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A NEW METHOD FOR GENERATING VIRTUAL 

MODELS OF NONLINEAR HELICAL SPRINGS 

BASED ON A RIGOROUS MATHEMATICAL MODEL 

Abstract 

This paper presents a new method for generating nonlinear helical spring geometries 

based on a rigorous mathematical formulation. The model was developed for two 

scenarios for modifying a spring with a stepped helix angle: for a fixed helix angle of 

the active coils and for a fixed overall height of the spring. It allows the development 

of compression spring geometries with non-linear load-deflection curves, while 

maintaining predetermined values of selected geometrical parameters, such as the 

number of passive and active coils and the total height or helix angle of the linear 

segment of the active coils. Based on the proposed models, Python scripts were 

developed that can be implemented in any CAD software offering scripting capabilities 

or equipped with Application Programming Interfaces. Examples of scripts that use the 

developed model to generate the geometry of selected springs are presented. FEM 

analyses of quasi-static compression tests carried out for these spring models showed 

that springs with a wide range of variation in static load-deflection curves, including 

progressive springs with a high degree of nonlinearity in characteristics, can be 

obtained using the proposed tools. The obtained load-deflection curves can be 

described with a high degree of accuracy by power function. The proposed method can 

find applications in both machine design and spring manufacturing. 

 

1. INTRODUCTION  

The requirements for compression coil springs used in industry are increasing, and a wide 

range of applications forces the search for modifications of their classic geometry. Spring 

geometry influences its static and dynamic properties. These properties can be analysed by 

analytical models, such as the classic study (Wittrick, 1966), or using computer methods 

(Ding & Selig, 2004; Taktak et al., 2008; Pöllänen & Martikka, 2010; Zhuo et al., 2022). 

The analytical and numerical methods can also be combined, as shown in (Gobbi & Mastinu, 
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2001) for optimisation of composite material helical spring. The most accurate results are 

obtained using models that treat the spring as a spatially curved bar (Michalczyk, 2015). 

However, such an approach is usually implemented under the assumption that the spring is 

linear and has a homogeneous geometry along its entire length. One of the few papers that 

considers the effect of changing the geometry of the spring in the area of the end coils is the 

paper (Liu & Kim, 2009). In this work, the authors proposed a model in which the effect of 

the end coils on the spring axial stiffness is modelled using modified boundary conditions. 

Modelling springs with non-linear characteristics, i.e. with variable pitch and/or diameter, is 

particularly problematic. These springs have an advantage over linear springs due to their 

better performance in reducing the dynamic response at high frequencies. In the work (Zhao 

et al., 2023), the FE model based on Timoshenko beam theory was used to model the work 

of these springs and was compared with the model based on solid elements and experimental 

research. 

Commercial CAD software is used in work on analyzing the properties of springs with 

relatively simple geometries (Gu et al., 2020; Rahul & Rameshkumar, 2021; Arshad et al., 

2022), since it has limited capabilities for shaping the geometry of helical springs and usually 

allows only the control of selected parameters within an arbitrarily imposed spring scheme, 

most often in accordance with EN 13906-1:2013 standard. Other studies that used CAD 

software with such limitations include (Chandravanshi & Mukhopadhyay, 2017; Gzal et al., 

2017; Nazir et al., 2020; Sahu et al., 2022). Commercial spreadsheet-based engineering 

software can also be used for the design and analysis of such springs (Schorcht et al., 1998; 

Liberman, 2006; Meissner & Schorcht, 2007). Computer methods based on genetic 

algorithms (Cimolai et al., 2022; Bai et al., 2021; Warzecha et al., 2022) are used to create 

complex spring shapes by optimising for specific criteria.  

