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Abstract 

Parkinson's disease is a recognizable clinical syndrome with a variety of causes and 

clinical presentations; it represents a rapidly growing neurodegenerative disorder. 

Since about 90 percent of Parkinson's disease sufferers have some form of early speech 

impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the 

recognition of voice impairments from vowel phonations or the subjects' discourse.  

This paper presents a new approach for Parkinson's disease detection from speech 

sounds that are based on CNN and LSTM and uses two categories of characteristics. 

These are Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral 

Coefficients (GTCC) obtained from noise-removed speech signals with comparative 

EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. 

In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD 

methods. In the second step, the GTCC and MFCC are extracted from the enhanced 

audio signals. The classification process is carried out in the third step by feeding these 

features into the LSTM and CNN models, which are designed to define sequential 

information from the extracted features. The experiments are performed using PC-

GITA and Sakar datasets and 10-fold cross validation method, the highest classification 

accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and 

DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% 

for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of 

this study indicate that the characteristics of GTCC are more appropriate and accurate 

for the assessment of PD than MFCC. 
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1. INTRODUCTION  

In 1817, James Parkinson identified Parkinson's disease (PD), which is the second most 

frequent neurodegenerative illness after Alzheimer's disease. It is marked by a depletion of 

dopaminergic neurons in the compact substantia nigra (in the midbrain) (Oyinloye et al., 

2021). Currently, PD is primarily identified by clinical examination by a neurologist.  

The diagnosis is usually made if at least two of the following three signs are present: akinesia 

(inability to initiate movement), rigidity, and resting tremor. However, these motor signs 

show up only after 50-60% of the dopamine neurons in the substantia nigra and 60-80% of 

their striatal endings have been lost. Finding methods to diagnose the disease earlier, and 

possibly to delay its advancement at an early stage, is therefore a key issue for research. 

Among the numerous clinical symptoms of this illness, the modification of the patient's 

speech seems to be an element of interest in several aspects. 

In this context, the speech signal is presented as a convolution product between the vocal 

cord vibration as the source signal and the vocal tract as a filter. Moving to the spectral field, 

this convolution product turns into a scalar product in which it is challenging to distinguish 

the source and vocal tract contribution, but the relevant information comes from the vocal 

tract. Therefore, an additional signal conversion is performed to isolate the characteristics of 

the vocal tract, called the cepstrum. It allows decorrelating the source of the filter by 

transforming the scalar product into a sum. Several types of parameters can be calculated to 

describe the cepstrum, such as linear frequency domain prediction cepstral coefficients 

(FDLPCCs) which have been used for dialect classification (Kethireddy et al., 2022), as well 

as MFCC coefficients for the early detection of COVID-19 (Dash et al., 2021), we also find 

the MFCC and HFCC coefficients that are extracted from speech signals to recognize speech 

emotions (Nagarajan et al., 2020), moreover, articulatory cepstral coefficients (ACC) 

features are used for Speech recognition (Najnin & Banerjee, 2019). Perceptual Linear 

Prediction Cepstral Coefficients (PLPCCs) and Mel-frequency cepstral coefficients 

(MFCCs) used in automatic detection of people with Neurogenic Voice Disorders (NVDs) 

(Yagnavajjula et al., 2022). Furthermore, in the literature, several studies have employed 

characteristics derived from the spectral and cepstral analysis of the speech signal. Ali et al. 

employed two groups of characteristics: the auditory processed spectrum and all-pole model-

based cepstral coefficients (APCC) and a Gaussian mixture model for automatic decision 

(Ali et al., 2016). Moro-Velázquez et al. employed a set of novel and previously suggested 

measures by application of the modulation spectrum approach, these metrics were optimized 

taking into account diverse time and frequency bands, to maximize the effectiveness of 

pathological voice recognition (Moro-Velázquez et al., 2016). In addition, the pathological 

voice detection due to the EMD-DWT analysis and the characteristics of Higher Order 

Statistics (HOS) as well as the characteristics of DWT coefficients, the implemented system 

gives promising results for the SVD database (Hammami et al., 2020). 

Different researchers have used various approaches and methods to diagnose Parkinson's 

disease from the speech signal. A powerful new technique based on multilevel characteristic 

extraction has been suggested to predict Parkinson's disease from the characteristics of speech 

recordings of previously identified cases. Characteristic extraction was carried out using the 

chi-square and L1 norm (CLS) SVM algorithms. In the classification phase, a variety of 

popular classifiers including KNN, SVM, and DT were employed for machine learning, and 

the highest efficiency was achieved with the KNN classifier (Demir et al., 2022). The paper 
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of Terriza et al. introduces a feasibility analysis for a clinical decision aid system for 

Parkinson's diagnosis and treatment based on acoustic functionalities of laughter using voice 

recognition processes and automatic classification techniques by assessing various cepstral 

coefficients to distinguish laughter features of diseased and healthy subjects conjunction 

with machine learning classification systems, In a database of 20,000 randomly chosen 

samples from a set of 120 laughs from good health and Parkinson's disease persons, the 

decision aid system achieved 83% accuracy with an AUC value of 0.86 for the classification 

of laughter from healthy and Parkinson's disease participants (Terriza et al., 2022). Another 

paper by Qin et al. proposes an enhanced genetic algorithm coupled with a data optimization tool 

for Parkinson's disease voice signal identification. These tools, in particular, extract 

representative features from a speech signal using L1 regularization SVM and then improve the 

data of the representative features using the SMOTE algorithm. The improved and original 

features are then employed to train an SVM classifier for voice signal identification. The optimal 

SVM parameters were calculated utilizing an enhanced genetic algorithm (Qin et al., 2022).  

