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Abstract
To help understand the complex and therapeutically challenging inflammatory 
bowel diseases (IBDs), we developed a systems biology model of the intestinal im-
mune system that is able to describe main aspects of IBD and different treatment 
modalities thereof. The model, including key cell types and processes of the mu-
cosal immune response, compiles a large amount of isolated experimental findings 
from literature into a larger context and allows for simulations of different inflam-
mation scenarios based on the underlying data and assumptions. In the context 
of a large and diverse virtual IBD population, we characterized the patients based 
on their phenotype (in contrast to healthy individuals, they developed persistent 
inflammation after a trigger event) rather than on a priori assumptions on param-
eter differences to a healthy individual. This allowed to reproduce the enormous 
diversity of predispositions known to lead to IBD. Analyzing different treatment 
effects, the model provides insight into characteristics of individual drug therapy. 
We illustrate for anti-TNF-α therapy, how the model can be used (i) to decide for 
alternative treatments with best prospects in the case of nonresponse, and (ii) to 
identify promising combination therapies with other available treatment options.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Patients with inflammatory bowel disease (IBD) are very heterogeneous regarding 
the IBD dispositions, course of disease, and responsiveness to treatment. Therefore, 
the choice of treatment for the individual patients is challenging. Several pub-
lished systems biology models1–4 have been applied to this problem, with different 
approaches, focusing on different aspects, and giving different results.
WHAT QUESTION DID THIS STUDY ADDRESS?
How can mathematical modeling be used to help analyzing IBD predispositions 
and responsiveness to treatment?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We provide a mathematical model of the mucosal immune response that can 
describe a heterogeneous population of patients with IBD, linking the onset of 
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INTRODUCTION

Inflammatory bowel diseases (IBDs) are chronic diseases 
characterized by chronic inflammation of various parts of 
the gastrointestinal tract.5 They affect ~0.3% of Western 
populations,6 severely decreasing life quality, and can 
result in life-threatening complications. The main types 
are Crohn's disease (CD) and ulcerative colitis (UC). The 
disease results from an over-reaction of the mucosal im-
mune response to commensal bacteria of the intestine, 
involving destruction of the intestinal barrier.7 Although 
many different genetic and environmental predisposi-
tions have been found, the pathogenesis is still not fully 
known.8 Treatment options involve anti-inflammatory 
small-molecule drugs as well as biologics—most promi-
nent are monoclonal antibodies (mAbs) targeting the cy-
tokine TNF-α9; but also other processes are targeted with 
the aim to reduce the inflammation. Patients show high 
interindividual differences, regarding predispositions and 
disease characteristics, but also responsiveness to the dif-
ferent treatments, which poses large challenges in finding 
the optimal treatment and dosing regimen for the indi-
vidual patient.10–12

Our objective is to develop a systems biology model 
of IBD to help understand and analyze these large inter-
individual differences in the patients' mucosal immune 
response, and to subsequently better inform target identi-
fication and choice of individual treatments. To this end, 
we screened the large body of literature on the mucosal 
immune response for relevant data, key molecular/cel-
lular players, and processes. The model was evaluated 
against responses to mucosal injury and to a salmonella 
infection, and used to generate a virtual population of 
healthy individuals and patients with IBD for further 
analysis. Compared to the few existing systems biology/
pharmacology models of IBD,1–4, 13 we characterized dis-
ease based on the phenotype (persistent inflammation 
after a trigger event) rather than on a priori assumptions 
on parameter differences to the healthy state, and focused 
on the cell-level of the immune system, rather than on the 
cytokine level. Importantly and in contrast to existing ap-
proaches,1–4, 13 the model reproduces (rather than a priori 

assumes) the known large diversity in disease-causing 
predispositions and response to different treatments. In 
addition, we evaluated options for alternative treatments 
in case of nonresponse and promising combinations of 
treatment effects.

METHODS

The structure and parameterization of our systems biology 
model—the main result of this work—was based on qual-
itative and quantitative literature data. Qualitative data 
were used to decide for relevant aspects to be included 
in the model and the model structure. Quantitative data 
were used to parameterize the model: Parameter values 
were either taken directly from literature (e.g., half-lives 
or steady-state concentrations of cell types), estimated 
from literature data (e.g., transition rates estimated from 
time-resolved data on concentrations of different states), 
taken or modified from previously published mathemati-
cal models, or set to a value in a reasonable range that led 
to desired qualitative behavior of the model, when more 
quantitative data were not available. We used preferably 
data from human studies, as far as available (e.g., steady-
state concentrations of cell types), but also from in vivo 
(mouse or rat), in vitro, or in silico studies. An in-depth 
description of the model is given in Appendix S1, includ-
ing the biological background of the processes included 
in the model, the mathematical equations constituting the 
model (Chapter 4.1 in Appendix S1) and a detailed deri-
vation and explanation of these equations (Chapter 1 in 
Appendix S1).

We aimed for a model describing the mucosal im-
mune system not only at the level of the overall immune 
response (e.g., successful elimination of pathogens), but 
also at the cellular level (i.e., detailed dynamics of dif-
ferent immune cell types). To guide model development, 
we simulated the response to mucosal injury and to a sal-
monella infection (as a widely used model for gut infec-
tion). A healthy mucosal immune response was expected 
to comprise the elimination of bacteria from the tissue, 
a chronological sequence of triggered events (e.g., very 

disease and responsiveness to different treatments to individual predispositions 
(model parameters).
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The presented novel systems biology model may serve as a tool to help pre-
evaluate potential drug targets, drug combinations, and alternative treatments in 
nonresponders to a first treatment choice.
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fast increase of neutrophils with an early peak, followed 
by slower increase in the macrophages, and, with a short 
delay, in T cells) and the return to healthy steady-state 
(resolution). During model development, the model struc-
ture and included cell types were continuously evaluated 
for their ability to predict the above outlined mucosal im-
mune response and plausibility of the derived parameter 
values.

