
JCSI 27 (2023) 154–161

Received: 25 March 2023

Accepted: 17 April 2023

154

Comparative analysis of frameworks and automation tools in terms of
functionality and performance on the Salesforce CRM Platform

Analiza porównawcza szkieletów programistycznych i narzędzi
automatyzujących pod względem funkcjonalności i wydajności na
platformie Salesforce

Damian Sebastian Ciechan*

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

Article describes comparative analysis of both code and low-code automation tools together with frameworks used
for developing graphical user interfaces that are available on the Salesforce Platform. The research is being carried
out due to lack of such comparison in the available literature and due to popularity of the Salesforce CRM. Four auto-
mation tools were put together: code-based Apex Triggers and three point-and-click tools: Workflow Rules, Process

Builder, Flow Builder. In each of the frameworks (Visualforce, Aura Components, Lightning Web Components)
an application module was developed and example logic was implemented in each of the automation tools. DML opera-
tions insert, update, delete were compared in terms of performance and each technology was analyzed in terms of pro-
vided functionalities and limitations. It was concluded that the most efficient automation tool is Flow Builder
and the Lightning Web Components framework is the best choice for developing graphical user interfaces.

Keywords: Salesforce; performance; low-code tools; frameworks

Streszczenie
Artykuł opisuje analizę porównawczą narzędzi automatyzujących (niskokodowych i programistycznych) oraz szkiele-
tów do budowania interfejsu graficznego użytkownika dostarczanych wraz ze środowiskiem Salesforce. Badania zosta-
ły przeprowadzone ze względu na brak takowych w dostępnej literaturze i ze względu na popularność systemu Sale-
sforce. W zestawieniu porównano cztery narzędzia automatyzujące: oparte na bazie kodu Apex Triggers i trzy narzędzia
pozwalające na budowanie logiki metodą wskaż i kliknij: Workflow Rules, Process Builder, Flow Builder. W każdym
ze szkieletów (Visualforce, Aura Components, Lightning Web Components) wytworzone zostały trzy analogiczne mo-
duły aplikacji I zaimplementowano logikę w każdym z narzędzi automatyzujących. Operacje DML tworzenia, aktuali-
zowania i usuwania rekordów porównano pod względem wydajnościowym, a każdą technologię przeanalizowano
pod względem udostępnianych funkcjonalności i ograniczeń na platformie. Z przeprowadzonych badań wywnioskowa-
no, że najwydajniejszym narzędziem jest Flow Builder, a szkielet Lightning Web Components jest lepszym wyborem
do tworzenia interfejsu graficznego niż jego konkurenci.
Słowa kluczowe: Salesforce; wydajność; narzędzia niskokodowe; szkielety programistyczne

*Corresponding author

Email address: damian.ciechan@pollub.edu.pl (D. S. Ciechan)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

Low-Code Software Development is a new, emerging
application development technique that combines min-
imal amount of source code with graphical user inter-
faces to reduce development time [1]. In recent years,
increasing number of organisations have chosen to use
Low-Code Development Platforms (LCDP). In many
cases, low-code application are developed by so-called
Citizen Developers [2], i.e. company employees who
do not have deep technical or programming knowledge.
According to the Gartner report, by 2024, around 65%
of large enterprises will be using Low-Code Develop-
ment Platforms to some degree, and the market is ex-
pected to be worth more than $31 billion [3-4].

The popularity of LCDP noticeably correlates with
the popularity of Customer Relationship Management
(CRM) Systems. Providers such as Microsoft

or Salesforce provide solutions for both low-code appli-
cation development and the CRM software themselves.
Integrated tools allow employees to customize and ex-
tend functionalities in implemented CRM system
to support new business requirements. Despite its many
advantages, the development of such system can bring
new challenges as the business grows. The main one
is the size of the data to be processed – out-of-the-box
modules and tools have pre-defined limits on how many
records they can process simultaneously. Flexibility also
has its limits – despite providing ready to use connect-
ors to integrate with external systems, in many cases
integration may require deeper technical knowledge
and programming skills to ensure everything works
flawlessly.