Recent studies have focused more specifically on the early detection of PD by voice as 

the case of Quan's model extracts the dynamic features of the time series using two-

dimensional convolutional neural networks (2D-CNN) distributed in time and then captures 

the dependencies between these time series using a one-dimensional CNN (1D-CNN). The 

suggested approach yielded good results, with an accuracy of 81.6% for the vowel /a/ (Quan 

et al., 2022). Belhoussine Drissi et al. used an advanced signal processing method DWT 

combined with cepstral coefficients MFCC and SVM classifier; they obtained an accuracy 

up to 86.84% (Drissi et al., 2019). For Zayrit et al. they applied DWT precisely wavelet of 

debauchies at level 2 in the third scale from which they extracted the MFCC cepstral 

coefficients and they employed the KNN classifier, they found an accuracy up to 89% and 

98.68%, when applied to 52% and 73% of the database as training data, respectively 

(Soumaya et al., 2020). For the first time, Sakar et al. used the tunable Q-factor wavelet transform 

(TQWT) to extract characteristics from the voice signals of Parkinson's disease subjects. The 

greatest accuracy, up to 85%, is achieved by inputting the extracted characteristics from the 

normal Q-factor wavelet transform into the multilayer perceptron classifier using the 

relatively high Q-factor analysis (chosen as 2) (C. O. Sakar et al., 2019). To detect PD from 

speech sounds, a novel approach based on long-term memory (LSTM) and pre-trained deep 

networks using mel-spectrograms obtained from noise-free speech signals with variational 

mode decomposition (VMD). When the learning rate is 0.001 and the batch size is 128, 

ResNet-101 + LSTM achieves a significant accuracy rate of 98.61% (Er et al., 2021). 

The present study proposes less costly computational methods for identifying and 

categorizing PD in the Sakar Speech Database and the PC-GITA database. For this purpose, 

the speech signal id processed using two methods. The first is EMD-DWT applied in two 

stages. In the first stage, the decomposition process is carried out in the empirical mode, 

while in the second stage the obtained IMFs rre decomposed again using a discrete wavelet 

transform, in particular Debauchies wavelets at level 2 on the third scale. For the second 

method DWT-EMD, the voice signals are first decomposed by utilizing the discrete wavelet 

transform. After that, an empirical modal decomposition is applied to the obtained a3 

approximation coefficients, from which the corresponding IMF is obtained. Then several 

MFCC and GTCC coefficients features are calculated for PD and non-PD voice signals. 

These features extracted from both methods are fed as an input for the CNN and LSTM 

classifiers for the classification. 
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The remainder of the document is arranged as follows. In Section 2, the authors present 

speech signal datasets, as well as feature extraction (DWT, EMD, GTCC and MFCC), and 

for classification, they define CNN and LSTM processes. Section 3 presents, analyzes and 

discusses the results based on overall accuracy, sensitivity and specificity. Section 4 contains 

conclusions. 

2. MATERIALS AND METHODS 

In this paper, the proposal for the categorization and detection of PD through voice is 

divided into two main phases. The first phase focuses on feature extraction, in which the 

voice signal is conducted into a collection of GTCC and MFCC coefficients features using 

EMD-DWT analysis and DWT-EMD. In the second phase, these characteristics, which are 

organized into adequate vectors, as an input to the CNN and LSTM classifiers are used. 

Figure 1 shows the suggested model. The operation of each stage of the suggested learning 

model is explained briefly below. 

2.1. Data acquisition  

Database 1: This paper uses a speech database collected from two populations, namely 

people with and without PD. The database was collected from 38 participants, 20 PD 

subjects (6 females and 14 males) and 18 healthy ones (10 females and 8 males) at the 

Department of Neurology in Cerrahpasa Faculty of Medicine, Istanbul University. The age 

of the patients in the PD group varied from 43 to 77 years with an average of 64.86 and a 

standard deviation of 8.97, while the age of the participants in the normal group varied from 

45 to 83 years with an average of 62.55 and a standard deviation of 10.79. Data were 

collected using a Trust MC-1500 microphone with a frequency response of 50 Hz to 13 kHz. 

During the recording of vocal phonations, the microphone was held 10 cm away from each 

subject. Each of the participants was requested to utter the vowel /a/ (B. E. Sakar et al., 2013). 

Database 2: A PC-GITA dataset was used, which was collected with a professional 

device from 50 healthy subjects and 50 subjects with Parkinson's disease at 16-bit resolution 

and 44.1 kHz sampling rate. Women aged 43-76 years (mean age 61.4 years, SD 9.5 years) 

and men aged 31-86 years (mean age 60.5 years and SD 9.4 years) were considered healthy. 

While Parkinson's disease affected women aged 49 to 75 and men aged 33 to 81 (Orozco-

Arroyave et al., n.d.). 
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Fig. 1. The suggested method scheme 

2.2. Feature extraction 

A novel set of high-order statistical features has been captured to recognize speech 

disorders. As previously stated, the majority of current techniques are focused on traditional 

parameters such as jitter, formant, pitch, etc., which are challenging to be captured due to 

the aperiodic nature of speech signals. Furthermore, these characteristics concerning its 

instability may have a shared value for both PD and healthy voices, making recognition more 

complicated. In this area, we attempt to identify and categorize speech disorders by 

extracting GTCC and MFCC parameters from a DWT and EMD combination and its 

permutation. Wavelet transform analysis is largely used in the field of voice detection. Its 

coefficients have yielded several characteristics. In this paper, we use EMD and DWT, 

which are accurate for speech signal processing, in a two-step analysis to design a reliable 

system capable of classifying voice disorders to diagnose Parkinson's disease utilizing a deep 

learning techniquess the long short-term memory (LSTM) classifiers and convolutional 

neural network (CNN). 

2.2.1. Mel frequency cepstral coefficients 

MFCC: are acoustic parameters first introduced in 1980 by Davis and Mermelstein for 

automatic speech recognition (Davis & Mermelstein, 1980). These parameters form the 

spectral envelope of the voice and thus represent the volume and shape of the vocal tract. 