As the parameterization of the model was based on 
many different publications (including different model 
species and different measurement methods), the results 
are not intended strictly quantitative, but rather qualita-
tive, as shown in the presented example of an analysis 
of IBD predispositions and responsiveness to treatment 
using a virtual population.

All simulations were performed in Matlab R2018b. The 
model code is published under https://zenodo.org/recor​
d/75742​19#.Y9LLJ​OLMKwo.

RESULTS

Systems biology model of the mucosal 
immune response

The model is based on ordinary differential equations 
(ODEs) and comprises 47 model species, 133 reactions, 
and 79 parameters. The full model scheme of the novel 
systems biology model describing the healthy mucosal 
immune response to pathogenic and commensal bacteria 
can be found in Appendix S1: Figure S25. For better un-
derstandability, Figure 1 shows a simplified scheme, in-
cluding the main cell types and reactions, but neglecting 
that some cell types are subdivided into more subtypes. 
In the following, we summarize the considered processes 
and cell types. We only give the main references (impor-
tant sources for quantitative data as basis of parameteriza-
tion or parts of the model structure); a full derivation of 
the model structure and parameterization, including all 
references that we based the model development on, can 
be found in Appendix S1.

Spatial compartments and units

The model accounts for three spatial compartments: in-
testinal lumen, lamina propria (LP; the uppermost layer 
of the intestinal wall beneath the epithelium), and mes-
enteric lymph nodes (LNs). Species in lumen are unitless, 
and species in LP and LN are modeled as concentrations 
(number of molecules per ml). Because of their short half-
lives,14 we accounted for cytokines only implicitly with 
concentrations depending on the producing cell types.

Epithelial barrier and bacteria in lumen

The intestinal epithelium and a mucus layer that is se-
creted by the epithelium prevent bacteria from invasion 
into the underlying LP. We described the functionality of 
the tissue, epithelium, and mucus layer by unitless state 
variables; a value of 1 represents full barrier functionality, 
a value of 0 represents complete barrier destruction, and 
values in between describe the relative residual function-
ality. Inflow of commensal bacteria into LP depends on 
the functionality of the epithelium and mucus layer, with 
higher inflow for lower values (i.e., more destruction) and 
no inflow for values of 1 (i.e., complete functionality). 
Pathogenic bacteria (in simulations of pathogenic infec-
tion) are also able to penetrate the intact barrier.

Tissue is constantly renewed, with production influenced 
by anti-inflammatory cytokines and death influenced by 
pro-inflammatory cytokines. Epithelium production is de-
pendent on the underlying tissue, its death rate is influenced 
by pro-inflammatory cytokines and inflowing pathogenic 
bacteria. Mucus production is dependent on the epithelium.

Elimination of bacteria

Bacteria in LP are eliminated by neutrophils, macrophages, 
and dendritic cells, mainly via phagocytosis (i.e., ingestion 
and elimination15), preventing a systemic infection. This 
was implemented using a modified model from ref. 16 de-
scribing the phagocytosis of bacteria as a saturable process 
with a maximal elimination rate per phagocytic cell.

Neutrophils

Neutrophils are scarcely present in healthy tissue, but are 
quickly recruited in case of infections, eliminating bacte-
ria, and recruiting and activating further innate immune 
cells via pro-inflammatory cytokines. Neutrophils are also 
important in the resolution of inflammation, as they pro-
duce specialized pro-resolving mediators (SPMs), which 
inhibit further innate immune cell recruitment.17 We im-
plemented saturable neutrophil recruitment by bacteria 
and pro-inflammatory cytokines and apoptosis induced 
by SPM and phagocytosis of bacteria. Apoptotic neutro-
phils are eliminated by macrophages via phagocytosis (see 
section “Macrophages” below).

Macrophages

Macrophages, which are important in the elimination of 
bacteria and production of pro- and anti-inflammatory 

https://zenodo.org/record/7574219#.Y9LLJOLMKwo
https://zenodo.org/record/7574219#.Y9LLJOLMKwo
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cytokines, are recruited from blood in a pro-inflammatory 
state and turn into an anti-inflammatory state in the LP.18,19 
Based on data from ref. 19, we implemented four different 
macrophage subpopulations M1–M4. Only subpopulation 
M1 is recruited from blood, positively influenced by pro-
inflammatory cytokines. Macrophages transition through the 
states depending on anti-inflammatory cytokines, inhibited 
by pro-inflammatory cytokines. In addition, we implemented 
a population of macrophages after phagocytosis of apoptotic 
neutrophils (called efferocytosis). All subpopulations are 
further divided into (bacterial) antigen-unexperienced and 
antigen-experienced species, where antigen uptake equals 
the phagocytosis rate of bacteria. Subpopulations M1 to M3 
(in Figure  1: Mpro/Mpro,a) produce pro-inflammatory cy-
tokines; subpopulation M4 and macrophages after effero-
cytosis (Manti/Manti,a) produce anti-inflammatory cytokines; 
and macrophages after efferocytosis produce SPMs.

Dendritic cells

Dendritic cells take up bacterial antigen in the LP and 
present it on their surface to activate T cells mainly in 

LNs, but also in the LP. We implemented four differ-
ent species of dendritic cells in the LP dependent on 
activation status and antigen experience: quiescent den-
dritic cells (recruited from blood; not activated, antigen-
unexperienced), responsive dendritic cells (activated, 
antigen-unexperienced), tolerogenic dendritic cells (not 
activated, antigen-experienced), and stimulatory dendritic 
cells (activated, antigen-experienced, producing pro-
inflammatory cytokines). Antigen-experienced dendritic 
cells are able to migrate to LNs.

