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H I G H L I G H T S  

• Consistent climate outlook based on subseasonal, seasonal and decadal predictions. 
• Basic and expert predictions offer two levels of complexity for different users. 
• Statistical downscaling provides high-resolution predictions for Germany. 
• Predictions are displayed in conjunction with a user-oriented skill traffic light. 
• Climate service was developed in close user cooperation via surveys and workshops.  

A R T I C L E  I N F O   

Keywords: 
Climate service 
Subseasonal prediction 
Seasonal prediction 
Decadal prediction 
Statistical downscaling 
User co-production 

A B S T R A C T   

The climate predictions website of the Deutscher Wetterdienst (DWD, https://www.dwd.de/climatepredictions) 
presents a consistent operational outlook for the coming weeks, months and years, focusing on the needs of 
German users. At global scale, subseasonal predictions from the European Centre of Medium-Range Weather 
Forecasts as well as seasonal and decadal predictions from the DWD are used. Statistical downscaling is applied 
to achieve high resolution over Germany. Lead-time dependent bias correction is performed on all time scales. 
Additionally, decadal predictions are recalibrated. 

The website offers ensemble mean and probabilistic predictions for temperature and precipitation combined 
with their skill (mean squared error skill score, ranked probability skill score). Two levels of complexity are 
offered: basic climate predictions display simple, regionally averaged information for Germany, German regions 
and cities as maps, time series and tables. The skill is presented as traffic light. Expert climate predictions show 
complex, gridded predictions for Germany (at high resolution), Europe and the world as maps and time series. 
The skill is displayed as the size of dots. Their color is related to the signal in the prediction. 

The website was developed in cooperation with users from different sectors via surveys, workshops and 
meetings to guarantee its understandability and usability. The users realize the potential of climate predictions, 
but some need advice in using probabilistic predictions and skill. Future activities will include the further 
development of predictions to improve skill (multi-model ensembles, teleconnections), the introduction of 
additional products (data provision, extremes) and the further clarification of the information (interactivity, 
video clips).   

Practical implications  
The climate predictions website of the Deutscher Wetterdienst 
(DWD, https://www.dwd.de/climatepredictions) offers opera-
tional climate predictions on the subseasonal, seasonal and 
decadal climate timescales. The subseasonal predictions cover the 
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next 2-5 weeks, the seasonal predictions regard the months 1-6 
and the decadal predictions consider the years 1-10. Since the 
website uses different models, observations and separate products 
across time scales, it is not fully seamless but provides a consistent 
‘one-stop-shopping’ outlook for the coming weeks, months and 
years on a single platform. 

The global subseasonal predictions are taken from the European 
Centre of Medium-Range Weather Forecasts (ECMWF), whereas 
the global seasonal and decadal predictions are produced by the 
Deutscher Wetterdienst (DWD). Since this climate service is 
focused on German data users, all climate predictions are trans-
formed to a higher spatial resolution in Germany, applying sta-
tistical relationships between large scale and small scale from 
observations. For each model, a prediction ensemble is calculated 
consisting of several slightly different simulations. The ensemble 
spread describes the prediction uncertainty. 

The subseasonal predictions are presented as weekly means for 
week 2, 3, 4 and 5, whereas the seasonal predictions are displayed 
as 3-month means for months 1-3, 2-4, 3-5 and 4-6. Finally, the 
decadal predictions are offered as 1- or 5-year means for years 1, 
1-5, 3-7 and 6-10. All predictions include information on future 
temperature and precipitation for the whole world, Europe, Ger-
many and four German regions (north, south, east, west). For 
seasonal and decadal predictions, information is also available for 
the 16 capital cities of the German federal states and the pilot city 
Aschaffenburg. This city-scale information was not yet imple-
mented for subseasonal predictions due to high computing times 
in the context of short operational time slots. In addition, the 
publication of subseasonal predictions for Europe and the world 
was in preparation at the time this manuscript was written. 

Two different types of predictions are considered, enabling 
different kinds of future outlooks: the ensemble mean prediction 
describes the mean of the prediction ensemble compared to the 
long-term mean of a reference period (e.g. “The next year will be 
0.5 ◦C warmer than the reference period of 1991–2020.”). Based 
on the distribution of the ensemble, the probabilistic prediction 
estimates the probability of the three categories ‘below normal’, 
‘normal’ and ‘above normal’ which are defined based on the 
climate characteristics of the reference period (e.g. “The proba-
bility that the temperature of the next year will be above normal 
compared to the reference period of 1991–2020 is 80 %.”). 
Additionally, the quality of this prediction of the future state is 
assessed based on the verification of retrospective predictions, 
which have been started from points in time in the past, with 
observations. If the prediction model reproduces well the past 
observations, it is assumed that it also predicts well the future 
state. 

The climate predictions are presented on a web platform with two 
levels of complexity: basic climate predictions present simple and 
regionally averaged predictions for Germany, German regions or 
cities as maps, time series or tables. The quality of the prediction is 
described as a traffic light. The expert climate predictions describe 
complex, gridded predictions for Germany (at high resolution), 
Europe and the world as maps and time series. The prediction 
quality defines the size of the dots (large dots denote high quality 
and small dots denote low quality), whereas the color describes 
the prediction. The concept and design of this website was 
developed in cooperation with users at workshops, in surveys and 
in individual meetings and proved to be mostly understandable 
and usable in their working routines. Additionally, the global 
prediction data can be downloaded for further modelling in 
climate impact studies. The regional prediction data will be 
available soon. 

Discussions with users from different sectors disclosed their needs 
in terms of climate predictions and revealed many different 
possible applications of the DWD climate predictions website. 
Indeed, some users already use these predictions or plan to use 
them soon: in the water sector, they can help in the operational 
and long-term management of dams, rivers and ground water in 
the context of droughts and heavy rainfall. In the agriculture and 

forestry sectors, climate predictions can be used to manage the 
time of planting and the kind of species to plant as well as cope 
with possible threats due to pest infestation. In the energy sector, 
future potentials of solar and water energy can be estimated to 
plan operational energy distribution and long-term structure 
work. In the health sector, adaptation measures for long heat 
waves and the spread of vector diseases can be planned and 
implemented. In the insurance sector, the occurrence of extreme 
events such as heavy rainfall and corresponding flooding can be 
assessed to adjust insurance rates. Finally, the disaster risk 
reduction sector may strongly benefit from climate predictions 
across different time scales using the cascading prediction 
approach: if decadal predictions show a drying tendency for the 
next five years, first low-cost measures like long-term planning 
actions can be taken. If seasonal predictions display dryness for 
the next months, more intensive measures can be planned like 
planting dry-resistant crops. If subseasonal predictions confirm a 
drought, final actions can be taken to be better prepared for an 
emergency event. 

Finally, this website will be further enhanced to improve the un-
derstandability and usability of the climate service products 
offered. The climate prediction models will be further refined to 
improve the prediction quality. Further user-oriented products 
will be offered to extend the range of possible applications: wind, 
extreme events such as droughts, heat waves or storms and multi- 
annual seasonal means like five-year summer means. Additionally, 
regional prediction data for Germany will be provided for impact 
modelling activities. Understandability will be enhanced in 
improving the communication of complex issues via video clips, 
like already done for the prediction quality. The basic climate 
predictions will be made more attractive via interactive tools. 
Finally, a time series across all climate time scales including past 
observations, climate predictions for the next weeks to years and 
long-term climate projections will be developed to enable the next 
step towards a seamless future outlook at a glance. 

Data availability 

Data will be made available on request.   

Introduction 

For many years future climate outlooks for Germany focused on long 
climate change projections analyzing the impacts of future scenarios of 
natural and anthropogenic forcings to advise governments and decision- 
makers, like in the latest assessment report of the Intergovernmental 
Panel on Climate Change (IPCC, 2021) based on coordinated multi- 
model simulations of the Coupled Model Intercomparison Projects (e. 
g. CMIP Phase 6, Eyring et al., 2016). However, surveys, user workshops 
and individual user meetings at Deutscher Wetterdienst (DWD) reveal 
that climate data users from different German user groups, like the so-
ciety, economy, government policy or climate impact research, need 
further information on short to medium-term climate variability to 
implement appropriate operational management and adaptation activ-
ities. Such user needs were stated e.g. in the agriculture (Solaraju-Murali 
et al., 2021), water management (Paxian et al., 2022), energy 
(Ostermöller et al., 2021) or insurance sectors (C3S, 2022a). Information 
on climate variability for the coming weeks, months and years can be 
derived from climate predictions on the subseasonal, seasonal and 
decadal timescales, respectively. They close the gap between weather 
predictions for the next days and climate projections for the next tens of 
years, combining the initialization of various components of the climate 
system, like ocean (Matei et al., 2012) or land surface (Bellucci et al., 
2015), with external forcings from aerosols and greenhouse gases (Van 
Oldenborgh et al., 2012). A few years ago the Global Framework for 
Climate Services highlighted the development of climate information for 
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society in interaction with users to manage hazards, opportunities and 
adaptation activities concerning both long-term climate change and 
short-term climate variability (Hewitt et al., 2012). 

In the international community, seasonal climate predictions based 
on coupled models such as System 1 of the European Centre of Medium- 
Range Weather Forecasts (ECMWF, 2022a) are operational since over 
20 years, and climate services based on seasonal climate predictions are 
developed and disseminated: for example the Lead Centre for Longe- 
range forecast multi-model ensemble (KMA, 2022) of the World Mete-
orological Organization (WMO) collects seasonal forecasts of different 
global producing centers (recently 14) for more than ten years. It offers 
deterministic and probabilistic multi-model prediction plots and issues 
regular Global Seasonal Climate Updates (Graham et al., 2011). The 
Copernicus Climate Change Service (C3S, 2022b) provides seasonal 
forecasts from eight prediction systems and sector-specific applications 
in its Sectoral Information System (Buontempo et al., 2020). It offers 
operational services for the water management (C3S, 2022c) and energy 
sectors (C3S, 2022d) applying seasonal forecasts. 