The MFCCs exploit both the decorrelation properties of the cepstrum and the psychoacoustic 

principles of the human ear. The calculation of these coefficients is done in seven steps:  
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 Pre-emphasis: The human ear hears high frequencies better than low frequencies.  

To reflect this perception, the first step of pre-emphasis is performed by emphasizing 

the high frequencies by a finite impulse response filter of the first order as shown in 

the following equation: 

 

  -1H z = 1-kz
 

(1) 

 

With k as the pre-emphasis coefficient, it is between 0.9 ≤ k ≤ 1. 

In our experiment, we pre-emphasized the speech signal samples {sn, n = 1, ..., N} by 

the following equation, to which we assigned 0.97 to k: 

 

n n n-1s ' = s -ks
 

(2) 

 

 Segmentation and windowing: The temporal sound signal is divided into frames of 20 

to 40 ms. In our work, we use a frame size of 25 ms and consider the voice signal to 

be stationary during this time. To avoid abrupt transitions, two consecutive frames are 

overlapped. According to the following equation, signal multiplication by a Hamming 

window function allows to avoid of discontinuities between two consecutive frames: 

 

n n

2πn
s '' = 0,54-0,46cos s '

N-1

  
  

    

(3) 

 

 Fast Fourier Transform (FFT): This stage allows the signal to be transformed from the 

time to the frequency domain using the following formula: 

 
knN-1

- j2π
N

n k

k =0

s ' = s e
 

(4) 

 

 Mel filter bank: The human ear can be described as a set of band pass filters more 

spaced for high frequencies than for low frequencies, implying for humans a better 

discrimination of two close frequencies in the low frequencies than in the high 

frequencies. The Mel scale (whose unit is the Mel) was created to reflect this aspect. 

The Mel-Hertz translation is linear for low frequencies and logarithmic for high 

frequencies, this Mel scale is obtained according to the next formula: 
 

f
Mel(f) = 2595log 1 +

10 100

 
 
   

(5) 

 

 The logarithm of the energies: The logarithm of the energies associated with each 

filter is then computed to correspond to the human logarithmic perception of sound 

energy. The logarithm also permits the decorrelation of the filter and the source signal, 
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it converts the product of the spectral density of the source and the filter into an 

addition. 

 Discrete Cosine Transform (DCT): A DCT is performed on the log energies from the 

Mel filters. This has the effect of grouping the information of the spectral envelope in 

its first coefficients, these coefficients are the MFCC, and in our work, we have 

extracted only 12 MFCC coefficients. 

 

 
M

i j

j=1

2 πi
c = m cos j-0,5

N N

 
 
 


 

(6) 

 

In this study, we defined M (number of filters) as 20 

 Liftering: allows raising the cepstral coefficients to obtain nearly identical amplitudes 

because the higher order of these coefficients is too minimal. This step is realized by 

using the formula below 

 

n n

L πn
c ' = 1+ sin c

2 L

  
  
    

(7) 

 

2.2.2. Gammatone cepstral coefficients (GTCC) 

Gammatone cepstral coefficients (GTCCs) are a class of feature representation used in 

speech processing and analysis. They are derived from the gammatone filterbank based on 

an Equivalent Rectangular Bandwidth (ERB) scale, a type of filterbank that mimics the way 

the human auditory system processes sound. They are used to capture the spectral 

characteristics of speech signals. 

The cepstral coefficients of the proposed gammatones are calculated in a similar way to 

the MFCC extraction in previous steps. They are calculated as the cepstral coefficients of 

the log magnitude response of a gammatone filterbank with the expression (8) below. The 

cepstral coefficients are calculated using the discrete cosine transform (DCT) of the 

logarithm of the frequency response magnitude of a signal. This transform facilitates the 

analysis of the spectral content of speech signals by decorrelating spectral characteristics 

and modeling human perception of loudness. The GTCC is determined as follows: 

 
(n-1) -2πBt

cg(t) = kt e cos(2πf t +φ) t 0
 

(8) 

 

where: g(t) – is the Impulse Response of Gammatone Filter, 

n – is the filter order, 

K – is the amplitude factor, 

fc – is the central frequency in Hertz, 

φ – is the phase shift, 

B – is the duration of the impulse response. 
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N

m n

n=1

2 πn 1
GTCC = log(X )cos (m- ) 1 m M

N N 2

 
  

 


 

(9) 

 

where: Xn – is the energy of the signal in the n th spectral band, 

N – is the number of Gammatone filters (in our study 20), 

M – is the number of GTCC (M = 12 in this article). 

 

Previous studies show that the GTCC coefficients, which are based on an auditory 

periphery model, perform significantly better than the MFCC features under noise 

conditions (Valero & Alias, 2012). In this study, we extracted these two coefficients using 

two combined EMD-DWT and DWT-EMD signal processing methods in order to select the 

appropriate coefficient to detect Parkinson's disease patients. 

2.2.3. Empirical mode decomposition 

Empirical Mode Decomposition (EMD) is an approach introduced by Huang et al. for 

the processing of non-stationary signals (Huang et al., 1998). It provides a self-adaptive 

decomposition because it does not involve external basis functions, but they are obtained 

from the signal itself. EMD allows the decomposition of an oscillating signal into 

fundamental contributions known as Intrinsic Mode Functions (IMFs), which are amplitude 

and frequency-modulated components (AM-FM) and adhere to these two conditions. i) In 

the entire dataset, the number of extrema and zero crossings must be equal or, at most, equal 

to one. ii) At any point, the mean of the envelopes defined by the local maxima and local 

minima is equal to zero. An iterative process called sifting does the extraction of these 

functions. 

The EMD concept can be described by an elementary decomposition operation applied 

recursively to an oscillating signal s(t). This operation leads to the extraction of the part that 

oscillates according to a local ''high frequency'' contribution c(t). Thus, the difference s(t) - 

c(t) represents the component that oscillates according to a "low frequency" contribution. 