The results of the computer simulation of the coil spring properties require validation 

with experimental data. This process demands high agreement between the virtual and 

manufactured spring geometry. However, the inaccuracy of the manufacturing process is 

often the source of differences between them. The differences are mainly in the helix angle, 

inner and outer diameter, height, wire diameter and uniformity of the outer diameter along 

the entire length of the spring. In a publication (Gu et al., 2020), it was shown that the 

differences between the geometry of a spring designed in a commercial program and that of 

made in the factory can be so large that it makes validation of the numerical model difficult. 

A potential solution to this problem may involve application of 3D scanning technology, 

which allows virtual models from real objects. However, in the case of coil springs with bent 

end coils, this method has difficulties. The scanner cannot read the geometry of the surfaces 

that separate adjacent wires, forcing complicated processing of the obtained model.  

The indicated problems show the need for better spring geometry creation algorithms. 

Such algorithms would be more flexible, allowing for creation of coil spring geometry with 

variable parameters described in a strict mathematical manner. To achieve this goal, 

mathematical relations are necessary to define the spatially curved axis of the spring wire. 

Such relations should give the coordinates of points laying on the curved axis as a function 

of the angular coordinate. Such an approach makes it possible, among other things, to build 

a spring with a progressive pitch, varying over the entire height of the spring.  Previous 

studies relied heavily on the limited tools available in commercial CAD software for spring 

geometry creation (Chandravanshi & Mukhopadhyay, 2017; Gzal et al., 2017; Nazir et al., 

2020; Sahu et al., 2022). Because of the limited design features, creation of intricate helical 
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spring geometry was based on simple CAD features such as extrude, sweep, revolve, and 

spline. Thus, the exact control of the spring geometry was either not possible or time-

consuming. Therefore, the novel approach proposed in this article will support future studies. 

Implementation of mentioned algorithms would allow creation of spring models with more 

complex geometry, which will be a significant improvement for research conducted using 

FEM, commonly applied in the study of coil springs. 

The purpose of this work is to develop an effective method for generating models of helical 

springs with arbitrary geometric parameters, within certain limits. Its application is demonstrated 

through examples. The proposed method uses the Python language and can be implemented in 

both open source and commercial software. The article begins with an introduction, then the 

mathematical formulation of the model is described, the program's algorithm is presented, and 

finally, the practical application of the method is presented for numerical testing. 

2. MATHEMATICAL MODEL 

The geometry of helical spring can be described using the parametric equations of the 

helix, which allow a transition from cylindrical coordinates to Cartesian coordinates (Yang 

et al., 2014): 

{

𝑥 = 𝑅cos𝜑
𝑦 = 𝑅sin𝜑

𝑧 =
𝑃(𝜑)

2𝜋
𝜑

 (1) 

where:  R – radial coordinate, equal to half of the mean spring diameter, 

φ – azimuth, the angle between the position vector at the beginning of the helix 

and the position vector at the specific point on the helix, measured in the plane 

perpendicular to the axis of the helix, 

𝑃 = 2π𝑅 tan 𝛿 – pitch of helix,  

𝛿 = 𝛿(𝜑) – helix angle, which represents the angle between the axis of the wire 

and a line perpendicular to the axis of the spring, measured at the mean spring 

diameter, 

x, y, z – Cartesian coordinates. 

In the case of cylindrical springs with a constant helix angle, the pitch value P in Eq. (1) 

is invariant, however, under real-world conditions helical compression springs usually have 

sections where this parameter changes gradually. Fig. 1a shows a section of a theoretical 

spring with a step-changing helix angle, and Fig. 1b shows a spring having a section with  

a continuously increasing helix angle. To accurately determine the height of the spring and 

its number of active coils, it is necessary to strictly formulate the geometry of the progressive 

pitch section. The most advantageous from the point of view of the fatigue strength of the 

spring is to use a constant transition radius between sections with different pitch angles  

of the helical line. The simplest example of this is shown in Fig. 2. This figure shows  

the development of the helical line of a spring with squared end coils, with transition sections 

of constant curvature in the circumferential direction, defined by radii ρ1 and ρ2.  

