, and a previous bachelor thesis construction of a vehicle
given in [54], the following hardware has been used in testing and development.

Vehicle models

The software will first be implemented and tested on the previous bachelor thesis construction of
a vehicle, referred to as the desktop test vehicle henceforth. This setup uses the differential drive

19

3.1 System Architecture and Components

for steering with limitations on camera hardware because of its size. Thereupon, if the software
works as intended, it will be implemented on a larger test vehicle, referred to as small car test
vehicle, which uses servo steering and higher resolution cameras. More information about the
two vehicles setup is described in the following paragraphs.

Desktop Test Vehicle

A modified version (Figure 3.1) of the proposed vehicle from the bachelor thesis is used. As most
parts of the desktop test vehicle were 3D-printed or laser cut replacement parts for modifications
could be manufactured quickly. The modified vehicle consists of a plastic plate body mounted
on top of two stepper motors with wheels for movement and a ball caster wheel for balance.
This setup uses the differential drive for steering. For more precise motion control, it is modified
to use two stepper motor controllers and two NEMA17 stepper motors instead of the proposed
gearbox motors. The motors and motor controllers are powered by a small lightweight 14 V
drone battery. The main body plate carries the drone battery, the stepper motor control board,
and the single-board computer. To improve the view of the camera it is mounted on top of a
platform. With this setup, a small-scale, lightweight, indoor usable prototype vehicle is obtained.

Figure 3.1: The desktop test vehicle

Small Car Test Vehicle

The small-size car (figure 3.2) is a 4-wheel children’s bicycle that uses stereo steering instead of
differential drive. It controls turns with a servo motor, and uses a stepper motor to drive the

20

3.1 System Architecture and Components

chain. This frame can carry more weight and is more suitable for attaching other sensors, as well
as using stereoscopic vision for object detection. It is also closer in both size and configuration,
to larger pre-existing three- and four-wheel electric bicycles developed in this region. With its
size, it is suitable for driving on “Sykkel og aktivitetsgården” in Sandnes to test the centering
of lane function. In addition, it would in most ways be equivalent to the full-scale electric
three- and four-wheel bicycles, thus if the software works on this model then, then the software
theoretically is possible to use any functional logic from this project on other existing similar
vehicles.

Figure 3.2: The small car test vehicle

Single Board Computer

As proposed in the previous bachelor thesis a budget option, the Raspberry Pi 4b single-board
computer [43] has been used as the platform board. It features a 64-bit 1.5 GHz ARM CPU,
is energy efficient, has multiple USB ports for connecting cameras, etc, features a feature-rich
GPIO including SPI for connecting, has built-in Wi-Fi, and is available with either 1, 2, 4, or
8 GB RAM depending on the variants. The Raspberry Pi OS (Debian Bullseye at the time of
writing) has a rich set of available software packages including OpenCV and Python 9. With a
more powerful board or given hardware acceleration, the real-time performance would improve.
However, within the scope of the project, the Raspberry Pi 4b should perform well enough to run
the software such that the small-scale vehicle is within the speed limit that is set. In addition,
with the limited board performance of the Raspberry Pi 4 compared to other powerful boards,
writing efficient code will become an important area of focus.

21

3.1 System Architecture and Components

Camera

Any Linux-supported USB or SPI camera can be used. With the desktop prototype vehicle,
Suyin HD cameras with a resolution of 1280x800 have been used. The camera was chosen
primarily because of the cost and the size to fit the vehicle. For the small car test vehicle, size
was less of an issue, thus a Logitech web camera with a resolution of 1920x1080 was therefore
used.

3.1.3 Software Requirements

To create an autonomous driving system there is a need for a ’vehicle control software’ running
on the onboard computer to gather camera inputs, perform calculations and control the vehicle.
In addition for testing purposes, a software with a graphical user interface for visualizing the
gathered information and remotely monitoring the vehicle and the vehicle control software is
also needed. The graphical user interface software should also be able to utilize the different
computer vision modules without affecting the vehicle control software.

3.1.4 Software Design

Based on the software requirements, the following design has been implemented to accommodate
the requirements.

Programming Language and Libraries

OpenCV will be one of the main libraries used in the software for performing computer vision
techniques. In terms of programming language, for rapid prototyping and ease of use, Python was
chosen as the main programming language to be used. The reason behind this selection is that
it is a popular programming language in machine learning because of the good OpenCV-Python
bindings despite the fact that it is an interpreted language. As interpreted languages run on a
virtual machine (interpreter), an implementation of a software in this language would be slower
than similar software in a compiled language such as Rust and C++. However, as most of the
demanding algorithms and calculations for computer vision will be performed by OpenCV C++
modules, Python’s slower calculation performance will be less noticeable. Moreover, the software
relies on threads for asynchronous tasks. Python’s reduced performance in multi-threading due
to GIL is less ideal, but GIL reduces some of the complexity and pitfalls of creating multi-
threaded software (More about this in the next paragraph) [47]. As performance is outside
the scope of this bachelor thesis, the reduced complexity makes Python a good choice. And,
any well-working algorithm developed can also be ported to C++ or Rust at a later stage for
improved performance. The graphical user interface is built by using Qt as it is feature-rich and
offers useful tools for interface creation. Furthermore, Poetry is used as a dependency manager
for easy installation and package creation, and to keep track of libraries and library versions.
To keep consistency in code formatting across the codebase, PyLint is used both locally and in
the version control system to ensure readability.

22

3.1 System Architecture and Components

Threads, timers and callbacks

As some tasks have to be performed at the same time, or out of order from the main program
loop, some tasks have been put in threads or timers. Multi-threading in Python is not multi-
threading because of GIL (Global Interpreter Lock), a mutex that allows only a single thread
to hold the control of the interpreter [47]. By using GIL, it simplifies writing multi-threaded
code as GIL will work as a global mutex to protect code and make it thread-safe. However, it is
not as efficient as running threads in various other programming languages like C++, Rust, or
Go. Running threads can still be extremely useful in some places, where code should run in a
loop, waiting to act as soon as the thread observes a change. In addition to threads, timers are
used where the task should be performed at a set time interval. And callbacks are used when
the software is waiting for a change to happen before performing an action or updating the user
interface.

Communication

For communication between the headless control software run on the single-board computer on
the vehicle and the development GUI run by the developer on a computer, basic UDP sockets
are used for communication. The development GUI receives sensor data and motor output from
the vehicle and can send instructions to the vehicle. It is possible to stream camera frames from
the vehicle and see data output and overlays on the frames by running the same computer vision
modules on them as performed on the single-board computer.

The headless control software opens a socket server when it starts up, listening on a port for
incoming connections. Depending on configuration it will also open socket servers on configured
ports for streaming camera frames. If there are connected clients, it will send data to all the
connected clients.

The development GUI computer control system uses a thread to connect to the driving software
and listen for incoming data. All incoming sensor data is placed in a database, and at a set
interval, a timer will trigger a function to update the display. When connecting to the socket
camera server a thread will spawn to listen for incoming frames. Whenever a frame is received it
will run the selected OpenCV functions, and display the new image in the GUI with or without
overlay lines to highlight what is found. A label is also used to display relevant data.

An initial performance test on streaming frames K showed that with ideal conditions for perfor-
mance, running a stripped-down Python script that would only stream image frames to a single
client, it achieved up to 5 FPS.

OpenCV Videostream

OpenCV video capture method was used for capturing frames using a video stream. An unex-
pected delay was observed from a physical change done to the headless control software. This
was noticed while the headless control software was running at a rate of one frame being pro-
cessed per second, and it would take five frames before the change was observed in the QR-code
logic. This delay is caused due to the buffer size in OpenCV [38] [48]. To counteract this delay,

23

3.1 System Architecture and Components

a loop to clear the buffer was added.

Overall Architecture

The code has a modular design to make it reusable between the headless control software for
the vehicle and the development GUI software. It is also designed to be modular in the as-
pect of communication type for motor control, communication, and other tasks. There is an
abstract class for car communication, and separate modules for serial communication (UART),
stepper motor communication (GPIO output and PWM), and CAN Bus communication. Ad-
ditional communication modules can easily be created and added by using the abstract class as
a template. This allows the implementation of computer vision algorithms to be unaffected by
hardware modifications. Thus, by performing hardware modifications, the autonomy logic does
not need to be rewritten.

Both the headless control software and the development GUI are launched through the __main__.py
file. It takes in any given command line argument. The command line arguments can modify
the path for the standard configuration file, theme/Qt design file, storage option, and the se-
lection of window mode for the GUI. The information in the standard configuration file (and
the installed dependency modules) determines if the software will run development GUI or the
headless control software. The file is a YAML type of configuration file and a template for this
file can be found in the GitHub repository given in Appendix A. Furthermore, all the com-
puter vision and calculation modules are shared for both the development GUI and the headless
control software. The overall flow of the software is presented in Figure 3.3.

24

3.1 System Architecture and Components

Figure 3.3: The flowchart of the starting file (__main__) for the software. The program flow for the
blocks Run Headless Mode and Create UI Window are presented respectively in Figure 3.4 and Figure
3.5.

Headless Control Software

The headless control software is made to be run on an embedded system in the vehicle. It
is modular, and using the configuration file it is possible to configure what communication
modules are going to be used to communicate with motors and sensors. It starts by loading
and initializing the required modules and then starts a loop where it gathers a new frame from
the camera. For each frame, it will run the appropriate computer vision modules depending on
the current state. The term “Frames Per Second” (FPS) is used to describe the performance
of the system for how many frames the software can take and process per second. In terms of
this software, that calculation refers to how many times this loop is processed per second. A
flowchart describing the flow of this headless control software is given in Figure 3.4.

25

3.1 System Architecture and Components

Figure 3.4: The headless control software flowchart (main_headless). The purple box Motion Control
state machine refers to Figure 3.6.

Development GUI Software

The Qt-based development GUI software is made to be used for testing computer vision modules,
controlling the vehicle’s actions, and gathering valuable data from the vehicle while it is running
the headless control software. The gathered data can be useful in debugging situations where
the vehicle does not act as expected.

As shown in Figure 3.5, the software initializes the graphical interface by filling the Qt interface
with options in QtComboBox drop-down lists and checking for locally connected cameras on
the computer to connect to. This includes reading available states from an enumerator found in
the shared Definitions.py file, and reading IP addresses and ports for possible socket servers
(vehicles) from the configuration file. In addition, it also prepares a timer for updating text
output from the computer vision modules.

26

3.1 System Architecture and Components

After being initialized, the user interface can be used to run computer vision modules on the
camera frames from a connected camera, or from the vehicle over a UDP connection. It can
control the vehicle and receive data from the vehicle software over a network connection. In
addition, the graphs of relevant logged data will be presented to the user. The design for this
user interface is presented in Section 3.6.

Figure 3.5: The development GUI software (main_window) flowchart

Modules

The software will include a collection of modules for different computer vision techniques and
other relevant concepts needed for autonomous driving functions. The different modules are
listed below with a short description of their usage:

• Stereoscopic Vision: Uses depth detection method to do hindrance detection.

• QR Code Detection: Uses object detection method to detect QR-code which represents
empty parking slots.

• Stop Sign Detection: Uses LBP Cascade object detection technique to detect stop signs.

• Line Detection: Uses image processing methods such as edge detection to detect lines.

• Lane Detection: Detects the lane lines by using the Line Detection module, and calcu-
lates a point that is in the middle of the lane that can be used as a destination point for
the vehicle to stay in the lane by using perspective transformation.

• Parking Slot Detection: Uses the QR Code Detection module to determine a region of
interest and uses the Line Detection module to extract the lines from the region of interest.

27

3.1 System Architecture and Components

• Environment Mapping: Creates a two-dimensional matrix that represents the vehicle’s
environment and maps lines and objects into this environment.

• Path Planning: Uses a combination of a shortest path algorithm, spline, and the Envi-
ronment Mapping module’s information to calculate path information.

Headless control software driving logic

The vehicle driving logic consists of six states. The first two are used for testing purposes and
the last four are the objectives of the thesis:

• WAITING: The vehicle will not drive when in this mode, but will only print out infor-
mation about objects or lines detected.

• MANUAL: Manual control of the vehicle from the development GUI software.
Manual driving

• STEREO: The vehicle will drive with a constant speed when it is in this mode as long
as it does not detect any hindrances from the Stereoscopic Vision module.

• STOPPING: The vehicle will drive with a constant speed when it is in this mode as long
as it does not detect any stop signs from the Stop Sign Detection module. The vehicle
will reduce its speed when a stop sign is detected and will stop the movement completely
when it is within a given distance.

• DRIVING: The vehicle will use the Lane Detection module to detect the lane lines and
define a point in the center of the lane. Thereafter map this point to the 2D environment
and use the Path Planning module to calculate a path from the vehicle to the point. The
calculated path will then be used to adjust the motors as needed.

• PARKING: The vehicle will use the Parking Slot Detection module combined with the
QR Code Detection module to detect the parking slot. The parking slot lines will be
mapped as obstacles in the Environment module and the QR code will be the desired
destination in the Path Planning module. The calculated path will then be used to perform
motion control.

The flow chart of the proposed driving logic is presented in Figure 3.6. The driving logic
accommodates the problem highlighted in Section 3.3 by implementing an action queue to save
calculated decisions from the previously given image frame. Moreover, the driving logic focuses
on constantly using the new frame if there is enough information to calculate a new path such
that deviations from the motion control are taken into account for the next driving actions.

28

https://youtu.be/9NcIFYDiEQI

3.2 Computer Vision Techniques for Autonomous Driving

Figure 3.6: Flow chart of the driving logic. The yellow box refers to the process before the Motion
Control state machine in Figure 3.4.

3.2 Computer Vision Techniques for Autonomous Driving

This section provides a comprehensive overview of the usage of the computer vision techniques
and algorithms presented in Chapter 2. First and foremost, this section covers the process of
calibrating the camera. Following that, the object detection implementations, which surround
Stereoscopic Vision, QR Code Detection, and Stop Sign Detection, are presented. Finally, the
section presents the development and implementation of the Line detection module and the use
of Line Detection in Lane Detection and Parking Slot Detection modules.

29

3.2 Computer Vision Techniques for Autonomous Driving

3.2.1 Camera Calibration and Rectification

Camera calibration is a crucial step for computer vision applications that needs to retrieve metric
information of a camera frame as it removes lens distortion [13]. It is a process for estimating a
camera’s internal and external parameters 1 that can be used to nullify image distortions. Two
common types of distortion in cameras are radial distortion and tangential distortion, which can
cause straight lines to appear curved and introduce curvature to objects in a photo [35]. The
following steps describe the process of calibrating the cameras to resolve this. The steps are
based on a calibration pattern approach involving a checkerboard pattern with sharp gradients
in two directions for precise localization. A more detailed explanation is given in [50] and [37].

1. Define physical world coordinates for the checkerboard

To define physical world coordinates for the checkerboard, each point is assigned a set of physical
coordinates (X, Y, Z) corresponding to a pixel location (u, v). As the checkerboard lays flat,
Z can be arbitrarily chosen as 0 for every point. The equal spacing of the checkerboard allows
each 3-dimensional point to be easily defined using a reference point (0, 0). Finally, multiple
images are taken from different angles and distances to improve the calibration.

2. Find 2-dimensional coordinates of the checkerboard

The next step is to project a 3-dimensional world into a 2-dimensional image using func-
tions from OpenCV’s library. The first step is to find the corners of the checkerboard [20]
with the cv2.findChessboradCorners()2 function as presented below. The output of the pre-
vious function is then used in the function cv2.cornerSubPix()3. The goal of this func-
tion is to return an array of refined corners with sub-pixel accuracy. By using the function
cv2.drawChessboardCorners()2 and the output obtained from the previously performed func-
tion as the input in this new function, the calibration can be illustrated as shown in Figure
3.7.

1Information about the parameters can be found at [26].
2The parameters for the functions cv2.findChessboradCorners(), cv2.drawChessboardCorners(),

cv2.undistort(), cv2.drawChessboardCorners(), cv2.stereoCalibrate(),
cv2.stereoRectify() and cv2.initUndistortRectifyMap() are described in [26].

3The parameters for the function cv2.cornerSubPix() are described in [30]

30

3.2 Computer Vision Techniques for Autonomous Driving

Figure 3.7: An illustration of the distortion on the checkerboard image using the OpenCV inbuilt
function cv2.drawChessboardCorners() to draw the corners.

3. Calibrate the camera

Finally, to obtain a matrix that can be used to correct the iamges, the cv2.calibrateCamera()2

is used with the calculated information from the previous steps. The obtained matrix is then
used with the function cv2.undistort()2 to resolve the distortions mentioned at the beginning
of this section.

3.2.2 Stereoscopic Vision

As described in Section 2.2, stereoscopic vision uses two cameras to be able to detect obstacles.
First and foremost, to achieve this, a stereo calibration is performed to calibrate the cameras
concerning each other. This is done as the output is dependent on the correlation between
the cameras. Various methods from OpenCV are then used to compare the two images from
each camera. Because of its many applications, the implementation is not groundbreaking
and the majority of the methods are inspired by [19] and [39]. However, changes are done to
accommodate this project.

Stereo Calibration and Rectification

Stereo calibration is the process of determining the intrinsic and extrinsic parameters of a
stereo camera system [22]. By calibrating a stereo camera, we can accurately determine the
3D position of objects in the scene by triangulation, which is a fundamental step in stereo-
scopic vision. Additionally, accurate stereo calibration can improve the accuracy and robust-
ness of other computer vision tasks such as depth estimation, object tracking, and structure
from motion. The solution is based on using the two OpenCV functions, correspondingly,

31

3.2 Computer Vision Techniques for Autonomous Driving

cv2.stereoCalibrate()2 and cv2.stereoRectify()2. The result from these functions is used
with the cv2.initUndistortRectifyMap()2 which creates a map for the rectifications so the
rectification can be performed on new images by remapping.

OpenCVs remap function remaps4 the images based on the calculated stereo rectification map.
With this function, there is multiple interpolation flags that may be used [31]. For this case,
the INTER_LINEAR that is a bilinear interpolation is used because of the shorter computing
time than other functions like Lanczos4. It is also less prone to blurring than nearest-neighbor
interpolation function, and it is less sensitive to noise and distortion than a more complex
function like bicubic or Lanczos4. By using this function, all new images can easily be rectified.

Creating a disparity map

Moreover, the rectified images are the input to a stereo block-matching algorithm which is
used for computing disparity maps in stereo vision [56]. There are different block-matching
algorithms that can be used. In this project, a semi-global block matching algorithm was
utilized because it creates a more complete disparity map compared to a local block matching
algorithm [21]. However, it is more computationally expensive compared to the local area block-
matching algorithm [21]. More information about the semi-global block-matching algorithm and
the local area block-matching method can be found at [25] and [8] respectively. The disparity
map is created by calling the compute() method from the cv2.stereoSGBM_create() class with
the stereo images as input.

Disparity Map to Depth Map

A depth map can be created by dividing the disparity map with a constant “M”. This constant
is calculated by registering the disparity value of an object at certain distances that combined
corresponds to a linear system that can be solved. The OpenCV function cv2.solve() is used
to solve this linear system.

Baseline

As mentioned in Section 2.2, the baseline is the distance between the two cameras. Setting
the baseline of a stereoscopic vision system to the average interpupillary distance of humans
is a common practice [12]. This provides a reasonable starting distance for detecting obstacles
in front of a vehicle. Increasing the baseline improves depth resolution, while decreasing it
improves accuracy [12]. However, in the current implementation, it is not necessary to increase
the baseline for improved depth resolution, as the goal is to only detect obstacles that could be
a hindrance close to the vehicle. Similarly, a decreased baseline is not necessary for detecting
object shapes accurately. Therefore, to keep the baseline at a reasonable distance, the cameras
will have the recommended baseline of 90mm.