Then, the procedure is applied again to the difference s(t)-c(t) which is considered a new 

signal for the extraction of the component which oscillates locally the fastest. The 

decomposition process repeats and stops if s(t)-c(t) is no longer an oscillating signal. As a 

consequence of the previous principle, the signal s(t) can be expressed as the sum of the 

oscillating functions ci(t) and a residue r(t): 

 
l

i

i=1

s(t) = c (t) + r(t)
 

(10) 

 

Where the r(t) is the residue and ci(t) is the functions are called the Intrinsic Mode 

Functions (IMFs). Figure 2 shows the decomposition of the speech signal of a healthy patient 

as a function of intrinsic mode (ci) and residue (r). 

In our experiment, we applied EMD to extract the full oscillatory mode of a speech signal. 

The resulting IMFs from this method are all employed to build a feature vector that can 

distinguish between normal and Parkinson's disease participants. 
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Fig 2. The extracted IMFs from the voice of a healthy participant during a sustained vowel /a/ 

2.2.4. Wavelets 

To surmount the Gabor Transform's limitations (TG), the emergence of wavelets aims to 

build a tool that can overcome the problem of choosing the window in the TG, using 

analyzing functions for which the size of the window varies with the frequency. 

Wavelet analysis appeared in the early 1980s, in a remarkable article by (Grossmann et 

al., 1985). This approach appeared initially in geophysics for the analysis of seismic signals. 

The results obtained by Morlet and formalized by the physicist Alex Grossmann bring out 

the notion of orthogonal basis, multi-resolution analysis, and compact support wavelets. 

Wavelet decomposition is a tool for studying non-stationary signals, the wavelets are 

formed by translations and dilatations of the mother wavelet Ψ according to the formula 

below: 

a,b

1 t -b
Ψ (t) = Ψ

aa

 
 
   

(11) 

 

Where a is the scale factor and b is the translation parameter, the condition for Ψ to be 

admissible as a wavelet is: 

-

Ψ(t)dt = 0






 

(12) 

The Continuous Wavelet Transform (CWT) of an s(t) signal consists in measuring its 

similarity with the bases of wavelets Ψa,b and is given by the following equation: 
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+

*

s a,b

-

CWT (a,b) = s(t)Ψ (t)dt






 

(13) 

This transformation is in theory infinitely redundant since the wavelet is continuously 

translated; however, there is the Discrete Wavelet Transform (DWT) to decrease this 

redundancy by expanding and translating the wavelet according to discrete values. For the 

scale factor a = a0
j

 and the translation parameter b = ka0
j
 discretized, the following formula 

is used to calculate the DWT: 
 

+

* -j

s 0
j

-0

1
DWT (a,b) = s(t)Ψ (a t -k)dt

a






 

(14) 

 

The decomposition of the DWT procedure based on Mallat's multiresolution analysis 

consists in decomposing the signal into approximations and details. For the level j = 1 means 

the initial decomposition, the discrete-time voice signal s[k] passes through two 

complementary filters, the High-Pass filter (HP) and Low-Pass filter (LP), pursued by a sub-

sampling operation by a factor equal to 2, and appears as two signals: respectively, the signal 

of details dj and the signal of approximations aj this principle is represented in Figure 3. 
 

       j high

k

d i = w i = HP 2×i-k s k
 

(15) 

  

       j low

k

a i = w i = LP 2×i-k s k
 

(16) 

 

Following the acquisition of dj and aj, the approximation aj is set to s[k], and j is set to 2 

(raised by 1), and the preceding operation is reiterated till the j reaches the wavelet 

decomposition's levels chosen (in our work, j = 3). 
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Fig. 3. The DWT's tree structure 

2.3. Classification 

2.3.1. Convolutional Neural Network (CNN) 

Convolutional neural network (CNN): is a type of artificial neural network used in video 

and image recognition, speech processing, and other applications on multidimensional 

networks. It is intended for processing data that has a grid-like topology, such as images. 

Convolutional layers, activation layers, pooling layers and fully connected layers are all 

part of a CNN. The model applies a set of filters to the input data in the convolutional layer 

to identify local patterns or features. To introduce nonlinearity into the model, the activation 

layer uses a nonlinear function such as ReLU. To reduce spatial dimensions and improve 

computational efficiency, the pooling layer subsamples the data. Each neuron in the previous 

layer is connected to each neuron in the next layer in the fully connected layer, resulting in 

a high-level representation of the input data. 

Backpropagation and stochastic gradient descent optimization are commonly used to 

learn the parameters of a CNN network. The network is trained on a large dataset of labeled 

sequences, and the optimization process adjusts the parameters to minimize the classification 

error between the actual labels and predicted ones. 
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Fig. 4. The suggested deep convolutional neural network architecture  

for the identification of Parkinson's disease 

Figure 4 presents the architecture of CNN network used in this study. The first 

convolutional layer (Conv 1) in the proposed architecture has 8 square-shaped kernels of 

size (3×3) that are applied to the input sequences of both GTCC and MFCC feature 

categories with the same padding and stride setting (1×1). Similarly, the second 

convolutional layer (Conv 2) has 16 filters with sizes of (3×3) and strides of (1×1). The Conv 

3 layer employs the same filter size, stride, and padding as Conv1 and Conv 2, but has 32 

filters. This final convolutional layer is followed by a flattening layer, which converts the 

data's shape to a vector before passing the features to the fully connected layer. The rectified 

linear unit (RLU) activation function is employed in this suggested CNN, followed by batch 

normalization to regularize the model after each convolutional layer. To avoid model 

overfitting, the first Fully Connected (FC) layer is followed by a 25% dropout rate 

(Srivastava et al., 2014). The last FC layer is powered by the SoftMax classifier to compute 

the probability of each category. 