The functions describing the course of these sections are denoted by zρ1 and zρ2 respectively. 
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Fig. 1. Spring model with stepwise variable helix angle a), spring model with continuously variable helix 

angle b) with corresponding plots, showing helix angle change 

 In compression springs, the end coils i.e. the first and the last coils are adjacent to each 

other, providing stable support and reducing the maximum contact stresses. Under this 

assumption, the values of the helix angles δ1 and δ3 can be expressed by the relation: 

𝛿1 = 𝛿3 = atan
𝑟

𝜋𝑅
         (2) 

where r denotes half of the wire diameter. In general, the angles δ1 and δ3 can be arbitrarily 

chosen acute angles. The segments visible in Fig. 2 between points O1 and A1 and between 

points A2 i O2 represent end coils of numbers n1 and n3, while the lines between points A1 

and A2 correspond to active coils of number n2. The figures n1, n2 and n3 represent the number 

of corresponding coils. In general, these numbers can take arbitrary non-negative values. 

The relationships between the numbers of coils and the corresponding azimuth φ can be 

written in the following form: 

𝜑𝐴1 = 2𝜋𝑛1; 𝜑𝐴2 = 2𝜋𝑛2 + 𝜑𝐴1; 𝜑𝑂2 = 2𝜋𝑛3 + 𝜑𝐴2    (3) 

 

Fig. 2. Development of the wire centreline of a spring with squared end coils,  

with transition sections of constant curvature 
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In this paper, two cases of significant practical interest will be presented. In the first case, 

a model enabling the generation of a spring geometry with a fixed helix angle δ2 will be 

presented, while the height of the spring will depend on the radii ρ1 and ρ2. In the second 

case, the developed model will allow the generation of a spring geometry with a fixed overall 

height H and a helix angle δ2 depending on the radii ρ1 and ρ2.  

In order to obtain a generalised calculation model and simplify the notation, a new 

relative variable 𝑧̅ was introduced: 

𝑧̅ =
𝑧

𝑅
              (4) 

Similarly, the functions describing successive sections of the wire centreline 

development, expressed in relative coordinates φ and 𝑧̅ are denoted successively 𝑧�̅�, 𝑧�̅�1, 𝑧�̅�𝐼, 

𝑧�̅�2 and  𝑧�̅�𝐼𝐼. In the same way, the relative radii of �̅�1 =
𝜌1

𝑅
 and �̅�2 =

𝜌2

𝑅
 are labelled. 

 

2.2. Computational model of a spring geometry with a fixed helix angle  

of the active coils 

Function 𝑧�̅� describing the first linear segment of spring wire centreline in relative 

coordinates, has the following form: 

 𝑧�̅� = 𝜑 tan𝛿1              (5) 

The slope of the second linear function 𝑧�̅�𝐼 is equal to tan 𝛿2, whilst its offset can be 

calculated using the consistency condition between zI and zII at point S1: 

 𝑧�̅�(𝜑 = 𝜑𝑆1) = 𝑧�̅�𝐼(𝜑 = 𝜑𝑆1)           (6) 

The azimuth of point S1 depends on the azimuth value of point A1, the value of the relative 

radius �̅�1 and the difference in angles δ2 and δ1: 

𝜑𝑆1 = 𝜑𝐴1 + �̅�1 tan
𝛿2−𝛿1

2
∙ cos 𝛿1       (7) 

The angular coordinate of point S1 can be calculated from Eq. (5): 

 𝑧�̅�1 = 𝜑𝑆1 tan 𝛿1              

Azimuth of point A1 is expressed by Eq.(3). Using Eq. (6) and (7) we find the function 𝑧�̅�𝐼: 

 𝑧�̅�𝐼 = 𝜑 tan𝛿2 + (𝜑𝐴1 + �̅�1 tan
𝛿2−𝛿1

2
∙ cos 𝛿1) (tan 𝛿1 − tan𝛿2)   (8) 