For several years the ECMWF publishes subseasonal predictions of 
different variables twice a week on its website. The current version of 
these ‘Extended forecast graphical products’ can be found on ECMWF 
(2022b). Subseasonal and seasonal temperature and rainfall forecasts 
are issued operationally in the ‘Climate and forecasts products’ section 
of the International Research Institute for Climate and Society (IRI, 
2022) and the ‘Climate outlooks – weeks, months and seasons’ section of 
the Australian Bureau of Meteorology (BOM, 2022). Applications of 
subseasonal forecasts were analyzed in 12 sectoral case studies, e.g. on 
health, agriculture or water management (White et al., 2021), and case 
studies on the subseasonal predictability of extreme events such as 
heatwaves, heavy precipitation and cyclones were performed (Domeisen 
et al., 2022) to plan preparedness and emergency measures. 

Only a few years ago, one of the first websites on decadal predictions 
was developed in the MiKlip project (Hettrich et al., 2021), showing 
ensemble mean and probabilistic temperature predictions of the German 
decadal prediction system for Europe and the world. The WMO Lead 
Centre for Annual to Decadal Climate Predictions (Met Office, 2022) 
publishes forecasts from five global producing and 14 contributing 
centers and provides the Global Annual to Decadal Climate Update 
(Hermanson et al., 2022). A C3S demonstrator service presents proto-
type decadal climate prediction products (Dunstone et al., 2022) for the 
agriculture (Solaraju-Murali et al., 2021), energy (C3S, 2022e), insur-
ance (C3S, 2022a) and infrastructure sectors (Paxian et al., 2022). 

Two surveys of the MiKlip project on decadal predictions reveal the 
needs of German data users: mainly predictions of temperature and 
precipitation (but also wind, heat and droughts) for Germany and 
German regions accompanied by information on the ensemble spread 
and quality of the prediction. The usability of the MiKlip decadal pre-
dictions website (Hettrich et al., 2021) is limited because it is too 
complex for basic users and high resolution for Germany is missing. 
Generally, a climate service should be tailored to user requirements, e.g. 
providing different layers of complexity for different user groups, and 
delivered in data formats compatible with user working routines to 
guarantee its usability (Bruno Soares et al., 2018; Rössler et al., 2019). 
To set up a successful user-oriented climate service, users should be 
involved in the development process, and feedback should be regularly 
considered (Buontempo et al., 2018). Interacting with sector-specific 
intermediate users helps to bridge the gap between providers of 
climate predictions and different user groups (Buontempo et al., 2020). 
Additionally, the emerging possibilities to create climate services based 
on subseasonal, seasonal and decadal predictions enable the develop-
ment of a seamless range of climate prediction products for the consis-
tent planning of adaptation activities for the next weeks, months and 
years (Kushnir et al., 2019). The WMO expanded the original definition 
of ‘seamless’ describing predictions across different time scales (Palmer 
et al., 2008) to include different models, observations, space and time 
scales and Earth system components as well as requirements of users and 

decision-makers in a value cycle approach to enable a co-design of 
climate services (Ruti et al., 2020). According to our state of knowledge 
no such operational seamless climate prediction service exists until now 
although needed by different sectors, e.g. in Germany. 

The objective of this manuscript is to present and describe the design 
of the DWD climate predictions website developed to cover the needs of 
different user groups in Germany: a user-oriented operational climate 
prediction product on subseasonal, seasonal and decadal timescales for 
Germany, German regions and cities, Europe and the world. The pub-
lication of subseasonal predictions for Europe and the world was in 
preparation at the time this paper was written. The website is not fully 
seamless because some boundaries cannot be overcome, i.e. the usage of 
different model systems and observations leading to separate products 
with different reference periods across time scales. However, it provides 
a ‘one-stop-shopping’ of prediction products of consistent evaluation 
and presentation across different time scales on a single platform. Two 
information layers are presented: the simple, spatially averaged basic 
climate predictions and the complex, gridded expert climate predictions. 
The predictions are displayed combined with the corresponding skill, e. 
g. via a skill traffic light. The website was developed in cooperation with 
intermediate and end users, and several feedback loops were considered. 
Thus, Section “Data and methods” of this article introduces the predic-
tion models and observations used and the methods applied, like the 
statistical downscaling, bias correction and recalibration, calculation 
and kind of presentation of climate predictions and their skill and the 
process of user interaction. Section “Results” presents the resulting 
structure of the website, examples to show the display of the ensemble 
mean and probabilistic basic and expert climate predictions and their 
skill for different timescales and how user feedback helped to shape the 
products. Lastly, Section “Discussion” summarizes the design and 
development of the DWD climate predictions website and draws major 
conclusions motivating future activities in the outlook. Please note that 
the manuscript describes the current state of the website at the time of 
writing. Since it is an operational climate service, the structure or pre-
sentation of products might change in the future. 

Data and methods 

This section describes the global climate predictions at subseasonal, 
seasonal and decadal timescales and the high-resolution predictions 
statistically downscaled in Germany applied in the development of this 
website and the observations used to evaluate the prediction skill 
globally and in Germany. Furthermore, the methods used are presented: 
the bias correction and recalibration procedure, the temporal and spatial 
aggregation, the computation of ensemble mean and probabilistic pre-
dictions, the assessment of prediction skill, the display of prediction 
products and the process of user interaction to evaluate and shape the 
products. 

Global subseasonal climate predictions 

Since DWD does not operate an own subseasonal climate prediction 
system until now, the extended-range (monthly) forecasts of the ECMWF 
(2022c) are applied as global subseasonal climate predictions (week 2 to 
5 after prediction start, see Section “Temporal and spatial aggregation”). 
The Integrated Forecasting system (IFS) CY47R3 (ECMWF, 2021, since 
10/2021) employs a horizontal resolution of 36 km for days 15–46, 
extending the Ensemble forecasts (ENS) for days 1–14 at 18 km. It is 
coupled to the NEMO ocean model in the ORCA025 configuration, i.e. at 
approximately 0.25◦ horizontal resolution (ECMWF, 2021). In the at-
mosphere, ERA5 reanalyses (Hersbach et al., 2020) and the operational 
analysis with 4D-Var are applied for initializing hindcasts and real-time 
forecasts, respectively. In the ocean, data from the Ocean ReAnalysis 
System 5 (ORAS5, Zou et al., 2017) and the near-real-time component of 
the operational ocean analysis (NEMOVAR, Mogensen et al., 2012) are 
used. Ensemble members are generated by different initial conditions 
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using the singular vector method (Leutbecher and Palmer, 2008), 
ensemble data assimilation (EDA, Buizza et al., 2008) and the Stochas-
tically Perturbed Parametrization Tendency scheme (SPPT, Leutbecher 
et al., 2017). The real-time ENS/monthly forecasts include 51 ensemble 
members, started twice weekly every Monday and Thursday. The 11 
hindcast members are initialized on the equivalent day and month in the 
hindcast period of the last 20 years, e.g. 2002–2021 for prediction start 
in 2022. The subseasonal predictions are available at ECMWF (2022d), 
depending on the data access rights. 

Global seasonal climate predictions 

Global seasonal predictions are taken from the German Climate 
Forecast System (GCFS, Fröhlich et al., 2020), currently Version 2.1 
(DWD, 2022a). It uses the Max Planck Institute for Meteorology Earth 
System Model High Resolution (MPI-ESM-HR, Mauritsen et al., 2018; 
Müller et al., 2018) with a horizontal resolution of ~70 km at 50◦ N and 
95 levels in the vertical in the atmosphere as well as 0.4◦ resolution and 
40 levels in the ocean. The assimilation applies continuous nudging 
(Baehr et al., 2015) of ERA5 reanalyses (Hersbach et al., 2020) for 
hindcasts and near real-time ERA5T data for operational forecasts in the 
atmosphere as well as ORAS5 reanalyses (Zou et al., 2017) for ocean and 
sea ice. The ensemble generation uses bred vectors in all ocean levels 
(Baehr and Piontek, 2014) and a perturbation of the diffusion at the 
uppermost atmospheric level. Thirty hindcast ensemble members are 
started on the first day of all months in the hindcast period 1990–2019 
for a simulation period of six months. Fifty forecast members are 
initialized from 2020 on. As both data sets are based on the same 
analysis systems, we use the first 30 forecast members of 2020 to extend 
the hindcast period to cover the full reference period of 1991–2020. 
External CMIP6 forcing uses historical data until 2014 and SSP245 
(Shared Socioeconomic Pathways, Fricko et al., 2017) scenario data 
afterwards. Since DWD provides seasonal forecasts to C3S, the opera-
tional predictions are available at the C3S Climate Data Store (CDS; C3S, 
2022f). 

