
On-premise containerized, light-weight
software solutions for Biomedicine

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von
Huy Le Duc

Berlin, 2023

Copyright © 2023 Huy Le Duc

Erstgutachter: PD Dr. Tim Conrad
Zweitgutachter: Prof. Lars Ailo Aslaksen Bongo

Tag der Disputation: 14. Juli 2023

Selbstsändigkeitserklärung
Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als
die angegebenen Hilfsmittel und Quellen verwendet habe. Ich erkläre weiterhin,
dass ich die vorliegende Arbeit oder deren Inhalt nicht in einem früheren
Promotionsverfahren eingereicht habe.

Huy Le Duc

Acknowledgements

I would like to take this opportunity to acknowledge the many individuals and
institutions that have supported me in completing this dissertation. Their help and
guidance have been essential to the success of this work.

First and foremost, I am grateful to my supervisor, Tim Conrad, for his unwaver-
ing support, mentorship, and constructive feedback throughout this entire process.
His expertise and guidance have been crucial in shaping the direction and quality
of this work. I would also like to thank the Freie Universität Berlin and the Zuse
Institut for providing me with the resources and infrastructure necessary to pursue
this project. Their support has been instrumental in ensuring the success of this
research. I am also indebted to the many individuals who generously shared their
time and expertise by participating in this study. Their contributions have been vital
in achieving the research goals of this dissertation. Finally, I would like to acknowl-
edge the support of my family and friends. Their unwavering emotional support,
encouragement, and understanding have given me the strength and motivation to
persevere through the challenges and obstacles of the dissertation process.

In conclusion, I am grateful to everyone who has supported me throughout this
dissertation. I hope that this work will contribute to the knowledge and understand-
ing of Containerized Software Solutions for Biomedicine, and I am honored to have
had the opportunity to undertake this endeavor.

Abstract
Bioinformatics software systems are critical tools for analysing large-scale biological
data, but their design and implementation can be challenging due to the need for re-
liability, scalability, and performance. This thesis investigates the impact of several
software approaches on the design and implementation of bioinformatics software
systems. These approaches include software patterns, microservices, distributed
computing, containerisation and container orchestration. The research focuses on
understanding how these techniques affect bioinformatics software systems’ reliabil-
ity, scalability, performance, and efficiency. Furthermore, this research highlights
the challenges and considerations involved in their implementation. This study also
examines potential solutions for implementing container orchestration in bioinfor-
matics research teams with limited resources and the challenges of using container
orchestration. Additionally, the thesis considers microservices and distributed com-
puting and how these can be optimised in the design and implementation process to
enhance the productivity and performance of bioinformatics software systems. The
research was conducted using a combination of software development, experimen-
tation, and evaluation. The results show that implementing software patterns can
significantly improve the code accessibility and structure of bioinformatics software
systems. Specifically, microservices and containerisation also enhanced system relia-
bility, scalability, and performance. Additionally, the study indicates that adopting
advanced software engineering practices, such as model-driven design and container
orchestration, can facilitate efficient and productive deployment and management of
bioinformatics software systems, even for researchers with limited resources. Over-
all, we develop a software system integrating all our findings. Our proposed system
demonstrated the ability to address challenges in bioinformatics. The thesis makes
several key contributions in addressing the research questions surrounding the design,
implementation, and optimisation of bioinformatics software systems using software
patterns, microservices, containerisation, and advanced software engineering princi-
ples and practices. Our findings suggest that incorporating these technologies can
significantly improve bioinformatics software systems’ reliability, scalability, perfor-
mance, efficiency, and productivity.

Zusammenfassung
Bioinformatische Software-Systeme stellen bedeutende Werkzeuge für die Analyse
umfangreicher biologischer Daten dar. Ihre Entwicklung und Implementierung kann
jedoch aufgrund der erforderlichen Zuverlässigkeit, Skalierbarkeit und Leistungsfä-
higkeit eine Herausforderung darstellen. Das Ziel dieser Arbeit ist es, die Auswir-
kungen von Software-Mustern, Microservices, verteilten Systemen, Containerisierung
und Container-Orchestrierung auf die Architektur und Implementierung von bioin-
formatischen Software-Systemen zu untersuchen. Die Forschung konzentriert sich
darauf, zu verstehen, wie sich diese Techniken auf die Zuverlässigkeit, Skalierbarkeit,
Leistungsfähigkeit und Effizienz von bioinformatischen Software-Systemen auswirken
und welche Herausforderungen mit ihrer Konzeptualisierungen und Implementierung
verbunden sind. Diese Arbeit untersucht auch potenzielle Lösungen zur Implemen-
tierung von Container-Orchestrierung in bioinformatischen Forschungsteams mit be-
grenzten Ressourcen und die Einschränkungen bei deren Verwendung in diesem Kon-
text. Des Weiteren werden die Schlüsselfaktoren, die den Erfolg von bioinformati-
schen Software-Systemen mit Containerisierung, Microservices und verteiltem Com-
puting beeinflussen, untersucht und wie diese im Design- und Implementierungspro-
zess optimiert werden können, um die Produktivität und Leistung bioinformatischer
Software-Systeme zu steigern. Die vorliegende Arbeit wurde mittels einer Kombi-
nation aus Software-Entwicklung, Experimenten und Evaluation durchgeführt. Die
erzielten Ergebnisse zeigen, dass die Implementierung von Software-Mustern, die Zu-
verlässigkeit und Skalierbarkeit von bioinformatischen Software-Systemen erheblich
verbessern kann. Der Einsatz von Microservices und Containerisierung trug eben-
falls zur Steigerung der Zuverlässigkeit, Skalierbarkeit und Leistungsfähigkeit des
Systems bei. Darüber hinaus legt die Arbeit dar, dass die Anwendung von Software-
Engineering-Praktiken, wie modellgesteuertem Design und Container-Orchestrierung,
die effiziente und produktive Bereitstellung und Verwaltung von bioinformatischen
Software-Systemen erleichtern kann. Zudem löst die Implementierung dieses Software-
Systems, Herausforderungen für Forschungsgruppen mit begrenzten Ressourcen. Ins-
gesamt hat das System gezeigt, dass es in der Lage ist, Herausforderungen im Bereich
der Bioinformatik zu bewältigen und stellt somit ein wertvolles Werkzeug für For-
scher in diesem Bereich dar. Die vorliegende Arbeit leistet mehrere wichtige Beiträge
zur Beantwortung von Forschungsfragen im Zusammenhang mit dem Entwurf, der
Implementierung und der Optimierung von Software-Systemen für die Bioinforma-
tik unter Verwendung von Prinzipien und Praktiken der Softwaretechnik. Unsere
Ergebnisse deuten darauf hin, dass die Einbindung dieser Technologien die Zuverläs-
sigkeit, Skalierbarkeit, Leistungsfähigkeit, Effizienz und Produktivität bioinformati-
scher Software-Systeme erheblich verbessern kann.

Deliverables
1. A framework for distributed computing with state-of-the-art technologies:

(a) A revised definition of distributed computing and related concepts in the
context of architecture, based on a comprehensive literature review.

(b) A review of deployment measurement approaches and an illustration of
distributed computing in terms of scope, configuration, and mode.

(c) A classification and taxonomy of distributed computing solutions with
containers, including a discussion of existing container technologies and
their relation to microservices.

(d) Identification of open issues and research challenges in the field of dis-
tributed computing for bioinformatics.

2. An approach to building and managing a distributed computing framework:

(a) A definition of software architecture and its components, incorporating
state-of-the-art software patterns for utilities, based on an analysis of
current best practices in the field.

(b) A prototype implementation of the proposed approach, including a de-
tailed description of the design and implementation process, as well as an
evaluation of its functionality and usability.

(c) A framework using state-of-the-art architectural software patterns, which
can serve as a blueprint for other researchers and practitioners in the field
of bioinformatics.

3. A demonstration of the framework’s capabilities:

(a) A comprehensive evaluation of the approach in terms of performance, cost,
and resource optimization, using a variety of datasets and benchmarking
methods.

(b) A scalable approach to process execution, which can handle large-scale
datasets and complex computational tasks.

(c) A flexible framework for integrating new tools and methods, which can
adapt to the evolving needs of bioinformatics research teams.

Contents

Table of Contents ix

1 Introduction 1
1.1 Scope and Challenges . 3
1.2 Research problems and objectives . 7
1.3 Evaluation method . 9
1.4 Contribution and findings . 10
1.5 Outline . 11

2 State of the art 13
2.1 Introduction . 14
2.2 Background: Foundations of bioinformatics software design 15

2.2.1 Bioinformatics software systems 15
2.2.2 Distributed computing . 16
2.2.3 Containerisation . 32

2.3 Related work: A literature review of the previous studies and their
impact on the current research . 36
2.3.1 Software systems for bioinformatics data analysis 37
2.3.2 Decomposing architecture into microservices 40
2.3.3 Data management frameworks 43

2.4 Open issues and research challenges in biomedical data analysis . . . 45
2.4.1 Software engineering for biomedical data analysis 45
2.4.2 Data management in biomedical research 48
2.4.3 Barriers to analysing biomedical data 52

2.5 Conclusion . 53

ix

x CONTENTS

3 Advanced Software Engineering in Bioinformatic: A Case Study of
Design and Implementation 55
3.1 Introduction . 56
3.2 Background: Technical Considerations for Bioinformatics Software

Development . 58
3.2.1 Technical debt . 59
3.2.2 Software architecture . 62
3.2.3 Distributed computing . 67
3.2.4 Cloud technologies . 68
3.2.5 Containerisation . 69

3.3 Architecture design . 71
3.3.1 Microservice architecture . 71
3.3.2 Docker technology . 79
3.3.3 Data storage . 84
3.3.4 Component communication with representational state trans-

fer architecture . 85
3.4 System Implementation . 87

3.4.1 Service Decomposition by Domain 89
3.4.2 Self-contained services with responsibility segregation 93
3.4.3 Container orchestration . 96

3.5 Software architecture comparison . 101
3.5.1 Summary of results . 101
3.5.2 Interpretation results . 102
3.5.3 Challenges and limitations . 103
3.5.4 Future work . 104

3.6 Conclusion . 105

4 Enhancing Bioinformatics Analysis with Our Proposed System: Real-
World Applications and Implications 107
4.1 Introduction . 108
4.2 Highlighted performance features . 109

4.2.1 Scalability . 110
4.2.2 Distributed system parallelisation 117

CONTENTS xi

4.2.3 Data integration . 119
4.3 Biomedical experiments . 121

4.3.1 Matrix decomposition on Genotype-Tissue Expression Project
data . 121

4.3.2 Hidden Markov model search on prototypic sequences repre-
senting repetitive DNA from different eukaryotic species . . . 131

4.3.3 Time series analysis with convolutional long short-term mem-
ory neural networks . 139

4.4 Implications, Challenges, Limitations and Future Research Directions 145
4.4.1 Interpretation and context . 145
4.4.2 Limitations and bias . 147
4.4.3 Compare and Contrast . 149

4.5 Conclusion . 155

5 Discussion: A comparative analysis of summary, limitations, and
comparison 157
5.1 Introduction . 158
5.2 Summary of results . 158
5.3 Limitations and bias . 160
5.4 Comparison to other works . 162
5.5 Conclusion . 163

6 Conclusion and outlook 165
6.1 Main findings . 166
6.2 Implications and application . 167
6.3 Future work . 169
6.4 Conclusion . 170

Bibliography 172

A Appendix 187
A.1 Mathematical background . 188

A.1.1 Inverses . 188
A.1.2 Principal component analysis 188

xii CONTENTS

A.1.3 Independent component analysis 193
A.1.4 Non-negative matrix factorisation 195

A.2 Technical Details . 197
A.2.1 Software architectural details 197
A.2.2 Example Task Deployment for hidden Markov model 200
A.2.3 Linux containerisation . 203

A.3 Additions to experiments . 204
A.3.1 Additions matrix decomposition 204
A.3.2 Additions hidden Markov model 204

Chapter 1

Introduction

1

2 Chapter 1 Introduction

In the biomedical field, the vast amount of data generated through various exper-
iments and studies presents a major challenge for researchers. Effective management
and analysis of this data are crucial for extracting valuable insights and informing
decision-making. Data engineering, which encompasses a range of fields including
machine learning, statistics, and bioinformatics, provides the necessary tools and
techniques for collecting, storing, processing, and analysing this data [28,43,47,107].
As such, it plays a central role in the biomedical field.

However, data engineering also significantly overlaps with software engineering,
as it involves the development of systems and tools to manage and analyse data.
In the biomedical field, these systems and tools are often complex. Furthermore,
it may require integration with various data sources and analysis pipelines. As
a result, a strong foundation in software engineering principles is crucial for the
successful design and implementation of data engineering solutions in the biomedical
field. Specifically, data engineering is a vital field within the realm of software
engineering that encompasses the modelling, design, access, control, and evaluation
of data, as well as the deployment, evolution, maintenance, and standardisation
of data engineering systems using existing and emerging technologies [140]. It is
a multifaceted domain that plays a crucial role in acquiring knowledge; moreover,
it enables new insights into existing and new data. Software system architecture
is a fundamental aspect of data engineering, as it can significantly influence the
execution of tasks. A well-designed software system architecture can improve a data
engineering system’s efficiency, scalability, and maintainability in the biomedical
field.

One of these promising software architectures is distributed computing. Dis-
tributed computing has proven to be a promising software architecture for han-
dling large computing tasks. It is commonly integrated into data analysis platforms,
which use a predefined software architecture to manage and process data. The use
of distributed computing offers a range of benefits, including scalability, reliability,
security, high maintainability, testability, and deployability. In biomedical analy-
sis, distributed computing is a particularly useful tool. However, privacy concerns
and the diversity of data types must be carefully considered when selecting the ap-
propriate tool. As such, the design of the software architecture must reflect these

1.1 Scope and Challenges 3

requirements to be effective. In summary, software architecture is central to using
distributed computing for biomedical analysis.

Despite the numerous advantages of distributed computing and the significant
interest it has garnered from both the research and industrial sectors, it remains
a highly challenging field of study. This circumstance is due to the wide range
of implementations, architectural approaches, and deployment options utilised in
distributed systems, each of which may present unique challenges and trade-offs. In
particular, the complexity, accessibility, and overall data flow of a given system must
be carefully considered to leverage the benefits of distributed computing effectively.
These factors contribute to the continued complexity of this field and the need for
ongoing research and development.

This thesis comprehensively investigates the software architectural considerations
in constructing a distributed bioinformatics system. This research focuses on the
design patterns for biomedical data analysis and the development of a framework that
combines distributed computing with container-based virtualisation. The proposed
framework is intended to facilitate the efficient and effective management of large-
scale data analysis tasks within the healthcare field. The contributions of this thesis
have been significant in developing a distributed analysis system for omics data and
have the potential to impact the field of bioinformatics and healthcare. The proposed
framework offers a scalable and flexible approach to data analysis that is adaptable
to the ever-evolving needs of the bioinformatics community.

This research was conducted with the support of the German Ministry for Educa-
tion and Research (BMBF) through the Berlin Big Data Center and the Berlin Center
for Machine Learning (01IS14013A and 01IS18037J) as well as the Forschungscam-
pus MODAL (project grant 3FO18501). The developed software was tested in the
context of the MEDLAB project, which aims to advance the capabilities of data
analysis in healthcare through the use of next-generation technologies.

1.1 Scope and Challenges
In recent years, the volume of biomedical data has been rapidly increasing [56].
This data can come in a wide range of types, including but not limited to CT data

4 Chapter 1 Introduction

and text-based databases. The sensitivity of this data, which can include personal
medical information, also requires that it be stored in a manner that adheres to
relevant regulations [141]. As such, the storage of biomedical data is a critical concern
for those in the field. Furthermore, the analysis of these data often involves the use
of multiple tools, each of which may have its dependencies. These dependencies can
lead to conflicts if all the tools are installed on a single machine, which can be a time-
consuming and tedious task for system administrators to manage [55]. In order to
minimise the effort required for system configuration and dependency management,
it is important for the software system setup to be as simple and streamlined as
possible.

This section will delve into the various challenges faced in the software, data, and
biomedical fields, particularly regarding the complexity and diversity of biomedical
data. These challenges necessitate developing innovative solutions for the adequate
storage, management, and analysis of this data. In order to provide a comprehensive
overview of these challenges, we will expand upon the current state of the art in the
biomedical data storage and analysis field in Chapter 2 State of the art. However,
before delving into the state of the art, it is essential to first outline these challenges
in this section. Moreover, we outline the challenges when ensuring that biomedical
data is handled in a manner that is both efficient and effective while also considering
the privacy implications of handling such sensitive data.

Software Challenges

Building software for biomedicine involves a range of challenges, including under-
standing and managing complex system requirements, defining the scope of the ap-
plication, and addressing security and performance concerns. These challenges are
amplified since bioinformatics research often faces limited resources, including time
and expertise, in software development, which can include setting up and main-
taining the software system. Furthermore, in the fast-paced field of biomedicine,
integrating new tools and technologies are often necessary, which can be challenging
due to the highly regulated nature of the deployment environment and the use of
diverse programming languages and frameworks. Each of these challenges signifi-
cantly affects the others and improvements in one area can impact other aspects of

1.1 Scope and Challenges 5

the project. In addition, large-scale computing infrastructure is increasingly essen-
tial for scientific projects and must also address the general challenges of software
development. In summary, developing software for biomedicine requires addressing
technical, regulatory, also interdependent challenges to succeed.

Data Challenges

The biomedical data analysis framework must address several data volume, variety,
and velocity challenges. The volume of data refers to the amount of data being
collected, which serves as the foundation for further analysis. Velocity, on the other
hand, refers to the speed at which data is generated and moves, which is a crucial
consideration in biomedical data analysis, where fast data streams are often needed
for making informed decisions. Variety, in turn, refers to the diverse types of data
that may be collected, including patient data and protein sequences. This diversity
poses a challenge in terms of standardising and distributing all of the collected data.

There has been a shift in data engineering concerns in the field of biomedical data
analysis, particularly in the realm of high-throughput sequencing. In the past, the
main challenge was generating new data, but the focus has now shifted to handling
large amounts of data, with the primary challenge being the analysis of said data.
This shift is depicted in Figure 1.1. Overall, the shift from data generation to data
handling has resulted in a need for software systems that can effectively manage
large volumes of data.

Medical Challenges

The analysis of medical data presents a unique set of challenges due to the diverse and
often unstructured nature of the data. Medical data can include unstructured data,
which is disorganised and stored in various formats, semi-structured data, which
has some organisation but is not stored in a specialised repository, and structured
data, which is formatted and stored in a specialised repository. Finding a cohesive
approach for analysing all types of medical data is a the challenge, and often requires
the creation of additional structures to organise the data.

Another challenge in biomedical data analysis is the recognition of patterns in

6 Chapter 1 Introduction

Figure 1.1: A comparison of two data processing pipelines is shown. In the top
pipeline, a single sensor is responsible for processing multiple inputs, leading to a
bottleneck at the sensor stage. Conversely, the bottom pipeline utilises multiple
sensors to collect raw data, shifting from data generation to data handling. While
this shift in the bottleneck from the sensor to the processing part may increase the
overall system’s efficiency. It also presents a new challenge as solutions must now be
found for effectively handling the increased volume of data at the processing stage.

1.2 Research problems and objectives 7

the data. Human experts can identify valuable insights through pattern recognition,
but this process can take time to replicate programmatically. While computer-aided
analysis offers the potential to analyse biomedical data in ways that surpass human
capabilities, there are still challenges in using these methods for pattern recognition.

In addition to these technical challenges, the handling of personal medical data
raises significant concerns about data protection and access control. Federal guide-
lines for personal data processing in the medical field provide strict regulations for
data security and access, and the use of third-party infrastructure is often restricted
or prohibited. The sensitivity of medical data and the need for careful regulation in
its handling highlight the importance of addressing these challenges in biomedical
data analysis.

In conclusion, the fields of software, data, and biomedical face a range of chal-
lenges that must be addressed in order to effectively store and analyse biomedical
data. These challenges include understanding and managing complex system require-
ments in software development, addressing the volume, variety, and velocity of data
in data analysis, and dealing with regulatory concerns in the biomedical field. These
challenges must be addressed in order to ensure that biomedical data is handled in
a manner that is both efficient and effective.

1.2 Research problems and objectives
The primary objective of this thesis is to investigate comprehensively the potential
of distributed computing technologies for the analysis of biomedical data. Through
an in-depth exploration and demonstration of these technologies, this study aims to
contribute to the advancement of the field and provide a practical approach to the
adequate support of large and complex datasets in the realm of biomedical analysis.
We summarise this objective in this research question:

How can a multifaceted biomedical data analysis system with a
distributed architecture be set up and managed across single or
multiple providers, considering software engineering guidelines,
virtualisation, data management, and related aspects for small
and medium-sized research teams?

8 Chapter 1 Introduction

This research investigates the use of distributed computing technologies in biomed-
ical data analysis. Specifically, we will focus on issues such as software patterns, the
design and implementation of bioinformatics systems using Docker and microservices,
the integration of data from multiple sources, and the scalability and performance
of these systems. We have summarised our research questions as follows.

• How does the use of software patterns in the design of a bioinformatics software
system impact its reliability, scalability, and performance?

• What are the key considerations and challenges in designing and implementing
a bioinformatics software system with Docker, microservices, and distributed
computing?

• How does the integration of advanced software engineering principles and prac-
tices into a bioinformatics software system support the effective integration of
data from multiple sources?

• How does the adoption of a distributed architecture for a bioinformatics soft-
ware systems impact the efficiency and productivity of a small research group?

• What are the challenges and potential solutions for the implementation of
container orchestration in bioinformatics research teams with limited resources,
and what are the benefits and trade-offs of using container orchestration in such
a context?

• What are the key factors that influence the success of a bioinformatics software
system with Docker, microservices, and distributed computing, and how these
can be optimised in the design and implementation process?

• How does the implementation of parallel computation techniques in our frame-
work improve the speed of data analysis in bioinformatics?

• What are the most effective approaches for integrating and analysing data from
multiple sources within our framework in bioinformatics?

• How can our framework be scaled to handle effectively large-scale datasets in
bioinformatics, and how can improve machine learning techniques are applied
to optimise data integration and analysis in this context?

1.3 Evaluation method 9

Objective
This thesis aims to investigate the use of distributed computing technologies for
biomedical data analysis. The research objectives include examining the definition
and essential characteristics of distributed computing, exploring the approaches and
mechanisms used in distributed computing, and understanding the impact of soft-
ware patterns on the reliability, scalability, and performance of a bioinformatics
software system. The research will also focus on the key considerations and chal-
lenges in designing and implementing a bioinformatics software system using Docker,
microservices, and distributed computing, and will investigate the impact of a dis-
tributed architecture on the efficiency and productivity of a small research group.
Additionally, the study will identify the key factors that influence the success of
a bioinformatics software system using these technologies and will examine the ef-
fectiveness of parallel computation techniques and the most effective approaches for
integrating and analysing data from multiple sources within a bioinformatics software
system. Finally, the research will investigate how a bioinformatics software system
can be scaled to handle large-scale datasets and how machine learning techniques
can be applied to optimise data integration and analysis.

1.3 Evaluation method
In this thesis, we developed an approach to handle distributed computing for biomed-
ical data analysis. We evaluated this approach with various experimental platforms
with different hardware specifications. We executed the experiments on an infras-
tructure set: Freie University, Zuse Cluster, and personal machines. We adjusted
the parameters for each experiment execution. We list the platforms and hardware
specifications used for our approaches.

• Cloud orchestrators: Docker swarm

• Docker technologies: Docker engine, Docker-compose, Docker swarm

• Applications: Nginx, Minio, Postgres

• Monitoring: Docker stats, cAdvisor

10 Chapter 1 Introduction

• Workload generators: javascript

• OS: Linux-based systems

1.4 Contribution and findings
In this thesis, we propose a distributed computing framework, distributed comput-
ing, for biomedical data analysis that addresses challenges in software architecture,
requirements management, and virtualisation. Our contribution aims to solve the
research questions defined in section 1.1 and support the workflow for biomedical
data analysis with state-of-the-art technologies such as virtualisation. The main
contributions of this thesis are:

1. A framework for distributed computing with state-of-the-art technologies:

• A revised definition of distributed computing and related concepts in the
context of architecture

• A review of deployment measurement approaches

• An illustration of distributed computing in terms of scope, configuration,
and mode

• A classification and taxonomy of distributed computing solutions with
containers

• A discussion of existing container technologies and their relation to mi-
croservices

• Identification of open issues and research challenges

2. An approach to building and managing a distributed computing framework:

• A definition of software architecture and its components, incorporating
state-of-the-art software patterns for utilities

• A prototype implementation of the proposed approach

• A framework using state-of-the-art architectural software patterns

3. A demonstration of the framework’s capabilities:

1.5 Outline 11

• A comprehensive evaluation of the approach in terms of performance, cost,
and resource optimisation

• A scalable approach to process execution

• A flexible framework for integrating new tools and methods

In addition, we present a software design for scientific biomedical systems using
Linux containerised virtualisation to create independent software environments and
prevent dependency conflicts. Tasks can be executed on a distributed system to
parallelise computational effort with this containerised architecture. Our system
also exposes its service application programming interface using the representational
state transfer architecture based on hypertext transfer protocol, allowing access as
a web service. This design is adaptable to new demands and not limited to specific
biomedical applications.

Our findings highlight the potential for the use of advanced software engineering
practices, such as software patterns, microservices, and Docker containers, in the
development of bioinformatics software systems. These technologies can significantly
improve the system reliability, scalability, and performance, and facilitate the efficient
integration and management of multiple types of data. The adoption of a distributed
architecture was also found to enhance the efficiency and productivity of a small
research group through the parallelisation of tasks and the utilisation of additional
resources. Our system demonstrated its effectiveness in handling large datasets and
reducing computational time, making it a valuable tool for bioinformatics research.
Overall, these findings suggest that the integration of modern software engineering
practices into bioinformatics software systems can significantly improve the efficiency
and productivity of research groups in this field.

1.5 Outline
The main objective of this study is to investigate and improve the the current state
of bioinformatics software engineering. To achieve this the goal in chapter 2 State of
the art, we first present a review of the existing literature in this field, including the
foundations of bioinformatics software design and the most relevant related work. We

12 Chapter 1 Introduction

specifically highlight the importance of distributed computing and containerisation
and identify the main challenges and open issues in both software and biomedical
domains.

The chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of
Design and Implementation of the thesis presents a case study of advanced software
engineering in bioinformatics, with a focus on the design and implementation of a
new system. We discuss the technical considerations that guided the design of the
system in detail, including topics such as technical debt, software architecture, and
the use of cloud technologies and containerisation. We then describe the proposed
architecture, which is based on microservices and representational state transfer, and
discuss the implementation of the system, including the decomposition of services
by domain and the use of container orchestration.

The chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:
Real-World Applications and Implications evaluates the real-world applications and
implications of the proposed system. After examining the system’s performance
features, the chapter presents biomedical experiments demonstrating its capabilities.
The chapter concludes with a discussion of the results, including interpretation and
context, limitations and bias, and comparison to other works. It also provides a
summary of the main conclusions and their implications.

The final chapter 5 Discussion: A comparative analysis of summary, limitations,
and comparison discusses the results and conclusions of the study. After a summary
of the main findings, the chapter explores the limitations and bias of the study and
compares the results to those of other relevant works. Finally, the chapter concludes
with a discussion of the main conclusions, their implications for future research, and
suggestions for further investigation.

In summary, this thesis makes a significant contribution to the field of bioinfor-
matics software engineering by presenting a comprehensive and practical approach
to the design and implementation of systems that can effectively support the analysis
of large and complex datasets.

Chapter 2

State of the art

13

14 Chapter 2 State of the art

This chapter reviews distributed computing solutions and provide an overview of
containerisation, a technical implementation in virtualisation. We review and outline
the proposed approaches in the form of a literature review. Afterwards, this chap-
ter discusses issues and research challenges in biomedical data analysis concerning
software development, data management and general biomedical challenges.

2.1 Introduction
In recent years, distributed computing and containerisation have gained significant
attention as critical technologies for addressing the challenges of managing and
analysing large amounts of data in the field of bioinformatics. Distributed computing
refers to the use of multiple computers to perform a task, often involving the coor-
dination of data and computation across a network of machines. Containerisation,
on the other hand, is a technique for virtualisation that involves the packaging of an
application and its dependencies into a single container, enabling the application to
be easily deployed and ran on any platform.

In this chapter, we review the literature on software and data management sys-
tems for bioinformatics data analysis that uses these technologies. We begin by
providing a background on distributed computing and containerisation, highlight-
ing their key features and benefits. We then survey the approaches and techniques
proposed in the literature for designing and implementing software systems for bioin-
formatics data analysis using Docker, microservices, distributed computing and data
management. This survey includes software patterns, advanced engineering princi-
ples and practices, and distributed architectures.

We identify a number of open research questions and challenges related to the de-
sign and implementation of bioinformatics software systems with Docker, microser-
vices, and distributed computing. These include questions about the impact of
software patterns on reliability, scalability, and performance of a bioinformatics soft-
ware system; the key considerations and challenges in designing and implementing
such a system; the role of advanced software engineering principles and practices in
supporting the effective integration of data from multiple sources; and the factors
that influence the success of such a system and how they can be optimised in the

2.2 Background: Foundations of bioinformatics software design 15

design and implementation process. We also explore the potential benefits and chal-
lenges of applying parallel computation techniques and machine learning techniques
to improve the speed and effectiveness of data analysis, and the scalability of our
framework for large-scale handling datasets in bioinformatics.

This chapter aims to provide a comprehensive review of the state of the art in the
design and implementation of software systems and data management systems for
bioinformatics data analysis using Docker, microservices, and distributed computing.
We hope that this review will help to identify the critical research questions and
challenges that need to be addressed in order to advance the field and support the
effective integration and analysis of data from multiple sources in bioinformatics.

2.2 Background: Foundations of bioinfor-
matics software design

2.2.1 Bioinformatics software systems
Bioinformatics software systems are an essential component of modern research in the
field of biology. These systems allow researchers to analyse and interpret extensive
and complex datasets, enabling them to extract knowledge and insights that would
not be possible using traditional methods. Many different types of bioinformatics
software systems are available, each designed to meet specific needs and goals. Some
examples of bioinformatics software systems include:

Data integration and management systems, such as GeneMania, a web-based
platform that enables researchers to collect, integrate, and analyse data on gene and
protein interactions. These systems enable researchers to efficiently and effectively
manage large volumes of data from multiple sources.

Workflow management systems, such as Galaxy, which is an open-source a plat-
form that enables researchers to design and execute complex analysis pipelines using
a wide range of tools and resources. These systems allow researchers to coordinate
the execution of multiple tools and processes in a systematic and reproducible way,
ensuring the reliability and robustness of their analyses.

16 Chapter 2 State of the art

Data visualisation tools, such as Cytoscape, which is an open-source a platform
that enables researchers to visualise and analyse complex biological networks and
pathways. These tools allow researchers to explore and understand large datasets by
generating interactive graphs, plots, and other visualisations of the data.

Machine learning and data mining tools, such as WEKA, which is an an open-
source platform that provides a suite of machine learning algorithms for data mining
and predictive modelling. These tools enable researchers to discover patterns and in-
sights in large datasets that might need to be apparent using traditional approaches.

Distributed computing frameworks, such as Apache Hadoop, which is an an open-
source platform that enables researchers to process and analyse large datasets using
a distributed computing approach. These frameworks allow researchers to scale their
analyses to large datasets and perform them more efficiently, enabling them to tackle
problems that would be intractable using traditional methods.

These bioinformatics fields have various focuses that depend on each research
use case. In a later section, we will expand on the open issues that challenge their
collection of fields.

2.2.2 Distributed computing

Definiton and related terms

For distributed exist various definitions [70, 172]. Here we define a distributed sys-
tem as a set of autonomous computers grouped into a single system from a user
perspective. Instead of computers, we also use the term nodes or processors. Dis-
tributed systems use a collection of independent protocols To achieve this grouping.
Generally, this collection is a software layer between the operating system and the
distributed application. This software layer is also referred to as a middleware layer.
The middle layer provides rules and procedures to ensure communication, reliability
and transaction.

The term Distributed systems shares connect to related other terms. These terms
include concurrent systems and parallel systems. A system can be characterised as
parallel and distributed at the same time. We outline the nuanced viewpoints based
on two points of view on how to differentiate parallel and distributed computing.

2.2 Background: Foundations of bioinformatics software design 17

Kshemkalyani et al. [96] and Ghosh [70] described one defining aspect concerning
parallel systems as shared memory. Kshemkalyani et al. add that in this architecture,
the access latency for memory is the same as for any processor. We illustrated
the shared memory concept in figure 2.1. This architecture is also referred to as
uniform memory access architecture. From another perspective, Peleg argues that
another defining characteristic of parallel and distributed systems is the coupling
level. The coupling level has two main forms: tight and loose. "In a tightly coupled
system (e.g., a parallel machine), the processors typically work in tight synchrony,
share memory to a large extent and have high-speed and reliable communication
mechanisms between them. In contrast, in a loosely coupled distributed system (e.g.,
a wide-area communication network) the processors are more independent than tight
coupled, communication is less frequent and less synchronous, and cooperation is
more limited. " [137]. Depending on the granularity of coupling, computing systems
could be characterised as parallel or distributed. Therefore depending on the point
of view, terms and functions bleed into each other.

The situation is further complicated by the traditional uses of the terms parallel
and distributed algorithm that do not quite match the above definitions of parallel
and distributed systems (see below for a more detailed discussion). Nevertheless, as
a rule of thumb, high-performance parallel computation in a shared-memory multi-
processor uses parallel algorithms, while the coordination of a large-scale distributed
system uses distributed algorithms.[21]

Design goals for distributed systems include sharing resources and ensuring open-
ness. In addition, designers aim to hide many of the intricacies related to the distri-
bution of processes, data, and control. However, this distribution transparency not
only comes at a performance price but in practical situations, it can only partially be
achieved. The fact that trade-offs need to be made between achieving various forms
of distribution transparency is inherent to the design of distributed systems and
can easily complicate their understanding. One specific challenging design goal that
only sometimes fits well with achieving distribution transparency is scalability. This
matter is particularly true for geographical scalability, in which case hiding latencies
and bandwidth restrictions can turn out to be complicated. Likewise, administrative
scalability, by which a system is designed to span multiple administrative domains,

18 Chapter 2 State of the art

Figure 2.1: The figure on the right illustrates the difference between distributed and
parallel systems. Figure (a) is a schematic view of a typical distributed system; the
system is represented as a network topology in which each node is a computer, and
each line connecting the nodes is a communication link. Figure (b) shows the same
distributed system in more detail. Each computer has its local memory; information
can be exchanged only by passing messages from one node to another using the
available communication links. Figure (c) shows a parallel system in which each
processor has direct access to a shared memory. The difference between distributed
and parallel computing

2.2 Background: Foundations of bioinformatics software design 19

may easily conflict with goals for achieving distribution transparency. Matters are
further complicated because many developers initially make assumptions about the
underlying network that need to be corrected. Later, when assumptions are dropped,
it may be difficult to mask unwanted behaviour. A typical example is assuming that
network latency is insignificant. Other pitfalls include assuming the network is reli-
able, static, secure, and homogeneous.

Different types of distributed systems exist, which can be classified as being ori-
ented toward supporting computations, information processing, and pervasiveness.
Distributed computing systems are typically deployed for high-performance applica-
tions often originating from the field of parallel computing. A field that emerged from
parallel processing was initially grid computing with a strong focus on the world-
wide sharing of resources, in turn leading to what is now known as cloud computing.
Cloud computing goes beyond high-performance computing and also supports dis-
tributed systems found in traditional office environments, where we see databases
playing an important role. Typically, transaction processing systems are deployed
in these environments. Finally, an emerging class of distributed systems is where
components are small, the system is composed in an ad hoc fashion, but most of all,
is no longer managed through a system administrator. Pervasive computing environ-
ments, including mobile-computing systems and sensor-rich environments, typically
represent this last class.

Taxonomy

Distributed computing uses different strategies, methods and techniques. So that,
different classifications implement their solutions in alignment with their desired
characteristic. We investigated academic and industrial solutions and proposed a
classisfication based on figure 2.2 . it is an extended classification from [114,137,162,
172].

The following sections outline the details of each technology and characteristic.
We classify the solutions according to type, design goals, architecture and middleware
organisation.

20 Chapter 2 State of the art

Figure 2.2: Illustration of distributed taxonomy

Design goals

In this section, we discuss four key goals in distributed computing. These goals
underline the benefits of distributed computing architecture. Generally, the four
goals include

• easily accessible resources

• hiding distributed architecture to the end user

• it should be open

• be able to scale according to demand

Supporting resource sharing One of a user’s main distributed computing goals
is to facilitate access and share remote resources. These resources can range from
data, files, services, storage and similar resources. The reasons for sharing resources
vary depending on the requirements. For example, from a biomedical perspective, it
is easier to maintain and manage a sizeable reliable system than having to manage
each resource individually and manually. Furthermore, collaboration and informa-
tion exchange is improved since the application/user can access the resources directly.
This connectivity allows geographically or department-separated users to collaborate
with shared resources [172,180].

2.2 Background: Foundations of bioinformatics software design 21

Hiding distributed architecture to the user Another important distributed
computing goal is to present the system as a single uniform entity, i.e. hiding the
distributed architecture from the user. The International organisation for Standard-
isation refers to this obfuscation as transparency [85].

There are diffrent types of transparancy. Three main types are: Location, con-
currency and access. First, Location transparency obscures the process or resource
location of the user. This location transparency uses naming to assign only addresses
or names to resources. The uniform resource locator (URL) only points to a resource.
So the user needs to be aware of when resources or processes move from the data
centres. Second, concurrency transparency hides simultaneous access to processes
and resources from the user. One drawback in sharing resources is users request-
ing and altering data simultaneously. Distributed computing intends to establish a
consistent state for the provided resources. There are several possibilities to achieve
consistency, e.g. locking access with exclusive permission or transactions. Third,
access transparency obfuscates the data implementation. In other words, access
transparency hides the data architecture from the user. Like the naming convention
for location transparency, the user only views the designated name. The distributed
system handles communication and process on the underlying systems.

Being open The next goal for distributed computing is to allow other systems to
use or integrate its resource or services into other systems. Generally, a distributed
system includes and integrates components from various origins. In other words,
distributed systems aim to be open.

Distributed computing openness relies on rules for operation and communication
on agreed-upon syntax and semantics. These rules are part of an interface. This
interface defines the general condition for using the service, e.g. function name,
function parameter, return values, possible exception and other conditions. With
a well-defined interface various component implementations can be exchanged eas-
ily. This concept is also referred to as interoperability. The interface handles a
standardised mode of communication.

An adjacent design goal to interoperability is portability. Portability refers to
deploying the whole distributed system or components on different systems. This

22 Chapter 2 State of the art

deployment requires established interfaces. Blair and Stefani added that the inde-
pendence of component implementation is essential for interoperability and Porta-
bility [29].

The final design goal concerning openness is extensibility. With extensibility Dis-
tributed system can integrate or replace components without affecting existing ones,
e.g. run on a different operating system or change/add databases. This flexibility
relies on the definition of interfaces. Moreover, the components should behave to
composed in a matter that is small enough to be flexible. Simultaneously, the design
pattern separation of concern is essential when building a distributed system. In
chapter 3 we will go in-depth about how-to methods of separation of concern and
software architecture for extensibility.

Being scalable Distributed systems aim to satisfy the demand for increasing de-
mand from increased connectivity with various technologies, e.g. cloud services.
Moreover, with the constant growth of users and applications, distributed systems
include scaleable techniques to solve the challenges with scalability.

To structure scalability challenges, Neuman classified distributed computing scal-
ability with tree dimensions [126]. These three dimensions include

1. size,
2. geographical and
3. administrative.

Neuman defines the dimensions: first, size refers to the number of the system’s
users, objects and services. Second, geographical refers to the distance between
request and resources. Third, administrative refers to the number of different ad-
ministrative organisations, e.g. research departments, using the system.

Each scalability dimension has its challenges. In the size dimension, the main
challenges are dealing with an increase in requests and resources. From a centralised
viewpoint, the request and resource increase must handle computational limits, data
storage/transfer, and network issues. Second, the challenges lie in the component
communication for the geographical dimension. For instance, many service archi-
tectures are based on synchronous communication. Therefore, communications need
to be addressed with an extensive network of services. Third, the administrative

2.2 Background: Foundations of bioinformatics software design 23

dimension deals with services being distributed over administrative departments.
Finally, the main challenges lie in handling permission rights and security concerns.
In general, the main challenges in scalability are handling a large number of requests
and communicating and solving permissions to services.