2.3.2. Long Short-Term Memory (LSTM) networks 

Long Short-Term Memory (LSTM) networks: are a kind of Recurrent Neural Network 

(RNN) commonly used for sequential data treatment. The primary goal of LSTM is to 

overcome the evanescent gradient problem that exists in traditional RNN. The steps of an 

LSTM network illustrated in Figure 5 will be explained later: 

 Input layer: As a time series, the input characteristics (MFCC and GTCC) are fed into 

the network. 

 LSTM Layer: The core layer of the LSTM network, which includes the memory cells 

that allow the network to maintain a sense of context over time. The LSTM layer 

transforms input data into output and hidden states. 

 Gate Mechanism: To control the flow of information, the LSTM layer uses three gates: 

the input gate, the forget gate, and the output gate. These gates control the amount of 

information that can enter, exit and pass through the memory cells. 

 The memory cell: is responsible for retaining contextual information from previous 

time steps. The forget gate and the input gate update the memory cell, which is used 

to generate the hidden state. 



 

13 
 

 The LSTM layer generates the hidden state, which is used to capture contextual 

information from the preceding steps. 

 The output layer, based on the input data and the hidden state, generates an output. 

The output can be used to predict or categorize the input data. 

 Backpropagation in Time (BPTT): The difference between the predicted and actual 

output is used to update the LSTM layer weight via a process known as 

backpropagation in time (BPTT). 

 Repeat the process of passing the input data through the LSTM layer and updating the 

weights until the network reaches a satisfactory level of accuracy. 

 

Fig. 5. LSTM structure 

This diagram depicts the data flow at time step t, demonstrating how the gates forget, 

update, and output the cell and hidden states. The symbols ct and ht in the diagram represent 

the cell state at time step t and the output (also known as the hidden state), respectively. At 

time step t, the block computes the output and updated cell state ct using the current network 

state (ct-1, ht-1) and the next time step in the sequence. The layer state consists of hidden 

state and cell state. The output of the LSTM layer for time step t is stored in the hidden state 

at time step t. The previous steps' information is stored in the cell state. The layer adds or 

removes information from the cell state at each time step. These updates are controlled by 

the layer via gates; the formulas in Table 1 describe the components of these gates at each 

time step. 

Tab. 1. The equations of the gates 

Component Equation 

Cell candidate gt = tanh ( Wg xt + Rg ht + bg ) 

Forget gate ft = tanh ( Wf xt + Rf ht + bf ) 

Input gate it = tanh ( Wi xt + Ri ht + bi ) 

Output gate ot = tanh ( Wo xt + Ro ht + bo ) 
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With R (Recurrent Weights) W (Input Weights), and b (Bias) are expressed as follow: 

R = [

Rg
Rf
Ri
Ro

]  W = [

Wg
Wf
Wi
Wo

] b = [

bg
bf
bi
bo

] 

where gt, ft, it, ot, tanh and σ denote Cell candidate, Forget gate, Input gate, Output gate, the 

hyperbolic tangent function and the sigmoid function respectively. 

The hidden state and cell state at time step t is obtained by: 
 

t t th =o tanh (c )
 

(17) 

  

t t t - 1 t tc = f c +i g  (18) 

3. RESULTS AND DISCUSSION 

3.2. Performance evaluation 

The cost of misclassification, which is the cost of misclassifying a negative instance as a 

positive instance or vice versa, can be utilized to compare the capabilities of machine 

learning systems. In this study, the 10-fold crossvalidation approach, which is the preferred 

method in most real-life circumstances of data, is employed to evaluate the error rate of 

classification algorithms. The 10-fold crossvalidation approach, in general, divides the data 

into 10 parts randomly; the nine parts are used for training, while the one tenth is kept for 

testing, we repeat this process ten times, each time reserving a different tenth for testing. The 

training data is utilized to train the model, whereas the test data is employed to assess the 

model's performance. 

The accuracy (Acc), sensitivity (Sen), and specificity (Spe), criteria were used to evaluate 

the effectiveness of this Parkinson's disease identification. The precision with which the 

suggested technique can categorize all subjects is defined as accuracy (including patients 

and healthy subjects). The sensitivity indicates how well the proposed system can classify 

sick people (PD suffers) whereas, specificity, on the other hand, indicates how well the 

system can categorize normal participants, these parameters can be calculated using the 

simple equations (19), (20), and (21), respectively. 

If TP indicates the number of true positives, TN means the number of true negatives, FP 

represents the number of false positives, and FN represents the number of false negatives, 

then the following equations provide the formulation of these assessment metrics: 

 

TN +TP
Acc =

TN + FN +TP +FP
 

(19) 

  

TP
Sen =

TP + FN
 

(20) 



 

15 
 

  

TN
Spe =

TN + FP
 

(21) 

3.3. Experiment results 

This part of the paper discusses the implementation details and the performance attained 

by GTCC and MFCC for both DWT-EMD and EMD-DWT techniques for the problem of 

detecting Parkinson's disease by employing two different database. All the experiments were 

done using Intel (R) Core(TM) i3-3110M CPU @ 2.40GHz 2.40 GHz with 4GB memory 

and 64-bit Windows operating system, x64 processor. They were also executed using 

MATLAB R2021b software. 

For both EMD-DWT and DWT-EMD methods, the speech signal was split into two 

permuted methods: empirical mode decomposition followed by discrete wavelet transform 

Debauchie 2 at level 3 (EMD-DWT) as showed Figure 6, and discrete wavelet transform 

Debauchie 2 at level 3 followed by empirical mode decomposition (DWT-EMD) as 

illustrated Figure 7, Debauchie 2 Level 3 was chosen based on the results of (Drissi et al., 

2019), who used the same data as Sakar to select the type of wavelet performance. Figure 2 

shows a set of signals generated by the EMD from the pronunciation of the letter /a/ by 

patients with Parkinson's disease. It shows how, after the EMD operation, the high-frequency 

component of the original voice signal is obtained first, and the frequency of the following 

IMFs gradually decreases. This is in accordance with the findings of the literature of 

references (Altuve et al., 2020; Mondal et al., 2018; Zhang et al., 2021), they notice that the 

IMFs are placed in the decreasing order of frequency components; therefore, we only worked 

with the first seven IMFs. 