Considering above observations, the comparative
analysis was conducted to determine the most perfor-
mant automation tool and the best framework for front-

mailto:damian.ciechan@pollub.edu.pl

Journal of Computer Sciences Institute 27 (2023) 154-161

155

end development in terms of functionalities. Evaluation
criteria consist of used CPU time on DML operations,
whole transaction time, heap memory and network us-
age. Due to its high market share and popularity,
the research was focused on Salesforce products.

2. Salesforce Platform

According to International Data Corporation raport
named Worldwide Semiannual Software Tracker,
Salesforce ranked first as worldwide CRM System pro-
vider. This is the ninth consecutive year on the podium
with a 23.8% market share [5]. Salesforce provides
its products in the Software as a Service (SaaS) delivery
model, meaning all of the system functionalities
are accessible by users from the web browser. This way,
SaaS minimizes the need to maintain advanced IT infra-
structure and all information and data within the CRM
System is stored on the provider’s servers and disk
space. This reduces costs in terms of maintenance
and ensures system availability level at >99%,
as all updates are carried out remotely, usually during
the lowest load hours.

Out-of-the-box, Salesforce provides ready to use en-
vironment with functionalities such as:

• cloud applications (Sales Cloud, Marketing Cloud,
Service Cloud) all within one environment,

• predefined objects (tables in database nomencla-
ture),

• low-code automation tools (Workflow Rules, Pro-

cess Builder, Flow Builder),

• prioprietary, object oriented programming language
Apex with database language SOQL (Salesforce Ob-

ject Query Language),

• dedicated front-end frameworks (Visualforce, Aura

Components, Lightning Web Components),

• Integrated Development Environment – Visual Stu-

dio Code extension with sfdx command line inter-
face,

• REST and SOAP API access to environment.
The platform’s architecture is based on multitenancy

and metadata. Metadata-driven design means that when
creating new field or object, Salesforce internally regis-
ters those changes as data (records) in its database table.
No data definition operation is executed (i.e. ALTER
TABLE) which could block reading and writing data
for the duration of processing a potentially lengthy
operation. Thanks to metadata-driven design, multiple
independent environments (tenants) can make changes
to their instances simultaneously. Although the metada-
ta is physically stored in the same, shared database with
identical structure, each tenant has isolated access only
to its metadata. Due to its cloud-based architecture,
Salesforce enforces limits on each tenant which cannot
be exceeded and are taken into consideration
in the research:

• CPU time usage per transaction (10 seconds in syn-
chronous context),

• total heap size (6 MB),

• total number of records processed per transaction
(10000),

• data storage (10 GB for most licenses,
5 MB in Developer Edition license used in research).

2.1. Low-Code automation tools

Workflow Rules is the oldest and most limited tool.
In response to insert or update events, it can only per-
form an update of a field in a given record, send
an email to the users associated with the record, create
a Task record or send a record SOAP message. Multiple
actions can be performed in a single Workflow,
but the order in which they are performed cannot
be modified. Figure 1 shows an example view
of defined Workflow Rule which sends an email alert.

Figure 1: Example of Workflow Rule.

Process Builder and Flow Builder internally have
the same architecture, but the former is better suited
for simple tasks. Process Builder allows the construc-
tion of conditional sets of actions performed one after
another (if – else if - … - else), while Flow Builder al-
lows the branching of the performed operations
and their arrangement on the GUI in any manner. Both
tools also offer much greater capabilities in terms
of available actions to perform compared to Workflow

Rules – they can update fields on related records, create
record of any object, send notifications, execute code
from Apex classes. Additionally, using Screen elements
in Flow Builder a component can be created that
can be embedded into an application view and allow
for user interaction. Figure 2 shows automation which
was created in Process Builder tool, and figure 3 shows
the same automation previewed as a Flow.

Figure 2: Example Process Builder view.

Journal of Computer Sciences Institute 27 (2023) 154-161

156

Figure 3: Process Builder previewed as a Flow.

Table 1 summarizes and compares the capabilities
of each tool.