4The process of taking pixels from one place in the image and locating them in another position in a new
image [36].

32

3.2 Computer Vision Techniques for Autonomous Driving

Detecting Obstacles

Because the primary use of this technology in this project will be detecting obstacles at a close
distance in front of the vehicle, the generated disparity map will be filtered by a minimum and
a maximum distance. The maximum distance should depend on the speed of the vehicle. When
the vehicle is driving slowly, a lower range is needed as opposed to a higher speed where a larger
range is needed. This is so that the vehicle has time to stop before it hits the hindrance. The
minimum distance is at what minimum distance it should detect the obstacles and should in
this project be set to 0 cm as the goal is to detect obstacles close to the car. Thereafter, the
contours of the filtered disparity map are extracted and iterated through. The size of the closest
contour is checked and will return the depth if it is significant enough. If not, the next contour
is selected and reviewed.

Implementation

A class StereoscopicVision has been made as an implementation of stereoscopic vision with
the following methods:

• read_stereo_map: Gets camera calibration and rectification information from an XML
file.

• get_disparity: Returns the disparity map created from left and right stereo images.

• obstacle_detection: Calculates the depth, position, and size of the detected contour.

• get_data: Returns the data from obstacle_detection with a boolean return value stat-
ing if an object could be found.

3.2.3 QR Code Detection

This section focuses on QR code recognition as one of the objectives is to park at a spot that
is indicated by a QR code. The detected QR codes will be later on used to detect unoccupied
parking spots and as the destination point in path planning. OpenCV’s built-in functions are
used for QR code detection, which identifies the corners’ positions. These corner points are then
utilized to calculate the angle and distance from the vehicle to the parking spot.

Theory

The four points in Figure 3.8 are used to calculate the sides of the squared QR-Code, which is
then used to calculate the distance to the sign.

33

3.2 Computer Vision Techniques for Autonomous Driving

A

B

C

D

point 0point 1

point 2 point 3

Figure 3.8: Illustration of a QR-Code.

When the QR code is viewed from an angle, as illustrated in Figure 3.9, the height-width ratio
increases, which affects the perceived size.

QR-Code

45 ◦

camera
A

B

C

D

point 0
point 1

point 2
point 3

Figure 3.9: Left figure shows the QR-Code seen from a 45-degree angle. The figure on the right shows
how the QR code would look from a two-dimensional perspective when looked at a 45-degree angle.

To calculate the angle, the following equation is used where ratio is the height-to-width ratio of
the QR code and the height value used to calculate the ratio is the largest height value:

angle = (1 − ratio) ∗ 90 (3.1)

To calculate the distance, a reference value of the QR code at a specific distance denoted as
yoffset is necessary. Equation 3.2 is used to calculate this reference value and the variables in
the equation are determined by physically measuring the specified values in the equation at a
certain distance.

yoffset =
heightpx

heightmm

∗ distancemm (3.2)

The distance in the y-direction is then calculated by finding the ratio between the QR code height
and the measured pixel height, thereafter multiplying it by the yoffset as shown in Equation 3.3.

34

3.2 Computer Vision Techniques for Autonomous Driving

ydistance = heightmm

curHeightpx

∗ yoffset (3.3)

The heightmm is the height of the QR code and curHeightpx is the measured number of pixels
in the y direction of the QR code. The multiplication factor yoffset is calculated in Equation
3.2. Similarly, the x-distance is calculated using the following equation:

xdistance = curWidthpx

widthpx
∗ xoffset (3.4)

where curWidthpx is the current width of the QR code in pixels, widthpx is the measured width
of the QR code in pixels at a specific position and xoffset is the pixel offset from the center of
the camera.

Implementation

To detect the QR-Code, the methods from the OpenCV library presented in Code 3.1 have been
used.

Code 3.1: OpenCV methods to detect QR-codes.
1 qcd = cv.QRCodeDetector()
2 retval, decoded_info, points, straight_qrcode = qcd.detectAndDecodeMulti(img)

Parameters Description

retval: Indicates if a QR code is detected.
decoded_info: Contains the decoded information about the detected QR code.
points: Contains the corner points.
straight_qrcode: Contains an optional output vector of the image including rectified
and binarized QR codes.

A class QRGeometry is made to calculate QR code metrics and includes the following methods:

• get_width: Calculates the width of the QR code.

• get_height: Calculates the height of the QR code.

• get_angle: Calculates the angle to the QR code.

• get_distance_y: Calculates the distance to the QR code in the y direction.

• get_distance_x: Calculates the distance to the QR code in the x direction.

Another class QRCode has been made with the following method:

35

3.2 Computer Vision Techniques for Autonomous Driving

• get_data: Implements Code 3.1 and returns the data about the QR code, which includes
the distance and angle to the QR code that is calculated by using class QRGeometry.

3.2.4 Stop Sign Detection

To be able to create the model based on the Local Binary Pattern method described in Section
2.3 in order to detect the stop signs, the guide by OpenCV at [29] has been used.

The initial step is to create two text files. One includes information about which image is the
negative image. The other one includes which image is the positive image and the location of
the object in the image. An example of the information file for negative images and positive
images are respectively shown in Code 3.2 and Code 3.3.

Code 3.2: Example of information file for negative images.
1 ...
2 negative/1.png
3 negative/2.png
4 negative/3.png
5 ...

Code 3.3: Example of information file for positive images.
1 ...
2 positive/1.jpg 1 12 22 323 332
3 positive/2.jpg 1 190 82 300 281
4 positive/3.jpg 2 10 71 137 148 183 58 106 100
5 ...

To be efficient and not manually write down each negative image’s filename, a simple Python
code has been made to create this information file for negative images. This code is presented
below.

Code 3.4: Code for creating a text file containing the path of each negative image in the folder with all
the negative images.

1 import os
2

3 def gen_desc_for_neg():
4 with open('bg.txt', 'w') as f:
5 for filename in os.listdir('./negative'):
6 f.write('negative/'+ filename + '\n')
7

8 if __name__ == "__main__":
9 gen_desc_for_neg()

When selecting positive and negative images for training the following standards have been used:

• Positive images should include the sign in different background settings.

36

3.2 Computer Vision Techniques for Autonomous Driving

• Negative images should have similar background settings as the positive images, but with-
out the sign.

Parameter Selection

All the parameters mentioned in this section vary from the amount of positive and neg-
ative images used in the training process. The parameters used in the different OpenCV
applications are described at [29]. Suggestions from [5] have been taken into consideration
when selecting the set of parameters to create the model.

For the information file of positive images, OpenCV includes an application that iterates through
each image in the folder of positive images and lets the user mark the position of the desired
object on the image. The command used in a terminal for this application is shown below.

opencv_annotation --annotations=info.txt --images=/positive/

After creating the positive information file, this file is used in another application of OpenCV
to create a vector file that contains positive samples of the positive image collection. The usage
of this feature is shown below.

opencv_createsamples -info info.txt -w 24 -h 24 -num 1000
-vec pos.vec

The vector file and the information for the negative images are then used in another OpenCV
application for training the model. The usage of this feature is shown below where pos.vec is
the vector file and bg.txt is the information file for the negative images.

opencv_traincascade -data cascade/ -vec pos.vec -bg bg.txt
-w 24 -h 24 -numPos 1000 -numNeg 2000 -numStages 7
-maxFalseAlarmRate 0.5 -minHitRate 0.995

The output of this step is the model in the XML format that is used in the OpenCV function
cv2.CascadeClassifier() to perform the concept of Cascade of Classifiers to detect the signs
as shown in the following code snippet. The minSize defines the minimum pixel size of the stop
signs the model is able to detect.

Code 3.5: Using the model to detect the stop signs.
1 cascade = cv2.CascadeClassifier('cascade.xml', minSize=(X, X))
2 signs = cascade.detectMultiScale(frame)

Furthermore, to calculate the distance from the vehicle to the stop sign, the same method to
determine the QR-code distance given in Section 3.2.3 has been used.

A class StopSignDetector has thereafter been constructed to utilize the cascade model. The
class includes these methods:

37

3.2 Computer Vision Techniques for Autonomous Driving

• detect_signs: Uses Code 3.5 to detect the signs.

• get_distance: Calculates the distance to the stop sign by using Equation 3.2 and Equa-
tion 3.3.

• show_signs: Draws a rectangle around the signs on the image.

3.2.5 Line Detection

The implementation of detecting lines for the use case of parking and centering the vehicle is
based on applying a set of functions from OpenCV that corresponds to the theory presented in
Section 2.4. The code snippet of this implementation is presented below.

Code 3.6: Image processing methods to detect lines.
1 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
2 gaussian_blur = cv2.GaussianBlur(
3 gray,
4 (kernel_size, kernel_size)
5)
6 canny = cv2.Canny(gaussian_blur, low_treshold, high_treshold)
7 erode = cv2.erode(dilate, (kernel_erode, iterations=num_iter_erode)
8 dilate = cv2.dilate(erode, (kernel_dilate, iterations = num_iter_dilate)
9 lines = cv2.HoughLinesP(

10 canny, rho, theta, threshold, np.array([]),
11 minLineLength, maxLineGap
12)

A brief explanation of Code 3.6 is as follows:

• Line 1: The function cv2.cvtColor() converts the input image to grayscale as a prerequi-
site step for edge detection by using the parameter value cv2.COLOR_BGR2GRAY to indicate
that it is a grayscale conversion.

• Line 2-5: The function cv2.GaussianBlur() uses the Gaussian Blur method to reduce
the noise in the image. The parameters for this function are described in [33].

• Line 6: The function cv2.Canny() performs the Canny edge detection method on the
input image. The parameters for this method are described in [30].

• Line 7-8: The function in Line 6 cv2.erode() starts the process of morphological closing
by performing the morphological transformation method erode on the input image. There-
after, the output of erode is in Line 7 used in the function cv2.dilate() to perform the
second morphological transformation method. The parameters for these two methods are
described at [33]. Although OpenCV provides a single method for morphological closing,
as the implementation aims at the possibility of changing parameters independently for
cases where one method needs to be applied more than the other, individual methods have
been used instead.

• Line 9-12: The function cv2.HoughLinesP() retrieves the line in the input image by using
the Hough transformation. The parameters for this method are described in [30].

38

3.2 Computer Vision Techniques for Autonomous Driving

Parameter Selection

All the parameters mentioned in Code 3.6 vary from use case to use case and therefore
are selected through the try-and-fail method for each use case.

A class LineDetector has been constructed to include the previously presented implementation
and other necessary operations. The class includes the following methods:

• get_region_of_interest: Returns the whole image as the region of interest. An ab-
stract method to indicate applications of LineDetector can overwrite when another region
of interest is preferable.

• get_lines: Includes the implementation given in Code 3.6 to retrieve the lines in an input
image.

• show_lines: Shows the lines on the image based on lines given from get_lines.

3.2.6 Lane Detection

One of the objectives of the project is to keep the autonomous driving vehicle centered on
the road when driving forward. Therefore, the system needs to be able to detect the lane
lines which present the road in order to make further calculations and achieve the previously
mentioned objective. The line detection method from Section 2.4 will therefore be used as one of
the steps to detect the lane lines. However, in order to be able to detect the lane with the least
possible error, the two steps, defining the optimal region of interest and classifying lines, must
also be performed. Furthermore, to achieve the mentioned objective, an approach for centering
the vehicle on a road is to create a point that is at further away from the vehicle. This point
can then be used as the destination for the vehicle. The goal of the vehicle is to reach this point
as this means it is now in the center of the road. Thus, the detected lane lines are needed to
calculate this point in addition to the perspective transformation method given in Section 2.6.

Region of Interest

When driving forward on a road, there might exist other objects in the camera’s field of view. By
performing the line detection immediately on the whole camera’s field of view, a large number
of the returned lines are of the surroundings and not of the lane lines. These are therefore not
relevant for detecting the lane lines. Furthermore, having a larger set of irrelevant lines will
cause the step of classifying lines to be less accurate. An optimal region of interest is therefore
needed to avoid this problem.

Since the camera is placed on the vehicle at a height above the ground, the lane lines will
approximately form a triangle. The region of interest will therefore have the same form. However,
the lane lines might not be within the triangle which expands from the two bottom corners of
the camera frame if the lane is too wide. An extra rectangle added to the bottom of the triangle
can be used so that the whole lane line is included in the region of interest. The size of the
rectangle and triangle is adjusted based on the lane width and the camera height above the
ground.

39

3.2 Computer Vision Techniques for Autonomous Driving

To extract the region of interest from the image, a mask is made out of the previously mentioned
region and thereafter applied using the bitwise AND operation between the mask and the original
image. The region of interest should be white on the mask while the other regions should be
black. The reason behind this is due to the fact that white is (255, 255, 255) in RGB, meaning
in bits white is all ones. By doing the AND operation on the regions, the result is the original
values. Meanwhile, black is (0, 0, 0), meaning in bits black is all zeros. By doing the AND
operation on the black regions, the result is equal to the mask, meaning this part will only be
black. An example to visualize this operation is shown in Figure 3.10.

(a) Original image (b) Region of interest

(c) Mask (d) Result

Figure 3.10: The steps of extracting the region of interest using masking.

Classifying Lines

After extracting the region of interest, the line detection method from Section 3.2.5 can be
used to retrieve only lines within the region of interest. The set of lines obtained through the
line detection method is thereafter classified by using the slope value method given in Section
2.5. Two ranges for each lane line group are defined based on the fact that the origin of the
coordinate system of OpenCV is in the top left corner. The first range corresponds to a positive
slope value, implying it is on the right side of the vehicle. The second range corresponds to a
negative slope value, which means it is on the left side. Figure 3.11a visualizes this established
classification of lines. From the figure, it is possible to see that the lines that correspond to the
left lane line (red and green) both have negative slope values. On the other hand, the lines that
correspond the right lane line (blue and purple) both have positive slope values.

40

3.2 Computer Vision Techniques for Autonomous Driving

(a) Classifying lines into two groups (b) The average lines of the two groups

Figure 3.11: The steps of determining the lane lines from a set of lines.

Afterward, for each group, the average slope and intersection of the lines belonging to the group
are calculated. The result of doing this calculation for the two groups is the average lane lines
that respectively are the left lane line and the right lane line as shown in Figure 3.11b.

Center Difference

The difference between the center of the lane and the center of the camera can be calculated by
using the two-lane lines. This value is used to display it on the user interface software for an
approximation of where the vehicle is in the lane. The center of the camera frame can be found
by dividing the width of the frame in two. For the center of the lane, it is possible to calculate
this center using one point on each line that is closest to the camera. Defining the point on the
left line as (x1, y1) and the point on the right line as (x2, y2) the equation for this calculation is
as shown below:

diff = x1 + x2 − x1
2 (3.5)

If the result of Equation 3.5 is negative, it corresponds to the center of the vehicle being to the
left of the center of the lane. In contrary, if the result is positive, then it corresponds to the
center of the vehicle being to the right of the center of the lane.

Checkpoint using Perspective Transformation

By using the perspective transformation method presented in Section 2.6 and the detected lane
lines, it is possible to calculate the point that will be used as the destination for the vehicle
to center itself on the road. In this scenario, there exist two perspectives: the 3D 1-point
perspective, which is the original view seen in the camera frame, and the 2D world, which is
the detected lane itself seen from above such that the endpoints of the lane lines correspond to
the corners in this perspective. These perspectives are respectively shown in Figure 3.12a and
Figure 3.12b. First, the original frame is converted from the 3D perspective with the detected
lanes into the 2D perspective by defining the width of the 2D world frame as the difference

41

3.2 Computer Vision Techniques for Autonomous Driving

between p′3 and p′4 in the x-value. These two points are the two closest endpoints of the lane
lines as shown in Figure 3.12a. The height of the frame on the other hand can be an arbitrary
value depending on the desired distance from the vehicle to the point. The x value of the point
will be half of the width while the y value is arbitrary as this value also depends on the desired
distance away from the vehicle. Thereafter, to convert the point that has been calculated in the
2D perspective to a point in the 3D perspective, Equation 2.1 is used. The visualization of the
steps are presented in Figure 3.12

(a) Original image frame in the 3D perspective
with the two detected lane lines.

(b) Convert to 2D perspective with the four end-
points of the two-lane lines as the frame corners.

(c) Define a point in the 2D perspective which is
in the center of the lane.

(d) Convert the point from the 2D perspective to
the 3D perspective.

Figure 3.12: The steps needed to define a point that is in the center of the lane in the original frame
in 3D perspective. The blue dashed line presents the center of the lane. The red circles illustrate the
endpoints of the two-lane lines. The black thick lines represent the lane lines. The grey lines represent
the border of the frame. The green circle presents the point in the center of the lane.

Implementation

A class LaneDetection has been made as an implementation for this module. The methods in
this class are based on the previously mentioned theory and are listed and described below:

• get_region_of_interest: Uses Numpy’s logical AND function to retrieve the triangle
region of interest.

• get_average_lines: Converts lines presented by two points to a line presentation using
slope and intercept by using Numpy’s polyfit method. Thereafter classifies the lines using
the slope value and calculates the average line of the left and right groups.

• get_line_coordinates_from_parameters: Converts line representation from slope
and intercept to two points.

42

3.2 Computer Vision Techniques for Autonomous Driving

• get_diff_from_center_info: Calculates the difference between the camera center and
the lane center.

• get_next_point: Calculates a point on the center of the lane that is at further parts of
the road defined by two lane lines by using perspective transformation.

• get_lane_line: Retrieves the lane lines from an image presented in coordinate form by
using get_average_lines and get_line_coordinates_from_parameters.

3.2.7 Parking Slot Detection

Another objective of the thesis is to park in a spot indicated by a QR code and two parking
lines. Like Lane Detection, the Parking Slot Detection module also needs to utilize the Line
Detection module to detect the parking lines. Furthermore, as mentioned in Section 3.2.3, the
QR code will be used as a destination point for path planning when parking. On the other hand,
the parking lines will be used to define the shape of the parking spot. By perceiving the parking
lines as obstacles in path planning, it is also possible to avoid driving onto the lines or that the
ending position is in such a way that the wheels of the vehicle are on the parking lines.

Region of Interest

First, the region of interest is the whole image as it should be able to detect the QR code
anywhere on the image. After the QR code is detected, the region of interest is reduced to being
below the line that goes through point 0 and point 1 in Figure 3.8. An example of this is shown
in Figure 3.13. The same method as in Lane Detection with bitwise masking is then used to
extract the region of interest.

(a) QR Code detected (b) Extracted the region of interest

Figure 3.13: Example of a region of interest for detecting parking lines. The red marks in (a) present
the points 0 and 1 in Figure 3.8 of the QR code and the blue line represents the line that goes through
the two points.

43

3.2 Computer Vision Techniques for Autonomous Driving

Merging Lines

After identifying the desired region of interest, the method of detecting lines from Section 3.2.5
will be used to retrieve lines in the given region of interest. The set of lines returned by the line
detection needs to be merged by using the algorithm in Section 2.7. This is due to the result
from the line detection might return one physical line as multiple detected lines as mentioned
in Section 2.4 and shown in Figure 3.14a. The proposed solution in the previously mentioned
section is therefore used to achieve the desired outcome as shown in Figure 3.14b.

(a) Without merging (b) With merging

Figure 3.14: Example of merging closed parking lines. In subfigure (a) there are two blue lines in each
red oval. In (b) the two lines from (a) are now represented by one line.

Determine the Relevant Parking Lines

With the system using a shortest path algorithm for decision-making like mentioned in Section
2.9, the QR code must, first of all, be enclosed within the two parking lines that indicate the
empty spot. In addition, an extra line indicating another obstacle between the edge of the two
parking lines on the side to which the QR code is the closest to is needed for the path planning
algorithm. This is to create a path in which the vehicle will not end up in the back of the QR
code. This extra line is shown in Figure 3.15 as the orange line which passes through the points
(x2, y2) and (x3, y3).