To handle the challenges, we outline the main distributed scaling techniques.
Generally, there are two approaches to handling scalability challenges: horizontal
and vertical scaling. Vertical scaling also called scaling up, refers to the increase/im-
provement of resources. e.g. memory, CPU and network modules. Horizontal scaling
- or scaling out - refers to deploying more machines in distributed systems. We il-
lustrate the difference in horizontal and vertical scaling in figure 2.3.

Figure 2.3: Horizontal and vertical scaling handle scalability challenges with dif-
ferent approaches. On the one side, vertical scaling aims to create more or improve
resources, for instance, memory, CPU or network modules. On the other hand, hor-
izontal scaling creates several instances of machines.

For horizontal scaling, there are three main technics that we can use: Hiding
communication, distribution of work and replication. Hiding communication is a
technique that solves the challenges in geographic scalability. This technic avoids

24 Chapter 2 State of the art

waiting for a response in a synchronous matter. Instead, this scaling technic pro-
poses using asynchronous communication. For instance, rather than waiting for a
response after a client requests a resource, the requesting application may execute
other tasks. After the request is fulfilled, the client is notified of the ready result.
Another technic is work distribution. This technic deals with software design and
application decomposition with architectural software patterns. Finally replication
technic creates several instances of parts of the system or components. The benefits
of replication are an increase in availability and load balancing. We will detail these
scaling technics in chapter 3.

Types of Distributed computing

One general scope of distributed computing is solving complex problems requiring
high-performance computation. To execute high-performance computations, we can
use two types of Distributed Computing: Cluster and Grid. These classes provide
a design that helps execute a resource-intensive task. In cluster computing, most
systems are arranged in a homogeneous collection of machines. These machines are
similar in their hardware and software. Further, they are generally tightly coupled
in a local area network. Contrary, distributed Grid computing generally spans a
more comprehensive network of machines. This network may also span over a set
of different administrative fields. Moreover, these machines can vary in their consti-
tution with different hardware specifications and operating systems. Whereas grid
computing uses loosely coupled heterogeneous machines, cluster computing uses a
collection of tightly coupled homogenous machines.

Grid computing can be further subdivided into subtypes. These subclasses de-
pend on the technical demand and application areas. In grid computing, one area
of concern is the optimisation and efficiency of the system. Whereas another area is
accessibility and opening services. One subclass of grid computing that focuses on
accessibility and service availability is cloud computing. Cloud computing provides a
pool of virtual resources for distributed grid computing. This service can be scaled to
demand, as explained in the section above on design goals. The scaling possibilities
will be explained in detail in chapter 3 Advanced Software Engineering in Bioinfor-
matic: A Case Study of Design and Implementation and 4 Enhancing Bioinformatics

2.2 Background: Foundations of bioinformatics software design 25

Analysis with Our Proposed System: Real-World Applications and Implications. In
this section, we will expand on the general cloud computing architecture.

Cloud computing architecture is generally built on four layers: Hardware, infras-
tructure, platform, and application.

Hardware The basis of cloud computing is the physical hardware components,
e.g. routers, processors, power and cooling systems. Usually, an end-user needs
access to these components.

Infrastructure The infrastructure refers to the virtualisation and storage tech-
nical implementation. one cloud computing main task is to manage the virtual
servers and storage devices.

Plattform Generally, the Platform layer is the interface that allows users to
run an application in the Cloud. These interfaces are system-specific and may vary
from chosen infrastructure implementation.

Application The application consists of the actual application. These appli-
cations can be customised and modified by the end user.

We illustrated these layers in figure 2.4.
Users have various options in choosing cloud providers with a different interfaces.

These interfaces could include graphical, programming or command line. Genrally,
these service paket are reffer to as follows:

1. Infrastructure-as-a-Service (IaaS) covering the hardware and infrastructure
layer

2. Platform-as-a-Service (PaaS) covering the platform layer

3. Software-as-a-Service (SaaS) in which their applications are covered

Archtiechtural styles

Layered architecture One of the main objectives of general applications is to
provide access to a database or any form of data. Moreover, we want to structure
the process and components to request, process and represent data efficiently. For

26 Chapter 2 State of the art

Figure 2.4: Cloud computing consists of four parts based on Zhang et al. [188]:
Application, Platforms, Infrastructure and Hardware. These four parts can then
be grouped into three services customers can subscribe to software-, platform- or
Infrastructure-as-a-Service.

this task, we can use an architectural pattern that separates concerns and provides
an interface to communicate. This architectural pattern is referred to as layered
architecture. Layered architecture general functions by a component Li making a
request /call calls to a lower level Lj with (i < j). This request also referred to as a
downcall. For example, for Lj calling Li, we refer to this call as upcall. Further, the
communication from a higher to a lower layer is defined with a predefined interface.
All in all, layered architecture provides an architectural pattern to solve data access
possibilities. We illustrated layer architecture in figure 2.5.

Specifically when we use a logical layering for an applications there is a frequently
used approach. This approach generally consist of three-part:

• application-interface level,

• processing level and

2.2 Background: Foundations of bioinformatics software design 27

Figure 2.5: Based on Krakowiak, the layered architecture allows the separation
of components [94]. In a simple layered organisation, only down calls are allowed.
Another possibility is to allow back-and-forth communication is allowing upcalls.

• data level

The application-interface level concerns the interaction with a user or other ap-
plication. The data level operates on the database or raw data on a file system. The
processing part contains the core functionalities. The core functionalities most often
include logic and methods. Whereas the application interface and data level are very
similar in many applications, the middle layer can have various characteristics. Re-
searchers and developers use and modify these three layering levels for their demand
depending on the characteristical context. This three-level layering is also referred
to as three-tier architecture.

28 Chapter 2 State of the art

Object-based and service-oriented architectures When designing applica-
tions, one frequent challenge is that resources may be scattered around several ad-
ministrative areas. Moreover, software dependencies might conflict when using many
different tools and applications. To solve these challenges, we can use an object-based
or service-oriented architecture. These architectural patterns encapsulate the object
or services into independent environments. Moreover, each object or service clearly
defines these environments’ states, methods, and interfaces. We illustrated this ar-
chitecture in figure 2.6. All in all, object-based and service-oriented architecture
encapsulates objects and services to connect scattered administrative applications.

Figure 2.6: Each component is encapsulated in an independent environment in
an object- or service-based architecture. These components communicate with each
other via predefined interfaces.

We outline the general function of Object-based and service-oriented architec-
tures to describe how object communication and encapsulation is designed. Gen-
erally, object-based architecture defines each object as a modular unit with well-
defined interfaces - similar to components. These modular units communicate via a
developer-designed communication mechanism. In this design, the object implemen-

2.2 Background: Foundations of bioinformatics software design 29

tation is separated from the interface. This separation allows the interchangeability
and independence of objects. The concept of interchangeability and independence
is the basis for service-oriented architecture. A service is a self-contained entity.
In a service-oriented architecture, an application is composed of a set of services.
We will detail the service-oriented architecture and system decomposition in chap-
ter 3. Altogether, object-based as well as service-oriented architecture encapsulates
state, method and interface into one object or service using a developer-designed
communication method to connect services.

Resource-based architecture A service-oriented architecture requires a techni-
cal implementation to handle its decomposition. The decomposition of an application
grows in complexity with an increasing number of services - mainly web services. This
increasing service complexity can be managed with design patterns from Resource-
based architecture. Resource-based architecture generally uses a restful interface to
connect its core entities. These core entities are referred to as resources. In scope
of Resource-based architecture defines an encapsulated entity, e.g. files, data or re-
quests, obfuscating its implementation. From a general perspective, resource-based
architecture can be viewed as a subclass of service-oriented architecture since it uses
encapsulation similar to services. In this matter, resource-based architecture further
specifies the technical implementation with a REST-ful interface. Resource-based
architecture provides a technical design that can organise many services to deal with
the high increase of services.

Richardson et al. summarised resource-based architecture in four core concepts:

• definition of resource,

• naming and addressing resources,

• representation of resources and

• linking resources together.

Generally, a resource is defined as a piece of data that can be stored on a computer.
This data may include a file, database request results, or an algorithm’s output. To
access these resources, they require a name and address. This naming and addressing
is referred to as Uniform Resource Identifier (URI). The URI exposes data for any

30 Chapter 2 State of the art

client to consume the data. The resource requires a pattern or design to send the
data for further data processing. This design depends on the developer’s choice.
The design can range from JSON format to plain text. Finally, for a resource-based
architecture, resources can be linked together so that a resource might reference
to list of other resources. Richardson et al. provided technical core resource-based
architecture concepts that guide developers in building applications.

Middleware organization

Similar to general application development, distributed computing faces two common
challenges. First, legacy and new tools are integrated with different or proprietary
interfaces. Second, it can be challenging to change the data flow after establishing
an infrastructure. Distributed computing solves this issue by creating a software
layer between the operating system and the applications. This software layer is also
referred to as middleware. Generally, middleware benefit is the separation of concern
from the technical task. These tasks may include communication, transaction, ser-
vice composition and reliability. In addition, middleware provides a software layer
to handle the new application and data flow.

Figure 2.7: Middleware uses the wrapper pattern to organise the system

2.2 Background: Foundations of bioinformatics software design 31

Middleware uses several design patterns To provide an infrastructure to organise
distributed systems. Two of these patterns are Wrappers and Interceptors. A wrap-
per pattern solves the challenge of integrating new and legacy tools to comply with
an interface expected by a client. The component that manages conversion between
client and server/application is also referred to as a wrapper. A centralised technic
can optimise the number of wrappers in a distributed system. Generally, a system
with N components must have fully bidirectional communication N ∗ (N − 1) wrap-
pers. This matter can be improved by using a centralised component, also referred
to as a broker, to handle communication. Then the number of wrappers is 2N .
We illustrated wrappers as graphs in figure 2.7. Apart from wrappers, interceptors
further organise a system’s middleware. An interceptor enhances existing services
with new capabilities. In other words, an interceptor can change the data flow in
a distributed system. Interceptors are interposition objects that can intercept calls
and add additional processing or analysis. We illustrated the data flow adapted
with an interceptor in figure 2.8. The wrapper and interceptor patterns are key in
integrating new and legacy tools and adapting the data flow.

Figure 2.8: with interceptor an the system can change and modify the flow of data

32 Chapter 2 State of the art

2.2.3 Containerisation
This section outlines Containerisation and provides a general overview of the field.
Concretely, this section gives contextualises Containerisation is part of virtualisa-
tion. Further, we describe implementations of containerisation. Finally, we discuss
technologies to manage containerisation.

Overview

Containerisation is form of virtualisation. Virtualisation refers to the replication of
a hardware or software object by a similar object of the same type using an abstrac-
tion layer. This abstraction allows virtual (i.e. non-physical) devices or services such
as emulated hardware, operating systems, data storage or network resources to be
created. Virtualisation can be classified commonly using two technology patterns:
hypervisor-based or container-based. For hypervisor-based virtualisation, the virtu-
alisation requires — as the same suggests — a hypervisor. A hypervisor is a piece of
software that supplies a guest operating system as a virtual operating system. An-
other term customarily used for virtual operating systems is virtual machines. We
differentiate the virtual machine from the machine it is running on. We use the term
guest for the virtual machine and host for the machine it runs on. Further, the hyper-
visor creates virtual resources such as processing, memory and storage. In contrast
to hypervisor-based virtualisation, container-based virtualisation utilises system iso-
lating mechanics to encapsulate an environment. These mechanics rely on Linux
core technologies, e.g. namespaces and control groups. Therefore, encapsulated con-
tainers are isolated, independent processes/applications from a technical standpoint.
The benefits of containers are that they are flexible, scalable and resource-efficient.
Container-based virtualisation eliminates resource handling for managing OS ker-
nels, libraries, and binaries. These software components are required to run work-
loads or applications in a virtual machine in hypervisor-based virtualisation. Figure
2.9 illustrates the application deployment using a hypervisor and container-based
architectures. Altogether, the benefits of containerised virtualisation become clear
compared to hypervisor-based virtualisation.

2.2 Background: Foundations of bioinformatics software design 33

Figure 2.9: The compirisant between container and hypervisor virtualization. since
there is no OS in each instance in a container, it uses fewer resources the hypervisor-
based deployment requires different operating systems and adds an extra layer of
virtualisation compared to containerisation.

Container-based Implementations

Many container-based virtualisation implementations vary in their approach to han-
dling the containers. We outline three commonly used implementations: Docker and
Linux. Containersand and OpenVZ.

Docker Docker simplifies the deployment of applications because containers con-
taining all the necessary packages can be easily transported and installed as files.
In addition, containers ensure the separation and management of resources used on
a computer. According to the developers, this includes code, runtime module, sys-
tem tools, system libraries - everything installed on a computer. Docker is based
on Linux techniques such as Cgroups and Namespaces to realise containers [10]. We
will expand on Docker in chapter 3.

LinuX Containers (LXC) LXC (Linux Containers) is an operating system-level
virtualisation method that allows multiple Linux systems run in isolation from each
other on a single host. Unlike other systems, LXC does not realise its virtualisation

34 Chapter 2 State of the art

using virtual machines. Instead, LXC creates a virtual environment that has its
processes but shares the host system’s kernel. LXC consists of a program library,
various Python, Lua, and Go APIs, container templates, and tools for controlling the
containers. Besides kernel namespaces, it uses other functions of the Linux kernel,
such as SELinux and groups [12].

OpenVZ OpenVZ (Open Virtualization) is software for Linux for virtualisation
of the operating system. OpenVZ creates multiple isolated containers for operating
systems. All processes of these operating systems are processed in a single kernel.
The operating systems in the containers are nevertheless largely independent of each
other. For example, they can be shut down independently, and each has its root
account [9].

others Other implementations include Linux-VServer [4] and Singularity [13]
In this thesis, we focus on Docker since Leipzig et al.proposed Docker as a con-

tainerisation technology to create pipelines [106]. However, we added other Linux-
based virtualisation possibilities in section A.2.3 Linux containerisation. We will go
in dept over the Docker technology in chapter 3 Advanced Software Engineering in
Bioinformatic: A Case Study of Design and Implementation.

Container Management and Orchetraction

One central concern in containerised virtualisation is managing the growing number
of containers. The increase in amount proliferates the challenges in deployment,
communication and data storage. A commonly used solution is a software layer that
handles these concerns. This software layer is also referred to as container orchestra-
tion. The container orchestration provides an architecture that handles container-
based virtualisation. Further, in most implementations, these infrastructures can
span over several hosts managing a wide range of tools to handle container-based
virtualisation. Overall, Container orchestration is a software layer that handles ex-
tensive container-based virtualisation.

Similar to container-based virtualisation, there is a variety of container-based or-
chestration implementations. However, since we focus on Docker-based containerisa-

2.2 Background: Foundations of bioinformatics software design 35

tion, we outline three primary orchestration tools: Swarm, Kubernetes and Rancher.

Docker Swarm Docker Swarm is a clustering and scheduling tool for Docker con-
tainers. With Docker Swarm, Docker clusters can be created and managed like a
single virtual system. Clustering is an essential feature of container technology be-
cause it allows the creation of cooperative systems groups to prevent node failure
through redundancy. Clustering also allows administrators and developers to add or
remove container iterations as computing requirements change. In addition, Docker
Swarm uses scheduling to ensure that there is always enough capacity for distributed
containers. The Docker tool assigns containers to underlying nodes and optimises
resources by automatically scheduling container workloads, ensuring they always run
on the optimal host. Docker Swarm thus provides primary workload balancing for
containers, and sufficient resource coverage [7].

Kubernetes Kubernetes is an open-source system for automating the deployment,
scaling and management of container applications, initially designed by Google. It
aims to provide a platform for automating application container provisioning, scaling
and maintenance on distributed hosts [11]. It supports a range of container tools,
including Docker.

Kubernetes orchestrates so-called pods as the smallest deployable unit. Pods
contain one or more containers, sharing a container runtime and allocated resources.
Pods are deployed and executed on nodes (physical or virtual machines in a cluster).

The cluster with its nodes is controlled by a dedicated machine and the Kuber-
netes Control Plane, which communicates with the individual nodes via the Kubelets
running in them. The Kubernetes Control Plane runs an instance of etcd, the central
key-value database for all information essential for managing the cluster, as well as
the automated controller processes and a scheduler that assigns newly created pods
to a node.

The controllers monitor and control the cluster and its components. They can,
for example, replace failed nodes with identical nodes.

Rancher Rancher is an open-source cluster management tool for Docker contain-
ers. From an abstract perspective, Rancher lies on top of other orchestrators such

36 Chapter 2 State of the art

as Kubernetes, Docker Swarm, Apache Mesos. This arrangement facilitates running
other container clusters [119].

In this section, we have briefly presented some of the container orchestrators.
However, there are other orchestrators, such as OpenShift, Cattle.

2.3 Related work: A literature review of
the previous studies and their impact
on the current research

Extensive data management and the growing demand for biomedical analysis have
led to the development of specialized frameworks that provide different solutions with
varying focuses. For one set of systems, key features include a specialized field of
application, an intuitive user interface, and a secure software setup, such as GATK.
Other methods focus on other aspects, such as containerized software environments
like Argo. While some structures focus on specific biomedical aspects, others are
geared for general use across several industries. These two sets of frameworks have
different audiences. The first set serves highly specialized biomedical researchers with
a focused application, such as genomic sequence analysis. For these frameworks, the
possibility of expansion can be tricky since they focus on specific investigations. The
second set serves software engineers who build business data-driven systems. Engi-
neers commonly deploy these systems on cloud providers with existing architectures.
Admittedly, one could deploy this software architecture on-premise, but it would
require additional setup overhead.

Moreover, the topic of Big Data and Cloud Computing has experienced tremen-
dous development in the industry and the academic field. Many industries and appli-
cations have moved to cloud computing for scalability and flexibility by dynamically
allocating resources to meet demand [2]. This development allows, for example, to
scale of processing-intensive computational tasks accordingly and reduces computing
times. Platforms offered by large companies, such as Google and Amazon, provide
an infrastructure that offers solutions for software deployment. In 2019, already 78%
of companies used cloud computing in some way to run their business [66] with a

2.3 Related work: A literature review of the previous studies and their impact on
the current research 37

predicted annual growth rate of 12.6% by 2022 [42]. In biomedical data analysis,
many frameworks try to incorporate container technology, but there are yet to be
ready-made solutions for containerisation with distributed computing. For this rea-
son, there are several solutions to deploy cloud architectures. In biomedical data
analysis, several frameworks incorporate containerisation, such as snakemake and
Pachyderm. From an industry standpoint, there are many cloud containerisation
frameworks with various degrees of requirements. One of the core issues is the setup,
as mentioned before.

This section aims to provide a comprehensive overview of the state-of-the-art in
the related fields of bioinformatics data analysis, decomposing architecture into mi-
croservices, and data management frameworks. We begin by delving into the various
software systems available for bioinformatics data analysis, highlighting their unique
features and capabilities. Subsequently, we delve into the architectural pattern of
microservices, discussing the potential benefits and challenges associated with their
implementation in bioinformatics systems. Finally, we focus on data management
frameworks, exploring their significance in effectively organizing, storing, and man-
aging large and complex bioinformatics datasets. Through this section, we aim to
provide a thorough understanding of the current advancements in these related fields
and their potential implications for the field of bioinformatics.

2.3.1 Software systems for bioinformatics data anal-
ysis

Data analysis is a crucial aspect of bioinformatics research, and a wide range of frame-
works and platforms have been developed to facilitate this analysis. These solutions
vary in focus and features, from specialized solutions designed for specific types of
data and algorithms to more general software workflow systems that can be applied
across various disciplines. Here, we provide a sample of the diverse bioinformatics
data analysis frameworks and general software workflow frameworks. By outlining
and understanding these frameworks, we can gain a comprehensive overview of the
options available for extensive data set analysis in bioinformatics. Furthermore, by
providing this overview, we aim to identify areas of opportunity for further study in

38 Chapter 2 State of the art

bioinformatics data analysis.

Bioinformatics frameworks

Several frameworks have a specific focus, such as the Genome Analysis Toolkit
(GATK) proposed by McKenna et al. GATK is a programming framework that
simplifies the development of efficient and reliable variant calling tools for next-
generation DNA sequencing using MapReduce. GATK enables fast and easy tool
creation optimized for accuracy, stability, and efficiency and can be parallelized for
distributed and shared memory systems [120]. Another framework is Gesall, a big
data platform for genome analysis pipelines based on Wrapper Technology. Gesall
supports existing genomic data analysis programs without requiring rewriting. In
addition, the framework includes the Genome Data Parallel Toolkit for "wrapping"
programs and enabling evaluation of big data technology for genomics with super-
linear and sublinear speedup and potential differences in results between parallel and
serial programs [149]. Another framework is META-pipe, a new pipeline for marine
metagenomics analysis that offers preprocessing, assembly, taxonomic classification,
and functional analysis. It is integrated with existing biological analysis frameworks,
distributed storage, and Supercomputer computation, with a web service providing
identity provider services, Galaxy workflows, and interactive data visualizations. It
has been evaluated for scalability and performance [148]. Another example is Galaxy,
a collaborative global project that provides web-based tools and resources for ana-
lyzing large biomedical datasets and has seen growth in code contributions, tools,
users, and training materials, including enhanced user interfaces and comprehensive
frameworks. In addition, new public servers and community resources [87].

Bioinformatics data analysis frameworks and solutions often focus on a specific
application, such as metagenomics or variant calling. While these systems may
be effective for their intended purpose, their specialized design can limit their ex-
pandability and flexibility. Further, researchers may be locked into using a single
framework when choosing one solution. This situation can be problematic as re-
searchers may need to use a variety of tools and approaches to analyze their data
effectively but may need to be improved by the capabilities of the system they are
using. Expanding the functionality of these systems may require custom program-

2.3 Related work: A literature review of the previous studies and their impact on
the current research 39

ming, which might conflict with the intended design of the system. The inability
to quickly adapt a framework to incorporate new tools and methods can hinder re-
search progress and limit the ability to thoroughly exploit the potential of the data
being analyzed. Therefore, researchers must carefully consider the expandability and
flexibility of the systems they choose to use to ensure that they can effectively and
efficiently analyze their data and make the most of the insights it can provide.

General workflow framework

Besides highly focused tools, biomedical systems and general-purpose software work-
flow engines cater to the broader technology industry and share several similarities in
analyzing biomedical data. For instance, the biomedical workflow management sys-
tem Snakemake is a popular workflow management system. Researchers use Snake-
make to ensure data analysis reproducibility, adaptability, and transparency. In
addition, the tool provides an ergonomic, unified representation of all steps involved,
from raw data processing to final result exploration and plotting [93]. Finally, on the
more general-purpose side, there is GNU make. GNU Make is a popular tool used
to manage the construction of complex software systems and data analyses, allowing
for the automation of repetitive tasks and the reproduction of results. In addition,
it enables the efficient and transparent execution of processes.

Moreover, it makes a valuable tool for achieving reproducibility, adaptability, and
transparency in research [161]. Finally, Navarro suggested a text mining system with
promising results: Argo [24]. Argo is a text-mining workbench that allows users to
build custom text-mining solutions by integrating various elementary components
into processing workflows. It enables domain experts to curate information of in-
terest through a graphical annotation interface using the workflows’ automatically
generated output. Toil is an open-source workflow software that allows users to
efficiently process large-scale genomic data sets in cloud or high-performance com-
puting environments. It includes a complete set of features, including fault toler-
ance, cloud support, and HPC support, making it capable of efficiently processing
petabyte-sized data sets and producing results faster and for less cost across diverse
environments [176]. Arvados is an open-source platform that allows users to manage,
process, and share large genomic and biomedical data sets. It is designed to handle

40 Chapter 2 State of the art

big data files such as genomes, tumour/normal pairs, microbiomes, and other data.
It can handle data sets ranging from tens of terabytes to petabytes. In addition,
Arvados provides capabilities for bioinformaticians and computational biologists to
run pipelines and applications on top of it [8].

Biomedical data analysis often requires the implementation of complex workflow
systems. While general workflow engines can be used to accomplish this task, the
setup and maintenance of these systems often require a strong background in software
engineering. In addition, the underlying system infrastructure also has a range of
requirements, including installing a job scheduler (e.g. Slurm or Portable Batch
System) or container orchestration tool, such as Kubernetes [173].

Certain drawbacks may accompany business-oriented cloud approaches for biomed-
ical data analysis. For example, scientists may need to store sensitive data on ex-
ternal servers. On the other hand, researchers may face challenges in setting up and
configuring the necessary infrastructure, including the manual setup of components
such as the load balancer and control plane [5]. In addition, setting up a network
layer over the cluster can be a complex task [25], and the setup of a Kubernetes clus-
ter may require a dedicated team. Even small companies delegate the maintenance
of a Kubernetes cluster to a separate department.

Current frameworks for biomedical data analysis could be divided into two cate-
gories: those that are highly specialized but lack expandability and containerisation,
such as Arvados [8], and those that offer containerisation but require significant over-
head for setup, configuration, and maintenance, such as Argo [24]. We summarize
critical features in table 2.1. Finally, scientists may encounter difficulties finding a
framework that meets their needs and aligns with their expertise.

2.3.2 Decomposing architecture into microservices
Researchers in the field of bioinformatics have recognized the crucial role that soft-
ware systems play in the analysis and interpretation of biological data. These systems
often require the use of complex algorithms and data processing capabilities. How-
ever, the development and maintenance of these systems can be challenging due to
their size and complexity. As a result, many bioinformatics software systems adopt
software engineering approaches such as microservice decomposition to address these

2.3 Related work: A literature review of the previous studies and their impact on
the current research 41

GATK [120] snakemake [93] META-Pipe [148] Arvados [8] Presented Framework

Creation 2010 2012 2016 2018 2020

Containerized SOA system no no no no yes

Set up requirement none Kubernetes none Docker∗/ Kubernetes Docker

Virtualisation no Docker no Docker Docker

Workload Manager Google Cloud Kubernetes/Google Cloud none Kubernets/SLURM Docker Swarm

Web API RESTful no no Yes RESTful

Execution environment cloud cloud HPC Cluster cloud/ HPC cloud

Task creation when deployed in cloud command line command line not available command line/GUI curl/GUI

Simplified task creation none none none none GUI

Table 2.1: Medical software platforms for data analysis with their software compo-
nents as well as suitability for interactive visualisation or processing. ∗: The Docker
deployment in Arvados is mainly intented for testing, development and demonstra-
tion

challenges.
Microservice decomposition involves breaking down the system into more minor,

independent services that can be developed, tested and deployed independently. This
approach enables greater manageability and maintainability of the system. As well
as this approach improved scalability and adaptability to meet changing needs and
requirements. Additionally, microservice decomposition can facilitate collaboration
and allow the use of diverse technologies and programming languages within a single
system.

A vast list of research on microservice decomposition proposes several approaches.
These approaches include supporting developers in decomposing their systems into
optimal sets of microservices. For example, Abbott and Fischer proposed a decom-
position approach based on the "scalability cube," which splits an application into
smaller components for increased scalability [14]. Richardson also mentioned this
approach in his four decomposition strategies: decomposing by business capability,
decomposing by domain-driven design subdomain, decomposing by a verb or use
cases, and decomposing by nouns or resources [147]. Kecskemeti et al. proposed a

42 Chapter 2 State of the art

decomposition approach based on container optimization to increase the elasticity
and flexibility of large-scale applications [90]. Zimmerman et al. proposed to move
towards a microservices-based architecture or to deliver separate microservices. They
suggest splitting a development team into smaller groups responsible for limited sets
of microservices [191]. Vresk et al. defined an Internet of Things (IoT) concept and
platform based on the orchestration of different IoT components and recommend
combining verb-based, and noun-based decomposition approaches [177]. Gysel et
al. proposed a clustering algorithm approach based on 16 coupling criteria. They
introduced the concept of coupling criteria cards, which was evaluated by integrat-
ing two existing graph clustering algorithms, a combination of action research and
case study investigations, and load tests [78]. Chen et al. proposed a data-driven
microservices-oriented decomposition approach based on data flow diagrams from
business logic [36]. Alwis et al. proposed a heuristic for slicing a monolithic system
into microservices based on object subtypes and functional splitting [48]. Lastly,
Taibi and Systä proposed a 6-step framework. The approach reduces subjectivity in
the decomposition process of monolithic systems into microservices [168]. The frame-
work provides options and evaluation measures identified through a process-mining
tool on log traces. The framework was able to identify previously undiscovered is-
sues and suitable decomposition options. Moreover, it proved its validation in an
industrial project. The framework helps improve the quality and objectivity of de-
composition in any monolithic system.

Selecting the appropriate tool or approach for designing and decomposing a sys-
tem into microservices is complex and challenging. Despite the availability of various
options, each with its unique features and capabilities, determining the most suitable
one for a specific project can take time and effort. Factors such as the specific needs
and requirements of the project, the technical skills and expertise of the development
team, and the available resources must all be considered when making this decision.
Ultimately, the goal is to choose a solution that best meets the project’s needs and
supports the development team in achieving its objectives.

2.3 Related work: A literature review of the previous studies and their impact on
the current research 43

2.3.3 Data management frameworks
Bioinformatics involves managing and analysing vast amounts of biological data,
including genomic sequences, protein expressions, and molecular interactions. The
effective handling of such data is crucial for advancing life sciences research and
supporting decision-making in areas such as drug development and personalised
medicine. Specialised data management systems have been developed to address the
challenges of managing and analysing biological data. These systems often incorpo-
rate features such as efficient storage and retrieval of large datasets, data integration
and interoperability support, and data visualisation and analysis tools. In this sec-
tion, we will explore the various general software approaches and technologies used
to design and implement data management systems for bioinformatics.

The concept of complex data and its implications for data warehousing is ad-
dressed in the work of Darmont et al. [45]. They propose that the complexity of
data can be characterised in various ways and offer an expanded definition of a data
warehouse that considers complex data. In addition, Waas [179] suggests that the
traditional order of transformation and loading in data warehousing can be altered,
with raw data being loaded into the warehouse and transformed for later analysis.
These findings have important implications for the design and management of data
warehouses, mainly when dealing with complex data.

One commonly used programming model for handling large amounts of data is
the MapReduce model. MapReduce is a programming model and an associated im-
plementation for efficient processing and generating large data sets [49]. It involves
the specification of a map function that processes a key/value pair to generate inter-
mediate key/value pairs and a reduce function that merges all intermediate values
associated with the same intermediate key. The resulting programs can be automati-
cally parallelised and executed on a cluster of commodity machines, with the runtime
system managing the details of partitioning the input data, scheduling the program’s
execution, handling machine failures, and facilitating inter-machine communication.
This allows for using distributed systems without requiring expertise in parallel and
distributed programming, enabling the efficient handling of large amounts of data.

Several frameworks implement the MapReduce model. One popular framework

44 Chapter 2 State of the art

is the Hadoop Distributed File System (HDFS) [157, 181]. It has been designed to
reliably store and stream large data sets at high bandwidth to user applications. It
utilises a distributed architecture across many servers, each with directly attached
storage, allowing it to scale economically as demand grows. Another popular frame-
work is Apache Spark, a fast and general-purpose cluster computing system [1].
Spark extends the programming model of MapReduce by improving speed and gen-
eral processing while extending the programming API to allow more flexible chains
of map functions. It also covers a broader range of workloads by including batch ap-
plications and iterative algorithms. Apache Flink is another open-source system for
processing streaming and batch data that allows a wide range of applications. Flink
includes real-time analytics, continuous data pipelines, historical data processing,
and iterative algorithms, to be expressed and executed as fault-tolerant dataflows
through a single unified execution model [32].

Although MapReduce frameworks such as Spark and Hadoop offer robust scal-
ability and flexibility, they have certain limitations regarding deployment in a het-
erogeneous bioinformatics environment. These frameworks are typically deployed
using pre-built images, such as Amazon Machine Images (AMIs), which contain all
necessary software and configurations. However, this can limit the flexibility of de-
ployment in a bioinformatics environment where specific software or configurations
may be required. Additionally, these frameworks may need to be optimised for han-
dling certain types of complex biological data, such as high-throughput sequencing
data. Therefore, it is crucial to consider a bioinformatics project’s specific needs and
requirements when selecting a data management framework.

In conclusion, recent years have seen significant advancements in bioinformatics
data analysis, decomposing architecture into microservices, and data management
frameworks. Software systems for bioinformatics data analysis have become more
sophisticated and efficient, providing a wide range of data analysis and visualisation
capabilities. The microservices architectural pattern has emerged as a promising
approach for building scalable and maintainable bioinformatics systems. Further-
more, data management frameworks have become increasingly crucial for effectively
organising, storing, and managing large and complex bioinformatics datasets. This
section has provided a comprehensive overview of the state-of-the-art in these re-

2.4 Open issues and research challenges in biomedical data analysis 45

lated fields and highlighted their potential implications for bioinformatics. However,
despite these advancements, open issues and research challenges still need to be ad-
dressed to improve bioinformatics systems’ capabilities further. In the next section,
we will delve into these open issues and research challenges, providing insight into
the current limitations of bioinformatics systems and identifying potential areas for
future research.

2.4 Open issues and research challenges
in biomedical data analysis

Despite the diverse research and development in containerised distributed comput-
ing in biomedical data analysis, there are still open issues concerning system design,
implementation, and integrations [46]. This section outlines the open issues and chal-
lenges grouped by the concern: software, data, and biomedical. There is considerable
overlap in these areas since they interactively influence each other. For instance, soft-
ware architecture influences how workflows can be executed, while the dependencies
of a workflow influence the required software architecture. Nevertheless, partitioning
these concerns helps give the context and orientation of the challenges. This section
provides the context and impact of open challenges in biomedical data analysis.

2.4.1 Software engineering for biomedical data anal-
ysis

Biomedical data-driven analysis requires robust and adjusted software systems to
execute analysis reliably and repeatably. Therefore, software systems architecture
relies on the infrastructure for all further analysis. However, software architecture
is regarded as a prerequisite since biomedical software development is still in its
early stages [46]. Similar to other data-driven fields, biomedical data-driven research
focuses on algorithmic advances. These advances depend on robust computing sys-
tems. Therefore, this section will outline open challenges in the field of data-driven
biomedical analysis.

46 Chapter 2 State of the art

Customised software architecture When designing an application, one main
concern is software architecture. In a study in 2013, Avci et al. outlined the vast
spectrum of software architectures for data analysis [19]. We infer from the sur-
vey that a fitting architecture for data analysis involves much consideration. One
of the critical concerns is requirement management. Requirements may range from
stakeholders to technical functionality. Chen et al. outlined the implication of re-
quirements on the software architecture and vice versa [35]. Therefore, one open
research question remains about what architecture to use for our given use case of
biomedical data analysis.

Software maintenance Dependency management remains a challenge in software
deployment. Many developers use a simple deployment and forget about the software
dependencies. With the fast new development, it is imperative to consider managing
software dependencies. Conflicting dependencies can have adverse effects on software
functionality and operating systems. All in all, package and dependency management
is an essential part of deployment and software management.

Moreover, software maintenance needs to be addressed in software development.
One of the critical aspects of missed points is technical debt. Technical debt refers
to the additional work that needs to be done after a software installation for not
considering what has to be done. Moreover, software needs to be updated and
maintained; otherwise, it will be chaotic. Refer to the Deutsche Bahn example
when they used windows XP, NPM big and log4j. Keeping software up to date and
maintaining it to close security issues is imperative.

Using containerisation with distributed computing With the advancement
in cloud services, many developers use containerised virtualisation to decompose
services. Service decomposition benefits from independent environments. These in-
dependent environments allow benefits for scalability, reliability, security, high main-
tainability, testability, and deployability. Therefore, containerisation is a beneficial
approach to service decompositions.

Nevertheless, when using containerisation, several aspects have to be considered
by developers. Many developers turn their attention to ready-made solutions or
frameworks such as different services, e.g. platforms-, infrastructure- or software-

2.4 Open issues and research challenges in biomedical data analysis 47

as-a-service. Generally, it is recommended to separate software infrastructure and
concerns so that developers can focus on features. However, relying on other ready-
made frameworks or infrastructure entails two main drawbacks: privacy and setup.
Concerning the setup, many ready-made frameworks have (to consider many require-
ments) software requirements. These requirements need a considerable skill set to
set up and maintain a production-grade environment. Concerning privacy: when
using third-party cloud services, the provider stores the data in their facilities. This
data storage arrangement conflicts with sensitive data — especially medical data.
Therefore, using the third-party provider option is inapplicable. Generally, privacy
aspects and setup have to be considered when using cloud containerisation methods.

Handling legacy and modern tools One of the challenges in software manage-
ment for biomedical data analysis is facilitating consistent environments for experi-
ments and simulations. One key issue is that clients’ operation systems application
might influence the experiment outcomes from a software management perspective.
Moreover, the difference in operating systems brings an additional step of complexity
in ensuring consistent environments. Generally, software infrastructure is essential
in allowing consistent biomedical data analysis.

In addition, one general software management issue is the package management
remains a key concern in running biomedical data analysis. Biomedical data analysis
utilises a vast array of tools and methods. This spectrum may vary from a legacy
application to newly published methods. One of the main concerns with using all
these tools is handling the dependencies. Conflicting dependencies can affect experi-
ments by falsifying the results or even bringing the systems into an unresolvable state
where booting the system is impossible. Therefore, dependency management takes
on a key role in building a reliable software system for biomedical data analysis.

For biomedical analysis, one essential requirement concerning software devel-
opment is integrating various tools. These tools may vary from legacy to novel,
experimental tools. In addition, ensuring a consistent and repeatable software envi-
ronmental condition is a complex task. Therefore, providing a custom system design
for biomedical analysis remains an open challenge.

48 Chapter 2 State of the art

2.4.2 Data management in biomedical research
At the centre of biomedical data analysis is — as the name suggests — data. The
data-driven analysis aims to create value from data as one of its primary goals. Value
can be understood as finding relationships in data or gaining further insights. Data-
driven analysis has experienced many new developments with various approaches
and concerns. These approaches and concerns have intertwined goals.

In this section, we propose a model for structuring data concerns across three
key areas: data handling, analytics, and result extraction. As shown in Figure 2.10,
these areas are interrelated and overlapping, with individual challenges often lying
at the intersection of multiple subfields. Despite these complexities, we provide a
general mental framework for organizing data analysis and address the challenges
associated with data handling, analytics, and result extraction. In particular, we
focus on the open challenges in handling data, as effective data management is a
critical precursor to all further analysis. By addressing these challenges, we aim to
provide a foundation for more effective data-driven approaches in biomedicine.

Data organization is a crucial starting point for any data analysis, with several key
concerns to be addressed to generate value from the data. These concerns include
unstructured and scattered data, data maintenance, large data sets, and system
failure recovery. Therefore, data handling must address a broad spectrum of concerns
as a foundational step towards value creation.

Of particular interest is the combination of genomics and clinical health data,
which has the potential to enable predictive and personalized medicine [46]. However,
the use of clinical health data introduces additional challenges, such as data transfer
and patient privacy concerns [41], which must be carefully considered in the workflow
of using this data, especially in a clinical routine setting.

Unstructured and Scattered Data In this paragraph, we will outline the
problems with unstructured and scattered data. First, we define what is meant by
unstructured data and outline the open challenges. Afterwards, we will go over the
scattered data and the open issues.

Before going over challenges concerning unstructured data, we outline the general
concept around the term. Data can be grouped into three classes from a software

2.4 Open issues and research challenges in biomedical data analysis 49

Figure 2.10: We structured the data concern into the fields: Data Handling, Data
Analytics and Result extraction. These areas have their distinct focus but can overlap
in individual tasks. Above all, these areas depend on a software infrastructure to
run all further analyses.

development perspective: unstructured, structured, and semistructured data. First,
structured data is predefined modelled data. A data model refers to programmati-
cally defined data that formalities objects and relationships abstractly. This data is
usually stored in the relational database. Second, unstructured data refers to data
that lacks a data model. Unstructured data can have different formats, e.g. text,
audio, image or video files. Therefore, the data is generally stored in its raw form,
e.g. a data lake or NoSql databases. Third, semistructured data refers to labelled
or tagged data. Tagged data defines specific data characteristics with preset fields.
Preset fields separate semantic elements similar to key-value data types. Moreover,
preset fields allow a hierarchical structure for the data. Semistructured is generally
stored in text files, e.g. CSV, JSON or XML. Generally, data classes concerning
structure vary in their concern and storage type.

