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Abstract
The Moore-Greitzer partial differential equation (PDE) is a commonly used math-
ematical model for capturing flow and pressure changes in axial-flow jet engine
compressors. Determined by compressor geometry, the deterministic model is charac-
terized by three types of Hopf bifurcations as the throttle coefficient decreases, namely
surge (mean flow oscillations), stall (inlet flow disturbances) or a combination of both.
Instabilities place fundamental limits on jet-engine operating range and thus limit the
design space. In contrast to the deterministic PDEs, the Hopf bifurcation in stochas-
tic PDEs is not well understood. The goal of this particular work is to rigorously
develop low-dimensional approximations using a multiscale analysis approach near
the deterministic stall bifurcation points in the presence of additive noise acting on
the fast modes. We also show that the reduced-dimensional approximations (SDEs)
contain multiplicative noise. Instability margins in the presence of uncertainties can be
thus approximated, which will eventually lead to lighter and more efficient jet engine
design.

Keywords Moore-Greitzer PDE model · Additive noise · Hopf bifurcation · Stall ·
Multiscale analysis · Low-dimensional approximations

Mathematics Subject Classification 60H30

1 Introduction

Jet engine compressors can exhibit instabilities near their optimal operating range,
which reduce performance and are potentially dangerous. One of these instabilities
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is rotating stall, whereby the circumferential flow pattern is disturbed. This manifests
itself as a region of severely reduced flow that rotates at a fraction of the rotor speed
and causes a drop in performance. A second instability is surge, a pumping oscillation
that can cause flame-out and engine damage. The detection of compressor instabili-
ties (surge, stall or a combination of the two) is essential for increasing compressor
efficiency, preventing damage or even failure, and lengthening the overall life-span of
the engine components.

Moore and Greitzer (1986), Greitzer and Moore (1986) developed a relatively sim-
ple set of equations that model airflow through the compression system of a jet engine.
This mathematical model consists of a PDE that describes the behavior of disturbances
in the inlet region of compression systems, and two ODEs that describe the coupling
of the disturbances within the mean flow. The model is also equipped with boundary
conditions to express the pressure rise between the upstream reservoir and the exit
duct discharge. Furthermore, Birnir et al. (2007) used the stochastic homogenization
theory of fluids to derive a modified version from the Navier–Stokes equations.

The deterministic Moore-Greitzer PDE model can be converted in general into an
abstract evolution parabolic PDE (Banaszuk et al. 1999),

∂t u(t) = Au(t)+ f (μ, u(t)), u(0) = u0,

where for every t ∈ [0,∞), u(t) takes value in a productHilbert spaceU := H×R×R

with H as an infinite-dimensional separable Hilbert space. The unbounded linear
operator A equipped with certain boundary conditions generates an analytic compact
C0 semigroup on U . The field f (μ, u) contains cubic polynomials that also depend
on the parameter μ. Linearization around an equilibrium point ue(μ) gives rise to the
linear operator A+Dfue (μ). It has been verified that A+Dfue (μ) only admits a point
spectrum, i.e., σ(A + Dfue (μ)) = σp(A + Dfue (μ)) = {ρ±k, ∀k ∈ I}, for a certain
index set I (Xiao and Basar 2000). That the eigenvalues ρ±k appear in conjugate pairs
is attributed to the spiral structure of the phase flow.

To make the analysis less cumbersome, we work on the localized model with
topological equivalence

∂tv = (A + Dfue )(μ)v + B(v, v)+ F(v, v, v), (1.1)

where, for eachμ, v = u−ue(μ) is the perturbation around ue(μ), the operators B(·, ·)
and F(·, ·, ·) represent respectively bilinear and trilinear mappings. As for the system
(1.1), the new equilibrium point is always 0 (the trivial fixed point) for all μ ∈ R. The
system exhibits three types of Hopf bifurcations (Xiao 2008), that is, at some critical

μc, we have Re[ρ±k(A + Dfue (μc))] = 0 but d Re[ρ±k (A+Dfue (μ))]
dμ

∣
∣
∣
μ=μc

�= 0 for the

associated critical k ∈ Ic ⊂ I, while the rest of the spectrum stays in the left half-
plane. In the above setting, we are particularly interested in the local behaviour of the
systemnear 0, parametrized byμ in some small neighborhood ofμc . The local stability
of the hyperbolic equilibrium points ve(μ), is determined by the sign of the real part of
the eigenvalues of A+Dfue (μ). However, at a bifurcation pointμc, the linear operator
A + Dfue (μc) does not provide any information about exponential convergence (or
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divergence) of the system. The slowly-varying dynamics on the center manifold must
be investigated to study the nonlinear effects on determining the stability of the system.

To simplify the notation, the eigenvalues of (A + Dfue (μ))|H will be denoted by
λ±k(μ), with Re(λ±k) decreasing in k, and those of (A+Dfue (μ))|R2 by γ±1(μ). The
corresponding eigenvalues λ±1 and γ±1 will pass through a change of stability inde-
pendently. Depending on which pair of eigenvalues crosses the imaginary axis first as
the bifurcation parameterμ varies, there are three possible types of Hopf bifurcations:
If λ±1 crosses the imaginary axis first, the physical oscillations are dominated by stall
effects; if γ±1 satisfies the Hopf bifurcation condition, then surge effects dominate;
if λ±1 and γ±1 cross the imaginary axis simultaneously, we see a mixture of both
effects. Xiao (2008) has verified that the oscillation type is only determined by the
fluid’s viscosity and the geometric structure of the compressors.

The existence of the center manifold for the deterministic Moore-Greitzer model is
well understood (Xiao and Basar 2000). The evolution of states on the center manifold
is studied by naturally separating the dynamics into critical modes and fast modes.
The critical subspaces are given as U stall

c = [span{e±iθ }, 0, 0]T , U surge
c = R

2, and
Umix
c = U stall

c ⊕ U surge
c , respectively, where the subscript c denotes ‘critical’, and

the superscripts describe the types of engine instabilities. If we denote the orthogonal
projection by Pc : U → U stall

c (resp. Pc : U → U surge
c or Pc : U → Umix

c ), as well as
Ps := I − Pc, the solution can be represented as U 	 v = x + y with x ∈ PcU and
y ∈ PsU . Therefore, (1.1) can be converted into an equivalent form:

∂t x = Pc(A + Dfue )(μ)v + Pc[B(v, v) + F(v, v, v)];
∂t y = Ps(A + Dfue )(μ)v + Ps[B(v, v)+ F(v, v, v)]. (1.2)

Note that the term Pc(A+Dfue )(μ) depends linearly onμ, while even forμ = μc the
term Ps(A+Dfue )(μc)v does not vanish. This suggests that in the neighborhood ofμc

the function y evolves much faster than x . The analytical center manifold determines
the long-time behavior of y as a smooth mapping h of x (Guckenheimer and Holmes
2013), i.e. lim

t→∞ y(t) = h(x). Therefore, the dominating dynamics restricted to PcU

depends only on x :

∂t x = Pc(A + Dfue )(μ)v + Pc[B(x + h(x), x + h(x))

+F(x + h(x), x + h(x), x + h(x))]. (1.3)

In addition, z j = 〈ζ j , x〉 ∈ C for all eigenvector ζ j ∈ PcU , solve a dim(PcU )-
dimensional amplitude equation that is equivalent to (1.3).