Although the project is limited to parking when only one QR code is detected, it does not
eliminate the possibility of there might exist other parking spots without a QR code. Thus,
there might be more than two parking lines in the camera’s field of view. The two relevant
parking lines enclosing the QR code, therefore, need to be determined among all the parking
lines to be able to create the extra obstacle line. Since each line is represented by two endpoints,
the endpoint that is the closest to the QR code needs to be determined. From Figure 3.15, it
is possible to see that the point closest to the QR code and furthest away from the camera for
each line is the one with the minimum y-value of the two points if we define the origin of the
axis to be from the top-left. These points are marked with yellow circles in the figure.

44

3.2 Computer Vision Techniques for Autonomous Driving

Figure 3.15: The idea behind determining the relevant lines of a parking line. The green lines are the
relevant lines of the free parking slot.

Based on p0 and p1 from Figure 3.8, the x-value of these two points can be used to compare with
the yellow points’ x-values to determine the left and right parking line. The following equation
can be used to calculate a difference value that can be used for this comparison where X will
be the x-value of one of the yellow points and P will be the x-value of either p0 or p1.

diff = X − P (3.6)

Furthermore, from Figure 3.15, it is possible to perceive that point (x2, y2), which represents
the left parking line, is the closest point to p0’s of the lines on the left side of p0. Similarly,
it is possible to see that point (x3, y3) which represents the right parking line, is the closest
point to p1 which is on the right side of p1. Based on the equation, the previously mentioned
observations and the fact that the x-axis in OpenCV’s image coordinate system starts from
the left of the image, it is possible to conclude this for p0. The closest point to p0 will have
the minimum difference value that is positive. Whereas the closest point for p1 will have a
minimum difference that is negative. Thus, these two closest points that are determined by the
two previously mentioned criteria represent the two relevant lines enclosing the QR code.

It is important to note that this method may not give accurate results if there exists noise or
irrelevant lines with endpoints that are closer to the QR code than the parking lines. This will
cause the algorithm to determine the incorrect lines as the relevant lines. In this project, the
parameters of the line detection method given in Section 3.2.5 have been used to reduce the
amount of noise and irrelevant lines as a resolution for the previously mentioned problem.

45

3.3 Environment Mapping

Implementation

A class ParkingSlotDetection has been made as an implementation in this regard. The
methods that are included in the class are listed and described in the following list:

• get_closest_line: Retrieves the two lines that represent the parking lines enclosing the
QR code.

• get_region_of_interest: Gets the region of interest using the QR Code Detection
module and Numpy’s bitwise AND operation.

• get_parking_lines: Retrieves all the lines in the image in the region of interest and
merges them together if they are close enough by using the class MergeLines that is im-
plemented based on the theory from Section 2.7.

• get_parking_slot: Combines the methods above and the QR Code Detection module
to retrieve the two lines closest to the QR code. In addition, it also returns all the parking
lines.

3.3 Environment Mapping

One of the main challenges with autonomous driving is the problem of determining the actions
needed to take to traverse to the destination point with regard to the vehicle’s environment. A
way to cope with this is the use of live measurements. For instance, in centering the vehicle within
a road, a regulator based on the difference from the center can be used to correct its position.
Another method, which is the approach used in this project, is to map the three-dimensional
environment view that the vehicle’s camera has, into a two-dimensional environment map with
an aerial perspective. By using this approach, the two-dimensional environment map and a
desired destination point are used to determine a path that the vehicle should follow to arrive
at the destination. This method takes into consideration the challenges associated with the
vehicle’s field of view. For example, there are cases where the vehicle is not able to retrieve useful
information from its camera, e.g., only one lane line is detected when trying to center the vehicle
on the road as shown in Figure 3.16. With the use of path planning based on the environment
map, the next several decisions are calculated well before the execution. Thus, in cases where no
useful information can be retrieved, it can still continue forward based on the already calculated
path from path planning, meaning it is not always dependent on live measurements, unlike
regulators. Generally, environment map are used to continuously map new detected objects to
the current map while still preserving the previously mapped objects which are no longer visible
for the vehicle. However, as the project is an introduction to autonomous driving, a simpler
approach of utilizing the map has been implemented by limiting the environment map to be
reset on every new view as this is sufficient enough to perform path planning in the project’s
use case.

46

3.3 Environment Mapping

Figure 3.16: The blue vehicle in the figure is equipped to detect both lines and adjust itself accordingly.
However, in the green vehicle’s position, the camera can only detect one line, leaving it unable to align
itself from the real-time information.

A m×n matrix can be used as a two-dimensional environment map for the vehicle’s surroundings
with an aerial perspective. Each index in the matrix corresponds to a desired distance in the
x and y-axis, together defining the vehicle’s environment as shown in Figure 3.17. The desired
distance is used to adjust the accuracy by minimizing or enlarging the map. This is useful
because a sub-pixel accuracy can be computationally demanding for some systems and therefore
a smaller map can be used to reduce the needed computational process.

Figure 3.17: Coordinate system defining the distance to the different objects with the vehicle as the
origin.

To map an object, the distance to the object in the x and y-axis needs to be converted into two
index numbers, one for the row and one for the column. The equations for this conversion are
given as follows:

r = cy − ⌊dy/s⌋
c = cx − ⌊dx/s⌋ (3.7)

47

3.3 Environment Mapping

Equation description

– r: The object’s row index.
– c: The object’s column index.
– cx: The column index of the vehicle, equals to value ⌊n/2⌋.
– cy: The row index of the vehicle equals to value m.
– dx: The distance in the x-axis to the object.
– dy: The distance in the y-axis to the object.
– s: The distance of each index in the matrix.

When mapping the stop signs and QR codes, as the size of both types is known, it is possible to
calculate the distances from the vehicle to the sign as mentioned in Section 3.2.3. For parking
lines and lane lines, the size of the lines can vary. Therefore, it is not possible to use the same
method as the signs. The method of stereoscopic vision, which has been mentioned in Section
2.2 as a method to determine distances to objects, is also not suitable for detecting the distance
to lines as lines are objects without texturally rich features. Thus, with the limitation of flat
landform environments, to calculate the distances for the lines, two mathematical functions is
used.

The first mathematical function describes the correlation between the distance in the y-axis
and the pixel position in the vertical direction. The second mathematical function describes
the correlation between the ratio in the horizontal direction which corresponds to the amount
of distance in mm per pixel and the distance in the y-axis which is found by the previous
mathematical function. If the ratio is constant in all places in the camera view, it is possible to
use Equation 3.8 where offsetx corresponds to the number of pixels between the camera center
and a particular pixel. However, if the ratio is not constant in all places in the camera view,
then a more complex function is needed to resolve the ratio at different distances on the y-axis.

dx = offsetx ∗ ratio (3.8)

The test that was performed to determine these two mathematical functions is given in Appendix
I and is based on regression analysis. The result of the test is then given in Figure 3.18. The
mathematical function for the correlation between the distance in the y-axis and the pixel values
in the vertical direction is presented in Figure 3.18a and is a seventh-degree polynomial. It is
important to note that the function is only fitting at pixels height less than 350. It, therefore,
has its own limitations which need to be cautioned of when used. On the other hand, the ratio
for the x-axis as seen in Figure 3.18b is linearly dependent on the distance from the object to
the vehicle in the y-direction and not constant. This is due to the fact that, the further away
on the y-axis, the wider is the camera’s field of view. It is also important to be aware that these
two mathematical functions are limited to converting objects’ ground positions and cannot be
used to convert pixel points that correspond to positions above the ground.

48

3.3 Environment Mapping

0 100 200 300
0

1,000

2,000

pixel(px)

d
is

ta
n

ce
(m

m
)

distancey

(a) Regression model of the pixel values in the ver-
tical direction against the distance in the y-axis.

0 1,000 2,000
0

0.5

1

1.5

2

distancey(mm)

ra
ti

o(
m

m
/p

x
)

ratiox

(b) Regression model of the ratio in the x-axis
which corresponds to the amount of distance in mm
per pixel and the distance in the y-axis

Figure 3.18: Mathematical functions determined by the test given in Appendix I through regression
analysis.

To use these two mathematical functions to calculate the distances in the y- and x-direction,
first, the equations from Equation 3.9 are used to determine the difference in pixel position from
the bottom-mid of the camera frame by using the camera image width and height.

offsety = height − pointx

offsetx = pointy − width/2
(3.9)

offsety should then be used as the parameter value in the mathematical function that corresponds
to the correlation between the mm distance in the y-axis and the pixel position, which results
in a calculated distance in the y-direction. Afterward, offsety should be used as the parameter
value in the mathematical function that corresponds to the correlation between mm per pixel
horizontal ratio depending on the y-distance. This results in the ratio in the horizontal direction.
The ratio should then be multiplied with the offsetx, resulting in a calculated distance in the
x-direction.

Additionally, when adding a line to the two-dimensional map, only the two endpoints represent-
ing the lines are known. To map the entire line in the two-dimensional environment, Bresenham’s
line algorithm, which is presented in Section 2.8, can be used to achieve this.

A class Environment has been made as an implementation for the two-dimensional environ-
ment map.

• reset: Resets the matrix, only keeping the start node that represents the vehicle.

• get_data: Returns the environment matrix as a copy.

• get_pos: Retrieves the row and column indexes of an object with a given object ID.

• point_to_distance: Converts a point on a frame into distances in both the x and y-axis
using the mathematical functions presented in Figure 3.18.

49

3.4 Path Planning

• insert: Inserts an object with a desired ID corresponding to the object type using distances
in the x and y-axis respective to the vehicle.

• insert_by_index: Inserts an object with a desired ID corresponding to the object type
using row and column indexes.

• insert_objects: Inserts a list of objects into the environment either if it is by distance
or by indexing and uses the Bresenham algorithm if the object is a line.

• remove: Removes an object with a given ID corresponding to the object type from the
environment.

Implementation Note

insert_objects method of Pathfinding class uses a Python package called bresenham
for Bresenham’s line algorithm.

3.4 Path Planning

By using the information from the two-dimensional environment map in the previous section, it
is possible to plan a path to reach a desired destination within the map. Thus, this section will
be about developing a modified version of the A* algorithm to find an appropriate shortest path
from the vehicle to the desired destination. Furthermore, the section will present the usage of
the Catmull-Rom spline with the A* algorithm to achieve a smooth and continuous path.

3.4.1 Modified A* algorithm

When obstacles are present between the start and end points, the path will navigate around
them with the constraint that a hindrance is not a valid node to traverse. However, as Figure
2.4a shows, the path may not be suitable for a vehicle due to sharp turns around hindrances.
Therefore, a modification is made to the A* algorithm given in Section 2.9 to resolve this
problem.

To achieve an algorithm that refrains from creating a path that closely follows the hindrances,
the algorithm can be adjusted to assign a larger f value (referred to as the weight) to surround
nodes in proportion to their distance from the obstacle. Additionally, a penalty can be applied
to further force the path away from the obstacle. Figure 3.19 shows how the surrounding nodes
will be affected. By applying weights and penalties for the hindrances, the path will have a
smoother way around the corners as shown in Figure 3.20. It is possible to argue that a margin
of safety would be a better solution for this scenario which will ensure that the car never touches
the hindrances. However, because the hindrances in this project objective are limited to lines,
this will ensure a smooth path where the consequences of driving too close to a line are none.

50

3.4 Path Planning

(a) Weights around an obstacle. (b) Weight around an obstacle with a penalty of 4.

Figure 3.19: Showcase the weights from a hindrance.

(a) Pathfinding with a weight of 2. (b) Pathfinding with a weight of 2 and a penalty
of 4.

Figure 3.20: Pathfinding with weights.

3.4.2 Catmull-Rom Spline

The obtained path from the modified A* algorithm is then used to calculate the Catmull-Rom
spline presented in Section 2.10 to achieve a continuous path with a smooth trajectory for later
use in motion control. The equations in the previously mentioned section are used to calculate
the spline and the obtained path from the A* star are used as input points to create the curve
segments.

Moreover, for each pair of two points given by the spline, the length between the two points is
calculated. This information is for the vehicle to know how far to move from the first point to

51

3.4 Path Planning

arrive at the next point. On the other hand, for the direction it needs to face to move to the
next point, a new polar coordinate system is defined for easier usage of the information obtained
from the spline in motion control.

Given that the camera is located at the front of the vehicle, the vectors with the same direction
as the camera view should have an angle of 0 degrees. To differentiate between the left and
right sides of the 0 viewpoints, the clockwise side of 0 will be defined as positive and the
counterclockwise side of 0 as negative. The value range is, therefore, (−180, 180], where the 0
angle is on the positive side of the y-axis. The previous and the new polar coordinate system is
presented in Figure 3.21.

(a) Original (b) Converted

Figure 3.21: Two different 0 starts on the polar coordinate systems. The green box represents the
vehicle.

If the angle at a point is given directly to the motion control, then it needs to determine how
much it to turn based on the previous direction to arrive at the new direction. This implies that
the previous angle needs to be saved. To avoid doing this in motion control, this module will
give the angle difference between the current point and the next point based on the new polar
coordinate system definition. Hence, a negative angle difference corresponds to a left turn and
a positive angle difference corresponds to a right turn.

To calculate this angle difference, for each point, the direction vector to the next point on the
spline is calculated. The vector obtained enables the calculation of the direction vector’s angle
based on the initial orientation of the vehicle’s camera. The direction vector has two components,
vx along the x-axis and vy along the y-axis. The adjacent cathetus is represented by vx, while
vy represents the opposite cathetus. To convert the angle of the direction vector to the new
angle definition, the initial step is to employ the values of the components acquired through the
inverse tangent based on the tangent definition. The result of the previous action is thereafter
evaluated in Equation 3.10, where θ is the result of the tangent inverse and θ′ is the desired
direction in the new coordinate system. The equation takes into consideration that the points
given from the spline are inverted on the y-axis. This is due to the matrix the spline is based
on having the first row in the matrix as the furthest away from the vehicle whereas the last row
is where the vehicle is as mentioned in Section 3.3. Finally, after the angles of all the direction

52

3.5 Motion Control

vectors have been calculated, the angle differences are calculated sequentially.

θ′ =
{

90 + θ, if x > 0
90 − θ, otherwise

(3.10)

3.4.3 Implementation

A class AStar has been made as an implementation of the modified A* algorithm with the
following methods:

• find_path: Calculates the path from an object to another object based on two input
object IDs.

• create_weight_matrix: Creates a weighted matrix based on the current environment.

Furthermore, a class Pathfinding has been made as an implementation for path planning with
the methods presented below:

• catmull_rom_segment: Calculates the points of the segment made by four input points
using Equation 2.9.

• catmull_rom_spline: Creates a segment using catmull_rom_segment for each overlap-
ping sequence of four points.

• catmull_t_j: Calculates the t1, t2 and t3 values for the Catmull-Rom spline using Equa-
tion 2.10.

• approx_segment_lengths: Approximates the length of a segment between two points.

• get_angle: Calculates the angle based on the new polar coordinate system given by
Equation 3.10.

• get_angle_diff : Calculates the sequential angle differences from a list of angles.

• calculate_path: Uses the AStar class to calculate the path from one object to another.
Thereafter, it uses the catmull_rom_spline method to calculate the continuous path and
then uses this path to obtain the angle changes and distances to move in each direction
for motion control usage.

• merge_similar_angles: Merges similar angles to reduce redundancy in the list of angles
and times.

3.5 Motion Control

The desktop test vehicle model presented in Section 3.1.2 employs for each wheel a boolean value
to assert which direction the wheel should turn (DIR pin of the stepper driver), and pulses to

53

3.5 Motion Control

step the motor (PWM with 50 % duty cycle on the STEP pin). Thus, a simple motion model
is constructed with respect to the vehicle’s approach to controlling the vehicle’s wheels and the
information obtained from the Path Planning module that consists of an angle change and a
distance that the vehicle should move forward in the new direction.

The motion model is divided into two steps. The first step is to change the direction the vehicle
is facing by turning the vehicle. The proposed solution is to let one wheel turn faster. The
wheel which is going to turn is decided by the angle given by the Path Planning module. Based
on Figure 3.21b, if the angle is positive, then the left wheel should turn faster, and otherwise,
the right wheel should turn faster. The second step is to drive forward at a constant speed in
the new direction. To achieve this, both wheels should turn at the same speed. Figure 3.22
visualizes this motion control approach.

(a) (b)

Figure 3.22: The concept of the motion control model. The black dashed line represents the previous
direction. The red dashed line describes the step of changing direction. The blue dashed line represents
the step of keeping constant speed in the new direction. △d illustrates the distance in the y-axis before
the new desired direction is achieved and r represents the turning radius. (a) and (b) show the relation
between △d and r.

△d in the motion model is affected by the different speeds of the wheels. Less difference in speed
leads to a smaller △d value because the turning radius is smaller. Similarly, a large difference
will lead to a larger △d value because the turning radius is larger. Thus, a large △d can lead to
a large deviation from the destination position. On the other hand, a large difference in speed
can cause unstable driving. A value for the difference in speed which compromises between
these two problems is therefore necessary. Moreover, in the first step, by defining the difference
in the wheels’ speed as a constant value, the turning radius will also be a constant value as a
consequence. The different orientations θ for the vehicle can then be achieved by calculating
the distance the vehicle needs to travel on the basis of the turn radius. The following equation
is used to calculate this distance.

d = 2πr ∗ θ

360 (3.11)

The velocity of the outer wheel during turning is calculated using the PWM value of the outer
wheel. The value is then used to determine the duration the vehicle needs to hold this motor

54

3.6 User Interface Design

power value to travel the previously calculated distance. The duration is achieved by dividing
d by the velocity of the outer wheel.

The small car test vehicle model presented in Section 3.1.2 employs a boolean value to assert
which direction the drive wheel should turn (DIR pin of the stepper driver), and pulses to
control a servo motor connected to the front wheels to adjust the direction. Only motion
control for straight driving was implemented for the small car test vehicle. Straight driving was
implemented in order to test the function of detecting stop signs and reacting to them. However,
due to prioritizing tasks with LEAN methodology and the lack of a need for turning the small
car test vehicle, that functionality was not implemented.

Motion control can be tested separately and manually using a gamepad with the test vehicle in
the MANUAL state to see if it turns as desired.

3.6 User Interface Design

The user interface design of the development GUI software is presented in Figure 3.23.

Figure 3.23: The user interface design of the Qt-based development GUI software. The different colors
and labels describe the different frames in the design.

A description of the design is given below:

55

3.7 Testing and Validation

1. (Yellow) Contains image output area with relevant drawings from selected computer vision
modules.

2. (Blue) Contains check boxes, camera frame output, and camera selection drop-down list
(Combo box/QComboBox). The drop-down list includes the available cameras and net-
work socket camera selection (from an array in the configuration file). By marking the
checkbox the selected camera from the drop-down list is enabled. Frames from Camera 1
are used for the computer vision modules, and frames from Camera 2 are only used for
stereoscopic vision.

3. (Red) Contains a drop-down list (combo box/QComboBox) to select the desired driving
state and a button to send the chosen state to the vehicle. See Section 3.1.4 for information
about the available states.

4. (Green) Contains a drop-down list (combo box/QComboBox) to select a socket and a
button to connect or disconnect the socket connection. A socket connection is needed for
the GUI to send/receive data from the vehicle control software.

5. (Purple) Contains checkboxes to select the computer vision algorithms to run on the
received camera frames. Output data is shown in the output sections.

6. (Yellow) The region with the Data label shows a text description of data from the enabled
computer vision modules.

7. (Yellow) Presents an arrow indicating the direction for the next vehicle movement.

8. (Turquoise) Tab item for the currently shown page (Camera view).

