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Science cannot solve the ultimate mystery of nature. And that is 
because, in the last analysis, we ourselves are part of nature and 

therefore part of the mystery that we are trying to solve. 
— Max Planck 

 
 

Eat what you want to sustain. 
— Ursula Hudson 
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Abstract (English) 
Introduction. Malnutrition is a global challenge with mortality rates caused by obesity 
surpassing those of undernutrition. Excessive and low quality food intake detrimentally 
impacts human and planetary health likewise. In contrast, high fiber diets are beneficial for 
host metabolism and for the environment. Yet, diet-related behaviour change remains 
challenging, both on the systemic and the individual level. It remains largely unclear how high 
fiber diets act on the host in detail, to what extent gut-brain communication is involved, and 
by which mechanisms eating behaviour may be modulated and maintained. To this end, I 
investigated underlying mechanisms of eating related psychophysiological markers in humans 
in three studies. 

Methods. I examined changes in brain connectivity networks as proxies for reward and self-
reflective processing induced by severe weight loss through bariatric surgery in a clinical 
sample of obese compared to waiting list control patients (n = 48, Study 1). I combined data 
from two independent cross-sectional studies: overweight adults (n = 27) and post-bariatric 
surgery groups with age-, sex- and BMI-matched control groups (n = 40). Primary measures of 
interest were eating behaviour, microbial genera abundance, and fiber intake or weight loss 
success, respectively, next to short-chain fatty acids in feces and serum (Study 2). I analysed 
data from the LIFE-Adult cohort study (n = 8,943) relating habitual diet to weight status, 
depressive symptoms and personality traits (Study 3). Additionally, I conducted a within-
subject cross-over dietary intervention study (n = 60) including brain imaging, cognitive tasks 
and biomarkers, and a series of large-scale online studies (n = 16,379). 

Results. In Study 1, we found no significant post-surgery changes in brain connectivity in 
confirmatory analyses. Exploratory results showed increased connectivity between the 
reward network to medial posterior frontal regions relating to treatment success. In Study 2, 
eating behaviour linked differentially to two groups of microbial genera. Indeed, those linked 
to unhealthier eating were found to be informative of treatment success post-bariatric 
surgery, in terms of higher weight loss and improved eating traits. In Study 3, less frequent 
animal-based food intake was significantly related to lower BMI and to lower extraversion, 
not to depressive symptoms. 

Conclusion. These results propose a complex cross-talk between eating behaviour and 
psychophysiological markers and i) indicate a link between therapy-induced weight loss and 
reward-related brain processes, ii) provide first evidence for links between eating behaviour 
and gut microbiota and iii) replicate known associations of high fiber diets and weight status, 
as well as add new insights on diet-related differences in personality traits. Future 
interventional studies need to investigate causality of gut-brain communication and its 
mechanistic pathways related to fiber.
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Abstract (German) 
Einleitung. Mangelernährung ist ein globales Problem, wobei die durch Adipositas verursachte 
Sterblichkeitsrate die der Unterernährung übersteigt. Eine übermäßige, minderwertige 
Ernährung wirkt sich gleichermaßen negativ auf die menschliche und planetare Gesundheit 
aus. Im Gegensatz dazu ist eine ballaststoffreiche Ernährung vorteilhaft für den Stoffwechsel 
und die Umwelt. Das Ernährungsverhalten zu verändern, bleibt jedoch eine Herausforderung, 
sowohl auf systemischer als auch auf individueller Ebene. Es ist weitestgehend unklar, wie 
eine ballaststoffreiche Ernährung auf den Wirt wirkt, inwieweit Darm-Hirn-Kommunikation 
beteiligt ist und durch welche Mechanismen das Essverhalten moduliert und beibehalten 
werden kann.  

Methoden. Ich untersuchte Veränderungen von Gehirnkonnektivität, die mit Belohnung und 
Selbst-Reflexion assoziiert sind, nach bariatrischer Operation in einer klinischen Stichprobe im 
Vergleich zu Wartelisten-Patient:innen (n = 48) (Studie 1). In zwei unabhängigen 
Querschnittsstudien mit übergewichtigen Erwachsenen (n = 27) und solchen nach 
bariatrischer Operation sowie Kontrollgruppen (n = 40), betrachtete ich Essverhalten, die 
Abundanz mikrobieller Gattungen und Ballaststoffzufuhr bzw. therapeutischen Erfolg, sowie 
kurzkettige Fettsäuren in Feces und Serum (Studie 2). Ich analysierte den Zusammenhang 
zwischen Ernährung mit Gewicht, Depressivität und Persönlichkeit (n = 8,943, Studie 3). Auch 
führte ich eine randomisierte Ernährungsintervention (n = 60) mit Bildgebung des Gehirns, 
kognitiven Aufgaben und Biomarkern, sowie eine Serie von Online-Studien (n = 16,379) durch. 

Ergebnisse. In Studie 1 wiesen konfirmative Analysen auf keine signifikanten Veränderungen 
der Gehirnkonnektivität nach bariatrischer Chirurgie hin. Explorative Ergebnisse zeigten eine 
erhöhte Konnektivität zwischen dem Belohnungsnetzwerk und einer medial-posterioren 
frontalen Region in Verbindung mit dem Therapieerfolg. In Studie 2 war Essverhalten 
unterschiedlich mit zwei Gruppen von Bakterien verbunden. Diejenigen, die mit ungesundem 
Essen in Verbindung standen, waren ebenso mit dem Therapieerfolg nach bariatrischer 
Operation assoziiert. In Studie 3 stand die seltenere Aufnahme von tierischen Lebensmitteln 
in signifikantem Zusammenhang mit einem niedrigeren BMI und geringerer Extraversion, 
nicht aber mit Depressivität. 

Schlussfolgerungen. Die Ergebnisse zeigen ein komplexes Zusammenspiel zwischen 
Essverhalten und psychophysiologischen Markern und i) weisen auf einen Zusammenhang 
zwischen therapiebedingter Gewichtsabnahme und belohnungsbezogenen Gehirnprozessen 
hin, ii) liefern erste Belege für Zusammenhänge zwischen Essverhalten  und Darmmikrobiota 
und iii) replizieren Assoziationen zwischen ballaststoffreicher Ernährung und Gewicht, und 
bringen neue Erkenntnisse über ernährungsassoziierte Persönlichkeitsunterschiede. 
Interventionsstudien sollten die Kausalität der Darm-Hirn-Kommunikation und ihre 
mechanistischen Wege im Zusammenhang mit Ballaststoffen untersuchen.
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1 Introduction 
1.1   Facing a major health and climate crisis 
Two of humanity’s major challenges, malnutrition (over- and undernutrition) and the climate 
crisis, are highly intertwined. In fact, agricultural systems are the problem and solution at the 
same time to be focussed on to improve health and environmental impact of human food 
intake (Figure 1). Over- and undernutrition likewise are global epidemics, with currently 
higher prevalence and death rates caused by obesity and overweight than by underweight 
(WHO, 2021). Non-communicable diseases (NCD) often root in overconsumption of unhealthy 
foods, including red and processed meat, and sedentary lifestyles, leading to cardiovascular 
diseases, diabetes or cancer. The top three leading causes of death globally are caused by 
NCDs, namely ischemic heart disease, stroke and chronic obstructive pulmonary disease 
(WHO, 2020). Indeed, excess food intake has been translated to metabolic food waste making 
up 2% of total greenhouse gas emissions (GHG) of a representative country (Sundin et al. 
2021). 
Certainly, diets are a major lever for reducing human ecological impact due to their high 
climate footprint. Meta-analyses mainly based on field data show that food systems are 
responsible for 25-30% of anthropogenic GHG, 50% of habitable land use, 70% of freshwater 
use, 78% of ocean and freshwater eutrophication and the massive reduction in biodiversity 
(Poore and Nemecek 2018; Bar-On, Phillips, and Milo 2018). In particular, animal-derived 
foods contribute to these numbers: livestock value chains account for approximately 14.5% of 
global anthropogenic GHG (Gerber et al. 2013), 22% of the total groundwater footprint 
(Hoekstra and Mekonnen 2012) and 38% of global land use (FAO, 2003). Indeed, dairy 
products like cheese, included in lacto-vegetarian diets, have high impacts on all dimensions, 
with impacts second to beef (Poore and Nemecek 2018). 
 

 
 
Figure 1: The global syndemic of malnutrition and climate change and its relation to weight groups and dietary patterns. Diet-
related global challenges and how obesity treatment and prevention may counteract those with a focus on countries with a 
Western diet. Red colours represent warming/acceleration of the global challenges, whereas blue colours represent 
cooling/deceleration of those. Brighter colours depict stronger associations, and darker colours depict less strong associations. 
Note, that normal-weight and underweight, while globally important, were conceptually left out for simplification. Icons and 
have been taken from Keynote Library and the diagram depicting “Dietary Patterns” adapted from Medawar et al. (2019). 
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1.2   Obesity treatment options and weight management 
Providing and improving efficacy of obesity-related treatment is a major task of health care 
systems worldwide and amounts to 20% of national health care costs in the United States and 
11% in Germany (The Heavy Burden of Obesity 2019). Treatment options for obesity depend 
on severity of disease, personal risk factors and co-morbidities, and span from lifestyle 
adaptions targeting diet and physical activity, behavioural change, weight management 
programs, pharmacotherapy, weight-loss devices (e.g. intraoral jaw lock) to bariatric surgery. 
Although efficacy measured in weight loss is moderate to good, long-term weight 
maintenance remains a challenge (Hall and Kahan 2018). Lifestyle changes are the least 
invasive treatment, yet efficacy is moderate only (4-6 kg weight loss 1-2 years post-treatment) 
(Wirth, Wabitsch, and Hauner 2014). For instance, dietary counselling, primarily focusses on 
reducing energy quantity (by at least 500 kcal/day) and density and secondarily on the intake 
of five portions of fruit, vegetables and pulses a day. Fresh plant-based ingredients are high in 
fiber, which has been associated not only with multiple health benefits but also with improved 
satiety. Yet, recommended intake levels are mostly not met in the general population. 
Compared to conservative treatments, surgical interventions are more effective (20-40 kg 
weight loss 1-2 years post-treatment) in reducing body fat and mortality risk. Yet, they are 
highly invasive and considered a “last resort” treatment option and recommended for 
morbidly obese (body-mass-index (BMI) ≥ 40kg/m2) or obese individuals (BMI > 30 and < 40 
kg/m2) with co-morbidities such as type 2 diabetes (Wirth, Wabitsch, and Hauner 2014; 
Dietrich et al. 2018). Most common and effective procedures are Roux-en-Y gastric bypass 
(RYGB) and vertical sleeve gastrectomy (VSG), which both lead to a reduction in stomach 
volume and thereby to lower food intake. Indeed, post-surgery therapy entails lifelong 
nutritional supplementation, commonly gastrointestinal medication and interdisciplinary 
medical evaluation. In Germany, treatment options follow a set of guidelines and are 
administered according to responsiveness of treatment progress from least to most invasive 
(AWMF 050-001 S3-Leitlinie “Adipositas – Prävention und Therapie”1).  
While efficacy of surgical therapy has shown to be high, non-invasive conservative treatments 
remain improvable. In particular, the latter could aid patients with non-severe obesity and the 
prevention of overweight and obesity with the co-benefits of lower invasiveness and lower or 
no need for lifelong behavioural and medical adaptions by the patient. 
 
1.3   Transitioning towards high-fiber plant-based diets 
One approach to addressing the two-fold problem of malnutrition, in particular overnutrition, 
and the climate crisis is adopting more sustainable diets, comprised of nutritious whole-food 
plant-based foods.  
Firstly, mostly plant-based whole-grain diets, characterized by high fiber content, have been 
linked to human and planetary health (M. A. Clark et al. 2019). Indeed, a planetary health diet 
high in plant-based and restricted in animal-based ingredients has been proposed to benefit 
both human and environmental health within planetary boundaries (Willett et al. 2019). Fiber 
or nondigestible carbohydrates, most abundant in whole-grain, vegetables, legumes, potatoes 
and fruits, were found to relate to lower body weight and other metabolic benefits with 
disease outcome improvements of up to 30% regarding all-cause and cardiovascular-related 
mortality, coronary heart disease, stroke incidence and type 2 diabetes (systematic review in 
185 prospective studies and 58 clinical trials (Reynolds et al. 2019)). Effects were highest for 
daily fiber intakes between 25 g and 29 g and complementary for fiber and whole grains. 

 
1 Note, that the guideline originating from April 2014 has expired in April 2019 and has not yet been revised. An 
updated guideline on surgical therapy has been released (AWMF 088-001 S3-Leitlinie 2018). 
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Secondly, complete or partial avoidance of animal products provides significant 
environmental benefits: reduction of 50-80% of anthropogenic GHG and land use 
requirements associated with individual diet (Aleksandrowicz et al. 2016; Hallström, Carlsson-
Kanyama, and Börjesson 2015), approximately 50% of individual diet-associated water use 
(Aleksandrowicz et al. 2016), between 14-21% of global water use (Jalava et al. 2014), and a 
significant reduction in the N2 footprint (Eshel et al. 2014) as systematic reviews assessing 
various sustainable diet patterns and dietary scenarios show. Simulations show that resource 
use of 1 kg of beef compared to a plant-based alternative is 10x higher for land use, 30x higher 
for GHG and about 17x higher for N2 (Eshel et al. 2014). 
Despite knowledge about environmental and health benefits of high fiber diets, adapting diet 
remains difficult due to required change of systemic and individual behaviour. Indeed, to 
realize sustainable diets globally, on the one hand, food systems need to transform 
substantially by restructuring agricultural production whilst considering socioeconomical 
factors and equity (Béné et al. 2020) and by establishing enabling environments, thereby 
tackling malnutrition in all forms similarly (Hawkes et al. 2020). And on the other hand, 
interventions aiming to change health behaviours need to be designed to facilitate 
behavioural adaptations on the individual level, which in general have shown to be small in 
effect, yet effective nonetheless (Conner and Norman 2017). In particular, motivation and 
reward systems play an important role in health-related behaviour change (Michaelsen and 
Esch 2021). Indeed, interventions related to weight management seem to be able to decrease 
liking and wanting for high-caloric food (Oustric et al. 2018), although mechanistically left 
unexplained.  
Transitioning towards more sustainable diets, by increasing the ratio of plant-based to animal-
based foods, by reducing climate-unhealthy foods like processed meat and dairy products and 
by replacing those with climate-healthy foods like fiber sources, may therefore serve as a 
putative public health strategy to reduce obesity prevalence.  
Yet, the mechanistic understanding of the interplay of diet-brain-behaviour, in particular the 
effects of plant-based diets on the body, remain understudied. In particular, evidence on the 
underlying mechanisms related to sustainable healthy diets, including host metabolism and 
gut-brain communication, long-term maintenance of dietary goals, factors influencing food 
decision-making and the valuation of food items, remains largely unknown. Elucidating 
psychophysiological factors related to eating behaviour with regard to sustainable diets could 
serve as an important cornerstone for facilitating a transition towards those. 
Next, three mechanisms of interest related to eating behaviour will be outlined, which will be 
investigated in three publications summarized in this dissertation. 
 
1.4   Mechanisms I: Reward sensitivity, food decision-making, hedonic and homeostatic control 
In order to understand, how food decisions are made in general and for specific eating 
patterns, the underlying brain mechanisms and pathways will be summarized here. 
The gut-brain axis is an interdependent system, with two main neural networks that may be 
modulated by the gut, namely the hedonic and the homeostatic control systems. While 
homeostatic regulation of appetite is generated by real or perceived nutrient needs, hedonic 
control is generated by other than nutrient needs, such as subjective value of food items 
(Berthoud, Münzberg, and Morrison 2017). The intrinsic value of a food item consists of the 
integration of many of its constituents, i.e. exteroceptive sensory and gustatory signals and 
encoded reward value, which is thought to be processed in the ventromedial prefrontal 
cortex, regarded as the brain’s valuation hub (Bartra, McGuire, and Kable 2013). Indeed, three 
dissociable phenomena of reward, i.e. wanting, liking and learning, can be mapped to distinct 
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neurobiological mechanisms and brain structures, that are subparts of the nucleus accumbens 
(NAc) (Berridge, Robinson, and Aldridge 2009). Moreover, interoceptive signalling via emotion 
regulatory processes might further determine the properties of food items, for instance by 
adding an emotionally comforting and rewarding value as in the case of ‘comfort foods’ 
(Weltens, Zhao, and Van Oudenhove 2014). Food decision-making relies on a complexity of 
cognitive processes leading up to an action, and next to valuation, self-regulatory mechanisms 
processed in the dorsolateral prefrontal cortex are involved (Hare, Malmaud, and Rangel 
2011). Further, gut signals might be modulators of human decision-making communicating 
bottom-up to the brain (Plassmann et al. 2021), in particular acting on hedonic regulation in 
the ventral tegmental area (VTA) and NAc and on homeostatic regulation in the hypothalamus 
(García-Cabrerizo et al. 2021). 
Obesity on the one hand and restrictive diets on the other hand, are oftentimes discussed to 
be associated with imbalances in food decision-making, i.e. overeating, uncontrolled eating or 
restrained eating (Garcia-Garcia et al. 2021; Brytek-Matera 2020). When regulatory 
mechanisms are out of balance, overeating and over-compensatory mechanisms in food 
intake can lead to obesity and eating disorders. Specifically, unintended overeating and 
uncontrollable food craving leading to food intake beyond homeostatic needs has been 
conceptualized as food addiction behaviour by some (Gupta, Osadchiy, and Mayer 2020; 
Volkow, Wise, and Baler 2017), but regarded as too preliminary by others (Ziauddeen and 
Fletcher 2013). Sensitivity to rewards, in particular to foods, on the neural level can be 
measured recording brain activity while seeing food cues (task functional magnetic resonance 
imaging (fMRI)) or recording task-independent resting-state fMRI (rsfMRI). In particular, cue 
reactivity and reward signalling for palatable foods is assumed to be hyper- or hyposensitive 
in obesity, yet evidence is mixed and highlights the importance of confounding factors such 
as age (Kenny 2011; Morys, García-García, and Dagher 2020). Resting-state connectivity 
reflects temporal coherence of brain areas and is grouped into networks that are based on 
coherent activation and linked to associated functions, e.g. the default mode network (DMN) 
or the reward network. Functional connectivity in individuals with or without food addiction 
symptomatic has been shown to be distinct, in particular higher within-reward network 
connectivity correlated with higher food craving scores (Ravichandran et al. 2021). Potentially, 
obesity-related reward network differences may be reversable with bariatric surgery (Schmidt 
et al. 2021; Hankir et al. 2020), yet studies including large samples with adequate BMI-
matched control groups are missing.  
In particular, for restrictive diets, such as plant-based diets, it remains unclear, if fiber or other 
dietary constituents might act differently on homeostatic or reward-related brain pathways. 
 
1.5   Mechanisms II: Dietary fiber and satiety and the gut-brain axis 
Evidence for satiety-inducing effects of dietary fiber and its relevance in establishing and 
maintaining healthy host and gut metabolism will be reviewed here, yet mechanisms of action 
are largely unknown. 
As a conservative treatment and preventive strategy for obesity and other NCDs, a healthy 
balanced diet is recommended for the general population and should consist of a daily fiber 
intake of 25-35 g including whole-grain foods (Reynolds et al. 2019). Indeed, meta-analytical 
evidence of randomised trials show beneficial metabolic effects of high compared to low fiber 
intake on bodyweight (-0.4 kg), glucose metabolism (-0.4 % glycated haemoglobin A1c), lipid 
markers (-0.2 mmol/L in total cholesterol) and systolic blood pressure (-1.3 mmHg) (Reynolds 
et al. 2019). 
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Non-digestible types of fiber, such as fructooligosaccharides, inulins, galactans, resistant 
starch and others, serve as a source of energy for gut bacteria and are called prebiotics. Upon 
ingestion, prebiotics surpass the upper parts of the gastrointestinal tract and are processed in 
the colon by bacterial fermentation into short-chain fatty acids (SCFA) (Alexander et al. 2019). 
SCFA provide energy for colonic cells and might act as signalling molecules through different 
pathways including endocrine and vagal pathways, lastly modulating brain response to food 
intake and appetite (Dalile et al. 2019; Han et al. 2021): the endocrine pathway involves the 
release of glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) by 
enterochromaffin cells in the large intestine, both anorectic hormones, that lead to bottom-
up signalling of reduced appetite. The vagal pathway includes appetite-regulative signalling, 
e.g. via orexigenic ghrelin, which is released by the stomach before food intake, as well as 
potential gut-brain communication through SCFA, i.e. acetate, propionate and butyrate. In 
mice it has been shown that acetate administration had an appetite-suppressing effect by 
surpassing the blood-brain-barrier and directly signalling to hypothalamic neurons (Frost et 
al. 2014). It remains unclear in which direction and through which mechanism SCFA might 
influence appetite. Evidence suggests both peripheral and central effects of SCFA on appetite, 
namely, appetite-inducing and -suppressing effects likewise acting on ghrelin, GLP-1 and PYY, 
as well as effects on reduced hedonic response to food cues after ingestion of prebiotic-
propionate compounds (Han et al. 2021). All studies investigating prebiotics in the latter 
review, namely two human and three murine studies, showed a satiety-inducing effect of 
prebiotic supplementation compared to equicaloric placebo interventions after 1 to 16 weeks. 
Although related to modulating satiety, it remains unclear in which timeframe fiber intake 
affects satiety and which types of fiber act as appetite regulators in humans (M. J. Clark and 
Slavin 2013). 
Overall, postprandial metabolic response affects brain activity via gut-brain signalling, 
showing distinct modulatory effects of appetite-stimulating (ghrelin) vs. appetite-suppressing 
(GLP-1, PYY and others) hormones on prefrontal cortex and insula compared to subcortical 
cortex including hypothalamus and amygdala (systematic review including 40 studies (Zanchi 
et al. 2017)) and yet to be determined mechanisms for SCFA signalling. 
Besides effects on metabolic health and appetite regulation, habitual dietary patterns 
influence gut microbial composition and gut metabolic activity (Fan and Pedersen 2021). In 
turn, gut microbes are determinants of host energy-harvesting efficacy by modulating host 
energy uptake and homeostasis (Cani et al. 2019). It is established that obesity relates to 
imbalances in gut microbial profiles, which may be linked to the role of gut microbiota in the 
pathogenesis of the condition (Muscogiuri et al. 2019; Tilg and Moschen 2014). In contrast, 
gut composition in obese individuals has been shown to benefit from certain medication use, 
such as statins commonly used as cholesterol-lowering drugs (Vieira-Silva et al. 2020). Also, 
bariatric surgery leads to significant shifts and improvements in gut microbiome and 
metabolome, besides drastic weight loss success (Aron-Wisnewsky, Doré, and Clement 2012; 
Ilhan et al. 2020).  
While gut microbial interactions with host metabolism have been shown extensively, links to 
behaviour and brain health remain unclear (Dalile et al. 2019; Rogers et al. 2016). Fiber and 
polyunsaturated fats have been proposed to be neuroprotective in the long-term by 
preserving structural integrity of the brain through anti-inflammatory properties (Muth and 
Park 2021), yet primary data on brain structure is missing. Links to neurobiological health and 
disease in humans remain scarce, and most evidence stems from research on autism spectrum 
disorder, neurodegenerative diseases (such as Parkinson’s disease) and mood disorders 
(Morais, Schreiber, and Mazmanian 2021). Indeed, prebiotics, probiotics and SCFA 
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administration may elicit anxiety- or stress-releasing effects mediated by the gut microbiome 
(Dalile et al. 2020), with higher efficacy in clinical populations, including depression and 
anxiety disorders (Liu, Walsh, and Sheehan 2019). Yet again, primary data on brain function is 
missing. 
In sum, although causal evidence in humans is limited, dietary fiber intake-related gut 
microbiota signalling might be a putative modulator of human health and behaviour acting via 
endocrine, immune or neuronal pathways. 
 