In contrast to the deterministic model, the Hopf bifurcation in stochastic partial
differential equations (SPDEs) is not well understood (Arnold et al. 1996; Baxendale
1994). Given an appropriate probability space (Ω,F ,P), the evolution of the axial
flow in an engine compressor with unsteady turbulence is modelled by the abstract
Moore-Greitzer stochastic PDE, written locally as

dv=(A + Dfue )(μ)vdt+ vB(v, v)dt + F(v, v, v)dt + εdWt , v(0)=v0,

(1.4)
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where Ẇt (ω) represents the effect of turbulence (Kim and Abed 1999; Gourdain et al.
2014), modeled by an additive Gaussian noise (white in time, either white or colored
in space) with a small strength ε. The random perturbations are small, but over a long
time their effect can be significant on the slow dynamics of the amplitudes of the
critical modes. It is worth remarking that instead of using finite-dimensional noise
that only acts on one of the stable modes as in Blömker and Romito (2015), we use
the infinite-dimension Gaussian-type noise (see examples in Def. 14) with appropriate
space-time regularity conditions. Such a modelling setup has a reasonable physical
meaning, and is also amenable for the analysis and derivations presented in Sect. 5.

In this paper, a two-dimensional SDE, regarded as the stochastic amplitude equa-
tions of the dominant dynamics, are derived for the stall bifurcation. We achieve this
by investigating v̂(t) := ε−1v(ε−2t) that solves

d v̂ = ε−2(A + Dfue )(μ)v̂dt + ε−1B(v̂, v̂)dt + F(v̂, v̂, v̂)dt + ε−1dŴt , v̂(0) = v̂0, (1.5)

where Ŵt := εWε−2t is a newWiener process, andμ = μc + ε2q for some q ∈ R. Due
to the natural separation of the temporal scales close to the deterministic bifurcation
points, the work is based on a multiscale analysis of the coupling between the slow
and fast modes as an extension of Blömker et al. (2007). Our goal in this paper is
to extend the work of Blömker et al. (2007) and Blömker and Hongbo (2020) and
develop multiscale methods to study the effects of turbulence on the flow oscillations.
The derivation is provided explicitly for the purpose of engineering applications. We
expect the results will motivate engineers with theoretical background and shed some
light on the design of lighter and more efficient jet engines.

Denoting the solution of (1.5) by v̂(t) = [ĝ(t), Φ̂δ(t), Ψ̂δ(t)]T ∈ U , we focus our
attention on the systems where the parameters are in the vicinity of stall bifurcation
point μc. The main result of the paper is the following:

Theorem 1 Under the assumptions stated in Sect. 3, given μ = μc + ε2q for some
parameter q, an approximation of the slowly-varying dynamics of ĝ(t) ∈ H at μ̂ is
obtained by

Pcĝ(t) = ẑ(t)eiθ + ẑ(t)e−iθ ,

where va := [Re(ẑ), Im(ẑ)]T solves a two-dimensional SDE of the form

va(t) = va(0)+
∫ t

0
A(q)va(s)ds +

∫ t

0
|va(s)|2Bva(s)ds +

∫ t

0
M(va(s))dWs+Er(t);

va(0) = [Re(ẑ(0)), Im(ẑ(0)]T ;

E

[

sup
t∈[0,τ∗]

‖Er(t)‖p

]

= O(ε p/2−),

(1.6)

where thematricesA(q),B and M aswell as the driving forceW are defined in Sect.5.
The stochastic effects appear multiplicatively in the last term above. The quantity τ ∗
is a stopping time up to some T > 0 such that, given negative diagonal entries of B,
P[τ ∗ ≤ t] → 0 as ε → 0 for all t ∈ (0, T ].

123



Journal of Nonlinear Science            (2023) 33:74 Page 5 of 36    74 

Fig. 1 Compression system

Fig. 2 Compressor geometry

Let νεc be the law of {va(t ∧ τ ∗)}t≤T . Then, as ε → 0, the sequence of νεc converges
weakly to the measure νc, which is the law of the solution to

ṽa = ṽa(0)+
∫ t

0
A(q)ṽads +

∫ t

0
|ṽa |2Bṽads +

∫ t

0
Σ(ṽa)dβs, (1.7)

where βt is a two-dimensional Brownian motion, and Σ is defined in (6.2).

Remark 2 To succinctly convey the methodology, we shall hereby only consider the
stall case of the three possible instabilities in the Moore-Greitzer model. The approx-
imation for the surge and stall-surge cases can be done by the same method, but with
different rescaling schemes. A short discussion is provided in Remark 23.

The rest of the paper is organized as follows. In Sect. 2, we formally review the
physical model and recast it into the form of (1.3) for the stall case. The discussion
of the stochastic model is based on this. In Sect. 3, the assumptions for the stochastic
analysis will be stated. We describe the behavior of the stochastic Moore-Greitzer
PDE model with the setup stall parameters before state explosion, derive the finite-
dimensional approximation, prove the error bound, and show the weak convergence
result from Sect. 4 to Sect. 6. The conclusions follow in Sect. 7.

2 Deterministic Moore-Greitzer Model

The structure of the compression system and the compressor geometry are given in
Figs. 1and 2.

The compressor gives pressure rise to the upstreamflow and sends it into the plenum
through the downstream duct. The throttle controls the averagedmass flow through the
system at the rear of the plenum. The stability of the compression system is twofold:
(stall) the upstream non-uniform disturbance generates a locally higher angle of attack,
and propagates along the blade row without mitigation; (surge) the average mean flow
and pressure rise oscillate constantly and formulate standing waves (Gravdahl 1998).
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The deterministic Moore-Greitzer model captures the dynamic evolution of the above
states, and is given explicitly as Xiao (2008):

∂

∂t

⎡

⎣

g
Φ

Ψ

⎤

⎦ =
⎡

⎣

K−1( ν2
∂2

∂θ2
− 1

2
∂
∂θ
) 0 0

0 0 0
0 0 0

⎤

⎦

⎡

⎣

g
Φ

Ψ

⎤

⎦+
⎡

⎢
⎣

aK−1(ψc(Φ + g)− ψc(Φ, g))
1
lc
(ψc(Φ, g)− Ψ )
1

4lc B2 (Φ − μ
√
Ψ )

⎤

⎥
⎦ , (2.1)

where the states [g(t),Φ(t), Ψ (t)]T ∈ U := H × R × R are as introduced before.
The physical meaning of the states are as follows, g(t, θ) represents the velocity of
upstreamdisturbance along the axial direction at the duct entrance,Φ(t) is the averaged
mean flow rate, Ψ (t) is the averaged pressure. We require that g(t, 0) = g(t, 2π),
gθ (t, 0) = gθ (t, 2π) and

∫ 2π
0 g(τ, θ)dθ = 0, thus,

g(t, θ) =
∑

n∈Z\{0}
gn(t)e

inθ .

The operator K is defined as a Fourier multiplier,

K (g) =
∑

n∈Z\{0}

{

1 + am

|n|
}

gn(t)e
inθ ,

where a is the internal compressor lag and m is the duct parameter. The compressor
characteristic ψc is given in a cubic form,

ψc(Φ) = ψc0 + ι

[

1 + 3

2

(
Φ

Θ
− 1

)

− 1

2

(
Φ

Θ
− 1

)3
]

(2.2)

where ψc0 , ι and Θ are real-valued parameters that are defined by the compressor
configuration. We also define

ψc(Φ, g) := 1

2π

∫ 2π

0
ψc(Φ + g)dθ.

As for the other parameters, lc > 0 is the compressor length, B > 0 is the plenum-to-
compressor volume ratio, ν > 0 is the viscous coefficient. The parameterμ represents
the throttle coefficient, the decrease of which will cause the stability change.

Remark 3 The solution of g(t) lies in an infinite-dimensional Hilbert spaceH := {h ∈
L2[0, 2π ] : ∫ 2π0 h(θ)dθ = 0} equipped with the inner product

〈h1, h2〉H := 〈h1, Kh2〉, h1, h2 ∈ H, (2.3)

as well as the induced norm ‖ · ‖H; note that the Fourier multiplier K : H → H is a
positive definite and self-adjoint linear operator. More details on the operator K and
K−1 can be found in Xiao (2008). We also identifyH with its dual through the Riesz
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isomorphism. In general, due to the spatial periodicity and the zero-average property
(
∫ 2π
0 g(t, θ)dθ = 0 for all t), we can expect the solution g(t) to be at least in a Sobolev

space H2
0 ⊂ H, which is formally defined Def. 9. The space U = H ×R×R is then

a product Hilbert space with inner product defined by

〈u1, u2〉U = 〈(g1, Φ1, Ψ1), (g2, Φ2, Ψ2)〉U :=〈g1, g2〉H+lcΦ1Φ2 + (4lc B
2)Ψ1Ψ2.