In biomedical data analysis, organising data, variety is a significant concern. A
large part of data is either unstructured or semistructured, e.g. video files or protein

50 Chapter 2 State of the art

sequences in the form of FASTA file format [136]. More concretely, two challenges
come with dealing with semi- and unstructured data: storage and scattered data.
First, storing large sets of semi and unstructured data requires an additional layer
of organisation. This organisation includes having the possibility to find the data.
Much research suggests adding a metadata layer on top of the data. Second, besides
organising a large set of data, scattered data is an immense concern in biomedical
data analysis. In some instances, biomedical data is located in a vast storage network
with various access rights. Moreover, using a wide range of data inputs allows further
novel insights into the body of data. Therefore handling the large data variety is an
open challenge concerned with making semi- and unstructured data searchable and
unifying scattered data to generate value from data.

Data maintenance One of the open challenges concerning data is data main-
tenance. Associated challenges with open challenges are: Processing large data sets
and maintaining data integrity. First, With growing data amount keeping data
consistent is an essential part. For instance, a typical inconsistency can be caused
by an invalid data type inside a relational database. This inconsistency can break
restoring database backups. So manual intervention is needed to fix the issue. Sec-
ond, besides data consistency, preprocessing is essential for handling extensive data.
One essential task is to process large semi- and unstructured data. This process
includes transforming data into structured data or creating pipelines/workflows that
transform the data. Moreover, using complex computing resources in an analysis
workflow presents its challenges. These challenges include facilitating efficient work-
load scheduling, scaling and handling errors (Suplatov et al., 2016). Moreover, the
interplay between software design and workflows/pipelines requires substantial soft-
ware development expertise. This expertise provides the experience to outweigh the
cost and benefits of designing an appropriate solution for biomedical requirements.
Biomedical researchers require an independent, consistent software environment for
each step in a workflow/pipeline to run their experiments. For this reason, one key
goal is to automate and optimise data maintenance rules. So that researchers and
clients can access and use data as assets for their analysis.

System failure recovery When running complex systems, system breakdowns
are inevitable. Several factors can cause these breakdowns, e.g. uncovered cases

2.4 Open issues and research challenges in biomedical data analysis 51

in the source code, client data inconsistencies or even power outages. After such
an event, the recreating process can be rather complex since resolving errors and
inconsistent states can be challenging. Especially in the case of workflows/pipelines
handling audit trails increases the complexity. Therefore, it is essential to have
procedures to recover from a disaster in these instances.

Analyics and Result Extraction This section will outline open challenges in
the data process concerting analytics and result extraction. First, one essential
part of the analysis is how data model. we will outline the key concepts in data
modelling and go over the open challenges. Second, concerning result extraction, we
will revisit the critical goals of data-driven analysis. Finally, we outline the issues
revolving around novel insights.

Datamodling As mentioned above, structuring semi- and unstructured data
plays a significant role in the data-driven analysis. One central part is creating a
data model from unstructured data. Data modelling includes defining a structure to
be processed by software applications. Generally, this process includes taking various
data sources and establishing a structure and relationships. In some instances, even
performing calculations and validation. Generally, this process is required when
integrating relational databases. From a more abstract perspective, this process is
part of a strategy pattern in handling data: Extract load and transform (ELT).
Extract Load Transform is a data processing process in which data is extracted
from one or more sources. Then they are loaded onto the target server (Load) and
transformed in it (Transform). Researchers have used ELT for some time to process
or integrate raw data. The process proves particularly advantageous when large
amounts of data need to be prepared and structured for data analyses. One open
challenge is that each ETL process requires a customised approach to process and
model data. From a biomedical perspective, each research approach uses a slightly
different point of view. These slight variations require adapted data availability.
These include a subset of data as well as data models. Therefore, satisfying the highly
variable data model to demand is an open challenge since the various approaches
require high flexibility.

Novel insights A large amount of data benefits greatly from data-driven anal-

52 Chapter 2 State of the art

ysis; however, it also requires an additional layer of organisation. As mentioned
above, one key goal in data-driven analysis is to discover new results or patterns
from existing data. Therefore, two challenges affect the advancement: finding all the
needed data and utilising a broad spectrum of tools. It is not easy to handle both
challenges since they require a delicate balance of requirements and a customised
process.

2.4.3 Barriers to analysing biomedical data
In biomedical data analysis data, sensitivity affects further analysis immensely.
When dealing with biomedical data, researchers must consider administrative con-
cerns when conducting further analysis. The two main challenges are sensitive pri-
vacy concerns and separated data access and different administrative responsibilities.
First, biomedical data includes sensitive patient data subject to data privacy regula-
tion or the agreement between clients and research facilities. These regulations have
various restrictions. In some instances, this restriction only allows data analysis on
designated servers. Second, in some instances, data is scattered around a network
of servers with independent administrative regulations. The open challenge is to
create a system that can handle sensitive private data and unify data across the
administrative department.

In comparison to software engeneering fields, biomedical software development is
still in the early stages while having the same challenges as in the traditional areas
of the so-called Big Data applications (e.g. finance or climate) [46]. These include
the well-known 4 ’V’s: volume, velocity, variety and resolution [61]. A good area
covering these challenges is sequence analysis with new data-generating methods.
For example, Next Generation Sequencing, which aids in decoding human genetics,
produces large data sets in genomics. These data sets can range from dozens to
hundreds of gigabytes per sample, depending on the application [56,97].

Nevertheless, in recent years the field of biomedicine has grown significantly. For
instance, in genomics, Next Generation Sequencing, which aids in decoding human
genetics, produces large data sets. These data sets can range from dozens to hun-
dreds of gigabytes per sample, depending on the application [97]. At the same time,
physicians store medical patient records primarily digitally [15, 144], which adds to

2.5 Conclusion 53

the volume and the variety of data. Whereas other fields have integrated new systems
to deal with this vast amount of data, biomedical research is still developing [46].
For instance, combining healthcare data with molecular pathology can bring new
insights for treatment and create individual healthcare plans [46].

We summarise the challenges: Research facilities and hospitals have large bodies
of data that must be stored on-premise with an easily searchable database. Addi-
tionally, researchers and scientists require the possibility of using various tools to
analyse these extensive data sets.

2.5 Conclusion
In conclusion, the use of distributed computing and containerisation technologies
have the potential to revolutionize the field of bioinformatics by enabling the effi-
cient handling of large amounts of data and the development of reliable software
systems, scalable, and performant. In this chapter, we have reviewed the literature
on software systems and data management systems for bioinformatics data analysis
that makes use of these technologies, and identified several open research questions
and challenges related to their design and implementation. These include questions
about the impact of software patterns on the reliability, scalability, and performance
of a bioinformatics software system; the key considerations and challenges in de-
signing and implementing such a system; the role of advanced software engineering
principles and practices in supporting the effective integration of data from multiple
sources; and the factors that influence the success of such a system and how they can
be optimized in the design and implementation process. We have also explored the
potential benefits and challenges of applying parallel computation techniques and
machine learning techniques to improve the speed and effectiveness of data analysis,
and the scalability of our framework for large-scale handling datasets in bioinformat-
ics.

We believe that addressing these research questions and challenges will be critical
for advancing the field of bioinformatics and supporting the effective integration and
analysis of data from multiple sources. We hope that this review will help to stimulate
further research and discussion on these essential topics.

Chapter 3

Advanced Software Engineering in
Bioinformatic

A Case Study of Design and
Implementation

55

56
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

In this chapter, we will explore the impact of advanced software engineering prin-
ciples and practices on the efficiency and productivity of a research team working with
a bioinformatics software system. We will examine how these practices can improve
the team’s ability to effectively use and maintain the system, as well as how they
can contribute to the overall success of the research project. We will also discuss the
key considerations and challenges in designing and implementing a bioinformatics
software system that is deployed and maintained on-premise and autonomously while
maintaining data security and privacy. Additionally, we will examine how the inte-
gration of advanced software engineering principles and practices can support the ef-
fective integration of data from multiple sources in a bioinformatics software system.
Through this discussion, we hope to provide insights and guidance for those seeking
to design and build bioinformatics software systems that are scalable, maintainable,
and able to handle large amounts of data in an on-premise, academic setting.

3.1 Introduction
The integration of advanced software engineering practices, such as the use of soft-
ware patterns, containerisation, and distributed computing, is crucial for the design
and implementation of bioinformatics software systems. These systems are used to
analyze and interpret biological data, often require high levels of reliability, scalabil-
ity and performance, and can benefit from the use of techniques such as containerized
virtualization using Docker. To our knowledge, there is currently no framework or
system that utilizes a state-of-the-art service-oriented architecture (SOA) for medical
data analysis.

Biomedical scientists and researchers generally use analysis tools to solve re-
search questions [159]. However, usability, including understandability, learnability,
operability, and attractiveness is often a secondary or omitted consideration in the
research [153]. This chapter aims to make usability is a central topic, as it has several
advantages for developers and users. Improved usability can facilitate faster issue
resolution and the implementation of more features allows users to implement data
analysis algorithms faster, improve morale in working with the framework, and allow
developers to address technical debt efficiently [44,167].

3.1 Introduction 57

In addition to usability, it is crucial for medical software to be adaptive to a
variety of demands, such as different tools versions and environments. A flexible
software architecture with an independent environment, such as a service-oriented
architecture or containerized the environment can prevent the rework caused by
technical debt. Docker is a containerized, lightweight virtualization technology with a
wide range of applications, including developing, packaging, shipping, deploying and
executing applications into containers. Docker has several benefits over traditional
virtual machines (VMs), including the consumption of fewer resources, equal or
better performance, small image size, and the ability to roll back to previous versions.

Elasticity, or the provisioning of resources and computing instances, is also an
essential consideration in the design of bioinformatics software systems. Vertical
elasticity is the adaptation of resources, such as CPU and memory, assigned to an
instance. In contrast, horizontal elasticity refers to creating or destroying instances
of computing resources associated with an application. Elasticity can be achieved
through automation and optimization, resulting in scalability or sustaining heavy
workloads using additional resources. In this chapter, we will investigate the impact
of elasticity on the efficiency and productivity of a small research group, as well
as the key considerations and challenges in designing and implementing an elastic
system.

These challenges can be summarised in the following research question:

• How does the use of software patterns in the design of a bioinformatics software
system impact its reliability, scalability, and performance?

• What are the key considerations and challenges in designing and implementing
a bioinformatics software system with Docker, microservices, and distributed
computing?

• How does the integration of advanced software engineering principles and prac-
tices into a bioinformatics software system support the effective integration of
data from multiple sources?

• How does the adoption of a distributed architecture for a bioinformatics soft-
ware systems impact the efficiency and productivity of a small research group?

• What are the key factors that influence the success of a bioinformatics software
system with Docker, microservices, and distributed computing, and how these

58
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

can be optimised in the design and implementation process?

• What are the challenges and potential solutions for the implementation of
container orchestration in bioinformatics research teams with limited resources,
and what are the benefits and trade-offs of using container orchestration in such
a context?

To address these research questions, we will conduct a case study of a a bioin-
formatics software system that has been designed and implemented with Docker,
microservices, and distributed computing. The system’s architecture and software
patterns will be analysed, and their impact on the system’s reliability, scalability,
and performance will be evaluated. The experiences and perspectives of researchers
who have used the system will also be considered, and any challenges or limitations
encountered during the development and maintenance process will be explored.

In summary, this chapter aims to contribute to our understanding of the role of
advanced software engineering principles and practices, including general software
patterns, Docker, and distributed computing in the design and implementation of
bioinformatics software systems, and to provide practical insights and recommenda-
tions for researchers and practitioners are working in this field.

3.2 Background: Technical Considerations
for Bioinformatics Software Develop-
ment

The background section of this chapter will focus on the software principles and tech-
nical aspects of bioinformatics software systems — including software architecture
principles and the use of microservices, Docker, object storage, and representational
state transfer. We will begin by discussing the concept of technical debt and its
impact on the design and development of software systems. We will then delve into
the principles of software architecture. This examination includes the importance
of modularity, maintainability, and scalability. Next, we will introduce the concept
of microservice architecture and its benefits for building large-scale, distributed sys-

3.2 Background: Technical Considerations for Bioinformatics Software
Development 59

tems. We will also provide an overview of Docker. Docker is a popular tool for
packaging and deploying applications in a containerised environment. Additionally,
we will discuss the use of object storage for storing and managing large amounts of
data in a distributed system and the role of representational state transferin enabling
communication between microservices. By understanding these technical concepts,
we aim to provide a foundation for discussing the design and implementation of
bioinformatics software systems in the context of reliability, scalability, and perfor-
mance.

Software Engineering principles

Software engineering principles play a crucial role in the development of robust,
scalable, and maintainable software applications. These principles include techni-
cal debt management, which involves carefully balancing short-term convenience
with long-term sustainability in order to avoid accumulating unnecessary costs over
time. Software architecture, the high-level structure of a software system, is also
a the fundamental principle, as it determines how the different components of the
system interact and work together. Microservice architecture, a a pattern that in-
volves decomposing a monolithic application into a set of more minor, independent
services is another essential principle that can improve the modularity, scalability,
and maintainability of a the software system, but it also requires careful planning
and management [127]. Together, these principles form the foundation for effective
software engineering practices and the creation of high-quality software.

3.2.1 Technical debt
Biomedical software engineers play a crucial role in developing and maintaining soft-
ware for the biomedical domain. However, it has been observed that many biomedical
scientists often need to pay more attention to the principles of software engineering
in their work [159]. This situation can lead to significant challenges in the ability to
enhance and maintain software effectively, such as reduced reliability, scalability, and
flexibility of the software [26]. By ignoring software engineering principles, the risk of
technical debt and the need for rework at a later stage in the project also increases.

60
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

Therefore, it is essential for biomedical software engineers to consider these prin-
ciples when designing software to ensure the creation of high-quality, maintainable
software.

One crucial aspect of software engineering principles is the concept of technical
debt. Technical debt refers to the additional cost and effort required to fix problems
or improve a system due to adopting a short-term, quick solution rather than a well-
thought-out approach [167]. In other words, technical debt occurs when software
is developed without considering guiding software engineering principles, which can
lead to the need for rework at a later stage in the project. Therefore, it is crucial
for biomedical software engineers to consider technical debt in their work to avoid
unnecessary additional effort in the future.

Technical debt can be considered similar to financial debt in many ways. For ex-
ample, when an individual takes on financial debt, they must make regular payments.
Therefore, this individual must consider two main challenges: first, accurately esti-
mating the monthly debt payment amount, i.e. determining the ratio of their income
that can be used for the monthly payments; and second, the accumulation of late
payment interest if the debt payments are consistently neglected. This interest in
the debt can ultimately lead to bankruptcy. Similarly, technical debt can lead to
a state known as technical bankruptcy, where further development becomes very
costly or even impossible. Therefore, it is vital to address technical debt promptly
and appropriately to avoid negative consequences such as technical bankruptcy.

As with financial debt, it is crucial to address technical debt to avoid adverse
effects regularly. For instance, ignoring technical debt can result in a high cost of
change, as described by Suryanarayana et al. [167]. The cost of change refers to
the time or effort required to change or add a feature to the software. A high cost
of change can have several negative impacts on a software project. These negative
impacts may include making it difficult to understand certain parts of the code and
increasing the effort and time required to implement features and fixes. Moreover, it
can reduce reusability and demoralise the software development team. These adverse
effects can slow down the progress of a software project. Bas et al. estimate that
the requirement and code analysis phase takes up at least 78% of the total time
from start to finish in a software project [38]. Therefore, it is crucial to design easily

3.2 Background: Technical Considerations for Bioinformatics Software
Development 61

understandable software to facilitate the development process. Therefore, to avoid
technical bankruptcy, it is essential to consider technical debt from the beginning
and continuously reflect on technical decisions throughout the software development
process.

Now that we have examined the consequences of technical debt let’s turn our
attention to the causes of this phenomenon. According to research, there are two pri-
mary causes of technical debt: a lack of knowledge and skills in software development
fields, and a lack of experience in applying software engineering principles [26,167].

First, a lack of knowledge in relevant software fields, such as design patterns and
clean code principles can lead to technical debt. Second, a lack of experience applying
these principles can also result in technical debt, as choosing the appropriate design
style for a given situation requires experience. Finally, time pressure is a common
factor leading to technical debt. Specifically, the pressure to produce results quickly
may lead to the selection of a quick but flawed solution, which can result in technical
debt. Therefore, a lack of knowledge and experience is a significant cause of technical
debt.

To further understand technical debt, Suryanarayana et al. [167] proposed a clas-
sification system that divides technical debt into several subcategories. These include

1. design debt (violations of design rules when building the software),

2. code debt (inconsistent code style or the absence of design patterns),

3. test debt (a lack of proper testing), and

4. documentation debt (a lack of documentation or outdated documentation).

These types of technical debt correspond to different phases of the software de-
velopment process. For developers to minimise the cost of addressing technical debt,
it is essential to focus on the software process’s most efficient and beneficial phase.
For example, Clutterbuck et al. found that the cost of changing features after im-
plementation is at least six times higher than during the requirements phase [39].
In large-scale systems, this cost can increase up to 125 times. Therefore, this the-
sis will focus on design debt, which occurs during the early stages of the software
development process.

62
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

In conclusion, technical debt is a common problem in software development that
can have significant negative impacts on a project, such as increased costs and re-
duced reliability. The causes of technical debt includes a lack of knowledge and expe-
rience in software development principles and time pressure leading to the adoption
of quick but flawed solutions. By understanding the types and causes of technical
debt, software development teams can take proactive measures to avoid or minimise
technical debt and create high-quality, maintainable software. By continuously re-
flecting on technical decisions and prioritising the most efficient and beneficial phases
of the software development process, teams can effectively address technical debt and
ensure the success of their projects.

3.2.2 Software architecture
Technical debt is essential to building a software system and should be considered
when outlining the software. Therefore, to build a reliable and expandable software
system, it is essential to keep fundamental software architecture principles in mind.
Software architecture plays a crucial role in the design and development of software
systems, including those used in bioinformatics. Challenges in software architecture
include managing complexity, ensuring scalability and promoting reusability. In
bioinformatics, these challenges are often compounded by the volume and complexity
of the data being analyzed, as well as the need to integrate data from multiple
sources and formats. To address these challenges, software architects in the field of
bioinformatics must carefully design systems that can handle large, complex data
sets, provide tools for integrating and comparing data from different sources, and
keep up with rapid advances in technology and biological research. A well-designed
software architecture is essential for building scalable, maintainable, and reusable
software systems that can effectively support the complex work of bioinformatics.

In order to effectively support the complex work of bioinformatics, it is essential
for software architecture to possess several key features: scalability, maintainability,
reusability, integration and flexibility. Firstly, scalability refers to the software’s
ability to handle large and complex data sets and to scale up as needed to meet
increased demand or workload. Secondly, maintainability involves having a clear
structure and modular design that facilitates understanding and modification of the

3.2 Background: Technical Considerations for Bioinformatics Software
Development 63

system over time. Thirdly, reusability allows components and functionality to be
easily repurposed in different contexts or projects. Fourthly, integration provides
tools and mechanisms for integrating and comparing data from multiple sources
and formats. Finally, flexibility involves adapting to new technologies and advances
in biological research as they emerge. By designing software systems with these
architectural features in mind, software architects can create scalable, maintainable,
and reusable systems that effectively support the needs of bioinformatics research
and applications.

Bass et al. define Software architecture as [38]:

[. . .] software architecture of a computing system is the set of structures
needed to reason about the system, which comprises software elements,
relations among them, and properties of both.

In other words, software architecture refers to the decomposition into parts or
components and their relationships. For example, Before any code is written or
technical requirements are determined, ideas and requirements are often drawn out
when beginning a software project. This phase involves formalizing these ideas into
technical components, a process that Richardson refers to as decomposition [147].
This decomposition has two main benefits: it allows for a clear division of labour
and responsibilities among team members, and it helps to facilitate a a better un-
derstanding of the software as a whole by providing a clear structure of components
and their relationships.

The importance of software architecture is closely tied to the requirements of a
software application, which typically include both functional and quality of service
requirements. Namiot et al. define microservices as "lightweight and independent ser-
vices that perform single functions collaborating with other similar services through
a well-defined interface" [125].

Functional requirements are a fundamental aspect of software development, as
they describe the necessary functions that an application must fulfil to meet its
intended users’ needs. While it is possible to implement functional requirements
without considering software architecture, doing so may result in an application that
lacks the necessary qualities of service, or QoS, to effectively meet the needs of its

64
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

users. QoS is a set of attributes that determine an application’s overall effectiveness
and efficiency and includes "ilities" such as reliability, scalability, and security. Us-
ing software architectureis essential in addressing QoS requirements, providing the
necessary concepts and principles to satisfy these attributes effectively.

To better understand the role of software architecturein meeting functional and
QoS requirements, Krutchen’s descriptive view model [95] can be helpful. This model
divides the aspects of software into different views, each of which serves a specific
purpose and caters to the needs of different stakeholders. The four views identified
by Krutchen are as shown in figure 3.1

1. The logical view, which is designed for end users and includes functionality
examples such as UML diagrams, Use case diagrams, Activity diagrams, Se-
quence diagrams, and State diagrams:

2. The development view, which is meant for the software manager and includes
details about the implementation, e.g. Class diagrams, Sequence diagrams,
Deployment diagrams, State diagrams.

3. The process view, which explains relationships and typical workflows within
the system, e.g. Activity diagrams, Sequence diagrams: , State diagrams:
Workflow diagrams:

4. The physical view, which describes the topology of the system, including hard-
ware details and the deployment of each service, eg. Deployment diagrams,
Network diagrams, System context diagrams, Physical data flow diagrams

It is common for there to be overlap in the choice of diagrams that can be used
to illustrate different views in Krutchen’s descriptive view model. This overlap is
because software systems are complex and multifaceted, and different stakeholders
may have different needs and goals when it comes to an understanding the system.

For example, both sequence diagrams and state diagrams can be used in both
the logical view (which provides an overview of the functionality of the system from
the perspective of the end-user) and the development view (which provides details
about the implementation of the system from the perspective of the software man-
ager). This overlap is possible because both of these diagram types can be useful in
illustrating the behaviour of the system from different perspectives.

3.2 Background: Technical Considerations for Bioinformatics Software
Development 65

Similarly, deployment diagrams can be used in both the physical view (which pro-
vides an overview of the topology of the system) and the development view (which
provides details about the implementation of the system). This overlap is possible
because deployment diagrams can provide information about both the physical de-
ployment of the system. Furthermore, the hardware and software components used
in its implementation.

Generally, the overlap in the choice of diagrams for different views in Krutchen’s
model is a reflection of the complexity and multifaceted nature of software systems.
By using a combination of different views and diagrams, stakeholders can get a more
comprehensive understanding of the system and its various aspects.

Coming back to the general application of Krutchen’s different views, it is clear
that these views provide a valuable method for describing essential software compo-
nents from various perspectives. Considering the analogy of building architecture,
where different blueprints (e.g. electrical, water, floor, brickwork) are used for dif-
ferent tasks, it becomes clear how Krutchen’s views serve a similar purpose. These
views provide clear and concise descriptions of software components from different
perspectives, such as the end-user, the software manager, and the physical deploy-
ment of the system. This approach allows for a more comprehensive understanding
of the software system and its various aspects and can be particularly useful in large
or complex systems. Overall, Krutchen’s descriptive view model offers a valuable
tool for stakeholders to understand and work with software systems in a clear and
organized way.

Software architecture plays a critical role in the design and development of soft-
ware systems, including those used in the field of bioinformatics. It is essential to
keep critical principles of software architecture in mind when building a reliable
and expandable system, including the need to manage complexity, ensure scalability,
and promote reusability. In bioinformatics, these challenges are often compounded
by the volume and complexity of the data being analyzed, as well as the need to
integrate data from multiple sources and formats. To address these challenges, soft-
ware architects in the field of bioinformatics must carefully design systems that can
handle large, complex data sets, provide tools for integrating and comparing data
from different sources, and keep up with rapid advances in technology and biological

66
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

Figure 3.1: Krutchen’s 4+1 diagram is a visual representation of the four views in
his descriptive view model: the logical view, the development view, the process view,
and the physical view, with the scenario view or use cases represented in the center.
Depending on the scope and stakeholders, the scenario view may be represented as
either a single scenario or a set of use cases. Each of the views is represented as
a quadrant surrounding the scenario view. Each view provides a different perspec-
tive on the software architecture, with the logical view illustrating the functionality
from the perspective of the end user, the development view provides implementation
details from the the perspective of the software manager, the process view showing
relationships and workflows, and the physical view depicting the topology of the
system. The scenario view represents the interactions between the different views
and illustrates how they relate to each other. The 4+1 diagram is a useful tool for
understanding the different aspects of software architecture and how they relate to
each other.

research.
When selecting the appropriate software architecture for a particular the project,

it is crucial to consider the specific needs and goals of the system, as well as the
expertise and resources available to the development team. One famous architecture

3.2 Background: Technical Considerations for Bioinformatics Software
Development 67

is Microservice architecture. Microservice architecture, which involves dividing the
system into small, independent services that communicate with each other through
well-defined interfaces is a popular choice due to its ability to scale and maintain
individual components independently. However, monolithic architecture, which in-
volves building the system as a single, comprehensive application with all components
tightly coupled may also be considered, although it can be more difficult to scale and
maintain in the long term compared to microservice architecture. Krutchen’s view is
that a clear and concise description of the software, architecture is vital for helping
stakeholders understand the overall design and functionality of the system, as well
as for facilitating communication and collaboration among the development team.

3.2.3 Distributed computing
Several challenges must be considered from a software architecture and bioinfor-
matics standpoint when designing and implementing large-scale data processing and
analysis systems. One major challenge is the need to handle and process large
amounts of data efficiently, often requiring specialized algorithms and data struc-
tures. Another challenge is the need to ensure the accuracy and reliability of the
results, mainly when dealing with complex or ambiguous data. Additionally, there
may be issues related to data security and privacy, mainly when working with sensi-
tive or confidential data. Finally, there is often a need to integrate various software
components and tools to provide a seamless and user-friendly user experience. All
of these challenges must be carefully considered to effectively design and implement
systems that can handle the demands of large-scale data processing and analysis
demands.

In the field of bioinformatics, distributed computing can be used to address the
challenges of large-scale data processing and analysis. By distributing data and
workloads across multiple computers, distributed computing systems can efficiently
process large amounts of biological data, such as genomic sequences, protein struc-
tures, and gene expression data. Additionally, the ability of distributed computing
systems to be highly available and resilient can be particularly important in bioin-
formatics, as it ensures that analysis can continue even in the event of component
failures or disruptions. The ability to quickly scale distributed computing systems

68
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

by adding more computers to the system also makes them well-suited for handling
the increasing amounts of data generated by advances in biological research. Overall,
distributed computing plays a vital role in the field of bioinformatics, enabling the
efficient and effective analysis of large amounts of biological data.

Distributed computing is a field of computer science that involves using multiple
computers connected through a network to solve a common problem or perform a
shared task. In a distributed computing system, each computer, also known as a
node, works together with the other nodes to perform the task at hand. The nodes
communicate with each other and share data and workloads to complete the task
efficiently. Distributed computing systems can be designed to be highly available,
meaning that they can continue to operate even if one or more nodes fail. They can
also be easily scaled by adding more nodes to the system, which enables them to
handle increased workloads or demand. Finally, distributed computing systems can
be designed to be resilient, meaning that they can recover from failures or disruptions
without losing data or functionality. Overall, distributed computing allows for the
efficient and effective processing of large amounts of data by distributing the workload
among multiple nodes.

Several key components are typically involved in distributed computing systems.
These include the client, which initiates the request for computation; the server,
which response to the request and coordinates the distribution of workloads among
the nodes; and the nodes themselves, which perform the computation and return
the results to the server. The server is responsible for dividing the workload into
smaller tasks, assigning these tasks to the nodes, and collecting and aggregating
the results. This process is known as task parallelism, and it enables distributed
computing systems to efficiently process large amounts of data by distributing the
workload among multiple nodes.

3.2.4 Cloud technologies
Some several challenges and problems can arise when developing and deploying a
bioinformatics framework. Some of these challenges include: handling large amounts
of data, ensuring the security of sensitive data, meeting compliance requirements, en-
suring accessibility, integration with other systems and data sources, and managing

3.2 Background: Technical Considerations for Bioinformatics Software
Development 69

complexity. Each of these challenges can present significant challenges for bioinfor-
matics professionals and finding effective solutions to these problems are critical for
the success of any bioinformatics project.

Using integrated cloud technologies in a bioinformatics framework can help to
solve many of these challenges. Cloud technologies offer a number of critical fea-
tures, including scalability, security, accessibility, integration, and disaster recovery,
which can be used to improve the functionality and effectiveness of a bioinformatics
framework. By leveraging these technologies, it is possible to create a bioinformatics
framework that is capable of handling large amounts of data, ensuring the security of
sensitive information, meeting compliance requirements, and providing flexible and
reliable access to data and computational resources. Additionally, the integration
and disaster recovery capabilities of cloud technologies can help to ensure that the
bioinformatics framework can operate smoothly and effectively in a range of different
environments.

Cloud technologies are a form of computing infrastructure that allows organiza-
tions to access and utilize computing resources over the internet. These resources
include servers, storage, networking, applications, and other services. In addition,
cloud technologies can host various applications and services, including bioinformat-
ics frameworks.

One of the fundamental principles of cloud technologies is elasticity, which refers
to the ability to scale up or down to meet changing workloads or data volumes.
This feature is handy for bioinformatics applications, which often require significant
computational resources and must handle large amounts of data. Other essential
principles of cloud technologies include the use of a pay-as-you-go pricing model, the
ability to access resources from any location with an internet connection, and the
implementation of robust security measures to protect data and ensure compliance
with industry regulations. Together, these principles make cloud technologies a
flexible and cost-effective solutions for bioinformatics organizations.

3.2.5 Containerisation
In bioinformatics, software engineering challenges such as managing complex de-
pendencies and deploying applications on multiple platforms are common. Bioin-

70
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

formatics applications often depend on specific versions of libraries and frameworks
for scientific computing, data analysis, or visualization, which can be challenging to
manage. Additionally, these applications may need to be run on a variety of different
operating systems or platforms, such as Linux, Windows or macOS. This variety can
make it challenging to ensure that an application is compatible with all necessary
dependencies and can run in all desired environments. Another challenge in bioinfor-
matics is the need to scale and manage applications as they grow and become more
complex. As more data is generated and more users access the application, it cannot
be easy to ensure that it can handle the increased load and remain stable and reli-
able. Security is also a concern in bioinformatics, as sensitive data and intellectual
property may be at risk if an application is compromised.

Containers can help to address the challenges faced in the field of bioinformatics
by providing several useful features. By allowing developers to package an appli-
cation and all of its dependencies in a single container, containers make it easy to
deploy and run an application in any environment, regardless of differences in oper-
ating systems or platforms. Containers also provide isolation for the application and
its dependencies, which can help prevent conflicts or other issues that can arise when
multiple applications are running on the same machine. This isolation can also im-
prove security by limiting the potential impact of a compromise on a single container
rather than the entire host machine. In addition, containers make it easy to scale
and manage applications, as containers can be easily moved between different hosts
or environments without having to worry about compatibility issues. Overall, using
containers in bioinformatics can improve the reliability, scalability, and security of
software applications in this field.

Containerisation is a technique for packaging and distributing software applica-
tions in a way that makes it easy to deploy and run the application in any envi-
ronment. This infrastructure is achieved by packaging the application and all of its
dependencies, including libraries, frameworks, and runtime environments, in a single
container. The a container is a self-contained unit that contains everything the an
application needs to run, including the necessary libraries, frameworks, and runtime
environments. This environment makes it easy to deploy and run the application in
any environment, as the container includes everything the application needs to run,

3.3 Architecture design 71

regardless of differences in operating systems or platforms.
One of the most popular tools for containerisation is Docker. Docker is an open-

source containerisation platform that makes creating, deploying, and managing con-
tainers easy. Docker allows developers to create container images and templates for
containers that can be used to create new containers. Docker also provides several
tools for managing containers, including container runtime and a container orches-
tration platform. These tools make it easy to deploy and manage containers at scale,
allowing developers to quickly spin up new instances of an application and move con-
tainers between different hosts or environments. Overall, Docker is a powerful tool
for containerisation that is widely used in the software industry.

3.3 Architecture design
This section presents our bioinformatics data analysis system’s critical software ar-
chitecture design aspects . Our approach is based on microservice architecture, a
modular architectural style that allows for developing and deploying individual com-
ponents as autonomous services. We have chosen to implement this architecture
using Docker technology. This choice provides containerisation of our microservices
and facilitates their deployment in various environments. To store the data gener-
ated by our application, we are using object storage, a highly scalable and durable
storage solution. Additionally, we have adopted the Representational State Trans-
fer (REST) the architectural style for component communication, enabling flexible
interactions between the various services in our system.

3.3.1 Microservice architecture
Software architecture in bioinformatics is faced with several challenges that must
be addressed in order to support them effectively development and maintenance of
software solutions in the domain. One of the main challenges is the complexity of
the data and algorithms involved in bioinformatics, which often requires advanced
computational resources and specialized software tools. Additionally, the rapid pace
of innovation in bioinformatics and the constantly evolving nature of the field can

72
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

make it difficult to maintain software solutions over time. Moreover, there is a need
to support a wide range of clients, including web browsers, mobile devices, and local
connections, while also providing a service API with functions such as business logic
execution, database access, and request forwarding.

Microservice architecture (microservice architecture) has emerged as a promis-
ing approach to addressing these challenges in the context of bioinformatics. By
decomposing software solutions into a set of independently deployable and loosely
coupled services, microservice architecture enables developers to build and maintain
more scalable and flexible software solutions. Additionally, the use of lightweight
communication mechanisms, such as HTTP resource APIs, help to facilitate the in-
tegration of diverse software components and the reuse of existing resources. Overall,
microservice architecture offers several benefits for software development in bioinfor-
matics, including improved scalability, flexibility, and modularity, as well as better
support for new and emerging technologies. By separating concerns into independent
services, microservice architecture helps to reduce the cost of change and improve
the overall quality of the software system while also enabling teams to develop and
deploy code independently without affecting other components. Furthermore, the
use of loose coupling helps to improve the scalability and availability of the system,
as well as other vital qualities such as reliability, testability, and security.

In section 3.2, we discussed the microservice architecture is a style of architecture.
In this section, we will highlight microservice architecture key aspects. We outline
the context, the benefits and how microservice architecture functions.

In recent years, the use of microservice architecturehas gained increasing popular-
ity as a software design approach in bioinformatics. The complexity and fast-paced
evolution of the domain are contributing factors to its popularity. It necessitates
software solutions that are adaptable, flexible and modular.

According to Richardson [147], microservice architecture is defined as a style of
software architecture that involves the decomposition of an application into inde-
pendently deployable, loosely coupled services. This approach offers several benefits,
including the ability to deploy and scale services independently, the ability to use
a diverse set of technologies and programming languages, and the ability to easily
update or replace individual services without disrupting the overall system. Addi-

3.3 Architecture design 73

tionally, the use of lightweight communication mechanisms, such as HTTP resource
APIs, help to facilitate the integration of diverse software components and the reuse
of existing resources.

Fowler and Lewis [67] further refined the definition of microservice architecture
by stating that it is an approach to developing a single application as a suite of
small services, each running in its own process and communicating with other ser-
vices through lightweight mechanisms. This approach emphasizes the importance
of designing services to be self-contained and focused on a specific business domain,
which helps to improve the modularity and maintainability of the system.

Figure 3.2: Abbott et al. illustrate scalability in the form of a three-dimensional
space, with each dimension scaling a different an aspect of an application. The x-axis
represents the number of instances, the y-axis represents the functional decompo-
sition and the z-axis represents the data separation. By considering the scalability
of an application in the context of this three-dimensional space, it is it possible to
understand how microservice architecture (microservice architecture) allows for the
independent deployment and scaling of individual services to meet the demand of
the system.

The functional decomposition of software solutions characterizes microservice ar-

74
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

chitectureinto a set of independently deployable and loosely coupled services. This
approach offers several benefits for software development, including improved scal-
ability, flexibility, and modularity. We illustrate the functional decomposition of
microservice architecture. It is helpful to compare it to a monolithic application.

In a monolithic application, all services are tightly coupled and must be deployed
as a whole. This coupling means that the application is typically scaled along the
x-axis (number of instances) and the z-axis (data separation) to meet the demand
of the system — refer to figure 3.2. In contrast, microservice architecture includes
the functional decomposition (y-axis) to scale the application. This decomposition
means that the application is decomposed into a set of independent services, each of
which can be deployed and scaled independently to meet the system’s demand.

Abbott et al. [14] have further elaborated on this concept by introducing the
scalability cube, which provides a three-dimensional space for understanding the
functional decomposition of microservice architecture. Along each axis of the scal-
ability cube, a a different aspect of the system is scaled, including the number of
instances (x-axis), the functional decomposition (y-axis), and the data separation
(z-axis). By considering the functional decomposition of microservice architecture in
the context of the scalability cube (as illustrated in Figure 3.2), it is possible to un-
derstand how the application is decomposed and how it scales to meet the demands
of the system. Overall, the functional decomposition of microservice architecture
is a key concept for understanding how it is used to decompose and scale software
solutions in bioinformatics. By considering the scalability cube and the functional
decomposition along the y-axis, it is possible to understand how microservice archi-
tecture allows for the independent deployment and scaling of individual services to
meet the demand of the system. This approach offers a number of benefits, including
improved scalability, flexibility, and modularity, as well as better support for new
and emerging technologies. By separating concerns into independent services, mi-
croservice architecture helps to reduce the cost of change and improve the the overall
quality of the software system while also enabling teams to develop and deploy code
independently without affecting other components. Furthermore, the use of loose
coupling helps to improve the scalability and availability of the system, as well as
other important qualities such as reliability, testability, and security.

3.3 Architecture design 75

microservice architecture is a software architecture style that functionally de-
composes the app into independent services. The decomposition helps in improving
the qualities of service, namely scalability, reliability, security, high maintainability,
testability, and deployability. This process is supported by pattern language and
decomposition strategies.

Pattern language

Several challenges might arise during the development process of building a microser-
vices architecture. One challenge is ensuring that the architecture is designed in a
scalable way, meaning it can be easily adapted and expanded as the needs of the
system change. This adaption can be challenging to achieve if the architecture is
overly complex or inflexible, as it may be difficult to make changes without affecting
the system’s overall functioning. Another challenge is ensuring that the various mi-
croservices can communicate effectively with each other, as this is essential for the
smooth functioning of the system. This communication can be challenging if there
are issues with the integration of the microservices or if incompatible communication
protocols are used. Additionally, building a microservices architecture requires care-
ful consideration of the security and privacy of the system. The decentralized nature
of microservices can present additional security risks. Therefore, ensuring that the
architecture is secure and that appropriate measures are in place to protect sensitive
data can be a significant challenge.

One way to address these challenges is to use pattern language in the develop-
ment process. Pattern language provides a common vocabulary and structure for
communication about design decisions, which can help to ensure that all team mem-
bers are on the same page and reduce misunderstandings. It also allows for the
reuse of proven solutions to recurring problems, saving time and effort in the de-
velopment process and promoting the sharing of best practices. Additionally, using
pattern language can help to ensure that the architecture is structured in a way that
allows for scalability, making it easier to adapt and expand the system as needed.
Pattern language can be a valuable tool for resolving challenges when developing a
microservices architecture.

In a microservices architecture, pattern language is a structured language used

76
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

to describe components, and their interactions [69]. It was initially developed for
use in building architecture to provide solutions to recurring problems [16] but has
since been applied to software development as well [88]. A pattern defines a family of
systems in terms of their structural organization and behaviour and consists of several
components, including forces, resulting context, and related patterns. The forces
component describes the overall problem and any additional or conflicting issues that
must be considered when solving it. These issues may conflict and must be weighed
following demand and prioritization. The resulting context component describes
the consequences of applying a pattern, including any benefits that solve the forces,
drawbacks of unresolved forces, and introduced issues. Finally, the related pattern
component describes the relationship between the applied pattern and other patterns,
such as predecessor, successor, alternative, generalization, and specialization.

In the context of microservices architecture, Richardson has provided a system
that includes three categories of patterns: Infrastructure patterns, application in-
frastructure patterns, and application patterns [69]. Infrastructure patterns address
infrastructure issues outside of development and are focused on solving primarily
infrastructure-related problems. Application infrastructure patterns, on the other
hand, address infrastructure issues that also impact development and are concerned
with the intersection of infrastructure and development. Finally, application pat-
terns are used to solve problems faced by developers, such as implementing func-
tionalities or addressing design issues. These patterns provide a way to address the
challenges that may arise when developing a microservices architecture, such as en-
suring scalability, effective communication between microservices, and appropriate
security measures. By using these patterns, software developers can more effectively
address the challenges faced when building a microservices architecture, leading to
more efficient and effective software development.