1.6   Mechanisms III: Mood and personality 
Next to physiological mechanisms, psychological factors related to high fiber diets will be 
outlined here. 
Psychological factors related to food intake play an important role in food decision-making 
and health status. Obesity and depression have been shown to be reciprocally linked, 
displaying a detrimental vicious cycle for health (Luppino et al. 2010). In the case of plant-
based dieters restrictive eating has been associated with higher risk for depressive symptoms 
and lower anxiety scores, which were different for dietary subgroups and dependent on the 
continent of interest (meta-analysis of 13 studies with n = 49,889 participants (Ocklenburg 
and Borawski 2021)). Restrictive dieting may be linked to depressive symptoms for various 
reasons, such as social exclusion, isolation or stigma. Indeed, plant-based diets have been 
associated with the expression of a personal and social identity (Nezlek and Forestell 2020), 
possibly leading to higher emotional instability and social dissatisfaction if being part of a 
social minority. 
Contrastingly, healthy dietary intake, including high fiber, was related to lower depressive 
symptoms and anxiety in observational (meta-analysis: (Lassale et al. 2019)) and 
interventional studies (review: (Taylor and Holscher 2020)). Protective effects of plant-based 
diets on depression may stem from anti-inflammatory properties and microbiota-induced 
modification of depression-related gene expression modulating neurotransmitter release, 
such as higher tryptophan and serotonin production (Swann et al. 2020).  
Besides links to mood, differences in personality traits for regular plant-based dieters have 
been observed, namely higher extraversion (Forestell and Nezlek 2018) and more openness 
(Pfeiler and Egloff 2018) in vegetarians. 
Overall, food-mood relationships are prone to reverse causation due to underlying 
multidirectionality of those, confounding of lifestyle factors (Firth et al. 2020) and limitations 
in dietary assessment methodology (Ioannidis 2018). It remains unclear whether mood is 
affected by single meals different in fiber content and whether personality differences are 
associated with or caused by long-term shifts in diet and whether those replicate persistently 
across various demographic groups.



 17 

2 Objectives 
My dissertation aims to investigate whether diet has an influence on eating choices and to 
elucidate the complex interplay between food intake and host behaviour, with a focus on 
obesity. Specifically, I looked at plant-based diets or RYGB as a modulator of this interplay, 
with a specific focus on gut-brain communication by SCFA signalling as a mechanistic pathway 
of interest. Further, I examined weight-mood-personality associations of long-term dietary 
patterns (Figure 2). 
 
My thesis integrates findings of three publications with the overarching topic of (un)healthy 
eating behaviour and diet mechanistically linking to reward-related brain functional 
connectivity, gut markers and personality. Publication 1 (Heinrichs et al. 2021) investigates 
longitudinal differences in brain circuits post-RYGB compared to waiting list control group, 
that may be one neural mechanism explanatory of weight loss success in obesity. Publication 
2 (Medawar, Haange, et al. 2021) explores links between gut microbiota abundance, eating 
behaviour traits and dietary intake, including SCFA metabolism in the host, in two 
independent cross-sectional samples. This study includes both overweight, and post-RYGB 
groups with age-, sex- and BMI-matched control groups. Publication 3 (Medawar et al. 2020) 
examines associations of lower animal-based food intake on weight status, depressive 
symptoms and personality traits in a cross-sectional large cohort of 8,943 adults. 
Further, I conducted a within-subject cross-over human dietary intervention study (GUT-
BRAIN study, ClinicalTrials.gov NCT03829189, preregistered as Medawar, Thieleking, and 
Witte 2019) to test the effect of a two-week high fiber intervention on gut-brain 
communication and reward sensitivity for food. Also, in a series of three large-scale online 
studies (nmeals = 16,379) I investigated the effects of a single meal on satiation and mood 
contrasting plant-based to animal-based meals (Mensa study, preprint: Medawar, Zedler, et 
al. 2021). 
 
Additionally, I set my PhD off with a systematic review synthesizing evidence of 27 randomized 
controlled trials, plus five additional studies, investigating the effects of plant-based diets on 
the body with a particular focus on the brain (Medawar et al. 2019) and recently published a 
meta-analysis on the effects of dietary polyphenols on cognition (de Vries, Medawar et al. 
2021). Also, I contributed to two first author publications with a methodological focus that 
covered between-scanner reliability of structural measures in longitudinal brain imaging 
studies (Medawar, Thieleking, et al. 2021), and the creation of an open database for 
experimental art stimuli to be used in (fMRI) settings (Thieleking, Medawar et al. 2020). 
Further, I extended an existing food stimuli database by dietary fiber ratings (Medawar, 
Thieleking, and Witte 2021a) and developed a nutrient scoring pipeline for a commonly used 
food frequency questionnaire (FFQ) to estimate daily fiber intake (Medawar, Thieleking, and 
Witte 2021b) to enable addressing research questions on fiber intake. 
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Figure 2: Overview of the objectives of this dissertation. Figure adapted from Medawar et al. (2019). 
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3 Methods 
Detailed methodologies, including study design, participant inclusion/exclusion criteria, MRI 
preprocessing (if applicable), and statistical analysis are described in the methods section of 
the respective publications. 
 
Study Design & Participant information 
In Study 1, participants were included in the ADIPOSITAS study carried out at the Charité 
University Medicine Berlin, and either underwent bariatric surgery (n = 33, 26F) or were 
waiting list controls (n = 15, 11F), waiting for their health insurance's approval to undergo 
surgery. All participants were screened before surgery/control and 6 and 12 months after. The 
final sample entailed 48 morbidly obese individuals (37F; aged 44.2 ± 11.9 SD years, range 21–
68). 60% of participants had clinically diagnosed hypertension, 4% had type 2 or type 1 
diabetes, and 6% reported to smoke. The final dataset comprised 101 MRI datapoints. 
 
In Study 2, data from two independent studies carried out at the Max Planck Institute for 
Human Cognitive and Brain Sciences, Leipzig, was combined: i) cross-sectional data from the 
so-called GUT-BRAIN Study including young, overweight adults (n = 27 (9F), 21-36 years, BMI 
25-31kg/m2), drawn from a randomized clinical trial (Clinical Trials registration NCT03829189), 
following a typical Western omnivorous diet and deeply screened for habitual dietary 
patterns, alcohol and caffeine intake, smoking and physical activity, and ii) cross-sectional data 
from the BariRes Study (in cooperation with the University Clinic of Leipzig, Leipzig) in patients 
two years after bariatric surgery with either good or bad response, and age-, gender- and BMI-
matched controls (“good responders“: n = 11 (7F), 41–70 years, BMI 25–29 kg/m2; “bad 
responders”: n = 12 (9F), 31–67 years, BMI 41–62 kg/m2; overweight: n = 8 (5F), 41–58 years, 
BMI 25–29 kg/m2; obese: n = 9 (6F), 26–70 years, BMI 41–48 kg/m2). 
 
In Study 3, data was taken from the baseline assessment of the population-based “Leipzig 
Research Centre for Civilization Diseases” (LIFE-ADULT cohort study) (Loeffler et al. 2015), 
which aims to investigate predictors and developments of common NCDs, such as 
cardiovascular diseases, obesity and depression. This analysis included n = 8,943 (4,609F) 
middle-aged individuals (mean ± SD: 56.6 ± 12.5 years, 18–82 years) with a very wide BMI 
range (mean ± SD: 27.3 ± 4.9 kg/m2, 16–57 kg/m2). About 2% of the sample (n = 237) reported 
to have adopted an exclusively vegetarian diet at least once throughout their life, and about 
5% (n = 547) a mainly vegetarian diet. 
 
The institutional ethics boards of the Charité University Medicine Berlin and Medical Faculty 
of the University of Leipzig raised no concerns regarding the study protocols and all 
participants provided written informed consent (Study 1: EA1/074/11, Study 2: 228/18-ek and 
027/17-ek, Study 3: 263/09-ff). 
 
Data Acquisition 
Anthropometry. In all Studies 1+2+3, BMI was assessed by measuring body weight (kg) and 
body height (m) with scales and tape measure by the study personnel. For longitudinal studies, 
weight loss was calculated as a difference between two assessments.  
 
Bariatric surgery. In Studies 1+2, patients underwent weight loss surgery, either sleeve 
gastrectomy or gastric banding, which result in a reduction of stomach volume by removing 
parts of the stomach along the curvature or inserting an inflatable band around the stomach, 
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respectively, while preserving the small intestine and digestive flow, or RYGB, where a small 
pouch is formed from the proximal stomach and connected to the jejunum. In Study 1, all 
methods had been performed (RYGB: 15, VSG: 12, GB: 1, NA: 5), and in Study 2 RYGB only. 
 
Questionnaires. In Study 2, questionnaires related to eating behaviour were administered, i.e. 
Three-Factor Eating Questionnaire (TFEQ) (Löffler et al. 2015), Eating Disorder Examination 
Questionnaire (EDEQ) (Hilbert et al. 2007) and FFQs (including DEGS-1) (Haftenberger et al. 
2010) to assess habitual dietary intake. In particular, we developed a nutrient scoring pipeline, 
to compute daily nutrient intake based on self-reported dietary habits (“FFQ Nutrient 
scoring”: Medawar, Thieleking, and Witte 2021b). We did this by combining computed mean 
daily portion [g] based on DEGS-1 FFQ and corresponding nutrient information based on 
reference nutrient data (using the German Nutrient Reference Database 
“Bundeslebensmittelschlüssel” version 3.02) for each of the 53 items. This resulted in mean 
daily intake of macro- and micronutrients, e.g. daily fiber intake in grams. In Study 3, self-
reported questionnaire data was used to assess personality traits (NEOFFI) (Costa and McCrae 
1989) and depressive symptoms (Center for Epidemiological Studies-Depression, CES-D) 
(Radloff 1977). To assess food intake habits based on intake frequency over the last 12 
months, a dietary restriction score regarding animal-based products was computed. 
 
Structural and functional magnetic resonance imaging (MRI). In Study 1, head MRI was 
performed with a 12-channel head coil on a 3 Tesla Trio, Siemens (Erlangen, Germany) with 
the syngo B17 software. Anatomical MRI was acquired using a T1-weighted magnetization 
prepared rapid gradient echo (MPRAGE) pulse sequence. rsfMRI was acquired with a TR of 
2300 ms and TE of 30 ms for 5:45 min. Preprocessing was done with three different pipelines 
(minimal, using ICA-AROMA and CompCor, using ICA-AROMA and CompCor and global signal 
regression). 
 
Gut microbiota assessment. In Study 2, stool samples were collected using home kits to assess 
gut microbiome diversity, genera abundance and metabolic activity using metabolomics in 
one sample. 16S rRNA DNA sequencing was used for microbial community analysis, based on 
V3-V4 variable regions of the 1 S rRNA genes, that were amplified by PCR and a library was 
constructed, followed by paired-end 2x250bp Illumina sequencing (performed by GENEWIZ 
Germany GmbH, Leipzig). Taxonomical mapping and relative abundance calculations were 
done based on amplicon sequence variants (ASVs) by collaborations partner at the Helmholtz 
Centre for Environmental Research (UFZ), Leipzig. SCFA in stool and serum were measured 
using liquid chromatography-mass spectrometry (LC-MS). 
 
Data Analysis 
Functional connectivity. In Study 1, we used seed-to-voxel connectivity analysis with two 
regions of interest as seed, i.e. NAc for the reward network and the precuneus for the DMN. 
After creating individual masks based on FreeSurfer segmentation, standardized timeseries 
from seed regions and whole brain were extracted. Statistical analysis was performed with 
linear mixed models in the Sandwich Estimator Toolbox embedded in SPM12 to account for 
unequal sample size and missing datapoints. The original preregistration and its further 
developed extension, as well as open code and unthresholded brain 3D maps are publicly 
available (see original publication). 
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Correlational analysis. For Study 2, analyses were exploratory and intended to generate 
hypotheses for the interventional GUT-BRAIN Study, taking appropriate considerations for 
explorative analyses into account (Simmons, Nelson, and Simonsohn 2011). Relative 
abundance of bacterial genera that appeared in at least 80% of biosamples, defined inclusion 
of datapoints to the overall correlational matrix with all variables of interest (37 variables in 
total, see above). Statistical significance was set to pFDR < 0.05. For those genera that were 
significantly associated with eating behaviour (TFEQ traits and/or hunger ratings, pFDR < 0.05) 
correlations with weight status and RYGB treatment success in sample 2 were tested. Non-
parametric Kruskal–Wallis tests were performed to test group differences across overweight, 
obese, good and bad RYGB responders. 
 
Linear regression models. For Study 3, I computed linear regression models for each predictor 
of interest, and extended those with confounding variables of no interest in a step-wise 
process. For personality traits, I ran a multivariate analysis of covariance to include all five 
traits into one model. Variables were checked for normal distribution or otherwise 
transformed, and I corrected all analyses for multiple comparisons using the Bonferroni 
method. All analyses were preregistered and code is openly shared: https://osf.io/m7hxk/. 
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4 Results 
In Study 1, confirmatory analyses did not show any significant effects of bariatric surgery on 
functional connectivity of the reward network or the DMN, neither for whole-brain or within-
network analysis. Exploratory analyses revealed that BMI decrease after surgery compared to 
baseline (“treatment success”) resulted in significantly increased connectivity of the reward 
network with medial posterior frontal regions (Figure 3a). Significant clusters were reliable in 
spatial location across different preprocessing pipelines.  
 

 
 

 
 

Figure 3a: Top panel: Mean network connectivity per group across timepoints by group for bariatric surgery group (BARS) 
and the waiting-list control group (NBARS); transparent lines show individual trajectories, opaque lines depict mean ± SD 
trajectories by group. Bottom panel: Stronger BMI decrease is associated with increased functional connectivity between 

NAc and posterior-medial frontal region, adjusted for age, sex, average BMI, and logarithm of mean framewise 
displacement (log mFD), denoised with AROMA + CC. Legends denote empirical Z value. DMN: default mode network; RN: 

reward network; FC: functional connectivity.  
Figures taken from Heinrichs et al. (2021). 
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In Study 2, correlation analysis in the young, overweight sample showed two groups of 
microbial genera differentially linked to host health status and eating behaviour. Seven genera 
correlated with healthier eating behaviour (Alistipes, Blautia, Clostridiales cluster XVIII, 
Gemmiger, Roseburia, Ruminococcus, Streptococcus), while five genera correlated with 
unhealthier eating (Clostridiales cluster IV and XIVb, Collinsella, Fusicatenibacter, 
Parabacteroides) (Figure 3b). Three genera were linked to habitual dietary fiber intake (+: 
Clostridium XVIII; -: Collinsella, Parabacteroides). Links between fiber intake or genera and 
SCFA remained elusive. Relative abundance of all genera linked to unhealthy eating and 
abundance of Parabacteroides alone, were significantly informative of treatment success 
post-bariatric surgery. Higher abundance of Parabacteroides related to lower weight loss and 
higher overall unhealthy eating traits in the two bariatric patient groups (Figure 3b). 
 

 
 

 
Figure 3b: Microbiota genera abundance relates to unhealthy eating behaviour traits.  

RYGB: Roux-en-Y gastric bypass; TFEQ: Three-Factor Eating Questionnaire.  
Figures taken from Medawar, Haange, et al. (2021). 
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In Study 3, linear regression models firstly showed that lower habitual intake of animal-based 
products was significantly linked to lower BMI in a sample representative for the general 
population in Leipzig (Figure 3c). Secondly, there was no significant association between diet 
and depressive symptom scores. Thirdly, personality, i.e. lower extraversion, was significantly 
related to lower intake of animal-based food items.  
Indeed, a multitude of personality traits was associated with higher depressive symptom 
scores, i.e. higher neuroticism, lower extraversion, lower agreeableness and lower 
conscientiousness. Also higher depression scores significantly related to higher BMI. Overall 
restriction of food items was also significantly linked to lower BMI, but also to higher 
depression scores. Moreover, overall dietary restriction showed significant links to lower 
agreeableness and higher conscientiousness. 
 

 
Figure 3c: Association between body-mass-index (BMI) and demographic and animal dietary restriction score; residuals 
plotted according to regression model 1 (sample 1 n = 8943). Line gives regression fit. Point size = 1. Abbreviations: a.u.: 

arbitrary units. Figure taken from Medawar et al. (2020).
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5 Discussion 
5.1   General considerations 
The herein presented studies provide evidence of distinct psychophysiological mechanisms 
related to eating behaviour based on a series of diverse methodological approaches. On the 
one hand, therapeutical interventions in clinical populations have the benefit of controlled 
settings, close monitoring and, in case of bariatric surgery, drastic intervention effects. Yet, 
the respective evidence is restricted in its applicability to specific samples only, therefore not 
easily transferable to the general population. On the other hand, evidence from studies in the 
general population on diet-related topics are more generalisable. Yet, dietary intake is 
challenging to assess accurately or to modulate by interventions in free-living populations due 
to confounding factors. Therefore, an overall strength of my dissertation is the combination 
of different methods and populations, spanning from clinical samples (Studies 1+2), deeply 
phenotyped samples representative of the general population (Study 2) and large samples of 
the general population (Study 3). I will discuss general considerations first to facilitate 
interpreting study results and evaluating study quality, followed by results, strengths and 
limitations of each study in detail in the next paragraphs. 
 
5.2   Study I: Power and control groups in fMRI studies 
When assessing study quality of fMRI studies on the effects of bariatric surgery, several factors 
in the study design should be considered: sample size (Szucs and Ioannidis 2020; Button et al. 
2013), multiple datapoints in time of one individual to account for within-subject variability 
(Thiese 2014) and adequate control groups determine study quality. Indeed, most studies 
examining RYGB-induced changes in functional connectivity either have no or a normal-weight 
control group. Confounding metabolic differences due to morbid obesity compared to normal-
weight should be expected and therefore, waiting list control patients may be the control 
group that most closely matches the intervention group. Additionally, clinical interventions 
integrating brain MRI remain effortful for clinical staff and patients, as time in the clinical 
setting is tightly scheduled, MR scanners are not always available or of suitable width for pre-
surgery patients, and especially in longitudinal designs compliance for follow-up visits is hard 
to control. Additionally, reporting practises in themselves can increase the level of evidence, 
such as preregistering hypotheses and the statistical analysis plan, reporting effect sizes and 
applying Bayesian statistics, all of which improve credibility and interpretability of the results 
(Nosek et al. 2018). 
 
In Study 1, we included waiting list patients as controls, sample size overall was rather small 
(n = 48), yet larger than many other studies, the fMRI analysis was extensively preregistered, 
and unthresholded maps were made public. We implemented three different preprocessing 
pipelines, and found no substantial differences in the results, which suggests that the analysis 
method is rather secondary in our case, but reliable across methods. Primary analysis was 
reported as null results, adding important evidence to the overall literature. Exploratory 
analysis showed that treatment success related to increased connectivity  between the reward 
network and a cluster which maps to the superior frontal gyrus and supplementary motor 
area, attributed to the salience network and likely involved in action planning. Interpretation 
of this finding remains speculative, but may point towards better signal processing between 
reward action initiation processes, signifying improved reward to action translation in obesity, 
potentially linked to less impulsive decision-making. Further, head motion during scanning 
related to increased connectivity between the reward network and a cluster in the motor 
cortex. This finding is important to be considered in future studies with a similar focus 
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adjusting for in-scanner head motion, but also exemplifies how additional confounding factors 
should be measured and investigated. 
 
Next to recruiting adequately powered samples of patients for each condition, data pooling 
and meta-analyses are promising future directions. Further, besides resting-state functional 
connectivity as an outcome measure of interest, more targeted brain outcome measures 
might be of relevance for RYGB-induced effects, such as food cue reactivity (Hermann et al. 
2019) or food craving, that can be linked to psychological and behavioural outcomes that may 
be provided by the participants during brain imaging. 
 
5.3   Study II: Gut-brain axis lacks intervention studies in humans 
Most hypotheses on gut-brain communication and its mechanisms stem from animal studies, 
some mostly observational human studies and many literature reviews speculating on 
pathways of interest.  
The associative nature of gut microbiome studies in humans provides valuable insights into 
possible mechanisms and pathways of interest, yet causality remains to be proven by 
intervention studies. In particular, cross-sectional analyses of the gut microbiome are prone 
to overseeing individual baseline differences in gut composition, temporal shifts and dynamics 
and require either tight controlling for or assessing of confounding factors, such as lifestyle, 
mode of birth, mode of feeding, antibiotic treatment, alcohol intake and many others or close 
matching when comparing groups of individuals (Vujkovic-Cvijin et al. 2020). 
 
In our analysis in Study 2, all data was of a cross-sectional nature sensu strictu, yet both 
samples were closely matched to result in homogeneous groups with similar dietary patterns 
and weight status in sample 1, and in post-surgery groups with closely matched control groups 
comparable to post-surgery weight status in sample 2. Since post-surgery groups have been 
defined on the basis of treatment success, group comparisons reflect a longitudinal element 
related to therapy outcome. Also, we assessed various potential confounders (sex, coffee 
intake, time of day, seasonality) and tested their influence on alpha diversity, resulting in no 
significant associations. Confounders in the RYGB groups were harder to assess, as less 
detailed information was collected during the study and certain factors were by nature 
different from surgery to control groups, such as medication use for alleviating 
gastrointestinal symptoms, e.g. protein pumps inhibitors. Relations between eating behaviour 
and SCFA remained elusive. 
Yet, there are certain limitations to the study. Firstly, fiber intake was based on self-reported 
dietary data, that are subject to reporting bias. Secondly, it remains unclear if relative genera 
abundance can be compared from one sample to another with different weight status and 
differences in biosample processing, even though DNA extraction, DNA sequencing and 
bioinformatical analysis were performed similarly. Thirdly, due to the cross-sectional nature 
of the analysis, it remains unclear, if eating habits prompted microbial genera shifts or if 
genera induced certain eating behaviour. 
 