(2.4)

2.1 Abstract Form

In abstract form we can write (2.1) as

∂t u = Au + f (μ, u), (2.5)

where u = [g, Φ,Ψ ]T ∈ U , A is the operator matrix

A =
⎡

⎢
⎣

K−1
(
ν
2
∂2

∂θ2
− 1

2
∂
∂θ

)

0 0

0 0 0
0 0 0

⎤

⎥
⎦ ,

and

f (μ, u) =
⎡

⎢
⎣

aK−1(ψc(Φ + g)− ψc(Φ, g))
1
lc
(ψc(Φ, g)− Ψ )
1

4lc B2 (Φ − μ
√
Ψ )

⎤

⎥
⎦ .

We consider a fixed point of the form ue(μ) = [0, Φe(μ), Ψe(μ)]T and such that
f (μ, ue(μ)) = 0 for each μ. In particular (Φe(μ), Ψe(μ)) is determined by the
intersection of the compressor characteristicΨ = ψc(Φ) and the throttle characteristic
Φ = μ

√
Ψ .

Remark 4 Note that by definition, we have the following expansion:

ψc(Φ + g) = ψc(Φ)

+ι
[

3

2

( g

Θ

)

− 1

2

( g

Θ

)3 − 3

2

(
Φ

Θ
− 1

)2 g

Θ
− 3

2

(
Φ

Θ
− 1

)( g

Θ

)2
]
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Since g =∑n∈Z\{0} gneinθ ,

ψ̄c(Φ, g) = 1

2π

∫ 2π

0
ψc(Φ + g)dθ = 1

2π

∫ 2π

0
ψc(Φ)dθ

+ 1

2π

∫ 2π

0
ι

[

3

2

( g

Θ

)

− 1

2

( g

Θ

)3 − 3

2

(
Φ

Θ
− 1

)2 g

Θ
− 3

2

(
Φ

Θ
− 1

)( g

Θ

)2
]

dθ

= ψc(Φ)− 3ι

2Θ2

(
Φ

Θ
− 1

)
∑

j,k∈Z0
k+ j=0

g j gk − ι

6Θ3

∑

j,k,l∈Z0
k+ j+l=0

g j gkgl

= ψc(Φ)+ ψ ′′
c (Φ)

2
Π(2)g2 + ψ ′′′

c (Φ)

6
Π(3)g3,

wherewe have used notationsΠ(2)uv = ∑

j,k∈Z0
k+ j=0

u jvk andΠ(3)uvw = ∑

j,k,l∈Z0
k+ j+l=0

u jvkwl

for all u, v, w ∈ H2
per. Therefore, the noisy perturbation of g that will be added in the

next section enters the flow equations viaΠ(2)g2 andΠ(3)g3. However, the operation
points of the compressor, a family of stable fixed points (Φe(μ), Ψe(μ)), are not
influenced by g.

For local analysis in the neighborhood ofμc (a bifurcation point of the original system),
given a specifiedparameterμ ,wedefine the unfoldingparameter in this abstract setting
as

q̂ := μ− μc,

which measures the distance from the true bifurcation point in the parameter space.
We transform (2.5) into a topologically equivalent system by expanding f (μ, ue(μ))
locally w.r.t. each ue(μ) up to 3rd-order terms, which results in the equation

∂tv = L(q̂)v + B(v, v)+ F(v, v, v), (2.6)

where v = u − ue(μ) = [g, Φδ, Ψδ] is the perturbation around ue(μ), and L(q̂) is the
linear operator given as

L(q̂) := A + Dfue (μc + q̂).

The Fréchet derivative at ue(μ) is

Dfue (μc + q̂) =
⎡

⎢
⎣

a(ψ ′
c,μc

+ ψ ′′
c,μc

Φ ′
e,c q̂)K

−1 0 0
0 1

lc
(ψ ′

c,μc
+ ψ ′′

c,μc
Φ ′

e,c q̂) − 1
lc

0 1
4B2lc

1
4B2lc

(S ′
μc

+ S ′′
μc
Ψ ′
e,c q̂)

⎤

⎥
⎦ ,

(2.7)
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the bilinear operator is given as

B(ζ, η) = 1

2

⎡

⎢
⎣

a(ψ ′′
c,μc

)
[

K−1(ζ1η1 −Π(2)ζ1η1 + ζ1η2)+ ζ2K−1η1
]

1
lc
(ψ ′′

c,μc
)(ζ2η2 +Π(2)ζ1η1)
1

4B2lc
(S ′′

μc
)ζ3η3

⎤

⎥
⎦ , (2.8)

where ζ, η ∈ U := H×R×R and are written as ζ = [ζ1, ζ2, ζ3] and η = [η1, η2, η3].
The trilinear operator is given as

F(v, v, v) = 1

6

⎡

⎢
⎣

a(ψ ′′′
c )[K−1(v31 −Π(3)v3)+ 3K−1(v21v2 −Π(2)v21v2 + v1v

2
2)]

1
lc
(ψ ′′′

c )(v
3
2 +Π(3)v31 + 3Π(2)v21v2)

1
4B2lc

(S ′′′
μc
)v33

⎤

⎥
⎦ ,

(2.9)

where v := [v1, v2, v3] ∈ U := H × R × R and Φ ′
e,c := Φ ′

e(μc), Ψ ′
e,c :=

Ψ ′
e(μc); ψ ′

c,μ := ψ ′
c(Φe(μ)) = 3ι

2Θ

[

1 −
(
Φe(μ)
Θ

− 1
)2
]

, S ′
μ = − μ

2
√
Ψe(μ)

; ψ ′′
c,μ :=

ψ ′′
c (Φe(μ)) = − 3ι

Θ2 (
Φe(μ)
Θ

− 1), S ′′
μ = μ

4
√
Ψe(μ)

3 ; ψ
′′′
c := ψ ′′′

c (Φe(μ)) = − 3ι
Θ3 ,

S ′′′
μ = − 3μ

8
√
Ψe(μ)

5 .

The spectrum of L(q̂) Xiao (2008) in the neighborhood of μc is σ(L(q̂)) =
{λ±n(q̂), γ±1(q̂)} for n ∈ Z

+, where

λ±n(q̂) = a|n|
|n| + am

(

(ψ ′
c,μc

+ ψ ′′
c,μc

Φ ′
e,cq̂)− νn2

2a
± |n|

2a
i

)

(2.10)

for n ∈ Z
+ and the corresponding eigenvectors are ζ±n = [e±inθ , 0, 0]T;

γ±1(q̂) = χ(q̂)−Ξ(q̂)

2
± i

√

1
B2 − (ψ ′

c,μc
− S ′

μc
4B2 )

2

2lc

where χ(q̂) = 1
lc
(ψ ′

c,μc
+ ψ ′′

c,μc
Φ ′

e,cq̂) and Ξ(q̂) = − 1
4B2lc

(S ′
μc

+ S ′′
μc
Ψ ′
e,cq̂); the

eigenvector corresponding to γ±1(q̂) is given by ζγ j = [

0, 1, ζψ j

]T for j ∈ {±1},

where ζψ j = lc(χ+Ξ)
2 − i j

√

1
B2

−(ψ ′
c,μc−

S′
μc

4B2
)2

2 . Based on (2.6), we can separate the
slow and fast dynamics. For completeness, we state the other basic properties of the
linear operator L(q̂) in Appendix A.

Remark 5 We also denote B(v, v) and F(v, v, v) by B(v) and F(v) for short.

