PNAS

Supporting Information for

Identification of a $\boldsymbol{\beta}$-arrestin-biased negative allosteric modulator for the $\boldsymbol{\beta}_{2^{-}}$ adrenergic receptor

Michael Ippolito, Francesco De Pascali, Nathan Hopfinger, Konstantin E. Komolov, Daniela Laurinavichyute, Poli Adi Narayana Reddy, Leon A. Sakkal, Kyle Z. Rajkowski, Ajay P. Nayak, Justin Lee, Jordan Lee, Gaoyuan Cao, Preston S. Donover, Melvin Reichman, Steven S. An, Joseph M. Salvino, Raymond B. Penn, Roger S. Armen, Charles P. Scott, and Jeffrey L. Benovic*
*Jeffrey L. Benovic
Email: jeffrey.benovic@jefferson.edu

This PDF file includes:

Supporting text
Figures S1 to S10
Tables S1 to S4

Supporting Information Text

Supplemental Methods

Analysis of $\mathbf{G}_{\mathbf{s}}$ activation by GTP $\boldsymbol{\gamma} \mathbf{S}$ binding. $18 \mu \mathrm{M}$ of purified G_{s} heterotrimer in 2% 3:1 dimyristoyl phosphatidylcholine (DOPC):3-([3-cholamidopropyl]dimethyl-ammonio)-2-hydroxy-1-propanesulfonate (CHAPSO) bicelles with 1.13 mM cholesterol hemisuccinate (CHS), 20 mM HEPES, pH 7.5 , and 100 mM NaCl was incubated in the presence of $1.5 \mu \mathrm{M}$ $\beta_{2} A R$ for 2 hr on ice to allow protein incorporation into the lipid bicelles. $2 \mu \mathrm{l}$ of reconstituted β_{2} AR-G sas diluted 200 -fold in 20 mM HEPES, $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ MgCl_{2} and $38.5 \mathrm{nM}\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTP} \gamma \mathrm{S}$ with or without $10 \mu \mathrm{M} \mathrm{DFPQ}$ and incubated for $30 \mathrm{~min} .20 \mu \mathrm{l}$ reactions were initiated by the addition of $1 \mu \mathrm{M}$ ISO and incubated for 15 min at room temperature while negative control samples had no ISO. Bound $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTP} \gamma \mathrm{S}$ was collected by rapid filtration on GF/B filters, washed 4 times with 4 ml of cold GTP $\gamma \mathrm{S}$ wash buffer (20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8,25 \mathrm{mM} \mathrm{MgCl} 2,100 \mathrm{mM} \mathrm{NaCl}$) and analyzed by liquid scintillation counting.

Human airway smooth muscle cell scratch assay. HASM cells were seeded into 24 -well plates, and a line was scratched in the center of the cell monolayer using a sterile $200 \mu \mathrm{l}$ pipette tip and then washed three times with PBS to remove the cell debris. Migration of HASM cells into the cleared area was determined at 0 and 24 hours in the presence of PDGF-BB ($20 \mathrm{ng} / \mathrm{ml}$) stimulation. All images were captured by an EVOS FL Auto Cell Imaging System inverted microscope (Life Technologies, Carlsbad, CA). Cell-free area was quantitated using ImageJ.

Mutagenesis. β_{2} AR ECL3 mutants were synthesized by Integrated DNA Technologies and cloned into the pcDNA3- β_{2} AR-RlucII BRET construct with restriction enzyme digestion. β_{2} AR point mutants were created with the Q5 Site-Directed Mutagenesis Kit (New England Biolabs) according to the manufacturers' protocol.

Pharmacological screening of $\boldsymbol{\beta}_{2}$ AR mutants. HEK 293 cells were transiently transfected with β_{1} AR-Rluc, β_{2} AR-Rluc or mutant β_{2} AR-Rluc and β-arrestin 2-GFP in a 96 -well plate using Metafectene Pro (Biontex, München, Germany) following the manufacturer's protocol. Forty-eight hours after transfection, media was removed, and cells were incubated with increasing concentrations (30 nM to $100 \mu \mathrm{M}$) of NAM for 30 min , followed by addition of $1 \mu \mathrm{M}$ ISO in the presence of $5 \mu \mathrm{M}$ DBC for 20 min . Signals at 395 nm and 530 nm were recorded in an Infinite F500 plate reader. Results from concentration/activity curves are shown as mean \pm SEM from six independent experiments. For normalization, we first subtracted the basal signal (wells stimulated with PBS in the absence of ligand) from each stimulated well, and the values of all replicates were then divided by the mean of ISOalone induced responses and multiplied by 100 for any given read-out.

Measurement of cAMP production using BRET. To measure the impact of higher concentrations of DFPQ on ISO-mediated cAMP response, HEK293 cells with endogenous
β_{2} ARs were transfected with the BRET-based intramolecular cAMP sensor CAMYEL (both the donor and acceptor are fused to the cAMP binding domain of Epac) that upon cAMP binding undergoes a conformational change resulting in a change in the BRET signal. Fortyeight hours after transfection, media was removed, and cells were incubated with increasing concentrations ($1.5 \mu \mathrm{M}$ to $100 \mu \mathrm{M}$) of DFPQ for 30 min , followed by the addition of $1 \mu \mathrm{M}$ ISO in the presence of $5 \mu \mathrm{M}$ Coelenterazine H for 20 min . The impact of DFPQ on basal cAMP production was assessed by incubating the cells with or without $10 \mu \mathrm{M}$ DFPQ for 30 min , followed by the addition of $5 \mu \mathrm{M}$ Coelenterazine H for 20 min . Results from concentration/activity curves are shown as mean \pm SEM from three independent experiments. For normalization, we first subtracted the basal signal (wells stimulated with PBS in the absence of ligand) from each stimulated well, and the values of all replicates were then divided by the mean of ISO-alone induced responses and multiplied by 100 for any given read-out.

Synthetic Procedures

General Methods for Chemistry. All commercially obtained solvents and reagents were used as received. Flash column chromatography was performed using silica gel 60 (230400 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck silica gel plates with QF-254 indicator and visualized by UV, PMA, or KMnO4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Advance 400 . Chemical shifts are reported in parts per million ($p p m, \delta$) using the residual solvent line as a reference. Splitting patterns are designated using the following abbreviations: s, singlet; d, doublet; t, triplet; dd, doublet of doublet; m, multiplet; br, broad. Coupling constants (J) are reported in hertz (Hz). Tetramethylsilane was used as an internal standard for proton nuclear magnetic resonance for samples run in CDCl_{3} or DMSO-d6. LC-MS data were acquired on a Waters Acquity UPLC/MS system equipped with a UPLC binary pump, an SQD 3100 mass spectrometer with an electrospray ionization (ESI) source and a PDA detector (210-400 nm). High-resolution mass spectra were obtained using the Q Exactive HF-X mass spectrometer which provided highresolution, accurate mass, and total ion and extracted ion chromatograms. All compounds tested were present within a 5 ppm mass error. The purity of all final compounds was determined by HPLC, and the compounds are at least $\geq 95 \%$ pure.

2-Chloro-N-cyclohexylquinazoline-4-amine (AP-06-082):

To a stirred solution of 2,4-dichloroquinazoline ($1.0 \mathrm{~g}, 5.025 \mathrm{mmol}$) and cyclohexanamine ($522 \mathrm{mg}, 5.28 \mathrm{mmol}$) in 20 ml of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature, sodium acetate (453 $\mathrm{mg}, 5.53 \mathrm{mmol}$) was added and heated to $65{ }^{\circ} \mathrm{C}$ for 4 h . Completion of the reaction was confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated,
the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. The crude product purified by flash column chromatography afforded title products as white solid ($1.1 \mathrm{~g}, 4.2 \mathrm{mmol}, 83 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (ddd, $J=8.2$, $6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{tdt}, J=11.8,7.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.17(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 160.63$ (s), 157.44 (s), 150.63 (s), 133.99 (s), 126.84 (s), 126.28 (s), 123.85 (s), 113.93 (s$), 50.31$ (s$), 32.22$ (s$), 25.68$ (s$), 25.38$ (s$).$

Mass m/z: calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{3}=261.10$. Found $[\mathrm{M}+\mathrm{H}]^{+}=262.04$.

N4-Cyclohexyl-N2-(3,4-difluorophenyl) quinazoline-2,4-diamine (AP-06-202): DFPQ

To a stirred solution of 2 -chloro-N-cyclohexylquinazoline-4-amine ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) and 3,4-difluoroaniline ($985 \mathrm{mg}, 0.76 \mathrm{mmol}$) in 3 ml of ethanol at room temperature, 0.05 mL of 1 N HCl was added and heated to $150{ }^{\circ} \mathrm{C}$ for 1 h using a Microwave reactor. Completion of the reaction was confirmed by TLC, volatiles were evaporated under reduced pressure. Crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, the product was extracted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($101 \mathrm{mg}, 0.28 \mathrm{mmol}, 74 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.27$ (ddd, $J=14.5,7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.17 (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.29 (dd, $J=19.8,9.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.30-$ $1.12(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.79$ (s), 157.07 (s), 151.54 (s), 150.56 (d, J = 12.9 Hz), 148.17 (d, J = 12.9 Hz), 145.12 ($\mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}$), 142.76 (d, J = 12.9 Hz), 139.38 ($\mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}$), 133.02 (s), 125.70 (s), 123.56 (s), 121.92 (s), 117.22 (d, J = 17.4 Hz), 114.67 (dd, J = 5.1, 2.8 Hz), 112.20 (s), 107.27 (d, J = 22.4 Hz), 50.08 (s), 32.61 (s$), 25.85$ (s$), 25.65$ (s).