Global decadal climate predictions 

The MPI-ESM Low Resolution Version 1.2 (MPI-ESM-LR, Mauritsen 
et al., 2018) is applied as global decadal prediction system. Forty levels 
in the vertical at ~1.5◦ horizontal resolution are considered in its 
oceanic component MPIOM and 47 levels at a ~200 km grid in its at-
mospheric component ECHAM6 (Jungclaus et al., 2013; Pohlmann 
et al., 2013; Stevens et al., 2013). The ocean is initialized applying an 
Ensemble Kalman filter (Brune et al., 2015) to assimilate observed 
anomalies of temperature and salinity from EN4 (Good et al., 2013). In 
the atmosphere, full-fields of ERA40 (Uppala et al., 2005) and ERA5 
reanalyses (Hersbach et al., 2020) are nudged before 1978 and after, 
respectively. This concatenation of different reanalyses was chosen 
because the ERA40 driven spin-up run was more stable than the one 
using the ERA5-preliminary-backextension data before 1979 revealing a 
questionable quality of that particular dataset for nudging purposes. 
Ten-year long decadal predictions are started on 1 November annually 
in the hindcast period of 1960–2020 from this assimilation run. Pre-
dictions are started from 2021 on applying the same setup as the hind-
casts. Sixteen ensemble members are initialized with various oceanic 
conditions resulting from different states of the Ensemble Kalman filter. 
Observations and the SSP245 scenario were applied as external CMIP6 
forcing before 2015 and after, respectively. The decadal predictions are 
accessible from DWD’s ESGF (Earth System Grid Federation, DWD- 
ESGF, 2022) node. 

Statistical downscaling 

To achieve a high spatial resolution in Germany the global pre-
dictions are downscaled by the empirical–statistical downscaling 

procedure EPISODES (Kreienkamp et al., 2018; Kreienkamp et al., 
2020). Subseasonal, seasonal and decadal climate predictions at ~5 km 
resolution are computed for Germany. This output is used to construct 
prediction products for German cities (see Section “Temporal and spatial 
aggregation”) on seasonal and decadal timescales and aggregated to a 
~20 km resolution to provide prediction products for Germany on all 
timescales to be displayed on the DWD climate predictions website 
(DWD, 2022b). The procedure builds statistical relationships between 
large-scale NCEP/NCAR reanalyses (Kalnay et al., 1996) and small-scale 
HYRAS observations (Rauthe et al., 2013; Frick et al., 2014) in Germany 
which are transferred to global predictions. 

First, a ‘perfect prognosis’ approach (Klein et al., 1959; San-Martín 
et al., 2017) is applied. For each predicted day of the model the 35 most 
similar reanalysis days (analogue days) are selected (for each prediction 
ensemble member separately). For this, geopotential height, relative 
humidity and temperature fields at various levels (1000, 850, 700, and 
500 hPa) are interpolated to a 100 km grid, and from those additional 
fields are derived (e.g., vorticity). The values of two of those fields in a 
radius of two grid rows with respect to each target point (i.e. an area of 
400 km × 400 km) are considered for the selection of the analogue days. 
Linear regressions between regional means of local observations of 
precipitation or temperature and large-scale states are constructed for 
the chosen 35 analogue days and transferred to the global prediction, 
resulting in a first prediction for each day. These interim results are 
independent for each variable and point on the reduced 100 km grid, so 
consistency in space and between variables is not ensured up to here. 
Second, for each predicted day, the pattern of the short-term variation of 
temperature and precipitation is compared to that of all observed days, 
and the most similar one is determined. For all output variables on the 
entire observational grid, the final high-resolution synthetic time series 
is constructed in adding the daily observed climatology of the day in 
year to be predicted and the short-term variability of the most similar 
observed day. This downscaling results in consistent multi-site and 
multi-variable datasets at the high resolution of the observational 
dataset (i.e. ~ 5 km). The downscaled subseasonal, seasonal and decadal 
predictions will be accessible via DWD’s ESGF node (DWD-ESGF, 2022) 
in the coming months. 

This downscaling procedure was originally generated to be applied 
to climate projections. It chooses the large-scale quantities with highest 
correlation to local quantities and offers high-resolution output data 
with clearly reduced systematic biases. In addition, all output variables 
are consistent in space which is essential for impact modelling. The 
downscaling does not select the large-scale quantities with largest pre-
diction skill in comparison with observations. Hence, the skill of the 
global model is preserved at high resolution but not improved 
(Ostermöller et al., 2021). Bias correction and recalibration techniques 
addressing further (e.g. time-dependent) model errors are described in 
Section “Bias correction and recalibration”. 

Global observations 

Observational data to evaluate global temperature predictions are 
taken from the ERA5 reanalyses (Hersbach et al., 2020). Based on the IFS 
Cy41r2, global hourly fields at a horizontal resolution of 31 km are 
provided from 1950 onwards. Improved model components and the 
hybrid incremental 4D-Var system (Bonavita et al., 2016) assimilating 
satellite data and in situ measurements from land stations, ships, buoys, 
radiosondes and aircraft reveal clear advances compared to former 
ECMWF reanalyses. The data is available from the CDS (C3S, 2022f). 

For land-surface precipitation, global observations from the Full 
Data Monthly Product Version 2020 (Schneider et al., 2020a) of the 
Global Precipitation Climatology Centre (GPCC) at a 1◦ grid for 
1891–2019 are used. This in situ reanalysis is the most accurate GPCC 
one and based on ~ 85,000 global stations. Recent months are taken 
from the near real-time GPCC Monitoring Product Version 2020 
(Schneider et al., 2020b) interpolating stations of WMO’s Global 
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Telecommunication System (GTS). For subseasonal predictions, daily 
precipitation of the GPCC Full Data Daily Version 2020 (Ziese et al., 
2020) at a 1◦ global grid for 1982–2019 is applied, merging station re-
cords from different sources. Again, recent daily data are added from the 
GPCC First Guess Daily Product (Schamm et al., 2013) based on WMO 
GTS stations. Information on accessibility is given in the cited literature. 

Precipitation observations over the global oceans are derived from 
the Global Precipitation Climatology Project (GPCP). Monthly fields at 
2.5◦ resolution for 1979 until today are taken from the GPCP Climate 
Data Record (CDR) Version 2.3 (Adler et al., 2016), merging passive 
Microwave and infrared satellite estimates and in situ measurements. 
Daily fields from the GPCP Climate Data Record (CDR) Version 1.3 
(Huffman et al., 2001, Adler et al., 2017) at 1◦ resolution for the period 
1996 to today are applied to evaluate subseasonal predictions. The 
datasets can be accessed as described in the literature. 

This combination of different precipitation products over land and 
ocean is done because the evaluation of decadal predictions needs to 
cover the long hindcast period 1961–2020. No global satellite product is 
available from 1961 on but station-based datasets are. Some tests using 
GPCC from 1961 to 1978 over land and GPCP from 1979 on globally 
revealed temporal inconsistencies due to changing datasets over land. 
Thus, GPCC is used from 1961 on over land and GPCP from 1979 on over 
the ocean (requiring a shorter evaluation period for the latter). The 
setting for decadal predictions was transferred to seasonal and sub-
seasonal predictions to be comparable. However, one needs to be careful 
with GPCC data quality in regions of sparse observations, but this 
problem may be partly attenuated because global precipitation maps are 
shown at a coarse 5◦ grid aggregating more stations. 

Observations for Germany 

For Germany, precipitation predictions at high resolution are veri-
fied with HYRAS observations. The daily fields at 5 km grid for Germany 
and surrounding areas are calculated from nearly 6,200 station records. 
The combination of inverse distance weighting with a multiple linear 
regression considering orography can conserve the record values per 
grid box (Rauthe et al., 2013). Daily updates for Germany are available 
from 1951 onwards. Temperature observations from HYRAS provide 
daily fields for 1951–2015 at a 5 km grid. Operational updates are 
planned from 2023 on. 1,300 stations from Germany and neighboring 
regions are interpolated applying non-linear vertical profiles and inverse 
distance weighting and considering the effects of urban heat islands, 
distance to the sea and elevation (Razafimaharo et al., 2020). The 
HYRAS data are available on DWD’s open data section on the Climate 
Data Center (CDC, 2022a). 

We plan to use HYRAS temperature data as soon as they become 
operational in 2023. Until then, the operational monthly averaged daily 
2 m air temperature grid over Germany available on DWD’s CDC 
(2022b) is applied for seasonal and decadal predictions because it pro-
vides a longer time period from 1881 until today than HYRAS and has 
similar yearly means. The 1 km grid is calculated based on DWD station 
records (Kaspar et al., 2013), using more than 500 stations after 1951. 
The interpolation applies topographical height regression and inverse 
distance weighting (Müller-Westermeier, 1995) but local effects are not 
considered. Since subseasonal predictions need daily data, ERA5-Land 
reanalysis data (ECMWF, 2022e) are applied. They provide hourly 
data of surface variables from 1950 until few months before today. The 
ERA5 reanalysis is replayed over land at 9 km spatial resolution, using 
the Tiled ECMWF Scheme for Surface Exchanges over Land incorpo-
rating land surface hydrology (H-TESSEL) and IFS version CY45R1. 
Uncertainty of surface variables are provided from corresponding ERA5 
fields at lower resolution (ECMWF, 2022f). ERA5-Land data is provided 
via the CDS (C3S, 2022f). Any possible inconsistency between ERA5- 
Land and HYRAS/CDC data (even if they are well correlated over 
time) will be corrected as soon as the operational HYRAS temperature 
data will be available in 2023. 

Bias correction and recalibration 

Since the empirical-statistical downscaling constructs synthetic time 
series based on high-resolution observations, the resulting time series 
reveal reduced climatological biases (Ostermöller et al., 2021). 
Furthermore, in computing anomalies of observations and models for 
different lead times separately over all start dates using the observed and 
the model’s (lead-time dependent) climatology, respectively, the lead 
time dependent bias and thus, the model drift from its initial state to its 
climatology are adjusted (Goddard et al., 2013; Boer et al., 2016). This 
holds for subseasonal, seasonal and decadal predictions. 