2.2 Projection and Simplifications

In this subsection, we provide the critical and stable dynamics for the stall case. A
similar procedure can be used to study the surge as well as the stall-surge cases.
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Let ζ := ζ1 and ζ := ζ−1 (recall ζ±1 in Sect. A-5) denote the critical eigenvec-
tors. Then the corresponding adjoint eigenfunctions are ζ ∗ := [ K−1

2π e−iθ , 0, 0]T and

ζ
∗ := [ K−1

2π eiθ , 0, 0]T , and the corresponding eigenvalues are λ±1(q̂). Note that by

the definition of inner product in Remark 3, we have 〈ζ, ζ ∗〉U = 1, 〈ζ, ζ ∗〉U = 0;
〈ζ , ζ ∗〉U = 0, 〈ζ , ζ ∗〉U = 1. The critical projection operator is explicitly defined by
Pc := 〈ζ ∗, ·〉U ζ + 〈ζ ∗

, ·〉U ζ , and the stable projection Ps = I − Pc. In particular, we
use simple notations for the amplitudes of the critical projection, B̂ := 〈ζ ∗, B〉U as
well as F̂ := 〈ζ ∗,F〉U . We also denote −Ls(q̂) := L(q̂) when L(q̂) is restricted to
PsU , where the negative sign is to emphasize the sign of the stable eigenvalues.

We represent the solution v ∈ U as v = x + y for x ∈ PcU and y ∈ PsU . By the
above separation of spectrum, we obtain the critical and stable dynamics as:

dz = 〈ζ ∗, dx〉U =
[

λ1(q̂)z + B̂(x + y, x + y)+ F̂(x + y, x + y, x + y)
]

dt;
(2.11a)

dy = [−Ls(q̂)y + Ps B(x + y, x + y)+ PsF(x + y, x + y, x + y)
]

dt . (2.11b)

where the amplitudes z, z ∈ C, Uc
1 	 x = zζ + zζ and PsU1 	 y = v − x =

[∑n∈Z\{0,±1} gneinθ , Φδ, Ψδ]T. It is clear that Re(λ±1(q̂)) is linear in q̂ (see the defi-
nition in (2.10)). Since z and z are conjugated conterparts, showing the dynamics of
either one of them is sufficient to represent the critical dynamics.

Note that Pc can be interpreted as a two-fold projection:

a) projection from U onto H;
b) projection fromH onto U stall

c .

Furthermore,

1. B̂(x, x) = 〈ζ ∗, B(x, x)〉U = 〈ζ ∗, B(zζ, zζ )+2B(zζ, zζ )+ B(zζ , zζ )〉U , but we
can justify that 〈ζ ∗, B(zζ, zζ )〉U = 〈ζ ∗, B(zζ , zζ )〉U = 〈ζ ∗, B(zζ, zζ )〉U = 0

2. B̂(y, y) = 〈ζ ∗, B(y, y)〉U = a(ψ ′′
c,μc )

1+am

∑k+l=1
k∈{−2,−3,...} gkgl .

3. B̂(x + y, x + y) = 2B̂(x, y) + B̂(y, y); PcB(x + y, x + y) = 2PcB(x, y) +
PcB(y, y).

4. Ps B(x + y, x + y) = B(x, x) + 2Ps B(x, y) + Ps B(y, y).

3 Notations and Assumptions for Stochastic Moore-Greitzer Model

Basedon (2.6), themain purpose of this paper is to investigate the dominating dynamics
in the critical subspace of stall in the neighbourhood of μc and v̂ = 0 with the
presence of additive noise. In order to examine the behavior of the small solutions
v̂(t) := ε−1v(ε−2t) of (2.6), we consider the following Cauchy problem

d v̂ = ε−2L(q̂)v̂dt + ε−1B(v̂, v̂)dt + F(v̂, v̂, v̂)dt + ε−1dŴt , v̂(0) = ε−1v̂0,

(3.1)
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where Ŵt := εWε−2t and the semigroup1 associated to (3.1) is Ŝ(t) = eε
−2L(q̂)t . In

order to define the space-time model ofWt and the solutions to SPDEs, it is necessary
to set up spaces and assumptions such that the problem is well defined.

Note that based on the abstract form (3.1), L(q̂) := A + Dfue (q̂) keeps all the
properties as introduced in Sect. A.

The solution space for the deterministic case can be found inSect.A,whereD(L(q̂))
coincidedwith H2

0 ×R×R. Nowwe define the fractional spacesw.r.t.D(L(q̂)) and H2
0

(Def. 6) for the stochastic settings in order to have a more flexible scale of regularity.

Definition 6 (Fractional Power Space) For α ∈ R, given the analytic semigroup Ŝ(t)
generated by ε−2L(q̂), define the interpolation fractional power (Hilbert) space Pazy
(2012) Uα := D(Lα(q̂)) endowed with inner product 〈u, v〉α = 〈Lαu, Lαv〉U and
corresponding induced norm ‖ · ‖α := ‖Lα · ‖. Similarly, as short-hand notation we
define L|αH := (L|H)α and Hα := D(L|αH). Furthermore, the spaces Uα (resp. Hα)
and U−α (resp. H−α) are dual to each other under the duality pairing w.r.t. 〈·, ·〉U
(resp. 〈·, ·〉H).

Remark 7 For theMoore-Greitzermodel, due to (A.1),D(L|α
R2(q̂)) is isomorphic toR2

(since there is no spatial dependence in this subspace), and thereforeUα is isomorphic
toHα × R × R.

We list other properties Hairer (2009) of the fractional power and eLt :

1. Hα ⊂ Hβ for α ≥ β. Furthermore, for γ > 0,Hγ ⊂ H ⊂ H−γ ;
2. The quantity eLt commutes with any power of its generator;
3. ‖Ps LαeLt‖ ≤ Cα

tα e
−ωt for all t > 0. In particular, ‖LαeLt‖ ≤ Cα

tα when t ∈ (0, 1].

Proposition 8 For α > β ∈ R, eLt mapsHβ intoHα , there exists a constant Cα,β such
that for t ∈ (0, 1], ‖eLt x‖α ≤ Cα,β‖x‖β tβ−α . Moreover, for all t > 0 and x ∈ PsU,
there exists a constant C ′

α,β such that ‖e−Ls t x‖α ≤ C ′
α,β‖x‖β tβ−αe−ωt .

Proof For t ∈ (0, 1], we have

‖eLt x‖α = ‖LαeLt x‖ = ‖Lα−βeLt (Lβ)x‖ ≤ ‖Lα−βeLt‖‖x‖β,

and by Remark 7,

‖Lα−βeLt‖ ≤ Ct−α+β.

we obtain the relation for t ∈ (0, 1]. For general t > 0, consider the stable projection,
the part e−ωt is inherited from the property of e−Ls t (see in Sect. A-2). ��
Definition 9 (Fractional Sobolev Space) We work with standard L2-Sobolev spaces:
Let L2 = L2([0, 2π ]) be the space of square-integrable functions on [0, 2π ]. Any
1 Note that Ŝ(t) should be dependent on q̂. Since we investigate the solution for a fixed q̂ at a time, we
abuse the notation and do not emphasize the dependence on q̂.
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f ∈ L2 has a Fourier expansion f = ∑

k∈Z eik·fk with
∑

k |fk |2 = 2π‖ f ‖2
L2 < ∞.

We define

Hr :=
{

f =
∑

k∈Z
eik·fk : ‖ f ‖2Hr :=

∑

k∈Z
(1 + |k|2)r |fk |2 < ∞

}

,

where for r ≥ 0 the series converges in L2, and for r < 0 it is a formal Fourier series
which converges as a distribution acting on C∞(R/(2πZ)), the space of infinitely
smooth 2π -periodic functions. The spaces Hr and H−r are dual to each other under
the duality pairing H−r 〈 f , h〉Hr = 1

2π

∑

k∈Z fkhk .We mostly work on the subspace

Hr
0 := { f ∈ Hr : f0 = 0}.