Overall, pattern language in software architecture provides a vocabulary and
structure for communicating about microservices architecture [69], which can help
to facilitate communication and understanding among team members [16], allow for
the reuse of proven solutions [88], and ensure that the architecture is scalable and
adaptable [69]. By using pattern language, software developers can more effectively
address the challenges faced when building a microservices architecture, leading to

3.3 Architecture design 77

more efficient and effective software development.
All in all, the use of a software architecture pattern language in the design and

implementation of microservice architectureprovides a standardized vocabulary and
organizational structure for effective communication and understanding of the sys-
tem’s components and their interactions.

Decompostion

Software development often faces complexity, scalability, and team autonomy chal-
lenges. Complexity can arise in monolithic applications, which tend to become un-
wieldy and difficult to understand and maintain over time. Scalability can also be
challenging, as the tight coupling of components in a monolithic application can
make it difficult to scale individual components independently as the demands on
the system change. Furthermore, significant development teams may need help with
coordination and communication, reducing efficiency and effectiveness. These chal-
lenges can hinder the development and maintenance of software systems, leading to
suboptimal performance and reduced business value.

Service decomposition is a software design approach that addresses these chal-
lenges by creating compact, modular services or components. Breaking down a
monolithic application into more focused services makes it easier to understand and
maintain the system. Additionally, service decomposition allows for independent
scaling of services, making it easier to scale the overall system as needed. Service
decomposition also promotes team autonomy, as compact, more focused teams can
work on specific services, increasing ownership and responsibility. Overall, service
decomposition can lead to more maintainable, scalable, and resilient systems, im-
proving software applications’ performance and business value.

Decomposition is a software design approach that involves breaking down a mono-
lithic application into a compact, more modular services or components. There are
several strategies for decomposing an application, and these strategies often rely
on the experience and expertise of software developers [17]. However, there is no
definitive metric or framework that guides the decomposition process, as it heavily
depends on the application’s specific requirements and circumstances. This challenge
is further complicated by the dynamic nature of agile development processes, where

78
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

requirements and circumstances may change over time.
One commonly used model for decomposition is the MVC (Model-View-Controller)

architecture, which divides the application into three distinct components: data,
logic, and presentation. Alternatively, Kecskemeti et al. proposed a decomposition
in containers approach [90], which focuses on elasticity and scalability. These strate-
gies and others can be used to decompose an application in order to address specific
challenges and improve the overall design and performance of the system.

Finally, there are several ways to decompose the application. Most strategies
rely on software developers’ experience [30]. No governing metric guides the de-
composition process since it heavily relies on the requirements and circumstances.
Because of an agile working process, these circumstances might change. Therefore
the decomposition has to factor in these changes. Moreover, it takes work to com-
pare projects with each other. One governing model, the MVC, includes data, logic
and presentation. Kecskemeti et al. proposed a decomposition in containers [90].
This approach focuses on elasticity and scalability. Therefore, we have chosen this
approach as well.

There are several other approaches to decomposing an application, including:

1. Decomposing by business capability and defining services corresponding to
business capabilities.

2. Decomposing by domain-driven design subdomain.

3. Decomposing by verb or use case and defining services that are responsible for
particular actions, such as a Shipping Service that is responsible for completing
shipping orders.

4. Decomposing by noun or resource by defining a service responsible for all op-
erations on entities or resources of a given type, such as an Account Service
that is responsible for managing user accounts.

Service decomposition is a software design approach that breaks down a mono-
lithic application into a compact, more modular services or components. This ap-
proach is often used in microservices architecture, designing software applications as
a set of loosely coupled, independent services that can be developed, deployed, and
scaled independently. Service decomposition can help to address challenges such as

3.3 Architecture design 79

complexity, scalability, and team autonomy, leading to more maintainable, scalable,
and resilient systems. Various strategies for decomposing an application include de-
composition by business capability, domain-driven design subdomain, verb or use
case, and noun or resource. In addition, decomposition can be aided by using pat-
tern language and decomposition strategies and is supported by the microservices
architecture. However, the decomposition process depends on the application’s spe-
cific requirements and circumstances, and there is no definitive metric or framework
that guides the process.

3.3.2 Docker technology
As mentioned in section 3.2.5 Containerisation, the field of bioinformatics faces sev-
eral software engineering challenges, such as managing complex dependencies and
deploying applications on multiple platforms. These challenges can be addressed
through containers, which provide several useful features. By packaging an applica-
tion and its dependencies in a single container, developers can quickly deploy and run
the application in any environment, regardless of differences in operating systems or
platforms. Containers also provide isolation for the application, which can improve
security and prevent conflicts when multiple applications are running on the same
machine. In addition, containers make it easy to scale and manage applications as
they grow in complexity and usage. Overall, using containers in bioinformatics can
help to improve the reliability, scalability, and security of software applications in
this field.

To implement a microservice architecture for our proposed system, we have cho-
sen to utilize Docker. This technology is a form of containerized virtualization. In
order to clarify the concept of container-based virtualization, it is necessary first to
understand virtualization itself. Essentially, virtualization refers to the creation of a
subsystem, known as a guest, on an existing system, known as a host. These sub-
systems are often able to provide independent hardware and software environments.
Container-based virtualization is a specific type in which independent, software-
based subsystems, known as containers, are created. In the context of a microservice
architecture, the use of container-based virtualization can help to separate and isolate
individual services.

80
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

Docker is a containerisation technology widely applied in various contexts, from
development to deployment in isolated environments. As a form of lightweight
system-level virtualization, it offers several benefits compared to traditional virtual
machines (VMs). Containers consume fewer resources than VMs because they share
the host system’s hypervisor, resulting in greater efficiency and the ability to deploy
more containers on a single physical machine. Additionally, containers can separate
computing environments from the host system, which helps to avoid conflicts and
improves performance. Docker also includes a versioning tool that allows users to roll
back to previous versions quickly. Furthermore, containers have a small image size,
which makes them faster to generate, distribute, and download, and they require
less storage space. These features make Docker a valuable tool for implementing
vertical elasticity in autonomic systems, where it can help avoid over-provisioning
and under-provisioning problems.

Comparing container-based virtualization to hypervisor-based virtualization, it
is possible to identify several benefits of the former approach. While both forms
of virtualization involve the separation of different systems from the host system,
container-based virtualization differs in that it does not utilize a hypervisor, which
is a software layer that provides a virtual operating system for guest systems and
manages their execution (see Figure 3.3 for a visual representation of this process).
Instead, container-based virtualization relies on a lighter-weight approach, utilizing
fewer resources and requiring less disk space due to its lack of reliance on an entire
kernel (as discussed in [189]). Later in the text, we will delve further into how
containers facilitate resource efficiency. Overall, it can be concluded that the benefits
of container-based virtualization include reduced resource consumption compared to
hypervisor-based virtualization.

Docker architecture and critical features

Docker is a popular container virtualization technology released as an open-source
project in 2013 [146]. It provides a command-line interface for creating, managing,
and deploying containers and isolated environments with file systems that can run
independently. Docker also has revision control capabilities, allowing containers to
be easily shared through repositories such as Docker Hub.

3.3 Architecture design 81

Figure 3.3: In hypervisor-based virtualization, a hypervisor sits between the hard-
ware and the operating system, providing virtual operating systems for multiple
guest systems. The hypervisor manages the execution of these guest systems, allow-
ing them to operate independently of the host system. In contrast, container-based
virtualization relies on the host operating system and utilizes containers to separate
applications and their dependencies into isolated environments. These containers
share the host operating system kernel and do not require a hypervisor, resulting in
a more lightweight and efficient approach. Overall, this figure illustrates the differ-
ences between these two forms of virtualization in terms of their architecture and
resource utilization.

82
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

The architecture of Docker consists of three main components:

1. Docker Client: This component is the primary way to interact with the Docker
system, allowing users to issue commands such as "build" and "run".

2. Docker Host: This component handles core functionalities, including API re-
quests and management of Docker objects like images, containers, networks,
and volumes. The Docker daemon, a component of the Docker Host, is respon-
sible for the system’s business logic. The Docker Host also stores and manages
Docker images and containers.

3. Docker Registry: This component stores Docker images, which can be either
publicly available or privately deployed. One example of a widely-used public
registry is Docker Hub.

Docker operates using a similar architecture to that of a three-tier application,
a type of software architecture organized into three distinct layers. The Docker
Client is the presentation layer, responsible for displaying information to the user
and receiving input. The Docker Host is the application logic layer, handling core
functionalities and processing user requests. The Docker Registry serves as the data
storage layer, storing and managing the data used by the application.

In a three-tier architecture, the separation of these functionalities into distinct
layers allows for better scalability, maintainability, and security. Similarly, the sep-
aration of these responsibilities Docker enables the efficient creation, management,
and deployment of containers while also allowing for independent operation and easy
sharing through revision control and repositories.

Docker utilizes Linux kernel features such as namespaces and control groups
(cgroups) to separate environments and enable efficient resource allocation for con-
tainers.

Namespaces partition the operating system’s processes into sets or subsets. Each
set only has access to a designated set of resources, including IDs, hostnames, and
user IDs. These partitions create independent, isolated environments, which Docker
uses as the delimitation for its containers. This ensures that each container operates
within its sphere of influence and that any modifications made within the container
do not affect the host system or other containers. Examples of namespace types that
Docker supports include PID, Mount, User, Network, and IPC.

3.3 Architecture design 83

Figure 3.4: Here you see the Docker architecture. Generally, the client sends
commands to the docker daemon that executes the commands. With building, an
image is created. The pull command receives the image if it is not present. There
are several possibilities to handle docker registries. Furthermore, finally, the run
command executes the Docker.

Cgroups, on the other hand, manage the resource usage of a group of processes
by limiting, tracking, and isolating the resources. They can configure resource limits,
prioritize resource usage, and control the status of processes in a group. This makes
cgroups an essential aspect of container virtualization, as they allow for the control
and management of multiple processes within a container. The use of cgroups allows
for more efficient resource allocation in containers than hypervisor virtualization,
which requires a complete boot for each virtual machine. As a result, containers,
which consume fewer resources than VMs, are often the preferred choice for inde-
pendent services [51].

In summary, the Linux kernel features of namespaces and cgroups enable Docker
to create isolated environments for containers and facilitate efficient resource alloca-
tion, making it a popular choice for container virtualization.

This section outlines containerized virtualization and how it helps build microser-

84
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

vice architecture. Further, we outlined the Docker architecture and its key features
that help in container-based architecture.

3.3.3 Data storage
In the field of bioinformatics, data storage can pose significant challenges. One ma-
jor challenge is the large volumes of data generated, particularly with the growth
of high-throughput sequencing technologies. This challenge can make storing and
managing the data difficult and may require the use of distributed storage systems.
Another challenge is the complex nature of bioinformatics data, which often has
intricate structures and relationships that need to be captured and represented in
the data storage solution. In addition, Bioinformatics data is often generated from
various sources, requiring integration across different data sets and systems. Ensur-
ing the security and integrity of the data is also essential, as bioinformatics data
can be sensitive and may need to be protected from unauthorised access. Finally,
bioinformatics data must be easily accessible to researchers and analysts, which can
be challenging when dealing with large volumes of data and complex data structures.

Object storage solutions like Minio can help to address the challenges of data
storage in the field of bioinformatics from a software architecture perspective [138].
Minio is designed to scale horizontally, storing and managing large volumes of data
efficiently. It also stores data as objects, which enables it to handle complex data
structures and relationships. In addition, Minio has a RESTful API and supports
various programming languages, making it easy to integrate with other applications
and systems. It also includes features to secure data, such as encryption at rest
and in transit and fine-grained access controls. Minio is also highly performant,
allowing for quick and efficient access to data by researchers and analysts. Its support
for various protocols and interfaces makes accessing data from various clients easy.
Overall, Minio’s object storage capabilities make it a valuable tool for addressing
data storage challenges in bioinformatics.

Biomedical scientists often have a different focus when analysing their data, so
preserving the raw data in its original form is essential. To achieve this, we propose
uploading the data directly to an open-source object storage solution Minio [138].
Object storage is a model in which data is organised into three parts: the data

3.3 Architecture design 85

itself, an associated metadata file, and a unique key. The data is stored in a flat
namespace, allowing it to be searched and accessed using metadata or the unique
key. This benefit contrasts with hierarchical file systems, in which data is organised
into directories and files. Object storage solutions, such as Minio, facilitate easy
access to biomedical data with extensive metadata.

Several cloud storage providers offer object storage solutions, such as Amazon
Simple Storage System (S3), Microsoft Azure, Rackspace Files, and Google Cloud
Storage. Among these options, Amazon S3 has a widely used interface, known as the
S3 API, which allows developers to interact with the data [118]. To make it easier for
developers to use object storage solutions, open-source developers have implemented
the S3 API into projects like Minio. This implementation allows Minio offers all the
benefits of object storage while also being compatible with the S3 API. To interact
with Minio’s S3 API, software developers can use various Software Development Kits
(SDKs) in programming languages such as Java, Kotlin, Python, and JavaScript.

In our proposed system, we deploy the object storage on-premises, meaning that
the user controls and manages the storage. Data is transmitted to the object storage
using a generated S3 URL address. Minio provides a temporarily valid unique URL
address, allowing the user to upload the data. By deploying the object storage on-
premises, we can ensure that sensitive data remains in a trusted environment, as the
servers or nodes are secure. Additionally, we can utilise the Amazon S3 commands
and API but store and transfer files within a local network rather than relying on
a remote data storage solution. This approach can enable greater control over data
security, as the data remains within the user’s direct control.

3.3.4 Component communication with represen-
tational state transfer architecture

Several challenges and problems must be considered when building a bioinformatics
framework from a software architecture viewpoint. One challenge is supporting data
interoperability, as different software systems may use different data formats and
protocols. A standard way for these systems to communicate and exchange data
is needed. Another challenge is scalability, as a bioinformatics framework may be

86
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

required to process and analyse large volumes of data in real time. The ability to
easily add new services or modify existing ones without affecting the overall system
is vital. Ease of use is also an important consideration, as the framework should be
easy for developers to access and use and for bioinformatics researchers to analyse
data. Modularity is another crucial aspect, as the framework should be designed
as a set of independent components that can be reused in multiple applications or
replaced with alternative implementations. Finally, the framework should be flexible
and be used in a wide range of environments and platforms. The ability to access
the framework from different client applications can help achieve this flexibility.

A representational state transfer application programming interface(REST API)
can help address several of the challenges mentioned when building a bioinformatics
framework. A REST API is a type of software architecture that provides a set of
guidelines for building web services. It is designed to make it easy to develop and
consume web services by providing a simple and flexible interface that is based on
the principles of representational state transfer (REST). Some of the key features of
a REST API that make it useful for building bioinformatics frameworks and other
distributed systems include the use of standard HTTP methods to perform opera-
tions on resources, the use of HTTP status codes to indicate the success or failure of
a request, the use of HTTP headers to send additional information about a request
or response, the use of universal resource identifiers (URIs) to identify resources and
distinguish between different types of operations, and the use of resource represen-
tations to represent resources and the data associated with them. These features
allow a REST API to support a wide range of functionality, data formats, and client
applications, making it a powerful tool for building bioinformatics frameworks and
other distributed systems.

Technically, a REST API allows different software systems to communicate and
exchange data using HTTP, the standard protocol for the web. One of the main
features of a REST API is its use of HTTP methods, such as GET, POST, PUT, and
DELETE, to perform operations on resources. This method allows the API to sup-
port a wide range of functionality, such as creating, reading, updating, and deleting
resources. The use of HTTP status codes allows the API to provide additional infor-
mation about the success or failure of a request, making it easier to use and debug.

3.4 System Implementation 87

The use of HTTP headers allows the API to send additional information about a re-
quest or response, such as the transmitted data format. The use of universal resource
identifiers (URIs) allows the API to identify and distinguish between different types
of resources and operations. The use of resource representations allows the API to
represent resources and the data associated with them using different formats, such
as XML or JSON.

Overall, the features of a REST API make it a robust protocol for building bioin-
formatics frameworks and other distributed systems, as it provides a simple and
flexible way to access and manipulate resources over the web. Since the system
components are enclosed in separate environments, they require some form of com-
munication, and using REST makes each component independent of the program-
ming language and platform [31, 92, 115, 145]. REST has become a well-established
technology for microservice architecture [115, 145], and its use is widespread in this
context.

In addition, our development process employed the use of the Proxy design pat-
tern in conjunction with a load balancer and Data-Driven Routing design pattern.
The proxy pattern facilitates the control and management of access to resources,
while the load balancer distributes network traffic among servers for improved scal-
ability (figure A.1). The Data-Driven Routing pattern utilizes data to dynamically
determine routes, allowing for greater flexibility and adaptability (figure A.2). This
combination of patterns improves the robustness, reliability and scalability of the
system.

3.4 System Implementation
Much biomedical software is based developed to solve a focused research question.
The software, in most cases, is just a tool for achieving that goal so that software
engineering principles are sometimes neglected. [159] We focus on crucial principles
For software development to make it reliable, futureproof and expandable. One
critical aspect that is essential for software design is technical debt. Technical debt
is a concept in software development that reflects the implied cost of additional
rework caused by choosing an easy (limited) solution now instead of using a better

88
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

approach that would take longer. for this the reason we decided to use a microservice
architecture as opposed to a monolithic architecture.

In the past, monolith architecture was a dominant architectural pattern in de-
signing software. Because all components and services are inside a single application
in a monolith architecture, it reduces the system’s complexity. However, a mono-
lithic architecture has several drawbacks. For example, scaling is only possible when
duplication of the whole system, most services are tightly coupled, and errors and
bugs can break the application. In contrast, microservice architecture solves these
concerns with these design principles.

1. Independent deployability

2. Horizontal scalability

3. Isolation of failures

4. Decentralisation

Problems/issues

Here we will answer questions such as

• How are the patterns applied?

• How did we decompose the services?

• How is it deployed?

• How is the Quality of service integrated?

We address these issues in this section. Further, we will illustrate the design as well
as outline the pattern behind our decisions.

Three main advantages are applying Microservice Architecture design principles:
1. Agility, 2. Scalability, and 3. Resilience. First, agility refers to building, deploying
and testing so that each can be written in the best-suited programming language for a
given task. Moreover, new versions of existing technologies can be integrated without
waiting for other application parts to accept new features. Second, since one devel-
ops each microservice independently, resources can be scaled rapidly and efficiently.
Theoretically, one can relocate microservices to the best-fitting infrastructure for a

3.4 System Implementation 89

task. Third, resilience refers to independence from other components when failures
occur. With a decoupled architecture, which uses asynchronous requests, each part
avoids interference with the other.

Microservice Architecture is a specialisation of Distributed Computing. Gener-
ally, Distributed Systems consist of the following components — called processors
— scattered around in a computer network. These components communicate and
orchestrate their task by message passing [96]. Distributed Systems can be built
to execute processes simultaneously, similar to Parallel Systems. Parallel Systems
share many similarities with Distributed Systems [70]. In contrast, each component
has its own (distributed) memory for Distributed Systems, whereas Parallel Systems
have access to a shared memory [70].

Approach

Our approach includes: services decomposition by domain, self-contained services
with responsibility segregation and using container orchestration to deploy and scale
the system

3.4.1 Service Decomposition by Domain
We decided to utilise a microservices architecture for bioinformatics data analysis
in developing our framework. However, this approach presents several challenges
when decomposing the software system. One major challenge is the need to min-
imise the cost of change to avoid extensive application restructuring. Additionally,
the code’s functionality may be dispersed throughout the software, making it chal-
lenging to locate and modify specific parts. Tightly coupled components can also
make it resource-intensive to integrate or replace new components. Furthermore,
tightly coupled components may lead to a focus on knowledge, resulting in a high
dependency on developers to retain a comprehensive understanding of the complete
system. These challenges must be considered when decomposing services for a mi-
croservices architecture in developing our framework.

To address these challenges, we propose using the Domain-Driven Design ap-
proach to decompose the application into different services. This approach allows us

90
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

to define our requirements and utilise them clearly Model-driven design pattern to
guide the decomposition process.

In order to achieve the desired properties of the resulting microservices, we must
ensure that each service exhibits the following characteristics:

• Stability, meaning that it is resistant to large effects from changes and min-
imises the ripple effect on related components [185,186].

• Cohesion, achieved by grouping together functionality and components that are
dependent on each other, as described by the Common Closure Principle [117].

• Loose coupling between components, characterised by their independence from
one another and minimal mutual knowledge [135].

• Independence, allowing for independent development and deployment.

By carefully considering these factors during the decomposition process, we can
effectively design and implement a microservices architecture that meets our require-
ments and overcomes the challenges outlined above.

Further, we have adopted the Domain-Driven Design (DDD) pattern in the de-
composition of our services. DDD is a conceptual framework that aims to achieve
stability, cohesive services, loose coupling, and independent services. One funda-
mental principle of DDD is Model-driven engineering, which involves dividing the
software into distinct spheres of concern. This approach has several benefits: first,
the architecture becomes stable due to the clear separation of domains and their
respective spheres of influence; second, services become cohesive and loosely cou-
pled; third, a loosely coupled architecture provides resilience, maintainability, and
extensibility; and fourth, the system becomes more scalable and predictable. Thus,
by applying the principle of Model-driven engineering within the DDD pattern, we
can effectively decompose our system in a way that meets all of the requirements
above.

We decompose our system into services with the domain-driven design(DDD)
pattern to achieve these requirements. domain-driven design provides a conceptual
framework to ensure stability, cohesive services, loose coupling and independent ser-
vices. It addresses the above-mentioned requirements with a set of design patterns
and principles. One core principle is Model-driven engineering. For this principle,

3.4 System Implementation 91

the software is separated into spheres of concern. The benefits of this approach are:
First, the architecture is stable since the subdomains have a separate sphere of in-
fluence. Second, services are cohesive and loosely coupled. Third, Loosely coupled
architecture provides resilience, maintainability, and extensibility. Third, Systems
become more scalable and predictable. Therefore, Domain-Driven Design meets all
our requirements for system decomposition. So, we use the Domain-Driven Design
principle of Model-driven engineering to decompose our system to achieve the re-
quirements above.

Model-driven engineering (MDE) is a software development approach that relies
on modelling techniques to create software systems [63, 171]. One of the primary
methods used in MDE is independent process modelling, an abstract architecture
model not tied to any specific technology or implementation. In contrast, process-
dependent modelling considers the underlying architecture of the system being de-
veloped.

Independent process modelling is closely related to Krutchen’s View Model [63],
in which the logical view represents the process of independent modelling. When
designing our system, we chose to use a microservice architecture, which overlaps
with both the logical and development views in Kruchten’s model [171]. This high
level of abstraction allows the development and logical views to share concerns, which
we separated into the following components (illustrated in figure 3.5):

• Managing Logic: This component is responsible for the control and manage-
ment aspects of the system. It also includes a database that stores metadata,
which is data that describes other data. This component ensures the system’s
smooth operation by managing and coordinating its various parts.

• Data storage: We use raw data storage to store and manage large amounts of
data efficiently. This component is crucial for handling the potentially massive
amounts of data that the system may need to process.

• Worker Cluster: This subdomain contains the analysis tools central to the
system’s core domain. These tools are used to analyse and interpret the data
being processed.

• Graphical user interface: This component provides an interface for users
to interact with the system and visualise data. It allows users to access the

92
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

various features and functions of the system and provides a way for them to
view and understand the data being processed.

Figure 3.5: We divided the system concerns into four distinct domains. Each
domain specialises in one field. The graphical user interface handles the visualisation
of data and tools. Further, it provides easy visual control for the functions. The
managing logic handles the request and distributes tasks to the worker. The worker
cluster handles all the tasks. Finally, the data storage handles all the raw data. With
Model-Driven design, this illustration represents Krutchen’s logical and development
view.

To create a stable, cohesive, and loosely coupled system, we employed a Domain-
Driven design to decompose our application. Additionally, we utilised independent
process modelling to break down the application into domains. Furthermore, we
used a combination of Krutchen’s views to visualise the system, allowing for a clear
understanding of its structure and behaviour. Overall, these techniques allowed us
to design and implement our system effectively.

3.4 System Implementation 93

3.4.2 Self-contained services with responsibility seg-
regation

Model-Driven Design is a popular approach for designing and developing software
systems. However, several challenges must be addressed to achieve a successful
implementation when applied to a microservice architecture. One such challenge
is handling requests and data across a distributed network of microservices. This
distribution can be particularly problematic when dealing with large volumes of
data or complex data structures that must be passed between services. Another
issue is the need to consider the trade-offs between the benefits and drawbacks of
using asynchronous data services. While asynchronous communication can improve
the scalability and reliability of a system, it can also increase the complexity of the
design and make it more difficult to debug issues that arise. Additionally, it is vital
to ensure service availability is always maintained, as a single service failure can
significantly impact the overall system.

Developers address these challenges by developing various patterns to help im-
prove the loose coupling between independent services and enhance the reliability
of the system. One such pattern is the Saga pattern, which allows for the coordi-
nation of complex, long-running transactions across a distributed system. Another
pattern is the command Query Responsibility Segregation (CQRS), which separates
the command and query responsibilities of service to improve scalability and main-
tainability. The Saga pattern enables an application to maintain data consistency
across multiple services without using distributed transactions, while CQRS supports
multiple denormalised service views that are scalable and performant and improve
the separation of concerns through the use of straightforward command and query
models. By utilising these patterns and adequately addressing the challenges of us-
ing Model-Driven Design with a microservice architecture is possible to build highly
scalable and reliable software systems.

This section will elaborate on the difficulties and drawbacks of using Model-
Driven Design with microservice architecture. Further, we will outline the solutions
to overcome them. Finally, we will use the two patterns to help solve the loose
coupled independent services issue: the Saga and Command Query Responsibility

94
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

Segregation.
When introducing a distributed system based on microservice architecture one of

the main issues is handling requests and data over a set of services. Further, another
problem is to outweigh the benefits and drawbacks of asynchronous data services.
At the same time, service availability must be considered when building a system.

Two design patterns help solve this problem. The two patterns that can help
solve this problem are Saga and Command Query Responsibility Segregation. First,
the Saga pattern enables an application to maintain data consistency across multi-
ple services. The Saga pattern enables data consistency without using distributed
transactions. Second, Command Query Responsibility Segregation supports multi-
ple denormalised service views that are scalable and performant. At the same time,
Command Query Responsibility Segregation improves the separation of concerns to
more straightforward command and query models. The Saga and Command Query
Responsibility Segregation pattern facilitate the framework to overcome the added
complexity with distributed services.

Saga pattern

The Saga pattern is a well-established design pattern for coordinating complex, long-
running transactions in a distributed system [178]. At its core, the Saga pattern
involves the use of a central service is referred to as the orchestration-based Saga,
which is responsible for managing the events that take place within the system.
This central service communicates with the various participants in the system using
a command/async reply-style interaction, in which it sends command messages to
instruct participants on the actions they should take and receives a reply messages
in response. Once a reply message is received, the Saga orchestrator processes the
message and determines the next steps in the Saga.

In Figure 3.6, we illustrate how the Saga pattern can be applied in a distributed
system. Here, the Managing Logic represents the Saga orchestrator, and the pro-
cess view, as described by Krutchen, is used to depict the various steps involved
in the Saga. As can be seen in the figure, the Saga pattern provides a structured
approach for coordinating the activities of multiple participants in a distributed sys-
tem, enabling the implementation of complex, long-running transactions reliably and

3.4 System Implementation 95

Figure 3.6: The saga orchestration pattern can be visualised using Krutchen’s
Process view. The Managing logic, which represents the orchestrator, contains all
the necessary metadata and executing logic to control the data and assign tasks
within the system. The work cluster is provided with executing commands and the
relevant data addresses in the data storage, enabling it to carry out its designated
tasks. This process view clearly illustrates the orchestrator’s role in managing the
flow of tasks and data within the system.

96
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

efficiently.

Command Query Responsibility Segregation

To further improve the management of data in our system, we implemented the
Command Query Responsibility Segregation (CQRS) pattern. As the name sug-
gests, CQRS involves the segregation of concerns through the separation of the
persistent data model and related modules into two distinct parts: the command
side and the query side. As illustrated in Figure 3.7, the command side is respon-
sible for implementing create, read, update, and delete operations (CRUD), such as
HTTP POSTs, GETs, PUTs, and DELETEs, while the query side is responsible for
implementing queries and maintaining synchronisation with the command-side data
model by subscribing to the events published by the command side. By dividing the
data management into these distinct concerns, CQRS enables the system to more
effectively divide tasks and improve the scalability and maintainability of the system.

In this section, we presented how the Sage orchestration and command Query Re-
sponsibility Segregation pattern can be used to address the drawbacks of implement-
ing a domain-decomposed microservice architecture. By utilising these techniques,
it is possible to overcome the challenges that may arise when using this type of ar-
chitecture, such as ensuring the stability and cohesion of the system and promoting
loose coupling between its various components.

3.4.3 Container orchestration
The adoption of self-contained services brings with it several challenges related to
management and scalability. Specifically, maintaining and controlling all services at
an abstract level can be difficult. Additionally, the ability to scale the services to
handle varying workloads, mainly when working with large data sets, is essential.
Finally, the organisation of the service deployment is essential to prevent redundant
deployment steps for similar services. Therefore, even though self-contained service
is a beneficial pattern for structuring a software system. There are further challenges
that need to be addressed.

To address management and scalability challenges in using self-contained ser-

3.4 System Implementation 97

Figure 3.7: The left side of the figure illustrates a non-CQRS architecture in which
a single database handles both the command and query functions. The right side
depicts a CQRS architecture, which separates the command and query functions into
distinct databases. In the CQRS architecture, the command database is responsible
for storing and updating data, while the query database retrieves data. This sepa-
ration of concerns allows for more efficient and flexible handling of data within the
system.

98
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

vices, we utilise Docker Swarm’s integrated orchestration feature. Docker Swarm is
a container orchestration platform that manages multiple containers across different
host machines, providing an additional layer of abstraction for the management and
orchestration of all services. This layer serves as the technical implementation for
availability, scalability, and maintainability, allowing for the dynamic reconfiguration
of worker nodes and monitoring their status without requiring a complete system re-
build. Additionally, this layer handles all networking routes. In conclusion, using
Docker Swarm is a critical component of the technical implementation that enables
the realisation of the desired scalability, reliability, security, high maintainability,
testability, and deployability [128].

Docker Swarm utilises an abstraction layer to manage and coordinate a set of
self-contained services. It allows for the grouping of multiple Docker Engines into
a cluster, with each instance, referred to as a node. A node in a swarm cluster
is conceptually similar to a standalone Docker node. It can be deployed on a sin-
gle physical or cloud server or across multiple machines in a production deployment.
Each node is assigned one of two roles: manager or worker. The manager is responsi-
ble for all administrative tasks, including maintaining the overall state of the cluster,
scheduling services, and serving swarm mode endpoints. To ensure consistency and
reach a consensus on the state of the cluster, the manager utilises a distributed state
machine based on the Raft algorithm [130]. In a Raft assembly with an odd number
of managers n, the tolerance for manager failure is n−1

2 . In contrast, worker nodes
are solely responsible for executing containers as instructed by the manager nodes. It
is important to note that every swarm cluster must have at least one manager node,
which can also be responsible for executing Docker containers in addition to its
administrative duties. The separation of roles between manager and worker nodes
is depicted in Figure 3.8. Overall, the use of Docker Swarm enables the efficient
and effective management of a set of self-contained services, facilitating availability,
scalability, and maintainability.

After roles have been assigned to the nodes within a Docker Swarm cluster, ap-
plication images can be deployed on the cluster using the concept of services. The
graphical user interface, general logic, and other components are deployed in our
application as different services. The properties of each service, such as replicas and

3.4 System Implementation 99

Figure 3.8: This figure illustrates the separation of roles between manager and
worker nodes in a Docker Swarm cluster. The top layer depicts the Raft consen-
sus group, which includes an internal distributed state storage and several manager
nodes. The manager nodes are responsible for administrative tasks, including main-
taining the overall state of the cluster and scheduling services. The bottom layer
shows the gossip network, which consists of worker nodes solely responsible for ex-
ecuting containers. The gossip network allows for communication and information
sharing among all nodes in the cluster.

100
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

Figure 3.9: This figure illustrates the deployment of the various components of the
application within a Docker Swarm cluster. The Physical view shows the topological
relationship between these components and how they are integrated within the ap-
plication. This view can help understand the system’s overall architecture and how
it is deployed within the cluster.

resource constraints, are defined at the time of deployment. To better understand
the deployment of these services within Docker Swarm, we can utilise Krutchen’s
Physical View — figure 3.9. This perspective presents a topological view of the de-
ployment from a software engineering standpoint, showing the relationships between
the various components of the application and how they are deployed on the clus-
ter. This view can help understand the system’s overall architecture and how it is
deployed within the cluster.

In this section, we outlined how Docker feature swarms solve the issues surround-
ing scalability and high availability. We outlined how a general cluster works and its
essential components.

3.5 Software architecture comparison 101

3.5 Software architecture comparison
The design and implementation of software systems in the field of bioinformatics
presents several unique challenges, particularly in terms of ensuring reliability, scala-
bility, and performance. In this study, we sought to investigate the impact of software
patterns, Docker, microservices, and distributed computing on the quality and the
functionality of bioinformatics software systems. We also examined the key consider-
ations and challenges involved in implementing these technologies in bioinformatics
software, as well as the role of advanced software engineering principles and prac-
tices in supporting the integration of data from multiple sources. Additionally, we
explored the potential benefits and drawbacks of adopting a distributed architec-
ture for bioinformatics software systems in the context of a small research group.
In the following discussion, we will present and interpret the results of our research
concerning this research questions, and discuss their implications for the design and
implementation of bioinformatics software systems.

3.5.1 Summary of results
The objective of this study was to investigate the influence of software patterns,
Docker, microservices, and advanced software engineering principles and practices
on reliability, scalability, performance, efficiency, and productivity of bioinformatics
software systems. Our research findings suggest that the use of software patterns,
microservices, and Docker can significantly enhance the reliability, scalability, and
performance of these systems.

The modularization of a monolithic system into smaller, independently deployable
units through the use of microservices increase the maintainability and modularity of
the system, contributing to improved reliability. The adoption of software patterns
such as the saga pattern can support the effective integration of data from multiple
sources, while the application of the Command Query Responsibility Segregation
(CQRS) pattern can enhance the scalability and reliability of the system through
the separation of read and write operations. The use of Docker containers for the
packaging and deployment of microservices facilitate the scaling and deployment of

102
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

the system, leading to improved scalability. In addition, the adoption of object stor-
age for data storage and REST for component communication can further, enhance
the performance and reliability of the system.

In terms of advanced software engineering principles and practices, our the re-
search found that the use of model-driven design and Docker orchestration with
Swarm can facilitate efficient and productive deployment and management of a large
number of Docker containers.

The adoption of a distributed architecture for a bioinformatics software system
can further improve the efficiency and productivity of a small research group through
the parallelization of tasks and the utilization of additional resources.

In conclusion, our findings suggest that the implementation of software patterns,
microservices, Docker, and advanced software engineering principles and practices
can significantly enhance the reliability, scalability, performance, efficiency, and pro-
ductivity of bioinformatics software systems. To optimize the success of a bioinfor-
matics software system with these technologies is important to carefully consider the
specific needs and constraints of the system, as well as the availability of resources
and expertise.

3.5.2 Interpretation results
The findings of this study suggest that the implementation of software patterns, mi-
croservices, Docker, and advanced software engineering principles and practices can
significantly improve the reliability, scalability, performance, efficiency, and produc-
tivity of bioinformatics software systems.

In terms of reliability, the use of microservices and software patterns such as
the saga pattern can enhance the modularity and maintainability of the system,
leading to reduced downtime and increased stability. The application of Docker
containers for the packaging and deployment of microservices facilitates the scaling
and deployment of the system, contributing to improved scalability. The adoption of
object storage for data storage and REST for component communication can further
enhance the performance and reliability of the system.

The integration of advanced software engineering principles and practices, such as
model-driven design and Docker orchestration with Swarm can support the efficient

3.5 Software architecture comparison 103

and productive deployment and management of a large number of Docker containers.
The adoption of a distributed architecture can further enhance the efficiency and
productivity of a small research group through the parallelization of tasks and the
utilization of additional resources.

Overall, our findings indicate that the careful implementation of software pat-
terns, microservices, Docker, and advanced software engineering principles and prac-
tices can significantly improve the reliability, scalability, performance, efficiency, and
productivity of bioinformatics software systems. It is crucial to consider the needs
and constraints of a bioinformatics software system and the availability of resources
and expertise to optimize its success with these technologies. Future work could in-
volve further exploration of the impact of these technologies on bioinformatics soft-
ware systems, as well as the development of best practices for their implementation
in this context.

3.5.3 Challenges and limitations
Throughout our research endeavour, we encountered a plethora of obstacles and lim-
itations that required diligent attention in order to be effectively addressed. One
challenge was the vast amount of tools and APIs that needed to be considered in
order to make the system is versatile. Several tools incorporate microservice archi-
tecture. Three of the main tools are: Refget, Gen3 Framework Service, PhenoMeNal
project [23, 60, 139, 143, 184]. Refget is a Global Alliance for Genomics and Health
(GA4GH) API specification for accessing reference sequences and sub-sequences us-
ing an identifier derived from the sequence itself [143, 184]. The Gen3 Framework
Services are a set of microservices that have been used to develop over a dozen differ-
ent data commons and data resources, each developed independently for a different
research community [23]. The PhenoMeNal project pioneered Virtual Research En-
vironments (VREs) for metabolomics based on the microservice architecture, with
many microservices in metabolomics analysis and general data analysis [60, 139].
There are further frameworks such as NCI Genomic Data Commons, refgenie and
FAIRSCAPE with various focuses and take a leading role in biological comput-
ing [80, 108, 164, 165]. All of these projects are designed to facilitate the sharing of
clinical and genomic data, and improve interoperability in the field of bioinformat-

104
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

ics. Building a software architecture that can handle and interact with other tools
is a challenge that has to be outweighed and considered when designing the frame-
work. Generally, the vast amount of tools highlights the importance of thoroughly
evaluating and selecting software design decisions to ensure the functionality and
interoperability of software architecture.

A limitation of our study was the limited scope of the thesis. The the topic
of bioinformatics microservices is vast, and there are many additional points that
could be considered. In particular, the research requires a deep understanding of
software engineering principles such as Design Methodology for Reliable Software
Systems [111, 133] and Designing and Deploying Internet Scale Services [79, 134].
On the bioinformatics side, there are also numerous software engineering topics that
are essential for building a flexible data analysis system, such as data handling and
tool integration for various analysis methods, as outlined in several research papers
[89, 112, 122] . These topics are just a few examples of the many areas that need to
be addressed when building software systems for bioinformatics. However, due to
constraints on time and resources, we were unable to explore all fully aspects of this
topic in depth.

Despite the challenges and limitations that we encountered during the research
process, we were able to address them successfully and produce valuable insights into
the use of software patterns, microservices, Docker, and advanced software engineer-
ing principles and practices in bioinformatics software systems. In addition to our
theoretical analysis, we also implemented many of the concepts and principles that
we studied, further demonstrating their feasibility and effectiveness in the context
of bioinformatics software systems. Our research showcases the potential of these
technologies in addressing the complexities and demands of bioinformatics software
systems.

3.5.4 Future work
As we look towards the future potential of our bioinformatics microservices system,
several exciting opportunities for improvement present themselves. As mentioned in
our research, one promising direction for development is the expansion of the system’s
REST API to consume more tools and APIs. This expansion would significantly

3.6 Conclusion 105

increase the versatility and functionality of the system and enable it to interact with
a broader range of resources and tools.

Another aspect to consider is the integration of advanced software design patterns
and architectural styles to improve the reliability and maintainability of the system.
By applying these principles, we can ensure that the system is robust and able to
adapt to change requirements and demands, ultimately supporting the long-term
success of the system.

The integration of new tools and resources could also be a valuable consideration,
as it could enhance the capabilities of the system and enable it to address a broader
range of needs in the bioinformatics community. The addition of a Common Work-
flow Language layer to the architecture may also help expand the API and enable
interoperability with other systems.

Overall, we are confident that these strategies will allow us to continue improv-
ing the efficiency and effectiveness of our system and better serve the needs of the
bioinformatics community. By embracing the latest technologies and principles in
software engineering, we can support the advancement of scientific research and make
a positive impact on the field of bioinformatics.