Mass m/z: calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{4}=354.17$; found $[\mathrm{M}+\mathrm{H}]+=354.75$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{4}=354.1656$, found $[\mathrm{M}+\mathrm{H}]+=355.15832$.

2-Chloro-N-cyclohexyl-6-fluoroquinazoline-4-amine (AP-06-260):

To a stirred solution of 2,4-dichloro-6-fluoroquinazoline ($500 \mathrm{mg}, 2.30 \mathrm{mmol}$) and cyclohexanamine ($353 \mathrm{mg}, 2.53 \mathrm{mmol}$) in 10 ml of THF / $\mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature, sodium acetate ($453 \mathrm{mg}, 2.7 \mathrm{mmol}$) was added and heated to $65{ }^{\circ} \mathrm{C}$ for 4 h . Completion of the reaction was confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid (471 mg , $1.68 \mathrm{mmol}, 73 \%)$. The product was confirmed by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (dd, $\left.J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48$ (ddd, $J=9.1,8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.89-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70$ (ddd, $J=16.3,10.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.18(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 160.87$ (s), 160.27 (d, J = 3.9 Hz), 158.44 (s), 157.11 (d, J = 2.1 Hz), 147.72 (s), 129.63 (d, J = 8.6 Hz), 123.03 (d, J = 24.7 Hz), 114.57 (d, J = 9.0 Hz), 108.48 (d, J = 24.2 Hz), 50.42 (s), 32.18 (s), 25.67 (s$), 25.32$ (s$)$.

Mass m/z: calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClFN}_{3}=279.09$. Found $[\mathrm{M}+\mathrm{H}]^{+}=280.02$.

N4-Cyclohexyl-N2-(3,4-difluorophenyl)-6-fluoroquinazoline-2,4-diamine (AP-06-263): DFPQ-6-F

To a stirred solution of 2-chloro-N-cyclohexyl-6-fluoroquinazoline-4-amine ($60 \mathrm{mg}, 0.20$ mmol) and 3,4-difluoroaniline ($34 \mathrm{mg}, 0.27 \mathrm{mmol}$) in 3 ml of ethanol at room temperature, 0.05 mL of 1 N HCl was added and heated to $150{ }^{\circ} \mathrm{C}$ for 1 h using a Microwave reactor.

Completion of the reaction was confirmed by TLC, and volatiles were evaporated under reduced pressure. Crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, product extracted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($65 \mathrm{mg}, 0.17 \mathrm{mmol}, 85 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.55$ (dd, $J=9.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 - 7.32 (m, 1H), $7.18(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{dtd}, J=10.8,7.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=9.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 2 \mathrm{H})$, 1.78-1.58 (m, 2H), 1.58-1.41 (m, 2H), 1.41-1.19 (m, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.43$ (d, J = 3.6 Hz), 158.62 (s$), 156.96$ (s$), 156.25$ (s$)$, 150.55 (d, J = 12.8 Hz), 148.48 (s), 148.16 (d, J = 13.0 Hz), 145.15 (d, J = 13.0 Hz), 142.78 (d, $\mathrm{J}=12.9 \mathrm{~Hz}$), $139.30(\mathrm{dd}, \mathrm{J}=9.6,2.1 \mathrm{~Hz}), 127.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 121.99(\mathrm{~d}, \mathrm{~J}=24.3 \mathrm{~Hz})$, $117.22(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}), 114.68(\mathrm{dd}, \mathrm{J}=5.1,2.8 \mathrm{~Hz}), 112.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 108.08(\mathrm{~d}, \mathrm{~J}=23.4$ Hz), 107.27 (d, J = 22.5 Hz), 50.18 (s), 32.57 (s), 25.82 (s$), 25.60(\mathrm{~s})$.

Mass m/z: calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4}=372.16$. Found $[\mathrm{M}+\mathrm{H}]^{+}=372.75$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4}=372.15618$, found $[\mathrm{M}+\mathrm{H}]^{+}=373.16346$.

2,6-Dichloro-N-cyclohexylquinazoline-4-amine (AP-06-259):

To a stirred solution of 2,4-dichloro-6-fluoroquinazoline ($500 \mathrm{mg}, 2.14 \mathrm{mmol}$) and cyclohexanamine ($328 \mathrm{mg}, 2.36 \mathrm{mmol}$) in 10 ml of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature, sodium acetate ($210 \mathrm{mg}, 2.57 \mathrm{mmol}$) was added and heated to $65^{\circ} \mathrm{C}$ for 4 h . Completion of the reaction was confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid (493 mg , $1.65 \mathrm{mmol}, 77 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.54(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (dd, $J=8.9$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-3.96(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{t}, J=$ $17.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.66(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.21$ (ddd, $J=16.3,15.0,6.1 \mathrm{~Hz}$, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.78$ (s), 157.92 (s), 149.52 (s), 134.15 (s), 130.41 (s), 129.08 (s), 123.13 (s), 114.91 (s), 32.15 (s), 25.68 (s), 25.32 (s).

Mass m/z: calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3}=295.06$. Found $[\mathrm{M}+\mathrm{H}]^{+}=295.77$.

6-Chloro-N4-cyclohexyl-N2-(3,4-difluorophenyl)quinazoline-2,4-diamine (AP-06266): DFPQ-6-Cl

To a stirred solution of 2,6-dichloro-N-cyclohexylquinazoline-4-amine ($60 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 3,4 -difluoroaniline ($34 \mathrm{mg}, 0.26 \mathrm{mmol}$) in 3 ml of ethanol at room temperature, 0.05 mL of 1 N HCl was added and heated to $150{ }^{\circ} \mathrm{C}$ for 1 h using a Microwave reactor. Completion of the reaction was confirmed by TLC, and volatiles were evaporated under reduced pressure. Crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, product extracted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($68 \mathrm{mg}, 0.18 \mathrm{mmol}, 86 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ - $7.97(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.14-6.94(\mathrm{~m}, 3 \mathrm{H})$, $5.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{dt}, J=21.3,9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.73(\mathrm{dd}, J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.17(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.00$ (s), 157.40 (s), 150.54 (d, J = 12.9 Hz), 150.32 (s), 148.15 (d, J = 12.9 Hz), 145.29 (d, J = 12.9 Hz), $142.92(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}$), 139.08 (dd, J = 9.6, 2.3 Hz), 133.22 (s , 127.68 (s), 125.84 (s$), 122.84(\mathrm{~s}), 117.25(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}), 114.88$ (dd, J = 5.3, 2.9 Hz), 112.94 (s), 107.49 (d, J = 22.4 Hz), 50.26 (s$), 32.51$ (s$), 25.82$ (s), 25.59 (s).

Mass m/z: calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClF}_{2} \mathrm{~N}_{4}=388.13$. Found $[\mathrm{M}+\mathrm{H}]+=388.95$.
HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClF}_{2} \mathrm{~N}_{4}=388.12663$. Found $[\mathrm{M}+\mathrm{H}]^{+}=389.13391$.

7-Nitroquinazoline-2,4(1H,3H)-dione (AP-06-258):

AP-06-258
Anthranilic acids ($\mathbf{2} \mathbf{g}, 10.98 \mathrm{mmol}$) and urea ($6.5 \mathrm{~g}, 109.80 \mathrm{mmol}$) were poured into a 100 mL round bottom flask and the reaction mixture was heated at $150{ }^{\circ} \mathrm{C}$ for 20 h . Completion of the reaction was confirmed by TLC and cooled to room temperature. 50 mL water was added and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled in and ice bath and the white solid was precipitated, filtered and washed with water and hexane. The residue was dried in vacuo afforded as a white solid ($\mathbf{1 . 7 4} \mathbf{~ g}, 8.34 \mathrm{mmol}$, 76%) and used in next step without further purification. The product was confirmed by ${ }^{1} \mathrm{H}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 11.58(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=11.1,2.5 \mathrm{~Hz}$, 2 H).

Mass m/z: calculated for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}=207.03$. Found $[\mathrm{M}-\mathrm{H}]^{-}=206.04$.