It can be seen from the special case when r = 1, D(L|rH) = H2r
0 . In the following

lemma, we show that such relation holds for any r ∈ N. For completeness, we provide
the proof of Lemma 10 in Appendix B. The results can be further extended when H2r

0
is defined for negative and non-integer r .

Lemma 10 On the spatial domain D = [0, 2π ], the Sobolev norm ‖·‖Hr is equivalent
as the fractional power norm ‖ · ‖r/2 for r ∈ N.

H -valuedWiener processes are essential to the study of SPDEs, where H is referred
as a general class of separable Hilbert spaces with complete orthonormal systems {ek}.
However, in practice (see Def. 11 and 13), it is convenient to find a proper space where
the covariance operator Q is of trace class (trace of Q is finite), such that the noise
can be constructed through a series expansion.

Definition 11 (Q-Wiener Processes) Given a probability space (Ω,F ,P), let H be a
separable Hilbert space with complete orthonormal systems {ek}, let Q be a trace class
nonnegative operator on H . An H -valued stochastic process {Wt }t≥0 (also written as
W ) is called a Q-Wiener process if

(i) W has continuous trajectories P-a.s. and W0 = 0,
(ii) W has independent increments and the law satisfies

L (Wt − Ws) = N (0, (t − s)Q), t ≥ s ≥ 0,

Proposition 12 The covariance operator of an H-valued Q-Wiener process W can be
expressed as Q :=∑ qkek ⊗ ek , where {qk} is the point spectrum of Q.

Definition 13 (Generalized Q-Wiener Processes) Let H be the same space as in
Def. 11, let W be a Wiener process with covariance operator Q. Let H1 be a Hilbert
space such that Q1/2H is embedded into H1 with a Hilbert-Schmidt embedding and Q
is a trace class operator when extended to H1. ThenW is an H1-valued Q-Wiener pro-
cess, we also callW a generalized Q-Wiener process based on H . In particular, when
Q = I , W is an H1-valued cylindrical Wiener process (or a generalized cylindrical
Wiener process based on H ).
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The viscous Moore-Greitzer equation is based on the Navier-Stokes equation and a
non-rigorous stochastic homogenization theory of fluids Hou (2002). Even though it
is not clearly understood how the noise can be introduced into the periodic turbulent
flow g ∈ H, we construct Hα-valued Q-Wiener processes as explained in Def. 11
and 13 using expansion for the specific model of the engine disturbances. Such a
model naturally captures the average phenomena and satisfies the prior belief of the
space-time disturbances.

Definition 14 (Model of disturbances) For the Moore-Greitzer model, we restrict
attention toH and construct,

W |H(t)=
∑

k∈Z+\{1}

√
qk(βk(t)+ iβ−k(t))e

ikθ+
∑

k∈Z−\{−1}

√
qk(β−k(t)− iβk(t))e

ikθ

(3.2)

where qk = |k|−(4α+1)−υ for any fixed υ > 0, βk(t) are i.i.d. Ft -Brownian motions.
Then the process W |H belongs toHα a.s..

The following examples are special cases of the engine disturbances:

(i) (White in time, colored in space) when α ≥ 0, qk decays as k increases, then Q is
a trace class operator (i.e. Tr(Q) = ∑

k∈Z\{0,±1} qk < ∞ Da Prato and Zabczyk
(2014)) inHα ⊂ H, and W |H is automatically anH-valued Q-Wiener process;

(ii) (Space-time white noise) when α = −1/4 − υ/4, Q = I , Tr(Q) = ∞ and
(3.2) does not converge in H. However, when H is extended to Hα ⊃ H by
a Hilbert-Schmidt inclusion operator, the W |H is well defined as an Hα-valued
process.

The construction (3.2) implies 〈Qζk, ζ ∗
k 〉 = qk = 0 for k ∈ {1,−1}, which means

that the additive noise does not act on PcH. This is, in that, the additive stochastic
components in the stable, heavily damped modes also contribute to the critical modes.
These contributions enter the critical modes as multiplicative noise. If additional addi-
tive noise is acting directly on the critical modes, it will be of higher order than the
multiplicative effects generated by the interaction between critical and stable modes.
However, the stochastic stability of the fixed point is only affected by the presence
of multiplicative noise in the critical modes. The proposed model of disturbances
eliminates this strong additive effect to better understand and quantify the bifurcation
behavior.

Assumption 15 Given the probability measure space (Ω,F ,P), for α ∈ ( 1
12 , 1],

let Wt = [W |H(t), βΦ(t), βΨ (t)] where W |H(t) is a generalized Q-Wiener process
constructed by (3.2),βΦ(t) andβΨ (t) are i.i.d.Ft -Brownianmotions inR.We assume
that there exists some (small) υ > 0 such that

‖Q1/2L|α− 1
2+υ

H u‖ < ∞, u ∈ H. (3.3)

Lemma 16 For any α > 1
12 there exists β ∈ (α− 1, α] such that B : Uα ⊗Uα → Uβ

and F : Uα ⊗Uα ⊗Uα → Uβ are bounded multilinear operators.
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Proof In this proof only we make use of more general Besov spaces than Hr , see

Bahouri et al. (2011) for details. As Hα
∼= H2α

0 is continuously embedded in B
2α− 1

2∞,2
and 2α+2α > 0, standard multiplication results in Besov spaces (Bahouri et al. 2011,

Theorem 2.82, Theorem 2.85) show that Hα × Hα 	 (u, v) �→ uv ∈ H (4α− 1
2 )∧2α is

a bounded bilinear operator. Moreover, in B also the 0 Fourier mode is removed and
therefore we can take β = (2α− 1

4 )∧α ≥ α− 1
4 for this term. Repeating the argument

and using that 4α − 1
2 + 2α > 0, we get that H3

α 	 (u, v, w) �→ uvw ∈ H (6α−1)∧2α
is a bounded trilinear operator, so after removing the zero Fourier mode we can take
β = (3α − 1

2 ) ∧ α ≥ α − 1
2 for the F term.

Proposition 17 Suppose thatAssumption15holds, then for eachq ∈ Rand v̂(0) ∈ Uα ,
(3.1) has a unique local mild solution v̂ ∈ C([0, τ∞);Uα) of the form

v̂(t) = Ŝ(t)v̂0 +
∫ t

0
Ŝ(t − s)[ε−1B + F](v̂)ds

+ε−1
∫ t

0
Ŝ(t − s)dWs, t ∈ (0, τ∞),P-a.s. (3.4)

The stopping time is such that τ∞ > 0 a.s. and satisfies limt→τ∞(ω)
‖v̂(t)‖α = ∞ or

τ∞(ω) = ∞.

Proof We show a sketch of the proof based on the standard procedure. More examples
can be found inMohammed et al. (2014), Blömker andRomito (2015), Ball (1982). For
theMoore-Greitzer model, by Lemma 16 and Proposition 8, it can be easily shown that
‖Ŝ(t−s)B(v̂)‖α and ‖Ŝ(t−s)F(v̂)‖α exist. On the other hand, denoting the stochastic
convolution term as WŜ(t) := ∫ t

0 Ŝ(t − s)dWs , by isometry and Assumption 15, we
have

E

[∥
∥
∥WŜ(t)

∥
∥
∥

2

α

]

≤
∫ t

0
‖Q1/2L|αH Ŝ(t − s)‖2L2(H,H)ds +

∫ t

0
‖L|α

R2 Ŝ(t − s)‖2ds

≤ ‖Q1/2L|α− 1
2+υ

H ‖2L2(H,H)

∫ t

0
‖L|1/2−υH Ŝ(t − s)‖2L2(H,H)ds

+
∫ t

0
‖L|α

R2 Ŝ(t − s)‖2ds < ∞,

(3.5)

where ‖ · ‖L2(H,H) stands for the Hilbert-Schmidt norm. The stochastic convolution
WŜ is hence an Ornstein-Uhlenbeck process that takes values inUα for all t > 0. The
local existence of the solution follows a standard procedure. One can investigate the
quantity h = v̂− ε−1WŜ pathwisely and treat ε

−1WŜ as a perturbation. The pathwise
uniqueness up to some τ∞(ω) is determined by the local Lipschitz continuity of B and
F. In particular, the nonlinearities do not possess dissipativity, the pathwise global
existence of the solution processes may not be guaranteed.