3.6 Conclusion
In this study, we sought to understand the influence of software patterns, Docker,
microservices, and advanced software engineering principles and practices on reliabil-
ity, scalability, performance, efficiency, and productivity of bioinformatics software
systems. Through our research, we have identified several key factors that impact
the success of these systems. The implementation of software patterns, such as the
saga pattern and Command Query Responsibility Segregation (CQRS) pattern can
enhance the system’s ability to integrate data from multiple sources and improve
scalability and reliability. The use of microservices and Docker containers can im-
prove the modularity and maintainability of the system and facilitate the efficient
deployment and scaling of the system. The adoption of advanced software engineer-
ing principles and practices, such as model-driven design and Docker orchestration,
can further improve the efficiency and productivity of the system.

106
Chapter 3 Advanced Software Engineering in Bioinformatic: A Case Study of

Design and Implementation

While our research has provided valuable insights into the design and implemen-
tation of bioinformatics software systems, we also acknowledged the challenges and
limitations that must be considered. The vast number of tools and APIs available
can make it difficult to evaluate and select the most appropriate technologies for a
given system. Additionally, the scope of our study was limited, and there are many
additional topics that could be explored in greater depth. Despite these challenges,
we believe that our work has the potential to inform future research in this field and
contribute to the development of best practices for the design and implementation
of bioinformatics software systems.

Chapter 4

Enhancing Bioinformatics Analysis
with Our Proposed System

Real-World Applications and
Implications

107

108
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

The purpose of this chapter is to present the experimental results of our proposed
system for biomedical software analysis. In order to provide context and understand-
ing for the experiments, we will first review the critical software concepts highlighted
in our study. Additionally, we will outline the background and core results that influ-
enced the methods we used in our research. Finally, we will discuss how our results
fit into the larger field of biomedical software analysis and contribute to the exist-
ing knowledge in this area. The results of this chapter are essential for advancing
our understanding of biomedical software and its applications in the field with our
proposed system.

4.1 Introduction
Software architecture plays a crucial role in designing and implementing bioinformat-
ics systems. It defines the overall structure and organisation of the system, as well
as the relationships between its components. Furthermore, a well-designed software
architecture can support data and task integration, scalability, and parallelisation.
This basis leads to improved performance and efficiency. However, designing software
architecture for bioinformatics systems is a challenging task due to the complexity
and heterogeneity of the data, as well as the need to support a wide range of analysis
and management tasks. This chapter presents bioinformatics cases addressing these
challenges through our proposed software architecture techniques. Our framework is
designed to support the efficient analysis and management of large-scale biological
data, and it utilises various techniques and technologies to achieve this goal.

In this chapter, we describe our experiments with this framework, which demon-
strates its effectiveness in integrating data from multiple sources, scaling to handle
large amounts of data and workload, and utilising parallelisation to improve perfor-
mance. Our experiments show that the proposed framework can effectively integrate
data from multiple sources and formats, even in the presence of data heterogeneity.
It is also able to scale to handle increasing amounts of data and workload without
a decrease in performance, thanks to its use of distributed computing infrastruc-
ture and cloud computing technologies. Furthermore, our experiments show that
the proposed framework is able to utilise parallelisation to improve performance by

4.2 Highlighted performance features 109

significantly dividing tasks into smaller subtasks that can be processed concurrently.
Overall, our experiments demonstrate the effectiveness of the proposed framework
in addressing the challenges of data integration, scalability, and parallelisation in
bioinformatics.

The focus of this section is to investigate the impact of parallel computation and
software techniques on the efficiency and accuracy of data analysis in bioinformatics.
Specifically, the research questions are as follows:

• How does the implementation of parallel computation techniques in our frame-
work improve the speed of data analysis in bioinformatics?

• What are the most effective approaches for integrating and analysing data from
multiple sources within our framework in bioinformatics?

• How can our framework be scaled to handle effectively large-scale datasets in
bioinformatics, and how can improve machine learning techniques are applied
to optimise data integration and analysis in this context?

These questions aim to explore the potential benefits and challenges of using par-
allel computation and machine learning techniques in a bioinformatics framework to
improve the efficiency and accuracy of data analysis. By addressing these questions,
we hope to identify strategies for optimising the performance of our framework in the
context of large and complex datasets and to develop approaches that can effectively
integrate and analyse data from multiple sources.

4.2 Highlighted performance features
In this section, we will delve into the proposed system’s performance characteristics
through experimental trials. Specifically, we will evaluate three primary features:
scalability, parallel distributed computing, and data integration. These performance
features have been deemed crucial elements in the design and implementation of
bioinformatics data analysis systems and thus have been selected as the focal point
of our experimentation. The proposed system endeavours to address the challenges
of scalability, parallel distributed computing and data integration to enhance the
system’s overall performance. Through a thorough analysis and review of relevant

110
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

literature, we will investigate the theoretical background of these performance fea-
tures.

4.2.1 Scalability
Biomedical data analysis systems will continue to grow and expand, with an increase
in both users and resources. This growth involves sustaining increased workloads as
demand for the system increases [81]. The management of an increased workload is
called scalability from a software development perspective. In section 2.4.1 Software
engineering for biomedical data analysis, we discussed scalability challenges such as
monolithic architecture, which can make it difficult to adjust an existing system to
meet new demands. In addition, scaling a software system is a complex process
that requires careful consideration of time, complexity, requirements, and strategy.
Therefore, it is essential to carefully assess these factors to successfully scale the
system to meet the needs of a growing user base [81].

In biomedical data analysis, scalability is a key technical requirement that is
reflected in the design goals of distributed computing systems [126]. Scalability
challenges in these systems are outlined by Neuman in Section 2.2.2 Taxonomy, and
can be grouped into three main categories:

• Size: Challenges related to the growing number of requests and resources, such
as services and data.

• Geography: Challenges related to the expanding distribution of users and com-
puting nodes across different geographic locations.

• Administration: Challenges related to the increasing number of administrative
organisations, such as research departments, that need to be taken into account.

These three dimensions of scalability deal with computing, network, and securi-
ty/permissions issues.

To address the challenges of scaling systems, researchers have proposed several
approaches, including replicating resources, utilising asynchronous network commu-
nication, and partitioning and distributing services [86, 172]. These approaches aim
to address different aspects of the challenges.

4.2 Highlighted performance features 111

Partitioning and distributing services can help to mitigate the challenges of in-
creasing administrative organisations by dividing the system into independent en-
vironments, such as through virtualisation [86]. Asynchronous communication, on
the other hand, provides a layer between a user and the service, allowing the system
to compute resources rather than waiting for each task to complete [172]. Finally,
replication creates multiple instances of a service to alleviate high demand on a sin-
gle service [86]. Ultimately, these approaches offer solutions to specific challenges in
scaling systems.

It is important to note that while each of these approaches can be effective on
their own, they can also be combined for a more a comprehensive solution to scaling
challenges. For example, replicating resources and utilising asynchronous communi-
cation can be combined to increase the efficiency of the system while partitioning
and distributing services can be used in conjunction with replication to better man-
age increasing administrative organisations [172]. Overall, by carefully considering
the specific challenges and selecting the appropriate combination of approaches, it
is possible to effectively scale systems and overcome the various challenges that may
arise.

The approaches mentioned above have interactive impacts on their respective
fields of concern. These approaches may affect various Neumann scalability classes,
depending on the perspective taken. Partitioning and distributing services can ad-
dress increased administrative organisation and a growing number of services. From
a software development operations perspective, partitioning the service into indepen-
dent and enclosed environments allows for the distribution of implemented methods
without compromising security or permissions. In other words, this viewpoint looks
at the software system from a management/organisational viewpoint. Each service
is an abstract entity.

The approaches mentioned above significantly impact their corresponding fields
of focus. The effect on Neumann scalability classes may vary depending on the
perspective taken. Partitioning and distributing services addresses the increased ad-
ministrative organisation and the growing number of services. In the same vein,
from a software development operations standpoint, the same pattern — namely,
partitioning the service into independent and enclosed environments — enables the

112
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

distribution of implemented methods without compromising security or permissions.
These two share standpoints to examine the software system from a management
and organisational viewpoint. Therefore, treating each service as an abstract entity.
However, when considering each service as an entity, we can partition the service
into even smaller parts. From a microservice development perspective, partitioning
the application into reusable and modular parts allows for managing a growing num-
ber of requests and resources. Therefore, the partitioning and distribution of the
application can impact multiple Neumann classes, depending on the granularity of
perspective.

This section will focus on the growing number of requests and resources dimen-
sion. As we elaborated on the other aspects in the section 3.2 Background: Technical
Considerations for Bioinformatics Software Development and 3.3.1 Microservice ar-
chitecture

Scaling a system can be complex, and various strategies have been developed
to structure this process. As discussed in Section 2.2.2 Taxonomy, horizontal and
vertical scaling approaches can be used to increase the capacity of a system. While
vertical scaling, or increasing the resources of a single machine, can be a fast solution,
it has limitations. This limitation is exemplified by Amdahl’s computation model,
which states that "the overall performance improvement gained by optimising a single
part of a system is limited by the fraction of time that the improved part is used"
[142].

The theoretical speedup of a system is upper bounded based on Amdahl’s formu-
lation, as shown in Figure 4.1. In addition, increasing the fraction of time spent on
the parallel portion can result in higher theoretical speedup than simply increasing
the number of processors. Therefore, one key solution to scale a system is to scale
horizontally or add more machines to the system to utilise resources better and im-
prove overall performance. However, it is vital to consider the challenges associated
with horizontal scaling, such as ensuring effective communication and coordination
between the added machines. Therefore, it is crucial to carefully evaluate horizontal
and vertical scaling options to determine the most effective system scaling strategy.

Given the significant advantages of horizontal scaling in terms of theoretical per-
formance improvements, this study focuses on identifying and analysing software

4.2 Highlighted performance features 113

1 2 4 8 16 32 64 128 256
Number of Processor

1

0

2

4

6

8

10

12

14

16

18

20

Sp
ee

du
p

fa
ct

or

Theroretical speedup based on Amdahl's Law
50.0%
60.0%
70.0%
80.0%
90.0%
95.0%

Figure 4.1: Amdahl’s Law states that the maximum theoretical speedup of a pro-
gram or task achieved by parallel processing is limited by the portion of the task that
must be executed sequentially. This relation is depicted in the figure. The figure
shows that the theoretical speedup also increases as the fraction of the task that can
be parallelised (the parallel portion) increases. However, increasing the number of
processors does not necessarily result in a higher theoretical speedup. Instead, the
greatest improvement in performance comes from increasing the parallel portion of
the task.

114
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

design patterns that facilitate the implementation of horizontal scaling techniques.
Partitioning and replication are the two primary patterns employed in this context
. Specifically, two patterns are discussed in detail: (1) partitioning and distribution
and (2) replication. These patterns are systematically analysed concerning their ap-
plicability, benefits, and limitations to provide a comprehensive overview of their use
in achieving theoretical speedup through horizontal scaling.

Partition and distribution

Partitioning and distribution are standard techniques used to design and implement
complex systems. It involves breaking down the system into smaller, independent
components, each assigned a specific function and located in a specific location.
This approach allows for the optimisation of the system efficiency and organisation
by distributing tasks and resources across multiple locations, rather than having all
components residing in a single location. Partitioning and distributing a system
makes it more scalable and resilient, as it can adapt to changing workloads and
resources. Furthermore, this approach eases maintenance and modification of the
system, as individual components can be updated or replaced without affecting the
entire system. As a result, partitioning and distribution can significantly improve
the performance and reliability of a system.

Problem Any software system has to handle general system failures. A variety of
facets can cause system failures. In this instance, we are considering the software
side of a system failure. For instance, a service or component is unable to process
a request. In a centralised system, an unprocessed request can lead to a delay,
inconsistent state, or a complete system crash. Therefore, any system design has to
handle general software-based system failures. The main problem in a centralised
system is that an inconsistent state of requests can affect the whole system.

In addition, only increasing resources in a centralised system could be more ef-
ficient than restructuring the system. As mentioned above, the theoretical speedup
for the system, which uses a parallelisable portion of 1

2 , only doubles when increasing
the processors by a factor of 16. If we compare this theoretical speedup to increasing
the parallelisable portion, we can see that it is far from efficient. To achieve the same

4.2 Highlighted performance features 115

speedup, we only need to increase the parallelisable portion to 3
5 and the processors

by a factor of 4. Hence, in a centralised system, increasing resources is inefficient
and costly to improve speedup.

Solution and Features The software pattern of partitioning and distribution can
solve the challenges mentioned earlier. By partitioning a system, we can achieve
two benefits: first, dividing a monolithic system into service data processing creates
independent paths so that a single concern only affects the related areas instead
of blocking or affecting other parts. Therefore, since the system relies on several
supports, it decreases the likelihood of a system crash. Second, in the process of
partitioning systems in architectural design, improving the parallelizability fraction
improves theoretical speed. Then, distributing the services can also improve response
time by bringing the service closer to the resources. All in all, partitioning and
distributing a system into services allows for the following:

1. a decrease in the probability of system crashes

2. an improvement in theoretical speedup

3. a decrease in response time

Technical layaout When designing a system, various design patterns can be ap-
plied to different levels, as illustrated by Krutchen in the section 3.2 Background:
Technical Considerations for Bioinformatics Software Development. This illustration
helps structure the processing system and consists of four levels: logical, develop-
ment, process, and physical.

As outlined in the development level of Krutchen’s illustration, we employed
a model-driven design utilising microservices. This approach is discussed in more
detail in sections 3.3.1 Microservice architecture and 3.4 System Implementation.
By separating concerns, we can minimise service interference, with the worst-case
scenario being that only a single service would be affected by a system inconsistency
rather than the entire system. From a physical perspective, we utilised containerised
virtualisation to provide an additional layer of separation for our services. This
design also allows for the distribution of services based on requests, similar to a

116
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

DNS resolving method. As a result, this distribution helps reduce the time for data
transfer, as the processing and data are closer to the request.

We employed a combination of two partitioning techniques to address scalability
challenges: model-driven microservices and containerised virtualisation. We applied
these patterns at the system development and physical levels to minimise the prob-
ability of system failure and reduce response time.

Replication

Problem As mentioned above, having a single system with a centralised and single
instance can bring challenges. First, a single process request in a sequential man-
ner can block other threads, causing the entire system to wait until the request is
finished. Additionally, relying on a single instance of a system reduces its stability.
Furthermore, after a system failure, all processes, even unrelated ones, are cancelled
and aborted in the worst case. A restart might cause an inconsistent state, so the
system cannot restore the previous state. Therefore, a single-process centralised
system blocks other processes, increases stability vulnerability and can cause data
inconsistencies.

Solution and Features These challenges can be resolved with the software design
pattern of replication. Replication creates copies of resource and service instances.
The system can be more stable with multiple service instances since several in-
stances can serve resources to a request. Moreover, depending on the replication
implementation, work can be handled by a set of nodes instead of sequentially. Fi-
nally, replicating resources and keeping a data copy close to the request reduces the
time needed to request data. Therefore, the replication pattern increases stability,
provides parallel execution, and decreases data loading.

Functionality We use two common approaches to replication: service separation,
parallelisation, and caching. Regarding service separation, we use standard software
decomposition methods. In our implementation, the replication pattern creates sev-
eral instances for computing. This implementation includes instances for the UI,
general logic, and task execution. Furthermore, our implementation includes a con-

4.2 Highlighted performance features 117

trolling node, which organises tasks for the worker. Specifically, the controlling node
persists the metadata for every task so that each worker only receives the necessary
data needed to perform a task. Additionally, we implemented a task partitioning
method to break up more significant tasks. From a caching perspective, each worker
pulls the required data from the defined source. Each worker has a copy of the
original data, improving data consistency. Therefore, we used a general software
pattern of software decomposition with instance replication and a controlling node
to implement the replication pattern.

4.2.2 Distributed system parallelisation
Distributed systems have several advantages. One of the main advantages is par-
allelisation. In Distributed computing, parallelisation can refer to a set of software
patterns. Each pattern solves a particular problem in data-driven software develop-
ment. Therefore, we focus in this section on data and task parallelism.

As mentioned in the section 1.1 Scope and Challenges and 2.4 Open issues and
research challenges in biomedical data analysis, some of the core challenges in data-
driven software analysis is long runtime application executions due to sequential task
executions, large data sets, and inferring new results from data. These challenges are
especially apparent in biomedical data analysis. In biomedical data analysis, major
computational methods rely on fundamental transformations on vectors, matrices,
or tensors. These linear algebraic transformations benefit from parallel execution
in several ways. First, the time for a sequential task can be reduced. Second,
large data sets can be handled by a group of nodes. Third, parallelisation allows
for simultaneously executing data analysis from several perspectives. Therefore,
parallelisation in a distributed system is a core advantage in biomedical data analysis.

When integrating any form of software-level parallelisation into a system, de-
velopers must consider many factors. Two main factors are software topology and
parallelisation mode. These two aspects are closely related and affect each other
mutually. Therefore, software architecture decisions impact the degree of paralleli-
sation.

In parallel computing, the term topology refers to the underlying software ar-
chitecture. We used a distributed software architecture. The core aspects of a dis-

118
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

tributed service-oriented architecture are component concurrency, individual system
clocks, and independent components. These aspects have several benefits, such as
implementing parallelisation for biomedical data-driven analysis. Therefore, with a
distributed software architecture, the parallelisation mode can be built on a flexible
infrastructure.

We considered two main approaches for the parallelisation mode: task and data
parallelisation. As mentioned above, the core advantage includes concurrent task
execution, which reduces the time compared to sequential execution. The two par-
allelisation approaches, task and data, handle concurrent execution differently. We
outline the key concepts on a general level. Task parallelisation is a parallelisation
mode across several processors or nodes. Generally, Task parallelisation is part of
parallel computing environments. However, task parallelisation can also be applied
to distributed systems. Task parallelism focuses on distributing tasks concurrently.
Depending on the implementation, distributing concurrent tasks performs the task
by a set of processors, nodes or threads across a system. For instance, a single data
set moves through separate tasks in pipelining. Each task can run independently
from the other. In contrast to task parallelisation, data parallelisation involves per-
forming the same operation on different data. Generally, data parallelism involves
dividing the same task among different data components. Each processor or node
performs the same task on different distributed data. This process is generally part
of a multiprocessor system in a single set of instructions [34, 50, 174]. An example
where data parallelism can improve runtime is matrix multiplication. Consider the
matrix A ∈ Rm×n and B ∈ Rn×p. For the multiplication A · B, each entry in the
result C can be calculated individually. This partition would result in a run time
of O(m · n · p). By running the task parallel, the runtime can be reduced. The
multiplication can mainly be completed in O(n) when executed in parallel using
m · k processors. We illustrated the task and data parallelisation modes in figure
4.2. Therefore, the parallelisation modes, tasks and data mainly differ in executing
concurrent tasks by splitting the task or the data.

By implementing task parallelisation, a set of processors, nodes or threads can
perform a single task simultaneously, which can help to reduce the execution time
of the task when compared to the sequential execution. On the other hand, data

4.2 Highlighted performance features 119

parallelisation, the same task is performed on different data by different processors,
nodes or threads, which can also help to speed up the overall process.

Figure 4.2: Data parallelisation and task parallelisation are distinct strategies for
parallelisation, each possessing unique characteristics and areas of applicability. Data
parallelisation involves partitioning data into smaller subsets and the concurrent
execution of the same task on each subset. On the other hand, task parallelisation
involves assigning different tasks to each subset and concurrently processing the
subsets. These approaches to parallelisation have been widely utilised to improve
the efficiency and speed of data processing operations.

4.2.3 Data integration
Integrating bioinformatics data from multiple sources can be complex due to the
diversity and lack of standardisation in the data collection, storage, and annotation
process. The heterogeneous data sources may use different data formats, schemas,
and terminologies, making it challenging to integrate the data in a meaningful way.

120
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

Moreover, scalability, data security and privacy, and data integrity are essential
concerns that must be addressed while integrating large amounts of bioinformatics
data.

our proposed system addresses these challenges by utilising Docker Swarm, a
representational state transfer-based application programming interface, and object
storage as crucial components. Docker Swarm is an orchestration and management
tool for clusters of Docker containers, which allows for efficient scaling of the ap-
plication by adding more containers to the cluster as needed, which can be helpful
when integrating large amounts of data from multiple sources. Additionally, using
Docker containers can ensure the security and privacy of the data by isolating and
protecting the application and its data from the host environment.

The system also implements a REST-based API, which provides a consistent
and predictable interface for accessing and integrating data from different sources.
Representational State Transfer (REST) is a software architectural style that defines
a set of constraints for creating web APIs. By exposing a REST-based API, the
system can address issues related to the heterogeneity of data sources and lack of
standardisation, as it provides a common way to access and manipulate the data.

Object storage is also utilised as a part of the system, which can help address
some of the problems associated with data integration, particularly those related
to scalability, data security, and privacy. Object storage is a type of data storage
designed to store and retrieve large amounts of unstructured data, such as files and
images. It is typically highly scalable and can handle large volumes of data, making
it well-suited for storing and managing large amounts of data in a data integration
system. Additionally, object storage systems often include built-in security features,
such as encryption and access controls, which can help ensure the security and privacy
of the data.

Overall, the utilisation of Docker Swarm, REST-based API, and object storage,
make this data integration framework a promising approach for addressing challenges
in the field of bioinformatics.

In the upcoming section, we will delve into the three performance features of
scalability, distributed parallelisation, and data integration. Our research will eval-
uate the effectiveness of these features in our system and how they work together

4.3 Biomedical experiments 121

to optimise performance. We will conduct experiments to assess the integration of
these features within our system and analyse the results to conclude their impact
on overall system performance. This analysis will provide valuable insights into the
importance of these features in modern systems and how they can be utilised to
achieve optimal performance.

4.3 Biomedical experiments
In this section, we conduct experiments on our system to evaluate the performance
characteristics of the proposed approach. We provide a detailed description of the
experimental setup for each experiment, including the specific embedding techniques
used in bioinformatics and mathematics. Additionally, we present and discuss the
results of each experiment, highlighting how they demonstrate the performance fea-
tures of the proposed system.

4.3.1 Matrix decomposition on Genotype-Tissue
Expression Project data

The term "omics" in biology refers to a set of disciplines that study large-scale biolog-
ical systems, such as genomics, proteomics, and metabolomics. Consequently, omics
data can contain signal interactions in the form of kinetic, physical or molecular
interactions that control biological systems.

Generally, omics data is stored in data structures resembling vectors, matrices, or
tensors. With new data-generating possibilities, large data sets have grown, leading
to an increasing data dimension. Moreover, with increasing data size, applying a set
of sequential analyses can result in long computing times. Therefore, we require a
method and infrastructure to handle large-dimensional omics data sets.

One method that can handle these immense data challenges is matrix decompo-
sition. Matrix decomposition is a technique that reveals low-dimensional structure
from high-dimensional data. In omics data, the low-dimensional representation can
outline signal interactions. matrix decomposition is widely used in omics data and
has proven to be effective in revealing new biological knowledge from various omics

122
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

data [62, 163]. Furthermore, we can reduce computational time by using an ap-
propriate parallel software system. Hence, matrix decomposition combined with a
parallel software system provides opportunities to infer relevant features from data
and reduce computing times.

In this section, we will review the data structure of omics data, e.g. genomics,
transcriptomics and proteomics. First, we will outline the general data structure for
omics data. Afterwards, we will describe the biological representations and impli-
cations of matrices and discuss how they can be used to model biological systems
and extract meaningful information e.g. gene expression in different human tissues.
Then, we will mathematically outline three analysis methods: principal component
analysis, independent component analysis, and non-negative matrix factorisation.
Finally, we will present our experimental results using matrix decomposition on
RNA-seq data from a GTEx dataset. We will demonstrate how the technique can
be applied to this specific dataset and what insights it can gain.

Matrix decomposition with omnics data

In biology, new advancements in experimentation unfold a new era in data-driven
analysis. These novel experiments employ various data aggregating methods, such
as data processing/control software, liquid handling devices, and sensitive detectors.
This aggregated data serves as a starting point for numerous tests. These tests
may include several omics fields, i.e. genomics, proteomics, metabolomics, metage-
nomics, phenomics and transcriptomics. For instance, in genetics, several tests allow
the classification of observable traits or characteristics of an organism, i.e. pheno-
types. Concretely, in genetics, two main aspects characterize phenotypes. First,
proteins interact with transcription factors to activate or repress the transcription of
specific genes. Second, multiple molecules and processes influence the cooperatively
and synergistically on the phenotypes. These two effects are part of a general group
of complex biological process. Apart from highly specialized genetic tests, the tests
on extensive aggregated data are also referred to as high-throughput screening. Con-
sequently, in the field of genetics, high-throughput screening allows a more detailed
classification of complex biological process.

Running tests on this aggregate data requires data structures containing all nec-

4.3 Biomedical experiments 123

essary data. In most cases, the commonly used data structure are matrices. These
matrices can hold several values, e.g. expression counts, methylation levels, and
protein concentrations. Commonly the matrix rows contain genes. Whereas each
column represents an individual/patient sample. We illustrated a general analysis
pipeline overview in figure 4.3. One of the core tasks in finding structures in these
large matrices is to classify phenotypes or complex biological process. Therefore, we
need methods to discover phenotypes and complex biological process from biological
data in matrixes.

Figure 4.3: The analysis pipeline consists of several stages, including preprocess-
ing raw RNA-sequence reads, alignment and quantification, normalization and log
transformation, matrix factorization using PCA, ICA, and NMF, and matrix de-
composition. In this study, we concentrate on the matrix decomposition step in the
pipeline.

From a genetics viewpoint, the representation as a matrix has a significant im-
plication for further analysis [33, 116]. The relationship between the two aspects
allows a simplified representation of extensive data. These core aspects are complex
biological processand similar phenotype samples. Only a tiny subset of complex bi-
ological processis active at a given time. Consequently, a good analysis technique
can extract low-dimensional from high-dimensional data. The commonly used tech-
nique is matrix decomposition. Matrix decomposition — also referred to as matrix
factorisation— is a decomposition method that factors matrix into a product of ma-
trices. Thus, the method matrix decomposition uncovers underlying structures in
genetics by specifying the genetic context to input data in the form of matrices.

Generally, matrix decomposition provides a simplified representation of a ma-
trix. As we only consider genetic data, we will consider matrices over R — namely
Rn×m, with n, m ∈ N . Numerically, we want to approximate or represent a matrix

124
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

as a product of two or more matrices:

X ≈ A ·B (4.1)

where X ∈ Rn×m, A ∈ Rn×p, B ∈ Rp×m. This problem is equivalent to

A ≈ X ·B−1 (4.2)

For a detailed explanation of the existence and approaches behind this equivalenz
consider A.1.1 Inverses

In conclusion, new advancements in data-driven analysis in biology have led to
the use of various data aggregating methods and the application of these methods
to various omics fields. These tests allow for a more detailed classification of cellular
and biological processes. Data representation in matrices allows for a simplified
representation of extensive data. It facilitates further analysis using techniques such
as matrix decomposition, which uncovers underlying genetic structure by specifying
the genetic context to input data. The representation of data in matrices also makes
it possible to approximate or represent a matrix as a product of two or more matrices,
providing a simplified representation of the data. With the increasing amount of
genetic data being generated, techniques such as matrix decomposition will continue
to play a critical role in analysing this data.

Matrix decomposition methods

In this section, we will provide an overview of the most commonly used matrix
decomposition methods, namely Principal Component Analysis (PCA), Independent
Component Analysis (ICA), and Non-negative Matrix Factorization (NMF). These
methods, known collectively as matrix decomposition, vary in their approach to
calculating each factor. We will outline the core principles of each approach with
mathematical aspects that allow for the implementation of matrix decomposition
techniques. By understanding the fundamental concepts behind each technique, we
can better utilize them to extract meaningful features and representations of our
data.

4.3 Biomedical experiments 125

Principal component analysis Principal Component Analysis (PCA) is a widely-
used technique for dimensionality reduction in bioinformatics. It is a mathematical
method that utilizes linear algebra and statistics to identify patterns and relation-
ships within high-dimensional data. Identifying and removing less important features
allows for the visualization and interpretation of complex data in a lower-dimensional
space.

PCA is based on the concept of eigenvectors and eigenvalues, which are derived
from the covariance matrix of the data. The eigenvectors with the highest eigenvalues
are chosen as the principal components, which are linear combinations of the original
features that capture the most variation in the data. These principal components
can then represent the original data as new, uncorrelated features. .

In bioinformatics, PCA has been used in many applications, such as gene expres-
sion analysis, image analysis, and protein structure analysis. It has also been utilized
as a preprocessing step for other data mining algorithms, making it is a powerful
tool for data exploration and discovery in bioinformatics research.

The matrix decomposition method principal component analysis is one of the
most commonly used approaches for dimension reduction using linear algebraic and
statistical methods. Generally, principal component analysis recognizes geometric
similarities by using algebraic properties. We will outline the core linear algebra and
statistical results that allow principal component analysis.

Independent component analysis The matrix decomposition approach, inde-
pendent component analysis, is utilized to address the challenge outlined in section
4.3.1 matrix decomposition with omnics data through the use of equations 4.1 and
4.2 as described in previous literature [40, 84]. Independent component analysis is
further enhanced by incorporating an additional layer of probability theory to model
the method’s context. The detailed mathematical results are expanded in A.1.3
Independent component analysis.

In comparison to Principal Component Analysis (PCA), ICA focuses on max-
imizing the statistical independence among the resulting components rather than
variance in the data. The technique is founded on the principles of non-gaussianity
and the assumption that the underlying signals are independent and non-gaussian.
Higher-order statistics such as kurtosis and entropy are employed to identify the inde-

126
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

pendent components by maximizing the non-gaussianity of the resulting components
as described in [40,84].

The foundation of ICA is based on the mathematical formulation of the problem
and the utilization of probability theory to model the underlying signals. The cen-
tral limit theorem, the law of large numbers, and maximum likelihood estimation are
among the mathematical theorems employed in ICA. This technique has been uti-
lized in various bioinformatics applications such as gene expression analysis, image
analysis, and signal processing [183].

As a critical remark, the resulting components generated by independent com-
ponent analysismay not be orthogonal to each other, in contrast to those generated
by principal component analysis. Furthermore, independent component analysismay
be computationally more demanding than principal component analysis; however, it
is particularly practical when there is an assumption of non-gaussian independence
among underlying signals.

Non-negative Matrix Factorization (NMF) The matrix factorization ap-
proach, NMF, is used to extract essential features in a dataset and to represent
it in a more interpretable and low-dimensional space. NMF assumes that the data is
composed of non-negative components. This fact is used to construct the factoriza-
tion [103,104]. The algorithm aims to approximate the data matrix as the product of
two non-negative matrices, usually the basis and the coefficient matrix. The detailed
mathematical results are expanded in A.1.4 Non-negative matrix factorisation.

In bioinformatics, NMF has been applied to a wide range of problems, such as
gene expression analysis, text mining, and image analysis. In gene expression analy-
sis, for example, NMF can be used to identify interpretable patterns and representa-
tions in gene expression data, it has been widely used for clustering and dimension-
ality reduction [76,109]. NMF has also been used in image processing and computer
vision, where it can extract features such as edges and textures from images, by
using non-negativity constraints, it provides a more interpretable representation of
the image [102,103].

NMF has some advantages over other methods like PCA and ICA. NMF’s non-
negativity constraint makes the results more interpretable and easy to visualize, and
it is robust to noise and missing data and can cope with sparse data as well. Addi-

4.3 Biomedical experiments 127

tionally, the optimization problem of NMF can be relaxed to a convex optimization
problem, making it computationally more efficient and simpler to implement [53,54].

In summary, Non-Negative Matrix Factorization (NMF) is a powerful and widely-
used method in bioinformatics. It allows extracting interpretable features from high-
dimensional data, and it is based on the non-negativity the constraint of the original
data. NMF has been applied in a wide range of bioinformatics problems, such as gene
expression analysis, text mining and image analysis and its computational efficiency
and robustness to make it a suitable choice for real-world datasets.

In conclusion, matrix decomposition methods such as PCA, ICA, and NMF are
widely used in bioinformatics to extract essential features and representations of
data. These methods have been applied to various problems, such as gene expres-
sion analysis, image analysis, and signal processing. Understanding these techniques,
principles, and mathematical foundations can help researchers choose the most ap-
propriate method for a specific problem. It is crucial to consider the properties of the
data, the assumptions of the model, and the computational complexity when select-
ing a matrix decomposition method. We can gain valuable insights from large and
complex data sets in bioinformatics with a deeper understanding of these techniques.

Matrix decomposition Experiments

As mentioned in section 1.1 Scope and Challenges , one of the main challenges in
biomedical data analysis is to manage large amounts of data and extract informa-
tion from a data set. We choose matrix decomposition approaches to resolve these
challenges in biomedical data analysis. Namely, we used different matrix decompo-
sition approaches on one dataset in parallel, as mentioned in section 4.3.1 matrix
decomposition with omnics data. With our approach, we can reveal various aspects
dataset. Furthermore, we can evaluate the different methods —principal component
analysis, independent component analysis, and non-negative matrix factorisation—
on how they perform. Therefore, by using task parallelisation computing strategy
with several matrix decomposition approaches, we can highlight the active research
field to uncover hidden information in a data set.

We execute matrix decomposition methods to outline the different approaches:
principal component analysis, independent component analysisand non-negative ma-

128
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

Figure 4.4: We focused on the analysis of GTEx RNA sequences using a custom-
designed analysis pipeline. The pipeline included several stages, beginning with
assembling data from raw sources. Following data assembly, we applied to preprocess
techniques such as normalization and log transformation to the data. To facilitate
efficient and concurrent execution, we implemented a distributed execution strategy
which allowed for the intended parallelization of the analysis.

trix factorisation. We applied the methods to a single GTEx dataset [52]. This
dataset consists of 13 brain tissue postmortem samples for six individual patients.
This experiment condition has a major benefit: the complex biological process are
labelled, which allows a basis for a matrix decomposition method comparison.

First, we executed principal component analysis to the GTEx dataset. In order
to start the analysis, one essential aspect can reveal further insights: explained
variance. Explained variance refers to the amount of variability in a dataset. This
variability relates to each principal component. Generally, explained variance refers
to the proportion of variability in a dataset that can be attributed to each principal
component. It gives an idea of how much each component contributes to the total

4.3 Biomedical experiments 129

(a) Explained variance (b) Principal component analysis

Figure 4.5: The figure illustrates the results of applying principal component anal-
ysisto the data. Figure (a) illustrates the explained variance of the data when using
principal component analysis. This means, in our case, that the differences and
variations observed within the dataset can be primarily attributed to these three
components rather than other factors. Figure (b) depicts a scatter plot generated
using PCA. The x and y axes represent the two principal components of the data.
Each point corresponds to a single observation, showing the variable values for that
observation on the x and y axes. It visualizes the relationship between the different
variables in the data. The plot demonstrated the separation of the cerebellum and
cerebellar hemisphere, suggesting that these two tissues can be distinguished from
each other

variability in the data. In our experiments, the first components explain about
22% of variation in this data as illustrated in figure 4.5a. Even though the amount
is relatively small, all the other components contribute less than 2% to the total
variance. Generally, principal component analysis inspects the relation between these
components from a biological viewpoint using low-dimension plots as illustrated in
figure 4.5b. This approach this similar to clustering methods since these plots can
separate biological features in the data. In our experiments, we observed that the
cerebellum (represented in yellow) and the cerebellar hemisphere (represented in

130
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

cyan) were distinguished from the other brain tissues in the data, as revealed by the
low-dimensional plots.

As mentioned in an earlier section concerning independent component analysis
and non-negative matrix factorisation the components are independent. Therefore,
we plotted one component concerning the brain tissue. Each plot distinguished the
cerebellum and the cerebellar hemisphere when we applied the independent compo-
nent analysis and non-negative matrix factorisation to the GTEx dataset. These two
brain tissues have relatively large absolute values compared to the other brain tissues.
Therefore, we can infer that the independent component analysis and non-negative
matrix factorisation facilitate a tissue-specific classification, whereas principal com-
ponent analysis facilitates a tissue segregation approach. Concretely, independent
component analysis may group complex biological process with common genes where
a value sign changes due to experimental conditions and gene under- and overexpres-
sion. On the other hand, non-negative matrix factorisation reveals tissues that are
only overexpression of genes.

(a) Independent component analysis (b) Non-negative matrix factorisation

Figure 4.6: We used independent component analysisand non-negative matrix fac-
torisationto analyze the tissue samples. We plotted the tissue samples against one
component for both methods to visualize the results. The plots clearly showed sepa-
ration between the cerebellum and cerebellar hemisphere, indicating that these two
tissues can be distinguished from one another based on this component.

4.3 Biomedical experiments 131

Each matrix decomposition approach observes particular features inside the data
set. Generally, we can infer different aspects — e.g. various complex biological pro-
cess or phenotypes — within a single dataset. We reveal new insights with various
approaches: Using different matrix decomposition methods or changing parameters
on method execution. Our matrix decomposition experiments are standard analysis
methods in biomedical data analysis. These experiments can be expanded to high-
light more details on a single dataset. Nevertheless, the general pipeline is similar
to our approach. All in all, we can summarise our findings for matrix decomposition
experiments in the GTEx as follows:

1. principal component analysis allows separating different brain tissues in the
sample

2. independent component analysis locates under- and overexpression of genes

3. non-negative matrix factorisation only finds overexpression of genes

Even though independent component analysis might include the findings of a non-
negative matrix factorisation, one the drawback might be a large mixture of various
complex biological process. Therefore, depending on the analysis approach, each
of the matrix decomposition provides a spectrum of analysis methods essential for
exploratory biomedical data analysis.

4.3.2 Hidden Markov model search on prototypic
sequences representing repetitive DNA from
different eukaryotic species

In the field of bioinformatics, one of the critical challenges is the classification of
protein families and the identification of homologous sequences in protein databases.
This challenge is a crucial task, as it allows researchers to understand the structure
and function better of proteins, which is crucial for a wide range of applications,
including drug discovery and the development of new medical treatments.

One approach that has been widely used for this task is the use of Hidden Markov
Models (HMM). HMMs are probabilistic models that can represent the sequence of

132
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

amino acids in a protein, considering the insertion and deletion of amino acids and
the emission probability of each amino acid. Using these models, researchers can
search large protein databases to identify sequences similar to a target sequence.

The use of HMM for protein sequence analysis has proven to be a a powerful
tool, allowing researchers to quickly and accurately classify protein families and
identify homologous sequences in protein databases. In this section, we describe our
approach to using HMM for protein sequence analysis, including the mathematical
foundations of HMM, the steps involved in the analysis workflow, and the benchmark
results of our approach. By providing a detailed overview of our approach, we hope
to contribute to the ongoing efforts to better understand the structure and function
of proteins.

Repbase is a database of repetitive elements in eukaryotic genomes. Repetitive
elements are stretches of DNA present in multiple copies within the genome and can
account for a significant portion of the genome. Repbase is often used in bioinformat-
ics studies to identify and annotate repetitive elements in genomic sequences. It can
also identify transposable elements, a repetitive elements that can move or "trans-
pose" within the genome. Repbase is a valuable resource for researchers studying
genome structure and function.

Hidden Markov model in bioinformatics

A Hidden Markov Model (HMM) is a mathematical model used in bioinformatics and
other fields to analyse sequences of observations [57]. It is a statistical model that
assumes that the underlying process that generated the observations is a Markov
process with unobserved (i.e., hidden) state variables.

In bioinformatics, HMMs are often used to analyse protein and nucleotide se-
quences. The model consists of states, each corresponding to a particular sequence
pattern. The states are connected by transitions, representing the likelihood of mov-
ing from one state to another. The emission probabilities of the model determine
the probability of observing a specific symbol (e.g., an amino acid or nucleotide) in
a given state.

Mathematically, an HMM can be defined as

Definition 4.3.1. A Hidden Markov model is a tuple (Q, Σ, A, π), where:

4.3 Biomedical experiments 133

• Q = q1, q2, ..., qn is a set of states
• Σ = x1, x2, ..., xm is the alphabet of symbols that can be observed
• A = (aij)1 ≤ i, j ≤ n is the state transition matrix, where aij is the probability

of transitioning from state qi to state qj

• π = (π1, π2, ..., πn) is the initial state distribution, where πi is the probability of
starting in state qi.

Given an HMM and a sequence of observations, the goal is to infer the most likely
sequence of hidden states that generated the observations. This goal can be achieved
using the Viterbi algorithm, which computes the maximum likelihood estimate of the
hidden state sequence.

For example, consider an HMM used to model the sequence of nucleotides in a
DNA strand. The hidden states in this HMM might represent the different possible
secondary structures of the DNA, such as helices or loops. The observations would
then be the individual nucleotides in the sequence, and the emission probabilities
would describe the likelihood of emitting a specific nucleotide from each hidden
state. Using HMM algorithms, one can then use this model to identify the most
likely sequence of hidden states given an observed sequence of nucleotides [57,99].