T cells

T cells, part of the adaptive immune response, shape the in-
nate immune response by providing pro-inflammatory sig-
nals via T helper cells, but also by preventing overshooting 
immune responses via regulatory T cells. We implemented 
different types of T cells: naive, central memory, effector 
memory, and effector (helper and regulatory) T cells. The 
implementation of T cell activation through antigen presen-
tation by dendritic cells (and also in the LP macrophages) is 
based on contact rates, contact duration, available binding 

F I G U R E  1   Simplified model scheme. Cell types included in the model and their interactions. White circles/shapes represent cell types 
(model species). Arrows between model species represent transition or migration. Arrows targeting on arrows indicate a stimulation (→) or 
inhibition (⊣). Pro- and anti-inflammatory cytokines are produced by the respective color-coded cell types. Dashed arrows show production 
of cytokines by a model species. Gray arrows (stimulating or inhibiting) show the implementation of different treatment effects (CI, cytokine 
inhibitor; ACA, anti-cell adhesion; S1PRM, S1PR modulator; PC, orally administered phosphatidylcholine; FMT, fecal microbial transplant; 
TPI, T cell proliferation inhibitor; ABX antibiotics). The full model scheme can be found in Figure S25 in Appendix S1. Compared to the 
full model scheme, not all state variables and reactions are shown here, some state variables are summarized (e.g., T helper cells). Note 
that figures describing subprocesses in full detail can be found in Chapter 1 in Appendix S1. pro, pro-inflammatory cytokines; anti, anti-
inflammatory cytokines; SPM, specialized pro-resolving mediators; Bact, bacteria; qDC, rDC, tDC, sDC, quiescent, responsive, tolerogenic, 
and stimulatory dendritic cells; Mpro, Manti, pro−/anti-inflammatory macrophages (M1-M3/ M4 & efferocytosis-type); Mpro,a, Manti,a, antigen-
experienced pro−/anti-inflammatory macrophages; Neut, Neutapo, neutrophils, apoptotic neutrophils; Tn, naive CD4+ T cells; Tcm, Tem, 
central/effector memory T cells; Th, T helper cells; Treg, regulatory T cells.
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sites on T cells, and antigen-presenting cells and the prob-
ability to encounter the cognate antigen. Once activated, T 
cell proliferation is implemented using transit compartments 
based on published T cell growth models.20,21 Dependent on 
the activating dendritic cell, the proliferating T cells differ-
entiate into regulatory T cells or T helper cells, where the 
fractions of T helper cell types 1, 2, and 17 depend on the 
bacterial cell phagocytosed by the dendritic cell. In contrast 
to naive T cells, memory T cells’ differentiation was imple-
mented in two steps (first into effector memory T cells, then 
into effector T cells), with a higher activation rate due to a 
higher probability to encounter their cognate antigen (rep-
resenting the smaller T cell receptor [TCR] repertoire), and 
shorter proliferation.22,23 We implemented production of 
pro-inflammatory cytokines by T helper cells, with T helper 
cell type-dependent effects on the targeted processes, and 
production of anti-inflammatory cytokines by regulatory T 
cells, with inhibiting effects on innate immune cells. In addi-
tion, regulatory T cells inhibited the ability of dendritic cells 
to stimulate T cells, and inhibited T cell proliferation.24,25

Simulation of infection and inflammation

During model development, we used simulations of infec-
tion with salmonellae (S. Typhimurium) and inflammation 

due to mucosal injury to evaluate if the model predicts the 
expected healthy mucosal immune response. We imple-
mented salmonella infection by accounting for their abil-
ity to penetrate the epithelial barrier and to survive and 
proliferate inside macrophages, with data on infection 
dynamics from refs. 26,27. For the simulation, we con-
sidered salmonellae in lumen at t = 0. For the mucosal 
injury scenario, we simulated maximal destruction of 
the epithelium and tissue by setting their functionality 
values to zero at t = 0. Figure 2 shows the resulting time 
courses of the mucosal immune response to salmonella 
infection and mucosal injury. For salmonella infection, 
we observed an increase of the bacterial concentration 
in the LP through salmonellae, but also inflowing com-
mensal bacteria, because the salmonellae and cytokines 
of the resulting immune response degrade the epithelial 
barrier. For mucosal injury, we observed a massive inflow 
of commensal bacteria due to the destruction of the epi-
thelial barrier. In both cases, the model predicted a repair 
of the epithelial barrier and the elimination of inflowing 
pathogenic and commensal bacteria within ≈ 3–4 weeks, 
as we would expect from a healthy mucosal immune sys-
tem. The chronological sequence of the inflow of immune 
cells, which is quite similar for both scenarios, is in line 
with literature reports.28–30 Neutrophils are recruited very 
quickly, peak early, and subsequently decrease, already 

F I G U R E  2   Reference time course of salmonella infection (top) and mucosal injury (bottom). Concentrations of bacteria in LP (sum of 
commensal and, if present, pathogenic), barrier state variables (unitless, describing the relative functional intactness), and selected immune 
cells in LP over time in response to salmonella infection or mucosal injury at time t = 0. LP, lamina propria.
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starting the resolution of the inflammation. Following the 
neutrophils, macrophages are recruited into the LP, and 
with short delay (≈ 1 day; not well visible as shown on the 
time scale), T cell concentrations in the LP increase.

In summary, we conclude that the implemented pro-
cesses and cell types are sufficient to adequately describe 
the healthy mucosal immune response to salmonella in-
fection and mucosal injury, as our novel systems biology 
model is able to qualitatively, and, to a certain extent, 
quantitatively, describe the healthy mucosal immune 
response to different triggers. In the sequel, we use the 
term “reference individual” to denote the systems biology 
model with the above described “reference parameters.”

Virtual population of healthy 
individuals and patients with IBD

Patients with IBD have accumulated several risk factors 
(genetic predispositions and environmental stimuli) so 
that an additional trigger, probably a perturbation of the 
mucosal barrier, results in the outbreak of the disease.31,32 
In contrast to many other systems biology approaches 
(e.g., refs. 1,3), we did not define which parameter changes 
elicit the disease, but rather defined the disease by its phe-
notype of chronic inflammation, characterized by a high 
immune activity as a consequence of failed resolution of 
inflammation.