Figure 8 presents the first seven IMFs obtained from the approximation a3 by the used 

of DWT-EMD method, as well as Figure 9 illustrates the first seven approximations a3 

extracted from the first seven IMFs for the EMD-DWT method, for a healthy participant and 

a PD patient, respectively. Therefore, we extracted twelve GTCC and MFCC coefficients 

features from each function, forming two vectors of seven features, F1 = {12GTCCa3-IMF1; 

12GTCCa3-IMF2; 12GTCCa3-IMF3; 12GTCCa3-IMF4; 12GTCCa3-IMF5; 12GTCCa3-IMF6; 12GTCCa3-

IMF7} and F2 = {12MFCCa3-IMF1; 12MFCCa3-IMF2; 12MFCCa3-IMF3; 12MFCCa3-IMF4; 

12MFCCa3-IMF5; 12MFCCa3-IMF6; 12MFCCa3-IMF7}, while the indices a3-IMF2, a3-IMF2... 

represent respectively IMF1 extracted from approximation a3, IMF2 extracted from 

approximation a3 (for DWT-EMD method)... Similarly, F3 = {12GTCCIMF1-a3; 12GTCCIMF2-

a3; 12GTCCIMF3-a3; 12GTCCIMF4-a3; 12GTCCIMF5-a3; 12GTCCIMF6-a3; 12GTCCIMF7-a3} and F4 

= {12MFCCIMF1-a3; 12MFCCIMF2-a3; 12MFCCIMF3-a3; 12MFCCIMF4-a3; 12MFCCIMF5-a3; 

12MFCCIMF6-a3; 12MFCCIMF7-a3}, while the indices IMF1-a3, IMF2-a3... respectively 

represent the approximation a3 extracted from IMF1 and the approximation a3 extracted 

from IMF2 (for EMD-DWT method). 

To use the GTCC and MFCC directly as an input to the CNN and LSTM classifier 

requires a fairly large processing time, to surmount this issue, we averaged the GTCC and 

MFCC of each voice recording to obtain the voiceprint. 

Due to their effectiveness and efficiency, the deep learning’s classifiers are used in this 

study CNN and LSTM, so the extracted GTCC and MFCC are used as a sequences input, 

The tests are carried out with, the learning rates set to 0.001 and the number of epochs sets 
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to 20, accordingly for LSTM the number of Hidden sets to 100, these choices are depending 

to results of reference (Er et al., 2021). Tables 2-5 shows the results achieved with this 

proposed method parameters. 
 

 

Fig. 6. EMD-DWT decomposition represented by Histogram plot for a PD patient – (a): The original 

signal, (b): The application of the EMD, (c): The used of DWT after EMD 

 

Fig. 7. DWT- EMD decomposition represented by Histogram plot for a PD patient – (a): The original 

signal, (b): The application of the DWT, (c): The used of EMD after DWT 
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Fig. 8. The first 7 IMFs obtained from the approximation a3 for the vocal signal  

of the sustained vowel /a/ of a PD person by the DWT-EMD method 

 

 

Fig. 9. Approximation a3 for the first 7 IMFs obtained from the vocal signal  

of the vowel /a/ of a PD person by the EMD-DWT analysis 

 

Tab. 2. The classification results obtained by GTCC for the database 1 

 EMD-DWT DWT-EMD 
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IMF-

a3 

GTCC 

a3-

IMF 

GTCC 

CNN LSTM CNN LSTM 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

IMF1-

a3 
86.96 78.57 100 86.96 78.57 100 

a3-

IMF1 
65.22 71.42 55.55 95.65 92.85 100 

IMF2-

a3 
69.57 92.85 100 95.65 92.85 100 

a3-

IMF2 
86.96 92.85 77.77 91.30 92.85 88.88 

IMF3-

a3 
86.96 85.71 88.88 91.30 85.71 100 

a3-

IMF3 
86.96 85.71 88.88 95.65 92.85 100 

IMF4-

a3 
100 100 100 95.65 92.85 100 

a3-

IMF4 
100 100 100 82.61 71.42 100 

IMF5-

a3 
100 100 100 100 100 100 

a3-

IMF5 
86.96 78.57 100 82.61 71.42 100 

IMF6-

a3 
100 100 100 100 100 100 

a3-

IMF6 
69.57 64.28 77.77 86.96 85.71 88.88 

IMF7-

a3 
91.30 85.71 100 78.26 78.57 77.77 

a3-

IMF7 
78.26 78.57 77.77 73.91 71.42 77.77 

 

 

 

Tab. 3. The classification results obtained by MFCC for the database 1 

 

 

IMF-

a3 

EMD-DWT 

a3-

IMF 

DWT-EMD 

MFCC MFCC 

CNN LSTM CNN LSTM 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

IMF1-

a3 
69.57 57.14 88.88 47.83 28.57 77.77 

a3-

IMF1 
82.61 71.42 100 47.83 50 44.44 

IMF2-

a3 
95.65 71.42 66.66 91.30 85.71 100 

a3-

IMF2 
91.30 92.85 88.88 86.96 78.57 100 

IMF3-

a3 
82.61 92.85 66.66 69.57 64.28 77.77 

a3-

IMF3 
95.65 92.85 100 82.61 71.42 100 

IMF4-

a3 
95.65 92.85 100 82.61 78.57 88.88 

a3-

IMF4 
91.30 85.71 100 73.91 71.42 77.77 

IMF5-

a3 
91.30 92.85 88.88 73.91 64.28 88.88 

a3-

IMF5 
82.61 71.42 100 82.61 85.71 50 

IMF6-

a3 
86.96 92.85 77.77 86.96 100 66.66 

a3-

IMF6 
86.96 85.71 88.88 78.26 78.57 77.77 

IMF7-

a3 
95.65 100 88.88 60.87 64.28 55.55 

a3-

IMF7 
78.26 71.42 88.88 52.17 42.85 66.66 

 