One of the main advantages of using HMM search in bioinformatics is that it
allows for incorporating uncertainty and variability into the analysis of protein or
nucleic acid sequences. For example, a protein may have multiple possible states at
a given position, and HMM search can account for this uncertainty by calculating
the probabilities of different states occurring at each position. This approach can
provide a more accurate and detailed analysis of the protein or nucleic acid sequence.

In addition to identifying the sequence of a protein or nucleic acid, HMM search
can also be utilised for the analysis of the structure of the molecule. It can also be
used to analyse the function of the molecule. For example, examining the transitions
between different states makes it possible to identify functional domains or motifs
within the protein or nucleic acid. This information can be used to understand
the biological role of the molecule better and to design experiments or therapies
that target specific regions of the molecule. Overall, HMM search is a powerful and
widely-used tool in bioinformatics, and it continues to be an active area of research
and development.

134
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

Protein families can be classified using HMM search. This classification involves
converting protein sequence alignment into position-specific scoring systems called
HMMs. For protein-specific HMMs, the insertion and deletion of amino acids de-
termine the emission probability. HMMs can search through protein databases for
homologous sequences using a scoring value of S. The scoring is defined as the log of
the ratio of the joint probability of the target t. In addition, the alignment π given
the homology H and the probability of the target given random noise R.

S = log
(∑

π P (t, π|H)
P (t|R)

)
In order to understand how HMM search works, it is vital to first understand the

concept of protein families and homology. Protein families are groups of proteins that
have similar sequences and, furthermore, likely have similar functions due to their
similar structures. Homology, on the other hand, refers to the similarity between
evolutionarily related proteins. Using HMMs to search through protein databases
makes it possible to identify proteins that are homologous to a given protein of
interest.

The use of HMMs in protein family classification and homology search has several
advantages. One advantage is that HMMs can account for insertions and deletions of
amino acids, which is vital for accurately aligning protein sequences. Additionally,
HMMs can provide a probabilistic model for the alignment of protein sequences,
which allows for a more robust and accurate analysis. Finally, the use of HMMs in
protein family classification and homology search allows for the efficient search of
large protein databases, making it a valuable tool for protein research.

To conclude, HMM search is a powerful tool for classifying protein families and
identifying homologous proteins. Researchers can use position-specific scoring sys-
tems known as HMMs to accurately align protein sequences and search for homol-
ogous proteins in large databases. For more information on HMM search and its
applications in protein research, interested readers can refer to Finn’s work on the
topic [64].

4.3 Biomedical experiments 135

Hidden Markov model search pipeline

In this study, we propose a Hidden Markov Model (HMM) analysis based on the
workflow developed by Ustyantsev et al. [170]. This workflow requires two main
inputs: a Multiple Sequence Alignment and a sequence database [20]. The HMM
analysis involves several steps, including the translation of DNA to protein sequences,
HMM search, filtering of search results, and visualisation of results as illustrated in
figure A.6. This study only focuses on the HMM search to assess the computational
times.

To run an HMM search through a RESTful API, we need to deploy the service
as described in section Technical Setup Steps. The algorithm scripts are contained
in docker images that can be deployed on any machine with access to the system.

The Multiple Sequence Alignment presented in figure A.7 is a crucial input for
the HMM analysis. It provides information about the sequence and structure of the
proteins being studied. The sequence database [20] is also an essential input, as it
contains a collection of known sequences that can be used for comparison during the
HMM search.

The first step in the HMM analysis is to translate the DNA sequences into protein
sequences. This step is necessary because the HMM algorithm operates on protein
sequences rather than DNA sequences. The translation is typically carried out using
a standard genetic code, which maps DNA nucleotides to the corresponding amino
acids.

After translation, the HMM search is performed. This step involves using the
HMM algorithm to compare the protein sequences obtained from the Multiple Se-
quence Alignment with the known protein sequences in the sequence database. The
HMM algorithm uses probabilistic models to identify similarities and differences be-
tween the sequences being compared.

The search results are then filtered to remove false positives and irrelevant matches.
This step is crucial for improving the accuracy of the analysis. The filtered results
are then visualised to provide a clear and concise representation of the data.

Overall, the HMM analysis workflow proposed by Ustyantsev et al. [170] provides
a reliable and efficient method for studying protein sequences and structures. The
use of a RESTful API and docker images allow for easy deployment and access to

136
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

the HMM algorithm. Generally, an end-user can use the graphical user interface to
add pipelines but can also use a PUT REST call which could be of the form

<backendAdress>/job

With the appropriate JSON body as in listing A.3.

Expererimental hidden Markov model search results

1 replica 2 replica 4 replica 6 replica 8 replica 16 replica
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

se
co

nd
s

Time for HMM search based on number of replicas

Figure 4.7: We ran a benchmark test for an HMM search as mentioned in the
section Hidden Markov model search on prototypic sequences representing repetitive
DNA from different eukaryotic species. The work is partitioned into parts and dis-
tributed to workers/replicas on a Docker Swarm cluster. Dependent on the number
of replicas, the time to finish an HMM search reduces accordingly. Unparallelisable
parts such as file loading and saving remain constant following Amdahl’s Law [77] .

In addition to testing the ability to handle the increased workload for the process
in a container, the benchmark looks at the possibility of splitting the workload

4.3 Biomedical experiments 137

across multiple processors. Data parallelisation is a technique that allows for data
distribution across multiple processors, which can increase the speed and efficiency
of the computation. In the case of the HMM search, the data is split into roughly
equal segments, and the search is performed using several replica sets. Each replica
set is run on a separate processor, allowing for the parallelisation of the search.

The analysis is performed on a consumer’s Personal Computer with an Intel-i7-
5600 processor and 12 GB of memory. This processor is a quad-core model with
a clock speed of 3.2 GHz, which is typical for a mid-range consumer PC. Each
containerised HMM search is assigned 0.5 of a single core, which means that two
HMM searches can be run simultaneously on each processor.

Figure 4.7 shows the time reduction when more replica sets are used on a parti-
tioned dataset to perform the search. As the number of replica sets increases, the
time for each job decreases. This result demonstrates the effectiveness of data par-
allelisation in speeding up the HMM search. However, a portion of the operation
remains sequential, as proposed by Amdahl’s Law [77]. This proportion mainly in-
cludes the data reading, calculating setup, and the Java wrapper, which cannot be
parallelised.

After measuring the computation times for the sequential and parallelisable parts,
it is found that a fraction p = 0.93 of the HMM search task can be parallelised.
This result means that nearly all of the HMM search can be sped up through data
parallelisation, with only a small portion remaining sequential. They are compared to
the theoretical speedup values predicted by Amdahl’s Law to validate these measured
times. Amdahl’s Law is defined as

S(r) = 1
(1− p) + p

r

, where S(r) is the theoretical speedup, p is the fraction that can be parallelized,
and r is the number of processors/workers.

The measured results match the theoretical values, as shown in figure 4.8. In
some instances, the measured results show slightly better speedup, possibly due to
measuring inaccuracies in milliseconds. Overall, the benchmark results demonstrate
the potential for data parallelisation to improve the performance of the HMM search
algorithm.

138
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

2 4 6 8 10 12 14 16
replicas

2

4

6

8

10
sp

ee
du

p
Speed up comparison

Theoretical Speedup
Actual Speedup

Figure 4.8: For the HMM search, we compared the speed up between our measured
results and theoretical values. The theoretical values are calculated based on Am-
dahl’s Law. We measured the serial and parral portion of the task. The task consists
of a 0.93 parallelisable portion. Our results confirm the theoretical speedup for a
task. The slight deviation might be due to measuring inaccuracies in milliseconds.

In conclusion, this study has proposed a Hidden Markov Model (HMM) analysis
workflow for investigating protein sequences and structures. Furthermore, this study
has proposed a hidden Markov modelanalysis workflow based on the methodology
developed by Ustyantsev et al. [170]. This workflow, which utilises a RESTful API
and docker images, provides a robust and efficient approach for investigating protein
sequences and structures. Furthermore, the results of the benchmark analysis re-
vealed the potential for data parallelisation to enhance the performance of the HMM
search algorithm. A parallelisable fraction of 0.93 suggests that a significant pro-
portion of the HMM search process can be accelerated through data parallelisation.
Only a minimal portion remains sequential. These findings are in agreement with the
predictions of Amdahl’s Law, as the measured results match the theoretical values.

4.3 Biomedical experiments 139

Overall, the proposed HMM analysis workflow is a valuable tool for researchers and
scientists in bioinformatics and computational biology.

4.3.3 Time series analysis with convolutional long
short-term memory neural networks

Biomedicine is a rapidly growing field that involves the study of the human body
and its functions, as well as the development of medical technologies and treatments
for diseases and disorders. As the field advances, it generates an increasingly large
amount of data from various sources, including medical imaging, genetic sequencing,
clinical trials, and electronic medical records. This data is essential for medical
research, diagnosis, and treatment, but it can be challenging to manage and analyse
due to its size, complexity, and heterogeneity.

One major issue in biomedicine is the need to organise and manage large amounts
of data, including audio and video files, text-based databases, and proprietary med-
ical file formats such as Digital Imaging and Communications in Medicine (DI-
COM) [131]. These data sources often have different structures and formats, making
it challenging to integrate and analyse them together [124]. In addition, the data
may be sensitive and confidential, requiring secure storage and access control [132].

our system addresses these challenges by using containerised environments to
store and organise different types of data, including relational databases, object
storage, and time-series databases [150]. This the approach allows data to be man-
aged and accessed in a consistent and secure manner, providing a foundation for
advanced data analysis and decision-making in biomedicine.

Specifically, time-series databases have the potential to provide new insights for
diagnosis in biomedicine through the use of techniques such as knowledge discov-
ery in databases [123]. For example, Anguera et al. Used data mining methods
for epilepsy diagnosis in the electroencephalography domain [18]. Furthermore, Ma-
chine learning techniques have been used in biomedical research to analyse large and
complex datasets [158].

In conclusion, biomedicine is a rapidly growing field that generates an increasing
amount of data, which can be challenging to manage and analyse. Our system

140
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

uses containerised environments to store and organise different data types. This
design decision allows for advanced data analysis and decision-making in biomedicine.
Time-series databases and machine-learning techniques have the potential to provide
new insights for diagnosis through the use of techniques such as knowledge discovery
in databases and data mining methods. In this section, we aim to examine the
integration of a new dataset in contrast to conducting a stress test on a convolutional
neural network. Our objective is to demonstrate the capability of our system to
integrate fully independent and deployable databases seamlessly.

Time series databases

Time series analysis is a powerful tool for addressing various challenges in biomedicine.
Three of the main problems that time series analysis solves are

• Evaluating the effectiveness of treatments: By analysing time series data,
healthcare professionals can determine whether a particular treatment is ef-
fective or not, and make adjustments as needed to improve patient outcomes.

• Making more informed decisions about a patient’s care: Integrating data from
multiple sources into a single time series database, healthcare professionals can
gain a more a comprehensive view of a patient’s health, allowing them to make
more informed decisions about their care.

• Developing predictive models: By analysing time series data, researchers can
develop predictive models that can be used to forecast a patient’s future health,
identify potential risk factors, and develop personalised treatment plans.

The critical aspect of time series analysis is its storage in a time series database.
One of the main advantages of using a time series database in biomedicine is the
ability to track changes in a patient’s health over time [187]. This type of data
can be used to monitor the effectiveness of treatments, identify trends or patterns
in a patient’s health, and identify potential problems or complications before they
become serious. By analysing time series data, healthcare professionals can make
more informed decisions about a patient’s care and improve the overall quality of
care.

4.3 Biomedical experiments 141

Another benefit of time series databases in biomedicine is the ability to integrate
data from multiple data generating sources [91]. This integration is particularly im-
portant in the healthcare industry, where data is often collected from a variety of
sources, including medical records, wearable devices, and diagnostic tests. By inte-
grating this data into a single time series database, healthcare professionals can gain
a more comprehensive view of a patient’s health and make more accurate predictions
about their future health.

Overall, time series analysis is an essential tool for addressing a range of challenges
in biomedicine. By enabling healthcare professionals to track changes in a patient’s
health over time, make more informed decisions about their care, and develop pre-
dictive models, time series analysis, has the potential to significantly improve the
quality of care and patient outcomes in the healthcare industry.

Convolutional Long Short-Term Memory neural networks

Convolutional Long Short-Term Memory (ConvLSTM) is a type of deep a learning
model that combines the features of convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks. It is commonly used for analysing time series
data, especially in the field of biomedical engineering.

The convolutional part of the model allows it to automatically learn spatial hi-
erarchies, which is vital for analysing images and other data with spatial structure.
The LSTM part of the model allows it to maintain an internal state and learn from
long sequences of data, making it well-suited for modelling time series data.

Convolutional Long Short-Term Memory (ConvLSTM) networks have been used
in bioinformatics for various tasks; one example is the prediction of open chromatin
regions from DNA sequences, where a recent study by Min et al. used this approach
and integrated k-mer co-occurrence information with deep learning [121]. Another
example is the prediction of protein secondary structure, wherein a a recent paper
by Zhao et al., an optimised convolutional neural network and long short-term mem-
ory neural network models (OCLSTM) were applied [190]. The OCLSTM uses an
the optimised convolutional neural network to extract local features between amino
acid residues and a bidirectional long short-term memory neural network to extract
remote interactions between the internal residues of the protein sequence to predict

142
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

the protein structure.
The theoretical background of ConvLSTM is the combination of features from

convolutional neural networks (CNNs) and long short-term memory (LSTM) net-
works. Mathematically, these two model types can be described as follows:

A convolutional neural network applies a series of convolutional operations to an
input matrix X ∈ Rm×n to produce a new matrix Y ∈ Rp×q. The convolutional
operation is defined as

Yi,j =
K∑

k=1

L∑
l=1

Xi+k−1,j+l−1 ·Wk,l

where W ∈ RK×L is the kernel or filter matrix, and K and L are the height and
width of the kernel, respectively.

A long short-term memory (LSTM) network maintains an internal state vector
ht ∈ Rn at each time step t, which is updated based on the current input xt ∈ Rm and
the previous state ht−1. The update is controlled by a series of gates, including an
input gate it, a forget gate ft, and an output gate ot. The new state ht is calculated
as

ht = ot ⊙ tanh(ct)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc)

where Wc, Uc, and bc are trainable parameters, and ⊙ denotes element-wise mul-
tiplication.

ConvLSTM combines these two model types by applying convolutional operations
to the input data before feeding it into the LSTM network. This combination allows
the model to learn spatial automatically hierarchies from the input data while still
being able to maintain an internal state and learn from long sequences of data.

Experiments on diastolic blood pressure time series

In this study, we sought to investigate the use of a time-series forecast for the analysis
of diastolic blood pressure. This method of analysis has potential applications in the

4.3 Biomedical experiments 143

medical field, as it can provide valuable insights into a patient’s health and assist in
the early detection of potential health issues.

To perform this analysis, we employed a convolutional Long Short-Term Memory
(LSTM) network, an approach first introduced by Shi et al. in 2015 [156]. LSTM
networks have been shown to be effective at modelling time series data and are well-
suited for tasks involving sequence analysis and prediction. In our adapted algorithm,
we incorporated LSTM layers into a convolutional neural network architecture, which
allows the model to extract local features from the input time series and integrate
them into a global representation.

Our adapted algorithm was designed to accept a univariate time series as input,
and we used patient data provided by Lin et al. in [110] for our analysis. The data
consisted of a series of measurements of diastolic blood pressure taken over a period,
providing us with a comprehensive dataset to train and evaluate our model.

Figure 4.9: The figure shows the integration of a time series database with a
convolutional Long-Short-Term Memory network for time series forecasts. The blue
boxes represent the different parts of the process, including the forecast visualisation,
which is achieved by querying the original data from the database and plotting it
together with the forecast. This separation allows for a more comprehensive analysis
and a better understanding of the data. The resulting graph can be seen in Figure
4.10.

Figure 4.9 illustrates the data flow for our analysis task. The database and anal-
ysis steps in this figure are represented as green and blue boxes. These components
are contained within containerised environments, which allows them to operate as
loosely coupled components that can communicate via RESTful API. Furthermore,
this approach allows us to integrate the analysis task into our existing software sys-
tem without needing additional infrastructure or dependencies.

To ensure that our analysis is reliable and reproducible, we made use of con-

144
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

20
13

-06
-06

 20
:03

:49

20
13

-06
-20

 21
:24

:42

20
13

-06
-25

 21
:27

:42

20
13

-06
-29

 22
:18

:52

20
13

-07
-06

 23
:08

:35

20
13

-07
-11

 23
:58

:49

45

50

55

60

65

70

75

80
m

m
Hg

Diastonic Blood Pressure Prediction

diastolic blood pressure
predicted blood pressure

Figure 4.10: The figure shows a visualisation of the prediction made using an
LSTM-CNN model on diastolic blood pressure data from a time-series database.
The orange line represents the predicted values, while the blue line represents the
actual diastolic blood pressure measurements. This prediction is discussed in more
detail in the section titled Time series analysis with convolutional long short-term
memory neural networks

tainerisation technology to package the necessary dependencies, libraries, and pack-
ages within the containerised environments. This encasement allows us to provide a
consistent software environment for our analysis task, regardless of the underlying
operating system or hardware.

For our time-series database, we used the OpenTSDB implementation [75]. This
open-source time series database is designed for handling large volumes of data and
provides efficient query capabilities, making it well-suited for our analysis task. The
analysis steps were implemented as Python scripts contained within a Java wrapper,
which handles RESTful queries like the HHM search described in Section Hidden
Markov model search on prototypic sequences representing repetitive DNA from
different eukaryotic species. The resulting prediction is plotted in Figure 4.10.

The integration of this time-series database demonstrates our system’s flexibility.

4.4 Implications, Challenges, Limitations and Future Research Directions 145

As data mining becomes increasingly important, it is essential for software systems to
be able to accommodate a wide range of data types. With the continual improvement
of data generation methods

The integration of this time-series database demonstrates our system’s flexibility.
As data mining becomes increasingly important, it is essential for software systems to
be able to accommodate a wide range of data types. With the continual improvement
of data generation methods, medical diagnoses may rely on previously inaccessible
data. Furthermore, biomedical scientists require reliable and reproducible software
environments. Unfortunately, installing all necessary tools and databases on the
operating system can cause conflicts. However, our loosely coupled systems provide
a solution by allowing for storing a wide range of data in separate environments
without interference.

4.4 Implications, Challenges, Limitations
and Future Research Directions

Following our experiments, we will proceed to the discussion section. In this section,
we will analyse the interpretation and context of the experiments, as well as any
limitations encountered. Additionally, we will evaluate the broader implications of
our findings and compare and contrast our experiments with other bioinformatics
systems.

4.4.1 Interpretation and context
This chapter focussed on three main research questions.

• How does the implementation of parallel computation techniques in our frame-
work improve the speed of data analysis in bioinformatics?

• What are the most effective approaches for integrating and analysing data from
multiple sources within our framework in bioinformatics?

• How can our framework be scaled to handle effectively large-scale datasets in
bioinformatics, and how can improve machine learning techniques are applied

146
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

to optimise data integration and analysis in this context?

In our experiments, we explored the use of various bioinformatics methods that
are commonly applied in their respective fields, including unsupervised matrix fac-
torisation, predictive convolutional long short-term memory (LSTM) neural networks
and hidden Markov model (HMM) search to optimise data integration and analysis
in our framework. Our findings reveal that our system can significantly reduce com-
putational time through the use of both task and data parallelisation, which allows
for faster processing of data, which is essential in the field of bioinformatics, where
large datasets are often encountered. In addition, our system is also able to integrate
multiple types of databases within a closed environment, allowing for seamless inte-
gration and management of different types of data, which is essential for conducting
comprehensive analyses. Furthermore, We also implemented a docker swarm envi-
ronment to scale our framework to handle large-scale datasets by distributing the
workload across multiple machines, we could process large datasets more efficiently
and effectively. The machine learning techniques (unsupervised matrix factorisation,
predictive convolutional LSTM neural networks, and HMM search) we used to iden-
tify patterns in the data and make predictions about future data. This result allowed
us to analyse and interpret the data, which is critical for conducting comprehensive
analyses in bioinformatics. Overall, our findings highlight the the usefulness of our
system in addressing challenges, such as the implementation of parallel computation
techniques in bioinformatics.

Our system addresses the second research question, which asks about approaches
for integrating and analysing data from multiple sources within our framework in
bioinformatics by using a docker environment with a RESTful API to integrate data
from various sources. The docker environment provides a consistent and standardised
environment for running our system, making integrating data from different sources
easier. Furthermore, the RESTful API allows our system to communicate with other
applications and systems over the network, enabling it to access and integrate data
from multiple sources. Our system uses these approaches by seamlessly integrating
and analysing data from multiple sources, enabling comprehensive analyses. We
have demonstrated this approach’s effectiveness through experiments using various
data sources, including time series data, multiple sequence alignment data, and gene

4.4 Implications, Challenges, Limitations and Future Research Directions 147

expression data. Additionally, we have reviewed the literature on data integration
and analysis approaches in bioinformatics and evaluated the effectiveness of these
approaches within our system. Our findings highlight the usefulness of our system
in addressing challenges in the field of bioinformatics related to integrating and
analysing data from multiple sources.

In addition to improving computational efficiency, our system can also integrate
multiple types of databases within a closed environment. This feature is valuable as
it allows for the seamless integration and management of different data types, which
is essential for conducting comprehensive analyses. Data integration is a crucial
challenge in bioinformatics, as it combines data from multiple sources and formats
to enable meaningful analysis. Our system’s ability to effectively integrate data
from multiple sources may enable researchers to access and use diverse data sets
more efficiently, leading to more comprehensive and accurate analyses.

Furthermore, our system can effectively handle large datasets using various meth-
ods. This management is critical as it allows for the accurate and efficient analysis of
large amounts of data, often required in bioinformatics research. Large datasets are
standard in bioinformatics, and analysing them can be complex and time-consuming.
Our system’s ability to effectively handle large datasets may enable researchers to
more quickly and efficiently analyse these datasets, which may facilitate more com-
prehensive and accurate research.

Overall, our findings highlight the usefulness of our system in addressing chal-
lenges in the field of bioinformatics. Its ability to improve computational efficiency,
integrate multiple types of databases, and effectively handle large datasets, making
it a valuable tool for researchers working in this field. By enabling faster and more
efficient data analysis, our system may facilitate the advancement of bioinformatics
research and the development of new insights and technologies in this field.

4.4.2 Limitations and bias
Our research using matrix decomposition on GTEx datasets, HMM search on Rep-
base, and CNN on time series has limitations. However, these experiments are
sufficient for answering our research questions. We have addressed the limitations
in a way that allows the experiments to provide sufficient answers. Despite the

148
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

limitations, we are confident in the value and usefulness of our research.
One limitation of this study is the sample size. We used a subset of plants and

fungi from the Repbase database and brain tissues from the GTEx datasets. While
this sample size may be sufficient to answer our research questions, expanding the
data to include more data types (e.g. vertebrates, primates, or tissues) or a more
extensive data sample could affect the results and performance. A small sample
size may not be representative of the larger population and may not have enough
statistical power to detect significant differences. However, our experiments were
designed to address specific research questions, such as the software architecture
components for bioinformatics data analyses for small to medium research teams
and may not require a large sample size to do so, considering the specific research
question and available resources.

Another limitation of this study is the quality of the data. Imprecise data can
affect the accuracy and reliability of the results, leading to potentially misleading
or incorrect conclusions. To address this concern, it is crucial to carefully select
and evaluate the data to ensure that it is of high quality and appropriate for the
research objectives. In our research, we paid particular attention to the selection
and evaluation of the data. Our approach minimises the impact of this limitation
on our experiments. We used the GTEx and Repbase datasets, widely recognised
as reliable genomic and reference sequence data sources. We also applied quality
control measures — such as data preprocessing — to the data to ensure its accuracy
and reliability. Despite these efforts, some inaccuracies or biases may still be present
in the data, which could affect the results of our experiments. However, the data we
used is of sufficient quality to provide valuable insights into our research questions.

Additionally, it is crucial to accurately consider and control for confounding vari-
ables to identify the relationship between the independent and dependent variables.
In this study, we identified two potentially confounding variables: the algorithms
and techniques used and the experience and expertise of the study’s researchers.
Regarding the algorithms and techniques used, we chose to utilise HMM search and
several matrix decomposition methods, which are classic techniques for bioinformat-
ics data analysis. However, there are several other methods that could potentially
be considered, such as multidimensional scaling and randomised sampling [151,169].

4.4 Implications, Challenges, Limitations and Future Research Directions 149

To control for this confounding variable, we carefully evaluated the suitability of
the chosen algorithms and techniques based on the specific research objectives and
available resources. In terms of the experience and expertise of the researchers, the
field of bioinformatics is vast and encompasses topics in software engineering, biol-
ogy, and chemistry. While we sought to gain a deep understanding of these fields,
a more profound understanding may have affected the results of the experiments.
Therefore, to control for this confounding variable, we carefully selected our research
team to ensure that we had expertise in all relevant fields. In addition, we conducted
a thorough literature review to ensure that we were aware of the latest developments
in the field. By carefully considering and controlling for these confounding variables,
we were able to produce reliable and accurate results that accurately reflect the
relationship between the independent and dependent variables in this study.

Our research may also be limited by the need for more consideration of algo-
rithmic parallelisation to improve scalability. Algorithmic parallelisation involves
designing algorithms that can be parallelised. This design allows the algorithms to
be processed simultaneously by multiple computing resources [152]. This partition
can be an effective strategy for improving the efficiency and speed of a system, mainly
when dealing with large datasets or complex tasks. However, it may involve using
consensus methods, which can be complex and time-consuming. In our study, we
did not explore algorithmic parallelisation or consensus methods, which may limit
the scalability of our approach. While algorithmic parallelisation is an essential
technique for improving scalability, it may only sometimes be practical or necessary,
depending on the specific research objectives and available resources.

Overall, while our research is not without limitations, we believe that the exper-
iments we conducted were well-suited to address our research questions and provide
valuable insights. By carefully considering the limitations and biases of our approach
and taking steps to address them appropriately, we were able to produce high-quality
research that is useful and relevant to our field.

4.4.3 Compare and Contrast
Other bioinformatics systems focus on our research question. These questions revolve
around three main aspects: Parallelisation, data integration and scalability. We

150
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

highlight several approaches to handle these challenges by comparing and contrasting
our proposed system with them.

One common goal shared by several bioinformatics tools is the efficient man-
agement and analysis of large amounts of data. Some of the tools are the parallel
package in R, Atlas and BioWarehouse, and Pachyderm. The R/parallel package
allows users to perform parallel computations in R, which can help speed up analyses
on extensive data sets [58,175]. Atlas and BioWarehouse provides centralised repos-
itories for storing and managing biological data, which can be accessed and analysed
by researchers [105,154]. Pachyderm helps manage the flow of data between different
processes and systems, which can be helpful for data science and machine learning
workflows that involve large amounts of data [129].

There are also several challenges that these tools can help address. One challenge
is handling large data sets, which can be time-consuming and resource-intensive.
The parallel package and Pachyderm can help address this challenge by providing
efficient methods for processing and managing data. Another challenge is ensuring
the reproducibility of data analyses, which is vital for maintaining the integrity of
research results. Pachyderm can help with this by providing a way to track data
history and ensure that data pipelines are reproducible. Additionally, managing the
flow of data between different processes and systems can be challenging, especially
when working with large amounts of data. Pachyderm can help with this by providing
a way to orchestrate data flow and ensure that data is moved between processes and
systems in a controlled and reproducible manner.

Our proposed bioinformatics system shares the goals above, including efficiently
managing and analysing large amounts of data. Additionally, our system aims to
address the challenges of handling large data sets, ensuring the reproducibility of data
analyses, and managing the data flow between different processes and systems. Our
system achieves these goals by utilising advanced algorithms and data management
techniques to effectively process and analyse large amounts of data. Furthermore,
we have implemented measures to ensure the reproducibility of data analyses, such
as tracking the data history and controlling the data flow between different processes
and systems. By addressing these challenges, our system aims to provide a robust
and reliable platform for conducting bioinformatics research.

4.4 Implications, Challenges, Limitations and Future Research Directions 151

Functionality

In data analysis, several tools and resources are available to facilitate efficient and
effective workflows. One such tool is the Parallel package inR, which allows users to
perform parallel computations inR, significantly speeding up analyses on large data
sets. It can handle various data types, including numeric, categorical, and text, and
can be used for statistical modelling, machine learning, and data visualisation.

Centralised repositories, such as Atlas and BioWarehouse, help store and manage
biological data. These resources can handle various data types, including genomic,
proteomic, and transcriptomic data, and can be utilised for gene expression analysis,
pathway analysis, and variant annotation.

Pachyderm is a tool that streamlines the flow of data between different processes
and systems, particularly in the context of data science and machine learning work-
flows involving large amounts of data. It is capable of handling structured and un-
structured data and can be used for tasks such as data preparation, transformation,
and model training and evaluation.

In summary, these tools and resources provide valuable support for data analysis,
enabling parallel computations, efficient data management, and streamlined data
flow. They are instrumental in facilitating research and advancing the field of data
science.

Our proposed system leverages the power of parallelisation, as exemplified by
the Parallel package inR, to significantly reduce the time required for data analysis,
mainly when working with large datasets. By utilising multiple processing units si-
multaneously, we can achieve a much faster turnaround time for statistical modelling,
machine learning, and data visualisation tasks.

In addition to the benefits of parallelisation, our system also incorporates an
object storage system similar to Pachyderm, which allows for efficient management of
data flow between different processes and systems. This design is particularly useful
in the context of data science and machine learning workflows, where large amounts
of data are often involved. The object storage the system allows for the seamless
integration of structured and unstructured data, enabling a wide range of analyses,
including data preparation, transformation, and model training and evaluation.

Overall, the parallelisation and robust data management system make our pro-

152
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

posed system a powerful tool for efficient and effective data analysis. As a result, it
can significantly accelerate research and advance data science.

Performance

In a study by Vera et al., the use of the R/parallel package was found to im-
prove the performance of a multiple QTL model significantly approach for analysing
gene expression data [175]. Specifically, the authors reported that the execution
time of their analysis was reduced from approximately 3 hours to 1 hour by using
four workers. This result is similar to the performance improvements observed in
our proposed system when applying the HMM search with multiple workers. These
findings suggest that parallelisation techniques can effectively optimise the perfor-
mance of computational analyses in bioinformatics, particularly when analysing large
datasets.

In a study by Novella et al., the authors conducted a performance test on a larger
scale using OpenNMS’s FeatureFinderMetabo and find peaks tools on 137 samples
[129]. They found that the speedup for a cluster of 19 workers was approximately
17, as calculated using the following formula:

S(N) = T0

TN

where T0 is the serial running time and TN is the parallel running time using N
processing elements.

In comparison, our experiments had a speedup of approximately 8, calculated
using the same formula. Several factors may contribute to the difference in the
results between the two studies. For example, the hardware architecture used in
the study by Novella et al. (a node with seven vCPUs and 32 GB of RAM) may
have differed from the hardware used in our experiments. Additionally, the specific
software implementation of the tools in question may have affected the speedup
achieved.

Despite these differences, it is essential to note that both studies were able to
demonstrate the effectiveness of using multiple processing elements to improve the
performance of these bioinformatics tools. Although achieved on a smaller scale, our
results are still valuable and worthy of consideration.

4.4 Implications, Challenges, Limitations and Future Research Directions 153

Data and tool integration

Bioinformatics frameworks can vary in terms of their focus and expandability when it
comes to tool and data integration. TheR programming language’s parallel package is
a tool designed for parallel computing within an R environment, capable of handling
various data formats native toR, including CSV, TSV, and Excel files, as well as
specialised formats like FASTA and FASTQ for biological sequence data. While
the parallel package may be used in conjunction with otherR packages or tools, it
may not be easily integrated with systems or tools using different technologies or
programming languages.

Atlas and BioWarehouse are centralised data repositories that store and man-
age biological data. They support a range of formats commonly used in the life
sciences, such as FASTA, FASTQ, BAM, and VCF, as well as proprietary formats
specific to particular research groups or data sources. In addition, these repositories
offer interfaces for accessing the data from external systems, making them useful for
integrating with other tools or systems that need to access or analyse the data.

Pachyderm is a tool for managing data pipelines and workflows. It uses a declar-
ative model to specify the input data, processing steps, and output data for each
pipeline stage. The declarative model is a way of defining the desired state of a
system, in this case, the input, processing, and output of a data pipeline, rather
than specifying how to achieve that state. This implementation allows Pachyderm
to handle a variety of structured and unstructured data types and to manage and
process data across multiple stages of a pipeline, making it a valuable tool for co-
hesively integrating data and tools. Pachyderm may also be integrated with other
systems or tools using APIs or other interfaces, or by using data storage systems like
object stores or databases that can be accessed by multiple systems.

Our system is designed to facilitate the integration of various data types and
tools to support data analysis and processing pipelines. Like Pachyderm, our system
utilises a docker architecture to achieve this integration. This choice allows us to
include a wide range of data and methods in our pipelines. Furthermore, it ensures
that these elements are portable and easy to deploy in various environments.

The use of a docker architecture in our system also allows us to quickly expand
the range of tools and data types that can be incorporated into our pipelines. This

154
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

expansion is possible because docker containers can be used to package and deploy
any tool or data type that can be run in a containerised environment, giving us the
ability to include a wide range of methods and data types in our pipelines.

Overall, the use of a docker architecture in our system makes it particularly well-
suited for integrating a diverse range of data types and tools, and allows us to offer
greater flexibility and adaptability in the types of analyses and processing pipelines
that can be supported. This design makes our system a valuable asset for researchers
and analysts are seeking to manage and analyse complex data sets effectively.

Ease of use

Software setup frameworks often vary in their installation steps and requirements.
The parallel package is one example of a software package that can be easily installed
and used within anR environment. This package allows for parallel processing within
theR programming language and requiresR to be installed, as well as knowledge of
theR language’s syntax.

In contrast, setting up centralised repositories such as Atlas and BioWarehouse
involves a more complex process. This process may include installing and configuring
server software, establishing database systems, and implementing security protocols.
Additionally, users must be familiar with the data formats and protocols used by
these repositories to store and access data. The underlying architecture of these
tools requires the establishment and maintenance of infrastructure, which can be a
more involved process than the setup of some other software packages.

Pachyderm is a tool that can be used to manage data pipelines and workflows.
It utilises the Kubernetes container orchestration system to execute data processing
tasks. Setting up Pachyderm involves installing and configuring the Pachyderm
software and establishing a cluster of machines to run it on. Familiarity with the
Pachyderm data model and the command-line interface is also necessary to use this
tool. Once Pachyderm is installed on a Kubernetes cluster, users can create and run
data pipelines using the Pachyderm command-line interface or APIs. Pachyderm
pipelines are defined using a declarative model that outlines each pipeline stage’s
input, processing steps, and output data. Pachyderm utilises Kubernetes executes
the pipeline stages as containerised tasks, which can be run in parallel or sequentially

4.5 Conclusion 155

as needed. The underlying architecture of Pachyderm involves the use of container
orchestration, which enables the parallel or sequential execution of pipeline stages.

Our proposed system utilises a Docker Swarm architecture to deploy various ser-
vices. This architecture offers several benefits compared to other options, including
ease of setup and low resource requirements. To set up the Docker Swarm archi-
tecture, users must install Docker on each machine in the cluster. This process is
relatively straightforward and can be accomplished by using a package manager or
downloading the Docker installation package from the official website.

Once Docker is installed on all of the machines in the cluster, users can create and
run data pipelines using the Docker Swarm command-line interface or APIs. These
pipelines are defined using a declarative model that outlines each pipeline stage’s
input, processing steps, and output data . Docker Swarm utilises containerisation to
execute the pipeline stages, allowing for the efficient execution of tasks in parallel or
sequentially as needed.

One advantage of Docker Swarm for data pipeline management is its low resource
requirements. The Docker Swarm architecture utilises a lightweight containerisation
approach, which allows for efficient resource utilisation and improved performance
compared to traditional virtualisation techniques. Additionally, containerisation al-
lows for easier scaling and deployment of services, as containers can be easily moved
between machines or clusters.

In summary, the use of a Docker Swarm architecture for the data pipeline man-
agement offers several benefits, including ease of setup, low resource requirements,
and improved performance. Users can leverage the Docker Swarm command-line
interface or APIs to create and run data pipelines, utilising a declarative model
to specify the input data, processing steps, and output data for each stage of the
pipeline. Overall, the Docker Swarm architecture offers a powerful and flexible solu-
tion for managing data pipelines and workflows.

4.5 Conclusion
In our experiments, we examined the use of various bioinformatics methods to ad-
dress challenges in the field. Our system can significantly reduce computational

156
Chapter 4 Enhancing Bioinformatics Analysis with Our Proposed System:

Real-World Applications and Implications

time through task and data parallelisation, making it more efficient for processing
large datasets encountered in bioinformatics. In addition, our system can seamlessly
integrate and analyse data from multiple sources using a docker environment with
a representational state transfer based application programming interface, enabling
comprehensive analyses.

We also applied machine learning techniques such as unsupervised matrix fac-
torisation, predictive convolutional long short-term memoryneural networks, and
hidden Markov modelsearch to optimise data integration and analysis in our frame-
work. These approaches have shown promise for identifying patterns in data and
making predictions, but their effectiveness may be limited by the quality and na-
ture of the data being analysed. Additional experiments will expand the usefulness
of our proposed system. To scale our framework to handle large-scale datasets, we
relied on our implemented system with a docker swarm environment to distribute
the workload across multiple machines as described in chapter 3 Advanced Software
Engineering in Bioinformatic: A Case Study of Design and Implementation.

Overall, our findings demonstrate the usefulness of our system for optimising
data integration and analysis in bioinformatics. Its ability to improve computational
efficiency, integrate multiple types of databases and effectively handle large datasets,
making it a a valuable tool for researchers in this field. Further research may be
necessary to evaluate the effectiveness of these approaches in different contexts and
to identify additional methods for optimising data integration and analysis.

Chapter 5

Discussion: A comparative
analysis of summary, limitations,
and comparison

157

158
Chapter 5 Discussion: A comparative analysis of summary, limitations, and

comparison

In this chapter, we will summarise the results of our study on the impact of soft-
ware patterns, microservices, Docker containers, and advanced software engineering
principles and practices on bioinformatics software systems. We will also discuss the
limitations and biases of our research and provide context by comparing our work to
related studies in bioinformatics.

5.1 Introduction
Developing bioinformatics software systems is a complex task that requires the inte-
gration of various technologies and approaches. In this study, we aimed to investigate
the potential benefits of implementing software patterns, microservices, Docker con-
tainers, and advanced software engineering principles and practices in developing
such systems. Through a series of experiments, we implemented and evaluated a
system that utilised a docker environment with a RESTful API to integrate data
from various sources and apply bioinformatics methods. Our findings suggest that
using these technologies can significantly enhance bioinformatics software systems’
reliability, scalability, performance, efficiency, and productivity. However, it is vital
to consider the study’s limitations, including the limited scope, the vast amount
of tools and APIs to consider, time and resource constraints, the potentially small
sample size, the possibility of biases or inaccuracies in the data, and potential con-
founding variables. As a result, the study’s results may not generalise to other data
types or a larger population. In addition, there may be bias in the selection and
evaluation of the data and in the choice of algorithms and techniques. In this discus-
sion chapter, we will summarise our results and examine the limitations and context
of our research within bioinformatics.

5.2 Summary of results
The primary goal of this study was to explore the potential benefits of implementing
various software patterns, microservices, and Docker containers, as well as advanced
software engineering principles and practices in the development of bioinformatics
software systems. Our research aimed to assess the impact of these technologies on

5.2 Summary of results 159

the reliability, scalability, performance, efficiency, and productivity of bioinformatics
software systems.

In order to address this research question, we conducted a series of experiments
and analysed the results to identify trends and patterns. Our findings suggest that
using software patterns such as the saga pattern and the Command Query Responsi-
bility Segregation (CQRS) pattern can significantly enhance the reliability and scal-
ability of bioinformatics software systems, respectively. In addition, microservices
and Docker containers can improve system reliability, scalability, and performance.

Additionally, our research indicates that the adoption of advanced software en-
gineering principles and practices, such as model-driven design and Docker orches-
tration with Swarm can facilitate the efficient and productive deployment and man-
agement of bioinformatics software systems. Furthermore, the implementation of a
distributed architecture can enhance the efficiency and productivity of a small re-
search group through the parallelisation of tasks and the the utilisation of additional
resources.