More precisely, we defined virtual patients with IBD 
as individuals that (i) were asymptomatic prior to the 
trigger (i.e., in a steady-state comparable to the healthy 
steady-state of the reference individual), and (ii) de-
veloped chronic inflammation in response to the mu-
cosal injury trigger described above (in the previous 
section, see Figure 2, bottom row). (See also Chapter 2.1 
in Appendix S1 for more details on the definition of vir-
tual patients with IBD.) Consequently, patients with IBD 
developed a new steady-state with higher immune cell 
concentrations—in contrast to healthy individuals, who 
were able to resolve the inflammation after a mucosal in-
jury trigger and returned to the pre-trigger healthy steady-
state. In the sequel, we use the term “IBD individual” to 
denote both patients with IBD and individuals with IBD 
dispositions before the outbreak of disease.

We generated healthy and IBD individuals as follows: 
for an individual, we sampled a complete set of parame-
ter values from a log-normal distribution around the set 
of reference parameters. For that, we assumed for all pa-
rameters the same relative standard deviation of � = 0.4 
of the underlying normal distribution, as the variability 
of single parameters was not known. The resulting pop-
ulation comprised healthy and IBD individuals, in addi-
tion to individuals with permanent chronic inflammation 

(already before the trigger) or chronic infection (uncon-
trolled growth of commensal bacteria in the LP). The lat-
ter two types of individuals were excluded in the sequel, 
because they were irrelevant for our subsequent study of 
IBD. By randomly sampling 1,000,000 individuals, we ob-
tained a virtual population of 69.5% healthy and 2.2% IBD 
individuals. The fraction of IBD individuals in our virtual 
population depends on � and was purposely designed to 
be higher than the reported prevalence (ref. 6) to not miss 
out on extreme values for some parameters potentially 
leading to IBD.

Figure 3 shows the time course of the mucosal immune 
response to the mucosal injury trigger in the virtual pop-
ulations of healthy and IBD individuals. Comparing the 
average IBD individual to an average healthy individual, 
we observed no visible difference before the trigger (see 
Figure  S23 in Appendix S1), but a larger increase of T 
cells in the first days, followed also by a larger increase of 
macrophages. Although in healthy individuals the inflam-
mation is resolved and the cell concentrations return to 
pre-trigger steady-state, the IBD individuals reach a post-
trigger steady-state with much higher immune cell concen-
trations than before the trigger and a less intact mucosal 
barrier. Although not visible in the figure, the neutrophil 
and bacteria concentrations in the LP are also much higher 
in patients with IBD (see Figure S23 in Appendix S1). The 
interindividual variability in cell concentrations (e.g., neu-
trophils, macrophages, and T cells; see Figure 3, columns 
3 and 4) is very high, both in healthy and IBD individuals.

Analysis of IBD predispositions

Individuals of the virtual population are defined by their 
set of parameter values. We compared the distributions 
of parameter values among healthy and IBD individuals 
to identify differences and to search for (combinations 
of) parameters that allow for a discrimination between 
healthy and IBD individuals. Figure 4a shows the distribu-
tions of parameter values that differ most between healthy 
and IBD individuals, measured using a Two-Sample 
Kolmogorov–Smirnov test. In line with literature findings 
about the complex etiology of IBD,31,33 we did not find a 
single parameter that allows to identify IBD individuals. 
This is a consequence of the large overlap of the two pa-
rameter distributions. Using a linear discriminant analy-
sis (LDA), we could correctly classify 87% of individuals to 
be healthy or diseased (in a population of the same num-
ber of healthy individuals and patients with IBD) based on 
all parameters. The best predictors identified by the LDA 
were hpro,deact,M, hrec,M, and hpro,act,DC, resulting in 71, 73, 
or 76% correctly classified if used alone, two together or all 
three together, respectively. In summary, our model can 
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reproduce the enormous diversity of predispositions and 
the complex interplay of different processes in the devel-
opment of the disease. We considered this an additional 
confirmation of our model.

Three of the four parameters with strongest correla-
tion to the disease (see Figure 4a) are Hill factors (h), in-
fluencing the reaction rates of macrophage deactivation 
(hpro,deact,M), macrophage recruitment (hrec,M), and den-
dritic cell activation (hpro,act,DC). Those Hill factors deter-
mine how sensitive the reaction rate is to a change in the 
cytokine concentration driving this reaction. They have 
a large potential to favor the switch between asymptom-
atic and chronically inflamed steady-states that we see in 
IBD individuals, as a larger Hill factor results in a larger 
difference in reaction rates for small changes in the cyto-
kine concentration. Because Hill kinetics are often used 
as an empirical simplified model for a saturable, coopera-
tive process (as in our case), the physiological interpreta-
tion of Hill factors beyond “sensitivity” is difficult. In our 
model, we used Hill kinetics for all reactions influenced 

by pro- and/or anti-inflammatory cytokines (i.e., recruit-
ment and activation or deactivation). Due to lack of de-
tailed knowledge on the cooperativity of those reactions, 
most Hill factors were set to 1 (i.e., no cooperativity), in 
the reference individual. The Hill factors were, however, 
still included in the model to allow for cooperativity in 
individuals of the virtual population, as we could not ex-
clude that they may be important. The presented results 
of Hill factors being strongly correlated with the disease, 
show their potential importance for the development of 
IBD. Among the parameters that are strongly correlated 
with the disease, several relate to macrophages (e.g., the 
maximal macrophage recruitment rate �M,max shown 
in Figure 4a). This suggests an important role of macro-
phages for IBD, which again is in line with extensive re-
ports in literature.18,34

We next identified those parameter changes between 
healthy and IBD individuals that are relevant for the de-
velopment of disease (i.e., the IBD dispositions of our 
virtual patients). Because the IBD individuals are based 