Additionally, the Decadal Forecast Recalibration Strategy 
(DeFoReSt, Pasternack et al., 2018) is applied to (yearly) decadal pre-
dictions of temperature and precipitation per grid box to address for lead 
and start time dependent conditional bias, drift and ensemble dispersion 
within a cross-validation setup which has proven to improve the skill. 
DeFoReSt is based on a parametric drift correction (Kruschke et al., 
2015) with a third order polynomial along lead years (Gangstø et al., 
2013) and a linear trend over start years (Kharin et al., 2012). A third 
and second order polynomial along lead years as well as a linear trend 
over start years are considered to adjust the conditional bias and the 
ensemble spread, respectively. In the development of this website, a 
more adaptive DeFoReSt version (Pasternack et al., 2021) is applied 
using an extra additive term for the ensemble spread adjustment to ac-
count for unconditional ensemble dispersion. Moreover, this adaptive 
version identifies the most relevant polynomial orders from the data 
directly, where the maximum order is derived by the original DeFoReSt 
version. To address large interannual variations, a third order poly-
nomial over start years is used for ensemble mean correction of small- 
scale precipitation in Germany. The recalibrated output consists of 
yearly prediction data. The computation is based on the recalibration 
software (Pasternack et al, 2021) of the ‘Free Evaluation System 
Framework for Earth System Modeling’ (FREVA, Kadow et al., 2021). Its 
availability is described in these sources. 

Both recalibration and skill assessment (see Section “Calculation of 
prediction skill”) are computed on the full evaluation period from 1961 
until 2020. Since long time periods are necessary to obtain robust results 
if recalibration and skill are variable in time and cross validation is 
applied following international guidelines, we did not split the evalua-
tion period into two periods for recalibration and skill assessment. This 
is especially important when recalibration will be applied to subseasonal 
and seasonal predictions with even shorter evaluation periods in future 
(see outlook in Section “Conclusions and outlook”). 

Temporal and spatial aggregation 

The DWD climate predictions website offers prediction products on 
different temporal and spatial scales. The temporal averaging and the 
spatial interpolation and aggregation are done equally for climate pre-
dictions and observations: subseasonal predictions of the next six weeks 
(starting on Monday) are averaged for different calendar weeks 
(Monday-Sunday): week 2 (day 8–14), week 3 (day 15–21), week 4 (day 
22–28) and week 5 (day 29–35). The first week is not considered 
because it is almost over when the product is published after processing 
on Thursday, and the sixth week is omitted because of limited skill. 
Seasonal predictions are provided for running 3-month means of the 
coming six months: months 1–3, months 2–4, months 3–5 and months 
4–6. Finally, decadal predictions of the next ten years are offered for the 
annual mean of year 1 and the five-year means of years 1–5, years 3–7 
and years 6–10. Thus, four forecast periods are presented for each time 
scale. 

Considering spatial scales, global prediction products cover the 
whole world at 5◦ resolution because the graphical representation of the 
prediction skill via the size of dots provides this resolution at global scale 
(see Section “Presentation of prediction and prediction skill”). Those for 
Europe are computed on a 1◦ grid for subseasonal and seasonal 
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predictions and 2◦ grid for decadal products, corresponding to the 
original resolution of global decadal predictions. Please note that the 
publication of subseasonal predictions for Europe and the world was still 
in preparation at the time this article was written. Finally, the products 
of the statistical downscaling for Germany are displayed at ~20 km 
resolution, also for better graphical representation. Overall, regionally 
averaged prediction products consider the mean of all grid boxes within 
the selected region. 

Within the ‘e-shape’ project (EuroGEO Showcases: Applications 
Powered by Europe; e-shape, 2022) as part of the EU Horizon 2020 
programme, seasonal predictions for the German pilot city Aschaffen-
burg were developed, considering the mean of all EPISODES grid boxes 
at ~ 5 km resolution within the selected urban area. Since EPISODES 
output is based on original observations, this aggregation can be per-
formed even if less than the common minimum of nine grid boxes is 
used. This approach was extended to cover the 16 capital cities of all 
German federal states and decadal predictions. However, this procedure 
was not yet implemented for subseasonal predictions because of high 
computing times within the limits of short operational time slots. 

Calculation of ensemble mean and probabilistic climate predictions 

Two prediction types are assessed for subseasonal, seasonal and 
decadal predictions: first, the ensemble mean prediction averages all 
ensemble members of the prediction model and computes the anomaly 
of this ensemble mean from the climatological average of the model 
hindcasts in a reference period. However, no information on the 
ensemble spread is given. In the development of this website, the WMO 
reference period 1991–2020 is applied for seasonal and decadal pre-
dictions, whereas the last 20 years are used for subseasonal predictions 
indicating the maximum hindcast length. To bridge this gap of different 
reference periods, we present all values of climatological means (and 
tercile thresholds) in basic climate predictions in addition to anomaly 
(and probabilistic) predictions which is very important to provide an 
appropriate product for different German users. We plan to evaluate 
with users if these different reference periods pose a challenge when 
comparing predictions across different timescales. If yes, we could use 
the observed offset between the climatologies of the last 20 years and 
1991–2020 to also relate the anomalies of the subseasonal predictions to 
the WMO reference period 1991–2020 to allow one further step towards 
a seamless outlook. 

Second, the probabilistic prediction is based on the distribution of 
the ensemble prediction. The climate characteristics of the hindcasts of 
the reference period (see above) are divided into the three categories of 
equal probabilities ‘below normal’, ‘normal’ and ‘above normal’, based 
on the 33rd and 66th percentiles (approximately terciles). For temper-
ature, the categories are denoted as ‘cold’, ‘normal’ and ‘warm’ and for 
precipitation, they are indicated as ‘dry’, ‘normal’ and ‘wet’. The tercile 
thresholds are applied to group the prediction ensemble members for the 
future in those three categories. The frequency of ensemble members in 
each category is used to estimate the predicted probability of occurrence 
(%) of each category. For small ensembles, the computation of proba-
bilities based on frequencies is corrected to allow for small sample sizes 
and their uncertainties (Dirichlet-Multinomial Model; Agresti and 
Hitchcock, 2005). Thus, the corrected probabilities of a small sample N 
may deviate from the original frequencies 0/N, 1/N, …, N/N. 

The computation of ensemble mean and probabilistic predictions is 
based on FREVA (Kadow et al., 2021) software routines. Information on 
accessibility is given in the cited article. 

Calculation of prediction skill 

To compute the skill of climate predictions the hindcasts started in 
the past are compared with observations in the evaluation period. 
Global observations (see Section “Global observations”) are used for 
prediction products for Europe and the world, whereas high-resolution 

observations (see Section “Observations for Germany”) are applied for 
those over Germany. The evaluation period is defined by the availability 
of hindcasts and observations: the last 20 years for subseasonal pre-
dictions (i.e. currently 2002–2021 for predictions started in 2022) and 
1991–2020 for seasonal predictions (but 1992–2021 for forecast periods 
lasting into the next year). For decadal predictions, the time period 
1961/ 1966–2020 is used for 1-/ 5-year means (to guarantee a common 
evaluation period for years 1–5, years 3–7 and years 6–10, when first 
start is end of 1960) and 1979/ 1984–2020 for precipitation over the 
ocean due to restricted availability of GPCP data. 

The ensemble mean prediction skill is assessed by two different 
metrics: first, the Pearson correlation (see e.g. Ernste, 2011) describes 
the linear relationship of the ensemble mean prediction and the obser-
vational data over all start years in the past, applying anomalies 
compared to the long-term climatology of hindcasts and observations, 
respectively (‘anomaly correlation’). A correlation coefficient of 1, 0 or 
− 1 denotes a positive relationship, no correlation or a negative rela-
tionship between observations and predictions, respectively. It is char-
acterized as a measure of association. Second, the Mean Squared Error 
Skill Score (MSESS, Murphy, 1988; Goddard et al., 2013; Kadow et al., 
2016) relates the mean squared error MSEP,O of the climate prediction Pj 
compared to observations Oj along start years j to the mean squared 
error MSER,O of a reference prediction Rj (see below) compared to 
observational data Oj: 

MSESSP,R,O = 1 −
MSEP,O

MSER,O
,withMSEP,O =

1
n

∑n

j=1

(
Pj − Oj

)2 (1) 

The skill of the probabilistic prediction is evaluated via the Ranked 
Probability Skill Score (RPSS, Ferro et al., 2008; Wilks, 2011; Kruschke 
et al., 2014). Anomalies of climate predictions and observations 
compared to their respective long-term climatological value are divided 
into three categories (‘above normal’, ‘normal’ and ‘below normal’) 
separated by the 33rd and 66th percentile thresholds of their respective 
climate state within a reference period. The ranked probability score 
RPSP,O describes the squared error of the cumulative probability of the 
climate prediction Pj,k compared to that of observations Oj,k along K 
categories and n start years. The frequency of ensemble simulations in 
each category defines Pj,k. If the observed category is larger than k, Oj,k is 
zero, otherwise one. The relationship between RPSP,O for the climate 
prediction and RPSR,O for a reference prediction defines the RPSS: 

RPSSP,R,O = 1 −
RPSP,O

RPSR,O
,withRPSP,O =

1
n
∑n

j=1

∑K

k=1

(
Pj,k − Oj,k

)2 (2) 

The MSESS and RPSS are larger than/ equal to/ smaller than zero if 
climate predictions show a higher/ similar/ lower agreement with the 
observed variability in the past than the reference prediction. A skill 
score of one defines perfect agreement because a perfect prediction re-
veals a MSE or RPS of zero. Skill scores are widely used to evaluate 
climate predictions (e.g. Goddard et al., 2013; Hermanson et al., 2022; 
WMO, 2021) but should be interpreted with caution because they may 
be impacted by observational uncertainty and biased in case of small 
samples (Wheatcroft, 2019). Please further note that the RPSS doesn’t 
evaluate the skill per category but for all of them and may overestimate 
the skill of the ‘normal’ category because the outside categories usually 
have better skill. 