On the basis of the well-known geometrical relationships, the function 𝑧�̅�1 can be 

determined to describe the curve between points A1 and B1: 
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 𝑧�̅�1 = 𝑧�̅�1 − �̅�1√1− (
𝜑−𝜑𝐶1

�̅�1
)
2
          (9) 

where: 

 𝑧�̅�1 = 𝜑𝐴1 tan 𝛿1 + �̅�1 cos𝛿1           (10) 

 𝜑𝐶1 = 𝜑𝐴1 − �̅�1 sin 𝛿1            (11) 

The slope of the third linear function 𝑧�̅�𝐼𝐼 equals tan(𝛿3), and its offset can be calculated 

in a similar way to the offset in function 𝑧�̅�𝐼. The azimuth of the point A2 is given by Eq.(3), 

and points A2, S2 and C2 constitute the vertices of a right-angle triangle. Using the above, 

the azimuth of point S2 can be determined and thus, with the help of elementary 

transformations, the function 𝑧�̅�𝐼𝐼  and the function 𝑧�̅�2 can be found: 

𝜑𝑆2 = 𝜑𝐴2 − �̅�2 tan
𝛿2−𝛿3

2
∙ cos 𝛿3        (12) 

𝑧�̅�𝐼𝐼 = (𝜑 − 𝜑𝑆2) tan 𝛿3 + 𝜑𝑆2 tan 𝛿2 +        (13) 

+(𝜑𝐴1 + �̅�1 tan
𝛿2 − 𝛿1

2
∙ cos 𝛿1) (tan 𝛿1 − tan𝛿2) 

 𝑧�̅�2 = 𝑧�̅�2 + �̅�2√1− (
𝜑𝐶2−𝜑

�̅�2
)
2
          (14) 

where: 

 𝑧�̅�2 = 𝑧�̅�2 − �̅�2 cos 𝛿3            (15) 

 𝜑𝐶2 = 𝜑𝐴2 + �̅�2 sin 𝛿3            (16) 

 The relative axial coordinate of point A2 can be determined by substituting 𝜑𝐴2 in Eq. (13) 

in place of 𝜑. Total height of the spring corresponds to the axial coordinate of point O2: 

 𝐻 = 𝑅 ∙ 𝑧�̅�𝐼𝐼(𝜑 = 𝜑𝑂2)            (17) 

 Increasing the values of �̅�1 i �̅�2 results in a shortening of the length of the rectilinear 

segment described by the function 𝑧�̅�𝐼, which in the limit case will be reduced to zero. The 

following condition should be satisfied:  

 𝜑𝐵1 − 𝜑𝐴1 +𝜑𝐴2 − 𝜑𝐵2 ≤ 2𝜋𝑛2        (18) 

Using the relations shown in Fig. 2, the inequality (18) can be written in the following form: 

 �̅�1 tan
𝛿2−𝛿1

2
∙ (cos 𝛿1 + cos 𝛿2) + �̅�2 tan

𝛿2−𝛿3

2
∙ (cos 𝛿2 + cos 𝛿3) ≤ 2𝜋𝑛2  (19) 

Assuming that 𝛿3 = 𝛿1, we obtain: 

 (�̅�1 + �̅�2)𝑚𝑎𝑥 =
2𝜋𝑛2

(cos𝛿1+cos𝛿2) tan
𝛿2−𝛿3

2

        (20) 
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2.3. Computation model of a geometry with a fixed total height of the spring 

 The functions 𝑧�̅� and 𝑧�̅�1 describing the centreline of the wire on the first passive coil 

segment and the first transition segment with constant curvature have the form given by 

equations (5), (9), (10) and (11). 