F I G U R E  3   Population time course of immune response to mucosal injury in healthy individuals (top) and patients with IBD (bottom). 
Concentrations of bacteria in LP, barrier state variables (unitless, describing the relative functional intactness), and selected immune cells 
in LP over time in response to mucosal injury at time t = 0. Solid lines show the median, dashed lines show the 5th and 95th percentiles 
(within the population) of the respective state variable. The fourth column is a zoom-in of the first 5 days of the third column. IBD, 
inflammatory bowel disease; LP, lamina propria.
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on random perturbations of the reference parameter val-
ues, the question remained whether all perturbations are 
“necessary” for the IBD disposition. Therefore, we identi-
fied for each IBD individual the minimal set of parameter 
changes (in the following called disease-relevant parame-
ter changes) that still resulted in the outbreak of the dis-
ease following the mucosal injury trigger (see Chapter 2.3 
in Appendix S1 for more details). While both “types” of 
virtual IBD individuals, defined by the original and the 

minimal set of parameter changes, lack the ability of res-
olution after the mucosal injury trigger, they might differ 
in the precise time course of their immune response. We 
found that the sets of disease-relevant parameter changes 
are very heterogeneous. Figure 4c illustrates the diversity 
of changed parameters of 20 (randomly selected) IBD 
individuals with exactly four disease-relevant parame-
ter changes. The parameters we identified earlier to be 
most correlated with the disease (see Figure 4a), however, 

F I G U R E  4   Differences between healthy individuals and patients with IBD. (a/b) Histograms of (a) parameter value distributions and 
(b) pre-trigger steady-state distributions for the four parameters/pre-trigger steady-state variables with highest Kolmogorov–Smirnov test 
statistic D (testing for difference between healthy and IBD), for healthy (green) and IBD individuals (red). Green and red vertical lines 
indicate the corresponding population medians; the black line indicates the reference value (for parameters overlaying the healthy median). 
Outliers (values above 1.5 times the 95th quantile) are not shown to improve readability of the plot. (c) Disease-relevant parameter change 
combinations for 20 (randomly selected) virtual patients with IBD with exactly four disease-relevant parameter changes. Colors are solely 
used to discriminate the different parameters. (d) Average disease-relevant parameter changes versus the number of disease-relevant 
parameter changes. Each cross denotes one virtual patient with IBD. The black line shows the average extent over all patients with the same 
number of disease-relevant parameter changes. IBD, inflammatory bowel disease.
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remained most frequently among the disease-relevant 
parameter changes (e.g., hpro,deact,M is disease-relevant 
in 68% of the patients). Figure 4d shows the average ex-
tent of the disease-relevant parameter changes over the 
number of disease-relevant parameter changes for all IBD 
individuals. We observed a wide variety of numbers of 
disease-relevant parameter changes (1–60, median 4), and 
a negative correlation between the average extent of pa-
rameter change and the number of simultaneous changes. 
In conclusion, an IBD disposition can result from both 
a small number of large parameter changes or a higher 
number of small parameter changes, with many different 
possible combinations. In the remaining part of the paper, 
we always used the original parameter sets when consid-
ering IBD individuals.

We finally compared the pre-trigger steady-state vari-
ables between healthy and IBD individuals to investigate 
if we can already identify IBD individuals before the onset 
of the disease based on phenotype (i.e., cell concentra-
tions). Figure 4b shows the distributions of state variables 
that most correlate with the disease. Using an LDA, we 
could correctly classify 67% of individuals to be healthy or 
diseased (in a population of the same number of healthy 
individuals and patients with IBD) based on all pre-trigger 
steady-state concentration values. Given the limited ability 
to really measure the identified cell concentrations in ad-
dition to measurement uncertainty, our analysis suggests 
that it is unlikely to identify a large fraction of patients 
with IBD based on cell concentration measurements be-
fore disease onset.

Implementation of different 
treatment effects

To analyze existing and potential new therapeutic inter-
ventions, we implemented the effect of several drug and 
non-drug treatment options and performed virtual clini-
cal studies in our virtual IBD population. Treatment re-
sponse was analyzed by a virtual analog of the common 
Crohn's disease endoscopic index of severity (CDEIS), 
which takes values close to zero in healthy individuals, 
and higher values for higher levels of inflammation. The 
CDEIS was determined from the model's state variables 
(epithelium, tissue, and neutrophils) at different time 
points (see Table S6 in Appendix S1). For the clinical study 
simulations, we restricted our virtual IBD population to 
patients with CDEIS > 6 (as in e.g., ref. 35). Response to 
treatment was defined as CDEIS < 4 (as in e.g., ref. 35). 
Instead of implementing specific drugs, we implemented 
more general treatment effects (i.e., groups of drugs with 
similar targets). For example, cytokine inhibitors include 
monoclonal antibodies targeting tumor necrosis factor 

(TNF)-α, interleukin (IL)-6 or the JAK–STAT pathway, 
as all of those specific drug mechanisms translate to an 
inhibition of pro-inflammatory cytokines in our model. 
Each treatment effect was characterized by a parameter 
� , describing the extent of modulation of the targeted pro-
cesses. The involved model parameters or reaction rates 
were multiplied by (1 − �) with 1 ≥ 𝜂 > 0 accounting for 
inhibition and 𝜂 < 0 for stimulation. In Figure 1, the gray 
arrows indicate the targets of the implemented treatment 
effects: (i) cytokine inhibitors inhibit pro-inflammatory 
cytokines (implemented by inhibiting production); (ii) 
anti-cell adhesion treatment inhibits inflow of neutro-
phils, macrophages, and dendritic cells into the LP and 
of T cells into LNs; (iii) sphingosine-1-phosphate recep-
tor type 1 (S1PR) modulators inhibit T cell egress out of 
the LNs; (iv) orally administered phosphatidylcholine in-
creases the mucus layer (implemented by increased pro-
duction); (v) fecal microbial transplant (FMT) changes 
the bacterial composition that determines if a Th1, Th2, 
or Th17 response is elicited (here � describes the fraction 
of Th2-eliciting bacteria); (vi) T cell proliferation inhibi-
tors inhibit T cell proliferation in LNs and the LP; and (vii) 
antibiotics inhibit bacterial proliferation in the lumen and 
LP.36 For all treatment effects, we simulated a treatment 
of 24 weeks assuming simplified pharmacokinetics (i.e., a 
constant treatment effect parameter � over the treatment 
duration). Figure 5 shows the time course of two exem-
plary patients with IBD in response to a cytokine inhibitor 
and an anti-cell adhesion treatment. Patient A (a nonre-
sponder to the cytokine inhibitor, but responder to anti-
cell adhesion treatment) and patient B (a responder to 
both treatments, but with relapse shortly after the end of 
anti-cell adhesion treatment) nicely exemplify the inter-
individual differences in the responsiveness in the virtual 
IBD population.