We also need to specify the stopping time, such that the approximation processes
will stop before the solution v̂(t) blows up.
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Definition 18 (Stopping time) Given the terminal time T for (3.4) and a fixed κ > 0,
consider the stopping time

τ ∗ := T ∧ inf{t > 0 : ‖v̂(t)‖α ≥ ε−κ }.

Definition 19 (Other notations) We introduce other notations for future references.

1. We specify the unfolding parameter to be q̂ := ε2q for some q ∈ R.
2. For any state variable ξ , the quantity ξ̂ (t) represents the value under scaling.
3. For the critical mode, let λ±1(q) = αc(q) ± iωc(q) := qα′

1(μc) ± iε−2ω1(ε
2q)

denote the eigenvalues2.
4. For the stable modes, −Ls(q) := L|PsU (q) (L restricted to PsU ). Without loss of

generality, we let Ls := Ls(0), let λsk := αsk + iωs
k be the eigenvalues of −Ls for

k ∈ Z\{0,±1}, let the perturbation be L p(q) := Ls(q) − Ls . It is clear that λsk’s
are constants and L p(q) is linear in q.

5. We symbolically represent the inverse operator in R2 that defines (Φδ, Ψδ) as

− Ls |−1
R2 :=

[

l11 l12
l21 l22

]

, (3.6)

where li j ∈ R for i, j ∈ {1, 2}.
6. Let

−Lεs := −Ls(q̂) = −Ls − ε2L p(q).

7. For n ∈ Z \ {0,±1}, ỹ = [∑n g̃ne
inθ , Φ̃δ, Ψ̃δ]T denotes the solution to

d ỹ(t) = −ε−2Ls ỹdt + ε−1PsdWt , ỹ(0) = ŷ(0),

and y∗ = [∑n g
∗
ne

inθ , Φ∗
δ , Ψ

∗
δ

]T
denotes the associated stationary solution.

8. For convenience, we introduce

Ki = aψ ′′
c,μc

|i |
|i | + am

for i ∈ Z \ {0} (3.7)

and

Gi = aψ ′′
c,μc

|i |
2(|i | + am)

⎛

⎝2(Φ̂δ)gi +
j=i−h
∑

h∈Z\{±1}
ĝh ĝ j

⎞

⎠ for i ∈ Z \ {0,±1} (3.8)

2 For q̂ sufficiently close to 0, the second order expansion about μc can be omitted.
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4 Dimension Reduction of Stochastic Moore-Greitzer Model

As introduced in Def. 14 and Assumption 15, the Q-Wiener process W ∈ Uα can be
represented as

W = [W |H, βΦ, βΨ ]T. (4.1)

4.1 Finite-Dimensional Reduction of Dynamics for v̂

We proceed as in Sect. 2.2 for (3.1) with the scaling q̂ := ε2q to obtain x̂ = ẑζ + ẑζ
and v̂(t) = ẑ(t)ζ + ẑ(t)ζ + ŷ(t). When the system is close to the critical point, the
local critical and fast-varying stable dynamics are as follows:

dẑ =
[

λ1(q)ẑ + 2ε−1 B̂(x̂, ŷ)+ ε−1 B̂(ŷ, ŷ)+ F̂(x̂ + ŷ)
]

dt, ẑ(0) = 〈ν∗, v̂(0)〉U
(4.2a)

d ŷ =
[

−ε−2Lεs ŷ + ε−1Ps B(x̂ + ŷ)+ PsF(x̂ + ŷ)
]

dt + ε−1PsdWt , ŷ(0) = Ps v̂(0)

(4.2b)

where −Lεs := −Ls(ε
2q) = −Ls − ε2L p(q) as introduced in Def. 19.

Note that (4.2a), which provides dominant dynamics, has no explicit dependence on
the stochastic perturbations. To obtain a finite-dimensional approximation for v̂ based
on (4.2a), we first investigate how the fast-varying ŷ, which contains the stochastic
terms, enters the terms of intermediate order O(ε−1). The approach follows the idea
provided in (Blömker et al. (2007), Proposition 3.9). We provide the proof explicitly
considering the complexity of the product state space U .

Lemma 20 For every stopping time σ ≤ τ ∗, we have
∫ σ

0
B(x̂, ŷ)dt = ε

∫ σ

0
B(x̂, L−1

s Ps B(x̂ + ŷ))dt + 2ε
∫ σ

0
B(PcB(x̂, ŷ), L−1

s ŷ)dt

+ ε

∫ σ

0
B(PcB(ŷ, ŷ), L−1

s ŷ)dt + ε

∫ σ

0
B(x̂, L−1

s PsdWt )+ O(ε2)
(4.3)

Proof Expand the Q-Wiener process as (4.1), then

PsWt =
⎡

⎣2
∑

k∈Z+\{1}

√
qk(βk(t)cos(kθ)− β−k(t)sin(kθ)), βΦ(t), βΨ (t)

⎤

⎦

T

Now apply the infinite-dimensional Itô’s formula,

dB(x̂, L−1
s ŷ) = B(dx̂, L−1

s ŷ)+ B(x̂, L−1
s d ŷ)+ 1

2

∑

i, j

∂2B(x̂, L−1
s ŷ)

∂ui∂u j
d〈Ui ,Uj 〉
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where i, j ∈ {1, 2}, U1 = x̂ , U2 = ŷ, and d〈βk, βl〉 = δkldt , d〈βk, t〉 = d〈t, βk〉 = 0

for all k, l in the index setZ+\{1}∪{Φ,Ψ }. However, ∂2B(x̂,L−1
s ŷ)

∂ x̂2
= ∂2B(x̂,L−1

s ŷ)
∂ ŷ2

= 0,
and therefore

1

2

∑

i, j

∂2B

∂ui∂u j
d〈Ui ,Uj 〉 = 1

2

(

B(dx̂, dL−1
s ŷ)+ B(dx̂, dL−1

s ŷ)
)

= B(dx̂, dL−1
s ŷ)

By plugging in dx̂ , dL−1
s ŷ and eliminating all the dβi dt , dtdβi , dtdt terms,

1

2

∑

i, j

∂2B(x̂, L−1
s ŷ)

∂ui∂u j
d〈Ui ,Uj 〉 = B(dPcdWt , dPsdWt ) = 0

Hence,

ε2dB(x̂, L−1
s ŷ) = ε2B(dx̂, L−1

s ŷ)+ ε2B(x̂, L−1
s d ŷ)

= ε2B(λ1 ẑν + λ−1 ẑζ , L−1
s ŷ)dt + 2εB(PcB(x̂, ŷ), L−1

s ŷ)dt

+ εB(PcB(ŷ, ŷ), L−1
s ŷ)dt + ε2B(PcF, L−1

s ŷ))dt

− B(x̂, ŷ)dt + εB(x̂, L−1
s Ps B1)dt + ε2B(x̂, Ps L

−1
s F)dt

− ε2B(x̂, L−1
s L p ŷ)dt + εB(x̂, L−1

s PsdWt )+ O(ε3)

The result follows straightforwardly after this. In addition, the above terms contain
the operation of the formUα ⊗Uβ , where α, β are as given in Lemma 16. By a similar
technique, one can show that Uα ⊗ Uβ → Uγ for some γ ∈ (α − 1, α], and hence
‖S(t − s)u‖α < ∞ for any u ∈ Uγ . ��
Lemma 21 For every stopping time σ ≤ τ ∗, we have

∫ σ

0
ε−1 B̂(ŷ, ŷ)dt

= −
∫ σ

0
K1

k+l=1
∑

k∈{−2,−3...}

(
ẑ(Kk ĝk ĝ−k + Kl ĝl ĝ−l )

λsk + λsl
dt + ĝkGl + ĝlGk

λsk + λsl
dt

)

= −
∫ σ

0

K1K2g3 ẑ
2

2(λs−2 + λs3)
dt −

∫ σ

0
K1

k+l=1
∑

k∈{−2,−3...}

ẑ(Kl+1 ĝk ĝl+1 + ∫ σ0 Kk+1 ĝl ĝk+1)

λsk + λsl
dt

−
∫ σ

0
K1

k+l=1
∑

k∈{−2,−3...}

ĝk
√
ql (dβl(t)+ idβ−l(t))+ ĝl

√
qk(dβ−k(t)− idβk(t))

λsk + λsl

+ O(ε),

(4.4)

where Ki ,Gi and λsi are defined in Def. 19.