2,4-Dichloro-7-nitroquinazoline (AP-06-275):

The compound 7-nitroquinazoline-2,4(1H,3H)-dione ($1.73 \mathrm{~g}, 8.36 \mathrm{mmol}$) was dissolved in N -ethyl- N -isopropylpropan-2-amine ($2.15 \mathrm{~g}, 16.71 \mathrm{mmol}$) and $\mathrm{POCl}_{3}(12.8 \mathrm{~g}, 83.6 \mathrm{mmol})$ was slowly added to the reaction mixture. The reaction mixture was heated at $115{ }^{\circ} \mathrm{C}$ for 20 h and completion of the reaction was confirmed by TLC and the reaction solvents were evaporated with toluene. The residue was diluted with water and extracted with ethyl acetate several times. The organic layer was washed with brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under in a reduced pressure evaporator. Crude product purified by flash column chromatography afforded title products as white solid ($1.62 \mathrm{~g}, 6.69 \mathrm{mmol}, 80 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.65$ (s, 1H), 11.52 (s, 1H), $8.10(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.83$ ($\mathrm{m}, 2 \mathrm{H}$).

2-Chloro-N-cyclohexyl-7-nitroquinazoline-4-amine (AP-06-279):

To a stirred solution of 2,4-dichloro-7-nitroquinazoline ($300 \mathrm{mg}, 1.24 \mathrm{mmol}$) and cyclohexanamine ($129 \mathrm{mg}, 1.30 \mathrm{mmol}$) in 15 ml of THF/ $\mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature Sodium acetate ($111 \mathrm{mg}, 1.36 \mathrm{mmol}$) was added and heated to $65^{\circ} \mathrm{C}$ for 4 h . Completion of the reaction confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated, and the organic phase was washed with water, and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, Solvent was evaporated under reduced pressure. Crude product purified flash column chromatography afforded title products as white solid ($250 \mathrm{mg}, 0.89$ mmol, 66\%). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.19 (dd, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.82 (d, $J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=12.2,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-$ $1.78(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{dd}, J=9.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{dtd}, J=24.9,12.2,3.5$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 160.12$ (s), 159.47 (s), 150.93 (s), 150.82 (s), 126.32 (s), 122.08 (s), 119.68 (s), 117.83 (s), 50.81 (s), 31.99 (s), 25.63 (s$), 25.29$ (s$).$

Mass m/z: Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}=306.09$. Found $[\mathrm{M}+\mathrm{H}]^{+}=306.97$.

N4-Cyclohexyl-N2-(3,4-difluorophenyl)-7-nitroquinazoline-2,4-diamine (AP-06281):

To a stirred solution of 2-chloro-N-cyclohexyl-7-nitroquinazoline-4-amine ($61 \mathrm{mg}, 0.2$ mmol) and 3,4-difluoroaniline ($51 \mathrm{mg}, 4.0 \mathrm{mmol}$) in 3 ml of ethanol at room temperature, 0.05 mL of 1 N HCl was added and heated to $150{ }^{\circ} \mathrm{C}$ for 1 h using a Microwave reactor. Completion of the reaction was confirmed by TLC and volatiles were evaporated under reduced pressure. Crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, product extracted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash
column chromatography afforded title products as white solid ($71 \mathrm{mg}, 0.18 \mathrm{mmol}$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR (400 MHz , None) $\delta 9.74$ (s, 1H), 8.62 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.48-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.28$ (s, 1 H), 8.09 (dd, $J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (s, 1H), 7.52 (dd, $J=19.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (s, 1H), $2.20(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.48(\mathrm{~m}$, 3 H), 1.38 (dd, $J=14.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 159.26$ (s), 158.33 (s), 151.92 (s), 150.60 (s), 150.53 (d, J = 14.9 Hz), 148.12 (d, J = 12.9 Hz), 145.57 (d, J = 12.9 Hz), 143.19 (d, J = 12.9 Hz), 138.66 (dd, $\mathrm{J}=9.5,2.3 \mathrm{~Hz}$), 125.93 (s , 120.37 (s), 117.28 (d, J = 17.3 Hz), 116.08 (s$), 115.30$ (dd, J = 5.2, 2.9 Hz), 114.84 (s , 107.92 (d, J = 22.3 Hz), 50.47 (s), 32.32 (s$), 25.78$ (s$), 25.57$ (s$).$

Mass m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}=399.15$. Found $[\mathrm{M}+\mathrm{H}]^{+}=400.23$.

N4-Cyclohexyl-N2-(3,4-difluorophenyl)quinazoline-2,4,7-triamine (AP-06-284): DFPQ-7-NH2

To a stirred solution of N4-cyclohexyl-N2-(3,4-difluorophenyl)-7-nitroquinazoline-2,4diamine ($50 \mathrm{mg}, 0.13 \mathrm{mmol}$) in ethanol (10 mL) at room temperature, $\mathrm{Pd} / \mathrm{C}(10 \%, 5 \mathrm{mg})$ was added and stirred under a hydrogen atmosphere at room temperature for 3 h . Completion of the reaction was confirmed by LC-MS, the reaction was filtered over Celite, and the filter bed was washed with ethanol (20 mL). The combined organic portions were evaporated to afford the crude product, which was purified by flash column chromatography to afford the title compound ($40 \mathrm{mg}, 0.11 \mathrm{mmol}, 87 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ - $8.01(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.4,6.3$ $\mathrm{Hz}, 2 \mathrm{H}$), $6.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 2.16$ (d, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{dd}, J=9.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.39(\mathrm{~m}, 2 \mathrm{H})$, 1.40-1.13(m, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.42$ (d, J = 3.9 Hz), 157.65 - 156.73 (m), 153.40 (s), 152.96 (s), 151.15 (s$), 148.08$ (d, J = 21.7 Hz), 139.88 (d, J = 9.9 Hz), 124.38 (d, J = 19.2 Hz), 117.11 (d, J = 16.9 Hz), 114.59 - 113.87 (m), 112.35 (s), 106.92 (dd, J = 21.2, 8.2 Hz), 104.93 (s), 103.05 (s), 49.72 (s), 32.93 (s), 25.90 (s), 25.70 (s).

Mass m / z : Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{5}=369.18$. Found $[\mathrm{M}+\mathrm{H}]+=369.95$.
HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClF}_{2} \mathrm{~N}_{4}=369.1765$. Found [M+H]+ $=370.18378$.

2-Chloro-N-cyclohexyl-6-methylquinazoline-4-amine (AP-06-207):

To a stirred solution of 2,4-dichloro-6-methylquinazoline ($500 \mathrm{mg}, 2.35 \mathrm{mmol}$) and cyclohexylamine ($280 \mathrm{mg}, 2.82 \mathrm{mmol}$) in 20 ml of THF/ $\mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature, sodium acetate ($230 \mathrm{mg}, 2.82 \mathrm{mmol}$) was added and heated to $65^{\circ} \mathrm{C}$ for 4 h . Completion of the reaction was confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid (518 mg , $1.88 \mathrm{mmol}, 80 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.22$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (s, 1H), 7.61 (dd, $J=8.5,1.4 \mathrm{~Hz}$, 1 H), $7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dd, $J=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, 2 H), $1.78(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{dd}, J=16.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 160.25$ (s), 156.35 (s), 148.33 (s), 136.12 (s), 135.63 (s), 126.30 (s), 123.00 (s), 113.67 (s$), 50.34$ (s$), 32.24$ (s$), 25.70$ (s$), 25.38$ (s$), 21.47$ (s).

Mass m/z: Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClN}_{3}\right]+[\mathrm{M}+\mathrm{H}]+$, 276.13; found, 276.03.

N4-Cyclohexyl-N2-(3,4-difluorophenyl)-6-methylquinazoline-2,4-diamine (AP-07164): DFPQ-6-Me

To a stirred solution of 2-chloro-N-cyclohexyl-6-methylquinazoline-4-amine ($54 \mathrm{mg}, 0.19$ mmol) and 3,4-difluoroaniline ($33 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 3 ml of ethanol at room temperature, 0.05 mL of 1 N HCl was added and heated to $150{ }^{\circ} \mathrm{C}$ for 1 h using a Microwave reactor. Completion of the reaction was confirmed by TLC and volatiles were evaporated under
reduced pressure. Crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, product extracted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure Crude product purified by flash column chromatography afforded title products as white solid ($59 \mathrm{mg}, 0.15 \mathrm{mmol}$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.30(\mathrm{~s}, 4 \mathrm{H}$), 8.22 (dd, $J=14.5,8.0 \mathrm{~Hz}, 6 \mathrm{H}$), 8.01 ($\mathrm{s}, 4 \mathrm{H}$), 7.86 (s, 4 H), 7.58 - 7.39 (m, 10H), $7.39-7.18$ (m, 9H), 4.16 (s, 5 H$), 2.40(\mathrm{~s}, 11 \mathrm{H}), 1.99$ (d, J = 9.8 Hz , 8 H), 1.82 ($\mathrm{d}, J=12.1 \mathrm{~Hz}, 8 \mathrm{H}$), 1.69 (d, $J=12.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.50-1.29(\mathrm{~m}, 16 \mathrm{H}), 1.27-1.12(\mathrm{~m}$, 5H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3) $\delta 164.60$ (s), 161.72 (s), 156.06 (d, J = 13.0 Hz), 154.82 (s), $153.66(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}), 150.63(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}), 148.26(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}), 144.33$ (dd, J = 9.8, 2.3 Hz), 139.24 (s), $137.56-137.33(\mathrm{~m}), 136.56(\mathrm{~s}), 131.04(\mathrm{~s}), 126.51(\mathrm{~s}), 121.70(\mathrm{~d}, \mathrm{~J}=$ 17.8 Hz), 119.19 (dd, J = 5.0, 3.2 Hz), 117.07 (s$), 112.36$ (d, J = 22.8 Hz), 37.67 (s), 30.83 (s), 30.50 (s), 25.54 (s).