Tab. 4. The classification results obtained by GTCC for the database 2 
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IMF-

a3 

EMD-DWT 

a3-

IMF 

DWT-EMD 

GTCC GTCC 

CNN LSTM CNN LSTM 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 
Sen % 

Acc 

% 

Spe 

% 

Sen 

% 

IMF1-

a3 
96.55 92.85 100 62.07 64.28 60 

a3-

IMF1 
79.31 85.71 73.33 72.41 78.57 66.66 

IMF2-

a3 
82.76 85.71 80 75.85 50 100 

a3-

IMF2 
89.66 85.71 93.33 79.31 85.71 73.33 

IMF3-

a3 
89.66 78.57 100 89.66 85.71 93.33 

a3-

IMF3 
93.10 85.71 100 86.21 85.71 86.66 

IMF4-

a3 
93.10 92.85 73.33 93.10 78.57 100 

a3-

IMF4 
96.55 100 93.33 89.86 85.71 93.33 

IMF5-

a3 
89.66 85.71 100 93.10 85.71 100  

a3-

IMF5 
86.21 78.57 93.33 89.66 78.57 100 

IMF6-

a3 
100 100 100 89.66 85.71 93.33  

a3-

IMF6 
82.76 71.42 93.33 82.76 71.42 93.33 

IMF7-

a3 
93.10 85.71 100 89.66 92.85 86.66 

a3-

IMF7 
86.21 78.57 93.33 79.31 64.28 93.33 

 

 

 

Tab. 5. The classification results obtained by MFCC for the database 2 

 

 

IMF-

a3 

EMD-DWT 

a3-

IMF 

DWT-EMD 

MFCC MFCC 

CNN LSTM CNN LSTM 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

Acc 

% 

Spe 

% 

Sen 

% 

IMF1-

a3 
75.86 57.14 93.33 86.21 85.71 86.66 

a3-

IMF1 
72.41 64.28 80 48.28 57.14 40 

IMF2-

a3 
79.31 64.28 100 75.85 78.57 73.33 

a3-

IMF2 
93.10 85.71 100 72.41 64.28 80 

IMF3-

a3 
96.55 92.85 100 89.66 78.57 100 

a3-

IMF3 
93.10 85.71 100 75.86 57.14 93.33 

IMF4-

a3 
79.31 71.42 86.66 82.76 71.42 93.33 

a3-

IMF4 
82.76 64.28 100 79.31 64.28 93.33 

IMF5-

a3 
82.76 57.14 100 79.31 85.71 73.33 

a3-

IMF5 
79.31 57.14 100 75.86 57.14 93.33 

IMF6-

a3 
89.66 78.57 100 82.76 71.42 93.33 

a3-

IMF6 
82.76 85.71 80 72.41 50 93.33 

IMF7-

a3 
89.66 85.71 93.33 86.21 85.71 86.66 

a3-

IMF7 
86.21 85.71 86.66 82.76 71.42 93.33 

 

For the Sakar database and for the EMD-DWT method, the extracted GTCC coefficients 

show a result of 100% for IMF4-a3 using CNN, and for IMF5-a3 and IMF6-a3 using both 
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CNN and LSTM, while the MFCC coefficients give 95.65% by CNN for IMF2-a3 and 

IMF4-a3, by the user of the second PC-GITA data with 100% for IMF6-a3 using CNN, 

whereas the MFCC gives an accuracy up to 96.55% for IMF3-a3 by CNN. 

On the other hand, for the DWT-EMD, and for the Sakar database the GTCC yields an 

accuracy of 100% for a3-IMF4, and 95.65% for the MFCC coefficients a3-IMF3 by CNN. 

In the PC-GITA database, the GTCC gives, an accuracy of 96.55% by CNN for a3-IMF4, 

and by CNN 93.10% is achieved using MFCC coefficients for a3-IMF2 and a3-IMF3. We 

can thus notice that both EMD-DWT methods and vice versa perform better with GTCC 

coefficients than with MFCC coefficients. 

3.4. Discussion 

The present study compares GTCC with the well-known MFCC-based features to detect 

voice tremors in patients with Parkinson's disease. The voice signal features are extracted 

from various modes of the IMFs-a3 and a3-IMFs of the first seven modes acquired by EMD-

DWT and vice versa. Classification experiments with GTCC and MFCC features are carried 

out using two efficient deep-learning classifiers, CNN and LSTM. The GTCC coefficients 

achieve the highest classification accuracy of 100% for both EMD-DWT and vice versa with 

CNN in the Sakar database and an accuracy of 100% and 96.55% in the PC-GITA 

respectively. The experiments show that CNN clearly outperforms the other classifier 

LSTM. Since several authors employ the same PC-GITA database in different ways, the 

outcomes obtained are compared to the outcomes found with the PC-GITA database as well 

as other database. To determine the best performance of the suggested process, the findings 

of this study are compared with other approaches used in the literature. Table 6 sums up the 

main studies on the recognition of Parkinson's disease from the voice signal. 