Indeed, human intervention studies investigating gut-brain communication related to dietary 
fiber remain scarce, and mostly assess intervention effects of prebiotics on one particular 
outcome, e.g. stool frequency (Micka et al. 2017), SCFA levels (Baxter et al. 2019) or stress 
levels (Dalile et al. 2020), but not in combination or with a focus on food decisions. Improving 
knowledge on causality of gut-brain pathways requires interdisciplinary approaches, that 
integrate multiple outcomes and biomarkers into one study, to enable tracking intervention 
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effects within the same setting. Ideally, such interventions should modulate one factor only 
(such by administering a dietary supplement) in a free-living population and strictly controlling 
for or assessing potential confounders. Moreover, the intervention condition should have a 
control condition in the same individual (cross-over within subject design) to eliminate inter-
individual differences in the gut microbiome. 
 
Lastly, methodology of assessing the gut microbiome and markers of interest need to be 
discussed. The most common method for microbial diversity analysis is 16S rRNA DNA 
sequencing, and since more recently shotgun genome sequencing, which has higher detection 
power for less abundant genera (Durazzi et al. 2021). Therefore, methodology and 
particularities in the analysis could affect outcomes and therefore comparability of results 
across different studies.  
Also, beyond metagenomics, proteomics, metabolomics and functional pathway analysis 
(Zhang et al. 2019) provide more functional insights into bacterial composition and their role 
for host metabolism and should be considered alongside with microbial composition, 
potentially constituting even more relevant markers. Importantly, multi-omics analysis 
requires precautions in data sampling, such as seamless freezing of biosamples or the use of 
specific buffers if collected at room temperature. 
 
5.4   Study III: Evaluation of the assessment of dietary intake based on self-report 
Studies investigating nutrition cross-sectionally or epidemiologically are dependent on 
assessing food intake using self-reported dietary diaries, dietary recall administered by 
nutrition experts or other observational measures. Although, self-reported measures in free-
living populations may be criticized for low accuracy and reporting bias leading to under- or 
overreporting (Ioannidis 2018), there are advantages of FFQs based on self-report (Subar et 
al. 2015). Those are low costs, easy implementation, low time investment and the possibility 
of self-administration. The field of nutrition sciences aims to improve dietary assessment 
methodology by digitalizing reporting methods to enable low-threshold integration into 
everyday life of study participants, for example by smartphone-based tools (König et al. 2021). 
Moreover, to avoid self-reporting and recall bias, the development of algorithm-based food 
intake measurement tools in real-world environment (Oliveira Chaves et al. 2021), in 
particular using photos of meals (Ruede et al. 2021), could spur further innovation and 
improve accuracy of food intake assessment. 
 
In Study 3, indeed quality of food intake data was limited, due to lack of information on the 
quantity of food intake and a limited spectrum of food items listed in the questionnaire. Yet, 
the questionnaire asked for food intake over the last 12 months and included details on low-
fat products. My analysis was based on a restriction score looking at excluded food items over 
a timeframe of 12 months and is therefore presumably a strong and reliable indicator of actual 
food intake and exclusion of certain food groups. To ensure replicability and transparency, 
precise scoring considerations and scoring code were made public. Overall, I was able to 
replicate links between restricted animal-based food intake and lower weight status, which 
supports the notion that the herein used food scoring adequately reflects habitual dietary 
patterns. 
 
In Study 2, I implemented a well-validated FFQ based on frequency and quantity that also 
includes plant-based items, types of oil and whole-grain products (for further details see the 
publication of Study 2). Beyond scoring of food intake in grams per item as provided by the 



 30 

questionnaire’s manual, I developed an open code nutrient scoring pipeline to get detailed 
information on daily intake of macro- and micronutrients based on the self-reported food 
intake data. This enabled detailed assessment of individual fiber intake as well as correlational 
analysis with other markers of interest in Study 2. 
 
Overall, dietary assessment in epidemiological studies remains challenging and an 
approximation to actual food intake, yet methods are well established and validated in most 
cases (Subar et al. 2015). For more detailed analyses on specific nutrients, more objective 
markers are needed, e.g. serum- or urine-based biomarkers (Playdon et al. 2016), and self-
reporting may be improved with the help of digital tools. Longitudinal studies tracking 
individuals in time and dietary intervention studies have the benefit of reduced reporting bias 
due to higher within-subject comparability and targeted interventional modulation increasing 
level of evidence and reliability of results. 
 
5.5   Ongoing projects: Intervention studies and meta-analyses 
To improve the mechanistic understanding of diet-brain relationships, as well as in order to 
improve conservative treatment options for obesity, interventional studies with multiple 
timepoints will help to elucidate causality of putative links. High evidence stems from 
randomized controlled trials (RCTs) and meta-analyses synthesizing evidence from single 
studies. We therefore, designed two interventional studies: firstly, a within-subject cross-over 
human dietary intervention (GUT-BRAIN study, Medawar, Thieleking, and Witte 2019) 
investigating the effect of a two week high fiber diet compared to equicaloric placebo on food 
wanting and its neural correlates, and changes in gut composition and SCFA metabolism. 
Secondly, to examine psychophysiological effects of a single meal, we conducted three large 
scale smartphone-embedded studies based in German university cafeterias comparing plant-
based to animal-based meals (Mensa study, Medawar, Zedler, et al. 2021). Further, a 
systematic review on the influence of lifestyle factors on gut microbiome composition is 
currently performed (Akan, Medawar, and Witte, in prep). 
 
6 Conclusion 
Overall, advancing knowledge on effective treatments for and mechanisms related to obesity 
is crucial to addressing the two-fold problem of malnutrition and the climate crisis. Due to 
their co-occurrence and shared underlying societal drivers, the term “The Global Syndemic” 
of obesity, undernutrition and climate change has been coined (Swinburn et al. 2019). Next to 
posing a burden on human health, obesity causes an additional climate burden, that has been 
estimated to about 700 megatons per year of CO2 equivalents (CO2eq) or 1.6% of total global 
GHG (Magkos et al. 2020), stemming from metabolic activity, excess food intake, and higher 
mobility demands due to greater body weight. Therefore, reducing obesity prevalence and 
improving overall dietary quality leads to co-beneficial effects on human and planetary health 
(M. A. Clark et al. 2019). Indeed, even though the adoption of current national dietary 
guidelines would lead to a decrease in premature mortality rate of 15% and a reduction of 
GHG by 13% caused by the food system in a modelling study across 85 countries, most 
guidelines still do not meet global health and environmental targets (Springmann et al. 2020). 
In sum, next to the need of political goals to counteract The Global Syndemic to become even 
more ambitious, a more comprehensive and in-depth understanding of mechanisms 
modulating and maintaining diet-brain-behaviour is needed to adopt more human- and 
planetary-health diets. 
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Precisely, research questions and methods need to be further refined to increase the efficacy 
of obesity prevention and treatment options. Expanding research on invasive surgical 
treatment remains a challenge due to financial and time constraints in study design due to the 
primary clinical justification to treat patients. Therefore, basic research should expand on 
conservative treatment options, also with the prospect to advance preventative strategies to 
avoid steadily increasing prevalence of overweight and obesity. Studies will benefit from 
investigating the whole BMI spectrum to detect sensitive weight groups, investigating specific 
single dietary components, such as dietary fiber, refining tasks to characterize dimensions of 
reward processing for food decision-making and examining candidate mechanistic routes of 
the gut-brain-axis in animals and humans in detail. 
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Abstract

Obesity imposes serious health risks and involves alterations in resting-state func-

tional connectivity of brain networks involved in eating behavior. Bariatric surgery is

an effective treatment, but its effects on functional connectivity are still under

debate. In this pre-registered study, we aimed to determine the effects of bariatric

surgery on major resting-state brain networks (reward and default mode network) in

a longitudinal controlled design. Thirty-three bariatric surgery patients and 15 obese

waiting-list control patients underwent magnetic resonance imaging at baseline, after

6 and 12 months. We conducted a pre-registered whole-brain time-by-group interac-

tion analysis, and a time-by-group interaction analysis on within-network connectiv-

ity. In exploratory analyses, we investigated the effects of weight loss and head

motion. Bariatric surgery compared to waiting did not significantly affect functional

connectivity of the reward network and the default mode network (FWE-corrected

p > .05), neither whole-brain nor within-network. In exploratory analyses, surgery-

related BMI decrease (FWE-corrected p = .041) and higher average head motion

(FWE-corrected p = .021) resulted in significantly stronger connectivity of the

reward network with medial posterior frontal regions. This pre-registered well-

controlled study did not support a strong effect of bariatric surgery, compared to

waiting, on major resting-state brain networks after 6 months. Exploratory analyses

indicated that head motion might have confounded the effects. Data pooling and

more rigorous control of within-scanner head motion during data acquisition are

needed to substantiate effects of bariatric surgery on brain organization.
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1 | INTRODUCTION

Obesity is a worldwide health issue, entailing huge personal and

societal costs. Excess amount of body fat not only affects cardiovas-

cular and metabolic health, but also increases the risk for cognitive

decline and dementia later in life (Albanese et al., 2017). Conserva-

tive treatment options including behavioral therapy often do not

yield the desired weight loss, especially in patients with very high

BMI (>35 kg/m2). Here, bariatric surgery, also known as weight loss

surgery, is a viable option to rapidly induce weight loss and improve

glycemic status. Common techniques like vertical sleeve gastrec-

tomy (VSG) and gastric banding (GB) result in a reduction of stom-

ach volume by removing parts of the stomach along the curvature

or inserting an inflatable band around the stomach, respectively,

while preserving the small intestine and digestive flow. Roux-en-Y

gastric bypass (RYGB) is a more invasive surgical procedure, where a

small pouch is formed from the proximal stomach and connected to

the jejunum. Thereby, the ingested food bypasses a large portion of

the stomach and proximal small bowel, resulting in complementary

malabsorption of nutrients. Meanwhile, the disconnected

biliopancreatic tract is re-anastomosed at a more distal part of the

jejunum. Apart from reduced digestion efficiency and malabsorption

of nutrients, altered food perception, appetite, and central regula-

tion of food intake may also be responsible for surgery-induced

weight loss (Brutman, Sirohi, & Davis, 2019; Mulla, Middelbeek, &

Patti, 2017).

Precise mechanisms how bariatric surgery leads to altered appeti-

tive signaling are yet to be elucidated. One option to address these

questions on brain-behavior relationships is to use resting-state func-

tional magnetic resonance imaging (rsfMRI), a technique capturing the

dynamic organization of the brain. Functional connectivity networks,

that is, brain regions with correlated neural activity over time, are in

anatomical correspondence with specific brain networks involved

in cognitive processes, including attention and executive control

(Smith et al., 2009). The reward network, processing hedonic value

and internal motivation, and the default mode network (DMN), a

higher-order network, involved in interoception and governing shifts

between external-internal processes, are promising candidates to

mediate altered central regulation of food intake after bariatric

surgery.

The reward network comprises the ventromedial prefrontal cor-

tex (vmPFC), the nucleus accumbens (NAcc), the putamen, the amyg-

dala, and the anterior insula (Liu, Hairston, Schrier, & Fan, 2011;

O'Doherty, 2004). These brain regions have been suggested to guide

food valuation processes and decision-making in humans (Bartra,

McGuire, & Kable, 2013; Hare, Malmaud, & Rangel, 2011;

Hutcherson, Plassmann, Gross, & Rangel, 2012; Schmidt

et al., 2018). Frequently, obesity has been associated with hyper-

activation of reward network regions during anticipation of (high-

caloric) food cues, and in contrast, reduced activation to actual taste

of these foods (Devoto et al., 2018; García-García et al., 2014; Meng,

Huang, Ao, Wang, & Gao, 2020; Stoeckel et al., 2009), though this

has recently been critically discussed (see Morys, García-García, &

Dagher, 2020). RsfMRI studies also showed increased local func-

tional connectivity of reward network regions, that is, NAcc, vmPFC,

putamen, insula (Contreras-Rodríguez, Martín-Pérez, Vilar-L!opez, &

Verdejo-Garcia, 2017; Coveleskie et al., 2015; Hogenkamp

et al., 2016), and altered connectivity with salience, homeostatic,

and sensorimotor networks (Lips et al., 2014; Wijngaarden

et al., 2015). In bariatric surgery patients, connectivity within the

reward network (e.g., putamen and OFC) might be normalized by the

surgery, however, the evidence is limited due to a lack of longitudinal

obese control groups (Duan et al., 2020; Schmidt et al., 2021;

Wiemerslage et al., 2016). Possibly, a reconfiguration of the fronto-

striatal brain networks could emerge from altered gut signaling, for

example, changes in ghrelin levels, via hypothalamic-striatal projec-

tions (Karra et al., 2013; Li et al., 2019) though hormonal mediators

have been disputed by Zoon et al. (2018).

The DMN includes the posterior cingulate cortex (PCC)/

precuneus, the medial prefrontal cortex (mPFC), and the inferior and

lateral parietal cortex (Raichle, 2015) and is implicated in various func-

tions, such as interpersonal cognition, episodic memory, prospective

thought, and interoception (Buckner, Andrews-Hanna, &

Schacter, 2008; Marsland et al., 2017). Higher cognitive function

often depends on successful modulation of the DMN and communica-

tion across networks. Meanwhile, patterns of DMN dysfunction, on

the other hand, have been demonstrated for various physiological and

neuropsychiatric disorders (e.g., ADHD, type-2 diabetes, and mood

disorders). Alterations in the DMN and its connectivity could conse-

quently be a biomarker for pathophysiological mechanisms that pre-

disposes individuals to the development or exacerbation of

neuropsychiatric problems. Possibly, poor metabolic health common

in obese individuals may act as a catalyst in that insulin resistance and

altered cerebral glucose metabolism within the DMN augments a cas-

cade that ultimately leads to the formation of pathology linked to cog-

nitive impairments and even Alzheimer's disease (Buckner et al., 2008;

Kenna et al., 2013). Higher BMI and obesity have been associated

with a pattern of decreased functional connectivity within the DMN

and increased functional connectivity of DMN regions to other net-

works, that is, salience and sensory networks in several resting-state

and task-based rsfMRI studies (Beyer et al., 2017; Borowitz, Yokum,

Duval, & Gearhardt, 2020; Chao et al., 2018; Ding et al., 2020;

Doucet, Rasgon, McEwen, Micali, & Frangou, 2017; Kullmann

et al., 2011; Sadler, Shearrer, & Burger, 2018; Wijngaarden

et al., 2015). After bariatric surgery, a normalization of the connectiv-

ity between DMN and cognitive control and salience brain regions

might occur, yet no study has included a longitudinal control group

(Frank et al., 2013; Li et al., 2018; Olivo et al., 2017). In sum, while

there is some evidence hinting to a role for DMN and reward network

functional connectivity in altered regulation of food intake after bar-

iatric surgery, the existing evidence is inconclusive. Most studies have

investigated small cohorts of patients, without adequate obese con-

trol groups, and did not rigorously separate confirmatory from explor-

atory analyses (George et al., 2016).

Further, while higher BMI has been consistently associated with

more head motion during rsfMRI (Beyer et al., 2017; Hodgson
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et al., 2016), previous studies in bariatric surgery patients have not

taken this important confounder of functional connectivity into

account. In the present sample, we previously reported a group-by-

time interaction on head motion (Beyer et al., 2020). Thus, we aimed

to rigorously control for motion-related variance in our analyses. We

had the following confirmatory hypotheses:

Hypothesis 1. Whole-brain functional connectivity of the

reward network and DMN changes differently from base-

line to follow-up in the bariatric surgery compared to a

waiting-list control group.

Hypothesis 2. Within-network functional connectivity of

the reward network and DMN changes differently from

baseline to follow-up in the bariatric surgery compared to

a waiting-list control group.

We tested Hypothesis 1 by investigating the interaction of bariat-

ric surgery and time on reward network and DMN whole-brain func-

tional connectivity. We pre-registered two denoising pipelines, and

three covariate schemes. For Hypothesis 2, we performed a confirma-

tory analysis of the group-by-time interaction on aggregated, within-

network functional connectivity, for two time points and the same

covariate schemes. In exploratory analyses, we examined the whole-

brain interaction effect for three time points, the effects of head

motion on functional connectivity and whether weight loss, a proxy of

treatment success, predicted changes in functional connectivity.

2 | METHODS

2.1 | Sample and study design

The ADIPOSITAS-study investigated the effects of bariatric surgery

on brain structure and function in a prospective design at the Charité

University Medicine Berlin, Germany. For more details, see Prehn

et al. (2020). We used all data acquired until April 2019. The study

design and primary outcomes (cognitive function and blood parame-

ters) were registered at clinicaltrials.gov as NCT01554228. The study

protocol was in accordance with the Helsinki Declaration and

approved by the Ethics Committee of the Charité University Medicine

Berlin (EA1/074/11). As neuroimaging was not covered in the

clinicaltrials.gov registration, we pre-registered the present resting-

state fMRI analyses on the Open Science Framework (OSF; https://

osf.io/yp42s). We made additional changes (see https://osf.io/59bh7/

) to the pre-registration after preprocessing the rsfMRI data, as we

realized some aspects of the analysis were inadequately described in

the initial pre-registration. For a comparison of the pre-registration

and the manuscript, please visit https://osf.io/45n9f/. Participants

were recruited from the Center for Bariatric and Metabolic Surgery at

the Charité University Medicine Berlin. Inclusion criteria were, in

accordance with German guidelines for bariatric surgery, a failure of

conservative obesity treatment and either (a) a BMI > 40 km/m2 or

(b) a BMI > 35 kg/m2 and at least one typical co-morbidity

(e.g., type-2 diabetes, hypertension and nonalcoholic fatty liver dis-

ease; Mechanick et al., 2013). Participants were aged between 18 and

70 years and had no history of cancer, chronic inflammatory disease

and addiction, other severe untreated diseases, brain pathologies

identified in the MRI scan or cognitive impairments (defined as MMSE

score < 24). In total, 51 participants out of the originally enrolled

69 subjects received MRI. Five data points of three subjects had to be

excluded due to bad anatomical image quality (see below), which led

to a final data set with 101 rsfMRI sessions. The final sample entailed

48 morbidly obese individuals (37 females; aged 44.2 ± 11.9 SD years,

range 21–68). Participants of 60.4% had clinically diagnosed hyper-

tension, 4.2% had type-2 or type-1 diabetes, and 6.2% reported to

smoke.

Participants either underwent surgery (n = 33, 26 females) or

were waiting list controls (n = 15, 11 females), who waited for their

health insurance's approval to undergo surgery. Groupwise baseline

characteristics are shown in Table 1. Measures were taken at

baseline (BL), 6 (FU1) and 12 (FU2) months postsurgery/baseline

appointment to capture both phases of rapid weight loss and mainte-

nance (Maciejewski et al., 2016). Analyses were performed on all

participants who provided at least one data point of rsfMRI data.

Nineteen participants had complete data, 15 provided data for two

time points, and 14 for one time point (for more details see

Figure S1). The pre-registered analysis of changes from baseline to

follow-up included 24 participants with both time points, in total

72 data points.

Fifteen patients underwent RYGB, 12 underwent VSG and 1 GB,

for five patients in the intervention group, this information was not

available. Participants arrived in the morning (between 07:00 and

12:00 a.m.) after an overnight fast. They underwent medical assess-

ments including an interview, blood draw, and anthropometric mea-

surements before having a 1 hr break for breakfast. MRI scanning was

done after performing a psychological test battery (for details, see

Prehn et al., 2020).

TABLE 1 Baseline characteristics of total sample

BARS NBARS

N 33 15

Age (years) 42.67 (11.78) 47.40 (11.76)

Sex (% female) 26 11

BMI (kg/m2) 46.43 (5.78) 44.12 (5.12)

Mean mFD (mm) 0.27 (0.17) 0.29 (0.14)

Maximal mFD (mm) 0.75 (0.34) 0.98 (0.81)

Hypertension (%) 54.55 73.33

Type-1 diabetes (%) 3.03 0

Type-2 diabetes (%) 3.03 0

Smoking (%) 9.09 0

Note: Counts, percentages, or means listed. SD is shown in brackets.
Sample size for different measures varies, for example, age is available for
all participants while not all participants provide MRI data and, hence,
mean framewise displacement (mFD) values at baseline.
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2.5.4 | Functional decoding

In an exploratory analysis, we compared the resulting contrast maps

with whole-brain activation maps from the NeuroSynth (https://

www.neurosynth.org/) database (Yarkoni, Poldrack, Nichols, Essen, &

Wager, 2011). We uploaded the contrast images for change BMI and

average logmFD on NeuroVault, and applied the decoding classifier.

This classifier estimates the similarity of meta-analytic activation maps

of +500 search terms with our contrast maps. We reported the three

top terms for both contrasts.

3 | RESULTS

Histograms on baseline characteristics revealed that patients in the

control group did not differ notably from the intervention group regard-

ing BMI and mFD. There were slight differences in the distribution of

sex and age, the control group had a higher number of male participants

(n = 4 vs. n = 10) and a higher mean age (47.14 vs. 39.33). Change in

BMI of the MRI sample throughout the study is depicted in Figure 1

(comprehensive table on available BMI data in Supporting Information).

3.1 | Confirmatory analysis (pre-registered)

3.1.1 | Whole-brain analysis

Against our initial hypothesis, there was no interaction effect of group

and time point on neither reward network nor DMN functional con-

nectivity in model CA1 (no adjustments). There also was no significant

main effect for any of the effects of interest (time, group) in

clusterwise inference with FWE-correction. The same was true for

models CA2 (adjusting for age, sex, and average of logmFD). Results

did not differ between AROMA + CC and AROMA + CC + GSR den-

oising pipelines. In Model CA3 (adjusting for age, sex, average of

logmFD, and baseline BMI), there also was no significant interaction

when adding baseline BMI. Yet, we found a significant main effect of

time in this model. For AROMA + CC + GSR denoised data, there

was decreased functional connectivity of the NAcc with the lateral

occipital cortex at baseline compared to follow-up (FWE-corrected

p = .030), and decreased functional connectivity of the PCC within

the DMN to the medial anterior cingulate cortex (FWE-corrected

p = .046; see Supporting Information). The unthresholded contrast

maps of group, time, and group-by-time interaction for the unadjusted

model for AROMA + CC + GSR were uploaded on NeuroVault.

3.1.2 | Aggregated functional connectivity analysis

There was no significant group-by-time interaction for aggregated

DMN and reward network functional connectivity (see Figure 2 and

Supporting Information for a detailed summary of the models), regard-

less of the adjustments (CA1 without adjustment, CA2 adjusting for

age, sex, and average of mFD or CA3 adjusting for age, sex, average

of mFD, and baseline BMI), and whether the analyses were performed

on two and three time points.

3.2 | Exploratory analysis

3.2.1 | Whole-brain analysis

Reward network functional connectivity was not significantly related to

neither average nor change in BMI, for either of the denoising pipelines

F IGURE 1 Trajectory of BMI
separately for the bariatric
surgery group (BARS) and the
waiting-list control group
(NBARS); individual trajectories
are plotted in transparent, mean
trajectories including standard
deviations in opaque colors
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implemented in the SwE toolbox implicitly accounts for random

effects without the need to specify them through the error term. We

used a modified SwE assuming different covariance structures for the

intervention and the control group because of their unbalanced sam-

ple size. We used an explicit brain mask, derived from the MNI ICBM

“152 nonlinear 6th generation” atlas (re-sampled to 3 ! 3 ! 3 mm3

and thresholded at 0.5 GM probability) for all analyses. Statistical ana-

lyses on the aggregated functional connectivity and imputation of

missing data were performed in R version 3.6.1 (Team, 2013).