Our experimental results showed that our system was able to significantly reduce
computational time through the use of both task and data parallelisation. This
reduction is a significant advantage as it allows for faster processing of data, which is
essential in bioinformatics, where large datasets are often encountered. In addition
to improving computational efficiency, our system was also able to integrate multiple
types of databases within a closed environment effectively. This encapsulation is a
valuable feature as it allows for the seamless integration and management of different
data types, which is essential for conducting comprehensive analyses. Furthermore,
our system was able to handle large datasets using a variety of methods. This
integration is critical as it allows for the accurate and efficient analysis of large
amounts of data, often required in bioinformatics research. Overall, our experimental
results highlight the usefulness of our system in addressing challenges in the field of
bioinformatics. Its ability to improve computational efficiency, integrate multiple
types of databases and effectively handle large datasets make it a valuable tool for
researchers working in this field.

In conclusion, our findings suggest that the incorporation of software patterns,
microservices, Docker containers, and advanced software engineering principles and

160
Chapter 5 Discussion: A comparative analysis of summary, limitations, and

comparison

practices can significantly enhance the reliability, scalability, performance, efficiency,
and productivity of bioinformatics software systems. It is essential to consider the
specific needs and constraints of the system, as well as the availability of resources
and expertise when implementing these technologies in order to optimise the success
of the system. Our system, which utilises a docker environment with a RESTful
API to integrate data from various sources and apply bioinformatics methods, has
demonstrated the ability to reduce computationally significantly time through task
and data parallelisation integrate multiple types of databases within a closed envi-
ronment and effectively handle large datasets. These capabilities make it a valuable
tool for researchers in the field of bioinformatics.

5.3 Limitations and bias
This thesis has several limitations that should be considered when interpreting the
results. One limitation was the limited scope of the research, which focused on a
specific aspect of bioinformatics microservices and needed to fully explore other es-
sential topics such as software engineering principles and data handling and tool
integration for various analysis methods. These topics are essential for building a
flexible data analysis system and are addressed in several research papers on bioin-
formatics software engineering. However, due to time and resource constraints, we
could not investigate these topics in depth thoroughly.

Another limitation was the vast amount of tools and APIs that needed to be
considered in order to make the system more versatile. There are several tools that
incorporate microservice architecture, such as Refget, Gen3 Framework Service and
the PhenoMeNal project, each with a different focus and approach to facilitating
the sharing of clinical and genomic data and improving interoperability in the field
of bioinformatics. Building a software architecture that can handle and interact
with these tools is a challenge that must be carefully weighed and considered when
designing the framework.

In addition to these limitations, the study’s sample size may also be a concern.
The study used a subset of data, which may not represent the larger population and
may need more statistical power to detect significant differences. Therefore, it is

5.3 Limitations and bias 161

crucial to consider the potential impact of sample size on the reliability and validity
of the results.

Another limitation to consider is the data quality used in the study. Some inac-
curacies or biases may still be present in the data, which could affect the results of
the experiments. To minimise the impact of this limitation, it is crucial to carefully
select and evaluate the data to ensure that it is of high quality and appropriate for
the research objectives. In our research, we paid particular attention to the selec-
tion and evaluation of the data and applied quality control measures to ensure its
accuracy and reliability. However, it is still possible that some inaccuracies or biases
may remain in the data.

It is also essential to consider and control for confounding variables to accu-
rately identify the relationship between the independent and dependent variables.
In this study, we identified and controlled for two potentially confounding variables:
the algorithms and techniques being used and the experience and expertise of the
researchers. However, there may be other confounding variables, such as environ-
mental factors, that were not considered in the study. Therefore, it is essential to
carefully consider and control these variables to produce reliable and accurate results.

Finally, the generalizability of the results should also be considered. The results of
the study may not be applicable or relevant to other data types or a larger population.
It is crucial to consider the potential impact of sample size and the characteristics
of the sample on the generalizability of the results.

Despite these limitations, this thesis was able to successfully address them and
produce valuable insights into the use of software patterns, microservices, Docker
and advanced software engineering principles and practices in bioinformatics soft-
ware systems. The research demonstrates the feasibility and effectiveness of these
technologies in addressing the complexities and demands of bioinformatics software
systems. Additionally, we implemented many concepts and principles that we stud-
ied, further supporting their usefulness in this context. While it is essential to
consider the study’s limitations, our research showcases the potential of these tech-
nologies in addressing the challenges of building reliable and scalable bioinformatics
software systems.

162
Chapter 5 Discussion: A comparative analysis of summary, limitations, and

comparison

5.4 Comparison to other works
Our work on using software patterns, microservices, Docker, and advanced software
engineering principles and practices in bioinformatics software systems fits into the
larger context of research on bioinformatics software engineering. Bioinformatics
software systems are complex and require the use of advanced software engineering
techniques in order to be reliable and scalable. Our research is guided by the goal of
identifying and evaluating these techniques to inform the design and development of
bioinformatics software systems.

This topic has been addressed in several research papers [21, 22, 83, 100], which
have identified various challenges and opportunities in the field of bioinformatics
software engineering. For instance. Lower highlights the lack of software engineering
skills in the field of bioinformatics and proposes the creation of a new role called
"Bioinformatic Engineer" as a solution. Lower also recommends cross-training soft-
ware engineers in the life sciences and researching Domain Specific Languages to
facilitate collaboration between engineers and bioinformaticians. [100]. As bioinfor-
matics data analysis can be seen as a subset of data-centric analysis, similar chal-
lenges also apply. Hummel et al. emphasise the need for efficient algorithms and
data structures in the development of data-centric systems in order to handle large
amounts of data without experiencing performance degradation. They also note the
importance of scalability, data storage, data processing, data analysis, and data vi-
sualisation in the field of data-centric analysis [83]. Bare et al. emphasise the use
of software to facilitate the analysis of high-throughput data in the field of biology
and the importance of interoperability between software tools. They propose using
simple data structures such as lists, matrices, networks, tables, and tuples to achieve
interoperability and provide guidelines for future software development. These chal-
lenges and considerations can impact the design of software architecture [21].

Our work builds upon and extends previous research in this area by providing
a detailed analysis of the potential benefits and challenges of using microservices
in bioinformatics software systems. Microservices are a software architecture pat-
tern that involves the decomposition of a monolithic application into a set of small,
independent services that can be developed, deployed, and scaled separately. We

5.5 Conclusion 163

evaluate the use of microservices in the context of bioinformatics software systems
and identify several benefits, such as improved modularity, scalability, and flexibility.
We also discuss the challenges of using microservices in this context, such as the need
for effective service design and integration, and the potential overhead of managing
a large number of services.

In addition to our theoretical analysis, we also present a case study in which we
implement many of the concepts and principles that we studied. This case the study
demonstrates the feasibility and effectiveness of using microservices and other ad-
vanced software engineering techniques in building bioinformatics software systems.
Our research contributes to the growing body of knowledge on bioinformatics soft-
ware engineering and highlights the potential of microservices and other advanced
software engineering techniques in building reliable and scalable software systems for
bioinformatics data analysis.

5.5 Conclusion
In conclusion, our study aimed to explore the potential benefits of implementing
various software patterns, microservices, and Docker containers, as well as advanced
software engineering principles and practices in developing bioinformatics software
systems. Our findings suggest that these technologies can significantly enhance bioin-
formatics software systems’ reliability, scalability, performance, efficiency, and pro-
ductivity. Through a series of experiments, we implemented and evaluated a system
that utilises a docker environment with a RESTful API to integrate data from various
sources and apply bioinformatics methods. Our results demonstrated that the system
could significantly reduce computational time through task and data parallelisation,
integrate multiple types of databases within a closed environment, and effectively
handle large datasets. These capabilities make it a valuable tool for researchers in
the field of bioinformatics. However, it is vital to consider the study’s limitations,
including the limited scope, the vast amount of tools and APIs to consider, time
and resource constraints, the potentially small sample size, the possibility of biases
or inaccuracies in the data, and potential confounding variables. The study’s re-
sults may not be generalisable to other data types or a larger population. There

164
Chapter 5 Discussion: A comparative analysis of summary, limitations, and

comparison

may be bias in the selection and evaluation of the data, as well as in the choice of
algorithms and techniques. Despite these limitations, our research contributes valu-
able insights into the use of software patterns, microservices, Docker and advanced
software engineering principles and practices in bioinformatics software systems.

Chapter 6

Conclusion and outlook

165

166 Chapter 6 Conclusion and outlook

In this chapter, we summarised the main findings of our study, which pertain
to the impact of software patterns, microservices, Docker, and advanced software
engineering principles and practices on the reliability, scalability, performance, effi-
ciency, and productivity of bioinformatics software systems. We also discussed the
implications and applications of these findings for researchers and practitioners in
the field. We proposed several directions for future work, including the expansion of
the system’s REST API and the testing of different data sets and algorithms. Fi-
nally, we concluded the study by highlighting the key takeaways from our research
and the value of our work in advancing our understanding of bioinformatics software
systems.

6.1 Main findings
In this study, we investigated the potential benefits of using various software patterns,
microservices, and Docker containers, as well as advanced software engineering prin-
ciples and practices in developing bioinformatics software systems. Through a series
of experiments, we found that implementing software patterns such as the saga pat-
tern and the CQRS pattern can significantly improve the reliability and scalability of
bioinformatics software systems, respectively. Microservices and Docker containers
also enhanced system reliability, scalability, and performance. Our research also in-
dicates that adopting advanced software engineerings practices, such as model-driven
design and Docker orchestration with Swarm, can facilitate the efficient and produc-
tive deployment and management of bioinformatics software systems. Finally, we
found that Our implementation of a distributed architecture improves the efficiency
and productivity of a small research group through the parallelisation of tasks and
the utilisation of additional resources.

Our experimental results showed that our system could significantly reduce com-
putational time using task and data parallelisation. It was also able to effectively
integrate multiple types of databases within a closed environment, allowing for the
seamless integration and management of different types of data. Additionally, our
system handled large datasets using various methods, which is critical for the accu-
rate and efficient analysis of large amounts of data often encountered in bioinformat-

6.2 Implications and application 167

ics research. Overall, our system demonstrated the ability to address challenges in
bioinformatics and is a valuable tool for researchers in this field.

6.2 Implications and application
The primary goal of this study was to explore the potential benefits of implementing
various software patterns, microservices, and Docker containers, as well as advanced
software engineering principles and practices, in developing bioinformatics software
systems. In addition, our research aimed to assess the impact of these technologies on
the reliability, scalability, performance, efficiency, and productivity of bioinformatics
software systems. In order to address this research question, we conducted a series
of experiments and analysed the results to identify trends and patterns.

Our findings suggest that using software patterns such as the saga pattern and the
Command Query Responsibility Segregation (CQRS) pattern can significantly en-
hance the reliability and scalability of bioinformatics software systems, respectively.
Microservices and Docker containers can improve system reliability, scalability, and
performance. The use of microservices enhances the modularity and maintainability
of a system. This architecture can lead to reduced downtime and increased stability.
The application of Docker containers for the packaging and deployment of microser-
vices facilitates the scaling and deployment of the system, contributing to improved
scalability. Additionally, the adoption of object storage for data storage and REST
for component communication can further enhance the performance and reliability
of the system.

Furthermore, our research indicates that the adoption of advanced software en-
gineering principles and practices, such as model-driven design and Docker orches-
tration with Swarm can facilitate the efficient and productive deployment and man-
agement of bioinformatics software systems. The integration of these practices can
support the efficient and productive deployment and management of a large number
of Docker containers. In addition, the implementation of a distributed architecture
can enhance the efficiency and productivity of a small research group through the
parallelisation of tasks and the utilisation of additional resources.

Our experimental results showed that our system could significantly reduce com-

168 Chapter 6 Conclusion and outlook

putational time using task and data parallelisation. This parallelisation is a sig-
nificant advantage as it allows for faster processing of data, which is essential in
bioinformatics. Furthermore, researchers often encounter large datasets for their ex-
periments. In addition to improving computational efficiency, our system was also
able to integrate multiple types of databases within a closed environment effectively.
This integration is a valuable feature as it allows for the seamless integration and
management of different data types, which is essential for conducting comprehensive
analyses. Furthermore, our system was able to handle large datasets using a vari-
ety of methods. This handling is critical as it allows for the accurate and efficient
analysis of large amounts of data, often required in bioinformatics research. Overall,
our experimental results highlight the usefulness of our system in addressing chal-
lenges in the field of bioinformatics. Its ability to improve computational efficiency,
integrate multiple types of databases and effectively handle large datasets make it a
valuable tool for researchers working in this field.

In conclusion, our findings suggest that the incorporation of software patterns,
microservices, Docker containers, and advanced software engineering principles and
practices can significantly enhance the reliability, scalability, performance, efficiency,
and productivity of bioinformatics software systems. It is vital to consider the spe-
cific needs and constraints of the system, as well as the availability of resources and
expertise when implementing these technologies in order to optimise the success of
the system. Our system, which utilises a docker environment with a RESTful API to
integrate data from various sources and apply bioinformatics methods, has demon-
strated the ability to significantly reduce computational time through task and data
parallelisation, integrate multiple types of databases within a closed environment,
and effectively handle large datasets. These capabilities make it a valuable tool for
researchers in the field of bioinformatics. Future research could involve further ex-
ploration of the impact of these technologies on bioinformatics software systems, as
well as the development of best practices for their implementation in this context.

6.3 Future work 169

6.3 Future work
As we look towards the future potential of our bioinformatics microservices system,
several exciting opportunities for improvement present themselves. One promising
direction for development is the expansion of the system’s REST API to consume
more tools and APIs, as mentioned by Sheffield et al. [155]. This integration would
significantly increase the versatility and functionality of the system and enable it to
interact with a wider range of resources and tools.

The experiments conducted in this study focused on evaluating the performance
of our proposed framework using various data sets and algorithms. Specifically, we
ran an HMM search over the Repbase dataset, a matrix decomposition on genotype
expression project data, and time series analysis with convolutional long short-term
memory neural networks based on Ustyantsev et al., O’Brien et al. and Shi et
al. [156,163,170] . There are other areas in which we could potentially extend these
experiments. One direction we could take to expand upon our research in bioinfor-
matics to try out different data sets and algorithms to validate the effectiveness of
our framework. For example, we could use different a method to identify and mark
duplicate reads in high-throughput sequencing data similar to inside Gatk frame-
work or Random Forest as proposed by Chen and Ishwaran to see how well they
perform [37, 120]. Ultimately, the goal is to find the reliable Moreover, effective
methods for analysing and interpreting biological data and continue refining and
improving our framework in the future.

In order to ensure the reliability and generalizability of our framework, we could
extend our analysis to examine its robustness under different circumstances [182].
To this end, future research should focus on evaluating the performance of the frame-
work under a variety of conditions using robustness as further factire [98,113]. This
test will allow us to determine the robustness of the framework, and identify any
potential weaknesses that need to resolve. Given the the increasing importance of
robust architecture in the field of data analysis, such an investigation is essential
for advancing our understanding of the framework and improving its effectiveness in
practical applications.

Adding network tests to our bioinformatics data framework could help ensure the

170 Chapter 6 Conclusion and outlook

network’s performance, reliability, and security. These tests involve the evaluation
of the network’s performance, reliability, security, and compatibility, as well as its
ability to handle high levels of usage and traffic. There are various types of network
tests that can be performed, including functional testing, performance testing, secu-
rity testing, compatibility testing, stress testing, load testing, and disaster recovery
testing. As Griffeth et al. proposed the use of an experimental method in the test-
ing process and the identification of self-similar structures in networks can improve
the efficiency and effectiveness of testing [73]. By conducting these tests, we can
better understand how our framework performs under different network conditions
and gain insights into its underlying mechanisms, potentially identifying areas for
improvement. These efforts may contribute to the development of a more robust and
reliable approach for analysing and processing data.

In conclusion, the findings of this study suggest that the implementation of soft-
ware patterns, microservices, Docker, and advanced software engineering principles
and practices can significantly improve the reliability, scalability, performance, ef-
ficiency, and productivity of bioinformatics software systems. Future work could
involve further exploration of the impact of these technologies on bioinformatics
software systems, as well as the development of best practices for their implementa-
tion in this context. Additionally, further examination of the robustness, scalability
and validity of our framework could help to advance our understanding of the po-
tential applications of our framework and to identify potential directions for future
development.

6.4 Conclusion
This study has made significant strides in addressing the research questions sur-
rounding the design, implementation, and optimisation of bioinformatics software
systems using software patterns, microservices, Docker, and advanced software en-
gineering principles and practices. Our findings suggest that incorporating these
technologies can significantly improve bioinformatics software systems.’ reliability,
scalability, performance, efficiency, and productivity. In addition, we have identified
key considerations and challenges in the design and implementation process, as well

6.4 Conclusion 171

as factors that influence the success of such systems. These insights provide valuable
guidance for researchers and practitioners seeking to implement these technologies
in developing bioinformatics software systems.

In addition, our research has demonstrated the potential of parallel computation
and machine learning techniques to optimise data analysis and integration within our
framework. By applying these approaches, we significantly reduced computational
time and effectively integrated and analysed data from multiple sources. These
capabilities are essential for addressing the challenges of working with large datasets
in the field of bioinformatics and for conducting comprehensive analyses.

Overall, our study has contributed valuable insights into the potential benefits
and challenges of using software patterns, microservices, Docker, and advanced soft-
ware engineering principles and practices in the development of bioinformatics soft-
ware systems. We believe that these findings will be of great value to researchers and
practitioners in the field, and we look forward to continuing to explore the potential
of these technologies in future work.

Bibliography

[1] Apache spark documentation. https://spark.apache.org/docs/latest/,
Nov 2018. Accessed on 2019-01-14.

[2] Cloud vision 2020: The future of the cloud
study. https://www.logicmonitor.com/resource/
the-future-of-the-cloud-a-cloud-influencers-survey/?utm_medium=
pr&utm_source=businesswire&utm_campaign=cloudsurvey, Jan 2018.
Accessed: 2020-01-04.

[3] Docker engine overview. https://docs.docker.com/install/, jan 2018. Ac-
cessed on 2019-12-07.

[4] Linux vserver. http://linux-vserver.org/, Jul 2018. Accessed on 2020-09-
12.

[5] Creating highly available clusters with kubeadm. https://
kubernetes.io/docs/setup/production-environment/tools/kubeadm/
high-availability/, jan 2019. Accessed on 2019-12-02.

[6] Dockerfile reference. https://docs.docker.com/engine/reference/
builder/, jan 2019. Accessed on 2019-11-23.

[7] Swarm mode overview. https://docs.docker.com/engine/swarm/, jan 2019.
Accessed on 2019-11-23.

[8] Arvados – open source big data processing and bioinformatics, 2020. Accessed
on 2020-01-21.

[9] Openvz. https://openvz.org/, Mar 2021. Accessed on 2021-11-02.

[10] Docker. https://www.docker.com/, Jan 2022. Accessed on 2022-01-02.

[11] Kubernetes. https://kubernetes.io/, Jan 2022. Accessed on 2022-01-02.

[12] Lxc. https://linuxcontainers.org/, Jan 2022. Accessed on 2022-01-02.

[13] Singularity. http://sislabs.io/, Jan 2022. Accessed on 2022-01-12.

172

https://spark.apache.org/docs/latest/
 https://www.logicmonitor.com/resource/the-future-of-the-cloud-a-cloud-influencers-survey/?utm_medium=pr&utm_source=businesswire&utm_campaign=cloudsurvey
 https://www.logicmonitor.com/resource/the-future-of-the-cloud-a-cloud-influencers-survey/?utm_medium=pr&utm_source=businesswire&utm_campaign=cloudsurvey
 https://www.logicmonitor.com/resource/the-future-of-the-cloud-a-cloud-influencers-survey/?utm_medium=pr&utm_source=businesswire&utm_campaign=cloudsurvey
https://docs.docker.com/install/
http://linux-vserver.org/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/swarm/
https://openvz.org/
https://www.docker.com/
https://kubernetes.io/
https://linuxcontainers.org/
http://sislabs.io/

BIBLIOGRAPHY 173

[14] M. L. Abbott and M. T. Fisher. The Art of Scalability: Scalable Web Architec-
ture, Processes, and Organizations for the Modern Enterprise. Addison-Wesley
Professional, Upper Saddle River, NJ, 2nd edition, 2015.

[15] M. Abdelhak, S. Grostick, and M. Hanken. Health Information - E-Book:
Management of a Strategic Resource. Elsevier Health Sciences, 2014.

[16] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, New York, August 1977.

[17] A. Alkhalid, C.-H. Lung, and S. Ajila. Software architecture decomposition
using adaptive k-nearest neighbor algorithm. In 2013 26th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), page 1–4, May
2013.

[18] A. Anguera, J. M. Barreiro, J. A. Lara, and D. Lizcano. Applying data mining
techniques to medical time series: an empirical case study in electroencephalog-
raphy and stabilometry. Computational and structural biotechnology journal,
14:185–199, May 2016. 27293535[pmid].

[19] C. Avci, B. Tekinerdogan, and I. Athanasiadis. Software architectures for big
data: a systematic literature review. Big Data Analytics, 5, Aug 2020.

[20] W. Bao, K. Kojima, and O. Kohany. Repbase update, a database of repetitive
elements in eukaryotic genomes. Mobile DNA, 6, 06 2015.

[21] J. C. Bare and N. S. Baliga. Architecture for interoperable software in biology.
Briefings in Bioinformatics, 15(4):626–636, Jul 2014.

[22] J. Barker and J. Thornton. Software engineering challenges in bioinformatics.
page 12–15, Jan 2004.

[23] C. Barnes, B. Bajracharya, M. Cannalte, Z. Gowani, W. Haley, et al. The
biomedical research hub: a federated platform for patient research data. Jour-
nal of the American Medical Informatics Association, 29(4):619–625, Apr 2022.

[24] R. Batista-Navarro, J. Carter, and S. Ananiadou. Argo: enabling the devel-
opment of bespoke workflows and services for disease annotation. Database,
2016, 05 2016. baw066.

[25] A. Beltre, P. Saha, M. Govindaraju, A. Younge, and R. Grant. Enabling
hpc workloads on cloud infrastructure using kubernetes container orchestration
mechanisms. 11 2019.

[26] T. Besker, A. Martini, and J. Bosch. Impact of architectural technical debt on
daily software development work - a survey of software practitioners. 09 2017.

174 BIBLIOGRAPHY

[27] P. Billingsley. Probability And Measure, 3rd Ed. Wiley series in probability
and mathematical statistics. Wiley India Pvt. Limited, 2008.

[28] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, 1 edition, 2007.

[29] G. S. Blair and J.-B. Stefani. Open Distributed Processing and Multimedia.
Addison-Wesley Longman Publishing Co., Inc., 1998.

[30] J. Bosch. Software architecture: The next step. volume 3047, page 194–199,
May 2004.

[31] F. Bülthoff and M. Maleshkova. Restful or restless - current state of today’s
top web apis. CoRR, abs/1902.10514, 2019.

[32] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, et al. Apache flink:
Stream and batch processing in a single engine. IEEE Data Eng. Bull., 2015.

[33] V. J. Carey, A. R. Davis, M. F. Lawrence, R. Gentleman, and B. A. Raby.
Data structures and algorithms for analysis of genetics of gene expression with
bioconductor: Ggtools 3.x. Bioinformatics, 25(11):1447–1448, Jun 2009.

[34] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the benefits of mixed
data and task parallelism. Jun 1995.

[35] L. Chen, M. Ali Babar, and B. Nuseibeh. Characterizing architecturally sig-
nificant requirements. IEEE Software, 30(2):38–45, 2013.

[36] R. Chen, S. Li, and Z. Li. From monolith to microservices: A dataflow-driven
approach. 2017 24th Asia-Pacific Software Engineering Conference (APSEC),
page 466–475, Dec 2017.

[37] X. Chen and H. Ishwaran. Random forests for genomic data analysis. Ge-
nomics, 99(6):323–329, Jun 2012.

[38] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, et al. Documenting
Software Architectures: Views and Beyond. Pearson Education, 2002.

[39] P. Clutterbuck, T. Rowl, and O. Seamons. A case study of sme web application
development effectiveness via agile methods. Electronic Journal of Information
Systems Evaluation, pages 13–26, 2009.

[40] P. Comon. Independent component analysis, a new concept? Signal Processing,
36:287–314, Apr 1994.

[41] F. Costa. Big data in biomedicine. Drug discovery today, 19, 10 2013.

BIBLIOGRAPHY 175

[42] K. Costello. Gartner forecasts worldwide public cloud revenue to grow 17.5
percent in 2019. https://www.gartner.com/en/newsroom/press-releases/
2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g,
Aug 2019. Accessed: 2020-04-04.

[43] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, 2. edition edition, Sep 2006.

[44] W. Cunningham. The wycash portfolio management system. ACM SIGPLAN
OOPS Messenger, 4(2):29–30, Dec 1992.

[45] J. Darmont, O. Boussaid, J.-C. Ralaivao, and K. Aouiche. An architecture
framework for complex data warehouses, 2007.

[46] S. Dash, S. Shakyawar, M. Sharma, and S. Kaushik. Big data in healthcare:
management, analysis and future prospects. Journal of Big Data, 6, 12 2019.

[47] E. R. Davies. Computer Vision: Principles, Algorithms, Applications, Learn-
ing. Academic Press, 5th edition edition, Nov 2017.

[48] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge. Function-Splitting
Heuristics for Discovery of Microservices in Enterprise Systems, volume 11236
of Lecture Notes in Computer Science, page 37–53. Springer International
Publishing, Cham, 2018.

[49] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, volume 51 of Osdi’04, pages
10–10, Berkeley, CA, USA, 01 2004. USENIX Association.

[50] E. Deelman, W. Kaplow, B. Szymanski, P. Tannenbaum, and L. Ziantz. Inte-
grating data and task parallelism in scientific programs. Dec 2002.

[51] P. Desai. A survey of performance comparison between virtual machines and
containers. International Journal Of Computer Sciences And Engineering,
4:55–59, 07 2016.

[52] K. K. Dey, C. J. Hsiao, and M. Stephens. Visualizing the structure of
rna-seq expression data using grade of membership models. PLoS genetics,
13(3):e1006599, Mar 2017.

[53] C. Ding, T. Li, and M. Jordan. Convex and semi-nonnegative matrix factor-
izations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(8):1548–1560, 2011.

[54] C. Ding, T. Li, and M. I. Jordan. Robust nonnegative matrix factoriza-
tion for data recovery and discovery. Journal of Machine Learning Research,
14(1):3413–3459, 2013.

 https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
 https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g

176 BIBLIOGRAPHY

[55] H. Ding, L. Arber, L. Sha, and M. Caccamo. The dependency management
framework: a case study of the ion cubesat. In 18th Euromicro Conference on
Real-Time Systems (ECRTS’06), pages 10 pp.–64, 2006.

[56] I. D. Dinov. Volume and value of big healthcare data. Journal of medical
statistics and informatics, 4:3, 2016. 26998309[pmid].

[57] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

[58] D. Eddelbuettel. Parallel computing with r: A brief review. Apr 2020.
arXiv:1912.11144 [stat].

[59] L. Elden. Matrix Methods in Data Mining and Pattern Recognition, Second
Edition. Fundamentals of Algorithms. Society for Industrial and Applied Math-
ematics, 2019.

[60] P. Emami Khoonsari, P. Moreno, S. Bergmann, J. Burman, M. Capuccini,
et al. Interoperable and scalable data analysis with microservices: applications
in metabolomics. Bioinformatics, 35(19):3752–3760, Oct 2019.

[61] J. Espinosa, S. Kaisler, F. Armour, and W. Money. Big data redux: New issues
and challenges moving forward. 01 2019.

[62] F. Esposito. A review on initialization methods for nonnegative matrix fac-
torization: Towards omics data experiments. Mathematics, 9(99):1006, Jan
2021.

[63] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley, 2004.

[64] R. Finn. Hmmer: Fast and sensitive sequence similarity searches, 2018.

[65] G. Fischer. Lineare Algebra. Grundkurs Mathematik : Studium.
Vieweg+Teubner Verlag, 2009.

[66] Flexera. State of the cloud report. 01 2019.

[67] M. Fowler and J. Lewis. Microservices. https://martinfowler.com/
articles/microservices.html, Mar 2014. Accessed on 2018-11-21.

[68] D. Freedman, R. Pisani, and R. Purves. Statistics: Fourth International Stu-
dent Edition. International student edition. W.W. Norton & Company, 2007.

[69] D. Garlan. An Introduction to Software Architecture, page 1–39. Dec 1993.
journalAbbreviation: Advances in Software Engineering and Knowledge Engi-
neering 2.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY 177

[70] S. Ghosh. Distributed Systems: An Algorithmic Approach, Second Edition.
Chapman & Hall/CRC Computer and Information Science Series. CRC Press,
2nd edition edition, Jul 2014.

[71] R. Gnanadesikan. Methods for Statistical Data Analysis of Multivariate Ob-
servations. Wiley Series in Probability and Statistics. Wiley, 2011.

[72] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, 2013.

[73] N. Griffeth and C. Djouvas. Experimental method for testing networks. page
935–941, Jan 2005.

[74] G. Grimmett, D. Grimmett, and D. Stirzaker. Probability and Random Pro-
cesses: Fourth Edition. Oxford University Press, 2020.

[75] gskchaitanya, J. Creasy, C. Larsen, B. Sigoure, and V. Kiryanov. Opentsdb
- the scalable time series database. http://opentsdb.net/overview.html,
Dez 2011. Accessed on 2019-02-03.

[76] N. Guan, Z. Du, J. Li, J. Li, and X. Li. Non-negative matrix factorization for
analysis of gene expression data. Bioinformatics, 26(19):2720–2727, 2010.

[77] J. L. Gustafson. Amdahl’s Law, pages 53–60. Springer US, Boston, MA, 2011.

[78] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann. Service cutter: A
systematic approach to service decomposition. In M. Aiello, E. B. Johnsen,
S. Dustdar, and I. Georgievski, editors, Service-Oriented and Cloud Comput-
ing, Lecture Notes in Computer Science, page 185–200, Cham, 2016. Springer
International Publishing.

[79] J. Hamilton. On designing and deploying internet-scale services. page 231–242,
Jan 2007.

[80] A. P. Heath, V. Ferretti, S. Agrawal, M. An, J. C. Angelakos, et al. The nci
genomic data commons. Nature Genetics, 53(33):257–262, Mar 2021.

[81] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing:
What it is, and what it is not. page 23–27, 2013.

[82] N. Higham. Functions of Matrices: Theory and Computation. Other Titles in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM,
3600 Market Street, Floor 6, Philadelphia, PA 19104), 2008.

[83] O. Hummel, H. Eichelberger, A. Giloj, D. Werle, and K. Schmid. A collection of
software engineering challenges for big data system development. page 362–369,
Aug 2018.

http://opentsdb.net/overview.html

178 BIBLIOGRAPHY

[84] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis.
John Wiley & Sons, Jun 2001. Google-Books-ID: 9TQNEAAAQBAJ.

[85] International Organization for Standardization. Information technology – open
distributed processing – reference model: Architecture iso/iec 10746-3:2009.
Iso, 2019.

[86] R. Jain and N. Chandhok. Web distribution systems : Caching and repli-
cation. https://www.cse.wustl.edu/~jain/cis788-99/ftp/web_caching/
index.html, Dec 1999. Accessed on 2021-12-21.

[87] V. Jalili, E. Afgan, Q. Gu, D. Clements, D. Blankenberg, et al. The galaxy
platform for accessible, reproducible and collaborative biomedical analyses:
2020 update. Nucleic Acids Research, 48(W1):W395–w402, Jul 2020.

[88] M. Kassab, M. Mazzara, J. Lee, and G. Succi. Software architectural pat-
terns in practice: an empirical study. Innovations in Systems and Software
Engineering, 14, Dec 2018.

[89] P. Kaur, A. Singh, and I. Chana. Computational techniques and tools for omics
data analysis: State-of-the-art, challenges, and future directions. Archives of
Computational Methods in Engineering, 28:1–37, Feb 2021.

[90] G. Kecskemeti, A. Marosi, and A. Kertész. The ENTICE approach to de-
compose monolithic services into microservices. Ieee, Innsbruck, Austria, Jul
2016.

[91] C. E. Kennedy and J. P. Turley. Time series analysis as input for clinical
predictive modeling: Modeling cardiac arrest in a pediatric icu. Theoretical
Biology and Medical Modelling, 8(1):40, Oct 2011.

[92] J. Kopecký, P. Fremantle, and R. Boakes. A history and future of web apis. it
- Information Technology, 56, 01 2014.

[93] J. Koster and S. Rahmann. Snakemake–a scalable bioinformatics workflow
engine. Bioinformatics, 28(19):2520–2522, oct 2012.

[94] S. Krakowiak. Middleware architecture with patterns and frameworks. Creative
Commons, Feb 2019.

[95] P. Kruchten. Architectural blueprints: The 4+1 view model of software archi-
tecture. IEEE Software, 12(6):42–50, Nov 1995. arXiv: 2006.04975.

[96] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Al-
gorithms, and Systems. Cambridge University Press, Usa, 1 edition, 2008.

https://www.cse.wustl.edu/~jain/cis788-99/ftp/web_caching/index.html
https://www.cse.wustl.edu/~jain/cis788-99/ftp/web_caching/index.html

BIBLIOGRAPHY 179

[97] P. Kulkarni and P. Frommolt. Challenges in the setup of large-scale next-
generation sequencing analysis workflows. Computational and structural
biotechnology journal, 15:471–477, Oct 2017. 29158876[pmid].

[98] N. Laranjeiro, J. a. Agnelo, and J. Bernardino. A systematic review on software
robustness assessment, May 2022.

[99] J. Lawless. Statistical Models and Methods for Lifetime Data. Wiley Series in
Probability and Statistics. Wiley, 2011.

[100] B. Lawlor and P. Walsh. Engineering bioinformatics: building reliability,
performance and productivity into bioinformatics software. Bioengineered,
6(4):193–203, May 2015.

[101] D. Lay. Linear Algebra and Its Applications. Addison-Wesley, 2012.

[102] D. D. Lee, M. N. Ho, and H. S. Seung. Image interpolation using sparse matrix
factorization. IEEE Transactions on Image Processing, 11(8):1298–1308, 2002.

[103] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(67556755):788–791, Oct 1999.

[104] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization.
In Advances in Neural Information Processing Systems, pages 556–562, 2001.

[105] T. J. Lee, Y. Pouliot, V. Wagner, P. Gupta, D. W. Stringer-Calvert, et al.
Biowarehouse: a bioinformatics database warehouse toolkit. BMC Bioinfor-
matics, 7(1):170, Mar 2006.

[106] J. Leipzig. A review of bioinformatic pipeline frameworks. Brief Bioinform,
18(3):530–536, May 2017.

[107] A. Lesk. Introduction to Bioinformatics. Oxford University Press, May 2019.

[108] M. A. Levinson, J. Niestroy, S. Al Manir, K. Fairchild, D. E. Lake, et al.
Fairscape: a framework for fair and reproducible biomedical analytics. Neu-
roinformatics, 20(1):187–202, Jan 2022.

[109] J. Li, J. Zhang, X. Li, X. Li, and X. Li. Non-negative matrix factorization-
based classification of microarray data by using the global structure of data.
Journal of bioinformatics and computational biology, 11(6):1350017, 2013.

[110] C.-J. Lin, Y.-Y. Chen, C.-F. Pan, V. Wu, and C.-J. Wu. Dataset supporting
blood pressure prediction for the management of chronic hemodialysis. Scien-
tific data, 6(1):313–313, Dec 2019. 31819065[pmid].

180 BIBLIOGRAPHY

[111] B. H. Liskov. A design methodology for reliable software systems. In Proceed-
ings of the December 5-7, 1972, fall joint computer conference, part I, AFIPS
’72 (Fall, part I), page 191–199, New York, NY, USA, Dec 1972. Association
for Computing Machinery.

[112] M. Lovino, V. Randazzo, G. Ciravegna, P. Barbiero, E. Ficarra, et al. A
survey on data integration for multi-omics sample clustering. Neurocomputing,
488:494–508, Jun 2022.

[113] C.-H. Lung and K. Kalaichelvan. An approach to quantitative software archi-
tecture sensitivity analysis. International Journal of Software Engineering and
Knowledge Engineering, 10(01):97–114, Feb 2000.

[114] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1st edition edition,
Mar 1996.

[115] M. Maleshkova, C. Pedrinaci, and J. Domingue. Investigating web apis on
the world wide web. Proceedings - 8th IEEE European Conference on Web
Services, ECOWS 2010, 12 2010.

[116] G. Marcais, B. Solomon, R. Patro, and C. Kingsford. Sketching and sublin-
ear data structures in genomics. Annual Review of Biomedical Data Science,
2:1–26, Apr 2019.

[117] R. Martin. Agile Software Development, Principles, Patterns, and Practices.
Pearson, 1st edition edition, Jul 2013.

[118] D. Mattioli and A. Tilley. Amazon has long ruled the cloud. now it must fend
off rivals.

[119] M. Mattox. Rancher Deep Dive: Manage enterprise Kubernetes seamlessly
with Rancher. Packt Publishing, 2022.

[120] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, et al.
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res., 20(9):1297–1303, Sep 2010.

[121] X. Min, W. Zeng, N. Chen, T. Chen, and R. Jiang. Chromatin accessibil-
ity prediction via convolutional long short-term memory networks with k-mer
embedding. Bioinformatics (Oxford, England), 33(14):i92–i101, Jul 2017.

[122] B. B. Misra, C. D. Langefeld, M. Olivier, and L. A. Cox. Integrated omics:
Tools, advances, and future approaches. Journal of Molecular Endocrinology,
pages Jme–18–0055, Jul 2018.

[123] F. Mörchen, A. Ultsch, and O. Hoos. Extracting interpretable muscle activation
patterns with time series knowledge mining. KES Journal, 9:197–208, Sep 2005.

BIBLIOGRAPHY 181

[124] R. Nagarajan, M. Ahmed, and A. Phatak. Database challenges in the integra-
tion of biomedical data sets. Oct 2004.

[125] D. Namiot and M. sneps sneppe. On micro-services architecture. Interenational
Journal of Open Information Technologies, 2:24–27, 09 2014.

[126] B. C. Neuman. Scale in distributed systems. pages 463–489, 1994.

[127] S. Newman. Monolith to Microservices: Evolutionary Patterns to Transform
Your Monolith. O’Reilly Media, Incorporated, 2019.

[128] J. Nickoloff. Docker in Action. Manning Publications Co., Usa, 1st edition,
2016.

[129] J. A. Novella, P. Emami Khoonsari, S. Herman, D. Whitenack, M. Capuc-
cini, et al. Container-based bioinformatics with pachyderm. Bioinformatics,
35(5):839–846, Mar 2019.

[130] D. Ongaro and J. Ousterhout. In search of an understandable consensus algo-
rithm. Usenix, page 305–320, Jan 2014.

[131] M. Onken, M. Eichelberg, J. Riesmeier, and P. Jensch. Digital imaging and
communications in medicine. page 427–454, 2011.

[132] S. Panda, S. Mondal, R. Dewri, and A. K. Das. Towards achieving efficient
access control of medical data with both forward and backward secrecy. Com-
puter Communications, 189:36–52, May 2022.

[133] D. Parnas. Designing software for ease of extension and contraction. IEEE
Transactions on Software Engineering, Se-5(2):128–138, Mar 1979.

[134] D. Patterson, A. Brown, P. Broadwell, G. C, M. Chen, et al. Recovery oriented
computing (roc): Motivation, definition, techniques, and case studies. Apr
2002.

[135] C. Pautasso and E. Wilde. Why is the Web Loosely Coupled? A Multi-Faceted
Metric for Service Design. Jan 2009. journalAbbreviation: 18th International
World Wide Web Conference.

[136] W. R. Pearson. Finding protein and nucleotide similarities with fasta. Current
protocols in bioinformatics, 53:3.9.1–3.925, Mar 2016.

[137] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, Sep 2000.

[138] A. Periasamy, G. Kapoor, and Harshavardhana. Minio object storage - open
source, s3 compatible, enterprise hardened and really, really fast. https://
min.io/product/overview, Nov 2014. Accessed on 2019-01-21.

https://min.io/product/overview
https://min.io/product/overview

182 BIBLIOGRAPHY

[139] K. Peters, J. Bradbury, S. Bergmann, M. Capuccini, M. Cascante, et al. Phe-
nomenal: processing and analysis of metabolomics data in the cloud. Giga-
Science, 8(2):giy149, Feb 2019.