The selection of reference predictions has been discussed with users 
at workshops and meetings to define those datasets commonly used as 
an alternative to climate predictions in Germany. Thus, a skill score 
helps users to decide if the ‘new’ climate prediction is better than, 
similar to or worse than what they used until now. For all climate pre-
dictions, we chose the long-term observed climate mean as reference 
prediction (denoting equal likelihoods for all categories for the RPSS). 
Additionally, uninitialized climate projections, i.e. an ensemble gener-
ated with the same model as the decadal climate predictions of this study 
but without initialization, are applied as reference prediction on the 
decadal timescale. Please note that a large part of the decadal 
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temperature prediction skill against the reference prediction ‘observed 
climatology’ is due to the long-term climate trend which the constant 
climatology does not represent. Since the climate projections include 
this trend, the decadal prediction skill against climate projections de-
scribes rather the short-term impact of initialization. Both reference 
predictions have been used in several studies as baseline to evaluate 
decadal climate prediction skill (e.g. Goddard et al., 2013, Kadow et al., 
2016, Kruschke et al., 2015, Paxian et al., 2019). We plan to evaluate 
with users in a survey if further reference predictions, e.g. extrapolated 
observed trends or persistence, would be appreciated. The concept of 
skill assessment using reference predictions is clearly communicated on 
the website, e.g. via a demonstrative video clip in German. 

The significance of skill is tested for all metrics by means of jack-
knifing. Each year of the evaluation period is deleted once, and the 
corresponding skill is calculated for each sample. Skill is considered 
significant and not an artefact of random variations due to small samples 
if it is larger or smaller than zero with 95 % confidence, i.e. if less than 
5% of the jackknife samples’ skill is smaller or larger than zero. For 
decadal predictions, significance of skill is still tested via 500 non- 
parametric bootstraps, randomly selected with replacement. From the 
next publication phase in early 2023 on, the significance testing of 
decadal predictions will use jackknifing with five-year blocks consid-
ering autocorrelation. This is done because jackknifing shows less errors, 
e.g. for variables with a strong trend, and is more decisive, i.e. showing 
more green or red and less yellow traffic lights which is advantageous for 
user decisions, and quicker in an operational context than 
bootstrapping. 

The metrics were computed based on the FREVA (Kadow et al., 
2021) routines ProblEMS (PROBabiListic Ensemble verification for 
MiKlip using SpecsVerification; Richling et al., 2017, applying packages 
from Siegert, 2014) and MurCSS (Murphy-Epstein decomposition and 
Continuous Ranked Probability Skill Score; Illing et al., 2014). The cited 
articles describe how to access the original code. 

Presentation of prediction and prediction skill 

The DWD climate predictions website was developed based on user 
surveys, workshops and meetings to ensure that the developed products 
meet their needs: first, since user demands vary widely, it was not 
possible to design a perfect solution for all. Thus, a layered website was 
developed offering basic and expert climate predictions. The basic 
climate predictions are simple, regionally averaged and available for 
Germany, four German regions and 17 German cities. The expert climate 
predictions are complex, gridded and provided for Germany (at high 
spatial resolution), Europe and the world. The presentation of expert 
probabilistic maps is more complex than basic ones (including the 
probabilities of the most probable categories). and prediction skill maps 
are offered in addition. Second, many German users are interested in 
accessing the values behind the plots. Thus, in addition to maps for 
certain time intervals and time series for certain regions, value tables of 
predictions and corresponding climate means and tercile thresholds 
from observations are presented for the basic climate predictions of 
Germany, German regions and cities. 

Finally, for more transparency, users appreciate to obtain the pre-
diction together with its quality (or skill). A traffic light was developed 
showing a green, yellow or red light if the climate prediction is signifi-
cantly better, not significantly different or significantly worse than the 
reference prediction, respectively. The MSESS evaluates the ensemble 
mean prediction, whereas the RPSS assesses the probabilistic prediction. 
For the basic climate predictions and the time series of the expert climate 
predictions, the traffic light accompanies all regionally averaged prod-
ucts. For the high-resolution maps of the expert climate predictions, one 
dot is displayed per model grid box: its color indicates the prediction, 
and its size denotes the skill, following the three categories of the traffic 
light defining large (green), medium-sized (yellow) and small dots (red). 
Note that this procedure does not display the ‘absolute’ measure of 

verification but the ‘relative’ skill score of the climate prediction 
compared to the alternatively used reference prediction to reveal its 
added value (see Section “Presentation of prediction and prediction 
skill”). The ‘absolute’ measure of association is indicated by the corre-
lation coefficient which is presented additionally. 

Process of user interaction 

The DWD climate predictions website is based on the MiKlip decadal 
predictions website which was further developed following user needs. 
The process of user interaction began with a first survey gathering 
general user needs in terms of decadal climate predictions in 2016. The 
next survey was distributed in 2017 evaluating the understandability 
and usability (relevance) of the MiKlip decadal predictions website. 
Both surveys were already stated in the introduction section. The next 
survey was initiated shortly before the decadal predictions were pub-
lished on the DWD climate predictions website beginning of 2020, again 
evaluating the understandability and usability of the predictions. The 
most recent survey was made available at the beginning of 2022 after 
the seasonal predictions were published on the DWD website. Since the 
subseasonal predictions were published in October 2022 the next survey 
is planned for the beginning of 2023. All surveys were made available 
online to users known from former workshops or interactions. 

Furthermore, DWD hosts annual user workshops. From 2016 until 
2020, the major focus was on decadal prediction. From 2021 on, the 
workshop addressed subseasonal, seasonal and decadal climate pre-
dictions as well as climate projections. Since the workshop includes 
several sessions for discussion or testing tools in small groups it was 
undertaken in person from 2016 until 2019, gathering 20–30 interested 
participants each year. Due to the Corona pandemic the workshop was 
conducted as online or hybrid events since 2020, reaching even more 
(100–120) participants. Finally, individual user meetings are conducted 
with selected users from different sectors asking for specific advice in 
terms of climate predictions. The meetings were undertaken in person or 
online depending on the state of the Corona pandemic. 

The participants of surveys, workshops and meetings were mainly 
from public authorities but also from the private sector, international 
organizations or the research sector. DWD hosted many attendees 
working in the field of climatology, climate change adaptation or miti-
gation, hydrology or agriculture and some members of the forestry, in-
surance, energy, disaster risk reduction and health sectors. We mainly 
reached people with medium or high level of meteorological under-
standing but only some people with low background knowledge. Thus, 
we tried to address more intermediate users, like overarching associa-
tions for insurance or agriculture, which can translate the relevant 
climate information to ‘their’ end users. 

The users reported on their daily working processes and their needs 
for climate predictions in terms of variables, time, space and un-
certainties. The surveys included links to the website including neces-
sary background information to understand the presented products. The 
workshops and individual meetings included introduction talks pre-
senting the website to provide a basis for discussion. The results of this 
user interaction were adjusted for the background of the participants. 
The major results and their impacts on the further development of the 
website are documented in the DWD newsletters on decadal climate 
predictions (2016–2020) or climate predictions and projections (from 
2020 on) published in German language twice a year (accessible via the 
DWD climate predictions website). In this manuscript, the results of this 
user interaction process are presented in Section “User feedback”. Since 
the numbers of participants of surveys, workshops and meetings were 
strongly varying, we summarize the results comprehensively for the 
whole process instead of presenting them separately for each user 
consultation. 
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Results 

In this section, the general structure of the DWD climate predictions 
website is briefly outlined. Then, the different prediction products of 
basic and expert climate predictions, i.e. ensemble mean and probabi-
listic predictions and prediction skill, are described and displayed with 
the help of example plots. Finally, user feedback on the understand-
ability and usability of this website which helped to shape the products 
is presented. 

General structure of the website 

The DWD climate predictions website (DWD, 2022b) offers sub-
seasonal, seasonal and decadal climate predictions for Germany, 
German regions and cities, Europe and the world. The publication of 
subseasonal predictions for Europe and the world was in preparation at 
the time this article was written. On the start page, one can choose be-
tween the simple basic climate predictions and the complex expert 
climate predictions. In both cases, the timescales can be selected on the 
second intermediate page. Additionally, the choice between predictions 
and skill is possible for expert climate predictions. Finally, the product 
page presents the climate prediction products as maps, time series or 
tables. The webpages offer links to current news, short frequently asked 
questions (FAQs) and detailed background information on climate pre-
dictions, models and skill, information on how to assess the different 
product graphics, data access and publications as well as a video clip 
explaining the concept of prediction skill and a feedback button. 

Basic climate predictions 

The basic climate predictions are focused on Germany, presenting 
predictions for whole Germany and four German regions (north, east, 
south, west). For seasonal and decadal timescales, predictions for 17 
German cities (see Section “Temporal and spatial aggregation”) are 
available in addition. The prediction skill is displayed as traffic light, 
showing a green, yellow or red light if the skill score of the climate 
prediction compared to the commonly alternatively used reference 
prediction ‘observed climate mean’ is significantly positive, not signif-
icant or significantly negative (see Section “Presentation of prediction 
and prediction skill”). For each product, a figure caption is given within 
the plot to improve its understandability, including a simplified 
description of the skill traffic lights for basic predictions (‘relatively 
good, satisfactory or poor prediction quality’, see Section “User feed-
back”) and the dates of prediction start and plot generation (to control 
different plot versions). For decadal predictions, these updates will be 
added with the next release at the beginning of 2023. 

Basic climate predictions: ensemble mean predictions 
The ensemble mean predictions present the anomalies compared to 

the climatology in the reference period (see Section “Calculation of 
ensemble mean and probabilistic climate predictions”) by means of 
maps, time series and tables. 