Mass m/z: Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4}{ }^{+}=368.18$. Found $[\mathrm{M}+\mathrm{H}]^{+}=369.95$.

6-Bromo-2-chloro-N-cyclohexylquinazoline-4-amine (AP-07-161):

AP-07-161
To a stirred solution of 6-bromo-2,4-dichloroquinazoline ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) and cyclohexylamine ($187 \mathrm{mg}, 1.98 \mathrm{mmol}$) in 20 ml of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature, sodium acetate ($464 \mathrm{mg}, 3.6 \mathrm{mmol}$) was added and heated to $65{ }^{\circ} \mathrm{C}$ for 4 h . Completion of the reaction was confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($434 \mathrm{~g}, 1.28$ mmol, 71\%). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.54(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=12.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 1 \mathrm{H})$, 1.62-1.40(m, 2H), 1.38-1.13(m, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.64$ (s), 157.93 (s$), 149.78$ (s), 136.83 (s$), 129.22$ (s), 126.25 (s), 118.60 (s), 115.42 (s), 50.48 (s), 32.15 (s), 25.68 (s), 25.32 ($s)$.

Mass m/z: Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrClN}_{3}=339.01$. Found $[\mathrm{M}+\mathrm{H}]^{+}=341.92$.

6-Bromo-N4-cyclohexyl-N2-(3,4-difluorophenyl)quinazoline-2,4-diamine(AP-07168): DFPQ-6-Br

AP-07-161
AP-7-168
To a stirred solution of 6-bromo-2-chloro-N-cyclohexylquinazoline-4-amine ($200 \mathrm{mg}, 0.18$ mmol) and 3,4 -difluoroaniline ($98 \mathrm{mg}, 0.76 \mathrm{mmol}$) in 10 ml of ethanol at room temperature, 0.1 mL of 1 N HCl was added and heated to $150^{\circ} \mathrm{C}$ for 1 h using a Microwave reactor. Completion of the reaction was confirmed by TLC and volatiles were evaporated under reduced pressure. Crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, product extracted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($216 \mathrm{mg}, 0.50 \mathrm{mmol}, 85 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.84$ (dt, $J=27.5,13.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.74$ (dd, $J=9.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.13$ (m, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 158.58$ (s), 151.74 (s), 150.61 (d, J = 13.8 Hz), 148.18 (d, J $=13.5 \mathrm{~Hz}$), 138.47 (d, J = 27.0 Hz), 134.46 (d, J = 10.7 Hz), 127.33 (s$), 120.22$ (s), 118.92 (s), 118.03 (d, J = 17.8 Hz), 117.07 (s), 112.38 (s$), 111.76$ (d, J = 25.5 Hz), 52.55 (s$), 31.70$ (s), 25.48 (s), 25.33 (s).

Mass m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrF}_{2} \mathrm{~N}_{4}=432.08$. Found $[\mathrm{M}+\mathrm{H}]^{+}=433.04$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrF}_{2} \mathrm{~N}_{4}=432.07612$. Found $[\mathrm{M}+\mathrm{H}]^{+}=433.08340$.

AP-07-188
To a stirred solution of 2-amino-5-(trifluoromethyl)benzonitrile ($1.2 \mathrm{~g}, 6.45 \mathrm{mmol}$) and 1,8-diazabicyclo[5.4.0]undec-7-ene ($2.16 \mathrm{~g}, 14.19 \mathrm{mmol}$) in DMF (15 mL), CO_{2} gas was passed through the reaction mixture at $100{ }^{\circ} \mathrm{C}$ for 30 min , and stired for 24 h at $100{ }^{\circ} \mathrm{C}$. Reaction mixture was cooled to room temperature, diluted with water, and the precipitate was filtered, washed with cold water and dried under high vacuum. This afforded the title compound as a white solid ($1.1 \mathrm{~g}, 4.77 \mathrm{mmol}, 74 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.55(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Mass m/z: Calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}=230.03$. Found $[\mathrm{M}-\mathrm{H}]^{-}=229.12$.

2,4-Dichloro-6-(trifluoromethyl)quinazoline (AP-07-192):

AP-07-188

AP-7-192

The compound 6-(trifluoromethyl)quinazoline-2,4(1H,3H)-dione ($1.08 \mathrm{~g}, 4.69 \mathrm{mmol}$) was dissolved in N -ethyl- N -isopropylpropan-2-amine ($1.06 \mathrm{~g}, 7.04 \mathrm{mmol}$) and then POCl_{3} (7.19 $\mathrm{g}, 46.9 \mathrm{mmol}$) was slowly added to the reaction mixture and heated at $115{ }^{\circ} \mathrm{C}$ for 20 h . Completion of the reaction was confirmed by TLC. The reaction solvents were evaporated with toluene, and the residue was diluted with water, extracted with ethyl acetate several times, washed with brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($980 \mathrm{mg}, 3.67 \mathrm{mmol}, 78 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.24-8.07(\mathrm{~m}, 2 \mathrm{H})$.

To a stirred solution of 2,4-dichloro-6-(trifluoromethyl)quinazoline ($553 \mathrm{mg}, 2.07 \mathrm{mmol}$) and cyclohexylamine ($308 \mathrm{mg}, 3.10 \mathrm{mmol}$) in 15 ml of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature, sodium acetate ($187 \mathrm{mg}, 2.23 \mathrm{mmol}$) was added and heated to $65{ }^{\circ} \mathrm{C}$ for 4 h . Completion of the reaction was confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($500 \mathrm{mg}, 1.5 \mathrm{mmol}, 73 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $4.40-4.20(\mathrm{~m}, 1 \mathrm{H}), 2.16$ (dd, $J=12.2,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.93-1.78$ (m, 2H), 1.73 (dd, $J=$ 9.3, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.63-1.42$ (m, 2H), 1.30 (dddd, $J=20.9,12.5,10.4,3.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 160.63$ (s), 159.77 (s$), 152.95$ (s), 129.58 (s$), 128.39$ (s), 127.29 - 125.38 (m), 123.12 (s$), 122.46$ (d, J = 4.1 Hz), 113.61 (s$), 50.65$ (s$), 32.13$ (s$),$ 25.67 (s), 25.33 (s).

Mass m/z: Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{3}=329.09$. Found $[\mathrm{M}+\mathrm{H}]^{+}=330.12$.

N4-Cyclohexyl-N2-(3,4-difluorophenyl)-6-(trifluoromethyl)quinazoline-2,4-diamine (AP-07-203): DFPQ-6-CF 3 :

To a stirred solution of 2-chloro-N-cyclohexyl-6-(trifluoromethyl)quinazoline-4-amine (30 $\mathrm{mg}, 0.09 \mathrm{mmol}$) and 3,4 -difluoroaniline ($14 \mathrm{mg}, 0.11 \mathrm{mmol}$) in 3 ml of ethanol at room temperature, 0.05 mL of 1 N HCl was added and heated to $150{ }^{\circ} \mathrm{C}$ for 1 h using a Microwave reactor. Completion of the reaction was confirmed by TLC and volatiles were evaporated under reduced pressure. Crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, product extracted with ethyl acetate, the layers were separated,
the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($28 \mathrm{mg}, 0.07 \mathrm{mmol}, 74 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-3.95$ (m, 1H), 2.19 (dd, $J=12.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.75$ (dd, $J=9.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.60-1.42 (m, 2H), 1.42-1.18(m, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 159.85$ (s), 158.50 (s), 154.03 (s), 150.53 (d, J = 13.0 Hz), 148.13 (d, J = 12.9 Hz), 145.54 (d, J = 12.8 Hz), 143.17 (d, J = 12.9 Hz), 138.75 (dd, J = 9.5, 2.4 Hz), 128.68 (d, J = 3.1 Hz), 126.64 (s , $124.05-120.71$ (m), 117.30 (d, J = 17.5 Hz), 115.26 (dd, J = 5.2, 2.9 Hz), 111.44 (s), 107.90 (d, J = 22.4 Hz), 50.44 (s), 32.48 (s), 25.83 (s), 25.62 (s).

Mass m/z: Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{5} \mathrm{~N}_{4}=422.15$. Found $[\mathrm{M}+\mathrm{H}]^{+}=422.94$.
HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{4}=422.15299$. Found $[\mathrm{M}+\mathrm{H}]^{+}=423.16027$.