Tab. 6. Performance comparison with other methods 

Authors Methods Database Accuracy 

(Er et al., 2021) 
ResNet-101 & LSTM 

with VMD 
PC Gita (vowel /a/) 98.61% 

(Karan & Sekhar Sahu, 

2021) 
VMD-HAS-HCC-MLP PC Gita (vowel /a/) 91% 

(Karan, Sahu, Orozco-

Arroyave, et al., 2020) 
HS-IEDCC-SVM PC Gita (vowel /a/) 82% 

(Karan, Sahu, & Mahto, 

2020) 
EMD-IMFCC-RF PC Gita (vowel /a/) 96% 

(Zahid et al., 2020) 
Deep Features with 

multilayer perceptron 
PC Gita (vowel /a/) 99.7% 

(López-Pabón et al.,  

2020) 
THH-MFCC-SVM PC Gita (vowel /a/) 70% 

(Nouhaila et al., 2022) 

DWT-Delta delta 

MFCC-DT 

 

Italian database of 

50 records (vowel 

/a/) 

97.5% 

(Soumaya et al., 2021) 

DWT-MFCC and 

genetic algorithm with 

SVM 

Sakar database 

(vowel /a/) 
91.18% 
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(Taoufiq et al., 2022) 

DWT instead filter 

bank for MFCC and 

SVM 

Sakar database 

(vowel /a/) 
81.75% 

Proposed method 
EMD-DWT-GTCC-

CNN 
PC-GITA 100% 

 

Mehmet et al. used the pre-trained models ResNet-18, ResNet-50, and ResNet-101, as 

well as the LSTM as a classifier, in conjunction with the Mel-spectrograms obtained from 

the denoised signal via variational mode decomposition. The findings demonstrate that the 

ResNet-101 outperforms the others with an accuracy of up to 98.61% (Er et al., 2021). Karan 

et al. used a combination of VMD and HAS to study tremor in Parkinson's disease patients, 

extracting a novel HCC feature and using it as input for the three machine learning classifiers 

SVM, RF, and MLP, the latter of which has a greater accuracy of 91% (Karan & Sekhar 

Sahu, 2021). Karan et al utilize instantaneous energy deviation Cepstral coefficient (IEDCC) 

and SVM as a classifier to predict speech deficiencies in people with Parkinson's disease, 

and their outcomes were 82% accurate (Karan, Sahu, Orozco-Arroyave, et al., 2020). Karan 

et al. proposed a new characteristic based on Empirical Mode Decomposition (EMD) called 

Intrinsic Mode Function Cepstral Coefficient Extraction (IMFCC), to effectively represent 

Parkinson's speech properties. These IMFCC features provide 96% accuracy by the SVM 

classifier (Karan, Sahu, & Mahto, 2020). Zahid et al proposed three methods, the second one 

is based on the assessment of deep characteristics extracted from speech spectrograms using 

machine learning classifiers, the outcome is 99.7% by the MLP classifier (Zahid et al., 2020). 

Lopez et al. suggested the Hilbert-Huang Transform (HHT) and Mel-Frequency Cepstral 

Coefficients (MFCCs) to model an automatic discrimination between PD and HC subjects 

with accuracy up to 72% by RBF-SVM (López-Pabón et al., 2020). Boualoulou et al. applied 

a method based on delta delta MFCC coefficients and different types of discrete wavelet 

transforms, with the decision tree classifier in order to choose the appropriate wavelet  

to discriminate PD patients from healthy patients, for the vowel /a/ the accuracy reached 

97.5% for Discrete Meyer wavelet (Nouhaila et al., 2022). Zayrit et al. proposed a novel 

combination of genetic algorithm and SVM classifier to distinguish people with Parkinson's 

disease from healthy people, based on Debauchies wavelets and MFCCs as extracted 

features, with the obtained accuracy reaching 91.18% (Soumaya et al., 2021). Belhoussine 

et al. suggested a new approach relying on the extracted MFCC features by replacing the 

filter bank with a DWT and an SVM classifier for classification, this method generated an 

accuracy of 81.75% (Taoufiq et al., 2022). 

The results demonstrated that the GTCC is more accurate and appropriate for PD 

prediction. Thus, there is a substantial gain in accuracy over the Mel Frequency Cepstral 

Coefficient (MFCC). 

4. CONCLUSION AND FUTURE WORK 

The work carried out is a part of the analysis of the voice signal to achieve the goal of an 

efficient prediction system for diagnosing PD. In this document, the authors suggested  

a diagnostic model founded on two acoustic analysis methods dedicated to the automatic 

evaluation of the voice produced by various people (normal subjects and subjects suffering 

from Parkinson's disease) pronouncing the sustained vowel /a/. The first DWT-EMD 
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estimation method consists of decomposing the speech signals by DWT precisely 

Daubechies wavelet at level two in the third scale, followed by a decomposition of the 

approximation a3 by EMD, finally extracting the GTCC and MFCC cepstral coefficients 

from each IMF. The second estimation method EMD-DWT operates on the use of the 

empirical mode decomposition algorithm to decompose the speech signals into Intrinsic 

Mode Functions (IMFs), followed by a decomposition of the IMFs by DWT, then the 

extraction of the GTCC and MFCC coefficients from the approximation a3. These cepstral 

coefficients are employed as an input in the classification step by applying the CNN and 

LSTM. As a result, it is pointed out that the GTCC produce optimal efficiency for detecting 

PDs than MFCC for both DWT-EMD and EMD-DWT methods and for both Datasets. The 

comparison of performance was performed using different evaluation metrics, including 

accuracy. The GTCC coefficients produced higher results than the MFCC coefficients in the 

Sakar dataset, with 100% accuracy for the EMD-DWT and DWT-EMD methods using the 

CNN classifier, including higher results for the PC-GITA dataset, with accuracy up to 

96.55% for EMD-DWT and 100% for DWT-EMD using the CNN classifier. Hence, the 

conclusion is that the GTCC coefficients are more accurate than the MFCC coefficients and 

they have an interesting effect on the evaluation of PD patients. This approach is aimed at 

being expanded in the future by using them for other types of signals, such as gait signals 

and writing tasks, which are affected in patients with Parkinson's disease. 
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