[140] C. Ramamoorthy and B. Wah. Knowledge and data engineering. IEEE Trans-
actions on Knowledge and Data Engineering, 1:9–16, Mar 1989.

[141] G. Recht. Bundesdatenschutzgesetz (BDSG) -. G. Recht, 2014.

[142] M. Reddy. API Design for C++. Elsevier Science, 2011.

[143] H. L. Rehm, A. J. H. Page, L. Smith, J. B. Adams, G. Alterovitz, et al. Ga4gh:
International policies and standards for data sharing across genomic research
and healthcare. Cell Genomics, 1(2):100029, Nov 2021.

[144] M. Reisman. Ehrs: The challenge of making electronic data usable and interop-
erable. P & T : a peer-reviewed journal for formulary management, 42(9):572–
575, Sep 2017. 28890644[pmid].

[145] D. Renzel, P. Schlebusch, and R. Klamma. Today’s top “restful” services and
why they are not restful. In X. S. Wang, I. Cruz, A. Delis, and G. Huang,
editors, Web Information Systems Engineering - WISE 2012, pages 354–367,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[146] G. V. Research. Application container market analysis report by deploy-
ment, by platform (kubernetes, docker), by organization size (smes, large
enterprise), by service, by application, by region, and segment forecasts,
2019 - 2025. https://www.grandviewresearch.com/industry-analysis/
application-container-market, Feb 2019. Accessed on 2020-01-21.

[147] C. Richardson. Microservices Patterns: With examples in Java. Manning,
Shelter Island, New York, 1st edition edition, Nov 2018.

[148] E. M. Robertsen, T. Kahlke, I. A. Raknes, E. Pedersen, E. Kjærner-Semb,
et al. Meta-pipe - pipeline annotation, analysis and visualization of marine
metagenomic sequence data. CoRR, abs/1604.04103, 2016.

[149] A. Roy, Y. Diao, U. Evani, A. Abhyankar, C. Howarth, et al. Massively parallel
processing of whole genome sequence data: An in-depth performance study.
In Proceedings of the 2017 ACM International Conference on Management of
Data, Sigmod ’17, page 187–202, New York, NY, USA, 2017. Association for
Computing Machinery.

[150] J. Saltz, A. Sharma, G. Iyer, E. Bremer, F. Wang, et al. A containerized
software system for generation, management, and exploration of features from
whole slide tissue images. Cancer research, 77(21):e79–e82, Nov 2017.

https://www.grandviewresearch.com/industry-analysis/application-container-market
https://www.grandviewresearch.com/industry-analysis/application-container-market

BIBLIOGRAPHY 183

[151] J. Schellenberger and B. Palsson. Use of randomized sampling for analysis of
metabolic networks. Journal of Biological Chemistry, 284(9):5457–5461, Feb
2009.

[152] G. Schryen. Parallel computational optimization in operations research:
A new integrative framework, literature review and research directions.
(arXiv:1910.03028), Oct 2019. arXiv:1910.03028 [cs].

[153] A. Seffah, M. Donyaee, R. Kline, and H. Padda. Usability measurement and
metrics: A consolidated model. Software Quality Journal, 14:159–178, Jun
2006.

[154] S. P. Shah, Y. Huang, T. Xu, M. M. Yuen, J. Ling, et al. Atlas – a data
warehouse for integrative bioinformatics. BMC Bioinformatics, 6(1):34, Feb
2005.

[155] N. C. Sheffield, V. R. Bonazzi, P. E. Bourne, T. Burdett, T. Clark, et al.
From biomedical cloud platforms to microservices: next steps in fair data and
analysis. Scientific Data, 9(11):553, Sep 2022.

[156] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. kin Wong, et al. Convolutional
lstm network: A machine learning approach for precipitation nowcasting, 2015.

[157] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed
file system. In 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), page 1–10, Incline Village, NV, USA, May 2010. Ieee.

[158] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons. Machine learning in medicine:
a practical introduction. BMC Medical Research Methodology, 19(1):64, Mar
2019.

[159] L. B. Silva, R. C. Jimenez, N. Blomberg, and J. Luis Oliveira. General guide-
lines for biomedical software development. F1000Research, 6:273, Jul 2017.

[160] R. Sokal and F. Rohlf. Biometry: the principles and practice of statistics in
biological research / robert r. sokal and f. james rohlf. SERBIULA (sistema
Librum 2.0), Apr 2013.

[161] R. M. Stallman and R. McGrath. Gnu make - a program for directing recom-
pilation, 1991.

[162] M. v. Steen and A. S. Tanenbaum. Distributed Systems. CreateSpace Inde-
pendent Publishing Platform, 3rd edition edition, Feb 2017.

[163] G. L. Stein-O’Brien, R. Arora, A. C. Culhane, A. V. Favorov, L. X. Garmire,
et al. Enter the matrix: Factorization uncovers knowledge from omics. Trends
in Genetics, 34(10):790–805, Oct 2018.

184 BIBLIOGRAPHY

[164] M. Stolarczyk, V. Reuter, J. Smith, N. Magee, and N. Sheffield. Refgenie: a
reference genome resource manager. GigaScience, 9, Feb 2020.

[165] M. Stolarczyk, B. Xue, and N. Sheffield. Identity and compatibility of reference
genome resources. NAR Genomics and Bioinformatics, 3, Apr 2021.

[166] G. Strang. Linear algebra and its applications. Thomson, Brooks/Cole, Bel-
mont, CA, 2006.

[167] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for Software
Design Smells: Managing Technical Debt. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2014.

[168] D. Taibi and K. Systä. From monolithic systems to microservices: A decom-
position framework based on process mining. 05 2019.

[169] J. Tzeng, H. H.-S. Lu, and W.-H. Li. Multidimensional scaling for large genomic
data sets. BMC Bioinformatics, 9(1):179, Apr 2008.

[170] K. Ustyantsev, A. Blinov, and G. Smyshlyaev. Convergence of retrotransposons
in oomycetes and plants. In Mobile DNA, 2017.

[171] R. Van Der Straeten, T. Mens, and S. Baelen. Challenges in Model-Driven
Software Engineering, volume 5421. Sep 2008. journalAbbreviation: MODELS
2008. LNCS.

[172] M. van Steen and A. S. Tanenbaum. A brief introduction to distributed sys-
tems. Computing, 98(10):967–1009, Oct 2016.

[173] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek. Kubernetes as
an availability manager for microservice applications. CoRR, abs/1901.04946,
2019.

[174] M. A. Vega-Rodríguez and J. M. Granado-Criado. Parallel programming in
bioinformatics: Some interesting approaches. International Journal of Parallel
Programming, 47(2):293–295, Apr 2019.

[175] G. Vera, R. C. Jansen, and R. L. Suppi. R/parallel – speeding up bioinformatics
analysis with r. BMC Bioinformatics, 9(1):390, Sep 2008.

[176] J. Vivian, A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong, et al. Toil en-
ables reproducible, open source, big biomedical data analyses. Nature Biotech-
nology, 35(4):314–316, Apr. 2017.

[177] T. Vresk and I. Čavrak. Architecture of an interoperable iot platform based
on microservices. In 2016 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), page
1196–1201, May 2016.

BIBLIOGRAPHY 185

[178] M. Štefanko, O. Chaloupka, and B. Rossi. The Saga Pattern in a Reactive
Microservices Environment. Jan 2019.

[179] F. Waas, R. Wrembel, T. Freudenreich, M. Thiele, C. Koncilia, et al. On-
demand elt architecture for right-time bi: Extending the vision. Int. J. Data
Warehous. Min., 9(2):21–38, Apr. 2013.

[180] S. Weerasinghe, R. Kathriarachchi, B. Hettige, and A. Karunananda. Resource
sharing in distributed environment using multi-agent technology. International
Journal of Computer Applications, 167:28–32, Jun 2017.

[181] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1005 Graven-
stein Highway North, Sebastopol, CA 95472, 4th edition, 2015.

[182] A. Yang, M. Troup, and J. Ho. Scalability and validation of big data bioinfor-
matics software. Computational and Structural Biotechnology Journal, 15, Jul
2017.

[183] F. Yao, J. Coquery, and K.-A. Lê Cao. Independent principal component
analysis for biologically meaningful dimension reduction of large biological data
sets. BMC Bioinformatics, 13(1):24, Feb 2012.

[184] A. D. Yates, J. Adams, S. Chaturvedi, R. M. Davies, M. Laird, et al. Refget:
standardized access to reference sequences. Bioinformatics, 38(1):299–300, Jan
2022.

[185] S. Yau and J. Collofello. Design stability measures for software maintenance.
IEEE Transactions on Software Engineering, Se-11(9):849–856, Sep 1985.

[186] S. S. Yau and J. S. Collofello. Some stability measures for software mainte-
nance. Ieee Transactions On Software Engineering, (6):8, 1980.

[187] S. L. Zeger, R. Irizarry, and R. D. Peng. On time series analysis of public
health and biomedical data. Annual Review of Public Health, 27:57–79, 2006.

[188] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: State-of-the-art and
research challenges. Journal of Internet Services and Applications, 1:7–18, May
2010.

[189] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, et al. A comparative study of
containers and virtual machines in big data environment. (arXiv:1807.01842),
Jul 2018. arXiv:1807.01842 [cs].

[190] Y. Zhao and Y. Liu. Oclstm: Optimized convolutional and long short-term
memory neural network model for protein secondary structure prediction. PLoS
ONE, 16(2):e0245982, Feb 2021.

186 BIBLIOGRAPHY

[191] O. Zimmermann. Microservices tenets. Computer Science - Research and
Development, 32(3):301–310, Jul 2017.

Appendix A

Appendix

187

188 Chapter A Appendix

A.1 Mathematical background

A.1.1 Matrix inverses
Indeed, since Rn×m, with n, m ∈ N is only a ring, the existence of inverses might be
absent. Moreover, the rank of the matrix might influence its existence. We assume
that the data is preprocessed, that we can assume the input data X has full rank.
Concerning the inverse, we can use simple mathematical properties to create the left
and right inverse of a matrix. However, this fact relies on two properties .

(CT C)−1(CT C) = I (A.1)

where C ∈ Rn×m, with n, m ∈ N, rank(C) = min{m, n}, I being the identity matrix
and T the tranpose operator.

(DDT)(DDT)−1 = I (A.2)

where D ∈ Rn×m, with n, m ∈ N, rank(D) = min{m, n}. The term (CT C)−1CT

and DT (DDT)−1 are referred to as left respectively right inverse [65,101,166]. There-
fore, the problem of low-dimensional representation has an equivalent matrix trans-
formation [59, 82]. Depending on the matrix decomposition approach, either the
problem of equations 4.1 and 4.2 are equivalent problems.

A.1.2 Principal component analysis
Concerning linear algebra, the main theorem for principal component analysisis the
spectral theorem [72,166]. This fact proves the existence of orthogonal eigenvectors.

Theorem A.1.1. (Real spectral theorem) Let A ∈ Rm×n. If A is symmetric (AT =
A), then A is orthogonal diagonalizable and has real eigenvalues. In other words,
there exists a decomposition.

A = UΛUT (A.3)

with

U =

 u1 u2 . . . un

being orthogonal (UT U = UUT = In) matrix. The columns of matrix U are the

eigenvectors of A. In addition, the eigenvalues are a diagonal matrix with eigenvalues
of A

A.1 Mathematical background 189

Λ = diag(λ1, λ2, . . . , λn) =

λ1 0

. . .
0 λn

Concretely, for the eigenvalues λ1, . . . , λn ∈ R and eigenvectors v1, . . . , vn ∈ Rm are
defined as

Avi = λivi

the that for i ∈ {1, 2, . . . n}. Moreover, the eigenvectors are the orthogonal and
non-zero.

The following corollary and proposition allow proving helpful properties concern-
ing AAT and AT A.

Corollary A.1.1. If A ∈ Rm×n then AAT ∈ Rm×m and AT A ∈ Rn×n are both
symmetric.

One interesting observation that follows from this corollary, is that the symmet-
ric property of the matrices AAT and AT A implies that their eigenvectors form a
complete orthonormal system.

Proposition A.1.1. The matrices AAT and AT A share the same non-zero and are
positive eigenvalues.

In summary, these results provide important insights into the properties of ma-
trices that are crucial for understanding and applying principal component analysis.
These results are not only limited to principal component analysisbut also have
broader implications in the field of linear algebra and matrix theory, providing a
deeper understanding of the properties of matrices and their eigenvalues.

In this section, we will delve into the exciting field of property theory and statis-
tics. Of particular relevance to our study is the area of probability theory We negin
with the concept of multi-dimensional random variables [27,74]. This concept forms
the foundation of our analysis and will be the focus of the upcoming discussion.

Definition A.1.1. Let (Ω,A, P) be a probability space and m ∈ N, with m > 1.
Moreover, let B(·) be the Borel σ-Algebra. Then a multi-dimensional random variable
is a map

X : (Ω,A, P)→ (Rm,B(Rm)) with X−1(B(Rm)) ⊂ A

Remark. There is another equivalent definition for the multi-dimensional random
variable. Let X = (X1, X2, . . . , Xm) with X1, X2, . . . , Xm being real random vari-
ables. Then X = (X1, X2, . . . , Xm) is a multi-dimensional random variable over
(Ω,A, P) because a map to Rm is measurable if its component maps are measurable.

190 Chapter A Appendix

Further, a multi-dimensional random variable is also referred to as a random
vector.

In this section on matrix decomposition, when considering random variables X
we only consider discrete random variables i.e. they are only defined on countable
sets. Concretely, we consider the sample as countable events.Furthermore, we require
the definition of the expected value of an multi-dimensional random variable.

Definition A.1.2. Let X = (X1, X2, . . . , Xm) be a multi-dimensional random vari-
able. The expected value of the multi-dimensional random variableX is defined as

E(X) = (E(X1), E(X2), . . . , E(Xm))

Remark. Generally, the expected value of X is also reffered to as µ = E(X) with
the components µ = (µ1, . . . , µm) and µi = E(Xi). This definition can then also
be exspanded to a matrix of random variables X = (Xij) with i ∈ {1, . . . , m}; j ∈
{1, . . . , n}; m, n ∈ N. For a discrete random variable X the expected value is defined
as

E(X) =
∑
i∈I

xipi =
∑
i∈I

xiP (X = xi)

where (xi)i∈I the values of X with (pi)i∈I the related probability and I a countable
index set.

Let X = (X1, . . . , Xn) be n multi-dimensional random variable with each discrete
random variable Xi over the Rm. Therefore, each Xi can be seen as element in Rm.
We denote the associated column vector as xi ∈ Rm in a matrix.

X =

 x1 x2 . . . xn

 (A.4)

Further we use discrete uniform distribution as the probability measure pi i.e.

P (X = x) =

1
n
, for x = xi; i ∈ {1, 2, . . . , n}

0, otherwise

Then we the expected value is defined as

E(X) = µX = 1
n

(
n∑

i=1
xi

)
∈ Rm (A.5)

After establishing these fundamental concepts, we now proceed to define the
concept of covariance in our analysis.

A.1 Mathematical background 191

Definition A.1.3. Let X = (X1, . . . , Xn) be a multi-dimensional random variable-
with components as vector. Then we define the covariance as

σij = Cov(Xi, Xj) = E [(Xi − µi)(Xj − µj)]

Further the covariance as matrix is defined as

Σ =

σ11 . . . σ1n
...

σn1 . . . σnn

Remark. The diagonal of Σ is the variance

σii = E(Xi − σi)2 = Var(Xi) = σ2
i

The matrix Σ is symmetric since σij = σji. When using a matrix notation we can
write the covariance as

Σ = Cov(X) = E[(X − µ)(X − µ)T]
In statistics, the covariance of a matrix X = (Xjk)j,k∈1,...,n is has some details

have to be outlines. the covariance of a matrix is a measure of how much two variables
change together. It is defined as the average product of the deviations of the elements
of the two matrices from their respective means [71]. The formula for the covariance
of a matrix with n elements is:

Cov(Xjk) = 1
n− 1

n∑
i=0

[
(Xij − µXj

)(Xjk − µXj
)
]

This formula is used to calculate the sample covariance, which is an estimate of
the population covariance. The reason that the denominator is n-1 instead of n is
because it is an unbiased estimate of the variance [160]. When you use the sample
mean to estimate the population mean, you are introducing a small amount of error.
Dividing by n-1 instead of n reduces this error, making it a more accurate estimate
of the population variance [68].

In our study, we consider only samples so we need to add the definition statistical
sample covariance.

Definition A.1.4. Let matrix A ∈ Rm×m with Aµ defined as

Aµ =

 a1 − µA x2 − µA . . . xn − µA

 (A.6)

The sample covariance matrix of A is defined as

192 Chapter A Appendix

Cov(A) = 1
n− 1AµAT

µ (A.7)

= 1
n− 1

n∑
i=1
⟨ai − µA, ai − µA⟩

= 1
n− 1

n∑
i=1

(ai − µA)2

With these statistical results we can focus on the key results needed for principal
component analysis.

Theorem A.1.2. (Singular value decomposition theorem) Let a A ∈ Rm×n. The
matrix A can be decomposition into

A = US̃V T (A.8)

with

S̃ =
(

S 0
0 0

)
and U ∈ Rm×m, V ∈ Rn×n are both orthogonal matrices and the matrix S is

diagonal:

S = diag(σ1, σ2, . . . , σr) =

σ1 0

. . .
0 σr

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are unique Furthermore, it referred to the singular
values of A. Moreover, the rank of A is defined as r = rank(A) ≤ min(m, n). The
triple (U, S̃, V is called the singular value decomposition of A.

So the decomposition of a matrix Aµ ∈ Rm×n as defined in equation A.6. With
real spectrum theorem A.1.1, we know there is a decomposition for the covariance
matrix of Aµ as

Cov(Aµ) = UΛUT = 1
n− 1AµAT

µ (A.9)

Then the columns of the matrix UT X correspond to the principal components.
With the singular value decomposition theorem A.1.2 we have a decomposition for
the matrix Aµ as

Aµ = US̃V T (A.10)

A.1 Mathematical background 193

When we combine equation A.9 and A.10 we get

Cov(Aµ) = 1
n− 1US̃V T · V S̃UT = U

S̃2

n− 1UT (A.11)

Therefore, the eigenvalues of Cov(Aµ) and the diagonal matrix of the singular
value decompositionare related as follows

λi = s2
i

n− 1 , i ∈ {1, 2, . . . , n}

A.1.3 Independent component analysis
Let S be a multi-dimensional random variable with statistically independent random
variables components (as defined in definition A.1.1) For independent component
analysis to be applied, at most one of the random variables components must be
Gaussian distributed. When we refer to the multiplication of the matrix with a
multi-dimensional random variable we refer to a matrix multiplied with an element
of the target space in Rm. The random variables are multiplied by a matrix A —
also referred to mixing matrix. For simplicity, this mixing matrix is assumed to be
quadratic. The result is mixed multi-dimensional random variable X, which has the
same dimension as S.

X = AS

The goal of ICA is to reconstruct the independent random variables in the vector
S as faithfully as possible. For this, only the result of the mixture X is available, and
the knowledge that the random variables were originally stochastically independent.
A suitable matrix B = A−1 is searched, so that

S = A−1X

Without the knowledge of A, we have to calculate B differently. Generally, the
components of X might correlate with each other. Therefore, we can choose B with
principal component analysis in such a way that these correlations disappear. How-
ever, while principal component analysis uses covariance, independent component
analysis uses other methods to calculate the components. Thus, independent com-
ponent analysisremoves the correlations and makes the components stochastically
independent from each other.

We will now outline some of the critical results that facilitate independent com-
ponent analysis. The method independent component analysis can be viewed as a
matrix decomposition that relies mainly on probability results. core diffrences to
PCA

194 Chapter A Appendix

Definition A.1.5. (Independent component analysis) Let X be a multi-dimensional
random variable over a probability space (Ω, Σ, P) with X : Ω → Rn. Further,
let covariance Cov(X) be finite. We call the tuple of matrices. (F, Λ) independent
component analysis of X if

1. the covariance Cov(X) can be decomposed into

Cov(X) = UΛ2UT

where Λ is a diagonal real postive matrix and F has full column rank p. (com-
pare to the sectral theorem A.1.1)

2. the multi-dimensional random variable X can be written as

X = ΛY

with Y is a multi-dimensional random variable Y : Ω→ Rp and Cov(Y) = Λ2.
3. The columns of U have unit norm
4. The entries in Λ are sorted in decreasing order
5. The entries of the largest norm in each column of U are positive

Remark. The last three properties allow uniqueness. When considering multi-
dimensional random variable we have to consider that the statistical independence
is unaffected by the scalar multiplication of an element of the target space in Rm or a
permutation of the components. Therefore, we are considering the realation between
the independent component analysis.

Property A.1.1. We have the following relation for the independent component
analysis over a multi-dimensional random variable X for (F, Λ) and (F ′, Λ′)

(F, Λ) ∼ (F ′, Λ′) with F ′ = FM̄DP and Λ′ = P T M̄ΛP

where M̄ ∈ Rp×p is a invertible diagonal positive scaling matrix, D ∈ Rp×p a diagonal
matrix with entries unit norm and P ∈ Rp×p a permutation matrix.

There is one important condition attached to the applicability of the independent
component analysis. The independent components must not be normally distributed
— at most, one component. In classical probability theory, we usually take random
variables to be normally distributed. Variables are usually assumed to be normally
distributed. Suppose the matrix A is orthogonal, and the Si are normally distributed.
Then also, the Xi are typically distributed and independent. The following theorem
summarizes the property

Theorem A.1.3. Let X be a multi-dimensional random variable with independent
components, of which most one is gaussian. Further, the densities are not reduced
to point-like mass. Let C ∈ Rm×m and X, S multi-dimensional random variable with
dimension m. Then the following three points are equivalent

A.1 Mathematical background 195

1. The components Xi are pairwise independent.
2. The components Xi are mutually independent.
3. We have the following property

C = ΛP

where Λ is diagonal and P is a permutation matrix.

For our experiments, we used the fastICA algorithm to determine the copm-
ponets. Here we outline the steps of the algorithm.

Algorithm 1 fastICA
Input c number of required components,
Input X ∈ Rm×n prewhitened matrix, which refers to principal component

analysis on the covariance of X where each column represents an m-dimensional
sample with c ≤ m

for p ∈ {1, . . . c} do
wp ← multi-dimensional random variable of dimension m
while wp changes do

wp ← 1
n
Xg(wT

p X)T − 1
n
g′(wT

p X)1nwp

wp ← wp −
p−1∑
j=1

(wT
p wj)wj

wp ← wp

∥xp∥
end while

end for
W ← [w1, . . . wc]
S ← W T X

Output W ∈ Rm×c Un-mixing matrix where each column projects X onto
independent component

Output S ∈ Rc×n independent component matrix, with n columns representing
a sample with c dimension

Let 1n be a column vector of 1’s of dimension n. Using Hyvärinen to extract
multiple components with a nonquadratic nonlinear function

f(u) = log(cosh(u)), g(u) = tanh(u), g′(u) = 1− tanh2(u)

A.1.4 Non-negative matrix factorisation
Let X ∈ Rm×n with nonnegative entries. Furthermore, let the number of components
k ∈ N which is smaller than m and than n. The nonnegative matrix factorization

196 Chapter A Appendix

then consists of a matrix W ∈ Rm×k and a matrix H ∈ Rk×n, both of which have
nonnegative entries and minimizes the Frobenius norm of the difference

min
W,J
∥X −WH∥F (A.12)

where Frobenius norm ∥·∥F with A ∈ Rm×n is defined as

∥A∥F =
√√√√ m∑

i=1

n∑
j=1
|aij|2

This definition, except for the requirement of non-negativity, corresponds exactly
to that of principal component analysis. The factorization is not uniquely determined
by the minimization problem from equation A.12. For example, for a permutation
matrix Π ∈ Sk, the matrices W ′ = WΠ and H ′ = Π−1H are also minimizers of
∥X − W ′H ′∥F , so the order of the factors is thus completely indeterminate. The
scaling of the factors can also vary.

Lee and Seung gave the following multiplicative update rule for determining W
and H [103]:

W ← W ⊙ W T X

W T WH
(A.13)

H ← H ⊙ XHT

WHHT
(A.14)

Here, ⊙ denotes the Hadamard product, i.e., element-wise multiplication. Let
A = (aij), B = (bij) ∈ Rm×n) then the Hadamard product of A, B is

A⊙B = (aij · bij) =

a11 · b11 · · · a1n · b1n

...
am1 · bm1 · · · amn · bnm

 ∈ Rm×n

The numerator and denominator in each entry should also be divided for the frac-
tions. These update rules can be derived from the gradient descent with the addition
of special prefactors. The advantage of a multiplicative over an additive gradient de-
scent is that the factors automatically retain the sign. One of the disadvantages is
that elements of W or H, once zero, cannot become positive.

A.2 Technical Details 197

A.2 Technical Details

A.2.1 Software architectural details
Our software system comprises several key components, including:

• Database: for storing metadata and raw data
• Back-end: for processing requests and managing the framework
• Object storage: for storing raw data
• Worker: containerized analysis tools
• Graphical user interface: front-end

A schematic representation of these components is illustrated in Figure 3.8. The
individual components can be deployed using a Docker Swarm cluster, as detailed
in the appendix. The deployment process requires the execution of six terminal
commands and the adjustment of certain configuration files to point to the address
where the service is running.

In software architecture, the design and implementation of the high-level struc-
ture of the software is considered. The architecture is the result of combining spe-
cific architectural elements in specific forms to meet the functional and performance
requirements, as well as other non-functional requirements such as reliability, scala-
bility, portability, and availability. Kruchten’s four plus one views is an approach for
creating different views of a software system for different stakeholders. These views
include:

• The logical view, which is the object model of the design (when an object-
oriented design method is used)

• The process view, which captures the concurrency and synchronization aspects
of the design

• The physical view, which describes the mapping of the software onto the hard-
ware and reflects its distributed aspect

• The development view, which describes the static organization of the software
in its development environment

To outline our system in Krutchen’s views, we use the following views: logical
view, process view, physical view, and development view. It should be noted that
these views overlap in some of their responsibilities and some views may be omitted in
certain cases. Overall, Software architecture can be represented as the combination
of elements, forms, and rationale/constraints as stated by Perry and Wolfe in the
formula [95]:

Software architecture = Elements, Forms, Rationale/Constraints.

198 Chapter A Appendix

Figure A.1: This figure shows a load balancer using the Proxy design pattern.
Incoming traffic is directed to the load balancer, which acts as an intermediary be-
tween clients and servers. The load balancer uses various algorithms to distribute the
traffic to the available instances, ensuring that no single server becomes overloaded
and improving overall system performance and availability.

Software patterns

Technical Setup Steps
In this section, we outline the process for setting up a system to integrate a custom
script or third-party tool into a data analysis process. The following assumptions
are made:

1. A set of computers that are within a secure network
2. A specific set of ports are open, as detailed in [7]

The following steps detail the setup procedure:

1. Install Docker on each machine in the cluster by following the official docu-
mentation [3]. On a Debian Linux system, the command is:

apt-get install docker-ce docker-ce-cli containerd.io

2. Set up a Docker Swarm cluster by creating a manager with the command:
docker swarm init --advertise-addr <MANAGER-IP>

Then, add workers by running:
docker swarm join --token <token> <MANAGER-IP>

A.2 Technical Details 199

Figure A.2: Illustration of the Data-Driven Routing software design pattern in
a router system. The diagram depicts the routing mechanism where the incoming
requests are directed to the router module, which employs a data-driven approach
to identify the appropriate instance and data source to handle the request. This
pattern enables dynamic routing based on the characteristics of the request, thereby
optimizing the utilization of resources and enhancing the overall system performance.

For further information, refer to the documentation [7].
3. Build a Docker container with the desired tool inside a Java wrapper. The

Java application wraps around the tool and handles communication to the back
end. In addition, this wrapper aggregates metadata, downloads raw data, and
regularly checks jobs. For further information on Docker images, refer to the
documentation [6]. The container can be built by running:

docker build -t <tagName> .

4. Push the image to a registry by running:
docker push <tagName>

5. Follow the deployment steps outlined in section Service deployment.

Note: The above instructions are for general setup process, the specific instruc-
tions to run on your current environment may vary.

Service deployment
The following commands are used to deploy the main parts of our proposed sys-
tem. They depend on the software setup from the previous section being completed
correctly.

200 Chapter A Appendix

docker service create --name=mariadb --publish=3306:3306 --with-registry
↪→ -auth <registry>:5000/biomed/mariadbdocker

Then the pipeline backend can be deployed with the command:
docker service create --name=dropwizardbackend --publish=8080:8080 --

↪→ with-registry-auth <registry>:5000/biomed/dropwizardbackend

The object storage is then deployed by
docker service create --name=minio --publish=9000:9000 --with-registry-

↪→ auth -e "MINIO_ACCESS_KEY=<AKey>" -e "MINIO_SECRET_KEY=<sKey>" --
↪→ mount source=data,t arget=/data minio/minio server /data;

The docker worker can be deployed by using:
docker service create --name=hmmsearch --publish=8084:8080 --with-

↪→ registry-auth <registry>:5000/biomed/hmmsearchdocker:fuvm

Optionally a graphical user interface can be deployed with the command.
docker service create --name=vueplain --publish=5050:8080 --with-

↪→ registry-auth <registry>:5000/biomed/vuejs-client-plain:fuvm

A.2.2 Example Task Deployment for hidden Markov
model

After deployment of the cluster and associated services, this section outlines the
technical steps for submitting a task. Specifically, this technical example utilizes a
method known as Hidden Markov Model Search, which will be further detailed in
Section Hidden Markov model search on prototypic sequences representing repetitive
DNA from different eukaryotic species. The Hidden Markov Model search can be
initiated through the use of both a RESTful API and a graphical user interface (GUI).
Additionally, a simple web-based user interface (WebUI) is provided to facilitate
task creation, wherein the user can upload data and select the desired algorithm for
analysis. The system subsequently updates the task’s status and notifies the user
when results are available. Finally, the user can access and review the results. In
addition to the GUI, this section also expands upon the use of terminal commands,
as the graphical interface serves as a wrapper for the RESTful API.

1. In this example, two files must be uploaded to the system: a so-called profile
file and a database file. For a file upload, the specific HTML request needs to
include the Content-Disposition in the header to indicate the attachment. The
request’s response is a unique id of the uploaded file, which can be referenced
in the following step. Using curl the request can be made as follows.

curl -X POST -F file=\@aRNH_profile.hmm <backendAddress>/
↪→ upload

A.2 Technical Details 201

2. To create a job with the REST API, the request must include a JSON body,
including the required parameters. In case of HMM search the hmmprofile
and fastadatabase have to be included. Similar to the curl request in listing
A.1. The response is a uniquely assigned jobId.

Listing A.1: HMM job curl request JSON body
1 curl --header "Content-Type: application/json" \
2 --request POST \
3 --data '\
4 {\
5 "algorithmId": "hmmsearch",\
6 "parameter": [\
7 {\
8 "name": "hmmprofile",\
9 "content": "fil_ff44c192a5"\

10 },\
11 {\
12 "name": "fastadatabase",\
13 "content": "fil_027784d4a0"\
14 }\
15],\
16 "bucket": "newbucket",\
17 "path": ""\
18 }\
19 <backendAdress>/job

3. Finally, the job status can be checked with the unique jobId. By using curl
this can be queried as follows

curl <backendAdress>/job/<jobId>

Workflow Code

Listing A.2: HMM Workflow Definition
1 const profiles : string[]= await this.storage.glob(args["hmm"])
2 .then(profiles => {
3 return profiles.map(meta => {
4 return meta.id;
5 });
6 });
7
8 const genes :string[] = await this.storage.glob(args["fasta"])
9 .then(fasta => {

10 return fasta.map(meta => {
11 return meta.id;
12 });
13 });
14

202 Chapter A Appendix

15 const hmm = await this.pipeline.init(genes)
16 .apply('dnatoprotein', key => {
17 return [{ name: 'dnasequence',
18 content: (key as string[])[0]
19 }];
20 })
21 .then((next : NyetusPipeline) => {
22 return next.flatten((key : [{ [key: string]: string }])=> {
23 const cross : Result[] = profiles.map(profile => {
24 const join : Result = [{}];
25 join[0]["fastadatabase"] = key[0]['file_id'];
26 join[0]["hmmprofile"] = profile;
27 return join;
28 label={lst:Dockerfile}]
29
30 FROM openjdk:8-jre
31 RUN apt-get update -y && apt-get install -y \
32 hmmer
33 COPY config.yml /opt/hmmerSearch/
34 COPY build/libs/HmmDocker.jar /opt/hmmerSearch/
35 EXPOSE 8080
36 WORKDIR /opt/hmmerSearch
37 CMD ["java", "-Xms128m", "-Xmx1500m", "-Dfile.encoding=UTF-8",
38 "-jar", "HmmDocker.jar", "server", "config.yml"]

Listing A.3: REST json body
1 "piplineName": "hmmserach ",
2 "tasks": [{
3 "taskname": "DNAtranslate",
4 "dependentTask": "",
5 "output":"translatedDna.fasta",
6 "task": [{
7 "algorithmId": "dnatoprotein",
8 "parameter": [{
9 "name": "dnasequence",

10 "content": "fil_ff4a5"
11 }
12],
13 "bucket": "newbucket",
14 "path": "path/to/"
15 }]
16 },
17 {
18 "taskname": "Hmmsearch",
19 "dependentTask": "DNAtranslate",
20 "output":"hmmsearchresults.txt",
21 "task": [{
22 "algorithmId": "hmmsearch",
23 "parameter": [{
24 "name": "hmmprofile",
25 "content": "fil_ff41c2a5"

A.2 Technical Details 203

26 },
27 {
28 "name": "fastadatabase",
29 "content": "fil_02778bba0"
30 }
31],
32 "bucket": "newbucket",
33 "path": "path/to/"
34 }]
35 }
36]

A.2.3 Linux containerisation

Name Description
Docker is an open-source management tool for containers that

automates the deployment of applications. Docker uses
a client-server architecture consisting of three main com-
ponents: Docker client, Docker host and Docker reg-
istry. Docker host represents the hosting machine on which
Docker daemon and containers run. The Docker daemon is
responsible for building, running, and distributing the con-
tainers. The Docker client is the user interface to Docker.

Rocket (rkt) is an emerging new container technology. With the advent
of CoreOS [189], a new container called Rocket was intro-
duced. Besides rkt containers, CoreOS supports Docker.
Rocket was designed to be a more secure, interoperable,
and open container solution. Rocket is a new competitor
for Docker.

Linux Containers
[190]

is an operating system-level virtualization method for run-
ning multiple isolated Linux systems. It uses kernel-level
namespaces to isolate the container from the host.

Linux Container
Daemon [191]

is a lightweight hypervisor designed by Canonical, for Linux
containers are built on top of LXC to provide a new and
better user experience. LXD and Docker make use of LXC
containers.

Table A.1: This table overviews the critical aspects of popular Linux virtualization
technologies, including Docker, Rocket, Linux Containers (LXC), and Linux Con-
tainer Daemon (LXD). It summarizes the features and benefits of each technology
and highlights how they can be utilized in different scenarios.

204 Chapter A Appendix

A.3 Additions to experiments

A.3.1 Matrix decomposition addtions

Figure A.3: independent component analysis

A.3.2 Hidden Markov model additions

A.3 Additions to experiments 205

Figure A.4: non-negative matrix factorisation

206 Chapter A Appendix

(a) Explained variance

(b) The figure presents a scatter plot gen-
erated using principal component analysis.
In this plot, the x-axis and y-axis represent
the two principal components of the data.
These components are the resulting dimen-
sions from the PCA analysis, and the scatter
plot allows for the visualization of the rela-
tionship between the different variables in the
data. Each data point in the plot corresponds
to a single observation, and the position of
the point reflects the values of the variables
for that observation on the x-axis and y-axis.

Figure A.5: The figure illustrates the results of applying principal component anal-
ysis (PCA) to the data. The figure (a)illustrates the explained variance of the data
when using principal component analysis (PCA). Explained variance refers to the
amount of variance in the data that is accounted for by each principal component.
The figure (b) depicts a scatter plot generated using PCA. A scatter plot is a graph-
ical representation of two or more variables, where each individual data point is
plotted as a point in the graph. In this case, the scatter plot has been generated
using PCA to visualize the relationship between the different variables in the data.

A.3 Additions to experiments 207

Figure A.6: hidden Markov model pipeline for protein sequence analysis. The
process begins with a fasta database containing multiple protein sequences. The
sequences are then analyzed using a hidden Markov model (HMM) to identify
conserved domains and potential functional sites. The results are then visualized
through a variety of tools, such as sequence logos and domain architecture diagrams,
to provide insight into the structural and functional characteristics of the proteins
in the database.

Figure A.7: aRNH sequence logo section represents the relative frequency of nu-
cleotides at each position in the hairpin loop, with the height of each letter indicating
the degree of conservation at that position. The overall shape of the logo provides
insight into the structural characteristics of the hairpin loop, including the location
and strength of base-pairing interactions.

208 Chapter A Appendix

Figure A.8: Visualization of HMM search results displaying the protein sequence
with the corresponding HMM profile overlaid. The HMM profile is represented by the
colored bars above the sequence, with each color corresponding to a different state
in the HMM model. The sequence positions that match with the HMM profile are
highlighted in green, emphasizing the correspondence between the protein sequence
and the HMM profile.

	Referee
	 Declaration
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Scope and Challenges
	1.2 Research problems and objectives
	1.3 Evaluation method
	1.4 Contribution and findings
	1.5 Outline

	2 State of the art
	2.1 Introduction
	2.2 Background: Foundations of bioinformatics software design
	2.2.1 Bioinformatics software systems
	2.2.2 Distributed computing
	2.2.3 Containerisation

	2.3 Related work: A literature review of the previous studies and their impact on the current research
	2.3.1 Software systems for bioinformatics data analysis
	2.3.2 Decomposing architecture into microservices
	2.3.3 Data management frameworks

	2.4 Open issues and research challenges in biomedical data analysis
	2.4.1 Software engineering for biomedical data analysis
	2.4.2 Data management in biomedical research
	2.4.3 Barriers to analysing biomedical data

	2.5 Conclusion

	3 Advanced Software Engineering in Bioinformatic: A Case Study of Design and Implementation
	3.1 Introduction
	3.2 Background: Technical Considerations for Bioinformatics Software Development
	3.2.1 Technical debt
	3.2.2 Software architecture
	3.2.3 Distributed computing
	3.2.4 Cloud technologies
	3.2.5 Containerisation

	3.3 Architecture design
	3.3.1 Microservice architecture
	3.3.2 Docker technology
	3.3.3 Data storage
	3.3.4 Component communication with representational state transfer architecture

	3.4 System Implementation
	3.4.1 Service Decomposition by Domain
	3.4.2 Self-contained services with responsibility segregation
	3.4.3 Container orchestration

	3.5 Software architecture comparison
	3.5.1 Summary of results
	3.5.2 Interpretation results
	3.5.3 Challenges and limitations
	3.5.4 Future work

	3.6 Conclusion

	4 Enhancing Bioinformatics Analysis with Our Proposed System: Real-World Applications and Implications
	4.1 Introduction
	4.2 Highlighted performance features
	4.2.1 Scalability
	4.2.2 Distributed system parallelisation
	4.2.3 Data integration

	4.3 Biomedical experiments
	4.3.1 Matrix decomposition on Genotype-Tissue Expression Project data
	4.3.2 Hidden Markov model search on prototypic sequences representing repetitive DNA from different eukaryotic species
	4.3.3 Time series analysis with convolutional long short-term memory neural networks

	4.4 Implications, Challenges, Limitations and Future Research Directions
	4.4.1 Interpretation and context
	4.4.2 Limitations and bias
	4.4.3 Compare and Contrast

	4.5 Conclusion

	5 Discussion: A comparative analysis of summary, limitations, and comparison
	5.1 Introduction
	5.2 Summary of results
	5.3 Limitations and bias
	5.4 Comparison to other works
	5.5 Conclusion

	6 Conclusion and outlook
	6.1 Main findings
	6.2 Implications and application
	6.3 Future work
	6.4 Conclusion

	Bibliography
	A Appendix
	A.1 Mathematical background
	A.1.1 Inverses
	A.1.2 Principal component analysis
	A.1.3 Independent component analysis
	A.1.4 Non-negative matrix factorisation

	A.2 Technical Details
	A.2.1 Software architectural details
	A.2.2 Example Task Deployment for hidden Markov model
	A.2.3 Linux containerisation

	A.3 Additions to experiments
	A.3.1 Additions matrix decomposition
	A.3.2 Additions hidden Markov model