In the case of a fixed total height H of the spring, with fixed numbers of coils n1, n2 and 

n3, the position of point O2 is also known. Its axial coordinate in the assumed relative 

coordinate system equals: 

 𝑧�̅�2 =
𝐻

𝑅
            (21) 

 whereas its azimuth 𝜑𝑂2 is given by Eqs. (3). Thus, the function 𝑧�̅�𝐼𝐼 describing the 

centreline  of the wire between the points A2 and O2 will take a form: 

 𝑧�̅�𝐼𝐼 = 𝑧�̅�2 − (𝜑𝑂2 −𝜑) tan 𝛿3          (22) 

 A second transition segment with a fixed relative radius of curvature �̅�2 can be 

determined from Eq. (14), with the relative axial coordinate of point C2 being determined 

from Eq. (19) by substituting 𝜑 = 𝜑𝐶2. Under this assumption, the equation describing the 

𝑧�̅�2 function can be written in the form: 

 𝑧�̅�2 = 𝑧�̅�2 + �̅�2√1 − (
𝜑𝐶2−𝜑

�̅�2
)
2
− (𝜑𝐶2 −𝜑𝑂2) tan 𝛿3     (23) 

where 𝜑𝐶2 is given by Eq. (16). 

 The angle δ2 can be determined on the grounds of the geometric relationships between 

the characteristic points of the analysed system, which is shown in Fig. 3.  

 

Fig. 3. Diagram of analysed geometric system 

Let us denote the angle between the line passing through points C1 and C2 and the line 

connecting points B1 and B2 as δ2B and the angle between the line passing through points C1 

and C2 and the horizontal line as δ2C. Based on the geometric relationships shown in Fig. 3, 

the equation describing the distance LC between points C1 and C2 can be formulated: 
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𝐿𝐶 = √(𝜑𝐶2 − 𝜑𝐶1)
2 + (𝑧�̅�1 − 𝑧�̅�2)

2        (24) 

And the equation describing the distance LB between points B1 and B2: 

 𝐿𝐵 = √𝐿𝐶
2 − (�̅�1 + �̅�2)

2          (25) 

The angles 𝛿2𝐵 and 𝛿2𝐶 amount to respectively: 

 𝛿2𝐵 = tan−1
�̅�1+�̅�2

𝐿𝐵
           (26) 

 𝛿2𝐶 = tan−1
�̅�𝐶1−�̅�𝐶2

𝜑𝐶2−𝜑𝐶1
          (27) 

Using the designations as in Fig. 3, the angle δ2 can be expressed as a difference: 

 𝛿2 = 𝛿2𝐵 − 𝛿2𝐶             (28) 

Already knowing the value of the angle δ2, it is possible to write the 𝑧�̅�𝐼 equation describing 

the centreline of the wire on the segment between points A2 and O2: 

𝑧�̅�𝐼 = (𝜑 − 𝜑𝐵1) tan 𝛿2 + 𝑧�̅�1 
where: 

 𝜑𝐵1 = 𝜑𝐶1 + �̅�1 sin𝛿2            (29) 

 𝑧�̅�1 = 𝑧�̅�1 − �̅�1 cos 𝛿2            (30) 

Coordinates 𝜑𝐶1 and 𝑧�̅�1 are given by Eqs. (10) and (11).  

The maximum possible value of the sum of �̅�1 and �̅�2 can be determined from Eq. (25) by 

substituting 𝐿𝐵 = 0, however, this equation in case of arbitrary values of angles 𝛿1 and 𝛿3 

can only be solved with respect to sum of �̅�1 and �̅�2 numerically. 