9. (Turquoise) Tab for graphs.

3.7 Testing and Validation

To ensure the quality and functionality of the software implementation, a rigorous testing and
validation process was conducted. The testing process was divided into several steps, including
unit testing, integration testing, and system testing.

Unit tests were created to test small pieces of code in isolation. This enabled the identification
and resolution of any bugs or errors early in the development process. Integration testing was
also made, where the various components of the software were tested together to assess how they
interacted with each other. For example, the parking line detection was tested with the QR code
scanning feature to catch any issues that might arise when different modules were combined.

In addition to the code testing, a validation phase took place after each module was completed.
This phase involved the modules being tested physically based on the objectives of the modules
and ensuring that they performed as required. The results of these tests were documented
in individual test reports to provide a record of the testing and validation process for future
reference. For the different validation tests that were performed, a detailed test report is given
in each of its own appendix chapters. The purposes of each test are as follows:

• Functionality Testing of Stereoscopic Vision (Appendix B, C, D): The purpose
of the tests is to verify the implementation of stereoscopic vision works as intended and

56

3.7 Testing and Validation

determine how it gets affected by noise. First of all, a test was conducted to see how
the lighting affected the calibration process. Thereafter, a test determining the parameter
values takes place to get the best possible results. A final test was conducted, showing
how blurring the images changed the results.

• Functionality Testing of QR Code Detection (Appendix E): The purpose of the
test is to verify the ability to detect QR codes by using the QR Code Detection module.
Furthermore, it is also to determine the detectable distances and angles. Finally, it also
tries to determine the minimum size the QR code needs to be so that it is detectable at
certain distances.

• Functionality Testing of Stop Sign Detection (Appendix F): The purpose of the
test is to verify the ability to detect stop signs by using the Stop Sign Detection module.
Another objective is to determine the relevant range of distance and angle when using the
module. As the module allows one to choose the minimum size of detection based on the
size of the pixels on the camera frame, different values of this minimum size may affect
the relevant range of distance and angle.

• Functionality Testing of Lane Detection (Appendix G): The purpose of the test
is to verify that the Lane Detection module works as intended based on the functions:
detecting lane lines, calculating the distance between the center of the vehicle and the
center of the lane, and providing a checkpoint in the center of the lane. Another purpose is
to determine the uncertainty in the calculation of the center difference and the checkpoint.

• Functionality testing of Parking Slot Detection (Appendix H): The purpose of
the test is to verify the Parking Slot Detection module’s methods work as intended based
on the function: detecting and determining the parking lines that correspond to an empty
slot when a QR code is detected. The test disregards the distance to the QR code, but
rather focuses on the different angles as this will be tested in the QR code test.

• Determining Mathematical functions to Map Lines into a 2D Environment
(Appendix J): The purpose of this test is to determine the mathematical functions for
the method point_to_distance of the Environment Mapping module and the accuracy of
the mathematical functions when used in the method point_to_distance.

• Functionality Testing of Mapping QR Code with Lines (Appendix J): The pur-
pose of this test is to determine how the mapping of QR code and the mapping of lines
operate together for parking path planning.

System integration testing was the final step in the testing process. When performing system
integration testing the software as a complete system was tested to see how well it performs
measured towards the four functional objectives described in Section 1.4. This process is used
to quantify the reliability of the software with the developed algorithms when implemented on
a vehicle.

57

Chapter 4

Results and Analysis

4.1 Evaluation of System Performance

This section will evaluate the system’s performance. This includes evaluating the accuracy of
the computer vision techniques, the system’s reliability, and the system’s speed measured in
frames per second based on the evaluation criteria given in Section 1.4.

4.1.1 Accuracy of Computer Vision Techniques

The different modules will be presented separately based on the presented validation tests in
Section 3.7 to identify the accuracy of the modules.

Stereoscopic Vision

For stereoscopic vision, tests were conducted to tune the module’s parameters and to see how
different light conditions can affect the result of detecting objects.

First, the calibration process is tested, which is given in Appendix B. It was done to see at
which light condition the calibration would give the best results. Different light settings were
tested such as only sunlight, only indoor light, and a combination of sun and indoor light.
Furthermore, different settings of the standard parameters (number of disparities and block
size) were tested such that the results were based on different adjustments. The results showed
that an environment with no glare was preferred as the glare creates noise for the camera. That
means it is beneficial to limit conditions causing glare such as reflective surfaces and direct
sunlight.

The documentation from [26] and [49] indicated that there is a numerous amount of parameters
that can be tuned in order to get a representative disparity map. However, the result from the
test given in Appendix C showed that only adjusting the number of disparities and the block size
gave a better result than adjusting every available parameter. A possible explanation for the

58

4.1 Evaluation of System Performance

parameter adjustment limitation is that the given testing environment is not optimal as it still
contains glare, thus also leading to difficulty in achieving good results with the other parameters
in stereoscopic vision. For instance, the testing photos might not be ideal because of the lack
of patterns in which stereo vision is not well suited as mentioned in Section 2.2. In addition to
the external factors, there were a lot of parameters to tune, which makes this process complex.
Thus, some parameters might not be set to a value which gives an ideal outcome. However,
the results were clear enough to be able to arrive at a conclusion. It showed that the results
when only adjusting the two parameters, the number of disparities and block size, create a more
accurate and descriptive map compared to the result when adjusting every possible parameter.

Additionally, another test was conducted, establishing if blurring the image was beneficial to
the result obtained in the test from Appendix D. The results from this test showed that a small
amount of blur gave a smoother disparity map because it reduced the noise in the image.

Furthermore, with the use of the results from the tests, a depth map was created. One example
result is illustrated in 4.1, showing the left stereo image and the resulting depth map.

(a) The blurred left image. The green text is the cal-
culated distance to the object.

(b) The depth map. The white box, indicated by a thin
white line, is the area that is detected as the object.

Figure 4.1: The result of using the disparity map to determine the distance to an object. The measured
distance to the object was approximately 145cm.

Figure 4.1a is a blurred image from the left camera with the green text displaying the measured
distance at 155cm. The real distance in this scenario is about 145cm. However, when standing
still, the measured distance would vary by around ± 15cm. That means the distance will
deviate by about 17% in the worst-case scenario. Nevertheless, as this method is not used as an
accurate object detector and is restricted to detecting objects between a threshold, this result
is acceptable.

Although the distance accuracy is acceptable in this scenario, this is not always the case. The
disparity map is presented in Figure 4.1b, where a thin white line is drawn around the detected
object. In this frame, the disparity map detects the correct object and shows a high level of
accuracy where it can distinguish the person and the pipe from the back wall. However, for
other frames, it can have problems detecting the correct object, especially at a close distance.
Moreover, one of the most outstanding challenges was that the program detected an obstacle,
even if there were none. This was possibly due to the fact that the parameter tuning might
not be perfectly optimized. In addition, the blurring effect reduced the distinction in the image
which can cause part of the image mistaken for an object. Another factor would be the testing
environment as this was not representative of a driving vehicle in every scenario, thus, it might

59

4.1 Evaluation of System Performance

benefit from a more open environment with fewer objects.

Despite the challenges, the module shows a result, that with further development can be a good
tool regarding object detection. From these tests, it is possible to perceive that stereoscopic
vision is a vulnerable technology that needs proper calibration processes based on different light
conditions. In addition, the parameters might be difficult to tune as it is a complicated task,
and only using the standard parameters will give a better result for this application. Even if
the measured distance is acceptable, the inconsistent disparity map restricts its reliability.

QR Code Detection

For QR code detection, a test given in Appendix E was conducted to verify the accuracy of
the module’s calculations and detection. An example photo of a detected QR code is shown in
Figure 4.2.

Figure 4.2: The detected QR code. The number around the QR code is the number of pixels on the
side. The numbers in the top left display the values of angle and distance.

The result of the test showed that the calculation of the distance to the QR code sign was
quite accurate with deviations of a maximum of 8% from the actual measurements. These
deviations were possibly influenced by the accurate measurements of the size of the QR code
and its distance to the camera. Thus, the mapping of the QR code into the environment map
will have high accuracy.

Furthermore, the test results indicated that the range of distance in which the module is able
to detect the QR code is dependent on the resolution of the camera and the size of the QR

60

4.1 Evaluation of System Performance

code. With a higher-resolution camera, the module was able to detect the QR code at a further
distance. Similarly, a larger size of the QR code gave a further maximum distance of detection.
The correlation between the size of the QR code and the maximum distance the QR code can
be detected is given in Figure 4.3. From the figure, it is possible to observe that the maximum
distance that the QR code can be detected is a linear function of the size of the sign.

0 500 1,000 1,500 2,000 2,500

0

50

100

150

distance(mm)

si
z
e(

m
m

)
distancemax

distanceedgecase

Figure 4.3: The result of the maximum distance the module is able to detect the QR code with different
QR code sizes and a camera with the resolution 1280x800. The red line (distancemax) is the max distance
at which the QR code is constantly detected. The blue line (distanceedgecase) is the max distance the
QR code can be detected.

For the accuracy of detecting the QR code at different angles, the test result showed that this
accuracy was not affected by distance, except when the QR code was placed at the maximum
distance of detection. The general range of angles that the module was able to detect the QR
code was ±35◦ from the camera being perpendicular to the QR code.

Given the previously mentioned results with the camera the vehicle presented in Section 3.1.2
is equipped with, it required a QR code with the size of 65mm to be detected at a distance
of 1000mm consistently. As the size of the QR code should not exceed the size of the parking
space, a QR code size of about 100mm would be sufficient to have a detectable range above
1500mm for a vehicle of dimensions 228mm by 180mm in a parking lot of dimensions 345mm
by 330mm.

Stop Sign Detection

The test given in Appendix F was performed to verify the functionality of the Stop Sign Detection
module regarding the accuracy of detection and distance calculation. An example of the usage
of the Stop Sign Detection module to detect a stop sign is presented in Figure 4.4

61

4.1 Evaluation of System Performance

Figure 4.4: An example of the usage of the Stop Sign Detection module to detect a stop sign. The
number in the top left corner displays the distance to the stop sign. The measured distance to the stop
sign is 416mm.

First, the result from the test showed that the maximum distance the module was able to detect
the stop sign was dependent on the parameter minSize in the step of Cascade of Classifiers.A
large minSize value will cause the maximum distance the module is able to detect the sign to
be smaller. This correlation is presented in Figure 4.5a.

Furthermore, Figure 4.5b presents the result of determining the detectable angles with different
minSize and at different distances. The plot indicates that the relevant angles do not vary
significantly but will decrease slowly when the distance is nearing the maximum possible distance
of detection for the different minimum sizes. However, the result of minSize 100 is an exception
as the possible angle to be detected deviates clearly from the other minSize values.

62

4.1 Evaluation of System Performance

0 20 40 60 80 100

2,000

3,000

MinSize (px)

D
ist

an
ce

(m
m

)

(a) Maximum detectable distance.

200 400 600 800 1,0001,2001,400

40

60

80

Distance (mm)

M
ax

an
gl

e
(d

eg
re

es
) 0 50

75 100

(b) Maximum detectable ± angle

Figure 4.5: Result of determining the maximum distance and the angles the module is able to detect
the stop signs for different minSize values. The different colors in (b) correspond to different minSize

values.

Although the furthest maximum distance is desired such that it can detect the signs as quickly as
possible, the test result showed that the performance was affected by the minSize. In addition,
it was observed that the processing frames per second decreased when the minSize increases.
Therefore, the most suitable minSize should be a value that considers mainly FPS and maximum
detectable distance. The detectable angles did not vary much, thus, it does not need to be
focused on when deciding the minSize value. The minSize with the value 75 is therefore chosen
for this module since it has a reasonable maximum distance of detection and FPS on the single
board computer that the vehicle is equipped with.

Finally, it was observed that the module had a high accuracy in calculating the distance to the
stop sign with a maximum of 10% deviation from the measured value. Thus, the module will
have high accuracy when utilized in the driving logic based on having a distance that is set as a
threshold for determining when the vehicle movement should stop. If the distance between the
vehicles and the stop sign is less than this threshold, then the vehicle will stop moving.

Lane Detection

The functionality of the Lane Detection module was verified through the test given in Appendix
G. The functionalities were tested to determine the accuracy of detecting the lane lines and
calculations using the lane lines. An example of using the Lane Detection module is shown in
Figure 4.6.

63

4.1 Evaluation of System Performance

Figure 4.6: An example of the usage of the Lane Detection module. The number in the top left corner
displays the values of the difference between the center of the lane and the center of the vehicle. The
light blue line between the two lane lines defines the center of the lane. The red point presents a point on
the center of the lane line which is further away from the vehicle. The lighter area in the image indicates
the area in which perspective transformation has been performed.

The result of checking if both lane lines are detected at different distances from the left lane line
is presented in Table 4.1. From the table, it is possible to perceive that a wide range of relevant
distances can detect both lane lines. However, the maximum distance from the left lane line
from the test was less than the desired range. The reason behind this deviation from the desired
range was an error in the camera the vehicle was equipped with, which caused the camera’s lens
center to not be centered in the camera frame. This led to the left side being seen more than
the right side of the lens center. Therefore when the right wheel was placed on the right line,
the left line was out of the region of interest. Since the center of the lane will have a distance
of 230.5mm from the left lane line, there exists a safety of margin with a value of 124.5mm,
which is within the range that the vehicle would usually be when lane centering is activated.
This error from the camera will therefore not affect the functionality of detecting lane lines, but
it is important to be aware of so additional computations can be performed on other affected
functionalities to take this issue into account.

Desired range Result range
Min Max Min Max
52 409 52 355

Table 4.1: Result of checking if both lane lines are detected in a lane with a width of 461 mm and lane
line width of 38 mm. Min and Max correspond respectively to the minimum and the maximum distance
from the left lane line. The desired Min and Max also correspond respectively to the left wheel of the
vehicle being on the left lane line and the right wheel of the vehicle being on the right lane line.

64

4.1 Evaluation of System Performance

Furthermore, the test also includes the result of determining the deviation in calculating the
distance between the center of the lane and the center of the vehicle compared to the measured
distance. When the vehicle was on the left side of the center of the lane, the maximum deviation
was approximately 12.5%. However, when the vehicle was on the right side of the center of
the lane, the maximum deviation was approximately 42.0%, which is a quite large deviation
percentage. Despite this large deviation, this deviation corresponds only to a value of difference
that is less than 30mm which is only 6.5% of the lane width. A factor to the high deviation
could have possibly been caused due to the width of the lane line, which is in this case 38mm.
The measured center difference was measured from the inside of the lane lines. However, in
some cases, the detected lane lines might be in between the outer and inner lane lines instead,
which can give it an extra offset of up to 38 mm. Although the deviation in percentage is large,
the calculated deviation in mm is not large compared to the lane width. In addition, as the
method is only used to be displayed in the user graphical interface, it is still acceptable, but the
deviation must be aware of when it is being used.

The deviation between the center of the lane and the point that is calculated to be at the center
of the lane and at a further distance away from the vehicle is also given in the test. The deviation
in all cases is less than 10%, thus, this calculation has high accuracy. It is therefore possible to
conclude that when the two-lane lines are detected, the point given by the module is acceptable
to utilize in the path planning algorithm to center the vehicle when driving within the road.

Parking Slot Detection

The test given in Appendix H was performed to verify the functionality of the Parking Slot
Detection module. The accuracy that was tested in this module was the ability to detect the
correct parking lines in order to create an extra obstacle line for further usage in the Path
Planning module. An example of a result obtained by using the module is given in Figure 4.7.

65

4.1 Evaluation of System Performance

Figure 4.7: An example of the usage of the Parking Slot Detection module. The correct parking lines
are detected and an extra obstacle line was created when a QR code is detected.

The result of the previously mentioned test indicated that within the relevant angles for detecting
the QR code which defines the desired range in this scenario, it detected the parking lines
enclosing the QR code robustly. However, it was possible to observe that noise lines could affect
the result as mentioned in Section 3.2.7. It is, therefore, quite dependent on the environment
the parking lines are placed in and the parameters being fine-tuned to be able to remove the
noise lines.

4.1.2 Accuracy of Environmental Mapping

The test given in Appendix J was performed to verify the accuracy of the point_to_distance

method of the Environment Mapping module.

The result of the accuracy test is given in Figure 4.8. From the previously mentioned figure, it
is possible to perceive that the maximum deviation was around 15.4% for the y-distance and
12.3% for the x-distance. As the deviation is less than 20%, but larger than 10%, the deviation
should be aware of when the method point_to_distance is used. On the other hand, only 20%
of the points in the y-direction had a deviation larger than 10%. The result is similar for the
deviation in the x-direction. It is therefore possible to affirm that the method has a moderate
accuracy.

66

4.1 Evaluation of System Performance

600 800 1,000 1,200 1,400 1,600

5

10

15

20

Measured y-distance (mm)

D
ev

ia
tio

n
(%

) Calculated x-distance
Calculated y-distance

Figure 4.8: Result of comparing measured distances to distances calculated by the method
point_to_distance.

Furthermore, the test given in Appendix J was performed to determine the alignment between
the mapping of the QR code and the mapping of lines for parking scenarios. The result of the test
indicated that the mapping was dependent on the accuracy of the QR code distance calculation
and the accuracy of the point_to_distance method of the Environment Mapping module. Out
of five test cases, four gave a result where the QR code was within the parking slot as given
in Figure 4.9a. However, although the QR code was within the parking slot, the QR code in
the mapping is not in the position in which the QR code is physically placed. For example
in the previously mentioned figure, the QR code is closer to the left side of the parking slot.
Furthermore, one of the test cases gave a result where the QR code was not within the parking
slot as shown in Figure 4.9b. In addition, the test cases only included a few combinations of
positions from the QR code. Thus, there might exist some other scenarios where the mapping
of the QR code mapping and the parking lines do not align with each other for example causing
the QR code to be behind the parking slot instead.

(a) QR code is within the parking slot. (b) QR code is not within the parking slot.

Figure 4.9: An example of the result from the test given in Appendix J. The yellow lines correspond
to the parking lines and the purple square indicates the QR code.

4.1.3 Accuracy of Path Planning

As the Path Planning module builds upon the Mapping module and does not include any new
retrieval of information from the camera frame, the accuracy of the module is based on the
accuracy of the other modules and if the implementations of the algorithms are correct. Unit
and integration tests have primarily been used to enforce high accuracy in the implementations of

67

4.1 Evaluation of System Performance

the algorithms. The unit tests have been used on the implementations to determine if the module
alone performs as intended. Whereas, integration tests have been carried out to comprehend
how this module works with other modules in the Mapping module. An example of the result of
the Path Planning module used with the Mapping module and other computer vision modules
is presented in Figure 4.10 and Figure 4.11.

(a) Input camera frame.

(b) Result from Path Planning module.

Figure 4.10: Result of using the Path Planning module with the Environment Mapping and Lane
Detection modules for the lane centering function. The green and purple square corresponds to the vehicle
and the destination point respectively. The blue squares are the path given from the A* algorithm and
the red lines correspond to the Catmull-Rom spline.

68

4.1 Evaluation of System Performance

(a) Input camera frame.

(b) Result from Path Planning module.

Figure 4.11: Result of using the Path Planning module with the Environment Mapping, QR Code
Detection, and Parking Slot Detection modules for the parking function. The green and purple square
corresponds to the vehicle and the destination point respectively. The blue squares are the path given
from the A* algorithm and the red lines correspond to the Catmull-Rom spline.

The result and information from integration tests have then been used to perform a physical
validation test of manually moving the vehicle. This was done so that the accuracy of the module
can be tested without relying on the simple developed motion control, thus, it removes a factor
of the source of error. Although moving the vehicle introduces human errors as a source of error,

69

4.1 Evaluation of System Performance

the uncertainty of this source of error is presumably lower than a simple motion control if the
actions are performed precisely. In addition, the results from this test can be used to compare
with the system to see if the system’s performance is optimal.