First, four German maps are displayed for the four standard forecast 
periods of a certain timescale (see Section “Temporal and spatial ag-
gregation”). Each map presents the color-coded ensemble mean pre-
diction and the skill traffic light for four German regions (and 17 
German cities for seasonal and decadal predictions if a city is selected). If 
a region or city is chosen, it is framed in the plot (and enlarged by a 
magnifier in case of a city) and the observed climate mean in the 
reference period is given. Calculating the anomaly of the model pre-
diction with respect to the model climatology (as done here) and relating 
it to the observed climatology leads to an inherent bias correction. Fig. 1 
shows an example of the seasonal prediction for temperature in Ger-
many, initialized in December 2022, but focuses on the first and last 
standard forecast period leaving out the intermediate ones. A tempera-
ture anomaly of − 0.5–1.0 ◦C is predicted for northern and eastern 

Germany in December-February 2022/23 compared to the reference 
period 1991–2020. Slightly lower anomalies of − 0.2–0.5 ◦C are shown 
for the remaining regions. The skill score compared to the reference 
prediction ‘observed climate mean’ is positive in all German regions 
(green traffic light). For March-May 2023, the predicted anomaly is 
positive (0.5–1.0 ◦C) and the skill traffic light shows red indicating 
decreasing skill with increasing lead time. 

Second, a time series displays the predictions for a selected German 
region or city as colored dots for the four standard forecast periods. The 
color of the dots follows the skill traffic light below the time series. Box 
and whisker plots present the minimum, the 25th, 50th and 75th per-
centiles and the maximum of the prediction ensemble, whereas the 
traffic light only evaluates the ensemble mean but not the spread. The 
ensemble spread is presented to explain to users that the ensemble mean 
prediction is accompanied by ensemble uncertainty, but that they 
should be cautious not to over-interpret the ensemble spread. Recali-
bration of subseasonal and seasonal predictions and verification mea-
sures of ensemble spread are still planned in future time (see outlook in 
Section “Conclusions and outlook”). The predictions can be compared to 
the minimum and maximum observations in the reference period illus-
trated by a grey band. The observed climate mean per forecast period is 
given on the y-axis. Fig. 2 shows the subseasonal prediction for tem-
perature in western Germany, started on 21 November 2022. The 
ensemble mean prediction for the last week of November (week 2 after 
prediction start) is positive changing to a slightly positive anomaly in the 
next week and further approximating the zero-anomaly line in the last 
two weeks. However, the ensemble spread is large and includes both 
positive and negative anomalies, sometimes even exceeding the range 
between observed minima and maxima. The skill traffic light shows 
green for the first two weeks and yellow for the last ones. 

Finally, the table gives the values of predictions and observed 
climate means and the skill traffic lights for the selected German region 
or city and the four standard forecast periods. The minimum and 

Fig. 1. Basic seasonal climate predictions: maps of ensemble mean predictions 
for temperature in Germany, started in December 2022. The intermediate 
forecast periods January-March and February-April 2023 are not shown here 
(published on www.dwd.de/climatepredictions). 
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maximum values of the ensemble are added in brackets. Since the traffic 
lights are based on the MSESS they reflect the performance on amplitude 
of the ensemble mean anomalies but they don’t evaluate the spread of 
the ensemble. Fig. 3 displays the decadal prediction for precipitation in 

northern Germany, initialized end of 2021. For all forecast periods, 
negative anomalies of the ensemble mean compared to the long-term 
climate mean are forecast, but the ensemble spread does also include 
small positive anomalies. The observed climate means of the reference 
period 1991–2020 are 731 l/m2 for 1-year means and 738 l/m2 for 5- 
year means. This small difference results from the fact that only those 
1- or 5-year means lying completely within the reference period are 
considered. The skill traffic light is green for the second and third period 
and yellow for the others. 

Basic climate predictions: probabilistic predictions 
The probabilistic predictions display the probabilities of occurrence 

[%] of below normal, normal and above normal conditions based on the 
33rd and 66th percentiles of the climate characteristics in the reference 
period (see Section “Calculation of ensemble mean and probabilistic 
climate predictions”) applying maps, time series and tables. 

The maps of probabilistic predictions are similarly structured to 
those of ensemble mean predictions, but the color-coded probabilistic 
prediction shows the most probable of the three categories and the 33rd 
and 66th percentiles of observations in the reference period are given 
defining the boundaries of the ‘normal’ category. If the ‘below normal’ 
and ‘normal’ categories or the ‘above normal’ and ‘normal’ ones or all 
three categories are all predicted with the highest probability, the 
category ‘normal’ is shown, leading to a ‘less extreme’ prediction. The 
result ‘no data’ is presented for missing values and if the ‘below normal’ 
and ‘above normal’ categories are both predicted with the highest 
probability, indicating an uncertain prediction voting equally for two 
opposed conditions. This approach to present probabilistic maps is 
clearly communicated in the ‘Help to assess the graphics’ section on the 
website, and the probabilities of all three categories are available in 
corresponding time series and tables. However, this approach will be 
part of the next survey to evaluate with users if an additional category 
‘equal chance’ (e.g. if all categories are below 40%) or a label ‘no data or 
no signal’ (for missing values or predictions with highest probabilities of 
above and below normal conditions) would be clearer. The seasonal 
prediction for precipitation in the city of Hamburg, started in December 
2022, is shown in Fig. 4. Again, only the first and last forecast periods 
are presented. The magnifier enlarges the predictions of ‘dry conditions’ 
in Hamburg and reveals green and red traffic lights for the first and last 
forecast period, respectively. The observed normal category is 
168–229 l/m2 for December-February and 139–170 l/m2 for March-May 
in 1991–2020. Please note that predictions for cities may differ from 
their surrounding region because smaller areas are considered. 

Additionally, a time series of bar charts displays the probabilistic 
predictions for a selected German region or city for the four standard 
forecast periods. Each bar chart shows the probabilities of occurrence 
[%] for all three categories ‘below normal’, ‘normal’ and ‘above normal’ 
for a certain period. The skill traffic lights are shown below the time 
series. The boundaries of the observed ‘normal’ categories are stated in 
the figure caption. Fig. 5 displays the subseasonal prediction for tem-
perature in Germany, initialized on the 28 November 2022. For the first 
two weeks of December, cold conditions are predicted by most ensemble 
members. For the third week, all three categories are the most probable 
ones, resulting in a less extreme ‘normal’ prediction in the map (not 
shown). Most members vote for warm conditions in the fourth week. The 
traffic lights of the first three weeks show green and that of the last one 
reveals yellow. 

Lastly, a table displays the numbers of the probabilities of occurrence 
[%] for all three categories, the observed boundaries of the ‘normal’ 
categories and the skill traffic lights for the chosen German region or city 
and the four standard forecast periods. The decadal prediction for 
temperature in the city of Magdeburg in eastern Germany, initialized 
end of 2021, is presented in Fig. 6. For 2022, ~78 % of the ensemble 
members vote for warm conditions, ~14 % for normal ones and ~8 % 
for a cold state. For 5-year means, the probability of high temperatures is 
even larger (~90–96 %). Note that the probabilities are corrected to 

Fig. 2. Basic subseasonal climate predictions: time series of ensemble mean 
predictions for temperature in western Germany, started on 21 November 2022 
(published on www.dwd.de/climatepredictions). 

Fig. 3. Basic decadal climate predictions: table of ensemble mean predictions 
for precipitation in northern Germany, started in November 2021 (published on 
www.dwd.de/climatepredictions). 
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allow for small samples (here N = 16, see section “Calculation of 
ensemble mean and probabilistic climate predictions”) and may deviate 
from the original frequencies 0/16, 1/16, …, 16/16. Green traffic lights 
are presented for all periods, evaluating the RPSS of the prediction. 
Further verification via reliability diagrams is planned in the near future 
(see outlook in section “Conclusions and outlook”). 

Expert climate predictions 

The expert climate predictions present complex, gridded prediction 
products for Germany, Europe and the world at resolutions of ~20 km, 
1–2◦ and 5◦, respectively. The comparison of results for Germany and 
Europe enable to contrast predictions and prediction skill of the statis-
tical downscaling with those of the global model on all time scales. 
Predictions are shown as maps and regionally averaged time series. 
Prediction skill is displayed as maps. The alternative reference predic-
tion is the ‘observed climate mean’, but for longer-term decadal pre-
dictions the ‘uninitialized climate projections’ can also be selected. 
Again, a figure caption is added within each plot, including a detailed 
description of the skill traffic light (‘significantly better than/ compa-
rable to/ significantly worse than the chosen reference prediction’) and 
the dates of prediction start and plot generation. For decadal pre-
dictions, these dates will be added beginning of 2023. 

Expert climate predictions: ensemble mean and probabilistic predictions 
The maps of the expert ensemble mean and probabilistic predictions 

are similar to the basic ones but per model grid box. The size of the dots 
per grid box indicates the skill (see Section “Presentation of prediction 
and prediction skill”). In addition to showing the color of the most 
probable category of the probabilistic predictions, the predicted prob-
ability of occurrence [%] of this category is displayed by the corre-
sponding color scale to add more information to this expert level. 

Fig. 4. Basic seasonal climate predictions: maps of probabilistic predictions for 
precipitation in the city of Hamburg, started in December 2022. The interme-
diate forecast periods January-March and February-April 2023 are not shown 
here (published on www.dwd.de/climatepredictions). Fig. 5. Basic subseasonal climate predictions: time series of probabilistic pre-

dictions for temperature in Germany, started on 28 November 2022 (published 
on www.dwd.de/climatepredictions). 