Under the assumption, that 𝛿3 = 𝛿1, in the case where 𝐿𝐵 = 0, the distance between the 

points C1 and C2 is constant, regardless of the ratio between the relative radii �̅�1 and �̅�2. The 

same applies to the value of the angle 𝛿2𝐶. Using the above conditions, an equation enabling 

the maximum value of the sum of �̅�1 and �̅�2 to be determined can be written: 

(�̅�1 + �̅�2)𝑚𝑎𝑥 =
√(�̅�𝐴2−�̅�𝐴1)

2+(𝜑𝐴2−𝜑𝐴1)
2

2 sin(𝛿2𝐼−𝛿1)
       (31) 

where 𝛿2𝐼 denotes the helix angle of the active coils of the spring with initial geometry, i.e. 

when �̅�1 = �̅�2 = 0. Using Eq. (3), Eq. (31) after transformations will take the following 

form: 

(�̅�1 + �̅�2)𝑚𝑎𝑥 =
𝜋𝑛2√tan

2 𝛿2𝐼+1

sin(𝛿2𝐼−𝛿1)
        (32) 
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3. IMPLEMENTATION OF THE CALCULATION ALGORITHM 

The mathematical relations given in Section 2 define the centerline of the spring wire. 

These relations can be applied to obtain the spring geometry with the constant helix angle or 

the constant spring height. Nevertheless, such process may be time-consuming and require 

scripting skills, which creates a difficulty for a user. To mitigate this problem, a Python script 

was created. The general idea behind this script utilises the fact that most CAD software 

offers scripting capabilities or Application Programming Interfaces (APIs), which allow an 

automation of a geometry creation process. This section describes significant features of the 

Python script and gives a reference for its usage. 

There are many CAD programmes that can be used to generate the spring geometry. Most 

of them offer scripting languages, which can be used to create macros, or APIs allowing for 

creation of user-defined functions. Both features can be used to automate geometry creation. 

Because the scripting languages or APIs are usually not compatible between different CAD 

software, there was no possibility to create a universal solution. Consequently, the Python 

script currently can generate an input file for two selected programmes, SpaceClaim and 

Gmsh (Geuzaine & Remacle, 2009), but it was conceptualised to be easily extendable for 

other CAD software. This was achieved by modularity of the source code, in which separate 

functions were utilised for each task. The selected programs were chosen because of the 

possibility to generate finite element mesh based on 3D geometry, licence availability and 

their grounded position in scientific community. 

The script source code was divided into three parts: user-defined parameters, algorithm 

implementation, and CAD software interface. The user-defined parameters were intended as 

an interface for the user. They contain variables which can be assigned by the user to select 

the algorithm (either constant helix angle or constant spring height), used CAD software 

(currently SpaceClaim and Gmsh are supported) and define needed spring geometry 

parameters. Each variable was documented directly in the source code comments. The 

algorithm implementation part consists of two functions: gen_central_points_angle_control() 

(implements equations given in Section 2.2) and gen_central_points_height_control() 

(implements equations given in Section 2.3). Both functions return a NumPy array 

containing the coordinates of points defining the spring helix. This array is then taken as an 

input by the third part functions, which build the CAD interface. These functions generate 

files, which can be directly used in the CAD programme to generate the spring geometry. 

Currently two interfaces are available (SpaceClaim and Gmsh) but this part can be easily 

extended by adding functions specific to other CAD software. 

 The structure and workflow of the Python script is presented in Fig. 4. First, the user 

defines the required parameters defined as variables. Some of them are specific to the chosen 

algorithm. Then the script is run with Python interpreter. It automatically selects the 

specified algorithm and generates the CAD input file in the given folder. This file can then 

be used in the CAD software to create spring geometry. Next section presents exemplary use 

cases based on SpaceClaim. The script source code can be found on GitHub 

[https://github.com/warzechm/Coil-Spring-Geometry-Generation.git] 
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Fig. 4. The diagram of the Python script implementation 

4. PRACTICAL APPLICATION OF THE WRITTEN SCRIPT 

The mathematical models presented in Chapter 2 and their implementation in the Python 

language environment make it possible to generate models of compression springs with 

strictly defined geometries and effectively analyze the impact of the modifications 

introduced on the properties of these springs. The curvature of the helical line of the 
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transition section has a significant impact on the properties of the spring. By changing the 

curvature value of the radii ρ1 and ρ2, the nonlinearity of the characteristics of the designed 

spring can be controlled to a large extent. 