2.5.1 | Confirmatory analysis (pre-registered)

We tested the pre-registered hypothesis of a time-by-group interac-

tion for two time points.

Whole-brain analysis

As pre-registered, we performed the analysis for baseline and follow-

up time points only, for AROMA + CC and AROMA + CC + GSR

denoising pipelines and adjusting for no confounders (model CA1),

age, sex, and average logmFD of both time points (model CA2) and

age, sex, average logmFD, and baseline BMI (model CA3). Because the

information about the BMI at baseline of one participant in the inter-

vention group was missing, we employed multivariate imputation to

replace this value, for details see Supporting Information.

Aggregated functional connectivity analysis

We analyzed the aggregate functional connectivity (aggFC) using lin-

ear mixed models in the R package lme4 (Bates, Sarkar, Bates, &

Matrix, 2007). We deviated from the pre-registration by only investi-

gating data from the AROMA + CC + GSR denoising pipeline. First,

we investigated the time-by-group interaction for baseline and

follow-up time points only. We adjusted for no confounders (model

CA1), either for baseline age, sex, average of logmFD of both time

points (model CA2) or additionally for baseline BMI (model CA3). We

performed model comparison between R1 and R0 models, where

R1 = lmer(aggFC " timepoint*group + age + sex + [1jsubj]), and

R0 = lmer(aggFC " timepoint + group + age + sex + [1jsubj]). As

specified in the pre-registration, we repeated the above-mentioned

interaction analysis for all three time points.

2.5.2 | Exploratory analysis

Whole-brain analysis

As described in the pre-registration, we calculated the between- and

within-subject centered values of BMI (Guillaume et al., 2014). This

model, containing average BMI and BMI change, allowed us to disen-

tangle the differential effects of these variables on functional connec-

tivity. We first estimated their effects in a model adjusting for

baseline age and sex (Model EA1) and then additionally controlling

for logmFD (Model EA2). As we previously reported correlated change

in BMI and head motion in this sample (Beyer et al., 2019), we

explored a refined model including average BMI and logmFD and

change in both measures, along with baseline age and sex (Model

EA3). Here, we aimed to see whether any effect of change in BMI

would be detectable when adjusting for the change in head motion. In

addition to these pre-registered exploratory analyses, we explored

our whole-brain group-by-time point interaction models for the data

of all three time points on whole-brain level and for aggregated

values. In this model, time was represented as factor taking into

account possible nonlinear time courses in the increase and decrease

of functional connectivity over the course of 1 year, which may occur

depending on the phase of weight management (Olivo et al., 2017).

The resulting factorial design contained one regressor for each time

point per group (see Supporting Information for depiction of design

matrix). This analysis had not been pre-registered. Here, we used indi-

vidual logmFD values (not averaged) as covariate to capture variance

in logmFD change over time points. We investigated two models

adjusting for age and sex (Model EA4) and age, sex, and logmFD

(Model EA5). For a better understanding of the unique contribution of

average and longitudinal change in logmFD measures, we tested the

association of head motion and functional connectivity (FC) in the

additional exploratory Model EA6: FC = between-subject logmFD

+ within-subject logmFD with age and sex as nuisance covariates.

Aggregated functional connectivity analysis

Further, we performed the pre-registered exploratory analysis with aver-

age BMI and change in BMI as predictors of the aggregated functional

connectivity from AROMA + CC + GSR denoised data of both net-

works. We calculated three models with average and change in BMI as

predictors of interest and adjusted for baseline age and sex (Model EA1),

logmFD (Model EA2), and average and change in logmFD (Model EA3).

2.5.3 | Statistical inference

Whole-brain analysis

To ensure robustness of our results, we used nonparametric inference

testing based on wild bootstrap with an unrestricted SwE on all con-

trasts of interest for clusterwise inference. Deviating from the pre-

registration, we used Type C2 instead of Type C3 for small sample

bias adjustment, as this was recommended for wild bootstraps in the

SwE manual. Deviating from the pre-registration but prior to the anal-

ysis, we fixed a cluster forming threshold of p < .001 for more rigor-

ous multiple comparison adjustment (instead of p < .01), and 1,000

bootstraps due to required computation time (instead of 5,000). Sig-

nificant clusters are defined as family-wise error (FWE) corrected

p < .05. The anatomical localization of significant clusters was investi-

gated with the SPM Anatomy toolbox, version 2.2c (Eickhoff

et al., 2005) and the Harvard-Oxford Atlas in FSL version 5.0.11.

Aggregated functional connectivity analysis

The interaction effect of group and time point in the models of aggre-

gated functional connectivity was considered significant if the model

comparison between R1 and R0 models using the anova command

showed p < .05. In all exploratory models, we considered all coeffi-

cients with p < .05 as significant.
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2.2 | MRI acquisition

MRIwas performedwith a 12-channel head coil on a 3 Tesla Trio, Siemens

(Erlangen) with the syngo B17 software. T1-weighted anatomical images

were acquired as described in Prehn et al. (2020) (with MPRAGE, repeti-

tion time (TR)= 1900 ms, echo time (TE)= 2.52 ms, flip angle= 9!, voxel

size = 1 " 1 " 1 mm3, 192 sagittal slices). Resting-state echo-planar

imaging was acquired with a TR of 2.3 s and TE of 30 ms. The image

matrix was 64 " 64 with an in-plane resolution of 3 mm " 3 mm and

34 slices with a slice thickness of 4 mm. One hundred and fifty volumes

were acquired, resulting in a total acquisition time of 5:45 min. Addition-

ally, a gradient echo field map with a TE difference of 2.46 ms was

acquired to correct for field in homogeneities. Participantswere instructed

to close their eyes but to remain awake during scanning.

2.3 | Preprocessing

2.3.1 | Minimal preprocessing

Imaging data analysis was conducted using AFNI 19.1.05, ANTS 2.3.1,

FSL 6.0.1 and FreeSurfer 6.0.0p1, wrapped in a nipype workflow (ver-

sion 1.2.0) in Python 2.7.15 which can be found on https://github.com/

fBeyer89/ADI_preproc/. T1-weighted images were first processed by

FreeSurfer's cross-sectional pipeline (Fischl, 2012). Then, Freesurfer's

longitudinal stream was applied to all cross-sectional runs (Reuter &

Fischl, 2011). Here, white matter and cerebral spinal fluid masks were

derived based on FreeSurfer's segmentation file for quality control of

rsfMRI preprocessing. The skull-stripped brain was then coregistered

to the MNI152 2 " 2 " 2 mm template using ANTS (Avants, Tustison,

Song, & Gee, 2009). Minimal functional preprocessing included the

removal of first four volumes, motion correction (FSL's MCFLIRT),

fieldmap distortion correction (FSL's fsl_prepare_fieldmap and FUGUE)

and coregistration to the subject's individual longitudinal anatomical

space (FreeSurfer's bbregister). In more detail, the transformations

derived from the latter three steps were combined into one and applied

in a single step. For further analysis and ICA-AROMA processing, the

minimally preprocessed data were intensity normalized and smoothed

with a 6 mmGaussian kernel (fslmaths–kernel gauss 2.548).

2.3.2 | Denoising pipelines

In the pre-registration, we specified two denoising pipelines, ICA-AROMA

and CompCor (AROMA + CC) and ICA-AROMA, CompCor and global

signal regression (AROMA + CC + GSR), for details, see Supporting Infor-

mation (Ciric et al., 2017; Parkes, Fulcher, Yücel, & Fornito, 2018).

2.3.3 | Quality assessment

The quality of anatomical images and rsfMRI was assessed separately.

To control the quality of the anatomical imaged, FreeSurfer cross-

sectional and longitudinal segmentations were visually checked

according to Klapwijk, et al. (2019). We excluded five datasets from

three participants because of excessive head motion leading to failed

pial reconstruction and anatomical–functional coregistration. RsfMRI

quality control was performed according to the protocol by Ciric

et al. (2018) (see Supporting Information for more details). Head

motion was quantified using mean framewise displacement (mFD)

according to Power, et al. (2012) and log-transformed for further anal-

ysis (logmFD). As pre-registered, we did not exclude anybody based

on high average head motion (Beyer et al., 2020).

2.4 | Functional connectivity

2.4.1 | Whole brain functional connectivity

To derive reward network and DMN functional connectivity maps, we

used NAcc and PCC/precuneus as seed regions of interest (ROI),

respectively. We did not select vmPFC for the reward network due to

low SNR. Based on FreeSurfer's segmentation files and Desikan–

Killiany parcellation, we created seed masks using mri_binarize

(thresholded for NAcc at 26, 58; precuneus at 1025, 2025) and

averaged them over hemispheres. Then, we used NiftiLabelsMasker

and NiftiMasker to extract the standardized time series from the

seed regions and the whole brain. We calculated the Pearson's

correlation between them with numpy.dot, performed r-to-z Fisher-

transformation and saved the resulting correlation maps for each

preprocessing pipeline (minimally preprocessed, AROMA, AROMA

+ CC, AROMA + CC + GSR). Finally, the connectivity maps were

transformed into MNI space using the affine transformation and

nonlinear warp derived with ANTS during anatomical preprocessing.

2.4.2 | Aggregated within-network functional
connectivity

To extract aggregated within-network functional connectivity, we first

calculated the mean DMN and reward network over all participants

and time points, adjusted for age and sex. We used GSR-denoised

data as input and clusterwise bootstrapping with N = 1000. Network

masks were formed from all voxels within clusters which survived a

clusterwise multiple comparison correction of FWE-corrected p < .05.

We extracted the average GSR-denoised functional connectivity from

these masks.

2.5 | Statistical analysis

Statistical analyses were performed in MATLAB version

9.7.0.1190202 (R2019b MATLAB, 2018) using the SwE toolbox ver-

sion 2.2.2 (Guillaume, Hua, Thompson, Waldorp, & Nichols, 2014) as

implemented in the Statistical Parametric Mapping software

(SPM12.7770; Ashburner et al., 2014). The marginal model
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and regardless whether we adjusted for logmFD in Models EA1 and

EA2. Only in Model EA3 (adjusting for average and change in both BMI

and logmFD), we found that more BMI decrease (e.g., weight loss)

predicted higher functional connectivity between NAcc and a cluster in

the posterior-medial frontal region (see Figure 3 and Table 3).

The peak voxel was classified as belonging to superior frontal gyrus

(45% probability) and supplementary motor area (SMA; 37% probability)

in the Harvard–Oxford atlas. Voxel activation at local maximum within

this cluster was significant at peak level after FWE-correction (p = .030),

similarly in AROMA + CC + GSR-denoised data (p = .041).

Moreover, average logmFD was positively associated with func-

tional connectivity between NAcc and motor cortex in Model EA3 for

both denoising pipelines (see Figure 4 and Table 3). For the DMN,

we found that higher average BMI predicted lower functional

(a) (b)

F IGURE 2 Mean network connectivity per group over time separately for the bariatric surgery group (BARS) and the waiting-list control
group (NBARS); individual trajectories are plotted in transparent, mean trajectories including SDs in opaque colors

(a)

(b)

F IGURE 3 Stronger BMI decrease is associated with increased functional connectivity between NAcc and posterior-medial frontal region,
adjusted for age, sex, average BMI, and logmFD (Model EA3). (a) denoised with AROMA + CC, (b) denoised with AROMA + CC + GSR. Legends
denote empirical Z values

HEINRICHS ET AL. 5363



 50 

connectivity of the precuneus/PCC with the lingual gyrus, mid orbital

gyrus and temporal gyrus in the images denoised with AROMA + CC.

This finding was significant in Models EA1, EA2, and EA3 (see Fig-

ures 5 and 6 and Table 2). Yet, none of the clusters survived statistical

thresholding when using AROMA + CC + GSR denoised data (see

Table 3). Unthresholded maps for the t-tests as well as contrasts of

average BMI and change BMI of the main model, and post hoc con-

trasts for average logmFD and change in logmFD were published on

NeuroVault.

Similarly to the analysis with two time points, there was no signif-

icant interaction or main effect when analyzing Models EA4 and EA5

in the full data set of three time points for neither reward network

nor DMN.

In the additional exploratory model including only head motion

(EA6), higher average logmFD was associated with stronger functional

connectivity between the NAcc and a cluster located in proximity to

the central sulcus and motor areas (see Table 4 and Figure 7). This

cluster only differed in size between denoising pipelines. We did not

find any clusters with a significant association of either average

logmFD or change in logmFD and DMN functional connectivity.

3.2.2 | Aggregated functional connectivity analysis

As expected, there was no association of average BMI or within-

subject BMI change and within reward network functional

TABLE 2 Changes in functional connectivity in whole brain analysis in Models EA1 and EA2

Seed Covariates

Clusterwisea Voxelwise at local maximum

FWE-
corr. P

Cluster
size

Z
score

FWE-
corr. P

MNI coordinates

Hem Anatomical regionbX Y Z

Average BMI (decrease)

PCC (CC) Age, sex 0.006 212 1.708 0.019 !6 !30 !3 –

0.045 !3 !45 6 –

0.056 12 !39 0 R Lingual gyrus

0.035 70 1.562 0.129 !48 !9 !15 R Superior temporal
gyrus

0.287 !54 !3 !21 R Middle temporal
gyrus

0.032 75 1.573 0.173 !3 57 !12 L Mid orbital gyrus

0.199 9 54 !6 R Mid orbital gyrus

0.030 77 1.578 0.299 60 !12 !6 L Middle temporal
gyrus

0.514 66 !21 !9 L Middle temporal
gyrus

Average BMI (decrease)

PCC (CC) Age, sex, log
mFD

0.002 230 1.772 0.014 !6 !30 !3 –

0.051 !3 !45 6 –

0.075 12 !39 0 R Lingual gyrus

0.044 70 1.602 0.146 !51 !9 !12 L Mid orbital gyrus

0.308 !54 !3 !21 R Mid orbital gyrus

0.040 76 1.617 0.185 !3 57 !12 L Superior temporal
gyrus

0.249 9 54 !6 L Middle temporal
gyrus

0.047 67 1.593 0.331 60 !12 !6 R Superior temporal
gyrus

0.574 66 !21 !9 R Middle temporal
gyrus

Abbreviations: CC, preprocessing with AROMA + CC; FWE-corr., family-wise error corrected; GSR, preprocessing with AROMA + CC + GSR; Hem,
hemisphere; L, left; MNI (Montreal Neurological Institute) coordinates of primary peak location: X, sagittal; Y, coronal; Z, axial; R, right.
aTo identify significant clusters, we applied a cluster size threshold with p < .001 determined by Wild Bootstrap of 1,000 samples.
bConnectivity with maximum three voxels that mark local maxima within the respective cluster; more detailed description of anatomical regions that are
assigned to overall clusters and corresponding probability in Supporting Information.
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functional connectivity between reward network regions to decrease,

as bariatric surgery has been previously shown to reduce hyper-

activation in reward network regions and hedonic motivation to eat

(Cerit et al., 2019; Ochner, Stice, et al., 2012; Scholtz et al., 2013).

These studies, notably, did not include adequate longitudinal obese

control groups, making false-positive findings possible. We thus

conclude that surgery-induced heavy weight loss does not strongly

affect DMN and reward network functional connectivity based on the

current results.

However, in an exploratory analysis, stronger BMI decrease

predicted higher connectivity of the NAcc and a cluster in a posterior-

medial frontal brain region. Based on the Harvard-Oxford atlas and

(a)

(b)

F IGURE 5 Higher average BMI is associated with lower functional connectivity of PCC/precuneus with different regions in AROMA + CC
denoised data. (a) adjusted for age and sex (Model EA1). (b) adjusted for age, sex, and logmFD (EA2). Legends denote empirical Z values

F IGURE 6 Higher average BMI is associated with lower functional connectivity of PCC/precuneus with different regions, adjusted for age,
sex, average BMI, average logmFD, and change in logmFD (Model EA3) in AROMA + CC denoised data. Legend denotes empirical Z values
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terms. For the https://neurosynth.org/decode/?neurovault=441783

frontal, anterior insula and inferior frontal were the top terms, while

for the https://neurosynth.org/decode/?neurovault=441784, primary

motor, motor, and premotor cortex were the meta-analytic activation

maps most similar to this contract. The functional connectivity con-

trasts were thus somewhat distinct, though the decoding method

does not allow to conclude specificity (for further information, see

here https://www.talyarkoni.org/blog/tag/neurosynth/.

4 | DISCUSSION

In this pre-registered study, we investigated the effects of bariatric

surgery on the functional connectivity of major resting-state brain

networks in a longitudinal controlled design. Moreover, we explored

the longitudinal relationship of surgery-induced weight loss and func-

tional connectivity, and carefully adjusted for head motion by using

two efficient denoising pipelines and controlling for head motion on

the group level.

We did not detect significant effects of bariatric surgery com-

pared to waiting on whole-brain functional connectivity of the PCC

and NAcc, core hubs of the reward network and DMN, according to

pre-registered whole-brain analyses. This was regardless of whether

we adjusted for age, sex, and individual head motion. DMN and

reward network functional connectivity was lower at baseline com-

pared to follow-up for the whole group only when adjusting for age,

sex, average logmFD and baseline BMI. In an exploratory model, dis-

entangling the effects of average and change in BMI, higher BMI was

associated with lower DMN functional connectivity for the more

lenient denoising pipeline. When we additionally adjusted for both,

average and change in head motion, decreases in BMI between the

three time points were associated with increased connectivity of

the NAcc with a posterior-medial frontal cluster. This result was sig-

nificant in both denoising pipelines. Functional decoding revealed sim-

ilarities of the connectivity pattern with frontal, anterior insula, and

inferior frontal activation patterns. Finally, higher average head

motion was associated with increased NAcc connectivity with a clus-

ter in precentral gyrus, close to, yet more posterior cluster associated

with change BMI.

In this study, we could not confirm our pre-registered hypotheses.

Based on previous studies in bariatric surgery patients, we expected

within-DMN functional connectivity to increase, and DMN functional

connectivity to other somatosensory and attention networks to

decrease, in line with more efficient processing of visceral and bodily

signals after surgery (Frank et al., 2013; Li et al., 2018; McFadden,

Cornier, Melanson, Bechtell, & Tregellas, 2013). Further, we expected

(a)

(b)

F IGURE 4 Higher average logmFD is positively associated with functional connectivity between NAcc and motor cortex, adjusted for age,
sex, average BMI, change in BMI, and change in logmFD (Model EA3). (a) denoised with AROMA + CC, (b) denoised with AROMA + CC + GSR.
Note that clusters have different sizes depending on denoising pipeline. Legends denote empirical Z values
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connectivity in models EA1, EA2, or EA3 adjusting for age, sex, and

logmFD (for detailed results, see Supporting Information).

Like in the whole-brain analysis, higher average BMI was associ-

ated with reduced aggregated DMN functional connectivity, regard-

less of whether we adjusted for logmFD (Model EA1: p = .014 and

EA2: p = .017). The association also remained significant when we

split logmFD into average and change in logmFD (EA3) (p = .015) and

there was no significant association of average or change in logmFD

with DMN functional connectivity (see Supporting Information for

overview of all models).

3.2.3 | Functional decoding

Functional decoding of the two activation patterns from the pre-regis-

tered, exploratory analysis EA3 showed different top association

TABLE 3 Changes in functional connectivity in whole brain analysis in Model EA3

Seed Covariates

Clusterwisea Voxelwise at local maximum

FWE-
corr. P

Cluster
size

Z
score

FWE-
corr. P

MNI coordinates

Hem Anatomical regionbX Y Z

Change in BMI (decrease)

NAcc (CC) Age, sex 0.030 112 1.671 0.021 6 6 66 R Posterior-medial
frontal

Average logmFD (increase)

NAcc (CC) Age, sex 0.006 143 1.588 0.034 9 !15 60 R Posterior-medial
frontal

0.094 12 !27 63 R Paracentral lobule

0.462 9 !18 72 R Posterior-medial
frontal

Change in BMI (decrease)

NAcc (GSR) Age, sex 0.041 99 1.457 0.101 6 9 63 R Posterior-medial
frontal

0.374 0 3 66 L Posterior-medial
frontal

Average logmFD (increase)

NAcc (GSR) Age, sex 0.021 46 1.768 0.134 9 !15 60 R Posterior-medial
frontal

0.487 9 !6 72 L Posterior-medial
frontal

0.914 0 !15 60

Average BMI (decrease)

PCC (CC) Age, sex 0.002 251 1.796 0.021 !6 !30 !3 –

0.052 !3 !45 6 –

0.067 12 !39 0 R Lingual gyrus

0.042 70 1.612 0.128 !51 !9 !12 L Mid orbital gyrus

0.273 !54 !3 !21 R Mid orbital gyrus

0.021 91 1.658 0.134 !3 57 !12 L Superior temporal
gyrus

0.152 9 54 !6 L Middle temporal
gyrus

0.045 69 1.609 0.308 60 !12 !6 R Superior temporal
gyrus

0.583 66 !21 !9 R Middle temporal
gyrus

Abbreviations: CC, preprocessing with AROMA + CC; FWE-corr., family-wise error corrected; GSR, preprocessing with AROMA + CC + GSR; Hem,
hemisphere; L, left; MNI (Montreal Neurological Institute) coordinates of primary peak location: X, sagittal; Y, coronal; Z, axial; R, right.
aTo identify significant clusters, we applied a cluster size threshold with p < .001 determined by Wild Bootstrap of 1,000 samples.
bConnectivity with maximum three voxels that mark local maxima within the respective cluster; more detailed description of anatomical regions that are
assigned to overall clusters and corresponding probability in Supporting Information.
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NeuroSynth decoding, this region might be part of the salience net-

work and involved in action preparation. The enhanced functional

connectivity between the NAcc and this region seems at odds with

our expectation of reduced hedonic drive to eat after bariatric sur-

gery. On the other hand, higher connectivity might also indicate a bet-

ter crosstalk between hedonic drive and salience processing in action

planning. Previously, a decrease in local (regional homogeneity [ReHo]

and frequency of low-amplitude oscillations) and global connectivity

(degree centrality) measures in a similar region of the left SMA was

reported after glucose administration (Al-Zubaidi et al., 2019).

Reduced connectivity in this region was interpreted as an inhibition of

action planning or initiation because of fulfilled energy requirements

and reduced need for foraging. Yet, this lower regional (and global)

connectivity might also reflect a relative shift, that is, less connectivity

to distributed brain regions, but higher connectivity within the

reward-action inhibition network. One could argue that a higher level

of segregation (i.e., higher SMA and NAcc connectivity) of signals

between the reward network and action initiation regions could relate

to more efficient information transfer (Sporns, 2013). Yet, this inter-

pretation is highly speculative, and increased ReHo in motor regions

has also been reported after bariatric surgery (Rullmann et al., 2018).