Figure  6a shows how the response rates of the treat-
ment effects in the virtual IBD population depend on the 
treatment effect parameter �. Interestingly, we observed 
that the maximal response rate is limited for most of the 
treatment effects. In particular, antibiotic treatment was 
not able to achieve significant response rates in our virtual 
population. For S1PR modulators, we observed a decrease 
in response rate for treatment effect parameters � close to 
1, which can be explained by the two counteracting effects 
of inhibition of egress of both T helper cells and regulatory 
T cells from the LNs. In addition, we analyzed the relapse 
rate (immediate relapse shortly after end of treatment, 
without any further stimulus; shown by the difference of 
the two lines in Figure 6a). We found that it was lowest 
for FMT, phosphatidylcholine, and cytokine inhibitors, 
and highest for anti-cell adhesion treatment and S1PR 
modulators. Clinical response rates to drugs using the dif-
ferent treatment effects are highly variable, typically not 
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exceeding 70% (e.g., cytokine inhibitors anti-TNF-α mono-
clonal antibodies: up to ~70%,37 anti-cell adhesion treat-
ment vedolizumab: ~50%,38 S1PR modulator ozaminod: 
41%,39 orally administered phosphatidylcholine: ~50% in 
phase II, although phase III recently stopped,36,40 FMT: 
~50%,36 antibiotics: limited data and controversial discus-
sion36; where the reported response rates naturally also 
depend on the clinical trial and the score used to measure 

response). For sake of simplicity, in the following analy-
ses, we set � for each treatment effect to the value resulting 
in a response rate of 30% in our virtual IBD population. 
Through this, we could compare the treatment effects in 
general without having to account for specific response 
rates of specific drugs. We also performed the analyses as-
suming a response rate of 50%, and the main results pre-
sented below continue to hold.

F I G U R E  5   Illustration of responders and nonresponders to different treatments. Selected immune cells in the LP (T helper cells [green], 
macrophages [blue], and neutrophils [violet]) and barrier state variables (tissue [orange] and epithelium [yellow]) over time in two 
exemplary patients (patient A and patient B). Mucosal injury (trigger) at t = 0 leads to chronic inflammation. Treatment started at t = 200d 
for 24 weeks (yellow background), using a cytokine inhibitor (top; treatment effect extent parameter � = 0.1456 corresponding to a response 
rate of 30%) or anti-cell adhesion (bottom; � = 0.261, corresponding to a response rate of 30%). After the end of treatment, the levels reach 
a post-treatment steady-state. Patient A is a nonresponder to the cytokine inhibitor, but responder to anti-cell adhesion therapy. Patient B 
is responder to both treatments, but shows relapse after the end of treatment with anti-cell adhesion. Colors of cell concentrations/state 
variables correspond to Figures 2 and 3. LP, lamina propria.
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F I G U R E  6   Responsiveness of virtual patients with IBD to treatments. (a) Response rates as a function of the treatment effect parameter 
�. See text and Figure 1 for implementation of the different treatment effects. Note that, naturally, not the full range of displayed treatment 
effect parameters � is physiologically relevant. Response rate was calculated as the percentage of patients with IBD with CDEIS < 4 at end 
of treatment (blue) or post-treatment steady-state (green). The difference between end-of-treatment response rate and post-treatment 
response rate is the relapse rate. For cytokine inhibitors, histograms show (b) parameter value distributions and (c) pretreatment steady-
state distributions for the four parameters/pretreatment steady-state variables with highest Kolmogorov–Smirnov test statistic D (testing 
for difference between responders and nonresponders), for responders (orange) and nonresponders (violet). Orange and violet vertical 
lines indicate the corresponding population medians; the black line indicates the reference value. Outliers (values above 1.5 times the 
95th quantile [/75th quantile for C, second and third columns]) are not shown to improve readability of the plot. CDEIS, Crohn's disease 
endoscopic index of severity; FMT, fecal microbial transplant; IBD, inflammatory bowel disease; S1PR, sphingosine-1-phosphate receptor 
type 1.
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To identify potential reasons for (non-)responsiveness, 
we compared the parameter distributions between respond-
ers and nonresponders, shown in Figure  6b exemplified 
for cytokine inhibitors. On the single parameter level, the 
distributions are highly overlapping, indicating that the 
causes determining the responsiveness are multifactorial. 
The parameters most different between responders and 
nonresponders to cytokine inhibitors are related to mac-
rophages: lower macrophage death rate and higher mac-
rophage inflow rate are correlated with lower response, as 
are higher Hill factors for the deactivation and recruitment 
of macrophages. As it would be highly desirable to identify 
nonresponders before the start of treatment, we compared 
the pretreatment levels between responders and nonre-
sponders; see Figure 6c exemplified for cytokine inhibitors. 
We could clearly observe the correlation of lower epithelium 
functionality (i.e., more destruction), lower concentrations 
of anti-inflammatory, and higher concentrations of pro-
inflammatory macrophage subtypes with a lower response 
to treatment. Again, however, the distributions overlapped 
considerably. To find the best predictors for responsiveness, 
we performed a regularized LDA, which allows to find the 
best linear models with a limited number of predictors: a lin-
ear model of only two predictors (pro-inflammatory macro-
phages and epithelium) had a prediction accuracy of 74% (in 
a population of the same number of responders and nonre-
sponders to cytokine inhibitors). To find potential biomark-
ers for the responsiveness to a specific drug, the treatment 
effect parameter � can be adapted according to the known 
response rate, and the described approach (comparison of 
parameter distributions and regularized LDA) can then be 
used to identify the best predictors.