For lane-centering path planning, the physical validation test gave a promising result with min-
imal deviations from the center of the lane after arriving at the destination point. Whereas for
path planning in terms of parking, the results were acceptable. However, at cases where the
angle was larger than ±20◦, then one of the wheels was on the parking line or slightly outside the
parking slot. Overall, although the final position of the vehicle relative to the parking slot was
not perfectly accurate in all cases, the result showed that the path obtained from the module
was approximately heading in the right direction. However, because of the deviations presented
in Section 4.1.2 with the QR code not always being perfectly aligned with the parking lines, this
has led to the final position not being perfect.

4.1.4 Reliability of the System

The reliability of the system was tested by executing the software with the four objective states
presented in Section 3.1.4. First of all, the STEREO state was used to test if the hindrance detection
development worked reliably. While using this state, it was observed that when the software
was able to detect the actual hindrances within the critical threshold, the desktop vehicle would
stop moving, although with a delay in reaction time because of the hardware’s low processing
power. However, as mentioned in Section 4.1.1, the vehicle also stopped in most scenarios when
there were no hindrances because the software mistakenly detected objects. Thus, this issue
greatly reduces the reliability of the system in terms of hindrance detection. As this function is
quite demanding regarding processing power, as well as working better on large objects, thus,
this might be more suitable for larger systems with more processing power. Subsequently, the
STOPPING state was applied to test the reliability of the capability of reacting to stop signs. The
test result showed that the system performed with high accuracy and reliability by stopping
whenever a stop sign was detected within a threshold distance. This state was tested on both
test vehicles and performed well on both of them. The result of the state execution can be
watched here https://youtu.be/xawxZPvk0ts. Subsequently, the state’s performance time can
be watched here https://youtu.be/bhT4F5p6ftg.

Regarding the two remaining states, DRIVING for lane centering and PARKING for parking both rely
on the motion control presented in Section 3.5, unlike the two previously mentioned states that
only need to stop the movement of the vehicle. Thus, when testing the function of centering
itself with the desktop test vehicle, the deviation from the center of the lane lines is larger
than 10% from the center most of the time, which is not an ideal outcome. Similarly, for
parking, the system has a tendency to end with a final position where more than just one
wheel of the vehicle is outside of the parking slot whenever the angle is larger than ±20◦.
Both states give therefore a worse result than the ones presented in Section 4.1.3. A possible
explanation for this is as previously mentioned, the states rely on the simply developed motion
control, which can also cause further deviations than the already existing ones from the Path
Planning module. Although the driving logic presented in Section 3.1.4 is supposed to reduce
the mentioned deviation, where the main purpose is to constantly use a new frame in order
to calculate a new path if possible, the result was still imperfect. Hence, the system in terms
of centering and parking the vehicle is therefore not reliable on the small test vehicle. As the
system did not perform satisfactorily on the desktop test vehicle, these two states were not
tested on the larger vehicle.

70

https://youtu.be/xawxZPvk0ts
https://youtu.be/bhT4F5p6ftg

4.2 Comparison with Existing Autonomous Driving Systems

Overall, one of the four objectives performed reliably based on the evaluation criteria from Sec-
tion 1.4 for both test vehicles. Whereas two of the objectives performed theoretically sufficiently,
but not when combined as a system. Finally, the last objective did not perform well overall.
Thus, the issues presented regarding the three objectives which did not perform well within a
system must be resolved to make the entire system more reliable and operational. First for the
desktop test vehicle, and then later to scale for the larger one.

4.2 Comparison with Existing Autonomous Driving Systems

First of all, a prototype vehicle has been used for the developed software to be implemented in
this project. Furthermore, this prototype cannot bear direct comparison with other high-level
existing autonomous vehicle systems as they integrate other sensors into their vehicle like LIDAR
or RADAR to improve their autonomous functions. Meanwhile, this project focuses primarily
on computer vision. Thus, regardless of the results in Section 4.1, this system still might not
produce as accurate results and include a wide set of functionality as some of the existing
autonomous systems. However, it provides an excellent starting point for further learning and
development of a more advanced system.

4.3 Limitations and Areas for Improvement

The current system has some limitations in both the hardware and software aspects. First of all,
the prototype vehicle is equipped with a small camera due to its size. Small cameras, especially
cheap ones, have smaller image sensors and lesser-quality optics. This affects the quality of
the captured images regardless of resolution, and can to some degree lead to the software to
struggling to detect objects and lines accurately. Our test location also had some issues with
reflections sometimes causing glare in the captured images, preventing the algorithm to detect
lines correctly. Overall, the image processing algorithms worked well when parameters were
tweaked for the exact conditions, and the conditions were made as ideal as possible. The results
might be different in other conditions and environments. The obtained results are gathered
using the described setup of the vehicle model and motion control. Even though the modules
can be used on other hardware, some tweaking and changes may be needed, and results may
vary.

It is possible that more work on camera placement, shading, filters, and choice of lenses might
improve the quality and consistency of the input images in changing conditions.

Stereoscopic vision has a lot of areas that can be improved to resolve the issue of detecting
objects when there are none. First of all, the tuning might be adjusted so that the disparity
map is not as smooth. That may also be accomplished by removing the blurring. Performing
these two actions might resolve the previously mentioned issue. However, this will make it
more prone to noise and increase the difficulty to detect obstacles and was not suitable for this
project’s scenarios. Secondly, the size of what contour is detectable can be increased so that the
small irrelevant contours will not be detected.
From the software perspective, Python was used as the primary language in this project, although
it is not suited for high-performance tasks as mentioned in Section 3.1.4 regarding threading.
An area of improvement could therefore be to use a high-performance programming language

71

4.3 Limitations and Areas for Improvement

like Rust or C++, which is better at the previously mentioned issue. Furthermore, if the
prototype vehicle is equipped with a more powerful onboard computer, the speed of the system
can be improved. The Raspberry Pi has limited processing power. This was not ideal for the
performance of stereoscopic vision object detection. If continuing on that route, the software
could benefit from a more powerful computer.
Subsequently, as mentioned in Section 2.3, Local Binary Pattern Cascade has been used as the
object detection method to detect stop signs because it requires fewer resources to be able to
obtain a usable trained model. However, even though this module already has a high accuracy
from the test result, the accuracy can still be further improved. Convolutional Neural Networks
can be used instead to achieve the same purpose with higher accuracy. For instance, YOLO is
a promising approach for this use case. In the aspect of path planning, as it is based on the
environment, the mapping of objects and lines into the environment is also a critical factor for
the accuracy of the path the vehicle will travel. Further improvements on the mathematical
functions that were found between the correlation of pixels on the camera frame and the real
distance that was used to map ground objects should be carried out to improve the accuracy
of parking path planning. Improvement in the calculation of distance for the QR code is also
important as it is the destination point for parking and needs to be aligned with the mapping
of lines which did not perform as accurately as presented in the result in Section 4.1. Overall,
addressing these limitations and areas of improvement will significantly increase the performance
of the system as well as its accuracy and reliability.

72

Chapter 5

Conclusion and Future Works

5.1 Summary of Findings and Contributions

Throughout the thesis, different computer vision methods have been presented for the different
autonomous function objectives. The proposed software solution for an autonomous vehicle
that is solely based on computer vision is a combination of applications of existing algorithms,
modification of algorithms, and self-developed algorithms.

First of all, an existing algorithm for stereoscopic vision has been used for the detection of
large objects corresponding to hindrances in front of the vehicle. Thereafter, for the detection
of stop signs, a Local Binary Pattern model has been trained to be used in a concept called
Cascade of Classifier to detect the desired signs. Furthermore, for lane keeping and detecting
parking slots, a combination of image processing methods to achieve edge detection and Hough
transform was performed to detect the lines given by the vehicle’s camera. Afterwards, for each
application of line detection, a suitable region of interest was extracted and a suitable method
of clustering lines was utilized to reduce the number of lines detected from the line detection
to only necessary lines. For lane keeping, it was the lane lines, and for parking slots, it was
the parking lines. Perspective transform was then used with the detected lane lines to obtain a
point that is in the middle of the road and a desired amount of distance away from the vehicle.
This point was further used as a destination point to handle the action of centering the vehicle
within a road. For parking, a QR code was used with the parking lines to represent an empty
slot and was applied as the destination point for autonomous parking. All the detected objects
and lines were thereafter mapped into a two-dimensional environment that is represented by a
m × n matrix. The mapping of ground elements as lines were based on calculating the distance
from the vehicle to the object based on two mathematical functions that were discovered through
regression analysis of the correlation between the pixel values and the physical distance. In terms
of mapping signs to the environment, an algorithm based on using a reference value to calculate
the distance to the signs has been used. Thereafter, a self-modified version of the shortest
path algorithm A* was utilized to define a path to the desired destination. The result of this
algorithm is then used to calculate a Catmull-Rom spline for obtaining a smoother trajectory.
By using the information from this resulting path, it was possible to control the motion of the
vehicle to obtain the project’s objectives.

Tests were then performed to determine the accuracy of each module separately, and jointly in

73

5.2 Recommendations for Future Research and Development

environment mapping, path planning, and the reliability of the system. For each module and
together in environment mapping, there existed a deviation from the desired result that caused a
reduction in the accuracy. However, the deviation for most of the computer vision modules alone
was within an acceptable amount. On the other hand, when the calculation from the computer
vision modules was mapped together and used for path planning, the information achieved
deviated slightly from the ideal result. This led to the fact that when performing a physical
validation test on the Path Planning module for the parking function, the ending position of
the parking was not always ideal. For instance, one of the vehicle wheels was often on the
parking line. Subsequently, when testing the vehicle, the system was able to detect hindrances
in front of the vehicle and stopped the vehicle’s movement. However, the system also detected
objects when none was visible in the vehicle’s field of view. Thus, in terms of this objective,
the system was not reliable. On the other hand, the system performed with high reliability
regarding the function of stopping the movement whenever a stop sign was detected. For more
complex actions such as centering the vehicle within a lane and parking, the system relied on
a simple driving logic that led to deviations from the planned path. Thus, in both cases, the
system struggled to achieve its objective. For centering the vehicle, the ending position of the
vehicle has a tendency to deviate more than the set evaluation criteria. On the other hand, for
parking, a part of the vehicle mostly ended up outside of the parking slot. Improvements are
therefore needed to resolve these previously mentioned issues and also to enhance the already
functional ones to increase their reliability, which is important to address in future development.

5.2 Recommendations for Future Research and Development

For further development of this system, it is important to address the limitations and areas
of improvement mentioned in Section 4.3 as it turned out to be challenges that decreased the
system’s performance and accuracy. Furthermore, based on existing autonomous functions,
possible future research could be to make the system more suitable for complex scenarios. For
instance, the lane detection method can be further developed such that more complex roads can
be detected, e.g., curved roads. Another direction is to expand stop sign detection to detect
multiple types of signs instead of only stop signs and react to each one differently. Furthermore,
research on how environment mapping can be further used is ideal for more complicated path
traversal. As mentioned in 3.3 by memorizing previously seen objects in the environment, the
vehicle has the possibility to travel to a destination on a path that is not currently visible in
the vehicle’s field of view. Finally, although this is beyond the general scope of computer vision,
it is possible to integrate other sensors such as LIDAR and RADAR as additional sources of
information to further research how to improve autonomous driving functions with other sensors.

74

Bibliography

[1] Epipolar (stereo) geometry. https://www.cse.unr.edu/~bebis/CS791E/Notes/
EpipolarGeonetry.pdf. Accessed: April 20, 2023.

[2] Ehsan Akbari Sekehravani, Eduard Babulak, and Mehdi Masoodi. Implementing canny edge
detection algorithm for noisy image. Bulletin of Electrical Engineering and Informatics,
9:1404–1410, 08 2020.

[3] Rosa Andrie Asmara, Muhammad Ridwan, and Gunawan Budiprasetyo. Haar cascade
and convolutional neural network face detection in client-side for cloud computing face
recognition. In 2021 International Conference on Electrical and Information Technology
(IEIT), pages 1–5, Sep. 2021.

[4] Naveen Appiah and Nitin Bandaru. Obstacle detection using stereo vision for self-driving
cars. EE368/CS232: Digital Image Processing.

[5] Ben. Training a cascade classifier. https://learncodebygaming.com/blog/
training-a-cascade-classifier, August 2020. Accessed: January 29, 2023.

[6] Jo Chang-Yeon. Face detection using lbp features. volume 77, pages 1–4. Citeseer, 2008.

[7] Jeremy Cohen. Path planning for self-driving cars. https://thinkautonomous.medium.
com/can-self-driving-car-think-6c9e8d939d60, July 2021. Accessed: April 12, 2023.

[8] Hamid Fsian, Vahid Mohammadi, Pierre Gouton, and Saeid Minaei. Comparison of stereo
matching algorithms for the development of disparity map, 2022.

[9] Javatpoint. Bresenham’s line algorithm. https://www.javatpoint.com/
computer-graphics-bresenhams-line-algorithm. Accessed: March 28, 2023.

[10] Nitin Kanagaraj, David Hicks, Ayush Goyal, Sanju Tiwari, and Ghanapriya Singh. Deep
learning using computer vision in self driving cars for lane and traffic sign detection. In-
ternational Journal of System Assurance Engineering and Management, 12(6):1011–1025,
2021.

[11] Erdogan KAYA. Spline interpolation techniques. Journal of Technical Science and Tech-
nologies, January 2014.

[12] Mikko Kytö, Mikko Nuutinen, and Pirkko Oittinen. Method for measuring stereo camera
depth accuracy based on stereoscopic vision. SPIE Proceedings, 2011.

[13] Gustavo Teodoro Laureano, Maria Stela Veludo de Paiva, Anderson da Silva Soares, and
Clarimar José Coelho. Chapter 34 - a topological approach for detection of chessboard
patterns for camera calibration. In Leonidas Deligiannidis and Hamid R. Arabnia, editors,

75

https://www.cse.unr.edu/~bebis/CS791E/Notes/EpipolarGeonetry.pdf
https://www.cse.unr.edu/~bebis/CS791E/Notes/EpipolarGeonetry.pdf
https://learncodebygaming.com/blog/training-a-cascade-classifier
https://learncodebygaming.com/blog/training-a-cascade-classifier
https://thinkautonomous.medium.com/can-self-driving-car-think-6c9e8d939d60
https://thinkautonomous.medium.com/can-self-driving-car-think-6c9e8d939d60
https://www.javatpoint.com/computer-graphics-bresenhams-line-algorithm
https://www.javatpoint.com/computer-graphics-bresenhams-line-algorithm

BIBLIOGRAPHY

Emerging Trends in Image Processing, Computer Vision and Pattern Recognition, pages
517–531. Morgan Kaufmann, Boston, 2015.

[14] E.T.Y. Lee. Choosing nodes in parametric curve interpolation. Computer-Aided Design,
21(6):363–370, 1989.

[15] Howard Lee and Yi-Ping Phoebe Chen. Image based computer aided diagnosis system for
cancer detection. Expert Systems with Applications, 42(12):5356–5365, 2015.

[16] Arm Ltd. What is computer vision. https://www.arm.com/glossary/computer-vision.
Accessed: March 22, 2023.

[17] Lokesh Madan, Kislay Anand, and Bharat Bhushan. Bresenham’s lines algorithm. volume 4.
International Journal of Research in Science And Technology, 2014.

[18] Ezio Malis and Manuel Vargas. Deeper understanding of the homography decomposition
for vision-based control. January 2007.

[19] Satya Mallick. Learnopencv. https://github.com/spmallick/learnopencv, 2015. Ac-
cessed: April 20, 2023.

[20] Satya Mallick. Geometry of image formation. https://learnopencv.com/
geometry-of-image-formation/, February 2020. Accessed: April 20, 2023.

[21] MathWorks. Stereo disparity using semi-global block matching. https://se.mathworks.
com/help/visionhdl/ug/stereoscopic-disparity.html, note = Accessed: April 20,
2023.

[22] MathWorks. What is camera calibration? - matlab & simulink. https://se.mathworks.
com/help/vision/ug/camera-calibration.html. Accessed: April 20, 2023.

[23] Anusha Jayasree Mavilla Vari Palli and Vishnu Sai Medimi. A comparative study of yolo
and haar cascade algorithm for helmet and license plate detection of motorcycles. DiVA,
September 2022.

[24] Domingo Mery and Christian Pieringer. Computer Vision for X-Ray Testing. Springer
Cham, 2021.

[25] Ekaterina Mezenceva and Sergey Malakhov. The study of the semi-global block matching
algorithm implementing parallel calculation with gpu. In 2021 IEEE 8th International
Conference on Problems of Infocommunications, Science and Technology (PIC S&T), pages
649–652, 2021.

[26] OpenCV. Camera calibration and 3d reconstruction. https://docs.opencv.org/
2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?
highlight=stereobm#stereosgbm. Accessed: April 20, 2023.

[27] OpenCV. Canny edge detection. https://docs.opencv.org/4.x/da/d22/tutorial_py_
canny.html. Accessed: February 10, 2023.

[28] OpenCV. Cascade classifier. https://docs.opencv.org/3.4/db/d28/tutorial_
cascade_classifier.html. Accessed: January 29, 2023.

[29] OpenCV. Cascade classifier training. https://docs.opencv.org/4.x/dc/d88/tutorial_
traincascade.html. Accessed: January 29, 2023.

76

https://www.arm.com/glossary/computer-vision
https://github.com/spmallick/learnopencv
https://learnopencv.com/geometry-of-image-formation/
https://learnopencv.com/geometry-of-image-formation/
https://se.mathworks.com/help/visionhdl/ug/stereoscopic-disparity.html
https://se.mathworks.com/help/visionhdl/ug/stereoscopic-disparity.html
https://se.mathworks.com/help/vision/ug/camera-calibration.html
https://se.mathworks.com/help/vision/ug/camera-calibration.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=stereobm#stereosgbm
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=stereobm#stereosgbm
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=stereobm#stereosgbm
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/4.x/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/4.x/dc/d88/tutorial_traincascade.html

BIBLIOGRAPHY

[30] OpenCV. Feature detection. https://docs.opencv.org/4.x/dd/d1a/group__imgproc_
_feature.html#ga354e0d7c86d0d9da75de9b9701a9a87e. Accessed: January 29, 2023.

[31] OpenCV. Geometric image transformations. https://docs.opencv.org/4.x/da/d54/
group__imgproc__transform.html. Accessed: February 10, 2023.

[32] OpenCV. Hough line transform. https://docs.opencv.org/3.4/d9/db0/tutorial_
hough_lines.html. Accessed: February 10, 2023.

[33] OpenCV. Image filtering. https://docs.opencv.org/4.x/d4/d86/group__imgproc_
_filter.html#gaabe8c836e97159a9193fb0b11ac52cf1.

[34] OpenCV. Morphological transformations. https://docs.opencv.org/4.x/d9/d61/
tutorial_py_morphological_ops.html. Accessed: February 10, 2023.

[35] OpenCV. Opencv camera calibration. https://docs.opencv.org/3.0beta/doc/
py_tutorials/py_calib3d/py_calibration/py_calibration.html#calibration. Ac-
cessed: April 20, 2023.

[36] OpenCV. Remapping. https://docs.opencv.org/3.4/d1/da0/tutorial_remap.html.
Accessed: May 5, 2023.

[37] OpenCV. Camera calibration. https://docs.opencv.org/4.x/dc/dbb/tutorial_py_
calibration.html, 2022. Accessed: April 20, 2023.

[38] OpenCV Contributors. Delay in videocapture because of buffer. https://forum.opencv.
org/t/delay-in-videocapture-because-of-buffer/2755. Accessed: April 26, 2023.