Remark 22 The idea is the same as Lemma 20. However, for completeness, we provide
the detailed proof in Appendix C.
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Now by applying Lemma 20 and 21 to (4.2), we have the projected equations

dẑ =
[

λ1(q)ẑ + F̂(x̂ + ŷ)
]

dt + 2B̂(x̂, L−1
s Ps B(x̂ + ŷ))dt

+ 4B̂(PcB(x̂, ŷ), L−1
s ŷ)dt + 2B̂(PcB(ŷ, ŷ), L−1

s ŷ)dt

+ 2B̂(x̂, L−1
s PsdWt )+ ε−1 B̂(ŷ, ŷ)dt + O(ε) (4.5a)

d ŷ =
(

−ε−2Lεs ŷ + ε−1Ps B(x̂ + ŷ)+ PsF(x̂ + ŷ)
)

dt + ε−1PsdWt (4.5b)

Note that in (4.5a), the term ε−1 B̂(ŷ, ŷ) defined by (4.4) is indeed of order O(1).
Hence, the amplitude equation (4.5a) is scaled such that the nonlinearities and the
linear term are of the same order, which makes the analysis more amenable.

Remark 23 In the case of a surge bifurcation, we would have B̂(x̂, x̂) �= 0 with the
same rescaling scheme. Since there is no contribution of homogenization from the
stable modes, this term would dominate the rescaled critical mode with strength ε−1.
Hence, to yield a similar form as (4.5), we should rescale the variables differently.
One possibility would be to set ẑ(t) := ε−2z(ε−2t) and ŷ(t) := ε−2v(ε−2t). As for
the stall-surge case, multiple rescaling schemes are needed to capture the bifurcation
of ĝ and (Φ̂δ, Ψ̂δ).

To keep this paper succinct, we only demonstrate themethodology via the stochastic
analysis for the stall instability. The cases for surge and stall-surge can be treated using
similar methods.

4.2 Approximation of the Stable Modes

The purpose of this subsection is to find an approximation of the stable dynamics.

Lemma 24 Let ỹ(t) solve the Ornstein-Uhlenbeck equation

d ỹ(t) = −ε−2Ls ỹdt + ε−1PsdWt , ỹ(0) = ŷ(0), (4.6)

then E sup0≤t≤τ∗ ‖ŷ(t)− ỹ(t)‖α = O(ε1−2κ) for every κ > 0 (see in Def. 18).

Proof We spell out the proof for α > 1/4 (which implies that B and F map from Uα

to Uα), and the proof for the rest of situation is similar. Let Ŝs(t) := e−ε−2Ls t . Note
that −Ls provides a stable spectrum, by Proposition 8, there exist C > 0 and ω > 0
such that,

‖e−Ls t x‖α ≤ C‖x‖αe−ωt ,

hence,

‖Ŝs(t)x‖α ≤ C‖x‖αe−ε−2ωt .
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Since

ŷ(t)− ỹ(t) =
∫ t

0
Ŝs(t − σ)L p(q)ŷ(σ )dσ +

∫ t

0
Ŝs(t − σ)[ε−1Ps B

+PsF](x̂(σ )+ ŷ(σ ))dσ,

together with the boundedness property of Ŝs , for each p > 0, we have

E sup
0≤t≤τ∗

∫ t

0

[

‖Ŝs(t − σ)ε−1Ps B(x̂(σ )+ ŷ(σ ))‖αdσ
]p

≤ Cε2p(α−β)
E sup
0≤t≤τ∗

∫ t

0

[

e−ε−2ω(t−σ)(t − σ)β−α‖ε−1Ps B(x̂(σ )+ ŷ(σ ))‖βdσ
]p

≤ Cε2p(α−β)−p
E sup
0≤t≤τ∗

∫ t

0

[

e−ε−2ω(t−σ)(t − σ)β−α‖x̂(σ )+ ŷ(σ )‖2αdσ
]p

≤ Cε pE sup
0≤t≤τ∗

∫ t

0

[

e−ε−2ω(t−σ)(t − σ)β−α‖x̂(σ )+ ŷ(σ )‖2αdσ
]p

≤ Cε p−2κ sup
0≤t≤τ∗

∫ t

0

[

e−ε−2ω(t−σ)(t − σ)β−αdσ
]p = O(ε1−2κ ).

The bounds for the other terms are obtained in a similar way. Combining the above,
we have E sup0≤t≤τ∗ ‖ŷ(t)− ỹ(t)‖α is of order O(ε1−2κ).

Corollary 25 For all t ∈ (0, τ ∗], we have

‖B(ŷ(t), ŷ(t))− B(ỹ(t), ỹ(t))‖α = O(ε1−2κ)

and

‖F(x̂(t)+ ŷ(t))− F(x̂(t)+ ỹ(t))‖α = O(ε1−2κ).

Proof

‖B(ŷ, ŷ)− B(ỹ, ỹ)‖α = ‖B(ŷ, ŷ)− B(ŷ, ỹ)+ B(ŷ, ỹ)− B(ỹ, ỹ)‖α
≤ ‖B(ŷ, ŷ − ỹ)‖α + ‖B(ŷ − ỹ, ỹ)‖α

By Lemma 24 and the boundedness of B, the result follows. The proof for F is similar.

Remark 26 Due to the strong dissipativity of the semigroup generated by −Ls , it

can be easily verified that the quantity E sup0≤t<τ∗
∥
∥
∥

∫ t
0 ε

−2t Ls dWσdσ
∥
∥
∥

p

α
is bounded,

which implies that E sup0≤t<τ∗ ‖ỹ(t)‖p
α (resp. E sup0≤t<τ∗ ‖ŷ(t)‖p

α ) is bounded by
Cpε

p for each p > 0 and some Cp. The smallness of the stable mode as well as its
approximation do not contribute much to the state explosion.

Corollary 27 By replacing ŷ with ỹ in (4.5a), we have

dẑ =
[

λ1(q)ẑ + F̂(x̂ + ỹ)
]

dt + 2B̂(x̂, L−1
s Ps B(x̂ + ỹ))dt
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+ 4B̂(PcB(x̂, ỹ), L−1
s ỹ)dt + 2B̂(PcB(ỹ, ỹ), L−1

s ỹ)dt

+ 2B̂(x̂, L−1
s PsdWt )+ ε−1 B̂(ỹ, ỹ)dt + O(ε) (4.7a)

d ỹ = −ε−2Ls ỹdt + ε−1PsdWt (4.7b)

Proof By iteratively using Corollary 25 on the nonlinearities, we see that the replacing
error belongs to O(ε).

In order to study the long-term behavior of (4.5a), we would like to average out the
fast modes ŷ over an invariant measure by considering the stationary behavior of y∗

s
given by (4.5b). This is encapsulated in the homogenization procedure discussed in
Sect. 5. However, based on Corollary 27, considering evaluating the solution ẑ ∈ PcU
by the integral form, it will not cause any larger errors in the critical mode by using
y∗ (that is, the stationary solution of (4.7b)) instead of ỹ on the R.H.S. of (4.7a).