Further research thus should address whether the connectivity

between NAcc and SMA is a relevant feature in altered brain connec-

tivity after bariatric surgery.

Overall, our results point to the importance of head motion as a

confounder in neuroimaging studies in obesity, challenging definite

conclusions on the relationship between weight loss and functional

connectivity changes. Previously, we reported a decrease in head

motion in the bariatric surgery versus control patients in this sample

(Beyer et al., 2020), which might be due to weight loss related alter-

ations in breathing patterns or less discomfort in the scanner (Fair

et al., 2020; Matos et al., 2012, Beyer et al., in preparation). We, there-

fore, conducted careful analyses of the impact of head motion on our

results. To our surprise, the effect of weight loss on the connectivity of

the NAcc with the posterior-medial frontal region was only present

when separating average mFD and change in mFD and thereby intro-

ducing two instead of one regressor into the model. These results may

be due to the presence of multicollinearity between change in FD and

change in BMI which might appear more pronounced in the split model,

and thus lead to unreliable estimations of effects and standard errors.

Contrarily, one could argue that only with the careful disentanglement

of average and change in BMI and FD the effect of change in BMI

could be singled out. This argument is supported by the survival of the

cluster when using AROMA + CC + GSR denoised data, and the dis-

tinct results of the decoding analysis. Further, average FD was associ-

ated with a cluster in a similar, yet not identical region, and crucially,

this association was positive. Thus, confounding of the negative BMI

change effect and the positive average head motion effect on

posterior-frontal functional connectivity seems unlikely. Head motion

also played a role in the association of higher BMI and reduced DMN

functional connectivity. While this result was no longer significant on a

whole-brain level when using stringent denoising, aggregated within-

DMN functional connectivity was negatively associated with BMI in

both denoising schemes. Thereby, this result echoes a previous finding

from our group, and may be interpreted as accelerated age-related

decline of the DMN in relation to the cardiometabolic risk related to

BMI. Yet, midline regions are prone to motion artifacts and doubts

regarding the complete removal of motion confounding remain (Savalia

et al., 2016). The major strength of our study is the prospective inter-

vention controlled design. We compared bariatric surgery patients to

an obese control group who did not differ in baseline BMI, com-

orbidities, treatment history, or recommendation and were scanned

after the same time intervals (Thiese, 2014). Another strength of our

study was the pre-registered analysis plan, which was corrected prior

to statistical analysis after we noticed flaws in the first version. In par-

ticular, we included more details on denoising pipelines and models and

determined that we would use the SwE toolbox, an advanced statistical

toolbox to deal with longitudinal repeated measures (Guillaume

et al., 2014). Opposed to the flexible factorial models which is the stan-

dard in SPM, marginal models use less degrees of freedom, and thus

allow for the inclusion of covariates and higher power.

Limitations of our study include the low number of patients who

participated in all three time points. In total, only 34 participants con-

tributed to the estimation of the longitudinal effects with at least two

time points. Patients in the intervention group were not missing at

random over time points, as often, before surgery, they did not fit into

the MRI scanner. While this sample size is comparable to previous

rsfMRI studies in bariatric surgery, it seems unlikely that our power

was high enough to detect small effect sizes. Increasing the sample

size, for example, by pooling data, would increase power to enable

analyzing differences between surgery types. Indeed, we did not

differentiate due to small sample sizes for each surgery type, yet

separate analyses for restrictive (e.g., GB and VSG) and malabsorptive-

restrictive surgical interventions (e.g., RYGB) should be subject of

future research as they may act differently on metabolism, eating

behavior, and glucose control (Buchwald et al., 2004; Hao et al.,

2017). Distinct effects on the metabolism could further increase

sensitivity for changes in the DMN (Cha et al., 2015). We used seed-

based connectivity to derive large-scale brain networks. While this

approach yielded reasonable DMN and reward network maps, it is a

univariate approach not taking into account the inter-relatedness of

subnetworks and assuming that the connectivity of a central hub

reflects the connectivity of the network as a whole. Furthermore, our

rsfMRI was relatively short, which might have further reduced

our power. We did not monitor hunger or satiety in our design,

although all participants were scanned after the intake of a breakfast

following an overnight fast. Hunger feelings and levels of appetite

regulating hormones such as insulin and ghrelin have been shown to

predict reward network responsivity to food cues, as well as resting-

state brain organization (Kroemer et al., 2012; Lepping et al., 2015;

Ochner, Laferrére, et al., 2012; Wiemerslage et al., 2016), and might

thus have confounded our results (Li et al., 2019). Size and composi-

tion of our sample did not allow sex-stratified analyses. However, the

disproportionate sex distribution is reflective of the prevalence differ-

ences and under-utilization of bariatric surgery by men (Chooi, Ding, &

Magkos, 2019; Fuchs et al., 2015).
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TABLE 4 Changes in functional connectivity in whole brain analysis in Model EA6

Seed Covariates

Clusterwisea Voxelwise at local maximum

FWE-
corr. P

Cluster
size

Z
score

FWE-
corr. P

MNI
coordinates

Hem Anatomical regionbX Y Z

Average logmFD (increase)

NAcc (CC) Age, sex 0.005 126 1.576 0.053 9 !15 60 R Posterior-medial
frontal

0.266 12 !24 63 R Posterior-medial
frontal

0.383 9 !18 69 R Posterior-medial
frontal

Average logmFD (increase)

NAcc (GSR) Age, sex 0.027 54 1.770 0.138 9 !15 60 R Posterior-medial
frontal

0.406 9 !6 72 R Posterior-medial
frontal

0.898 0 !15 60 L Posterior-medial
frontal

Abbreviations: CC, preprocessing with AROMA + CC; FWE-corr., family-wise error corrected; GSR, preprocessing with AROMA + CC + GSR; Hem,
hemisphere; L, left; MNI (Montreal Neurological Institute) coordinates of primary peak location: X, sagittal; Y, coronal; Z, axial; R, right.
aTo identify significant clusters, we applied a cluster size threshold with p < .001 determined by Wild Bootstrap of 1,000 samples.
bConnectivity with maximum three voxels that mark local maxima within the respective cluster; more detailed description of anatomical regions that are
assigned to overall clusters and corresponding probability in Supporting Information.

(a)

(b)

F IGURE 7 Positive association of average logmFD and functional connectivity of NAcc with a cluster in motor cortex, adjusted for age, sex,
average BMI, change BMI, and change logmFD. (a) denoised with AROMA + CC, (b) denoised with AROMA + CC + GSR. Legends denote
empirical Z values
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5 | CONCLUSION

Taken together, this prospective well-controlled study did not con-

firm previous findings claiming strong effects of bariatric surgery on

functional connectivity of the reward network and DMN in obese

patients. Differential changes in head motion adjustment strongly

altered rsfMRI neuroimaging results. We thus recommend to rigor-

ously control head motion at acquisition through online monitoring

or prospective motion correction or to investigate brain organization

with less motion-prone techniques such as task-based fMRI. Pre-

registration of concrete and testable hypotheses and publication of

null findings as done in the current study would help to increase rep-

licability of the field. Moreover, future studies should include obese

control groups, and increase efforts to share and pool valuable

patient data into meta-analysis to enhance our understanding of the

neural underpinnings of altered gut–brain communication after bar-

iatric surgery.
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ARTICLE OPEN

Gut microbiota link dietary fiber intake and short-chain fatty
acid metabolism with eating behavior
Evelyn Medawar 1,2,3✉, Sven-Bastiaan Haange4, Ulrike Rolle-Kampczyk 4, Beatrice Engelmann4, Arne Dietrich5, Ronja Thieleking1,
Charlotte Wiegank1, Charlotte Fries6, Annette Horstmann 1,7,8, Arno Villringer1,3,9, Martin von Bergen4,10, Wiebke Fenske6 and
A. Veronica Witte1,9

© The Author(s) 2021

The gut microbiome has been speculated to modulate feeding behavior through multiple factors, including short-chain fatty acids
(SCFA). Evidence on this relationship in humans is however lacking. We aimed to explore if specific bacterial genera relate to eating
behavior, diet, and SCFA in adults. Moreover, we tested whether eating-related microbiota relate to treatment success in patients after
Roux-en-Y gastric bypass (RYGB). Anthropometrics, dietary fiber intake, eating behavior, 16S-rRNA-derived microbiota, and fecal and
serum SCFA were correlated in young overweight adults (n= 27 (9 F), 21–36 years, BMI 25–31 kg/m2). Correlated genera were compared
in RYGB (n= 23 (16 F), 41–70 years, BMI 25–62 kg/m2) and control patients (n= 17 (11 F), 26–69 years, BMI 25–48 kg/m2). In young adults,
7 bacteria genera, i.e., Alistipes, Blautia, Clostridiales cluster XVIII, Gemmiger, Roseburia, Ruminococcus, and Streptococcus, correlated with
healthier eating behavior, while 5 genera, i.e., Clostridiales cluster IV and XIVb, Collinsella, Fusicatenibacter, and Parabacteroides,
correlated with unhealthier eating (all | r | > 0.4, FDR-corrected p< 0.05). Some of these genera including Parabacteroides related to fiber
intake and SCFA, and to weight status and treatment response in overweight/obese patients. In this exploratory analysis, specific bacterial
genera, particularly Parabacteroides, were associated with weight status and eating behavior in two small, independent and well-
characterized cross-sectional samples. These preliminary findings suggest two groups of presumably beneficial and unfavorable genera
that relate to eating behavior and weight status, and indicate that dietary fiber and SCFA metabolism may modify these relationships.
Larger interventional studies are needed to distinguish correlation from causation.

Translational Psychiatry ���������(2021)�11:500� ; https://doi.org/10.1038/s41398-021-01620-3

BACKGROUND
Gut microbes modulate brain function and behavior via immune,
endocrine, neural, and humoral routes [1]. This could play a key
role in neuronal feeding circuits and overeating, as dysbiosis of
the microbiota composition has been documented in psychiatric
eating disorders [2] and obesity [3].
However, nutrition- or body weight-related microbial changes and

their functional relevance are still relatively unclear. In mice, gastric
bypass-related differences in the microbiota profile, such as a higher
abundance of the genera Escherichia (phylum Proteobacteria) and
Akkermansia (phylum Verrucomicrobia), induced weight loss when
transferred to germ-free animals [4]. In humans, bariatric surgery
similarly led to higher overall microbiota diversity and to higher
abundance of the species Escherichia coli and in some studies to
further abundance changes within the phylum Bacteroidetes, such as
a higher post-surgery ratio of the genera Bacteroides to Prevotella [5]
and less Firmicutes (phylum level) or to more Gammaproteobacteria
(class level) [6]. The ratio of Bacteroides to Prevotella at baseline

predicted dietary weight loss success after 24 weeks in an
intervention study in 80 overweight individuals [7]. Further, a one-
week dietary intervention trial in 20 individuals found that microbial
composition predicted glycemic response [8].
Human-to-mouse fecal transplant experiments further under-

line the causal role of specific microbiota to facilitate weight loss
[9], and human-to-human fecal microbiota transplantation (FMT)
experiments increased insulin sensitivity according to [10]. In a
recent human study, accompanied by mouse model data, an
individual’s microbiota profile, extracted from fecal samples
during periods of dietary weight loss, prevented weight regain
when transferred back to the same individuum orally, known as
autologuos FMT [11].
Mechanistic insights into how specific gut bacteria modulate

human eating behavior and weight status are still limited. The gut
microbiota is supposed to affect the host’s metabolism by altering
energy extraction from food, and by modulating dietary or host-
derived compounds that modify the metabolic pathways of the
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host [12]. For example, short-chain fatty acids (SCFA) are excreted
by certain gut bacteria as a result of carbohydrate fermentation,
and SCFA stimulate the secretion of anorexigenic hormones, such
as peptide YY (peptide tyrosine tyrosine or PYY) and glucagon-
like-peptide-1 (GLP-1) in the colon, which further signal to
hypothalamic nuclei as one mechanism of homeostatic regulation
[13]. SCFA can also cross the blood–brain barrier and act as
signaling molecules in the brain to directly modulate appetite and
food-decision making [1]. First interventional studies showed that
intake of butyrate (one type of SCFA) or the butyrate-producing
bacteria Akkermansia spp. exert beneficial effects on body weight
depending on treatment intention in humans [14] and on brain
functions in mice [15], including reduced food intake [16]. Notably,
specific pre-biotic nutrients, such as dietary fibers, are known to
nourish SCFA-producing bacteria in the gut, rendering diet a
potent modifier of gut–brain signaling [17].
In sum, the gut microbiome may influence feeding behavior, e.g.,

by modulating reward and homeostatic signaling [18, 19] and by
stimulating the vagal nerve [20], in particular in dysregulated
biological systems, such as in food addiction [21] or eating disorders
[2]. Yet, direct knowledge if specific genera are linked to eating
behavior via dietary intake and SCFA in humans is lacking. Here, we
asked whether gut microbial diversity and genera abundance relate
to eating behavior, and to SCFA metabolites in the colon (feces) and
in the periphery (blood) in a homogenous sample of young
overweight adults. In addition, we tested whether the abundance
of microbiota that related to eating behavior in that overweight
sample correlate with weight status, eating behavior, and treatment
success (i.e., achieved weight loss) in another sample, i.e., patients at
two years after bariatric surgery and control overweight/obese
patients.

METHODS
Samples characteristics and data collection
We included all participants with available microbiota datasets measured at a
cross-sectional timepoint from two studies. Sample 1 comprised 27 healthy
young overweight adults (9 F, 21–36 years, BMI 25–31 kg/m2) drawn from a
randomized clinical trial (Clinical Trials registration NCT03829189), where
baseline data was available from ongoing data collection until January 2021.
All participants were included if following a typical Western omnivorous diet
and thoroughly screened for habitual dietary patterns (exclusion criteria were
assessed via an interview at pre-screening included any sort of restrictive diet
(incl. vegan, vegetarian, gluten-free, lactose-free, food allergies), regular
excessive caffeine intake (more than 6 cups a day), regular alcohol intake
(>1.25 L beer/day or equivalent) or smoking >10 cigarettes/day). Estimated
nutrient intake represents a Western style omnivorous diet (10.4 ± 3.6 g/day/
1000 kcal), with lower than recommended fiber intake (intake recommenda-
tions by WHO and EU nutritional agencies state >25 g or 25–35 g of dietary
fiber per day are required to meet healthy intake levels). For further
information on dietary and coffee intake see SI (see Dietary Intake).
Sample 2 comprised 23 patients two years after Roux-en-Y gastric

bypass (RYGB) surgery (see below; “good responders“: n= 11 (7 F), 41–70
years, BMI 25–29 kg/m2; “bad responders”: n= 12 (9 F), 31–67 years, BMI
41–62 kg/m2), as well as age-, gender- and BMI-matched controls
(overweight: n= 8 (5 F), 41–58 years, BMI 25–29 kg/m2; obese: n= 9 (6 F),
26–70 years, BMI 41–48 kg/m2), drawn from an observational study where
data collection was completed (ethics proposal 027/17-ek). To compare
non-surgery but BMI-matched microbial diversity with post-surgery only
datapoints, body weight-matched control groups were recruited and
included for microbial analysis.
All participants donated feces (see SI) for microbiota analysis (Shannon

effective [22] and relative abundance of microbiota genera), underwent
anthropometric measurements, and filled in questionnaires to quantify
eating behavior traits. Also, data on dietary fiber intake, hunger ratings
after a standardized meal, and SCFA in blood and feces were available in
sample 1 (see below).

Microbiota assessment
To assess microbiota community structure we used 16 S rRNA gene
profiling of the fecal samples. Therefore, DNA was extracted and V3-V4

variable regions of the 16 S rRNA genes were amplified by PCR and a
library was constructed, followed by paired-end 2x250bp Illumina
sequencing. These analyses were done by GENEWIZ Germany GmbH,
Leipzig. Next, the inhouse Galaxy server using a pipeline implemented with
the DADA2 R package processed raw data in fastq format. For each sample,
paired-end reads were joined, low-quality reads were removed, reads were
corrected, chimeras removed, and Amplicon Sequence Variants (ASVs)
were obtained. Taxonomy was annotated to the ASVs using the RDP
database [23]. The read counts per ASV with taxonomic annotation were
normalized and relative abundances of each ASV and taxa were calculated
using the R scripts Rhea. Visualization of all library-indexed genera was
done as in [24] by inhouse written R-tools using ggplot2.

Eating behavior
To characterize eating behavior traits, questionnaires based on self-report
were used: the Three-Factor Eating Questionnaire (TFE-Q) (German version,
[25]) and the Eating Disorder Examination Questionnaire (EDE-Q) (German
version, [26]) as available for sample 1 and sample 2, respectively. The TFE-
Q assesses three domains of eating behavior (cognitive restraint,
disinhibition, hunger), and the EDE-Q covers the subscales dietary restraint,
eating concern, weight concern, and shape concern. Scoring was
performed according to the respective manuals.

Additional analyses in sample 1
From all measurements available in sample 1 in the context of the RCT (see
above), we additionally considered all available hunger ratings after a
standardized meal (3 out of 4 measures, 1 with missing data) and all
available dietary fiber intake data (from a quantitative food frequency
questionnaire, fiber in g/day and fiber per 1000 kcal). We further
considered anthropometric assessments to be of interest in this study
and limited those to two major health indicators, i.e., systolic blood
pressure (mean of three consecutive measurements) and relative body fat
(%) obtained from bioelectrical impedance analysis (see SI). Blood was
obtained in fasting state (12 ± 3 h fasted) and samples were centrifuged at
3500 revolutions per minute at 7 °C for 6 min. Serum was aliquoted within
1 h of obtainment. Processed aliquots were stored at −80 °C until data
analysis. For SCFA in blood and stool, analyzed according to [27], we
focused on three major and most abundant SCFAs out of eight measured,
i.e., acetate, butyrate, and propionate (see SI). All other measures were not
considered of interest to the current analyses.

Obesity surgery in sample 2
For sample 2, RYGB (see SI) patients were selected for microbiota analysis
based on their response to the surgical treatment. Specifically, RYGB
patients were identified from the database of the University of Leipzig if
their surgery dated back at least 2 years and all those were further divided
in percentiles according to pre-defined relative excessive weight loss (EWL)
thresholds defined more conservatively than previous literature (most
common <50% EWL at 18 months, according to [28]. This resulted in 23
RYGB patients good responders: sustained EWL > 70%, mean 93% ± 4 SD,
range 86–98%, n= 12; bad responders: sustained EWL < 40%, mean 20% ±
13 SD, range 3–35%, n= 11). Next, obese and overweight control patients
were selected from the database based on age, sex, and BMI to match
those two groups of RYGB patients. Afterwards, RYGB patients only filled in
a series of questionnaires, performed cognitive tests, and donated blood
for another study purpose; and fecal samples of all patients were analyzed.
From this dataset, we considered of interest to the current analysis the
following variables: weight loss after surgery (in kg and in BMI), all available
eating questionnaire data (four EDEQ scales, see above), and microbiota
genera abundances based on 16 S rRNA sequencing.

Statistical analysis
Correlational analysis. Relative taxa abundance (%) on the genera level
was used as primary variables of interest. Non-normally distributed
variables were log- or Tukey-transformed, so that skewness of <|1| was
reached (for details Supplementary Fig. 1). No observations were
eliminated, instead all cases with microbiota data were complete and
included. For the main analysis, 20 out of 121 genera were included as they
appeared in at least 80% of individuals [29] and fed into a correlation
matrix with all variables of interest in sample 1 (37 variables in total, see
above), i.e., Shannon index, 3 TFEQ traits, 3 hunger ratings, body fat,
systolic blood pressure, dietary fiber intake (g/day and g/1000 kcal), and 3
SCFA each in feces and blood, respectively. All values were FDR-corrected
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and statistical significance was set to p < 0.05. Those genera that were
significantly associated with eating behavior (TFEQ traits and/or hunger
ratings, p-FDR < 0.05) were then correlated with weight status and RYGB
treatment success in sample 2. Group differences across overweight,
obese, good and bad RYGB responders were tested with non-parametric
Kruskal–Wallis tests. Further correlations were tested with Pearson’s
correlation coefficient r for normally distributed variables or with Spear-
man’s rho for non-normally distributed variables. Explorative analysis
considerations were addressed according to [30] (see Additional SI).
To further investigate, if the interplay of correlated genera—rather as a

holobiont than individually—is determinative of the observed relations,
the relation between correlated to non-correlated genera was computed
by three composite scores (1)-(3).

positive sumscore %ð Þ ¼ relative abundanceðAlistipesþ Blautiaþ Clostridium XVIII

þGemmiger þ Roseburia þ Ruminococcusþ StreptococcusÞ
(1)

negative sumscoreð%Þ ¼ relative abundanceðClostridium IV þ Clostridium XIVb

þ Collinsella þ Fusicatenibacter þ ParabacteroidesÞ
(2)

composite
X

score %ð Þ ¼ 1ð Þ % 2ð Þ (3)

Mediation analysis. Using simple mediation analysis using medmod
(https://cran.r-project.org/web/packages/medmod/index.html) in RStudio
version 3.6.1, we checked for statistical mediation in sample 1 for variables
showing bivariate correlations in the following paths:

i. fiber—> correlated genera or sumscores—> eating behavior (TFEQ,
hunger ratings)

ii. eating behavior (TFEQ, hunger ratings) —> fiber —> correlated
genera or sumscores

iii. correlated genera or sumscores —> SCFA — > eating behavior
(TFEQ, hunger ratings)

Significance was set to p < 0.05, and the main analysis for sample 1 was
corrected for multiple testing using the false-detection rate (FDR)-
correction. All analyses were performed in RStudio version 3.6.1.

RESULTS
Characteristics of sample 1 and 2 are listed below (see Tables 1–2).
Data from post-RYGB patients was on average collected 4.7 ± 1.4
years after surgery. Eating behavior traits varied across both
samples, and in sample 2, restrained eating and shape/weight
concerns differed between those that achieved long-term

excessive weight loss after bariatric surgery compared to those
that did not (good vs. bad responders, all W > 58.5, p < 0.001,
Table 2, Supplementary Fig. 2).
Overall microbiota diversity at the phylum level was relatively

comparable across participants of samples 1 and 2 except higher
ratio of Firmicutes to Bacteroidetes in sample 1, and Prevotella-
ceae and Fusobacteriaceae families were more abundant in
patients after RYGB surgery (Fig. 1, Supplementary Figs. 3–4, see SI
for details). Additionally, we tested for sex/gender-specific
differences in alpha diversity in sample 1 and found none (sample
1: male (n= 18) 111 ± 15, female (n= 7) 110 ± 13, t(13)=−0.08,
p < 0.94). Due to limited sample size we refrained from further sex-
segregated analyses, yet we encourage future meta-analyses to
include our datasets (see open data).