Fig. 6. Basic decadal climate predictions: table of probabilistic predictions for 
temperature in the city of Magdeburg in eastern Germany, started in November 
2021 (published on www.dwd.de/climatepredictions). 
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Fig. 7(A) presents the first and last forecast periods of the seasonal 
ensemble mean prediction for global precipitation, initialized in October 
2022, as an example. For October-December 2022, higher precipitation 
is forecast in Indonesia, Brazil and Australia, whereas lower precipita-
tion is predicted in the central and eastern Pacific Ocean, the eastern 
United States, Argentina and the tropical Indian Ocean. In these regions 
the seasonal predictions reveal positive skill scores compared to the 
reference prediction ‘observed climate mean’ (denoted as large dots). 
Negative skill scores are found e.g. in parts of Asia (small dots). For 
January–March 2023, anomalies are stronger in the central Pacific and 
weaker in the eastern United States, the Indian Ocean, Indonesia and 
Australia. Fig. 7(B) shows the subseasonal ensemble mean prediction for 
temperature in Germany, started on 7 November 2022. For 14–20 
November 2022, very high temperatures are predicted for western and 
south-western Germany exceeding the +2.0 ◦C anomaly and revealing 
positive skill scores compared to the reference prediction. The 
remainder of Germany presents less high but also positive anomalies. 
During 05–11 December 2022, skill scores are generally less positive and 
significant, showing negative skill scores compared to the reference 
prediction in some southern-eastern grid boxes. 

The decadal probabilistic prediction for temperature in Europe, 
started end of 2021, is displayed in Fig. 8 for the first and last forecast 
periods. For 2022, the most probable category in most of Europe is the 
warm one. The probability of occurrence is highest (larger than 8 %) in 
Italy. In southern Scandinavia, the normal category is the most probable 
one. For 2027–2031, the probability of the warm category is larger than 
85 % almost everywhere, indicating that small-scale variations of 1-year 

means are reduced and the climate trend is more obvious in 5-year 
means. Please note that probabilities of decadal predictions are recali-
brated for reliability, but those of subseasonal and seasonal predictions 
are not yet recalibrated. This is planned to be done in near future (see 
outlook in Section “Conclusions and outlook”). The skill scores of the 
decadal predictions compared to the observed climate mean are positive 
in most of Europe (Fig. 8(A)), because the prediction model represents 
the observed climate trend which the constant climatological value does 
not. Comparing initialized decadal predictions with uninitialized 
climate projections (Fig. 8(B)) reveals the impact of initialization 
because both capture the climate trend. The added value of initialization 
is small in 2027–2031 (mainly prominent in parts of eastern Europe) but 
significant in the United Kingdom, southern Scandinavia and north- 
eastern Europe in 2022 (indicated by large dots), highlighting its 
prominent impact on shorter timescales. Recent studies show that long- 
term trends might have impacts even on subseasonal prediction skill, 
especially in the tropics (Wulff et al., 2022). Thus, considering unin-
itialized climate projections or an extrapolation of observed trends as 
reference predictions might also be relevant for subseasonal or seasonal 
predictions to investigate if prediction skill stems from long-term trends. 

In addition to these maps, the expert climate predictions include 
regionally averaged time series of ensemble mean and probabilistic 
predictions for Germany, Europe and the world. Since these expert time 
series are displayed in exactly the same way as the basic time series no 
additional figures are shown here to illustrate them. 

Fig. 7. Expert seasonal and subseasonal climate predictions: maps of ensemble mean predictions for global precipitation, started in October 2022 (A) and for 
temperature in Germany, started on 7 November 2022 (B). For all predictions, only the first and last forecast periods are shown here (published on www.dwd.de 
/climatepredictions). 
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Expert climate predictions: ensemble mean and probabilistic prediction skill 
Similar to the expert climate predictions, four skill maps are pre-

sented for the standard forecast periods of a timescale (see Section 
“Temporal and spatial aggregation”). The MSESS and RPSS present the 
skill scores per grid box defining the sizes of the dots in the expert 
ensemble mean and probabilistic predictions, respectively. The color 
scale identifies if climate predictions reveal positive (green) or negative 
(purple) skill scores compared to the reference prediction. To evaluate 
the ‘absolute’ measure of association of climate predictions the corre-
lation coefficients between model and observations are displayed 
additionally, revealing positive (green) or negative correlations (pur-
ple). Statistically significant values are marked by black dots. Please 
note that the skill has been computed based on the verification of 
retrospective predictions with observations (see Section “Calculation of 
prediction skill”) in the evaluation period (denoted in the figure caption 
within the plots) and used to assess the quality of the prediction of the 
future state of a certain time period (specified left of or above the plot). 

Fig. 9 presents different skill scores and the correlation coefficients 
characterizing the predictions shown in Figs. 7 and 8 for the first forecast 
period. The MSESS of the seasonal ensemble mean prediction for global 
precipitation of Fig. 7(A) is displayed in Fig. 9(A). Significantly positive 
skill scores are found e.g. in the tropical Pacific and Indian Oceans, 
Indonesia and Australia, indicated by large dots in Fig. 7(A). On the 
contrary, significantly negative skill scores are prominent in the tropical 
Atlantic Ocean, Canada and central and northern Asia, denoting a lack of 
skill and relating to small dots in Fig. 7(A). Fig. 9(B) shows the 

correlation coefficients of the subseasonal prediction for temperature in 
Germany (Fig. 7(B)). Significantly positive correlations (higher than 
0.6) are found for southern Germany, whereas lower correlations 
(0.4–0.6) are stated for northern Germany. The correlation coefficients 
are presented in addition to the MSESS but they are not applied to define 
the dot sizes of the predictions. Finally, the RPSS of the decadal prob-
abilistic prediction for temperature in Europe considering the reference 
predictions ‘observed climate mean’ (Fig. 8(A)) and ‘climate projections’ 
(Fig. 8(B)) are displayed in Fig. 9(C) and (D). Compared to the observed 
climate mean significantly positive skill scores are found in large parts of 
Europe with maxima in south-western areas and Iceland. The RPSS is 
also significantly positive in western, northern and north-eastern regions 
when decadal predictions are contrasted with climate projections, but 
skill scores are lower and significance is not achieved in southern and 
eastern regions. Again, the RPSS is related to the dot sizes of the prob-
abilistic predictions in Fig. 8. 

User feedback 

This section summarizes the user feedback on understandability and 
usability (relevance) of the DWD climate predictions website from all 
surveys, workshops and individual meetings and its impacts on the 
further development of the website. In general, users are very interested 
in climate predictions, and the website is in large parts understandable 
by most users. They realize the potential of climate predictions to be 
applied in operational decision making and longer-term planning. 

Fig. 8. Expert decadal climate predictions: maps of probabilistic predictions for temperature in Europe, started in November 2021, considering the reference 
predictions ‘observed climate mean’ (A) and ‘climate projection’ (B). For all predictions, only the first and last forecast periods are shown here (published on www. 
dwd.de/climatepredictions). 
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Climate predictions can already be used in some working routines but 
there is still room for improvement. 

We received positive feedback on the consistent presentation of 
products for subseasonal, seasonal and decadal climate predictions. The 
forestry sector suggested to include also multi-annual seasonal means, 
like 5-year summer or winter means. The focus on Germany as well as 
German regions and cities at high resolution was needed by many public 
authorities and impact modelers and could be realized, especially 
because EPISODES can preserve the prediction skill at high resolution. 
Temperature and precipitation are needed by most users, but additional 
user-oriented variables and indices are relevant, like wind (e.g. for the 
energy sector, Ostermöller et al., 2021) and extreme events such as 
droughts (e.g. for the water sector, Paxian et al., 2022), heat waves (e.g. 
for the agriculture sector, Solaraju-Murali et al., 2021) or storms (e.g. for 
the insurance sector, C3S, 2022a). 

Most users appreciate both prediction types: ensemble mean and 
probabilistic predictions. However, some less experienced users have 

difficulties in understanding the expert probabilistic prediction map. 
Applying probabilistic predictions in their working routines might be 
challenging. We noticed that individual advice on workshops and 
meetings was very helpful for understanding and concluded that com-
plex issues should be presented by demonstrative video clips and short 
FAQs in addition to existing detailed background information texts (see 
below). In this context less experienced users appreciate that the basic 
climate predictions are simpler and more understandable than the 
expert climate predictions. 

Furthermore, information on uncertainty such as ensemble spread 
and prediction skill are very important. Most users understand the 
concept of skill scores of climate predictions compared to reference 
predictions including the fact that even a climate prediction with high 
average skill might be worse than the reference prediction sometimes. 
They appreciate the detailed background information on the website. 
Again, some less experienced users struggle with this concept or don’t 
know how to cope with predictions of slightly positive or not significant 

Fig. 9. Expert seasonal, subseasonal and decadal climate prediction skill: maps of MSESS for global precipitation, started in October 2022 (A), correlation coefficients 
for temperature in Germany, started on 7 November 2022 (B), and RPSS for temperature in Europe, started in November 2021, considering the reference predictions 
‘observed climate mean’ (C) and ‘climate projection’ (D). For all skill scores and the correlation coefficients, only the first forecast period is shown here (published on 
www.dwd.de/climatepredictions). 
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skill in their working routines. Thus, the description of the skill traffic 
lights was simplified for the basic subseasonal and seasonal climate 
predictions, now reading ‘relatively good, satisfactory or poor prediction 
quality’. The update for basic decadal predictions will be beginning of 
2023. We added short FAQs and a video clip explaining the concept of 
prediction skill which is very much appreciated. Further user feedback 
on the skill concept is controversial and still under discussion: some 
users suggest not to show basic climate predictions with red skill traffic 
lights and to show the values of the reference predictions in addition. 
‘Absolute’ measures of verification such as the correlation could be more 
highlighted, but the definition of thresholds between green, yellow and 
red traffic lights might be subjective since users would suggest different 
thresholds for their applications. Others agree with the concept of 
‘relative’ skill scores to describe the best of all available products and to 
have a simple and clear definition of the skill traffic lights because they 
used the observed climatology and climate projections before climate 
predictions were published and the correlation is offered as additional 
information on the website. Another suggestion was to add new refer-
ence predictions, e.g. the extrapolation of observed trends. 