Table 1: Comparison of low-code tools capabilities

Operation Workflow
Rules

Process
Builder

Flow Builder

Record

creation

Only Task ✓ ✓

Record’s
fields update

Only context
record

Context,
child and

parent record

Any record in
the system

Sending

email mes-

sage

Only to users
related to the

record

Only to users
related to the

record

Any user in
the system

Sending

SOAP mes-

sage

✓

Sending to

approval

process

 ✓ ✓

Sending

system

notification

 ✓ ✓

Can be

reused?

 ✓ ✓

Chatter post

creation

 ✓ ✓

Apex class

invocation

 ✓ ✓

DML listen-

ing

Insert, update Insert, update Insert, up-
date, delete

Database

queries

 ✓

Deleting

records

 ✓

Logic

branching

 ✓

Versioning ✓ ✓

Executing on

a regular time

interval

 ✓

Can be used

as front-end

component?

 ✓

Debug mode ✓

2.2. Front-end frameworks

There are three available frameworks for developing
graphical user interfaces on the Salesforce Platform:
Lightning Web Components, Aura Components, Visual-

force.
The most modern one, Lightning Web Components,

is built upon standardized W3C Web Components
with additional elements required to integrate
with Salesforce. As LWC (Lightning Web Components)
code is run natively by browser’s engine and is open
source [6], this framework can be used to build any web
application (unrelated to Salesforce). The newest ver-
sion of HTML and Javascript is used to build compo-
nents, so the learning curve for developers with experi-
ence in other front-end frameworks is not very high.
Salesforce also provides sfdx-lwc-jest CLI add-on
to create and run unit tests for the components.

 Unlike LWC, Aura Components is a Salesforce-
specific framework; it is not possible to use it to develop
applications outside CRM. Aura does not support
the latest ECMAScript (European Computer Manufac-

turers Association Script) specification – Javascript
code must comply with ES5 standards, although some
ES6 features are available (e.g. promises). Thus,
the entry-level is higher, as the code syntax used
in some cases is platform-specific. Aura Components
is tightly coupled to the Salesforce Platform – it uses
its own component model and engine to render
the views, resulting (in theory) in lower performance
than LWC. Aura Components also allows unit tests
to be written for components, but this requires more
configuration – there is a need to manually install
Lightning Testing Service package on the environment
and configure it properly.

The oldest of Salesforce frameworks, Visualforce,
can be compared to the JavaServer Pages technology.
It allows pages to be developer using server-side Apex
code and platform-specific HTML-like markup lan-
guage. All business logic is placed in an Apex class
associated with the page, called controller. When modi-
fications are made to the page, the platform server com-
piles the markup language into a set of instructions that
can be interpreted by Visualforce engine, which returns
ready to use HTML document. Unlike previous frame-
works, generating the view is done on the server side
and consumes resources (time and memory) of the envi-
ronment instance’s processor, consequently offering
lower performance. The use of Javascript (ES5 version)
is very limited and amounts to placing logic between
<script> tags – there is no separate file where actions
can be delegated. Visualforce pages only work within
Salesforce, as they are heavily dependent on the plat-
form’s server-side language. However, this framework
offers a functionality that is absent in other frameworks
– native PDF document generation. However,
due to limitations in the ability to include CSS styles
in such documents (supported only CSS 2.1 version),
the preferred approach is to use external Javascript li-
braries or plugins installed directly on the environment.

Journal of Computer Sciences Institute 27 (2023) 154-161

157

3. Literature review

The available literature related to Salesforce is dominat-
ed by presentations of various custom applications de-
veloped using Visualforce and Aura Components

framework. At the time of the research, no article con-
taining information about Lightning Web Components
or Flow Builder automation tool was available.

The most recent publications [7-8] presents applica-
tions for monitoring statistics about Covid-19 disease.
In [7] Thanduparakkal et al. using Aura framework have
developed dashboard named COVID-19 Tracker visual-
izing new cases and number of deaths due to corona-
virus. The source of their data was open source REST
API covid19api. In the article [8] Sharma et al. used
fully no-code Salesforce Einstein Analytics tool in order
to create reports, dashboard and data mining related
to the pandemic. As Einstein Analytics is powered
by artificial intelligence, the publication also shows
how the said tool can predict data based on found pat-
terns.