Microbiota, eating behavior traits, and health indicators in
overweight adults
In sample 1, effective Shannon index as a measure of alpha
diversity was included into the main correlation analysis. Almost
no correlation with eating behavior was significant, except that
higher alpha diversity was significantly associated with 10 min-
postprandial hunger (r= 0.59, p= 0.005). Further, higher relative
abundance of Collinsella (phylum Actinobacteria), Clostridium IV
and XIVb, Fusicatenibacter (all three phylum Firmicutes), and
Parabacteroides (phylum Bacteroidetes) were related to less
healthy eating behavior (higher TFEQ scores and/or higher hunger
ratings, all 0.61 < |r | > 0.42, p-FDR < 0.05, Fig. 2A). Contrastingly,
higher relative abundance of the microbial genera Alistipes
(phylum Bacteroidetes), Blautia, Clostridium XVIII, Gemmiger,
Roseburia, Ruminococcus, and Streptococcus (all phylum Firmicutes)
correlated with healthier eating behavior (all 0.76 < |r | > 0.42, p-
FDR < 0.05, Fig. 2B, Supplementary Fig. 5).
Further, Collinsella abundance significantly correlated with higher

body fat mass (sex-standardized, r= 0.61, p < 0.001, Fig. 2C).
Streptococcus abundance was significantly correlated with lower
mean systolic blood pressure (r=−0.70, p-FDR < 0.001, Fig. 2D).

Relation to dietary fiber intake and SCFA
Out of the 12 genera that were significantly associated with eating
behavior (from now on called “(inversely) health-related” genera),
three were associated with lower (Collinsella and Parabacteroides)
or higher (Clostridium XVIII) dietary fiber intake (all 0.73 < |r | > 0.49,
p-FDR < 0.05, Fig. 3A–C). Moreover, higher dietary fiber intake
per se was significantly associated with lower disinhibited eating

Table 1. Descriptives for sample 1.

Sample 1

n, sex/gender (F/M) 27 (9 F/18M)

mean SD minimum maximum

age (years) 28.4 4.5 21 36

education (SES index) (score from 3 to 21) (four NAs) 15.0 2.8 8.2 19.2

BMI (kg/m2) 27.7 1.7 25.0 31.2

TFEQ cognitive restraint (sumscore) 5.6 4.1 0 13

TFEQ disinhibition (sumscore) 6.0 2.1 2 11

TFEQ hunger (sumscore) 5.0 3.4 0 12

time fasted (h) 12.5 2.7 6 18

hunger 15min postprandial (1–8 scale) 4.2 1.7 1 7

hunger 40min postprandial (1–8 scale) 5.3 1.3 2 7

hunger 65min postprandial (1–8 scale) 5.3 1.4 2 8

mean systolic blood pressure (mmHg) 128.0 10.9 107.0 152.7

% fat mass (female, male) 34.7 (F) 22.8 (M) 4.2 (F) 5.2 (M) 27.3 (F) 7.6 (M) 39.8 (F) 30.7 (M)

habitual fiber intake / 1000 kcal / d (g) 10.4 3.6 4.4 20.0
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(r=− 0.58, p-FDR < 0.01) and lower body fat mass (r=−0.75, p-
FDR < 0.0001, Fig. 3D–E).
SCFA concentrations in feces were highly variable and up to

~1000 times higher compared to serum for all three measured
SCFA (all t(24) > 11.6, p < 0.001). Serum acetate was 2.5 times
higher compared to butyrate and propionate in serum (Supple-
mentary Table 1).
We observed that higher abundance of some of the inversely

health-related genera correlated with higher levels of different
SCFA in feces and serum (all r > 0.50, p-FDR < 0.01). In addition,
most health-related genera correlated with some feces and serum
SCFA markers, however revealing both positive and negative
associations (only those associated with eating behavior were
considered, all 0.65 < |r | > 0.44, p-FDR < 0.05, Supplementary Fig.
6). Note, that some genera showed differential correlations within
the different SCFA, e.g., higher Alistipes correlated with higher
acetate in both feces and serum and with fecal butyrate, but with
lower fecal propionate. Moreover, considering the inversely
health-related genera, Fusicatenibacter and Parabacteroides corre-
lated significantly with higher fecal concentrations of propionate
and acetate, respectively.
Also, higher fecal propionate levels correlated significantly with

higher cognitive restraint eating (r= 0.50, p-FDR= 0.014, Fig. 4A).
Higher fecal acetate, butyrate and propionate levels correlated
with higher hunger ratings (all r > 0.45, all p-FDR < 0.04), but also
serum propionate with hunger (r= 0.45, p-FDR= 0.03). Moreover,
serum acetate and butyrate were inversely associated with body
fat mass (all r >−0.43, all p-FDR < 0.04) (Fig. 4B–C). Notably, serum
levels did not correlate with fecal SCFA concentrations (all r <|
0.17 | , all p-uncorr <0.86, Supplementary Fig. 7).

Genera sumscore and mediation analyses
The negative sumscore of the five inversely health-related genera
abundances resulted in significant correlations for two of the
eating traits (cognitive restraint r= 0.59, p-uncorr= 0.001; disin-
hibition r= 0.65, p-uncorr <0.001, Fig. 5A–B). The positive sum-
score of the seven health-related genera abundances showed no
significant associations (all p-uncorr <0.95, Supplementary Fig. 8).
Neither sumscore correlated with fecal or serum SCFA levels.
Exploratory mediation path analyses of the proposed models

did not show statistically significant mediating paths for
differences in diet, eating behavior or hunger ratings through
differences in Parabacteroides or positive/negative sumscores
(Supplementary Tables 2–3, Supplementary Fig. 9). Considering
SCFA, similar results emerged, except for acetate: here, while the
direct effect c’ did not reach significance (ß=−0.3, p= 0.13),
higher Parabacteroides abundance was linked with higher post-
prandial hunger ratings through higher fecal acetate levels
(indirect effect, a*b, ß= 0.36, 95% CI [0.05 0.66], p= 0.02,
Supplementary Table 4).
Exploratory analysis based on reviewer suggestions showed

that, when adjusting the correlational analysis for body fat mass,
associations with inversely health-related bacterial genera
remained largely significant (TFEQ and Clostridum XIVb, Collinsella,
Fusicatenibacter, Parabacteroides, all p < 0.05), yet positively health-
related correlations do not (only for hunger ratings with
Clostridium XVIII and Roseburia, all p < 0.05) (relating to Fig. 2, for
details see SI Table 5). For fiber intake associations, only the
negative association with Collinsella abundance and TFEQ disin-
hibition scores remain significant (relating to Fig. 3, for details see
SI Table 5). The association between propionate levels in feces and
TFEQ cognitive restraint when adjusted for body fat mass is no
longer significant (relating to Fig. 4).

Microbiota genera differences between overweight, obese,
and surgery groups
In sample 2, we aimed to confirm links between the genera of
interest from sample 1 and treatment success and eatingTa
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behavior. Two of the five inversely health-related genera were
significantly different between groups (all H(3) >9.5, p < 0.023)
with lower relative abundance of Parabacteroides in good vs. bad
responders (H(1)= 4.9, p= 0.027) Fig. 6A). In addition, six of the
seven health-related genera were more abundant in the over-
weight group (all H(3) >8.3, p < 0.036, Fig. 6B), but did not differ in
the good vs. bad RYGB responders.
Considering the sumscores, we found that both sumscores

differed between groups (Fig. 6C–D, all H(3)>11.3, p < 0.01) with
the negative sumscore showing higher values in the bad vs. good
RYGB responders (H(1)= 2.1, p= 0.036). In addition, both the
positive (n.s.; H(1)= 1.9, p= 0.05) and the negative sumscore
(H(1)= 2.02, p= 0.043) showed higher values in overweight vs.
obese participants.
Bad vs. good RYGB responders showed higher eating restraint

scores (H= 5.3, p= 0.022, Supplementary Fig. 1), and higher
scores correlated with higher Parabacteroides abundance in these
groups (r= 0.44, p= 0.039, Fig. 6E). Moreover, lower Parabacter-
oides abundance correlated significantly with higher weight loss
after surgery (r= 0.49, p= 0.019, n= 20, Fig. 6E). The negative
sumscore correlated with unhealthier eating behavior (mean of all
EDEQ subscales, r= 0.47, p= 0.027; EDEQ restraint, r= 0.49, p=
0.022) and with less weight loss after surgery (Fig. 6E, weight, r=
0.53, p= 0.011, BMI, r= 0.53, p= 0.011).

Potential confounders of the gut microbiome
Besides body fat mass, several confounding factors have been
proposed to influence gut microbiota, such as time of day of stool
collection [31], seasonality [32], coffee consumption [33], and
others. Note that statistical tests showed no significant associa-
tions of the above mentioned confounders on alpha diversity in

our analysis (Table 3). Influences of medication was not tested
further, since medical products varied largely in sample 1 and was
quite similar across patient groups in sample 2.

DISCUSSION
Combining data from two human cross-sectional datasets, this
exploratory analysis finds two groups of microbiota genera that
were either positively or inversely associated with both healthier
eating behavior and anthropometrics (1) in a deeply phenotyped
sample of young overweight adults and (2) when comparing
microbiota observed in (1) in patients showing a good or bad
response two years after bariatric surgery with matched controls,
respectively. More specifically, in young overweight adults, 7
bacterial genera, i.e., Alistipes, Blautia, Clostridium XVIII, Gemmiger,
Roseburia, Ruminococcus, and Streptococcus, correlated with
healthier eating behavior traits and lower subjective hunger
ratings, indicating potential benefits for the host metabolism,
while 5 bacterial genera, i.e., Clostridum IV, Clostridium XIVb,
Collinsella, Fusicatenibacter, and Parabacteroides, correlated with
unhealthier eating traits and higher subjective hunger ratings.
Collinsella was further related to higher body fat mass and
Streptococcus to lower systolic blood pressure. The health-related
bacterial genera were also more abundant in the overweight good
responder controls, compared to the obese bad responder
controls and RYGB-operated patients, while the inversely health-
related genera showed a less clear distribution across groups, with
Parabacteroides being significantly less abundant in good vs. bad
RYGB-operated patients. Moreover, relative abundance of Para-
bacteroides as well as a composite score of all inversely correlated
genera, were associated with higher eating restraint and with

Fig. 1 Microbiota profiling of two cross-sectional cohorts. A Relative abundances of phyla per subject across sample of young, overweight
adults (sample 1). Sorted by Firmicutes abundance. B Relative abundances of family per subject across sample of young, overweight adults
(sample 1). C Relative abundances of phyla per group for overweight and obese adults and good and bad responders after RYGB (sample 2).
Colors are as in panel A. D Relative abundances of family per group for overweight and obese adults and good and bad responders after RYGB
(sample 2). Colors are as in panel B.
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lower post-operative weight loss across both RYGB groups.
Considering diet and SCFA-related pathways, we observed that
higher dietary fiber intake in overweight adults correlated with
more abundant Clostridium XVIII, and less abundant Collinsella and
Parabacteroides, as well as with healthier eating behavior and
anthropometrics. While SCFA showed a rather mixed pattern of
correlations with the different markers, Fusicatenibacter and
Parabacteroides abundance correlated with higher fecal propio-
nate and acetate, respectively, that again correlated with elevated
hunger. Contrastingly, higher acetate and butyrate in serum
correlated with lower fat mass, indicating a possible inverse
association of acetate in feces and serum with respect to health
indicators. Together, these results indicate that presumably
beneficial and unfavorable microbiota genera relate to eating
behavior and weight status, and that dietary fiber intake and SCFA
metabolism may modify these relationships.

Bacterial genera
Due to the lack of associations with alpha diversity, except for
subjective hunger, it remains difficult to draw strong conclusions
on relations of eating behavior and microbial diversity, measured
with Shannon index, based on the present BMI-defined over-
weight sample. The health-related microbiota group is comprised
of bacterial genera that have been described as beneficial for the
host in previous literature. For example, Alistipes and Blautia were
found to produce SCFA [34, 35]. Similarily, Gemmiger, Roseburia,
and Ruminococcus belong to the families of Ruminococcaceae or
Lachnospiraceae, which share a common role as active plant
degraders [36]. These positive metabolic effects on the host could
eventually contribute to improved adiposity control, as e.g., higher
Blautia was correlated to lower body fat [37], Roseburia was linked
to lower blood glucose and Ruminococcus to higher weight loss in
mice after vertical sleeve gastrectomy via regulation of nuclear

Fig. 2 Pearson’s correlations between eating behavior traits (TFEQ and hunger ratings) or health indicators and bacterial genera in
overweight adults (all | r | > 0.42, all p-FDR < 0.05; sample 1). A inversely health-related genera (blue), B health-related genera (yellow),
C Collinsella and body fat mass (black), and D Streptococcus and mean systolic blood pressure (black).
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receptor binding of bile acids [38]. A microbial transfer study from
human to mice showed obesity-promoting effects of the species
C. ramosum, which is part of Clostridium XVIII [39]. However,
studies on the genera Clostridium XVIII and Streptococcus in
relation to health are scarce. Clostridia are known to be key
commensals for gut homeostasis [40], but classification of the
genus Clostridium remains challenging due to the high hetero-
geneity of the listed species [41]. Also, there are currently
50 species identified in the genus Streptococcus alone, rendering
different functionality in these genera likely. Yet, we found that
Clostridium XVIII abundance related to higher dietary fiber intake,
and Streptococcus abundance to lower blood pressure. Indeed,
fiber intake related to healthy eating behavior and lower body fat
mass in overweight young adults in the present analyses may
point towards rather beneficial fiber-correlating Clostridium XVIII
and Streptococcus genera species that underly those associations.
Moreover, these results underline the potential impact of a fiber-
rich diet for health indicators. Due to the exclusive occurrence of
fiber in plants, fiber-rich diets are oftentimes attributed to plant-
based (vegetarian or vegan) diets, and plant-based diets have
been shown extensively to be beneficial for weight status, gut,
and overall health [42, 43].
Considering the inversely health-related group of microbiota,

some genera were described to include pathogens, e.g., in
Clostridium XIVb the species C. piliforme, the causative agent of
Tyzzer’s disease [41] and Parabacteroides as an opportunistic
pathogen in infectious diseases [44]. Of note, in the Parabacter-
oides genera, also beneficial species, e.g., P. distasonis, have been
described [45]. The anaerobic Collinsella colonizes mucosal
surfaces and has recently been reported to degrade potentially
toxic food contaminants found in processed foods [46]. While this
could be beneficial for the host, unhealthier eating behaviors
(such as intake of processed food) and higher body weight could
then likely be related to higher abundances of Collinsella. Likewise,
studies showed that Collinsella linked to less dietary fiber intake,
which is in line with our results in overweight adults, and higher
weight loss in cross-sectional [47] and dietary intervention studies
[48]. Fusicatenibacter, including the species F. saccharivorans, are
strictly anaerobic sugar fermenters, again linking to unhealthier
eating behavior and obesity [49]. The genus Clostridum IV however
has rather been reported as beneficial SCFA producers, e.g., the
species Faecalibacterium prausnitzii (F. prausnitzii), which play a

noticeable role in intestinal homeostasis [50]. Yet again, those
genera comprise many different species and it can also be
speculated that some bacteria species or genera underlying the
observed correlations could have likely been taxonomically
misplaced [41]. Taken together, the negatively correlated micro-
biota genera seem to consist on the one hand of pathogens,
indicative of a rather pro-inflammatory milieu in participants with
higher weight status, which is well in line with our findings
showing that higher Parabacteroides correlated with unhealthier
eating traits and poorer weight loss maintenance in RYGB
patients. On the other hand, those negatively correlated genera
are comprised of those bacteria that metabolize processed food
and sugars, again indicative of higher weight and unhealthy
eating behavior. Future studies now need to integrate microbiota
data at the species level and randomized interventional trials are
required to eventually understand cause and effect of these eating
behavior–microbiota–diet interrelations.

SCFA metabolism
We could not establish reliable links between serum and fecal
concentrations of those metabolites. The overall weak relationship
might be explained by rapid metabolization of SCFAs, as for
example butyrate is rapidly absorbed by the gut mucosa and
reaches blood circulation [51], therefore, fecal levels of butyrate
may not directly relate to butyrate-producing bacteria abundance
nor to serum levels of butyrate. In addition, biosamples of serum
and feces were not collected in a time-locked way, therefore a
time difference of hours to days might have blurred potential
(inverse) correlations. Indeed, it has been shown, that fecal SCFA
levels decrease throughout the day due to metabolization and
that overnight-fast duration influenced these results [52].
Still, we found that higher fecal SCFA levels (i.e., acetate,

butyrate, and propionate) linked to higher subjective hunger
ratings and also to higher cognitive restraint (i.e., propionate),
whereas lower acetate and butyrate in serum correlated with
higher fat mass. Statistical path analyses proposed that higher
Parabacteroides abundance link to higher hunger through higher
fecal acetate. Bearing in mind that higher fecal SCFA levels may
indicate less efficient absorption in the gut, leading to lower SCFA
availability in serum [53], these findings are somewhat in line with
studies showing reduced appetite and less weight gain after
acetate intake [1, 54]. Note however, that we did not adjust

Fig. 3 Habitual dietary fiber intake is associated with bacterial genera, body fat mass and eating traits. Pearson’s correlations shown for
inversely health-related genera (blue) (A, B), health-related genera (yellow) (C), body fat mass (black) (D), and eating trait disinhibition (TFEQ)
(black) (E) (Pearson’s correlation all 0.75 < |r | > 0.58, all p-FDR < 0.05; sample 1 n= 27).
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mediation statistics for multiple testing, rendering false positives
likely. In addition, it has been discussed that only a minimal
fraction of the colon-derived SCFA directly reaches the brain.
Instead, more downstream targets of SCFA signaling might be
more important for gut–brain communication, such as SCFA-
induced release of GLP-1 and PYY at the gut epithelium,
modulation of liver metabolism or indirect signaling via the vagus
nerve [1]. Future studies could help to further disentangle the
different mechanisms at play by assessing further blood-, tissue-
or imaging-based biomarkers of these pathways.
In an exploratory analysis, we found that body fat mass explains

some of the variance in the observed relationships, especially in
those with health-related commensals, and less with inversely
health-related ones. Although BMI spanned within a very
homogenous overweight status group (25–30 kg/m2), body fat
mass was quite variable (7–40%) in sample 1 and showed a
significant influence of microbiome–behavior associations. This
may hint to body fat as an important determinant of gut–behavior
relations [55] that should receive further attention when designing
dietary interventions targeting the gut microbiome.
Besides body fat, exploratory analyses showed no effects of sex/

gender or common lifestyle factors on alpha diversity, yet these

findings remain speculative because of small size and the cross-
sectional nature of our analysis, therefore we cannot rule out that
these or other factors such as medication might have confounded
our analyses. Indeed, some studies reported on gut-modulating
effects of nutrient supplementation such as in vitamin D [56] or
vitamin B12 [57]. We recommend to document and report
potential confounders in all microbiome analyses and encourage
future data pooling and meta-analyses including our datasets (see
open data).

Limitations
Firstly, all analyses are based on cross-sectional data, therefore no
conclusions about causal relationships can be drawn. We
performed exploratory analyses centered around core hypotheses
with the aim to gain more specific testable hypotheses for
upcoming intervention trials. In addition, both samples are limited
by size, especially with regard to the larger number of variables of
interest. Due to these constraints, more elaborate statistical
analyses (such as structural equation modeling) could not be
performed. A major strength of this study is the inclusion of two
independent samples integrating next-generation sequencing
and SCFA metabolomics with psychological markers in well-

Fig. 4 SCFA levels in feces and serum are associated with eating traits and body fat mass in overweight adults (sample 1). Pearson’s
correlations shown for fecal SCFA levels and eating trait cognitive restraint (TFEQ) (r= 0.50, p-FDR= 0.014) (A) and serum SCFA levels with
body fat mass for acetate (B) and butyrate (C) (all r >−0.43, all p-FDR < 0.04).

Fig. 5 Sumscore of inversely health-related genera is positively associated with eating traits (TFEQ). Pearson’s correlations shown for
microbial genera abundance sumscore for inversely health-related genera with respect to eating behavior outcomes from TFEQ and hunger
ratings shown for A) cognitive restraint (r= 0.59, p-uncorr= 0.001) B) disinhibition (r= 0.65, p-uncorr < 0.001) C) hunger score D) 10 min-
postprandial hunger E) 40 min-postprandial hunger and F) 65 min-postprandial hunger. Data from sample 1, all p-uncorrected.

E. Medawar et al.

8

Translational Psychiatry ���������(2021)�11:500�



 72 

characterized adults at risk for future weight gain that yielded
similar associations of eating behavior with gut microbiota at the
genera level.

CONCLUSION
The combination of data from cross-sectional samples of over-
weight, obese, and post-bariatric surgery individuals showed
multivariate associations between specific bacterial gut genera,
particularly beneficial SCFA-producing genera and presumably
unfavorable pathogens or sugar-/processed-food digesting bac-
teria, with anthropometrics, eating traits, and dietary fiber intake.
While speculative concerning causality, our results propose key
microbiota candidates for diet–gut–brain–behavior interactions in
humans and may help to develop novel hypotheses how to
prevent and treat unhealthy food craving through microbiotal
modulation of the gut–brain axis. Longitudinal and interventional
studies integrating metagenomic approaches and functional

pathway analysis are needed to disentangle correlation from
causality and to further characterize eating behavior-relevant
microbiota genera at the species level.
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Abstract: Restricting animal-based products from diet may exert beneficial e↵ects on weight status;
however, less is known about such a diet and emotional health. Moreover, personality traits,
for example high neuroticism, may contribute to restrictive eating habits and potentially confound
diet-health associations. We aim to systematically assess if restrictive dietary intake of animal-based
products relates to lower weight and higher depressive symptoms, and if di↵erences in personality
traits play a significant role. Cross-sectional data from the baseline LIFE-Adult study were collected
from 2011–2014 in Leipzig, Germany (n = 8943). Main outcomes of interest were dietary frequency of
animal-derived products in the last year measured using a Food Frequency Questionnaire (FFQ),
body-mass-index (BMI) (kg/m2), and the Center of Epidemiological Studies Depression Scale (CES-D).
Personality traits were assessed in a subsample of n = 7906 using the Five Factor Inventory (NEO-FFI).
Higher restriction of animal-based product intake was associated with a lower BMI, but not with
depression scores. Personality, i.e., lower extraversion, was related to lower frequency of animal
product intake. Moreover, personality traits were significantly associated with depressive symptoms,
i.e., higher neuroticism, lower extraversion, lower agreeableness, lower conscientiousness, and with
higher BMI. These findings encourage future longitudinal studies to test the e�cacy of restricting
animal-based products as a preventive and therapeutic strategy for overweight and obesity.