Tert-butyl 4-(2,6-dichloroquinazoline-4-ylamino)piperidine-1-carboxylate (AP-07148):

AP-07-148
To a stirred solution of 2,4,6-trichloroquinazoline ($300 \mathrm{mg}, 1.28 \mathrm{mmol}$) and tert-butyl 4-aminopiperidine-1-carboxylate ($386 \mathrm{mg}, 1.93 \mathrm{mmol}$) in 10 mL of THF at room temperature, N-ethyl-N-isopropylpropan-2-amine ($332 \mathrm{mg}, 2.56 \mathrm{mmol}$) was added and stirred for 4 h . Completion of the reaction was confirmed by TLC, the solution was diluted with ethyl acetate, the layers were separated, the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($350 \mathrm{mg}, 0.88 \mathrm{mmol}, 69 \%$). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.49$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $8.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (dd, $J=8.9$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.90$ (s, 2H), 2.02-1.84 (m, 2H), 1.56-1.45 (m, 2H), 1.41 (d, J = $12.0 \mathrm{~Hz}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.91$ (s), 157.78 (s), 154.38 (s), 149.52 (s), 134.34 (s), 130.56 (s , 129.18 (s$), 123.09$ (s$), 114.87$ (s), 79.17 (s$), 48.51$ (s$), 28.56$ (s).

Mass m/z: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}=396.11$. Found $[\mathrm{M}+\mathrm{H}]^{+}=397.15$.

6-Chloro-N2-(3,4-difluorophenyl)-N4-(piperidin-4-yl)quinazoline-2,4-diamine hydrochloride (AP-07-213): DFPQ-6-Cl-piperidine:

To a stirred solution of 2-chloro-N-cyclohexyl-6-fluoroquinazoline-4-amine ($100 \mathrm{mg}, 0.25$ mmol) and 3,4-difluoroaniline ($52 \mathrm{mg}, 0.33 \mathrm{mmol}$) in 10 ml of t-butanol at room temperature, 0.05 mL of 1 N HCl was added and heated to $100^{\circ} \mathrm{C}$ for 2 h using a Microwave reactor. Completion of the reaction was confirmed by TLC and volatiles were evaporated under reduced pressure. The crude product was treated with 4 N HCl in dioxane (1 mL) and methanol (2 mL) at room temperature for 3 h , completion of the reaction was confirmed by TLC. Volatiles were evaporated under reduced pressure, crude product was diluted with water and neutralized with aqueous saturated NaHCO_{3}, extracted with ethyl acetate, the layers were separated, and the organic phase was washed with water and brine solution dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Crude product purified by flash column chromatography afforded title products as white solid ($60 \mathrm{mg}, 0.15 \mathrm{mmol}, 61 \%$ over two steps). The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H})$, 8.77 (s, 1H), $7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.42$ (m, 1H), 7.35 (s, 1H), 4.25 (s, 1H), 3.41 (d, $J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.94$ (d, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06 (dd, $J=32.6,11.1 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 159.34$ (d, J = 3.9 Hz), $152.02-151.67$ (m), 150.67 (d, J = 19.1 Hz), $148.37-147.97(\mathrm{~m}), 138.47$ (d, J = 14.1 Hz), $136.96-135.38$ (m), 134.26 (s), 129.29 (s), 124.80 (s), 120.18 (s), 119.21 (s), 118.08 (d, J = 18.1 Hz), 112.00 (s), 48.40 (s), 42.56 (s), 27.56 (s).

Mass m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClF}_{2} \mathrm{~N}_{5}=389.12$. Found [$\left.\mathrm{M}+\mathrm{H}\right]^{+}=390.15$. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClF}_{2} \mathrm{~N}_{5}=389.12188$. Found $[\mathrm{M}+\mathrm{H}]^{+}=390.12916$.

Supplemental Figure 1: Identifying small-molecule allosteric modulators of β-arrestin recruitment to the $\beta_{2} \mathrm{AR}$

Figure S1. Identifying small-molecule allosteric modulators of β-arrestin recruitment to the β_{2} AR. (A) β_{2} AR expressing HEK 293 cells were preincubated with 0.1% DMSO or $10 \mu \mathrm{M}$ DFPQ for 30 min . Cells were then stimulated with $1 \mu \mathrm{M}$ ISO, BI or SALM for 10 min and cAMP production was measured by ELISA. HEK 293 cells co-transfected with β-arrestin2-GFP10 and β_{2} AR-RLucII were preincubated with 0.1% DMSO or $10 \mu \mathrm{M}$ DFPQ for 30 min . Cells were then incubated with Coelenterazine 400a for 2 min and then stimulated with (B) $1 \mu \mathrm{M} \mathrm{BI}, 1$ μ M ISO or (C) 1μ M SALM. BRET signal for β-arrestin recruitment was recorded every 2 min post agonist addition. (D) $\log \left(\left(\mathrm{A}^{\prime} / \mathrm{A}\right)-1\right)$ and $-\operatorname{LogB}$ were extrapolated from the concentration activity curves shown in Fig. 1E and a simple linear regression was performed using the built-in equation in GraphPad Prism. (E) Effect of high concentrations of DFPQ on ISO-mediated cAMP production and β-arrestin recruitment. Cells were incubated with increasing concentration ($10^{-6.4}$ to $10^{-4} \mathrm{M}$) of DFPQ for 30 min , followed by the addition of 1 μ M ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $n=3$. The impact of DFPQ on basal cAMP production and β-arrestin recruitment was assessed by incubating the cells with or without $10 \mu \mathrm{M}$ DFPQ for 30 min . DFPQ had no effect on basal cAMP production (PBS: 0.65 ± 0.01 vs DFPQ: 0.64 ± 0.01) or basal β-arrestin recruitment (PBS: 0.12 ± 0.01 vs DFPQ: 0.13 ± 0.01) (F) Lipid bicelles containing reconstituted β_{2} AR and Gs heterotrimer were preincubated with 0.1% DMSO or $10 \mu \mathrm{M}$ DFPQ and then stimulated with $1 \mu \mathrm{M}$ ISO. Negative control samples did not contain ISO. Bound $\left[{ }^{35} \mathrm{~S}\right]-\mathrm{GTP} \gamma \mathrm{S}$ was collected by rapid filtration on GF/B filters, washed 4 times with 4 ml of cold GTP $\gamma \mathrm{S}$ wash buffer and analyzed by liquid scintillation.

Supplemental Figure 2: β-agonist regulation of primary human airway smooth muscle cell migration

Figure S2. β-agonist regulation of primary human airway smooth muscle cell migration. (A) HASM cells were scratched and stimulated with the different conditions shown. (B) Cell-free area in the scratch line was quantified with ImageJ and statistical comparison was assessed by t test with Welch's correction. P values were considered significant when <0.05.

Supplemental Figure 3: Mutagenesis studies using $\beta_{2} A R / \beta_{1} A R$ chimeras with DFPQ

ECL1

ECL1/2

ECL1/3

ICL2

ICL1

ECL2/3

$\rightarrow \beta_{1} A R$

- $-\beta_{2} A R$
$\pm \beta_{2} A R-m u t a n t$

Figure S3. Mutagenesis studies using $\beta_{2} A R / \beta_{1} A R$ chimeras with DFPQ. HEK 293 cells were transfected with β_{1} AR-Rluc (blue), β_{2} AR-Rluc (red) or $\beta_{2} A R$-chimeras-Rluc (black) and β -arrestin2-GFP. Cells were incubated with increasing concentrations ($10^{-7.5}$ to $10^{-4} \mathrm{M}$) of DFPQ for 30 min , followed by addition of $1 \mu \mathrm{M}$ ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $n=6$. A diagram of the chimeras is shown with the β_{2} AR domains in red and the swapped domain from the $\beta_{1} A R$ in blue.

Supplemental Figure 4: Mutagenesis studies using $\beta_{2} A R / \beta_{1} A R$ chimeras with AP-7-168

TM6

Log [AP-7-168] M
$\rightarrow \beta_{1} A R$

- $\beta_{2} A R$
$\pm \beta_{2} A R$-mutant

Figure S4. Mutagenesis studies using $\beta_{2} A R / \beta_{1} A R$ chimeras with AP-7-168. HEK 293 cells were transfected with β_{1} AR-Rluc (blue), $\beta_{2} A R-R l u c$ (red) or $\beta_{2} A R$-chimeras-Rluc (black) and β-arrestin2-GFP. Cells were incubated with increasing concentration ($10^{-7.5}$ to $10^{-4} \mathrm{M}$) of AP-$7-168$ for 30 min , followed by addition of $1 \mu \mathrm{M}$ ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $\mathrm{n}=6$. A diagram of the chimeras is shown with the $\beta_{2} A R$ domains in red and the swapped domain from the $\beta_{1} A R$ in blue.

Supplemental Figure 5: Mutagenesis studies using $\beta_{2} A R / \beta_{1} A R$ chimeras with AP-7-203

ECL1

ECL1/2

TM2

TM5

ICL1

ICL2

Log [AP-7-203] M

$-\beta_{1} A R$
-- $\beta_{2} A R$
$\pm \beta_{2} A R$-mutant

Figure S5. Mutagenesis studies using $\beta_{2} A R / \beta_{1} A R$ chimeras with AP-7-203. HEK 293 cells were transfected with β_{1} AR-Rluc (blue), $\beta_{2} A R-R l u c$ (red) or $\beta_{2} A R$-chimeras-Rluc (black) and β-arrestin2-GFP. Cells were incubated with increasing concentration ($10^{-7.5}$ to $10^{-4} \mathrm{M}$) of AP-$7-203$ for 30 min , followed by addition of $1 \mu \mathrm{M}$ ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $\mathrm{n}=6$. A diagram of the chimeras is shown with the $\beta_{2} A R$ domains in red and the swapped domain from the β_{1} AR in blue.