Model-guided choice of second-line 
treatments and combination therapies

Finally, we analyzed how to increase overall response 
rates in the virtual IBD population by either starting with 
the first-line treatment and—if the first treatment failed—
the optimal second-line treatment, or by directly using si-
multaneous combination therapies. To this end, we again 
assumed all treatment effects to be equally effective (i.e., 
resulting in 30% response rate in the virtual IBD popula-
tion). (We also performed the analysis with 50% response 
rate, and the main results continue to hold.)

To identify optimal second-line treatments, we simu-
lated the response rates to alternative treatment effects in 
the subpopulation of nonresponders to a first-line treat-
ment (termed first-line nonresponders; i.e., the response 
rate to a treatment conditioned on nonresponsiveness 
of another treatment). Note that patients that initially 
responded and subsequently relapsed are considered 

responders. If the response rates to different treatments 
were independent within the virtual IBD population, we 
would expect the response rate to any alternative treat-
ment to be 30% in the population of first-line nonrespond-
ers; as a consequence, the particular choice of second-line 
treatment would not matter. If the response rates were 
completely dependent within the virtual population (i.e., 
if an individual does not respond to one treatment), it 
also does not respond to any other treatment, we would 
expect the response rate to be 0% for any alternative treat-
ment. Figure 7a shows that the response rates to alterna-
tive treatments differ substantially between the treatment 
effects. The knowledge about the nonresponsiveness of a 
patient to the first-line treatment is therefore informative 
for choosing the best second-line treatment. If first-line 
treatment is given by cytokine inhibitors, anti-cell adhe-
sion treatment or orally administered phosphatidylcho-
line, the best second-line treatment is given by an S1PR 
modulator, resulting in response rates of 25.1%–28.3% in 
the population of first-line nonresponders, which is close 
to the response rate of 30% in the virtual IBD population, 
indicating that the response rates are almost independent. 
If first-line treatment is given by FMT or proliferation in-
hibitors, the best second-line treatments are given by an 
S1PR modulator or phosphatidylcholine. However, the re-
sulting response rates in the population of first-line non-
responders are lower (18.4%–21.9%).

To identify the best combination treatments, we simu-
lated the response rates to combinations in the virtual IBD 
population. For sake of illustration, we considered only 
combinations of a cytokine inhibitor with other treatment 
effects, see Figure  7b (red bars). According to our model 
predictions, combination therapies of cytokine inhibitors 
with other cytokine inhibitors, anti-cell adhesion treatment, 
orally administered phosphatidylcholine, or FMT are very 
promising. In these cases, a large proportion of the nonre-
sponders to the sequential treatment (i.e., to either first- or 
second-line treatment) respond to the combination treat-
ment (see yellow bar). The specific choice should of course 
include safety and toxicity considerations. For the combina-
tion of cytokine inhibitor plus S1PR modulator, the model 
predicted the combination therapy to be less successful than 
using an S1PR modulator as second-line treatment in the 
population of nonresponders to the cytokine inhibitor. The 
main reason is that a large proportion of patients that re-
spond to the cytokine inhibitor (25.9%) do not respond to 
the combination of cytokine inhibitor plus S1PR modulator 
(see green bar), whereas S1PR modulators are quite effective 
as second-line treatment. This effect was also observed to a 
lower extent for the combination of cytokine inhibitor plus 
T cell proliferation inhibitor.

We observed that response rates to combination thera-
pies were larger when cytokine inhibitors were combined 
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with treatment effects that resulted in lower response 
rates when used as second-line treatments for nonre-
sponders to cytokine inhibitors. In other words, if two 
treatments are successful in the same subpopulation of 
patients, our analysis suggests to use them in a combina-
tion therapy, whereas if two treatments are successful in 
different subpopulations of patients, our analysis suggests 
to rather start with one of them and switch to the other 
as second-line treatment. This has important implications 
for therapy protocols: the combination of two treatments 
with high single response rates in the overall IBD popula-
tion does not guarantee the combination therapy to have a 
response rate close to the sum of the single response rates. 
The same holds for the use of second-line treatments. 

What matters is the conditional response of a treatment 
within the population of first-line nonresponders.

DISCUSSION

We developed a novel systems biology model in the con-
text of IBD that can be viewed a comprehensive sum-
mary of available knowledge on the mucosal immune 
response. We used the model to study a virtual population 
representing healthy individuals and patients with IBD. 
Importantly, we defined IBD via its phenotype (i.e., the 
response of the patient's immune system to a potential 
trigger), rather than in terms of hypothesized changes of a 

F I G U R E  7   Evaluation of alternative and combination treatments. (a) Fraction of patients (%) responding to second-line treatment in 
the population of first-line non-responders. (b) Fraction of patients (%) responding to (blue) first-line treatment with a cytokine inhibitor 
or second-line treatment indicated on the x-axis (or both) and (red) simultaneous combination treatment of a cytokine inhibitor and the 
treatment indicated on the x-axis. Green and yellow bars show the fractions of patients responding to the first- or second-line treatment, 
but not the combination treatment or those that respond to the combination, but not the first- or second-line treatment, respectively, in the 
percentage of the virtual IBD population. a, b All treatment effects were assumed to be similarly effective in the virtual IBD population (i.e., 
the treatment effect parameters � were chosen so that the response rate was 30% for each of the single treatments). FMT, fecal microbial 
transplant; IBD, inflammatory bowel disease; S1PR, sphingosine-1-phosphate receptor type 1.
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number of parameter values. This approach allowed us to 
study potential IBD predispositions in the virtual patient 
population.