[39] OpenCV Contributors. Introduction. https://vovkos.github.io/doxyrest-showcase/
opencv/sphinx_rtd_theme/index.html. Accessed: April 26, 2023.

[40] R.R. Orozco, C. Loscos, I. Martin, and A. Artusi. Chapter 4 - multiview hdr video sequence
generation. In Frédéric Dufaux, Patrick Le Callet, Rafał K. Mantiuk, and Marta Mrak,
editors, High Dynamic Range Video, pages 121–138. Academic Press, 2016.

[41] A.J. Parker. Stereoscopic vision. In Larry R. Squire, editor, Encyclopedia of Neuroscience,
pages 411–417. Academic Press, Oxford, 2009.

[42] Shirley Peter, Thompson William B, Willemsen Peter, Wyvill Brian, Marshner Steve,
Ashikhmin Michael, Gleicher Michael, Hoffman Naty, Johnson Garrett, Munzner Tamara,
Reinhard Erik, and Sung Kelvin. Fundamentals of Computer Graphics, 3rd edition. AK
Peters, - edition, 2009. Other identifier: 2001309.

[43] Raspberry Pi. Raspberry pi 4. https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/. Accessed: April 26, 2023.

[44] Elyse Betters Picaro. Amazon go and amazon fresh: How the ’just walk
out’ tech works. https://www.pocket-lint.com/gadgets/news/amazon/
139650-what-is-amazon-go-where-is-it-and-how-does-it-work/, February 2023.
Accessed: March 22, 2023.

[45] Esa Prakasa. Texture feature extraction by using local binary pattern. Jurnal INKOM,
9:45, May 2016.

[46] S. J. D Prince. Computer Vision: Models, Learning, and Inference. Cambridge University
Press, 2012.

77

https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga354e0d7c86d0d9da75de9b9701a9a87e
https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga354e0d7c86d0d9da75de9b9701a9a87e
https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html
https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/3.0beta/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.html#calibration
https://docs.opencv.org/3.0beta/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.html#calibration
https://docs.opencv.org/3.4/d1/da0/tutorial_remap.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://forum.opencv.org/t/delay-in-videocapture-because-of-buffer/2755
https://forum.opencv.org/t/delay-in-videocapture-because-of-buffer/2755
https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/index.html
https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/index.html
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.pocket-lint.com/gadgets/news/amazon/139650-what-is-amazon-go-where-is-it-and-how-does-it-work/
https://www.pocket-lint.com/gadgets/news/amazon/139650-what-is-amazon-go-where-is-it-and-how-does-it-work/

BIBLIOGRAPHY

[47] Python. Globalinterpreterlocks. https://wiki.python.org/moin/
GlobalInterpreterLock. Accessed: March 27, 2023.

[48] RTSP. Can’t set cv_cap_prop_buffersize #13s. https://github.com/dactylroot/rtsp/
issues/13. Accessed: April 26, 2023.

[49] Kaustubh Sadekar. Stereo camera depth estimation with opencv (python/c++). https:
//learnopencv.com/depth-perception-using-stereo-camera-python-c/, April 2021.
Accessed: April 20, 2023.

[50] Kaustubh Sadekar and Satya Mallick. Camera calibration using opencv: Learnopencv.
https://learnopencv.com/camera-calibration-using-opencv/, May 2021. Accessed:
April 20, 2023.

[51] M. Sharifi, M. Fathy, and M.T. Mahmoudi. A classified and comparative study of edge
detection algorithms. ResearchGate, pages 117–120, 2002.

[52] Keith Shields. 4 best software development methodologies:
Which is right for your project? https://designli.co/blog/
4-best-software-development-methodologies-which-is-right-for-your-project/,
October 2021. Accessed: March 22, 2023.

[53] Contributors Stanford. https://theory.stanford.edu/~amitp/GameProgramming/
AStarComparison.html. Accessed: April 12, 2023.

[54] Asbjørn Stokka. Utvikle en mikrokontrollerbasert plattform for arbeid med regulering-
steknikk og autonom kjøring. UiS Brage, 2022.

[55] Joao Tavares and A. Padilha. A new approach for merging edge line segments. January
1995.

[56] Xilinx. Stereo local block matching user guide. https://www.xilinx.com/publications/
user-guide/stereo-local-block-matching-user-guide.pdf. Accessed: April 20, 2023.

[57] Xiaoguang Xu, Jun Wang, Yi Wang, and Alexander Kokhanovsky. Chapter 1 - passive
remote sensing of aerosol height. In Tanvir Islam, Yongxiang Hu, Alexander Kokhanovsky,
and Jun Wang, editors, Remote Sensing of Aerosols, Clouds, and Precipitation, pages 1–22.
Elsevier, 2018.

[58] Cem Yuksel, Scott Schaefer, and John Keyser. Parameterization and applications of
catmull-rom curves. Computer Aided Design, 43(7):747–755, 2011.

78

https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://github.com/dactylroot/rtsp/issues/13
https://github.com/dactylroot/rtsp/issues/13
https://learnopencv.com/depth-perception-using-stereo-camera-python-c/
https://learnopencv.com/depth-perception-using-stereo-camera-python-c/
https://learnopencv.com/camera-calibration-using-opencv/
https://designli.co/blog/4-best-software-development-methodologies-which-is-right-for-your-project/
https://designli.co/blog/4-best-software-development-methodologies-which-is-right-for-your-project/
https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://www.xilinx.com/publications/user-guide/stereo-local-block-matching-user-guide.pdf
https://www.xilinx.com/publications/user-guide/stereo-local-block-matching-user-guide.pdf

Appendices A

Github Repository

The project’s code implementation can be found here: https://github.com/
stokka-elebac-22/RC-Project-Autonomous-Car

79

https://github.com/stokka-elebac-22/RC-Project-Autonomous-Car
https://github.com/stokka-elebac-22/RC-Project-Autonomous-Car

Appendices B

Functionality Testing of Stereoscopic
Vision Calibration

80

Calibration Testing of Stereoscopic Vision

Eirik Reiestad
Asbjørn Stokka
Julie Vy Tran

Tested: February 1, 2023
Revised: February 1, 2023

Summary

The result from the calibration process is dependent on the light conditions it was calibrated
with. To get the best possible results, no glare is preferred.

Introduction

This report documents the calibration process. The goal for this test rapport is to get an insight
into which environmental conditions the best calibration results reside in and elaborate on the
sources of error.

Equipment

• Logitech C920 Pro

• Suyin HD Camera

• 13x9 checkerboard

• Stereo vision pair

• 3D-printed case for the camera pair

Method

To perform this test, two cameras should be mounted in a fixed position to avoid movement as
a source of error. On the lower-end cameras, a 3D-printed case is used to keep them in a fixed
position. The Logitech C920 Pro cameras are just placed at a position and not moved for the
whole testing period. A program is used to take photos with both cameras. Throughout the
whole testing period, the same room and objects in the room are used. A checkerboard is moved
around the room inside the frame of both cameras at different angles and positions. To have a
solid amount of calibration data, at least 20 photos should be taken. This calibration method
is tested in different light conditions:

• Sunlight

• Indoor light

• Indoor light with sunlight

1

The sunlight is passed through the window. The checkerboard is displayed on an iPad with a
mat screen protector to reduce glare. For the parameter tuning, the following basic tuning is
used:

Parameter Test 1 Test 2 Test 3 Test 4
Number of disparities 16 16 80 160
Block size 11 51 51 61

With this, the goal is to reduce the noise in the image as much as possible and display a result
that reflects the real-life positions of objects.

Result

For testing purposes, the cameras are not moved throughout the whole process, resulting in the
same image as a stereo-vision pair shown in Figure 1. The photos might appear dark due to the
photos being taken at night time to eliminate glare from the sun. The only light source is the
indoor lights.

(a) Left image (b) Right image

Figure 1: The stereo image pair.

The following photos in Figure 2, Figure 3, and Figure 4 are disparity maps, the result of
calibration in a specific environment with different calibration settings.

2

(a) 16 disparity, 11 block size (b) 16 disparity, 51 block size

(c) 80 disparity, 51 block size (d) 160 disparity, 61 block size

Figure 2: The calibration photos were taken with the sun beaming through the windows.

The disparity maps in Figure 2 show a map with low readability, implying that it is hard to see
what it should represent. In addition, it does not show a clear difference from where the closest
object is located.

3

(a) 16 disparity, 11 block size (b) 16 disparity, 51 block size

(c) 80 disparity, 51 block size (d) 160 disparity, 61 block size

Figure 3: The calibration photos were taken with indoor lights on.

(a) 16 disparity, 11 block size (b) 16 disparity, 51 block size

(c) 80 disparity, 51 block size (d) 160 disparity, 61 block size

Figure 4: The calibration photos were taken with indoor lights on, and the sun beaming through
the windows.

4

Discussion

Figure 3 shows a recognizable result. The calibration photos with light sources from indoors
and the sun shown in Figure 4 are not as clear as Figure 3, but show a better result compared
to the calibration photos with only the sun as a light source.

The previous figures are the disparity photos taken with the web camera. No advanced parameter
adjustments were made, but some parameter changes to see how they affected the different maps
in different environments. As the photos show, when there is a combination of both light and
sun, there is a lot of noise in the disparity map. Reducing the glare will also reduce the noise
and evoke a representative disparity map.

More test photos were taken to verify the results. Though, only a handful was shown to show
the major differences in the different light conditions. Note however that this is not an opti-
mal adjusted representation of the disparity map as it is a complex process where both light
conditions and a subjective meaning are relevant factors.

Conclusion

The calibration process was tested in different environments in order to look into which light
settings give the best calibration photos and disparity maps. From the test results, it was able
to observe that the environment with no glare is preferred, meaning it is beneficial to limit the
light from the sun and only use indoor lights.

5

Appendices C

Functionality Testing of Stereoscopic
Vision Tuning

86

Tuning Testing of Stereoscopic Vision

Eirik Reiestad
Asbjørn Stokka
Julie Vy Tran

Tested: February 1, 2023
Revised: February 1, 2023

Summary

This test documents the parameter adjustment. The result of the test showed that adjusting
every parameter is a complex task. In this case, only adjusting the main parameters, the number
of disparities and the block size will give the best result.

Introduction

This report documents the parameter adjustment process. The goal of this rapport is to get an
insight into which parameter values are suited.

Equipment

• A stereo image pair

Method

The following stereo image pair presented in Figure 1 is used for parameter adjustment.

(a) Left (b) Right

Figure 1: Stereo image pair

The following parameters will be adjusted:

1

Parameters Description

Minimum disparity The minimum value of the disparity to be searched

Number of Disparities It establishes the range of values for the disparity to be
searched for

Block Size The size of the blocks in relation to the algorithm, in linear
form.

P1 One of two parameters controlling the disparity smooth-
ness. The larger the values are, the smoother the disparity
is. This parameter is the penalty on the disparity change
by plus or minus 1 between neighbor pixels.

P2 The other parameter controlling the disparity smoothness.
The larger the values are, the smoother the disparity is.
This parameter is the penalty on the disparity change by
more than 1 between neighbor pixels.

disp12MaxDiff Maximum allowed difference in the left-right disparity
check. Setting it to a non-positive value will disable the
check.

Pre-Filter Cap Restricts the output of the filtering process to a specific
value.

Uniqueness Ratio The pixel is filtered out if the best matching disparity is
not sufficiently better than every other disparity in the
search range

Speckle Range If the best matching disparity value is not significantly
greater than the other values within the search range, the
pixel will be removed from the output

Speckle Window Size The threshold of the number of pixels, below which a dis-
parity group is considered as ”speckle” and discarded

An approach where one adjusts one parameter to the optimal and moves on to the next one
is applied for this process. When reached the last parameter, the first one is adjusted again.
When every parameter has been adjusted and no more gives any improvement, the adjustment
is done. The criteria that say if a calibration parameter combination is better are the clarity of
the map and if a function can detect the closest object. There will also be an additional test
with only adjusting the number of disparities and the block size to see how to recommended
settings perform.

Result

The result of parameter tuning is presented in Figure 2.

2

(a) Tuning every parameter (b) Turning only two parameters.

Figure 2: Result of parameter adjustment on the stereo image pair.

The most optimal tuning with the method of tuning every parameter is given below and the
result of using this set of parameters on the test image is shown in Figure 2a.

Parameters Value

Minimum disparity 0

Number of Disparities 160

Block Size 23

P1 100

P2 0

disp12MaxDiff 8

Pre-Filter Cap 0

Uniqueness Ratio 14

Speckle Range 1

Speckle Window Size 100

For the method of tuning only two parameters that are given below, the result is as shown in
Figure 2b.

Parameters Value

Number of Disparities 112

Block Size 19

Discussion

The result showed that adjusting every parameter was a complex task, resulting in a less rep-
resentative disparity map. Only adjusting two parameters; the number of disparities and the
block size, gave a better result.

Sources of Error

There are some sources of error that might alter the obtained result. The stereo photos might
not be the best possible photos because of their lack of patterns, thus, resulting in single-colored
shapes, which stereo vision is not best suited for.

3

Conclusion

The process of adjusting every parameter was complex, hence for this case, it was beneficial to
only adjust the main parameters that is the number of disparities and the block size. The ideal
values were 112 and 19 respectively.

4

Appendices D

Functionality Testing of Stereoscopic
Vision Blurring

91

Blur Testing of Stereoscopic Vision

Eirik Reiestad
Asbjørn Stokka
Julie Vy Tran

Tested: February 1, 2023
Revised: February 1, 2023

Summary

This test looks into the effect blurring will have on a disparity map. Different degree of blurring
was used and the smoothest and best disparity map was subjectively chosen. The result showed
that blurring the images will create a smoother disparity map. However, it will result in a less
detailed disparity map.

Introduction

This report documents the result of blurring the image for a stereoscopic vision pair. Different
degrees of blurring are compared. This is done to find out if blurring will give a smoother
disparity map and if it should be integrated.

Equipment

• Suyin HD Camera (1280 x 800)

• Stereo vision pair

Method

The same stereo-vision pair is used for all the tests. First, the blur is increased until the image
gives unreadable or noticeably worse results. An acceptable adjustment of the stereo parameters
should be found before the test. This should be used for the same image, where only the degree
of blurring should be changed.

The blur function that is used is a function from the OpenCV library and is given below:

b lurred image = cv2 . b lur (image , (x { blur } , y { blur })

Result

The images as a result of different values of blurring are presented below. The photos might
appear dark due to the photos being taken at night time to eliminate glare from the sun. The
only light source is the indoor lights.

1

(a) Left image (b) Right image

Figure 1: Stereo image pair

(a) Left blurred image (b) Disparity

Figure 2: Blur = 0

(a) Left blurred image (b) Disparity

Figure 3: Blur = 5

2

(a) Left blurred image (b) Disparity

Figure 4: Blur = 10

(a) Left blurred image (b) Disparity

Figure 5: Blur = 15

(a) Left blurred image (b) Disparity

Figure 6: Blur = 20

3

(a) Left blurred image (b) Disparity

Figure 7: Blur = 25

(a) Left blurred image (b) Disparity

Figure 8: Blur = 30

(a) Left blurred image (b) Disparity

Figure 9: Blur = 35

4

(a) Left blurred image (b) Disparity

Figure 10: Blur = 40

(a) Left blurred image (b) Disparity

Figure 11: Blur = 60

(a) Left blurred image (b) Disparity

Figure 12: Blur = 100

Discussion

From the figures in the result section, it is possible to observe that higher blur results gave a
smoother disparity map. However, a blur greater than 25 led to a loss of details in the lower
right corner.

5

Conclusion

For this scenario, a blur between 10 and 15 seems like a good tradeoff when it comes to accuracy
compared to smoothness.

6

Appendices E

Functionality Testing of QR Code

98

QR code Accuracy Test

Eirik Reiestad
Asbjørn Stokka
Julie Vy Tran

Tested: March 13, 2023
Revised: March 13, 2023

Summary
The module can detect the QR code between −35◦ and 35◦. The distance at which the QR
code is detected is a linear function of the size of the QR code. A higher quality camera will
also increase the distance it can detect the sign. The distance does not affect which range the
angle detection has, although when the distance increases, the angle might differ more because
of fewer pixels to calculate the angle from.

Introduction
This report documents functionality testing of the QR Code Module. The purpose of the testing
is to make sure that the module is able to detect QR codes and determine the relevant range of
distance and angle that the QR code can be detected. In addition, another goal is to check if
the camera quality affects the result of the previous purpose.

Equipment
• Logitech C920 Pro

• Suyin HD Camera

• QR code

• Measurement tape

• Protractor

Method
A tape measure and a protractor are used to verify the distance and the angle. The program
output was recorded and verified using both the Logitech C920 Pro camera and a lower-end
webcam.

To perform this test, the QR code sign is placed perpendicular to the camera view. Thereafter,
the sign is moved closer to the camera until it cannot be detected anymore. Afterward, the QR
code is moved further away until it is not consistently detected. In the end, the QR code is
moved further away until it is not detected at all. The angle is kept the same at all distances and
the different distances are measured by the measuring tape while keeping the same angle.

1

Further, to perform the test for angle accuracy, the QR code sign is placed at a distance. First,
it is rotated to one side, then to the other, so that the maximum angle the module can detect
the QR code is measured. Then, the QR code is moved further away to see how the distance
affects the angle.

Result
Figure 1 shows how large the QR code sign needs to be able to see it at a certain distance.

0 1,000 2,000

0

50

100

150

distance(mm)

si
z
e(

m
m

)

distancemax

distanceedgecase

0 1,000 2,000
0

50

100

150

distance(mm)

si
z
e(

m
m

)

distancemax

distanceedgecase

Figure 1: Web camera (1280 x 800) to the left. Logi C920 Pro (1980 x 1080) to the right. The
red line (distancemax) is the max distance where the QR code is constantly detected. The blue
line (distanceedgecase) is the max distance the QR code can be slightly detected. The black
square indicates which size the QR code needs to be to detect it at a distance of 1 meter. The
lower-quality web camera needs a larger size (≈ 65mm) compared to the higher-quality web
camera (≈ 60mm).

For the lower-end webcam with a QR code size of 101 mm width and 101 mm height, the distance
from 0 to 150 mm is irrelevant because the sign is too close to the camera. The distance between
200 mm to 1500 mm is the relevant part as it was able to detect the sign without any troubles.
The distance between 1500 mm to 1700 mm is only detecting the QR code occasionally. All
distances further away than 1700 mm are irrelevant as the module is not able to detect the
sign.

0 250 500 750 1,000 1,250 1,500 1,750 2,000

Figure 2: The red section corresponds to the values of the distance in which the camera cannot
detect the QR code. The yellow section is hard to detect and the green is detectable.

2

Camera Size [mm] min % max % edge case %
Webcam (1280 x 800) 42 0 1.43 3.0
Webcam (1280 x 800) 52 0 3.7 4.0
Webcam (1280 x 800) 101 0 2.0 5.9
Webcam (1280 x 800) 141 0 4.0 13.0
Logi (1920 x 1080) 42 0 7.1 4.0
Logi (1920 x 1080) 52 0 5.2 5.3
Logi (1920 x 1080) 101 0 8.1 -6.4
Logi (1920 x 1080) 141 0 5.9 3.2

Table 1: The first column states which camera is tested. The second column is the size of
the QR code in millimeters. The other columns show how big the deviation of the calculated
measurements is from the real distance at the minimum, maximum, and edge case distances
respectively.

The calculated distance is quite accurate as Table 1 shows that most of the calculation only
deviates slightly from the measurements. There are multiple reasons for this deviation; Not
accurate reading of the measurements or not an accurate camera calibration process.

When the QR code sign is perpendicular to the camera, it is at 0 degrees. The QR code is hard
to detect when it is between ±35◦. At a ±45◦ angle, it is impossible to detect. The same results
were found with different distances. However, when the QR code gets moved further away QR
codes pixel size decreases and thus gives more unstable results.