Poniszewska-Maranda et al. [9] presented the Top

16 Manager application implemented for the Polish
Snooker and Billards Association for the management
of tournaments in pool games. Visualforce framework
was used to help the main referee in smoothly managing
the tournament by:

• entering match results into the system,

• automatic calculation of players’ score,

• automatic generation of competition ladder,

• automatic assignments of referees and players
to individual tables,

• email notifications of upcoming matches to players
and all tournament participants.

Free Developer Edition license was used, which allows
up to two users to use the system. From the point
of view of Top 16 tournament, that is more than enough
as only one person needs access to the system at a given
time.

One may question the usefulness of the solution pre-
sented by Gupta et al. [10]. Authors have developed
a Visualforce application for booking metro tickets
in the city of Nagpur, India. They mentioned that regis-
tration is needed to use the application, but they
did not include the information on whether the Visual-

force site is made public for guests using Public Site
or Experience Cloud. If authorization to internal
Salesforce would be required, such solution would
be too expensive to implement on wider scale.

In the available literature it is also possible to find
articles related directly to the performance
of the Salesforce Platform. Miącz [11] in his work ana-
lyzed the loading performance of pages created with
Visualforce framework and the out-of-the-box list
views. The main comparison criteria were average
number of network requests, file download size, page
response and loading times measured with Chrome

Developer Tools. In the study, the best performant tool
was concluded to be standard list view, although
the presented results did not differ significantly from
each other. The study was also conducted only

on 4 and 100 records – in order to obtain a more accu-
rate comparison, the number of records can be increased
to 2500 (the limit of data storage in free Salesforce
environment edition) or repeat the measured activities
multiple time in the system.

The authors of the [12] article focused on the analy-
sis of asynchronous data processing using Batch, Fu-

ture, Queueable, Schedulable and synchronous Apex

Trigger methods. Total transaction time and the number
of records processed per second were chosen
as the main comparison criteria. DML insert, update,
delete operations were performed on 10000, 50000
and 100000 records. The results obtained by the authors
clearly identified Queuable as the fastest method
for processing data regardless of the number of records
(with 885 records created per second in a batch
of 100000 records), but they concluded, that Batch re-
mains the preferred method if there is a requirement
to more closely monitor and manage the amount
and order of input data. Queueable does not have
the transaction splitting mechanism that Batch has.
Table 2 summarizes the results obtained
in article [12] for insert operation – Apex Trigger does
not include results for more than 10000 records, since
synchronous limit is equal to 10000.

Table 2: Number of processed records during insert operation
[12]

Method Number of records

10000 50000 100000

Performance
(records/s)

Batch 653 612 635

Future 399 359 292

Queueable 884 934 885

Schedulable 440 369 396

Trigger 420 - -

Dan Appleman and Robert Watson at the Dream-

force 2016 conference [13] performed a detailed analy-
sis of the platform’s CPU time usage during the execu-
tion of various operations. The authors focused on ex-
amining how the certain operations in the Apex lan-
guage and how the various low-code tools affect
the platform’s CPU time consumption during transac-
tions. Among other things, they concluded that a static
assignment is 30 times faster (~0.58 microseconds
vs. ~18 microseconds) than a dynamic assignment
and one run of the most efficient for loop construction
is more than five times faster than the slowest construc-
tion (Fig. 4).

Figure 4: Comparison of for loop constructions.

Journal of Computer Sciences Institute 27 (2023) 154-161

158

In the context of automation tools, Apex Trigger,

Process Builder and Workflow Rules were compared
against each other during insert operation on 200 rec-
ords. Process Builder performance proved
to be the worst (almost 3 times slower than Workflow

Rules). Well-designed code proved to be the most per-
formant choice (table 3 presents results obtained
by authors of [13]).

Table 3: CPU time consumption for 200 records insert [13]

Automation Tool CPU time consuption per
record
(ms)

No automation 1.1

Apex Trigger 2.2

Workflow Rule 2.8

Process Builder 8.2

Above study [13] is particularly relevant for the re-
search carried out in this work. Based on this, one can
presume about the low performance of the Process

Builder tool and it describes good practices that will
be used during the development of the individual appli-
cation modules. The current state of the literature does
not include analysis of the Flow Builder and whether
the choice of framework affects the execution time
of server operations. This research will be extended
to include the latest tools and the comparison criteria
will be expanded.