Demonstration of the operation of algorithms generating models of springs and the 

impact of geometry modifications on their static characteristics was performed for five 

springs using the SpaceClaim and Ansys Workbench software. The geometric parameters of 

the prepared models and the models of the springs are shown in Fig. 5. The springs have one 

passive coil on each side, ground to an end thickness equal to 0.25 of the wire diameter. 

 

Fig 5. Geometrical parameters of modelled springs, models and their designations  

In this figure, under the springs, the accepted designations used in the following part of 

the work are also given in parentheses. Initial spring (IG) with rounding radii 𝜌1 = 𝜌2 = 0, 

was modified using the constant height (CH) algorithm and the constant helix angle (CA) 

algorithm, changing the value of these radii. In both cases, a spring was generated in which 

the radius ρ2 covered all active coils (designation -a) while the radius ρ1 = 0 and a spring in 

which both the radii ρ1 and ρ2 had the same value and the roundings also covered all active 

coils (designation -b). 

The completed models were transferred to the Ansys Workbench environment to 

simulate quasi-static compression. On the basis of the analysis, the load-deflection curves of 

the 5 springs were determined. To represent real support conditions, supporting plates with 

a diameter of 45 mm and a thickness of 5 mm were modelled. Frictional contact between the 

individual halves of the spring coils and between the ground surfaces and the plates was set. 

Steel was given as the material of the spring and supporting plates. The coefficient of friction 

between the spring and plates was assumed to be equal to 0.18 in each case. The same value 

of the coefficient of friction was assumed in the contact pairs between the surfaces of the 

coils. The material properties of the supports and springs were assumed to be as follows: 

Young's modulus E = 206,000 MPa, Kirchhoff's modulus G = 79,500 MPa. Mesh parameters 

selection was carried out on the basis of initial simulations of axial compression of the IG 

spring. Initial discretization of the model was carried out using tetrahedral, 10-node elements 

with an edge length of 2 mm for the entire model (47159 nodes, 28534 elements). The axial 

stiffness of the spring was calculated equal to 159.66 N/mm in the force range from 100 N 

to 1000 N. Then the edge length of the elements was reduced to 1.5 mm (105466 nodes, 

67112 elements) and an axial stiffness of 159.62 N/mm was obtained. Due to the negligible 
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difference in results (less than 0.05%), a further reduction in element size was regarded as 

unnecessary. For all five spring models, the average skewness mesh parameter was 0.24, 

which is a satisfactory value (Fatchurrohman & Chia, 2017) and the average aspect ratio was 

1.95, which indicates that the obtained mesh is of high quality. Compression analyses were 

performed including effects associated with large deformations. In the analyses carried out, 

an axial load increasing in 30 steps from 0 to 3000 N was applied to the top surface of the 

upper plate. In addition, all rotational DOFs of this surface were fixed as well as translational 

DOFs in transverse directions. The lower support was restrained. The boundary conditions 

and meshed model of the spring CH-a are shown in Fig. 6a. Fig. 6b shows the displacement 

contour plot for this spring under a load of 3000 N, and Fig. 6c shows the axial load-

deflection curves obtained for each of the five springs. 

 

Fig. 6. CH-a spring model with illustration of analysis conditions a), example of displacement contour 

plot b), axial load-deflection curves of all 5 spring models obtained from FEM analyses c) 

The load-deflection curves presented in Fig. 6c show significant variation. It can be seen 

that the axial stiffnesses of the CH-b and CA-b springs show the greatest non-linearity. The 