Figure S6. Effect of selected β_{2} AR $/ \beta_{1}$ AR chimeras on ISO-promoted β-arrestin recruitment. HEK 293 cells were transfected with WT or chimera (TM3, ICL2, TM4) β_{2} AR-Rluc and β -arrestin2-GFP and stimulated with increasing concentrations ($10^{-7.5}$ to $10^{-4} \mathrm{M}$) of ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $\mathrm{n}=6$.

Supplemental Figure 7: Mutagenesis studies using $\beta_{2} A R$ point mutants with DFPQ

ICL2
TM4

Figure S7. Mutagenesis studies using $\beta_{2} A R$ point mutants with DFPQ. HEK 293 cells were transfected with β_{1} AR-Rluc (blue), β_{2} AR-Rluc (red) or β_{2} AR-point mutant-Rluc (black) and β-arrestin2-GFP. Cells were incubated with increasing concentration ($10^{-7.5}$ to $10^{-4} \mathrm{M}$) of DFPQ for 30 min , followed by addition of $1 \mu \mathrm{M}$ ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $n=6$. Mutations in TM3 are in green, mutations in ICL2 are in orange and mutations in TM4 are in brown.

Supplemental Figure 8: Mutagenesis studies using $\beta_{2} A R$ point mutants with AP-7-168

Figure S8. Mutagenesis studies using β_{2} AR point mutants with AP-7-168. HEK 293 cells were transfected with β_{1} AR-Rluc (blue), β_{2} AR-Rluc (red) or β_{2} AR-point mutant-Rluc (black) and β-arrestin2-GFP. Cells were incubated with increasing concentration ($10^{-7.5}$ to $10^{-4} \mathrm{M}$) of AP-7-167 for 30 min , followed by addition of $1 \mu \mathrm{M}$ ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $n=6$. Mutations in TM3 are in green, mutations in ICL2 are in orange and mutations in TM4 are in brown.

Supplemental Figure 9: Mutagenesis studies using chimeras β_{2} AR point mutants with AP-7-203

Figure S9. Mutagenesis studies using β_{2} AR point mutants with AP-7-203. HEK 293 cells were transfected with β_{1} AR-Rluc (blue), β_{2} AR-Rluc (red) or β_{2} AR-point mutant-Rluc (black) and β-arrestin2-GFP. Cells were incubated with increasing concentration ($10^{-7.5}$ to $10^{-4} \mathrm{M}$) of AP-7-203 for 30 min , followed by addition of $1 \mu \mathrm{M}$ ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $\mathrm{n}=6$. Mutations in TM3 are in green, mutations in ICL2 are in orange and mutations in TM4 are in brown.

Figure S10. Effect of selected $\beta_{2} A R$ point mutations on ISO-promoted β-arrestin recruitment. HEK 293 cells were transfected with WT or mutant (E122W, V129L or M156T) β_{2} AR-Rluc and β-arrestin2-GFP and stimulated with increasing concentrations ($10^{-7.5}$ to 10^{-} ${ }^{4} \mathrm{M}$) of ISO. Concentration/activity curves were generated and plotted as mean \pm SEM, $n=6$.

Table S1. Quinazoline structure activity relationship, related to Figure 5
Structure activity data for quinazoline derivatives from library screening and chemical synthesis.

Functional Group Substitution					
R1 Substituent	R2 Substituent	R3 Substituent	$\begin{gathered} { }^{*} \mathrm{IC}_{50} \text { Arrestin } \\ (\mu \mathrm{M}) \\ \hline \end{gathered}$	$\begin{gathered} { }^{*} \mathrm{IC}_{50} \mathrm{CAMP} \\ (\mu \mathrm{M}) \\ \hline \end{gathered}$	**Arrestin fold bias
R1 Set					
ethylpropylether	2,4-diaminoquinazoline	cyclohexyl	12 ± 1	34 ± 18	-
cyclohexyl	2,4-diaminoquinazoline	cyclohexyl	4 ± 1	>50	>12
m-trifluoromethylphenyl	2,4-diaminoquinazoline	cyclohexyl	3 ± 1	9 ± 3	3
m-chlorobenzyl	2,4-diaminoquinazoline	cyclohexyl	21 ± 2	25 ± 4	-
m,p-dimethoxyphenyl	2,4-diaminoquinazoline	cyclohexyl	14 ± 3	>50	> 4
m-bromophenyl	2,4-diaminoquinazoline	cyclohexyl	2.5 ± 0.5	>50	>20
p-chlorophenyl	2,4-diaminoquinazoline	cyclohexyl	0.8 ± 0.2	>50	>50
m,p-dichlorophenyl	2,4-diaminoquinazoline	cyclohexyl	3.0 ± 0.7	>50	> 15
m-chloro,p-fluorophenyl	2,4-diaminoquinazoline	cyclohexyl	3 ± 1	26 ± 11	8
p-fluorophenyl	2,4-diaminoquinazoline	cyclohexyl	0.23 ± 0.07	>50	> 200
m-fluorophenyl	2,4-diaminoquinazoline	cyclohexyl	0.4 ± 0.1	>50	> 100
m-difluorophenyl	2,4-diaminoquinazoline	cyclohexyl	0.20 ± 0.05	>50	> 200
m,p-difluorophenyl	2,4-diaminoquinazoline	cyclohexyl	0.5 ± 0.1	>50	> 100
m-chlorophenyl	2,4-diaminoquinazoline	cyclohexyl	6.0 ± 0.8	>50	> 8
phenyl	2,4-diaminoquinazoline	cyclohexyl	3.0 ± 0.7	>50	>16
R2 Set					
phenyl	2N-methyl,4-diaminoquinazoline	cyclohexyl	>50	>50	-
m-dichlorophenyl	2,4-diamino-6-chloroquinazoline	cyclohexyl	8 ± 2	> 50	> 6

m,p-difluorophenyl	2,4,7-triaminoquinazoline	cyclohexyl	4.4 ± 1.0	7.6 ± 2.5	-
m,p-difluorophenyl	2,4-diamino-6-fluoroquinazoline	cyclohexyl	0.5 ± 0.15	16 ± 2	32
m,p-difluorophenyl	2,4-diamino-6-chloroquinazoline	cyclohexyl	0.18 ± 0.07	> 50	> 250
m,p-difluorophenyl	2,4-diamino-6-methylquinazoline	cyclohexyl	0.36 ± 0.18	17 ± 7	47
m,p-difluorophenyl	2,4-diamino-6-bromoquinazoline	cyclohexyl	0.031 ± 0.015	28 ± 10	903
m,p-difluorophenyl	2,4-diamino-6-trifluoromethylquinazoline	cyclohexyl	0.07 ± 0.04	>50	> 500
m,p-difluorophenyl	2,4-diamino-6-chloroquinazoline	piperidine	12 ± 5	50 ± 20	4
R3 Set					
m-dichlorophenyl	2,4-diaminoquinazoline	H	10 ± 2	4 ± 2	-
m-dichlorophenyl	2,4-diaminoquinazoline	ethyl	13 ± 2	7 ± 2	-
m-dichlorophenyl	2,4-diaminoquinazoline	dimethylpropylamine	26 ± 3	>50	>2
m -dichlorophenyl	2,4-diaminoquinazoline	piperidine	22 ± 3	>50	>2
m-chloro-p-fluorophenyl	2,4-diaminoquinazoline	piperidine	7 ± 2	>50	> 7
m-dichlorophenyl	2,4-diaminoquinazoline	p-2-phenylethanol	18 ± 2	15 ± 1	-
m-dichlorophenyl	2,4-diaminoquinazoline	benzyl	30 ± 4	>50	-
m-dichlorophenyl	2,4-diaminoquinazoline	ethylphenyl	7 ± 2	24 ± 3	3

${ }^{*} \mathrm{IC}_{50}$ s are generated by fitting background subtracted and normalized data from seven triplicate measurements taken over a 1000-fold concentration range (10 nM to $10 \mu \mathrm{M}$) to the logarithmic form of the Langmuir binding isotherm with the Hill coefficient fixed at one. The reported uncertainty reflects the 95% confidence interval for the IC_{50} value.
${ }^{* *}$ GloSensor ${ }^{\text {TM }}{ } \mathrm{IC}_{50} /$ PathHunter ${ }^{\text {TM }} \mathrm{IC}_{50}$

Table S1. Quinazoline structure activity relationship table. The structure activity relationship of quinazoline derivatives on β_{2} AR-promoted activation of cAMP production and β-arrestin2 binding is shown as functional group substitutions effects on PathHunter ${ }^{\text {TM }}$ IC_{50} values. The fold bias is denoted as the GloSensor ${ }^{\text {TM }} \mathrm{IC}_{50}$:PathHunter ${ }^{\text {TM }} \mathrm{IC}_{50}$ ratio.