Keywords: body weight; diet; plant-based; meat; depression; personality; population-based;
cross-sectional

1. Introduction

Current debates assign animal product-restrictive eating patterns, such as vegetarian and vegan,
either health benefits or risks [1]. For example, epidemiological studies such as the Adventist studies
(n = 22,000–96,000) reported lower all-cause mortality rates and lower prevalence of cardiovascular
diseases in participants with plant-based eating habits compared to those with omnivorous diets [2,3].
Other studies like the EPIC-Oxford study (n~64,000) [4] and the 45 and “Up Study” (n~267,000) [5],
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however, showed no e↵ect of a plant-based diet on mortality rate. An 18-year follow-up analysis of the
EPIC-Oxford study showed, on the one hand, a decrease of ischaemic heart disease prevalence, and,
on the other hand, an increased odds ratio for total stroke, in fish-eaters and vegetarians compared
to meat-eaters [6]. Intervention studies in small to moderate sample sizes (n~100) indicated that
medium-term vegan diets (12–74 weeks), compared to omnivorous diets, lead to weight loss and to a
decrease in type 2 diabetes symptoms, even when caloric intake was comparably low between the
diets [7–9].

While the exact mechanisms mediating these e↵ects are far from fully understood, improved energy
metabolism, reductions of systemic low-grade inflammation and changes in microbiome-gut-brain
signaling might play a pivotal role [1,10–14].

Further, individuals showing restrictive eating patterns, i.e., excluding animal-derived food, may
be more or less prone to develop mood disturbances compared to those with omnivorous eating styles:
large epidemiological studies (n= 6422–90,380) showed higher depressive symptoms in vegetarians and
vegans [15–17] and in those with orthorexic behaviour [18]. Yet other (smaller) cross-sectional (n = 620)
and interventional (n = 39–291) studies proposed a positive e↵ect of plant-based diets on well-being
and subclinical depression scores [19–22]. Recently, it has been suggested that, not meat-restriction per
se, but the number of excluded food groups predicts higher depressive scores [17].

In addition, weight changes relate to depressive symptoms [23], and obesity and depression might
share genetic pathways and personality traits, in particular neuroticism [24]. For example, studies
showed that higher neuroticism and lower conscientiousness correlate with a higher BMI and more
depressive symptoms [25,26]. Moreover, di↵erences in personality traits and in demographic factors
such as age, sex and education have been linked to more or less restrictive lifestyle habits, including
diet [27–29].

Taken together, these factors likely introduce confounding in studies assessing the relationship
between diet, weight status and depressive symptoms separately. However, previous studies have
not always accounted for these complex dependencies, rendering a definitive conclusion di�cult
as to whether animal product-restrictive eating habits convey health benefits or risks. We therefore
aimed to systematically determine the interplay between animal-restrictive vs. omnivorous dietary
habits (measured on a continuum as frequency of animal-based food intake), weight status, depressive
symptoms and personality traits in a large population-based sample of adults in Germany.

We hypothesized that: (1) higher restriction of animal-based products is associated with lower BMI
(kg/m2), even when accounting for potential confounding factors; (2) higher restriction of animal-based
products is associated with certain personality traits, measured using the Five-Factor Inventory
(NEO-FFI); (3) higher restriction of animal-based products is associated with higher depressive
symptoms scores (measured using CES-D), yet the association may attenuate when taking di↵erences
in demographics and personality traits into account.

2. Materials and Methods

All analyses and hypotheses have been preregistered in the Open Science Framework (OSF) at
https://osf.io/4w69q. Participants were drawn from the population-based Leipzig Research Centre for
Civilization Diseases (LIFE)-Adult cohort, which aims to explore causes and developments of common
civilization diseases such as obesity, depression and dementia [28] (Figure 1). Briefly, n > 9500 adult
participants (“Adult Baseline”) were randomly selected based on sex and year of birth (age range
18–80 y, with a main proportion focus between 40–80 y), from the city registry of Leipzig, a major city
with 550,000 inhabitants in the east of Germany. Additional volunteers (n > 900, randomly recruited
from the city registry and from local databases, “Adult Baseline Plus”) were included for periods
of feasibility testing, piloting and finalization. Data collection was conducted from August 2011 to
November 2014 at a single site in cooperation of the Faculty of Medicine, Leipzig University and the Max
Planck Institute for Human Cognitive and Brain Sciences. All participants underwent anthropometric
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measurements and answered extensive questionnaires regarding dietary habits, depressive mood and
personality (see below for details).

Figure 1. Flowchart of sample selection for sample 1 and sample 2. Abbreviations: BMI=Body-Mass-Index,
CES-D = Center of Epidemiological Studies Depression Scale, FFQ = Food Frequency Questionnaire,
NEOFFI=NEO Five-Factor-Inventory.

2.1. Inclusion Criteria

The initial dataset consisted of n = 10,083 participants. Subjects were included in the analysis
based on standardized rules, if valid and complete measures of age, sex, education, BMI, CES-D and
FFQ were available, resulting in a sample of n = 8943 (sample 1) and a subsample with additionally
available personality trait measures of n = 7906 (sample 2, Figure 1). Note that results from sample 2
may slightly deviate from the previously reported pilot analyses in the OSF registration due to partially
non-overlapping samples and an extension to a personality questionnaire that was widely available in
the dataset.

2.2. Ethics

The institutional ethics board of the Medical Faculty of the University of Leipzig raised no
concerns regarding the study protocol and all participants provided written informed consent.
Code described in the manuscript will be made publicly and freely available without restriction at
https://osf.io/m7hxk/?view_only=91863f44bae44371a1317072334df9fd.

2.3. Demographics

Education levels were computed according to Comparative Analysis of Social Mobility in Industrial
Nations levels (CASMIN) [30] into three levels (low, middle, and high).

2.4. Anthropometry

Body weight was measured with scale SECA 701, height was measured with height rod SECA
220 (SECA GmbH & Co. KG, Hamburg, Germany). Body weight (kg) and body height (m) were used
to calculate body-mass-index (BMI) (kg/m2). For additional analyses WHO classification for obesity
was used: underweight < 18.5 kg/m2, normal-weight >= 18.5 and < 25 kg/m2, overweight >= 25 and
< 30 kg/m2, obese >= 30 kg/m2.
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2.5. Personality

Personality traits were measured with the German version of the Big Five via Short Forms
(16-Adjective Measure) [31]; subscales were computed for Neuroticism, Extraversion, Openness,
Agreeableness and Conscientiousness by building summed scores according to the test’s manual
(higher scores indicate more pronounced traits, lower scores indicate less pronounced traits). In a
subsample, personality traits were measured with the German version of the NEOFFI-30 [32,33].

2.6. Depressive Scores

Depressive scores (self-reported) were assessed by the Centre of Epidemiologic Studies-Depression
(CES-D) scale [34]. Total CES-D score was calculated as a sum of responses to all 20 questions, with higher
scores indicating more diverse and/or more frequent depressive symptoms.

2.7. Dietary Restriction Scores (DRS)

Food group items were taken from a questionnaire asking for self-reported food intake frequency
over the last 12 months. A composite score for the restriction of animal-derived food items was
calculated (Figure 2), including nine questions regarding the following food groups: meat, processed
meat and cold cuts, fish, eggs, dairy (yoghurt and cream cheese), cheese, milk and butter (animal DRS).
Answers ranged from multiple times daily (1 per item; 9 for summed score), daily/(almost) daily,
multiple times a week, weekly, 2–3 times monthly, 1 or less a month to (almost) never (7 per item;
63 for summed score). The higher the score, the lower the frequency of consumption of animal-based
products. Light products were recoded from 1–5 to 1–7, and either the normal or the light product
was chosen for scoring depending on higher frequency; if both were equally frequent, the normal
item was chosen (applicable for processed meat/cold cuts, dairy, cheese, butter and milk). Measures
were ordinal, but for analysis purposes treated as linear, which is a common procedure for scoring
lifestyle questionnaire data [35,36] and has been shown to perform robustly in parametric analyses [37].
Note that the questionnaire did not include an option such as “I prefer not to answer” or “I don’t
know”. Missing values were replaced by the population mean in line with recommendation to use
imputation for missing values in nutritional epidemiology [38]. Subjects with >20% of missing answers
out of the 33 food items (excl. drink items) were excluded from the analysis (code and supplementary
info available here (https://osf.io/m7hxk/?view_only=91863f44bae44371a1317072334df9fd).

To further investigate the difference between leaving out primary (meat, bone, and marrow,
representing meat-restrictive diets) and/or secondary (stemming from animal labor, e.g., milk, representing
vegetarian diets) animal products from the diet, we further tested whether potential associations were
specific to either food groups by computing two additional scores: (a) primary DRS and (b) secondary
DRS (Table S1).

An additional score represents the number of restricted food items (adapted from [17] by counting
all (almost) never of 33 items in the FFQ (excluding drinks and light products) (score min. 0 to max. 33)
within the last 12 months (5.1 ± 2.9 items (mean ± SD), range 0–19) (overall DRS).

All computed scores were normally distributed (skewness < 1.0, kurtosis <= 2.0) (Figure S1).
Moderate positive correlations were observed between meat and cold cuts (⇢ = 0.46), processed meat
and meat (⇢ = 0.26), processed meat and cold cuts (⇢ = 0.22), dairy and cheese (⇢ = 0.42), and dairy and
milk (⇢ = 0.28) consumption (Figure S2). A correlation matrix of all key variables of interest, including
restrictive dietary patterns, BMI, depressive symptoms and personality traits is available (Figure S3).
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Figure 2. Concept of dietary restriction score (DRS) based on the frequency of consumption of animal-based
products over the last 12 months based on nine items from the FFQ. Copyright icons: all icons by Smashicons.

2.8. Statistical Models

The main analysis included linear regression models to examine the association of animal DRS
and BMI (model 1), depressive symptoms (model 3) and personality traits in a multivariate analysis of
covariance (MANCOVA) (model 2). More specifically, model 1 tested whether animal DRS predicted
BMI, adjusting for age, sex and education. Model 2 tested whether animal DRS (factor) was associated
with the di↵erent personality traits (five subscales of the NEO-FFI as dependent variables), accounting
for age, sex and education (covariates). Model 3 tested whether animal DRS predicted CES-D when
accounting for age, sex and education; and, additionally, accounted for personality factors and
BMI. All variables were normally distributed (skewness < |1.06|, kurtosis < |2.08|), personality traits
(skewness < |1.05|, kurtosis < |3.2|), except for CES-D (skewness 1.4, kurtosis = 3.3), which was therefore
log-transformed (log 10(CES-D+1). Analyses were computed in R version 3.6.1 using lm, lm.beta and
ggplot2 for visualization. Statistical significance was set at alpha = 0.05/3 = 0.015 in the main analyses
to adjust for multiple testing with the Bonferroni method and at p < 0.05 in all additional analyses.

3. Results

We included 8943 subjects for analyses regarding diet, BMI and depressive symptoms (see Table 1
for demographics), and 7906 participants in sample 2 for the subsample analysis additionally
investigating personality traits (see Table 2). Due to the focus on the age range between 40–80 years
in the selection of participants drawn from the city registry [28], the studied sample was on average
middle-aged (mean age 57 y) and showed a skewed adult age distribution to the right. In addition,
the study included slightly more women than men (4609F, 4334M) and a very wide BMI range
(16–57 kg/m2, on average 27.3 kg/m2). About 2% of the sample (n = 237) reported to have adopted
an exclusively vegetarian diet at least once throughout their life, and about 5% (n = 547) a mainly
vegetarian diet.
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Table 1. Demographic characteristics for sample 1 and sample 2.

Age
(Years) Sex Education

(CASMIN Levels)
Animal DRS

(9–63) BMI (kg/m2) CES-D
(0–60)

Sample 1
(n = 8943)

mean 56.6 8943 2.28 31.53 27.25 10.69
(18–82) (4609F) (1–3) (14–63) (16.2–57.3) (0–53)

SD 12.5 - 0.6 5.1 4.9 6.9

Sample 2
(n = 7906)

mean 55.7 7906 2.31 31.55 27.16 10.57
(18–82) (4010F) (1–3) (14–63) (16.2–57.3) (0–53)

SD 12.4 - 0.6 5.1 4.7 6.9

Table 2. Personality traits according to the five factor personality questionnaire NEO-FFI (16 items) for
sample 2 (n = 7906).

Neuroticism Extraversion Openness Agreeable-Ness Conscientious-Ness

Sample 2
(n = 7906)

mean 13.2 10.9 16.3 11.7 23.6
(4–28) (3–21) (4–21) (2–14) (4–28)

SD 4.4 3.7 2.7 2.0 3.2

Linear regression models detected that lower animal DRS, i.e., higher frequency of animal-based
products consumption, related to higher BMI in sample 1 (n = 8943; � = �0.07, p < 0.001,
Bonferroni-corrected), corrected for confounders (age, sex, education). Higher age, being male
and lower education were also significantly associated with higher BMI, with the four factors together
explaining about 6% of the variance in BMI (overall model adj. R2 = 0.06, p< 0.001, Bonferroni-corrected)
(Figure 3A, Table 3). Here, age showed the steepest slope (n = 8943; � = 0.08, p < 0.001; Figure 3B).
Similar results emerged when restricting the analysis to the smaller sample 2 (data not shown). When
additionally correcting for personality traits the association between BMI and animal DRS remains
significant (n = 7906; � = �0.07, p < 0.001, Bonferroni-corrected), further certain personality traits show
significant associations with BMI (neuroticism: � = �0.05, p < 0.001; openness: � = �0.05, p < 0.02;
agreeableness: � = 0.13, p < 0.001; conscientiousness: � = �0.2, p < 0.001; all n = 7906) (Table 3).

Figure 3. Association between body-mass-index (BMI) and demographic and lifestyle factors (A) animal
DRS (B) age, residuals plotted according to regression model 1 (sample 1 n= 8943). Line gives regression
fit. Point size = 1. Abbreviations: a.u. = arbitrary units.



 84 

Nutrients 2020, 12, 1492 7 of 21

Table 3. Multiple regression analyses predicting BMI as function of age, sex, education and frequency
of animal-based products (n = 8943).

Adj. R2 B C.I. Beta p

BMI (model 1)

Model 0.06 <0.001
sex �0.59 [�0.79 �0.40] �0.06 <0.001

education �0.67 [�0.83 �0.50] �0.08 <0.001
age 0.08 [0.07 0.09] 0.21 <0.001

animal DRS �0.07 [�0.09 �0.05] �0.06 <0.001

BMI (model 1)—sample 2 (df = 7896), corrected for personality

Model 0.08 <0.001
sex �0.55 [�0.78 �0.33] �0.06 <0.001

education �0.65 [�0.83 �0.47] �0.08 <0.001
age 0.09 [0.09 0.10] 0.24 <0.001

animal DRS �0.07 [�0.09 �0.05] �0.07 <0.001
neuroticism �0.05 [�0.08 �0.03] �0.05 0.001
extraversion 0.01 [�0.02 0.04] 0.01 0.42

openness �0.05 [�0.10 �0.01] �0.03 0.01
agreeableness 0.13 [0.07 0.19] 0.05 <0.001

conscientiousness �0.20 [�0.23 �0.16] �0.13 <0.001

B/beta represent unstandardized/standardized regression coe�cients. Abbreviations: BMI = body-mass-index,
DRS = dietary restriction score. Significant associations (p-values < 0.05) are indicated in bold.

Further, in sample 2 we found a significant association between frequency of animal-based products
and personality traits, when correcting for age, sex and education (n = 7906; MANCOVA, F(5,7897) = 2.8,
p < 0.02): higher restriction of animal products was negatively associated with extraversion (F(1,7897) = 9.8,
p = 0.002) (Figure 4, Table 4). Although non-significant, animal DRS was positively associated with
neuroticism (F(1,7897) = 3.5, p = 0.06) and negatively with openness (F(1,7897) = 3.4, p = 0.07). Likewise,
sex was significantly associated with all five personality traits; and age and education with four of
them (all except for agreeableness) (Table 4).

Figure 4. Association between animal DRS and extraversion, residuals plotted according to regression
model 2 (sample 1 n = 8943). Line gives regression fit. Point size = 1. Abbreviations: a.u. = arbitrary units.
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Table 4. Multivariate analysis of covariance (MANCOVA) analysis of animal DRS, age, sex, education
on personality (n = 7906).

Pillai’s Trace F df num df den df p

NEOFFI (model 2) (all factors, corrected for age, sex, education)

sex 0.17 322.2 1 5 7897 <0.001
education 0.04 66.9 1 5 7897 <0.001

age 0.04 69.3 1 5 7897 <0.001
animal DRS 0.002 2.8 1 5 7897 0.016

NEOFFI Neuroticism

sex 327.6 1 5 7897 <0.001
education 113.5 1 5 7897 <0.001

age 28.5 1 5 7897 <0.001
animal DRS 3.5 1 5 7897 0.06

NEOFFI Extraversion

sex 15.9 1 5 7897 <0.001
education 71.1 1 5 7897 <0.001

age 152.7 1 5 7897 <0.001
animal DRS 9.8 1 5 7897 0.002

NEOFFI Openness

sex 7.3 1 5 7897 0.007
education 208.4 1 5 7897 <0.001

age 4.6 1 5 7897 0.03
animal DRS 3.4 1 5 7897 0.07

NEOFFI Agreeableness

sex 953.5 1 5 7897 <0.001
education 1.0 1 5 7897 0.33

age 0.7 1 5 7897 0.39
animal DRS 0.03 1 5 7897 0.87

NEOFFI Conscientiousness

sex 137.4 1 5 7897 <0.001
education 10.7 1 5 7897 0.001

age 148.4 1 5 7897 <0.001
animal DRS 0.0006 1 5 7897 0.98

Abbreviations: DRS = dietary restriction score. Significant associations (p-values < 0.05) are indicated in bold.

Lastly, frequency of animal-based products did not predict variance in depressive symptoms in
sample 1 (n = 8943, � = 0.001, p = 0.12), according to a linear regression model (model 3) that corrected
for age, sex, and education (overall model: R2 = 0.04, p < 0.001, Bonferroni-corrected) (Table 5). This
was also the case for sample 2 (n = 7906, animal DRS: � = 0.001, p = 0.10; overall model; R2 = 0.04;
p < 0.001), also when additionally correcting for personality traits and BMI (n = 7906, animal DRS:
� = 0.013, p = 0.2; overall model; R2 = 0.21; p < 0.001) (Table 5). Instead, higher neuroticism (� = 0.4,
p < 0.001), lower extraversion (� = �0.08, p < 0.001), lower openness (� = �0.07, p < 0.001), lower
conscientiousness (� = �0.08, p < 0.001) and higher BMI (� = 0.06, p < 0.001) correlated with depressive
symptoms (overall model explaining 21% of variance on depressive symptoms score) (Figure 5, Table 5).
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Table 5. Multiple regression analyses predicting CES-D as a function of age, sex, education animal DRS
(sample 1, n = 8493) and additionally personality traits (sample 2, n = 7906) and BMI.

Adj. R2 B C.I. Beta p

CES-D (model 3)—sample 1 (df = 8938)

Model 0.04 <0.001
sex 0.04 [0.029 0.051] 0.071 <0.001

education �0.09 [�0.10 �0.08] �0.184 <0.001
age 0.001 [0.0007 0.0016] 0.050 <0.001

animal DRS 0.001 [�0.0002 0.0020] 0.016 0.12

CES-D (model 3)—sample 2 (df = 7901)

Model 0.04
sex 0.04 [0.0273 0.0523] 0.069 <0.001

education �0.09 [�0.1001 �0.0786] �0.180 <0.001
age 0.001 [0.0006 0.0016] 0.049 <0.001

animal DRS 0.001 [�0.0002 0.0022] 0.018 0.10

CES-D (model 3)—sample 2 (df = 7896), corrected for personality

Model 0.21
sex 0.011 [�0.001 0.024] 0.02 0.08

education �0.06 [�0.07 �0.05] �0.12 <0.001
age 0.0006 [0.0001 0.0011] 0.03 0.015

animal DRS 0.0005 [�0.0006 0.0015] 0.009 0.40
neuroticism 0.024 [0.022 0.025] 0.36 <0.001
extraversion �0.006 [�0.008 �0.005] �0.08 <0.001

openness �0.007 [�0.010 �0.005] �0.07 <0.001
agreeableness �0.0004 [�0.004 0.003] �0.003 0.80
conscientiousness �0.008 [�0.009 �0.006] �0.08 <0.001

CES-D (model 3)—sample 2 (df = 7895), corrected for personality and BMI

Model 0.21 <0.001
sex 0.013 [0.0008 0.026] 0.02 0.04

education �0.06 [�0.082 �0.039] �0.11 <0.001
age 0.0002 [�0.066 �0.046] 0.01 0.32

animal DRS 0.001 [�0.004 0.002] 0.013 0.20

neuroticism 0.024 [0.022 0.025] 0.36 <0.001
extraversion �0.006 [�0.008 �0.005] �0.08 <0.001

openness �0.007 [�0.010 �0.005] �0.07 0.14
agreeableness �0.0009 [�0.004 0.003] �0.006 0.60
conscientiousness �0.007 [�0.009 �0.005] �0.08 <0.001

BMI 0.004 [0.002 0.005] 0.06 <0.001

B/beta represent unstandardized/standardized regression coe�cients. Abbreviations: BMI = body-mass-index,
CES-D = depressive symptoms scale; DRS = dietary restriction score. Significant associations (p-values < 0.05) are
indicated in bold.

Figure 5. Cont.
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Figure 5. Significant association between personality traits and depressive symptoms in sample 2
(n = 7906) corrected for age, sex, education, animal DRS and the respective four other subscales
of personality for neuroticism, extraversion, agreeableness, conscientiousness and BMI. Lines give
regression fit. Position size = 2 (for personality) and 1 (BMI).

To confirm whether results were not driven by extreme cases with pathological underweight,
we excluded underweight individuals (BMI <= 18.5 kg/m2) from the analysis (n = 51, 17.8 ± 0.6 kg/m2

(mean ± SD), range 16–18.5). This did not change the results from the main analyses (data not shown).

Ancillary Analyses

Restricting primary animal source products (i.e., (processed) meat, cold cuts) was significantly
associated with a lower BMI (n = 8943; � = �0.25, p < 0.001, Figure 6), but not restricting intake
of secondary animal products (cheese, milk, eggs) (n = 8943, � = �0.02, p = 0.16) (Table 6).
Note the somewhat stronger association of primary animal-based products with BMI compared
to the “comprehensive” animal-product DRS score, resulting in a more negative � coe�cient.
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Figure 6. Restrictive animal-based product intake associated with lower BMI. Lines give regression fit.
Position size = 1. Abbreviations: a.u. = arbitrary units.

Table 6. Multiple regression analyses predicting BMI as a function of age, sex, education and restriction
of di↵erent dietary items (sample 1, n = 8493).