Conclusion
The distance the QR code is detected is a linear function of the size of the sign. The test was
done on two cameras with different resolutions, showing that a camera with a higher quality will
detect the QR code at a further distance. The angle however is not affected by the change of
the QR size, except when the distance is at the threshold where the QR code can not constantly
be detected, the angle accuracy will differ more. At a normal distance, it will have a range of
−35◦ to 35◦ when looked at at a perpendicular angle.

3

Appendices F

Functionality Testing of Stop Sign
Detection

102

Functionality Testing of Stop Sign Detection

Asbjørn Stokka (959810)
Eirik Reiestad (260753)
Julie Vy Tran (259195)

Tested: March 20, 2023
Revised: March 20, 2023

Summary
The interval of detectable distances and angles with different minimum sizes of detection was
found by measuring at which angle and distance the module stops detecting the sign. The
minimum size affected the range of the interval. A larger minimum size implied a smaller value
of the maximum distance that was possible for the module to detect the signs. On the hand, the
angle range did not vary when measured at different distances. However, it did decrease when
the distance was close to the maximum detectable distance. FPS on the other hand increased
significantly when the minimum size was increased. Lastly, the module had high accuracy in
calculating the distance to the stop sign.

Introduction
This report documents functionality testing of the Stop Sign Detection module. The purpose of
the testing is to make sure that the module is able to detect the traffic sign and to determine
the detectable range of distance, angle and also frames per second. As the module allows one
to choose the minimum size of detection based on the size of the pixels on the camera frame,
different values of this minimum size may affect the detectable range of distance and angle.
Finally, the test will determine the module’s accuracy in calculating the distance to the stop
sign.

Equipment
• Logitech C920 Pro

• Suyin HD Camera

• Stop sign

• Measuring tape

• Protractor

Method
To discover the detectable distances, the measuring tape is placed perpendicular to the camera
lens. Thereafter, the traffic sign is placed as close as possible and perpendicular to the camera

1

such as it covers the whole frame, meaning no detection is possible. Afterward, the traffic sign
is slowly moved further away until the detections are steady. This is then the minimum distance
that the module is able to detect the sign. To discover the maximum distance that the module
is able to detect the signs at, the traffic sign is moved further away until the detections become
unsteady. This will be the maximum detectable distance.

To discover the detectable angles, the stop sign is placed at different distances that give steady
detection. At each distance, the sign is rotated clockwise until the module stops detecting the
sign. Thereafter, the sign is rotated counter-clockwise until the module stops detecting the
signs. The angles before the module stops detecting the sign are the maximum and minimum
detectable angles. 0 degrees indicates the position where the camera is perpendicular to the
sign.

The given actions above are done for each type of camera and for different reasonable minimum
sizes of detection. For the different minimum sizes, the frame per second should also be calculated
by taking the number of frames within a time interval and dividing this sum by the time
interval.

Result
The result of determining the detectable distances is given in Table 1.

Suyin Logitech
Min Size [px] Min Max Int. size Min Max Int. size Diff.
None 110 3325 3215 87 3570 3483 8.3%
50 120 1955 1835 87 2180 2093 14.1%
75 150 1335 1185 90 1500 1410 19.0%
100 160 1045 885 90 1090 1000 13.0%

Table 1: Result of detectable distances. The different columns except Min Size is presented in
the unit millimeters.

The result of determining the detectable angles is given in Table 2.

2

Cheap Logitech
Size [px] Dist. [mm] Min Max Int.size Min Max Int.size Diff. [%]
None 150 -60 60 120 -60 60 120 0%
None 500 -60 60 120 -60 60 120 0%
None 1000 -60 60 120 -60 60 120 0%
None 1500 -50 50 100 -60 60 120 20%
50 150 -60 60 120 -60 60 120 0%
50 500 -60 60 120 -60 60 120 0%
50 1000 -55 55 110 -60 60 120 9%
50 1500 -50 50 100 -60 60 120 20%
75 150 -60 60 120 -60 60 120 0%
75 500 -60 60 120 -60 60 120 0%
75 1000 -55 55 110 -60 60 120 9%
75 1500 - - 0 -10 10 20 20
100 150 -50 50 100 -50 50 100 0%
100 500 -50 50 100 -50 50 100 0%
100 1000 -40 40 80 -40 40 80 0%
100 1500 - - 0 - - 0 0%

Table 2: Result of detectable angles. All the column values excluding the values in column Size
and Dist. are presented in millimeters.

The result of frames per second for each minimum sign is given in Table 3.

Camera Size [px] FPS
Webcam (1280 x 800) None 6.1
Webcam (1280 x 800) 50 13.4
Webcam (1280 x 800) 75 23.4
Webcam (1280 x 800) 100 29.7
Logi (1920 x 1080) None 2.5
Logi (1920 x 1080) 50 6.4
Logi (1920 x 1080) 75 10.6
Logi (1920 x 1080) 100 14.3

Table 3: Result of frames per second for different minimum sizes.

The result of determining the deviation between the measured and calculated distance is given
in Table 4.

3

Distance [mm] Deviation
Measured Calculated [mm] [%]
250 271 21 8.3
334 346 12 3.6
412 416 4 0.9
510 521 11 2.2
667 698 31 4.6
729 784 55 7.5
855 885 30 3.5
963 1004 41 4.2
1035 1069 34 3.2
1260 1307 47 3.7

Table 4: Result of determining the deviation between the measured and calculated distance
using the Suyin HD Camera.

Discussion
From Table 1, it is possible to perceive that the minimum distance will increase while the
maximum distance will decrease when the size is larger. Table 2 shows that the detectable
angles did not vary significantly but will decrease slowly when the distance was nearing the
maximum detectable distance given in Table 1 for the different minimum sizes. Furthermore,
in Table 3 it is perceivable that the frames per second value decreases when the minimum size
increases. Therefore, the most suitable minimum size should be a value that takes both FPS
and detectable distance into consideration. The minimum size with the value 75 is therefore
chosen to be used for this module as it has a reasonable detectable interval of distance and FPS.
Moreover, the result given in Table 4 shows that the module has a high accuracy in calculating
the distance to the stop sign as all the deviations were less than 10%.

Sources of Error
Possible sources of error in the two tests could be errors in the equipment: Measuring tape and
protractor. This could lead to the equipment giving incorrect values when utilized. Another
source of error was the possibility of incorrect readings from the measuring equipment when
performing the tests. This is an example of a human error. The last source of error could be
the lighting. Some parts of the view might have more lighting than others which could cause
the sign to be only partially visible. This may therefore lead to the module not being able to
detect the sign when it was supposed to.

Conclusion
In conclusion, the minimum size of signs that can be detected also affects the result. The
larger this size was, the less will the detectable interval size be. For detectable angles, it only
depended on the minimum size when nearing the detectable distances, otherwise, the interval
size was equal. The frames per second value was on the other hand dependent on the minimum
size. The larger the minimum size was, the larger the FPS was. As the frames per second is
crucial for the reaction time of the vehicle, the minimum size with the highest FPS value was the
desired one. However, the higher the FPS was, the size of the interval of the detectable distances
will be reduced. Finally, the module also had high accuracy in calculating the distance to the

4

stop sign. Overall, there might existed some uncertainties in all calculations because of errors
such as human errors, equipment errors, etc.

5

Appendices G

Functionality Testing of Lane
Detection

108

Functionality Testing of Lane Detection

Asbjørn Stokka (959810)
Eirik Reiestad (260753)
Julie Vy Tran (259195)

Tested: March 20, 2022
Revised: March 24, 2022

Summary

A set of parameters to use for the module was found using adjust one-by-one method, which is
able to detect the vast majority of the relevant positions. Physical measurements were made to
find the difference between the calculated and the measured values. For the module’s calculation
of center difference, there was a high deviation in the result of the calculation. However, the
difference compared to the lane line width and the lane width was not significant and the
direction of the difference was correct. Therefore, it is possible to use this value to identify
which direction the difference is located. For the module’s next checkpoint, the deviation was
low and this point is therefore proper to be utilized in further usages.

Introduction

This report documents the method to determine the set of parameters that should be used in
the module and the functional testing of the Lane Detection module. The purpose of the testing
is to make sure that the module works as intended such as detecting the lane lines and that the
next point given by the module is reasonable. In addition, the test checks the accuracy of the
calculation of the difference between the vehicle center and the lane center and the difference
between the next point and the lane center.

Equipment

• Suyin HD Camera

• White tape

• Measuring tape

Method

A lane is constructed by creating the left and right lane lines using white tape. The width of the
lane should be equal at all regions on the lane. To determine a set of parameters that can be
used to detect the lane in different positions, the camera is first placed in the middle of the lane.
Afterwards, the parameters are slowly adjusted in the given order: Canny minimum threshold,
Canny maximum threshold, Hough threshold, Hough minimum line length, Hough maximum
line gap, and Gaussian blur. Each parameter is increased until it gives a satisfactory result.

1

After doing this, the camera is moved to another position and checked if both lane lines can
be detected in the new position given this set of parameters. If not, then a single parameter is
re-adjusted at a time until both lane lines are visible. The camera is thereafter placed in the
previous position to check if the set of parameters is also acceptable in this position. This action
is done for at least three positions and the resulting set of parameters is used on the following
actions.

To check if the module detects the lane for all relevant positions, the camera lens is placed
perpendicular to the lane. The starting relevant position is when the left wheel of the vehicle is
on the left lane line. On the other hand, the ending relevant position is when the right wheel
of the vehicle is on the right lane line. The rest of the relevant positions are positions between
these two previously mentioned positions. The camera is therefore moved in between this range
to check if the lane is detectable by checking if both lane lines are detected. In addition, the
distance is measured from the left lane line to the center of the camera at different relevant
positions. This value is then used to calculate the difference from the camera center to the
lane center. The result from this calculation is afterward compared to the given value from the
module. In order for the module to be able to compute the center difference value, the width of
the place that is possible to be seen on the camera frame is measured.

To check if the next point given by the module is reasonable, the point is displayed on the
camera frame. The point is then located physically in the real world. After locating the point,
the distance is measured from the left lane line to this point and compared with the distance to
the center of the lane.

Result

The set of parameters that were found using the given method is presented in the table 1.

Gaussian Blur 12

Canny thresh.
Min 75
Max 89

Morph. Closing
Min 2
Max 2

Hough lines
Thresh. 61
Min length 59
Max gap 49

Table 1: Result of the set of parameters

By using the set of parameters given in Table 1, the result of checking if both lane lines are
detected at different distances from the left lane line is presented in Table 2.

2

Distance from left [mm] Detected both lane lines

52 (left wheel on left line) Yes

89 Yes

130 Yes

144 Yes

175 Yes

189 Yes

216 Yes

225 Yes

267 Yes

312 Yes

355 Yes

365 No

409 (right wheel on right line) No

Table 2: Result of detecting both lane lines using the set of parameters given in Table 1

The result of the calculated distances obtained from the module and the comparison between
the calculated distances and the measured distances are given in Table 3.

Center diff. [mm]
Deviation [mm] Deviation [%]

Measured Calculated

-55.5 -62.45 6.95 12.5%

-100.5 -92.89 7.61 7.6%

-141 -141.76 0.76 0.5%

-178 -167.76 10.24 5.8%

-14 -13.20 0.80 5.7%

36.5 21.17 15.33 42.0%

81.5 52.39 29.10 35.7%

110.5 80.87 29.62 26.8%

Table 3: Result of comparison between measured distance from the camera center and the
calculated given from the module with a lane width of 461 mm and lane line width of 38 mm

The result of the next point given from the module compared to the lane center at different
camera center positions is given in Table 4.

3

Distance from left [mm]
Deviation [mm] Deviation [%

Cam center Lane center Next point

175.0 230.5 216.0 14.5 6.3%

130.0 230.5 218.0 12.5 5.4%

89.0 230.0 220.0 10.0 4.3%

52.0 230.0 220.0 10.0 4.3%

216.0 230.0 220.0 10.0 4.3%

267.0 230.5 227.0 3.5 1.5%

312.0 230.5 231 0.5 0.2%

341.0 230.5 231 0.5 0.2%

Table 4: Result of comparison between the lane center and the given next point at different
positions of the camera center

Discussion

The set of parameters given by Table 1 is acceptable to be used for further processes as a wide
range of relevant distances can detect both lane lines by using this set of parameters. However,
the desired range would be that when the right wheel was on the right lane line, both lane lines
were still visible. The reason why both lane lines were not visible at positions after 355mm from
the left line is that the camera’s lens center was not centered in the camera frame. This led to
the left side being seen more than the right side of the lens center. Therefore, when the right
wheel was placed on the right line, the left line was out of the region of interest. This also caused
a problem when using the module to calculate the offset from the lane center. The module was
implemented to use the middle of the camera frame as the center. However, because the camera
lens center was not centered in the frame, an offset that corresponded to the difference between
the real center of the camera lens and the current center has to be added to the original center
of the camera frame for it to match the logic behind this module.

From Table 3, it is possible to see that the deviation is only a maximum of 12.5% on the left
side, which is represented with negative values. However, on the right side, which is represented
by positive values, the deviation was is which is normally considered as high. The value of the
difference is less than 30 mm, which is only 6.5% of the lane width given as 461 mm. The
direction on which side the camera center was compared to the lane center was also precise. The
high deviation was potentially caused due to the width of the lane line which was in this case 38
mm. The measured center difference was measured from the inside of the lane lines. However,
in some cases, the detected lane lines might be in between the outer and inner lane lines instead,
which can give it an extra offset of up to 38 mm.

From Table 4, the deviation in all cases is less than 10%, which is an acceptable deviation. It
is therefore possible to conclude that when the two-lane lines are detected, the next point given
by the module is reasonable to utilize to stay within the lane when driving.

Sources of Error

Possible sources of error in the test could for example be errors in the equipment like the
measurement tape itself. This could have led to wrong values on the measurements. Another
example is noise lines in the camera frame, which could affect the calculation of the lane lines.
Secondly, a possible source of error could be a human error such as incorrect reading from the
measuring tape that leads to wrong values on the measurements.

4

Conclusion

In conclusion, the lane lines was detected at most of the relevant positions. However, because
the center of the camera was shifted to the left, there are some positions that ideally should be
able to detect the lane lines that do not detect the lane lines. For the method of calculating
the center difference from the module, the deviation was high compared to the measured value.
Despite that, it is acceptable for identifying the direction of the difference considering that the
reason behind the deviation was because of the width of the lane line. For the next point given
from the module that is going to be used as the destination for the vehicle in path planning,
the deviation was low and the method is therefore acceptable to use for further use cases. From
the values measured and calculated, there existed possible source of errors that could have led
to inaccurate values or uncertainties. Thus, a higher deviation in the calculations. The possible
sources of error could be such as equipment failure and human errors.

5

Appendices H

Functionality Testing of Parking Slot
Detection

114

Functionality Testing of Parking Slot Detection

Asbjørn Stokka (959810)
Eirik Reiestad (260753)
Julie Vy Tran (259195)

Tested: March 20, 2023
Revised: March 21, 2023

Summary

A set of parameters were found through a one-by-one modifying method. Thereafter, a test was
performed to verify the function of the Parking Slot Detection module to detect parking lines
only when a QR code is detected. From the test result, the functionality works as intended.
Parking lines in the view are only detected when a QR code was detected and the two parking
lines enclosing the QR code are correctly determined. In addition, it was observed that the
ability to determine the two parking lines enclosing the QR code was dependent on the set of
parameters.

Introduction

This report documents functionality testing of the Parking Slot Detection module. One of the
purposes of the testing is to discover a set of parameters that should be able to detect the
parking lines with the restriction to only when a QR code is detected. Another purpose is to
determine if the module is able to extract the correct parking lines that enclose the QR code
from all the perceptible parking lines at different angles.

Equipment

• Suyin HD Camera

• QR code

• White tape

• Black mat

Method

First, three coherent parking slots are constructed by using white tape as parking lines. The
QR code is then placed in the middle parking slot as shown in Figure 1. Afterwards, the camera
frame at different angles based on the camera placement is captured.

1

Figure 1: Three coherent parking slots, where the middle one that includes the QR code (red
rectangle) is the desired slot to park.

At the angles which are within the relevant angles of detecting QR codes, these captured frames
are used to determine a set of values to use as parameters for the module. The frame with
the angle perpendicular to the camera is used as the initial frame with all the parameters set
as 0. The parameters are thereafter increased in the order: Canny minimum threshold, Canny
maximum threshold, Hough threshold, Hough minimum line length and Hough maximum line
gap respectively. Each parameter is increased until a passable result is given before moving on
to the next one. After finding a set of parameters for the perpendicular angle, these parameters
are tested on the other frames with different angles. If the set of parameters also gives a passable
result, then these parameters are used further for the next angle frame, else the parameters are
increased in the same previously given order. If no set of parameters gives a passable result, the
current set of parameters is decreased instead. Afterwards, these new parameters are used on
the previously captured frame to check if it also gives a passable result for the previous captured.
This procedure is performed for every captured frame. For the angles which are not within the
relevant angle, the captured frames are used to confirm that no lines are detected.

Result

The set of parameters that resulted from the procedure mentioned in the previous section is
presented in Table 1.

Gaussian Blur 12

Canny threshold
Min 50
Max 100

Morph. Closing
Erode 1
Dilate 1

Hough line
Threshold 65
Min Length 70
Max gap 20

Table 1: Set of parameters for the Parking Slot Detection Module

From the set of parameters given in Table 1, the result from verifying if the parameters detect

2

available parking lines and extract the correct parking lines at different angles is presented in
Table 2.

Detected

Angle [degrees] QR Lines Correct QR Code parking lines

45 No No No

50 No No No

55 Yes Yes Yes

60 Yes Yes Yes

65 Yes Yes Yes

70 Yes Yes Yes

75 Yes Yes Yes

80 Yes Yes Yes

85 Yes Yes Yes

90 Yes Yes Yes

95 Yes Yes Yes

100 Yes Yes Yes

105 Yes Yes Yes

110 Yes Yes Yes

115 Yes Yes Yes

120 Yes Yes Yes

125 Yes Yes Yes

130 No No No

135 No No No

Table 2: Result of using the set of parameters from Table 1 to detect parking lines.

Discussion

As expected, based on the result from Table 2, lines were only detected when the QR code was
detected. The set of parameters that were found in the test also operates adequately. Within
the relevant angles for detecting QR-code, it detected the correct parking lines robustly.

In addition, the process of determining the set of parameters was time-consuming as a slight
change of angle or in one of the parameters might cause the module to not be able to deter-
mine the correct two parking lines enclosing the QR code because of extra noise lines. The
ability to detect the correct two parking lines was therefore highly dependent on parameter
tuning. Although the set of parameters that were found through this test functions as intended.
However, in different testing environments, new adjustments to the parameters are most likely
required.

Sources of Error

Possible sources of error in the test could be the lighting, which can cause some parts of the
lines to be less visible than others. This could lead to some parameter values being tuned more
than it needs to. Another possible source of errors is the human error of reading the angle from
the protractor.

3

Conclusion

In conclusion, the module works as intended through the set of parameters that were found in
this test. The parking lines were detected when there was a QR code. Otherwise, when the
QR code was not detected there will be no lines detected. In addition, when a QR code was
detected by using the set of parameters, the correct parking lines enclosing the QR code were
also obtained. However, the ability to detect the correct parking lines enclosing the QR code
was quite dependent on the set of parameters.