Table S2. Comparison of NAM efficacies and potencies between WT $\boldsymbol{\beta}_{2}$ AR and chimeras

A	$\mathrm{I}_{\max }(\%$ of max average) \pm SEM ($\mathrm{n}=9$)															
NAM	WT	ECL1	ECL2	ECL3	ECL1/2	ECL1/3	ECL2/3	TM2	TM3	TM4	TM5	TM6	TM7	ICL1	ICL2	ICL3
DFPQ	$\begin{gathered} 3.4 \\ \pm \\ 1.2 \end{gathered}$	$\begin{gathered} 4.5 \\ \pm \\ 1.4 \end{gathered}$	$\begin{gathered} -8.1 \\ \pm \\ 2.7^{* *} \end{gathered}$	$\begin{gathered} 3.6 \\ \pm \\ 2.7 \\ \hline \end{gathered}$	$\begin{gathered} -13.0 \\ \pm \\ 3.1^{* * *} \end{gathered}$	$\begin{gathered} -1.4 \\ \pm \\ \hline .5 \end{gathered}$	$\begin{gathered} -8.8 \\ \pm \\ 2.1^{* * *} \end{gathered}$	$\begin{gathered} \hline 0.8 \\ \pm \\ 3.6 \\ \hline \end{gathered}$	$\begin{gathered} 16.9 \\ \pm \\ 4.1^{*} \end{gathered}$	$\begin{gathered} \hline-4.1 \\ \pm \\ 27.9 \\ \hline \end{gathered}$	$\begin{gathered} 5.7 \\ \pm \\ 1.8 \end{gathered}$	$\begin{gathered} 1.5 \\ \pm \\ 2.4 \end{gathered}$	$\begin{gathered} 1.8 \\ \pm \\ 2.8 \end{gathered}$	$\begin{gathered} 3.7 \\ \pm \\ 4.2 \end{gathered}$	$\begin{gathered} 8.7 \\ \pm \\ 4.0 \end{gathered}$	$\begin{gathered} \hline-4.2 \\ \pm \\ 3.2^{*} \end{gathered}$
AP-7-168	$\begin{gathered} 1.4 \\ \pm \\ 0.9 \\ \hline \end{gathered}$	$\begin{gathered} 1.0 \\ \pm \\ 0.9 \\ \hline \end{gathered}$	$\begin{gathered} 1.2 \\ \pm \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.8 \\ \pm \\ 1.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.1 \\ \pm \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} -7.8 \\ \pm \\ 2.4^{* *} \\ \hline \end{gathered}$	$\begin{gathered} -2.8 \\ \pm \\ 0.9^{*} * \\ \hline \end{gathered}$	$\begin{gathered} \hline-10.0 \\ \pm \\ 4.1^{*} \\ \hline \end{gathered}$	$\begin{gathered} 16.0 \\ \pm \\ 2.9^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 28.0 \\ \pm \\ 6.8^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 4.2 \\ \pm \\ 1.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.7 \\ \pm \\ 1.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline-4.4 \\ \pm \\ 2.9 \\ \hline \end{gathered}$	$\begin{gathered} 0.8 \\ \pm \\ 2.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.4 \\ \pm \\ 1.6^{*} \\ \hline \end{gathered}$	$\begin{gathered} 0.1 \\ \pm \\ 2.2 \\ \hline \end{gathered}$
AP-7-203	$\begin{gathered} 0.6 \\ \pm \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.9 \\ \pm \\ 1.2 \\ \hline \end{gathered}$	$\begin{gathered} -2.0 \\ \pm \\ 2.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline-3.1 \\ \pm \\ 1.9 \\ \hline \end{gathered}$	$\begin{gathered} -0.4 \\ \pm \\ 2.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline-5.0 \\ \pm \\ 1.9^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline-2.9 \\ \pm \\ 1.4 \\ \hline \end{gathered}$	$\begin{gathered} 1.0 \\ \pm \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} 23.8 \\ \pm \\ 3.8^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 34.7 \\ \pm \\ 5.7 * * * \\ \hline \end{gathered}$	$\begin{gathered} 4.0 \\ \pm \\ 2.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline-1.9 \\ \pm \\ 1.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline-1.2 \\ \pm \\ 2.5 \\ \hline \end{gathered}$	$\begin{gathered} -1.0 \\ \pm \\ 2.8 \\ \hline \end{gathered}$	$\begin{gathered} 2.2 \\ \pm \\ 2.3 \end{gathered}$	$\begin{gathered} -13.5 \\ \pm \\ 4.5^{* *} \\ \hline \end{gathered}$
B	pIC 50 (\% of max average) \pm SEM ($\mathrm{n}=9$)															
NAM	WT	ECL1	ECL2	ECL3	ECL1/2	ECL1/3	ECL2/3	TM2	TM3	TM4	TM5	TM6	TM7	ICL1	ICL2	ICL3
DFPQ	$\begin{gathered} 5.9 \\ \pm \\ 0.0 \\ \hline \end{gathered}$	$\begin{gathered} 6.3 \\ \pm \\ 0.0^{* * *} \end{gathered}$	$\begin{gathered} 5.8 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.8 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.7 \\ \pm \\ \mathbf{0 . 1} \mathbf{1}^{* *} \end{gathered}$	$\begin{gathered} \hline 6.0 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.8 \\ \pm \\ 0.0 \\ \hline \end{gathered}$	$\begin{gathered} 5.8 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.1 \\ \pm \\ 0.1^{* * *} \end{gathered}$	$\begin{gathered} 4.6 \\ \pm \\ 0.3^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 6.7 \\ \pm \\ 0.1^{* * *} \end{gathered}$	$\begin{gathered} 5.9 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.9 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.7 \\ \pm \\ \mathbf{0 . 1} \mathbf{1}^{*} \end{gathered}$	$\begin{gathered} 5.4 \\ \pm \\ 0.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.7 \\ \pm \\ \mathbf{0 . 1 *} \\ \hline \end{gathered}$
AP-7-168	$\begin{gathered} 6.4 \\ \pm \\ 0.0 \end{gathered}$	$\begin{gathered} 6.5 \\ \pm \\ 0.0^{* *} \end{gathered}$	$\begin{gathered} 6.4 \\ \pm \\ 0.1 \end{gathered}$	$\begin{gathered} 6.2 \\ \pm \\ 2.6 \end{gathered}$	$\begin{gathered} 6.5 \\ \pm \\ 0.1 \end{gathered}$	$\begin{gathered} 6.6 \\ \pm \\ 0.1^{*} \end{gathered}$	$\begin{gathered} 7.0 \\ \pm \\ 0.0^{* * *} \end{gathered}$	$\begin{gathered} 6.2 \\ \pm \\ 0.1 \end{gathered}$	$\begin{gathered} 5.3 \\ \pm \\ \mathbf{0 . 1 * * *} \end{gathered}$	$\begin{gathered} 5.4 \\ \pm \\ 0.2^{* * *} \end{gathered}$	$\begin{gathered} 6.9 \\ \pm \\ 0.1^{* * *} \end{gathered}$	$\begin{gathered} 6.4 \\ \pm \\ 0.0 \end{gathered}$	$\begin{gathered} 6.4 \\ \pm \\ 0.1 \end{gathered}$	$\begin{gathered} 6.2 \\ \pm \\ 0.1^{* *} \end{gathered}$	$\begin{gathered} 5.9 \\ \pm \\ 0.0^{* * *} \end{gathered}$	$\begin{gathered} 6.3 \\ \pm \\ 0.1 \end{gathered}$
AP-7-203	$\begin{gathered} 6.5 \\ \pm \\ 0.0 \\ \hline \end{gathered}$	$\begin{gathered} 6.8 \\ \pm \\ 0.0^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.4 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 6.2 \\ \pm \\ 3.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.4 \\ \pm \\ 5.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.7 \\ \pm \\ \mathbf{0 . 1}{ }^{*} \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ \pm \\ 0.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.5 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.4 \\ \pm \\ 0.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 5.6 \\ \pm \\ 0.2^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.8 \\ \pm \\ 0.1^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.7 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.7 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 6.2 \\ \pm \\ 0.1^{* * *} \end{gathered}$	$\begin{gathered} 6.0 \\ \pm \\ 0.0^{* * *} \end{gathered}$	$\begin{gathered} 6.2 \\ \pm \\ 0.1 \\ \hline \end{gathered}$

Table S3. Comparison of NAM efficacies and potencies between WT $\boldsymbol{\beta}_{2}$ AR and point mutants