4. Research method

For the benchmarking, three application modules were
created using Visualforce, Aura Components and Light-

ning Web Components frameworks. In each
of the frameworks, a page was developed that
met the same functional requirements – display list
of records, buttons to perform insert, update, delete
and select list controlling the number of records
in the operation (200, 2500). 2500 is the limit of data
storage on the Developer Edition license. Then, automa-
tion logic in each tool (Apex Trigger, Workflow Rules,

Process Builder, Flow Builder) was implemented which
performs the same actions (update Boolean, date,
datetime, number and text field values). The Salesforce
instance parameters are shown in Table 4. Frankfurt
and Paris instance location means that each transaction
is replicated in both locations to minimize errors, in-
crease service availability and avoid single points
of failure in the Salesforce infrastructure.

Table 4: Salesforce instance parameters

Parameter Value

License Developer Edition

Instance EU46

Location Frankfurt, Paris

System version Spring ’23 Patch 9.2

Hardware parameters used to conduct the research
are shown in Table 5.

Table 5: Hardware parameters

Parameter Value

Processor Intel Core i7-8650U

RAM 24 GB

Storage 512 GB SSD

Graphics Intel UHD Graphics 620

Operating System Windows 11 Pro, 22H2

Web Browser Google Chrome 110

Execution time of each individual task was used
as the main comparison criterion. The execution time
of DML operation, the time of the entire transaction
and the amount of heap memory used were also meas-
ured. Chrome Developer Tools was used to compare
the frameworks – count, time and size of network re-
quests were registered. A newly created object contain-
ing only standard set of Salesforce fields and 5 custom
fields (CheckboxField, DateField, DatetimeField, Num-

berField, TextField) was used. No Validation Rules,

Sharing Rules, Scoping Rules, Restriction Rules

and Record Types were defined on this object. The tests
were performed by going through the steps from
the following scenario:
1. Insert n records to the database.
2. Display table of records.
3. Update n records in the database.
4. Display updated table of records.
5. Delete n records.
6. Display updated of records (empty table).
7. Download measured parameters.
8. Rollback to initial database state.
9. Repeat 1-8 steps for n: 200, 2500.
Scenario was executed for each framework and enabled
automation combination and repeated 30 times.

5. Results

5.1. Operations processing time

Figures 5-7 show average CPU DML processing time
for 200 records grouped by automation tool. Those
results are independent from the source of the operation
– in this case front-end framework.

Figure 5: Average DML insert processing time for 200 records.

Journal of Computer Sciences Institute 27 (2023) 154-161

159

Figure 6: Average DML update processing time for 200 records.

Figure 7: Average DML delete processing time for 200 records.

Similar results were obtained for 2500 records pro-
cessing with the Process Builder having the most influ-
ence and greatly extending processing time. Figures
8 to 11 shows average processing time per record
for each automation tool.

Figure 8: Average record processing time for Apex Trigger.

Figure 9: Average record processing time for Workflow Rules.

Figure 10: Average record processing time for Process Builder.

Figure 11: Average record processing time for Flow Builder.

Table 6 summarizes average time for whole transac-
tion grouped by DML operation type, number of records
and framework.

Table 6: Average transaction time by operation and framework

 Framework

Operation Number
of rec-
ords

LWC
(ms)

Aura
(ms)

Visualforce
(ms)

insert 200 1130 1137 2045

2500 13158 12957 16431

update 200 1148 1200 2258

2500 13325 13851 17037

delete 200 860 784 962

2500 5621 5765 5873

5.2. Heap memory consumption

Heap memory consumption depended not on automa-
tion but the source of the operation (framework), num-
ber of records and type of the operation. Figures
12 to 14 show heap memory consumption for each op-
eration grouped by framework and number of records.

Figure 12: Heap memory consumption for insert operation.

Figure 13: Heap memory consumption for update operation.