IG spring model shows an approximately linear load-deflection curve with a segmentally 

varying slope. The change in the slope of the curve occurs around 60% of the maximum 

deflection and is related to the elimination of the initial clearance between the passive coil 

and half of the first active coil on both sides of the spring. In order to further determine the 

impact of the modifications made on the spring load-deflection curves, the fitting operation 
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was performed for each of them. The approximation was carried out for a deflection ranging 

from zero to about 95% of the maximum compression, i.e. solid compression. Curve fitting 

was carried out using the power function of the form: 

 𝐹(𝑢) = 𝑎 ∙ 𝑢𝑏              (33) 

where F is the compression axial force and u is the spring tip deflection. The obtained values 

of coefficients a and b and determination coefficients R-square for each approximation are 

presented in Table 1and Fig. 7 shows an example of a graphical representation of the fitting 

results for spring IG (Fig. 7a) and spring CH-b (Fig. 7b). 

Tab. 1. Parameters of approximating functions for each of the 5 characteristics 

Spring: CH-b CH-a IG CA-a CA-b 

a 107.2 121.8 132.1 171.3 134.9 

b 1.404 1.298 1.139 1.219 1.435 

R-square 0.9968 0.9969 0.9967 0.9945 0.9973 

 

 

Fig. 7. Graphical representation of the curve fitting results for IG spring model a), and for CH-b spring 

model b)with illustration of analysis conditions a), example of displacement contour plot b),  

axial load-deflection curves of all 5 spring models obtained from FEM analyses c) 

Analyzing the results shown in Table 1, it can be seen that the approximated load-

deflection curves of springs with one-sided rounding show less nonlinearity than those of 

springs with both sides rounding. It can also be observed that the load-deflection curve of 

the CA-a spring shows the highest value of the slope coefficient a among all tested spring 

models. At the same time the load-deflection curve of this spring model is characterized by 

a relatively low value of the power exponent b. This example demonstrates the wide 

possibilities of modifying the load-deflection curve of a compression spring using the 

proposed geometry generation method in order to obtain the desired course of axial stiffness 

variation with changing load. 
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5. CONCLUSION 

The mathematical models presented in this paper, together with their implementation in 

the numerical environment, make it possible to create helical spring geometries with both 

linear and progressive characteristics. The assumption of a fixed value for the radius of 

curvature of nonlinear sections makes it possible to generate spring geometries with a 

favorable distribution of stresses along the length of the spring wire. Thanks to the use of a 

strict model describing the spring geometry, it is possible to precisely match it to the 

requirements determined by the geometry of the spring installation in the machine. 

Numerical analyses have shown that the proposed model allows, under given boundary 

conditions, significant modifications of the load-deflection curve both in terms of changing 

the original angle of inclination of this curve and its nonlinearity. For a deflection of 

approximately 95% of the maximum value, the linearised stiffness of the spring with initial 

geometry (IG) reached 271 N/mm. This indicates that, in this case, the modification of the 

geometry resulted in a stiffness increase of approximately 46%. When comparing the 

stiffness of the IG spring with that of the CH-a spring, an increase in stiffness of 

approximately 33% was obtained. Analogous stiffness values were obtained for springs CA-

b – 273 N/mm and CA-a – 246 N/mm. From the results presented in Table 1 it can also be 

concluded that the power function approximates the obtained load-deflection curves with a 

high degree of accuracy and the determination coefficient exceeded the value of 0.99 in each 

case.  

The scripts developed in the Python environment can be implemented in any CAD 

software equipped with Application Programming Interfaces (APIs). The spring models 

generated with them can be characterized by a highly progressive load-deflection curve. 

Springs with such axial stiffness are desirable for many applications, especially in systems 

subjected to dynamic loads, since this type of load-deflection curve contributes to limiting 

vibration amplitudes under peri-resonant conditions. This applies both to vibrations of mass-

spring systems and longitudinal vibrations of the spring itself. The paper also shows that the 

use of a power function to approximate force-deflection curves for springs with geometries 

generated by the proposed methods gives satisfactory results. In the worst case studied, the 

coefficient of determination was 0.9945. 
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