4

Appendices I

Determining Mathematical
Functions to Map an Object into a
2D Environment

119

Determine Mathematical Functions to Map Lines into a 2D

Environment

Asbjørn Stokka (959810)
Eirik Reiestad (260753)
Julie Vy Tran (259195)

Performed: March 14, 2023
Revised: March 17, 2023

Summary

This section summarizes the findings of a test report aimed to establish the correlation between
distance and pixel position in camera image frames. To achieve this, physical distances were
measured, and relevant pixel positions were located on the image frame. Thereafter, regression
analysis was performed to derive two mathematical functions to model this correlation. The first
function represents the correlation between the distance in the y-axis and the pixel position in
the y-axis of the point, which was modeled by a seventh-degree polynomial regression equation.
The second function corresponds to the correlation between the ratio of millimeters per pixel on
the x-axis and the distance on the y-axis, which was modeled by a linear polynomial regression
equation. While some deviation is associated with both regression models, the size of the
deviation is not critical. This test is based on the camera being placed 123mm above the
ground.

Introduction

This report presents the results of determining the correlation between the distance from the
vehicle to an object marked on the image frame for the method point to distance in the Envi-
ronment module. The primary objective of this study is to establish a mathematical function
that models this correlation in both the x-axis and the y-axis and determine the accuracy of the
two mathematical functions.

The report discusses the methodology used to perform the testing and presents the findings of
the study, including any uncertainties associated with the regression models.

Equipment

• Suyin HD Camera (1280 x 800)

• Measurement tape

• Marking tape

1

Method

This section outlines the methodology used to determine the correlation between the distance
from the vehicle to an object marked on the image frame and the pixel coordinates on the x-axis
and y-axis.

For the y-axis, the measurement tape is placed perpendicular to the camera lens with the start
of the tape on the camera lens side. The marking tape is thereafter cut into pieces of reasonable
sizes and placed at different distances on the y-axis from the vehicle. The distances to each tape
are noted down. Next, the different tape pieces are located using a picture editor to determine
their corresponding pixel positions on the y-axis using the camera frame. Using a graph tool,
such as Geogebra, a regression model is then determined for the y-axis, where the x-values are
the pixel positions and the y-values are the y-distances.

For the x-axis, two pieces of marking tapes are placed at each reasonable y-distance with a
reasonable distance between them such that the pixels between the tapes in the frame do not
overlap. This distance is measured and noted down. The pixel coordinates are then located and
noted down for the two tapes at different y-distances, and the ratio of mm per pixel can then
be calculated using the equation:

ri =
di

|pi1 − pi2|
(1)

where pi1 and pi2 are the pixel coordinates in the x-axis and di is the distance in the y-axis in
millimeters.

By using a graph tool, such as Geogebra, regression models are found by choosing the best-fitted
model which in this scenario is defined as the model which passes through the most measurement
points. Two models are found using this method. The first one is for the correlation between
the distance per pixel ratio horizontally depending on the y-distance and the second is for the
correlation between the distance in the y-axis and the pixel value vertically. The models are
then implemented in the point to distance method.

To determine the accuracy of the two mathematical functions, random points are chosen within
the camera frame and the distances to them are measured in both directions, where the origin
of the coordinate system that corresponds to the distance in the x- and y-direction should be
the camera lens. Thereafter, the point to distance method is used to obtain the calculated
distances in both the x- and y-direction. These calculated distances are then compared with the
measured distances to determine the accuracy of the method.

Result

The regression model of pixel and distance in the y-axis is given in Figure 1. This is a seventh-
degree polynomial which is given by the equation below. The circles marked in Figure 1 represent
the exact value that is measured.

f(x) = 7.06075681116041 ∗ 10−14 ∗ x7 − 7.07543466719694 ∗ 10−11 ∗ x6

2.84232325514655 ∗ 10−8 ∗ x5 − 0.00000570571739397854 ∗ x4

+ 0.000613607865916111 ∗ x3 − 0.0303482866336146 ∗ x2
+ 1.55996291629615 ∗ x+ 334.781663853853

2

0 50 100 150 200 250 300 350
0

500

1,000

1,500

2,000

pixel(px)

d
is
ta
n
ce

y
(m

m
)

distancey

Figure 1: Regression model of pixel and distance in the y-axis.

Figure 2 presents the regression model for the distance ratio in the x-axis per pixel and dis-
tance in the y-axis. The equation for this model is given by Equation , and the circles in the
figure represent the precise values measured that have been used to determine the regression
model.

f(x) = 0.000807461x− 0.015133769

3

0 500 1,000 1,500 2,000 2,500
0

0.5

1

1.5

2

distancey(mm)

ra
ti
o(
m
m
/
p
x
)

ratiox

Figure 2: Regression model of the ratio of the distance in the x-axis per pixel and the distance
in the y-axis.

The result of determining the accuracy of the two mathematical functions is given in Table
1.

Measured distances [mm] Pixel Calculated distances [mm] Deviation [%]

X Y X Y X Y X Y

232 1290 784 520 235.3 1131.4 1.4 12.3

-70 790 429 586 -63.0 738.3 10 6.5

-160 651 223 619 -157.0 620.7 1.9 4.7

22 413 607 744 23.2 392.2 5.5 5.0

-26 1023 505 545 -22.0 951.4 15.4 7.0

-195 1675 386 488 -191.9 1557.5 1.6 7.0

183 1403 711 509 184.4 1248.0 0.8 11.0

120 520 831 675 118.7 492.2 1.1 5.3

-140 439 142 712 -136.2 433.1 2.7 1.4

-163 1141 352 528 -160.7 1072.8 1.4 6.0

Table 1: Result of comparing measured distances to distances calculated by the method
point to distance.

Discussion

Figure 1 shows that the model for the y-axis correlation passes through all of the measured
points. This suggests that the model fits well with the data set. However, the model may provide
incorrect distance values for pixel values larger than 350 since there are no measurement values
in that range.

4

The model for the x-axis correlation in Figure 2 passes through 9 of the 12 points, which is
approximately 75% of the points. While there may be some deviations in using this model since
not all points lie on the model, the blue circles representing the points not traversed through
are quite close to the line with a maximum deviation of only 0.03mm/px.

From Table 1 it is also possible to see that when applying the two mathematical functions for
the method point to distance the maximum deviation is only at 12.3% for the y-distance and
15.4% for the x-distance. As it is less than 20%, the deviations are acceptable. However, as it
is larger than 10%, one must be aware of when used.

Sources of Errors

There are several potential sources of error in this study. First of all, human errors during the
measurement process could lead to inaccuracies in locating the different pixel values on the frame
and thereby affect the regression models. Secondly, errors in the placement of the measurement
tape and pieces of marking tape could also impact the accuracy of the measurements, particularly
if the tape was not placed perpendicular to the camera lens or if the tapes were not positioned
at equivalent distances along the y-axis. Finally, equipment errors, such as incorrect distances
between measuring lines on the measuring tape or poor camera quality and camera calibration,
could lead to blurry images or altered images. This could further lead to difficulties in accurately
pinpointing pixel locations or an inaccurate constant ratio at the same y-distance because of
lens distortion. In fact, the errors because of blurry images can be observed in the regression
model of pixel and distance in the y-axis, where the range of pixel values is limited to only less
than 400.

Conclusion

This study resulted in the discovery of two mathematical functions. The first is a seventh-degree
polynomial that relates the distance on the y-axis to the y-value of the pixel coordinate. The
second is a linear polynomial that relates the ratio of mm per pixel on the x-axis to the distance
on the y-axis. However, there is a potential for deviation from accurate measurements due to
various sources of error, such as human or equipment errors that causes uncertainties in the
measurements.

5

Appendices J

Determine the Functionality of
Mapping QR Code and Lines

125

Functionality testing of Mapping QR Code with Lines

Asbjørn Stokka (959810)
Eirik Reiestad (260753)
Julie Vy Tran (259195)

Performed: April 20, 2023
Revised: April 20, 2023

Summary

From the test cases, the QR code and the mapping of lines align with each other in that the QR
code is enclosed within the parking lines. However, the result is restricted to these test cases
and might not give the same result for other test cases.

Introduction

The purpose of the test is to determine how the mapping of QR code and the mapping of
lines operate together. By determining this, it is possible to identify if path planning will work
as intended. The desired result is that the QR code should be enclosed within the parking
lines.

Equipment

• Suyin HD Camera

• QR code

• Protractor

• Measurement tape

• Marking tape

Method

A code implementation using the Pygame package is used to perform this test. The file is called
example.py and is a part of the Pathfinding module.

Three parking slots are constructed using measurement tape. The QR code is then placed inside
the middle parking slot, a little bit closer than the extra obstacle line of the parking slot but also
not too far away from it. This is so that the QR code is still within the parking slot, but will
not occupy the space the vehicle needs to be able to park in future tests. An example of how
the QR code is placed is given in Figure 1 in the test report ’Functionality Testing of Parking
Slot Detection’

1

The camera is afterwards placed at different angles and distances from the QR code. For each
position, the code implementation is used to visualize if the QR code is enclosed within the
parking lines of the middle parking slot.

Result

An example of the test result is presented in Figure 1.

Figure 1: An example of the result from determining how the mapping of QR code and the
mapping of lines operate together. Yellow lines represent the parking lines and the purple
square is the QR code.

All test case results are given in Table 1.

Angle Distance Enclosed

-35 630 X

-22 652 -

0 600 X

22 770 X

35 735 X

Table 1: Result of all test cases to determine how the mapping of QR code and the mapping
of lines operate together. The column ’Enclosed’ describes if the QR code is enclosed in the
parking lines or not. X means it is enclosed. Dash means it is not enclosed.

Discussion

From Table 1, it is possible to perceive that the QR code and the line mapping align with each
other in 4 out 5 cases by that the QR code was enclosed in the parking lines. However, 1 of 5
cases resulted in the QR code being outside the parking slot. Furthermore, as seen in the first
result in Figure 1, the QR code was mapped a bit far away from the obstacle line. On the other
hand, the second result showed that the QR was close to the obstacle but closer to one side of
the parking slot. Further, the third result showed an outcome where the QR was outside of the
parking slot. Thus, it is possible to confirm that there are some deviations in the desired and
obtained results. Overall, as these are only a few combinations of angles and distances, there
might exist more scenarios where the QR code mapping and the parking lines mapping do not
align with each other.

2

Sources of Errors

A possible source of error in the test cpuld be the placement of the QR code relative to the
parking slot. The QR code could have been placed too far away from the obstacle line, thus
there might exist a possibility that for example, the QR code in the edge cases like Figure ??
would be behind the obstacle line. However, since it was placed a little bit further away than the
ideal amount from the obstacle line, it was observed that it is still within the parking slot.

Conclusion

In conclusion, from the test cases that have been performed, the QR code was enclosed within
the parking lines in 80% of the test cases. However, there are some deviations from the desired
position of the QR code in relation to the parking slot. In addition, as the test cases do not
include all possible combinations of distance and angle, there is a possibility that this will not
perform well in other test cases.

3

Appendices K

Camera Latency, Motor speeds, and
Software frame rate tests

129

Camera latency, motor speeds, and software frame rate

Asbjørn Stokka (959810)
Eirik Reiestad (260753)
Julie Vy Tran (259195)

Performed: April, 2023

Summary

This section summarizes the findings of a test report for a bachelor thesis that aimed to quantify
the latency of a selection of different cameras, PWM output vs motor speed of the gearbox motor,
and current software performance in FPS.

Introduction

This report presents the results of testing the camera and motor hardware used and is aimed
to give us quantified data on the performance. For the cameras, specifications on latency,
resolution, and maximum FPS are relevant. For the motor system maximum and minimum
speed is relevant, as well as check that they can handle the torque of driving the car. And, lastly,
check the performance of our software running on the Raspberry Pi single-board computer. Even
though the performance of the system is in general not important in regards to the accuracy of
the computer vision algorithms, it is relevant for deciding what speed the test vehicle can safely
operate at. An evaluation of these tests and evaluations will give important information on the
physical handling of the test vehicles.

Equipment

• Logitech Camera (1920 x 1080)

• Suyin HD Camera (1280 x 800)

• Raspberry Pi camera

• Gearbox brush motor

• Motor driver board (H-Bridge)

• NEMA 17 stepper motor

• TMC2209 Stepper drivers

• Raspberry Pi 4B 1GB

• Desktop test vehicle

• Small test car

1

Camera Latency

Method

For testing camera latency two approaches have been used. First using a Python script that
measures the time it takes from the script to change the screen color, until the camera notices
this change. The script used for this was downloaded from: https://www.dlology.com/blog/how-
to-measure-the-latency-of-a-webcam-with-opencv/

Secondly, the camera latency was approximated by filming the computer showing a millisecond
timer, while also showing the camera output in a window next to it. At a random time, a
screenshot was taken, and the latency was measured as the difference between the time shown
in the timer window and the time shown in the camera output window.

Result

Camera latency was measured differently from the two approaches. Both indicated a camera
latency between 100 and 200 ms. We can assume a worst-case latency of 200 ms.

Motors and torque

Method

Gearbox 1:48 brush motor

The datasheets and product information gives the following specifications
(https://www.aliexpress.com/item/33017067692.html & https://www.adafruit.com/product/3777):

• Operating voltage: 3V 6V DC

• Maximum torque: 800gf cm min (when it is 3V)

• RPM:200(when it is 4.5V)

• Load current: 170mA (when it is 4.5V)

• Min. Operating Speed (3V): 90+/- 10% RPM

• Min. Operating Speed (6V): 200+/- 10% RPM

• Stall Torque (3V): 0.4kg.cm

• Stall Torque (6V): 0.8kg.cm

• Weight: 30.6g

Stepper motor

• 1.8 degrees per step

• 200 steps per revolution

• Desktop vehicle Wheel circumference: 213,52 mm (based on the outer diameter)

• Desktop test vehicle moves approximately 1 mm/step (0,94 mm)

• Small car wheel circumference 1318,8 mm (based on the outer diameter)

• Small car moves approximately 6,594 mm/step.

2

Weight measurements

Battery type
Battery

[g]

Desktop test
vehicle weight

[g]

Total
[g]

Gel 1 148 481 1 629

LiFePO4 491 481 972

Drone Battery 182 481 663

None 0 481 481

Results

The total weight of the desktop test vehicle led to high torque on the gearbox motor. At low
voltages and slow speeds, the gearbox motor performed unevenly. This was noticeably better
with the light batteries. Even with the lightest battery, the desktop test vehicle would not drive
reliably enough to keep track of position and direction without additional sensors.

The TMC2209 stepper motor drivers allow for micro-stepping. Depending on the physical
MS1/MS2 pin configuration the microsteps can be 8th, 16th, 32th, or 64th of a step. The
frequency will need to be adjusted accordingly.

Wheels and frequencies for stepper motor

Method

By calculating the circumference of the wheels, and number of steps needed for a rotation of the
motor it is possible to calculate the vehicle speed. The following table shows the needed PWM
frequency needed for the stepper motor controller to achieve a given velocity of the vehicle.
The values in the table has to be multiplied according to the micro-step setting of the motor
controller as well.

Results

Frequency 0.1 m/s 0.2 m/s 0.5 m/s 1 m/s 1.67 m/s

Desktop test vehicle 106.38 212.77 531.91 1063.83 1 776.6

Small test car 16.13 32.27 80,67 161,33 269.43

Software performance

Method

Software performance was tested by running the output of the number of frames it calculated
per second. These values can be found by downloading and running the Python software on a
Raspberry Pi 4b.

Results

The socket camera streaming running on its own without any calculations gave an output of 5
FPS, counted on the remote computer receiving the frames on a wired network connection. And

3

depending on the running state it would run at approximately three to five FPS with the serial
communication module, and up to 10 with the hardware PWM communication module.

Discussion

Note that 30 FPS is unrealistic when performing calculations on a Raspberry Pi, but it is the
limit of what the cameras used in our project are capable of. In a production setting, it is
possible to swap to cameras with higher frame rates and lower latency. In addition to the
latency of the camera, the frame rate is a factor in how quickly the car will react to an obstacle
or other visual feedback. Depending on the frame rate the car will move a distance each time
a new image is processed, and new calculations are made. If any obstacles appear, this could
add to the reaction time of the autonomous vehicle, and its chance to stop or turn to avoid
a collision. And it will also affect how well it will be able to drive a course. The table above
shows some of the relevant speeds and frame rates, and a calculation of how far the car will
move between getting a new frame for calculations. It’s worth noting that if an obstacle were
to appear immediately after one frame was taken, it would be almost two frames (twice the
distance) until the car acts on it, as it has to process the frame before any change is made to
the motor output. Realistically it is expected to get up to around 5-10 FPS, one might want to
avoid driving more than 10 cm between the moment a frame is taken to the car and acts on the
new information it has retrieved. On a larger scale and given other sensors that can help detect
obstacles it might be safe to increase this distance driven between frames/calculations.

0.36 km/h 0.72 km/h 1.8 km/h 3.6 km/h 6.0 km/h

FPS
0.1 m/s

[m]
0.2 m/s

[m]
0.5 m/s

[m]
1 m/s
[m]

1.67 m/s
[m]

1 0.10 0.20 0.50 1.00 1.67

3 0.03 0.06 0.17 0.33 0.56

5 0.02 0.04 0.10 0.20 0.33

10 0.01 0.02 0.05 0.10 0.17

15 0.007 0.013 0.03 0.07 0.11

30 0.003 0.007 0.016 0.03 0.06

Latency

100 ms 0.01 0.02 0.05 0.10 0.17

200 ms 0.02 0.04 0.10 0.20 0.33

Sources of Errors

The time measurements done with a stopwatch are somewhat unreliable in nature and were also
highly affected by the car not driving in a straight line.

Conclusion

From the set of tests performed in this report, it seems beneficial to change from gearbox brush
motors to stepper motors as the accuracy of movement is essential. The frame rate and latency
of the tested cameras, including the performance test with the raspberry pi suggest that it is
possible to run the vehicle at speeds up to 6 km/h. However, slower speeds are advisable, and
with stepper motors, just as reliable.

4

	Abstract
	Preface
	Contents
	Introduction
	Background and Motivation
	Aim and Objectives
	Limitations
	Methodology
	Thesis Outline

	Computer Vision and Algorithms
	Overview of Computer Vision
	Stereoscopic Vision
	Local Binary Pattern Cascade
	Line Detection with Hough Transform
	Classifying and Merge Lines in Lane Detection
	Perspective Transform
	Merging Line Segments
	Bresenham's Line Algorithm
	A* algorithm
	Catmull-Rom Spline

	System Design and Development
	System Architecture and Components
	Hardware Requirements
	Hardware Design
	Software Requirements
	Software Design

	Computer Vision Techniques for Autonomous Driving
	Camera Calibration and Rectification
	Stereoscopic Vision
	QR Code Detection
	Stop Sign Detection
	Line Detection
	Lane Detection
	Parking Slot Detection

	Environment Mapping
	Path Planning
	Modified A* algorithm
	Catmull-Rom Spline
	Implementation

	Motion Control
	User Interface Design
	Testing and Validation

	Results and Analysis
	Evaluation of System Performance
	Accuracy of Computer Vision Techniques
	Accuracy of Environmental Mapping
	Accuracy of Path Planning
	Reliability of the System

	Comparison with Existing Autonomous Driving Systems
	Limitations and Areas for Improvement

	Conclusion and Future Works
	Summary of Findings and Contributions
	Recommendations for Future Research and Development

	Bibliography
	Appendices
	Github Repository
	Functionality Testing of Stereoscopic Vision Calibration
	Functionality Testing of Stereoscopic Vision Tuning
	Functionality Testing of Stereoscopic Vision Blurring
	Functionality Testing of QR Code
	Functionality Testing of Stop Sign Detection
	Functionality Testing of Lane Detection
	Functionality Testing of Parking Slot Detection
	Determining Mathematical Functions to Map an Object into a 2D Environment
	Determine the Functionality of Mapping QR Code and Lines
	Camera Latency, Motor speeds, and Software frame rate tests