Journal of Computer Sciences Institute 27 (2023) 154-161

160

Figure 14: Heap memory consumption for delete operation.

5.3. Network requests

Using Chrome Developer Tools, time, count and size
of the network requests were measured for each opera-
tion. Figure 15 shows average network request size
grouped by framework, operation type and number
of records.

Figure 15: Average network request size by framework.

Table 7 summarizes the number of requests sent in total
when executing the scenario 30 times. This value
did not vary by chosen automation tool.

Table 7: Overall number of requests sent

 Framework

Operation Number
of rec-
ords

LWC Aura Visualforce

insert 200 33 33 810

2500 33 33 810

update 200 33 33 810

2500 33 33 810

delete 200 33 33 810

2500 33 33 810

6. Results analysis

The type of enabled automation did not affect the time
of the delete operation. The deletion time for 200 rec-
ords oscillated at ~62 ms, while for 2500 records
it was around 350 ms (figures 16 and 17). The differ-
ence between the minimum and maximum value
for 2500 records is less than 250 ms, i.e. only
2% of the CPU time limit.

Figure 16: Deletion time for 200 records

Figure 17: Deletion time for 2500 records.

Process Builder has the most negative impact
on record creation and update. Despite its simplified
graphical user interface, both insert and update opera-
tion were 2 times slower than the fastest Flow Builder
tool. Having platform’s limits in consideration, Process

Builder uses up to 65% of available CPU time during
bulk (2500) operations, leaving limited amount of time
for the other operations.

Apex Trigger code ranked penultimate of the four
analyzed automation tools. Workflow Rules proved
to process records ~30% times faster compared
to the code. The most performant solution was found
to be Flow Builder – regardless of the number of rec-
ords being processed and regardless of the operation
type, it performed those operations the fastest.

Correlation can be observed between the front-end
framework and the use of server and network resources.
Visualforce used on average almost twice as much serv-
er-side time when creating and updating 200 records
compared to the Javascript-based frameworks. When
creating or updating 2500 records, the time increased
by ~3 seconds. For number of network requests, Aura
and Lightning Web Components achieved similar re-

Journal of Computer Sciences Institute 27 (2023) 154-161

161

sults, with a total of 33 requests per DML operation
sending minimal amounts of information (a maximum
of 90.83 kB, and a minimum of 6.8 kB). Visualforce,
due to its server-side rendering technology, uses much
larger amount of network and server resources – for 200
records, it sent around 2.5 – 2.7 MB of data
and for 2500 records – 3.2 MB. Total number of re-
quests added up to 810 during execution of the whole
scenario.

Every framework during operation on 200 records
achieved similar results in context of heap memory
usage. Only for insert and update operations Visualforce
achieved lower memory usage of 47% (update)
and 60% (insert) than the Aura and Lightning Web

Components.

7. Conclusions

In case of automation tools, both in terms of functionali-
ties and the performance of the operations performed,
Flow Builder turned out to be unquestionable choice.
Workflow Rules has many limitations and Process

Builder is highly unoptimized for record processing.
Flow Builder is a tool tailored for development by citi-
zen developers and can be supported with actions pro-
vided by Apex developers. Obtained results partly over-
lap with those presented by Appleman [13], where Pro-

cess Builder was also found to be the slowest tool, alt-
hough the author obtained worse results for single rec-
ord processing.

For creating graphical user interfaces, Lightning

Web Component is the preferred framework.
Visualforce is an outdated tool, offering the lowest

performance. Despite using less heap memory, it con-
sumes incomparably more client network resources,
which is a higher priority criterion in this analysis.

There are no noticeable differences in the perfor-
mance results obtained for Aura and Lightning Web

Components, but LWC is better suited to modern appli-
cation development standards than Aura Components.
Within the Salesforce Platform, both frameworks offer
the same capabilities, but LWC’s open source nature,
support for the latest ECMAScript specification
and architecture based on native Web Components make
it more suitable choice in the long run – the entry
threshold should not be high for developers with experi-
ence in another front-end technology.