A few systems biology models for IBD have been pre-
viously published (e.g., refs. 1–4, 13). The unique feature 
of our model is that its structure and parameters were 
chosen to describe the healthy mucosal immune response, 
without including any data from patients with IBD. Only 
to identify patients with IBD in a virtual population gen-
erated by including variability in our model, we used in-
formation on IBD. Through this, we (i) ensured to have 
included the most important processes of the mucosal 
immune response, as the healthy immune response can 
be adequately simulated; and (ii) obtained an “unbiased” 
IBD population covering the space of possible parameter 
combinations that (based on the underlying model) could 
lead to IBD. A related approach was used by Rogers et al. 
(2020),3,4 who also developed a systems biology model to 
describe with the same structural model healthy subjects 
and patients with IBD using virtual populations. In con-
trast to our approach, Rogers et al. (i) focused more on spe-
cific cytokines, (ii) implemented drug pharmacokinetic/
pharmacodynamic (PK/PD) based on specific PK profiles 
and binding reactions to the targeted cytokines, and (iii) de-
fined a priori, which parameters can be different between 
healthy subjects and patients with IBD. Interestingly, and 
in contrast to our findings, Rogers et al.4 did not observe 
different steady-states of the model (i.e., after stop of treat-
ment, all subjects returned to the pretreatment steady-
state, according to figures 3–5, and 7 in ref. 4).

As every (mathematical) model describing a complex 
biological process, our systems biology model is based on 
simplifications and limitations, which naturally also affect 
its predictive capabilities. Although the complexity of the 
presented model is already considerably high (133 differ-
ent reactions and 47 different cell types or subtypes), it is 
of course far from representing the full complexity of the 
human mucosal immune system. Including additional 
processes, cell types or reactions in the model would aim 
to increase its predictive capacity, but at the same time 
would require additional data needed for parameterization 
(which are often not available in literature). We want to 
point out especially the simplifications regarding the type 
of disease and spatial location of the inflammation: We 
did not differentiate between CD and UC, as a thorough 
description of those differences would have required even 
more complexity of the model (regarding e.g., cytokine 
profiles and spatial compartments describing the intesti-
nal wall). The model focuses on the colon (i.e., if available, 
structure, parameters, and cell concentrations were spe-
cifically based on literature data on sigmoidal colon), but 
is intended to be viewed as representative of the full gas-
trointestinal tract that can be affected by IBD. In addition, 

the parameterization of our model is based on a variety 
of literature sources, and, in some cases, where literature 
data were insufficient, parameters were set to values of 
reasonable magnitude ensuring the desired expected be-
havior of the model. This variability in data sources im-
pacts the quantitative precision that can be expected from 
the output. Therefore, results from our model simulations 
are intended rather qualitative (e.g., finding parameters 
with high potential for IBD predispositions), identifying 
cell concentrations that could be used as predictors for 
responsiveness, or testing hypotheses on novel drug tar-
gets. To describe treatment effects, we used simplified PK 
(i.e., assumed a constant treatment effect over the time of 
treatment). For better representation of the PK of a spe-
cific drug, the presented systems biology model should be 
linked to a PK/PD model describing drug concentrations 
and resulting target inhibition over time. Our systems bi-
ology model does not account for disease progression. This 
implies that in our simulations of first- and second-line 
treatments, the first-line treatment does not influence the 
time course of the response to the second-line treatment, 
as the patients fall back to the pretreatment steady-state 
after a non-successful first-line treatment.

Generation and use of virtual populations played a key 
role in our analysis. In our context, a model is defined by 
the structural model (the system of differential equations) 
and the vector of parameter values (including initial con-
ditions). Differences between individuals can be linked to 
differences in their vectors of parameter values. A common 
approach to generate an ensemble of vectors of parame-
ter values is to generate random variability around some 
reference vector of parameter values. Generating virtual 
populations this way, of course, faces challenges: variabil-
ity might be too low in some parameters and too high in 
others; in addition, correlations between parameters might 
be missing, when variability is included independently on 
all parameters. In this paper, we used a novel way of defin-
ing a virtual population: in a first step, we generated virtual 
individuals using a relatively large parameter variability 
relative to some reference individual and without includ-
ing correlations between parameters. In a second step, we 
filtered out virtual individuals showing unphysiological 
cell concentrations or responses corresponding to a differ-
ent disease. Then, in a third step, we used disease-specific 
insight to identify those individuals that show typical be-
havior of IBD, whereas the remaining virtual individuals 
are considered healthy. Our approach is different from 
other approaches (including Rogers et al.3), where often 
variability is only included on a subset of parameters. This 
requires prior knowledge, but more importantly, poten-
tially introduces bias in the analysis. Including variability 
on all parameters does not only generate IBD individuals, 
but mostly only additional healthy individuals. The virtual 
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population should be seen and interpreted as a popula-
tion of potential individuals exhibiting predefined charac-
teristics in the context of the model. This way, the virtual 
population allows to find possible parameter differences 
eliciting the disease and to perform clinical study simula-
tions. It can be expected that some of those parameter dif-
ferences relate to real-life parameter differences, and some 
might not be feasible in real life. As a result, simulation 
studies allow to support existing hypotheses or to generate 
new. Of course, newly generated hypotheses would have to 
be confirmed by new experimental studies.

Our study resulted in a number of important findings: 
(i) the implemented processes sufficed to qualitatively 
describe the mucosal immune response to different in-
flammatory stimuli and the occurrence of IBD as result 
of interindividual variability. (ii) The population of virtual 
IBD individuals is very heterogeneous (regarding both 
the time course of cell concentrations and the predispo-
sitions). Throughout the enormous diversity of predispo-
sitions, IBD can result from both a small number of large 
parameter changes or a higher number of small parameter 
changes. (iii) Hill factors (for recruitment or cell activation) 
seem to play a dominant role in IBD predispositions. (iv) 
The model allowed to identify predictors for responsive-
ness to different treatment effects (e.g., pro-inflammatory 
macrophages and epithelial destruction for cytokine in-
hibitors), and to provide possible explanations for the 
high interindividual differences in treatment responsive-
ness via identification of parameter differences between 
responders and nonresponders. This does, however, not 
imply that they all relate to differences in real patients with 
IBD, but they can give a good overview of possible reasons, 
and be a good starting point for further analyses in clinical 
studies via biomarkers. (v) The model provides interesting 
insights into sequential versus combination treatments: 
good choices of treatments in a sequential therapy (i.e., 
choice of a follow-up treatment among nonresponders to a 
first treatment) are less promising when used as combina-
tion treatments. We believe that the presented model and 
analyses are an important step toward better understand-
ing IBD and the different treatment options.
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