Adj. R2 B C.I. Beta p

BMI (model 1)—primary animal DRS

Model 0.07 <0.001
sex �0.18 [�0.38 0.03] �0.018 0.10

education �0.61 [�0.76 �0.44] �0.074 <0.001

age 0.09 [0.08 0.10] 0.225 <0.001
primary animal DRS �0.25 [�0.29 �0.21] �0.132 <0.001

BMI (model 1)—secondary animal DRS

Model 0.06 <0.001
sex �0.63 [�0.84 �0.43] �0.065 <0.001

education �0.65 [�0.82 �0.49] �0.079 <0.001
age 0.08 [0.07 0.09] 0.209 <0.001

secondary animal DRS �0.02 [�0.04 �0.01] �0.015 0.16

BMI (model 1)—overall DRS

Model 0.07 <0.001
sex �0.50 [�0.69 �0.30] �0.051 <0.001

education �0.70 [�0.83 �0.49] �0.080 <0.001
age 0.09 [0.08 0.10] 0.221 <0.001

overall DRS �0.15 [�0.18 �0.11] �0.091 <0.001

B/beta represent unstandardized/standardized regression coe�cients Abbreviations: BMI = body-mass-index, DRS
= dietary restriction score. Significant associations (p-values < 0.05) are indicated in bold.

Investigating di↵erences in personality, higher primary animal DRS was significantly associated
with lower neuroticism (F(1,7897) = 27.5, p < 0.001), higher openness (F(1,7897) = 45.1, p < 0.001), higher
agreeableness (F(1,7897) = 262.5, p < 0.001) and higher conscientiousness (F(1,7897) = 63.1, p < 0.001).
Higher secondary animal DRS was significantly associated with lower extraversion (F(1,7897) = 11.1,
p < 0.001), lower openness (F(1,7897) = 26.9, p < 0.001), lower agreeableness (F(1,7897) = 106.7, p < 0.001)
and lower conscientiousness (F(1,7897) = 14.2, p < 0.001) (all: n = 7906, MANCOVA, corrected for age,
sex and education) (Figure S4).

In contrast to the comprehensive animal product DRS, the scores displaying restriction of either
primary or secondary origin animal products were also associated with lower and higher depressive
symptoms scores, respectively (n = 8943, primary animal-product DRS: � = �0.003, p = 0.04; secondary
animal-product DRS: � = 0.002, p = 0.02; models adjusted for age, sex and education). These divergent
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associations, however, failed to reach significance when additionally correcting for personality traits
(n = 7906, all |�| < 0.002, all p > 0.10, adjusted for age, sex, education and personality) (Table 7).

Table 7. Multiple regression analyses predicting CES-D as a function of age, sex, education and primary
and secondary dietary restriction score (sample 1 n = 8943, sample 2 n = 7906).

Adj. R2 B C.I. Beta p

CES-D—sample 1 (df = 8938)

Model 0.04 <0.001
sex 0.05 [0.031 0.058] 0.08 <0.001

education �0.09 [�0.100 �0.078] �0.18 <0.001
age 0.001 [0.0007 0.0017] 0.05 <0.001

primary DRS �0.003 [�0.005 �0.00008] �0.02 0.04

CES-D—sample 2 (df = 7896), corrected for personality

Model 0.21 <0.001
sex 0.014 [0.0008 0.0270] 0.02 0.04

education �0.06 [�0.068 �0.048] �0.12 <0.001
age 0.0006 [0.0001 0.0011] 0.03 0.01

primary DRS �0.002 [�0.004 �0.001] �0.01 0.21
neuroticism 0.024 [0.022 0.025] 0.36 <0.001
extraversion �0.006 [�0.008 �0.005] �0.08 <0.001

openness �0.007 [�0.010 �0.005] �0.07 <0.001
agreeableness �0.0003 [�0.004 0.003] �0.002 0.84

conscientiousness �0.007 [�0.009 �0.006] �0.08 <0.001

CES-D—sample 1 (df = 8938)

Model 0.04 <0.001
sex 0.04 [0.032 0.055] 0.08 <0.001

education �0.09 [�0.10 �0.08] �0.20 <0.001
age 0.001 [0.0007 0.0016] 0.05 <0.001

secondary DRS 0.002 [0.0003 0.003] �0.03 0.02

CES-D—sample 2 (df = 7896), corrected for personality

Model 0.21 <0.001
sex 0.013 [0.0010 0.0261] 0.02 0.05

education �0.06 [�0.068 �0.048] �0.12 <0.001
age 0.0006 [0.0001 0.0011] 0.03 0.01

secondary DRS 0.001 [�0.005 0.002] 0.01 0.20
neuroticism 0.024 [0.022 0.025] 0.36 <0.001
extraversion �0.006 [�0.008 �0.005] �0.08 <0.001

openness �0.007 [�0.010 �0.005] �0.07 <0.001
agreeableness �0.0003 [�0.004 0.003] �0.002 0.84

conscientiousness �0.008 [�0.009 �0.006] �0.08 <0.001

Abbreviations: CES-D = depressive symptoms score, DRS = dietary restriction score. Significant associations
(p-values < 0.05) are indicated in bold.

Further, we found a strong positive correlation between the frequency of animal-based products
(animal DRS) and the number of restricted food groups considering all 33 items (overall DRS)
(⇢(8941) = 0.52, p < 0.001) (Figure 7A).

Considering the number of restrictive food items in general, we found that a higher score of total
excluded food items related to lower BMI (sample 1: � = �0.15, t = �8.8, p < 0.001, R2 = 0.07, corrected
for age, sex and education) (Figure 7B, Table 6).

The number of restricted food items was significantly associated with lower agreeableness
(F(1,7897) = 15.7, p< 0.001) and higher conscientiousness (F(1,7897) = 53.9, p< 0.001) (n= 7906, MANCOVA,
F(5,7897) = 11.8, p = < 0.001, for model comparison against null model, corrected for age, sex and
education) (Table 8).
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Figure 7. (A) Positive association between decreasing frequency of animal-based products and number
of excluded food groups. Negative association between overall dietary restriction score with (B) BMI
and (C) CES-D. Position size = 1. Abbreviations: a.u. = arbitrary units. Significant associations
(p-values < 0.05) are indicated in bold.

Table 8. MANCOVA analysis of dietary restriction, age, sex, education on personality (n = 7906).

Pillai’s Trace F df num df den df p

NEOFFI (all factors)—sample 2, corrected for age, sex, education

sex 0.169 320.0 1 5 7897 <0.001
education 0.041 67.4 1 5 7897 <0.001

age 0.040 65.2 1 5 7897 <0.001
overall DRS 0.007 11.8 1 5 7897 <0.001

NEOFFI Neuroticism

sex 342.0 1 5 7897 <0.001
education 114.5 1 5 7897 <0.001

age 28.9 1 5 7897 <0.001
overall DRS 0.6 1 5 7897 0.44

NEOFFI Extraversion

sex 14.5 1 5 7897 <0.001
education 72.6 1 5 7897 <0.001

age 149.3 1 5 7897 <0.001
overall DRS 0.3 1 5 7897 0.6
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Table 8. Cont.

Pillai’s Trace F df num df den df p

NEOFFI Openness

sex 6.1 1 5 7897 0.01
education 209.8 1 5 7897 <0.001

age 4.9 1 5 7897 0.03
overall DRS 1.6 1 5 7897 0.21

NEOFFI Agreeableness

sex 937.3 1 5 7897 <0.001
education 0.9 1 5 7897 0.34

age 0.2 1 5 7897 0.7
overall DRS 15.7 1 5 7897 <0.001

NEOFFI Conscientiousness

sex 122.4 1 5 7897 <0.001

education 10.7 1 5 7897 0.001
age 130.7 1 5 7897 <0.001

overall DRS 53.9 1 5 7897 <0.001

Abbreviations: DRS = dietary restriction score. Significant associations (p-values < 0.05) are indicated in bold.

Surprisingly, a higher number of restricted food items was weakly yet significantly associated
with lower depressive symptoms scores (� = �0.004, t = �4.1, p < 0.001, R2 = 0.05, corrected for age,
sex and education) (similar results in sample 2 (data not shown)), also when additionally correcting for
di↵erences in personality traits (� = �0.003, t = �2.7, p < 0.007, R2 = 0.21) (Figure 7C, Table 9).

Table 9. Multiple regression analyses predicting CES-D as a function of age, sex, education and dietary
restriction score (sample 1 n = 8943, sample 2 n = 7906).

Adj. R2 B C.I. Beta p

CES-D—sample 1 (df = 8938)

Model 0.05 <0.001
sex 0.04 [0.032 0.055] 0.076 <0.001

education �0.09 [�0.100 �0.080] �0.185 <0.001
age 0.001 [0.0008 0.0017] 0.054 <0.001

overall DRS �0.004 [�0.006 �0.002] �0.043 <0.001

CES-D—sample 2 (df = 7901)

Model 0.04 <0.001
sex 0.04 [0.031 0.056] 0.075 <0.001

education �0.09 [�0.100 �0.080] �0.180 <0.001
age 0.001 [0.0008 0.0017] 0.054 <0.001

overall DRS �0.005 [�0.007 �0.002] �0.048 <0.001

CES-D—sample 2 (df = 7896), corrected for personality

Model 0.21 <0.001
sex 0.014 [0.0010 0.0261] 0.02 0.04

education �0.06 [�0.068 �0.048] �0.12 <0.001
age 0.0007 [0.0002 0.0011] 0.03 0.007

overall DRS �0.003 [�0.004 �0.001] �0.03 0.007
neuroticism 0.024 [0.022 0.025] 0.36 <0.001
extraversion �0.006 [�0.008 �0.005] �0.08 <0.001

openness �0.007 [�0.010 �0.005] �0.07 <0.001
agreeableness �0.0005 [�0.004 0.003] �0.004 0.76

conscientiousness �0.007 [�0.009 �0.006] �0.08 <0.001

B/beta represent unstandardized/standardized regression coe�cients. Abbreviations: CES-D=depressive symptoms,
DRS = dietary restriction score. Significant associations (p-values < 0.05) are indicated in bold.
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4. Discussion

In this large cross-sectional analysis of ~9000 individuals from the general population, lower
frequency of eating animal-based products was significantly associated with lower BMI, even when
adjusting for confounding e↵ects of age, sex and education. No significant associations emerged
between animal-based products consumption and depressive symptom scores when taking personality
into account. Frequency of animal-based product consumption was associated with personality traits,
in particular with lower extraversion. Surprisingly, not diet but personality was significantly associated
with depressive mood.

While the selection of our mid- to older age adult urban sample from Eastern Germany depended
on the city registry of Leipzig, participants with a low social status and an unhealthy lifestyle were
somewhat underrepresented compared to the general population [39]. However, the BMI range can be
considered representative of a German population of this age.

4.1. Weight Status

Our finding that eating meat and dairy products less frequently relates to lower BMI is in line with
some, but not all, epidemiological and moderate-term randomized interventional trials which point
in this direction too [1,40,41]. In addition, results remained stable even after adjusting for education,
which is a strong predictor of both obesity [42] and eating habits [43], and when taking inter-individual
variance in personality traits into account [44]. Speculating on possible underlying mechanisms,
animal-derived products in general are often denser in calories and in total and saturated fats compared
to plant-based foods [45]. In addition, meat and dairy products are oftentimes consumed as processed
food, e.g., processed meat, cold cuts, deep-fried meat/fish or high-processed snack products, further
augmenting their caloric footprint. Thus, lower caloric intake might underlie the observed link between
lower frequency of animal-based product consumption and lower BMI. Moreover, recent observations
of changes in the gut microbiome due to diet raise the hypothesis that a di↵erent distribution of gut
bacteria in plant-based dieters alters the ingestion rate of calories from food [46], thereby further
limiting caloric intake (or bioavailability). However, while these causal pathways between lower
frequency of animal-based product intake leading to lower or sustained body weight seem biologically
plausible, the association between lower animal-based product intake and lower weight in our cohort
might also be a result of lower body weight leading to less animal-based product intake or unknown
shared factors that modulate both weight and diet. Future longitudinal observations and interventional
trials are needed to further test the above-described hypothesis or its alternatives.

The positive association between restriction of meat products on weight status and the lack
of a significant correlation for secondary animal products found in this study and previously by
others [47–49] could possibly be explained by a higher proportion of highly processed meat items,
leading to higher net energy intake and potentially to higher caloric intake [50]. Further, ongoing
discussions on motivations for following certain diets support the view that restraint eating is not
directly linked to vegetarian or vegan diets but more common in flexitarians who restrict meat intake
with the goal of weight control, which in contrast is not the most common driver in plant-based
dieters [51].

While, due to the cross-sectional design using self-reported FFQ data, estimates of absolute
numbers of the strength of the association between diet and BMI are di�cult, our findings may be
relevant for public health. Considering that changing a conventional Western omnivorous dietary
habit to a more plant-based diet, i.e., avoiding (processed) meat and cold cuts and limiting dairy,
cheese and egg intake, would lead to an increase in animal DRS of 20 points, this would translate into
~1.2 kg/m2 lower BMI. For someone with a frequent intake of primary and secondary animal-product
intake (low animal DRS) this could mean, for example, reducing all animal-based products from
multiple times a day to multiple times a week (“flexitarian diet”) or excluding some animal items
altogether (“vegan” or “vegetarian” diet). For a 175 cm tall human this would translate into 4 kg
of body weight. If obese (e.g., 100 kg, i.e., BMI = 32.7 kg/m2), this would mean a reduction of 4%
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body weight; if overweight (e.g., 80 kg, BMI = 26.1 kg/m2) this would mean a reduction of 5% body
weight. As a reduction of 5–10% body weight has been shown to significantly reduce obesity-associated
co-morbidities in overweight and obesity [52–58], restricting dietary intake of animal-based products
may be one way to achieve this weight loss goal, and may help to reduce the societal burden of
obesity-related diseases and environmental impact caused by high animal-product diets [40]. However,
these calculations have to be interpreted with caution, as our findings rely on self-reported and
cross-sectional data only, and we could not quantify dietary intake with regard to the consumed total
amounts of food. Future longitudinal observations and interventional trials are needed.

4.2. Depressive Symptoms & Personality Traits

In contrast to previous large cross-sectional studies [16,17] and a prospective study in patients
with inflammatory bowel disease [59], frequency of animal-derived product consumption did not
explain variance in depressive symptoms scores in the current sample.

However, intervention studies showed that a plant-based vegan diet compared to a conventional
omnivorous diet reduced anxiety and depression or emotional distress [19–22], proposing that
restricting animal-based products per se may not a↵ect mental health, but rather exert beneficial
e↵ects. Notably, we observed that di↵erent personality traits and BMI predicted depressive symptom
score, which hints towards shared neurobiological mechanisms with obesity [23,25]. These shared
mechanisms might help to explain previous inconsistent findings of a proposed link between restrictive
diets and depression: certain personality traits may increase the probability of restricting certain
food groups from diet, such as openness and conscientiousness [60]. Such a correlative link between
personality and restrictive eating, although missing in the current data, would thus also apply to
restricting animal-based products and may explain higher depressive symptoms in vegetarians or
vegans [16]. Moreover, sociological studies show that animal-restricted dieters are often stereotyped
with a multitude of biases: detrimental health e↵ects, restrictive lifestyle, sentimentalism, extremism,
lower perceived masculinity [61–63]. Aversion to plant-based dieters could lead to higher social
exclusion and depressive symptoms as a result. However, more longitudinal studies tracking newly
transformed dieters are needed to clarify if avoiding animal-derived products a↵ects mental health.

Di↵erences in our results compared to previous evidence on personality di↵erences in vegetarians
may be due to demographic and societal environmental factors. Personality trait di↵erences in
vegetarians were found in a cohort of college students [15], which might be di↵erent to our sample
of the general population, in terms of beliefs, motivation of dietary habits, etc. Geographical or
cultural settings may also influence di↵erences in the results such as westernized (USA [15], Germany
(this study)) versus mainly-vegetarian Indian cohorts [29], who showed higher conscientiousness.
Lastly, the popularity and availability of plant-based dishes is a strong modulator of societal acceptance
and demand for those kinds of diets. For instance, increasing the o↵er from one to two plant-based
meals in canteens led to an increase of 40–80% of plant-based meal purchases, underlining the
importance of availability as a strong driver [64]. Since the interest in plant-based diets has been
changing dynamically in the last decade, researches should take period and location into account when
comparing studies.

Strengths of our study comprise the large, well-characterized population based cohort enabling
us to carefully control for important confounders such as education and personality. Moreover, recent
studies and meta-analyses focused specifically on intake of red and processed meat and related health
outcomes [65]. However the distinction of restricting diets to not consuming primary (vegetarian)
and/or secondary animal-products (vegan) is oftentimes overlooked and therefore a strength of
our study.

Our results further highlight a significant association of demographic variables with BMI,
personality and depressive symptoms. This shows how individual factors such as age, sex and
education are tightly linked to health (dis)advantages in our societies, and future studies on public
health interventions should focus on those at particular risk, e.g., older males with lower education in
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the case of BMI, and older females with lower education in the case of depressive symptoms. In parallel,
the cross-sectional nature of our analysis does not allow us to imply causal relations, therefore future
longitudinal and experimental interventional studies need to test to what extent modifiable factors,
such as education, could causally reduce obesity and depression, and how dietary strategies such as
reducing animal-based products might help to mediate these e↵ects.

4.3. Limitations

Firstly, limitations of our study include that the results are based on a cross-sectional study design
and therefore cannot explain underlying causalities.

Secondly, our analyses are based on self-reported dietary food record, which does not reflect
actual food intake; however, test-retest reliability is generally of good quality [66]. The FFQ used
in this study has been adopted from the frequently used German National Health Interview and
Examination Survey 1998 [67], which has, however, not been validated, at least to our knowledge.
Moreover, the FFQ used did not ask for quantity of food intake, which limits the interpretability of the
observed e↵ects (for further discussion on possible mechanisms see [1]) as important confounders
such as total kcal intake could not be considered in this analysis. Yet, beside this possible inaccuracy of
self-reported food intake, we propose that excluding certain food groups for a timeframe of twelve
months is presumably a strong and reliable indicator of actual food intake and exclusion of certain
food groups.

Thirdly, this study verifies depressive mood or depressive symptoms and not depression.
The clinical interview remains the gold standard for identifying depression.

Fourthly, we did not account for ethnicity as these statistics were not available for this cohort.
Based on historical data on immigration for this region, we estimate that the majority of the LIFE
cohort were probably of Caucasian ethnicity and <1% were non-Caucasian.

Lastly, as frequently found in nutritional epidemiology, in our analysis socioeconomic status was
accounted for by level of education, not income and occupational status [68]. This one-dimensional
analysis might result in limited generalizability of the results. However, education can be viewed as a
more long-term indicator of socioeconomic status compared to more dynamic monthly net income (as
provided in this dataset).

5. Conclusions

Taken together, using a large cross-sectional analysis we observed that a lower frequency of
animal-based products was related to lower BMI, while no link between animal-based products intake
and depressive symptoms scores emerged. Thus, our findings may suggest that a lower frequency
of animal-based products could be able to convey benefits on weights status, hinting to the capacity
of plant-based diets as a potentially relevant target for the intervention of obesity and overweight,
in particular by reducing the frequency (and probably the amount) of (especially primary source)
animal-based products. Long-term interventional trials are needed to test this hypothesis and to clarify
the underlying mechanisms.
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Open and Sustainable Research 
Beyond the topic of research, also the way in which research is conducted not only has an 
impact on future knowledge but also on the environment. For instance, it was shown that 
researchers in the European Union emit up to 300% additional emissions, i.e. 18 tCO2eq / year, 
to their individual carbon footprint by professional activities in astronomy research (Jahnke et 
al. 2020). To counteract and improve ecological impact of research practises, next to 
advancing knowledge on climate-related topics, promoting and adopting open and 
sustainable research practices may be a suitable approach.  
All herein presented and further related projects incorporate open research practises, 
including preregistration, released preprints, openly shared data and code upon publication 
and open access publishing. 
Further, in a preprint we outlined how open science practises make research more sustainable 
in terms of ecological impact (Govaart, Hofmann, and Medawar 2021). Also, as a more 
institutionalized form of improving ecological impact of science, we founded the Max Planck 
Sustainability Network, which is a grassroots network aiming to make research within the Max 
Planck Society and beyond more sustainable by assessing and reducing ecological impact of 
research activities. I initiated a mission paper, which I am also the corresponding author of 
(Fardet et al. 2020). 
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Estimated ecological impact of the PhD work and compensation 
Comprehensive and accurate estimations on CO2eq linked to research remain very 
challenging. Yet, for my PhD it can be assumed that MR imaging had by far the highest energy 
consumption in terms of study methodology. Therefore, CO2eq for each dataset including 
brain MRI was calculated based on manufacturer’s information on energy consumption (kW), 
estimated hours of scan time per study (h), and CO2 emission factor for Germany (kg/kWh), 
only considering active scan time for the study, excluding standby time of the MR scanner, 
sourcing and disposing of the machine and consumed liquid helium for cooling of the system.  
 

Publication / Project Scanning hours and MR system Estimated 
CO2eq 

Medawar, Thieleking, et 
al. 2021, PLOS ONE 

Scanner upgrade study 

121 participants x 1h x 2 scanners = 242h 
Siemens 3T Verio / 3T Skyra 2,95 t 

Heinrichs et al. 2021, 
Human Brain Mapping 

ADIPOSITAS study 

48 participants x 1h x 3 timepoints = 144h 
Siemens 3T Trio 3,40 t 

Medawar, Thieleking, 
and Witte 2019, OSF 

GUT-BRAIN study 

60 participants x 1.5h x 4 timepoints = 360h 
Siemens 3T Prisma 2,95 t 

Total  

9,30 t 
~ 1,1 EU 

citizen’s yearly 
emissions2 

 
10 t CO2eq were compensated to alleviate some of the ecological burden stemming from this 
particular research. I chose to support a project related to eating behaviour in Rwanda to 
provide efficient cookstoves that reduce wood consumption up to 80% or even more wood-
intensive charcoal use (1kg charcoal requires 9kg wood). Further, monetary expenses for 
energy and air pollution are reduced.  
 
 

 
2 Based on per capita CO2eq in 2019 published by the German Environmental Agency: 
https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-der-europaeischen-union#pro-kopf-emissionen (accessed on 
6 Dec 2021) 
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für kompensierte Treibhausgase

Zertifikat

Was bewirkt Ihr Klimaschutzbeitrag?

Mit Ihrem Klimaschutzbeitrag in Höhe von 230,00 Euro unterstützen Sie folgendes Projekt:

Evelyn Medawar
kompensiert am 08.12.2021 mit atmosfair

10.000 kg CO2 Treibhausgase.

Ruanda ist eines der am dichtesten besiedelten Länder weltweit. Ein Großteil der Bevölkerung kocht mit
Holzkohle und Feuerholz. Damit wird Holz zur hart umkämpften Ressource. Ihr Beitrag hilft, die Region

mit effizienten Öfen auszustatten, die im Vergleich zu traditionellen Kochstellen 80 % weniger Holz
verbrauchen.

Ruanda: Sie bringen effiziente Öfen in ländliche Haushalte

atmosfair betreibt seine Projekte nach den im Kyoto-Protokoll verankerten Regeln des
Clean Development Mechanism (CDM) und zusätzlich dem von internationalen Umweltorganisationen

etablierten „Gold Standard“. Unabhängige, von den Vereinten Nationen zugelassene Organisationen
(z.B. TÜV) kontrollieren die tatsächliche CO2-Minderung der Projekte.

Mehr auf atmosfair.de
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