The results presented in this paper suggest a path
for related research in the future. For a more thorough
analysis, it would be useful to narrow scope
of the benchmarking tests (e.g. comparing only Flow

Builder with Apex code) but implement more complex
actions. The Lightning Web Component framework
allows application to be developed outside
of the Salesforce platform, enabling comparative analy-
sis against another popular framework: Angular or Re-
act.

References

[1] R. Waszkowski, Low-code platform for automating
business processes in manufacturing, IFAC-

PapersOnLine 52(10) (2019) 376–381,

https://doi.org/10.1016/j.ifacol.2019.10.060.

[2] N. Carroll, L. Móráin, D. Garrett, A. Jamnadass, The
importance of citizen development for digital

transformation, Cutter IT Journal 34(3) (2021) 5–9.

[3] J. Wong, M. Driver, P. Vincent, Low-code development
technologies evaluation guide, Gartner, 2019.

[4] Gartner Forecasts Worldwide Low-Code Development
Technologies Market to Grow 20% in 2023,
https://www.gartner.com/en/newsroom/press-
releases/2022-12-13-gartner-forecasts-worldwide-low-
code-development-technologies-market-to-grow-20-
percent-in-2023, [06.03.2023].

[5] Salesforce ranked #1 CRM Provider for Ninth
Consecutive Year,
https://www.salesforce.com/news/stories/salesforce-
ranked-1-crm-provider-for-ninth-consecutive-year/,
[21.01.2023].

[6] Lightning Web Components, https://lwc.dev/,
[07.02.2023].

[7] H. Thanduparakkal, P. Shahad, C. G. Raji, Using
Salesforce to Build Real Time Covid 19 Tracker with
Cloud Computing Technology, Proceedings
of the International Conference on Applied Artificial
Intelligence and Computing, ICAAIC, Salem, India

(2022) 942–948,

https://doi.org/10.1109/ICAAIC53929.2022.9792802.

[8] V. Sharma, S. Saraswat, S. Verma, P. Banga, D. Gupta,
Cost-Effective Data Mining Application Covid-19
Analyzer, Proceedings of the 5th International
Conference on Information Systems and Computer

Networks, ISCON, Mathura, India (2021) 1–5,

https://doi.org/10.1109/ISCON52037.2021.9702328.

[9] A. Poniszewska-Maranda, R. Matusiak, N. Kryvinska,
Use of Salesforce platform for building real-time service
systems in cloud, Proceedings of the IEEE International
Conference on Services Computing, SCC, Honolulu, HI,

USA (2017) 491–494,

https://doi.org/10.1109/SCC.2017.72.

[10] R. Gupta, S. Verma, K. Janjua, Custom application
development in cloud environment: Using salesforce,
Proceedings of the 4th International Conference
on Computing Sciences, ICCS, Jalandhar, India (2018)

23–27, https://doi.org/10.1109/ICCS.2018.00010.

[11] D. R. Miącz, Analiza wydajności metod tworzenia
aplikacji w technologii Salesforce, Journal of Computer

Sciences Institute 10 (2019) 24–27,

https://doi.org/10.35784/jcsi.189.

[12] W. Marańda, A. Poniszewska-Marańda,
M. Szymczyńska, Data Processing in Cloud Computing
Model on the Example of Salesforce Cloud, Information
13(2) (2022) 85, https://doi.org/10.3390/info13020085.

[13] D. Appleman, R. Watson, The Dark Art Of CPU
Benchmarking,
https://www.salesforce.com/video/296515/, [16.02.2023].

https://doi.org/10.1016/j.ifacol.2019.10.060
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.salesforce.com/news/stories/salesforce-ranked-1-crm-provider-for-ninth-consecutive-year/
https://www.salesforce.com/news/stories/salesforce-ranked-1-crm-provider-for-ninth-consecutive-year/
https://lwc.dev/
https://doi.org/10.1109/ICAAIC53929.2022.9792802
https://doi.org/10.1109/ISCON52037.2021.9702328
https://doi.org/10.1109/SCC.2017.72
https://doi.org/10.1109/ICCS.2018.00010
https://doi.org/10.35784/jcsi.189
https://doi.org/10.3390/info13020085
https://www.salesforce.com/video/296515/