Concerning the display of the prediction products, users suggested 
maps, time series and tables with background information text. DWD 
realized all those different formats, and tables of predicted values ach-
ieved highest scores in understandability and usability. Plots can be used 
for a qualitative assessment but numerical data offered via a data plat-
form are needed for impact modelling as well. 

Discussion 

This section summarizes the design and development of the DWD 
climate predictions website described in this manuscript, draws key 
conclusions from the user feedback on understandability and usability of 
climate prediction products and presents an outlook for upcoming 
activities. 

Summary 

In this article, we presented the development of the DWD climate 
predictions website (DWD, 2022b) designed to cover the needs of gov-
ernment policy, economy and society in Germany for robust information 
on climate variability of the next weeks, months and years: a user- 
oriented climate prediction service offering consistent operational 
products at subseasonal, seasonal and decadal timescales. Since the 
website uses different models, observations and separate products across 
time scales, it is not fully seamless but provides a ‘one-stop-shopping’ 
outlook on a single platform. Global predictions from ECMWF and DWD 
are applied and statistically downscaled for Germany. The predictions 
are illustrated on two information layers to address different user 
groups: the simple basic climate predictions and the complex expert 
climate predictions. Two prediction types are presented: ensemble mean 
predictions describe anomalies compared to the climatology in a refer-
ence period. Probabilistic predictions depict the probability of occur-
rence [%] of three categories (‘below normal’, ‘normal’, ‘above 
normal’), separated by the 33rd and 66th percentiles of the climate 
characteristics in the reference period. For each timescale, climate 
predictions are assessed for four forecast periods: week 2, 3, 4 and 5 for 
subseasonal predictions, months 1–3, 2–4, 3–5 and 4–6 for seasonal 
predictions and years 1, 1–5, 3–7 and 6–10 for decadal predictions. 

The basic climate predictions display area-aggregated predictions for 
Germany, German regions and cities as maps, time series and value ta-
bles. Traffic lights show the prediction skill: green, yellow or red lights 
indicate that the climate predictions are significantly better, equal or 
worse in reproducing the observed variability than the alternatively 
applied reference prediction ‘observed climate mean’. In addition to 
ensemble mean and probabilistic predictions the observed climate 
means and the observed tercile thresholds of the ‘normal’ category in the 
reference period are displayed. 

The expert climate predictions display gridded predictions for Ger-
many (at high spatial resolution), Europe and the world as maps and 
time series. The publication of subseasonal predictions for Europe and 
the world was in preparation at the time this manuscript was written. 
The color of each dot denotes the prediction and the size defines the 
skill: large, medium and small dots indicate green, yellow and red traffic 
lights. In addition to the reference prediction ‘observed climate mean’, 
the uninitialized ‘climate projection’ can be chosen for decadal pre-
dictions. The expert prediction skill maps present the MSESS and RPSS 
indicating the dot sizes of the ensemble mean and probabilistic pre-
dictions, respectively. The ‘absolute’ measure of association is evaluated 
additionally by correlations between model and observations. Signifi-
cance of skill is assessed at a 95 % level. 

The website was developed in close cooperation with users. Several 
feedback loops of surveys, workshops and individual meetings were 
conducted and evaluated. Most users understand the products of the 
website and realize the potential of future applications based on oper-
ational climate predictions. Thus, additional variables and numerical 
data for impact modelling are needed. However, some users state that 
understanding the prediction skill and applying probabilistic predictions 
in their working routines is challenging, revealing the need for more 
advice, e.g. via demonstrative video clips. 

Conclusions and outlook 

Based on the user feedback several conclusions can be drawn which 
motivate further activities to enhance the quality, understandability and 
usability of climate prediction products across different time scales: 

First, the DWD climate predictions website presents predictions 
together with their skill to show the model’s quality to predict the future 
climate development. Skill is found on all timescales, even for high 
resolution in Germany. However, the skill depends on the variable, re-
gion, time period and timescale and thus, on the user-specific applica-
tion. To enhance the usefulness of climate predictions, the skill needs to 
be further improved, e.g. by applying larger multi-model ensembles 
increasing decadal prediction skill compared to single model output 
(Scaife and Smith, 2018). Analyses of multi-model ensembles are plan-
ned for seasonal and decadal predictions soon (if all input data for sta-
tistical downscaling are available). Multi-model subseasonal predictions 
are considered lastly because they are not yet completely harmonized. 
Besides, teleconnections between large-scale input and small-scale 
target variables can improve skill, e.g. for North Atlantic hurricanes 
(C3S, 2022a), but relationships need to be defined for each region and 
time period separately. The statistical downscaling could be enhanced 
preferring large-scale input variables with positive skill. In EPISODES 
this was not yet considered because the method was originally devel-
oped for climate projections (Kreienkamp et al., 2018), for which skill is 
not relevant. Furthermore, based on observed teleconnections, a pre-
diction of the North Atlantic Oscillation (NAO) can be set up for the next 
months. Considering only those seasonal ensemble members close to the 
predicted NAO (called ‘subsampling approach’) can improve winter 
temperature skill in Germany (Dalelane et al., 2020). An improvement 
for all variables, spatial scales and timescales might be achieved in 
applying recalibration (Pasternack et al. 2021). For subseasonal and 
seasonal predictions, however, the statistical parameters of the recali-
bration need to be adjusted for each case. 

Second, the website was developed in close cooperation with users 
considering several feedback loops which is essential to guarantee its 
understandability and usability (relevance). The feedbacks show that 
the website is in large parts understandable by most users. Some users 
have difficulties in understanding the probabilistic predictions and the 
‘relative’ prediction skill scores compared to a reference prediction. We 
will try to overcome this and clarify complex issues by providing further 
demonstrative video clips like recently done for the prediction skill. 
Furthermore, ‘absolute’ measures of verification could be used to define 
the skill traffic light instead of or in addition to the ‘relative’ skill scores, 
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but the definition of thresholds between green, yellow and red might be 
subjective since users would suggest different thresholds. Since similar 
thresholds might be relevant for users of the same sector, we could use 
sector-specific absolute thresholds defined in cooperation with users. 
Basic climate predictions with red skill traffic lights could be greyed out, 
and reference predictions could be shown in addition to climate pre-
dictions. Further skill measures, e.g. verification metrics for the 
ensemble spread, reliability diagrams or Receiver Operating Charac-
teristics (ROC) scores evaluating probabilistic categories separately, or 
reference predictions, e.g. the extrapolation of observed trends or 
persistence, could be added. Concerning the presentation of probabi-
listic maps, we plan to evaluate with users if an additional category 
‘equal chance’ (e.g. if all categories are below 40%) or a label ‘no data or 
no signal’ (for missing values or predictions with highest probabilities of 
above and below normal conditions) would be appreciated. If evaluated 
by users to be beneficial, we could use the difference between the 
observed climatologies of the WMO reference period 1991–2020 and the 
last 20 years to relate the anomalies of subseasonal predictions as well to 
the 1991–2020 period (similar to seasonal and decadal predictions) to 
enable a more seamless outlook. The understandability of prediction 
products could also be enhanced including more interactive pre-
sentations, e.g. permitting the selection of regions or time steps via 
mouse clicks on maps or time series. 

Finally, user feedbacks reveal that climate predictions can already be 
used in some working routines but there is still room to improve their 
usability: many users struggle with predictions of slightly positive or not 
significant skill. Thus, guidelines should be offered on how to cope with 
such uncertain information. Furthermore, additional user-oriented var-
iables, indices or timescales are planned, like wind, extreme events such 
as droughts, heat waves or storms and multi-annual seasonal means. 
Predictions of the El Nino Southern Oscillation, the NAO, sea surface 
temperatures or sea level pressures might be relevant for scientific users 
to analyze model dynamics and teleconnections. Besides prediction plots 
on an operational website, the numerical prediction data for impact 
modeling will be offered on an ESGF platform. Lastly, a time series 
across all climate time scales combining observations, subseasonal, 
seasonal and decadal predictions and climate projections is planned to 
allow the next step towards a seamless management of adaptation 
measures to cope with climate variability of the next weeks, months, 
years and decades. 
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wissenschaftlichen Konzept zu einem prä-operationellen System für dekadische 
Klimavorhersagen. Promet. 104, 37–46. https://doi.org/10.5676/dwd_pub/promet_ 
104_06. 

Hewitt, C., Mason, S., Walland, D., 2012. The global framework for climate services. Nat. 
Clim. Change. 2 (11), 831–832. https://doi.org/10.1038/nclimate1745. 

Huffman, G.J., Adler, R.F., Morrissey, M., Bolvin, D.T., Curtis, S., Joyce, R., 
McGavock, B., Susskind, J., 2001. Global Precipitation at One-Degree Daily 
Resolution from Multi-Satellite Observations. J. Hydrometeor. 2 (1), 36–50. https:// 
doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2. 

Illing, S., Kadow, C., Kunst, O., Cubasch, U., 2014. MurCSS: A tool for standardized 
evaluation of decadal hindcast systems. J. Open Res. Softw. 2, e24. 

Intergovernmental Panel on Climate Change (IPCC), 2021. Climate Change 2021: The 
Physical Science Basis. Contribution of Working Group I to the Sixth Assessment 
Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., 
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