A	$\mathrm{I}_{\max }(\%$ of max average) \pm SEM ($\mathrm{n}=9)$														
NAM	WT	E122W	C125V	V126A	V129L	F133L	N148A	V152G	I153L	L155C	M156T	I159A	G162A	T164V	Q170L
DFPQ	$\begin{gathered} \hline 3.4 \\ \pm \\ 1.2 \end{gathered}$	nd	$\begin{gathered} 10.6 \\ \pm \\ 5.1 \end{gathered}$	$\begin{gathered} 6.9 \\ \pm \\ 6.2 \end{gathered}$	$\begin{gathered} -26.3 \\ \pm \\ 6.9^{* * *} \end{gathered}$	$\begin{gathered} 17.0 \\ \pm \\ 2.9^{* *} \end{gathered}$	$\begin{gathered} -0.3 \\ \pm \\ 3.1 \\ \hline \end{gathered}$	$\begin{gathered} 6.6 \\ \pm \\ 2.6 \\ \hline \end{gathered}$	$\begin{gathered} 6.8 \\ \pm \\ 2.2 \end{gathered}$	$\begin{gathered} -1.3 \\ \pm \\ 2.5 \end{gathered}$	$\begin{gathered} 11.3 \\ \pm \\ 2.6^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ \pm \\ 2.0 \\ \hline \end{gathered}$	$\begin{gathered} 4.9 \\ \pm \\ 3.9 \\ \hline \end{gathered}$	$\begin{gathered} -12.2 \\ \pm \\ 3.7^{* *} \end{gathered}$	$\begin{gathered} \hline-5.4 \\ \pm \\ 3.6^{*} \end{gathered}$
AP-7-168	$\begin{gathered} \hline 1.4 \\ \pm \\ 1.8 \\ \hline \end{gathered}$	nd	$\begin{gathered} 23.1 \\ \pm \\ 4.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.6 \\ \pm \\ 6.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.8 \\ \pm \\ 2.4^{*} \end{gathered}$	$\begin{gathered} \hline 8.8 \\ \pm \\ 2.7^{*} \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ \pm \\ 2.1 \\ \hline \end{gathered}$	$\begin{gathered} 8.3 \\ \pm \\ 1.7^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \\ \pm \\ 2.1 \\ \hline \end{gathered}$	$\begin{gathered} -0.8 \\ \pm \\ 2.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.7 \\ \pm \\ 1.6^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 0.8 \\ \pm \\ 1.3 \\ \hline \end{gathered}$	$\begin{gathered} 6.6 \\ \pm \\ 2.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.7 \\ \pm \\ 1.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline-2.1 \\ \pm \\ 1.6 \\ \hline \end{gathered}$
AP-7-203	$\begin{gathered} \hline 1.4 \\ \pm \\ 0.9 \\ \hline \end{gathered}$	nd	$\begin{gathered} 5.6 \\ \pm \\ 4.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline-5.4 \\ \pm \\ 4.3 \\ \hline \end{gathered}$	$\begin{gathered} 11.6 \\ \pm \\ 3.5^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.0 \\ \pm \\ 4.6 \\ \hline \end{gathered}$	$\begin{gathered} 1.9 \\ \pm \\ 3.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.8 \\ \pm \\ 3.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline-2.4 \\ \pm \\ 2.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline-8.8 \\ \pm \\ \hline .3^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.7 \\ \pm \\ 2.3^{*} \\ \hline \end{gathered}$	$\begin{gathered} -0.1 \\ \pm \\ 1.1 \\ \hline \end{gathered}$	$\begin{gathered} 8.6 \\ \pm \\ 4.6 \end{gathered}$	$\begin{gathered} 4.9 \\ \pm \\ 2.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline-2.0 \\ \pm \\ 4.5 \\ \hline \end{gathered}$
B	pIC 50 (\% of max average) \pm SEM ($\mathrm{n}=9$)														
NAM	WT	E122W	C125V	V126A	V129L	F133L	N148A	V152G	I153L	L155C	M156T	I159A	G162A	T164V	Q170L
DFPQ	$\begin{gathered} \hline 5.9 \\ \pm \\ 0.0 \\ \hline \end{gathered}$	nd	$\begin{gathered} 5.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 5.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ \pm \\ 0.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 5.9 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.8 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.0 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.9 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 5.7 \\ \pm \\ 0.0^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ \pm \\ 0.1^{* * *} \end{gathered}$	$\begin{gathered} \hline 6.0 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 6.2 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.6 \\ \pm \\ 0.1^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 5.9 \\ \pm \\ 0.1 \\ \hline \end{gathered}$
AP-7-168	$\begin{gathered} \hline 6.4 \\ \pm \\ 0.0 \\ \hline \end{gathered}$	nd	$\begin{gathered} 6.7 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.1 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ \pm \\ 0.0^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 6.3 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.8 \\ \pm \\ 0.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 6.3 \\ \pm \\ 0.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.6 \\ \pm \\ 0.1^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.7 \\ \pm \\ 0.1^{*} \\ \hline \end{gathered}$	$\begin{gathered} 6.1 \\ \pm \\ 0.0^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 6.8 \\ \pm \\ 0.0^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{7 . 0} \\ \pm \\ \mathbf{0 . 1 * *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.7 \\ \pm \\ 0.0^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 6.7 \\ \pm \\ 0.1^{* *} * \\ \hline \end{gathered}$
AP-7-203	$\begin{gathered} \hline 6.4 \\ \pm \\ 0.0 \\ \hline \end{gathered}$	nd	$\begin{gathered} 6.7 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.6 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.9 \\ \pm \\ 0.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 6.3 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.7 \\ \pm \\ \mathbf{0 . 1} \mathbf{1}^{*} \\ \hline \end{gathered}$	$\begin{gathered} 6.1 \\ \pm \\ 0.1 \end{gathered}$	$\begin{gathered} \hline 6.4 \\ \pm \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.2 \\ \pm \\ 0.1^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.9 \\ \pm \\ 0.1^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 6.7 \\ \pm \\ 0.0^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.8 \\ \pm \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ \pm \\ 0.1^{*} * * \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.5 \\ \pm \\ 0.1 \\ \hline \end{gathered}$

Table S4. Comparison of ISO efficacies and potencies between WT $\boldsymbol{\beta}_{2}$ AR and selected mutants

A	$\mathrm{E}_{\max }(\%$ of max average) \pm SEM (n=6)						
Agonist	WT	TM3	ICL2	TM4	E122W	V129L	M156T
ISO	93.6 ± 2.3	$\mathbf{8 5 . 4} \pm \mathbf{2 . 4 *}$	91.6 ± 3.2	$\mathbf{2 8 . 8} \pm \mathbf{2 . 2 * * *}$	$\mathbf{6 1 . 0} \pm \mathbf{1 . 9 * * *}$	89.6 ± 1.0	93.9 ± 1.5
B							
Agonist	WT	TMD3	ICL2	TMD4	E122W	V129L	M156T
ISO	7.0 ± 0.1	6.9 ± 0.1	7.0 ± 0.3	7.2 ± 0.3	6.9 ± 0.1	$\mathbf{7 . 2} \pm \mathbf{0 . 0 *}$	7.0 ± 0.0

Table S2. Comparison of NAM efficacies and potencies between WT β_{2} AR and chimeras. To obtain values for $\mathrm{I}_{\max }$ and IC_{50}, data from Figs. S3, 4 and 5 were fitted and plotted by using the function \log (inhibitor) vs response (three parameters) of the non-linear curve fitting in GraphPad Prism. (A) Values of $I_{\max }$ are represented as \% of ISO-induced maximal response \pm SEM ($n=9$). (B) Potency values are represented as the positive logarithm of the ligand IC50 concentration \pm SEM ($\mathrm{n}=9$). Statistical significance between WT-induced values for $I_{\max }$ and IC_{50} and chimeras-induced values for $\mathrm{I}_{\text {max }}$ and IC_{50} was assessed by t-test with Welch's correction, ${ }^{*}$ p $<0.05 ;{ }^{* *}$ p $<0.01 ;{ }^{* * *}$ p 0.001; nd = not determined.

Table S3. Comparison of NAM efficacies and potencies between WT β_{2} AR and point mutants. To obtain values for $I_{\max }$ and IC_{50}, data from Figs. S7, 8 and 9 were fitted and plotted by using the function \log (inhibitor) vs response (three parameters) of the non-linear curve fitting in GraphPad Prism. (A) Values of $I_{\max }$ are represented as \% of ISO-induced maximal response \pm SEM ($n=9$). (B) Potency values are represented as the positive logarithm of the ligand IC50 concentration \pm SEM ($\mathrm{n}=9$). Statistical significance between WT-induced values for $\mathrm{I}_{\max }$ and I_{50} and point mutant-induced values for $\mathrm{I}_{\text {max }}$ and IC_{50} was assessed by t-test with Welch's correction, ${ }^{*} \mathrm{p}<0.05$; ${ }^{* *} \mathrm{p}<0.01$; ${ }^{* * *}$ p 0.001; nd = not determined.

Table S4. Comparison of ISO efficacies and potencies between WT $\beta_{2} A R$ and selected mutants. To obtain values for $E_{\max }$ and EC_{50}, data from Figs. S6 and 10 were fitted and plotted by using the function \log (agonist) vs response (three parameters) of the non-linear curve fitting in GraphPad Prism. (A) Values of Emax are represented as \% of ISO-induced WTmediated maximal response \pm SEM ($n=6$). (B) Potency values are represented as the positive logarithm of the ligand EC_{50} concentration \pm SEM ($\mathrm{n}=6$). Statistical significance between WTinduced values for $\mathrm{Emax}_{\text {an }}$ and EC_{50} and mutant-induced values for Emax and EC_{50} was assessed by t-test with Welch's correction, ${ }^{*} \mathrm{p}<0.05$; ${ }^{* *} \mathrm{p}<0.01$; ${ }^{* * *}$ p <0.001; nd = not determined.