5 Approximation Equations

In this section, an explicit expression of y∗ is determined. Then by substituting y∗ into
(4.7a), the dynamical behavior of the critical mode is studied.

5.1 Calculation of y∗

Equation (4.6) can be decomposed into

dg̃k(t) = ε−2λεk g̃kdt + ε−1√qk(dβk(t)+ idβ−k(t)), ∀k ∈ {2, 3, . . .} (5.1a)

dg̃k(t) = ε−2λεk g̃kdt + ε−1√qk(dβ−k(t)− idβk(t)), ∀k ∈ {−2,−3, . . .} (5.1b)

d

[

Φ̃δ(t)
Ψ̃δ(t)

]

= −ε−2Ls |R2

[

Φ̃δ(t)
Ψ̃δ(t)

]

dt + ε−1
[

dβΦ
dβΨ

]

. (5.1c)

Note that the modes are pairwisely independent. We recall the notation in Def. 19-3
that λsk = αsk + iωs

k . If we express g̃k(t) = g̃Re
k (t) + i g̃ Imk (t), ∀k ∈ Z\{0}, then we

can find the solution for each pair of g̃Re
k (t) and g̃ Imk (t) explicitly.

1. For every k ∈ {2, 3, . . .}, g̃±k(t) = g̃Re
k (t) ± i g̃ Imk (t), and [g̃Re

k (t), g̃ Imk (t)]T are
solved by

[

g̃Rek
g̃ Imk

]

(t) = e
αsk (t−t0)

ε2

⎡

⎣
cos
(
ωs
k (t−t0)
ε2

)

−sin
(
ωs
k (t−t0)
ε2

)

sin
(
ωs
k (t−t0)
ε2

)

cos
(
ωs
k (t−t0)
ε2

)

⎤

⎦

[

g̃Rek (0)
g̃ Imk (0)

]

+
√
qke

αsk t

ε2

ε

⎡

⎢
⎣

∫ t
t0
e
− αsk s

ε2 cos
(
ωs
kσ

ε2

)

dβk(σ )− ∫ tt0 e
− αskσ

ε2 sin
(
ωs
kσ

ε2

)

dβ−k(σ )

∫ t
t0
e
− αskσ

ε2 sin
(
ωs
kσ

ε2

)

dβk(σ )+ ∫ tt0 e
− αskσ

ε2 cos
(
ωs
kσ

ε2

)

dβ−k(σ )

⎤

⎥
⎦

(5.2)

123



Journal of Nonlinear Science            (2023) 33:74 Page 21 of 36    74 

The stationary solution (as t0 → −∞) to (5.1a) and (5.1b) is given as g∗
k =

gRe∗
k + igIm

∗
k , where gRe∗

k and gIm
∗

k are independent Gaussian processes with

E[gRe∗
k (t)] = E[gIm∗

k (t)] = 0

and covariance matrix

Cov(t, σ ) =
[

E[gRe∗
k (t)gRe∗

k (σ )] E[gRe∗
k (t)gIm

∗
k (σ )]

E[gIm∗
k (t)gRe∗

k (σ )] E[gIm∗
k (t)gIm

∗
k (σ )]

]

= − qk
2αsk

e
αsk |t−σ |

ε2 I2×2.

(5.3)

2. The solution to (5.1c) is given explicitly as,

[

Φ̃δ(t)
Ψ̃δ(t)

]

(t) = e
αsγ1 (t−t0)

ε2 P

⎡

⎣
cos
(
ωs
γ1
(t−t0)

ε2

)

−sin
(
ωs
γ1
(t−t0)

ε2

)

sin
(
ωs
γ1
(t−t0)

ε2

)

cos
(
ωs
γ1
(t−t0)

ε2

)

⎤

⎦ P−1
[

Φ̃δ(0)
Ψ̃δ(0)

]

+ε−1
∫ t

t0
e
αsγ1 (t−σ)

ε2 PRt,σ P
−1
[

dβΦ(σ)
dβΨ (σ)

]

(5.4)

where

P =
[

0 1
Im(νψ1) Re(νψ1)

]

, Rt,σ =
⎡

⎣
cos
(
ωs
γ1
(t−σ)
ε2

)

−sin
(
ωs
γ1
(t−σ)
ε2

)

sin
(
ωs
γ1
(t−σ)
ε2

)

cos
(
ωs
γ1
(t−σ)
ε2

)

⎤

⎦

and νψ1 is defined in Sect. A-5. Therefore, the stationary solution (as t0 → −∞)
to (5.4) is given as

E[Φ∗
δ (t)] = E[Ψ ∗

δ (t)] = 0

and the covariance matrix

Cov(t, σ ) = ε−2
∫ t∧σ

0
e
αsγ1 (t−r)

ε2 (PRt,r P
−1)(PRt,r P

−1)T dr (5.5)

Remark 28 Note that the integral in (5.5) can be explicitly calculated. However, we
use the implicit expression for the rest of the derivation.
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5.2 Evaluation of ẑ(t)

Since every operator in (4.5a), including B, K−1, L−1
s and 〈ν∗, ·〉U , is given explicitly,

after some cumbersome calculation, we obtain

B̂(x̂, L−1
s Ps B(x̂, x̂)) = −K1K2

4λs2
ẑ2 ẑ = −K1K2λ

s−2 ẑ
2 ẑ

4(αs22 + ωs2
2 )

=: hλs−2 ẑ
2 ẑ, (5.6)

where we have used notations defined in Def. 19-3. Similarly,

B̂(x̂, L−1
s Ps B(y

∗, y∗)) = N1(ω)ẑ + N2(ω)ẑ − K1

4lc
ẑ2 ẑ, (5.7)

B̂(x̂, L−1
s Ps B(x̂, y

∗)) = N3(ω)ẑ
2
, (5.8)

B̂(PcB(x̂, y
∗), L−1

s y∗) = N4(ω)ẑ + N5(ω)ẑ, (5.9)

B̂(PcB(y
∗, y∗), L−1

s y∗) = N6(ω). (5.10)

From Lemma 21,

ε−1 B̂(y∗, y∗) =: N7(ω)ẑ + N8(ω)ẑ + N9(ω)+ N10(ω)ẑ
2
. (5.11)

We also have

F̂(x̂ + ŷ) = N11(ω)ẑ
2 + N12(ω)ẑ + N13(ω)ẑ + N14(ω)− K1ψ

′′′
c

2ψ ′′
c,μc

ẑ2 ẑ (5.12)

For the stochastic term,

B̂1(x̂, L
−1
s PsdWt ) = −K1

2

[

ẑ(l11dβΦ + l12dβΨ )+ ẑ
√
q2(dβ2 + idβ−2)

λs2

]

(5.13)

The detailed information of the above shorthand notations Ni (ω) for i ∈ {1, 2, . . . , 14}
are given in Appendix D, where ω represents the randomness generated from the
stable modes which are excited by noise terms. Making use of the results above (from
Equation (5.6) to (5.13)), the solution of ẑ can be determined by

ẑ(t) = ẑ(0)+
∫ t

0
(λ1(q)+ 2N2(ω)+ 4N4(ω)+ N7(ω)+ N12(ω))ẑdt +

∫ t

0
(2hλs−2 − j)ẑ2 ẑdt

+
∫ t

0
(2N1(ω)+ 4N5(ω)+ N8(ω)+ N13(ω))ẑdt +

∫ t

0
(4N3(ω)+ N10(ω)+ N11(ω))ẑ

2
dt

+
∫ t

0
(2N6(ω)ẑ + N9(ω)+ N14(ω))dt + 2

∫ t

0
B1(ẑ, L

−1
s PsdWt )+ O(ε),

(5.14)

where j := K1ψ
′′′
c

2ψ ′′
c,μc

+ K1
2lc

, and h is defined in (5.6).
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5.3 Approximation of ẑ(t)

It is still not easy to evaluate (5.14). However, we observe that

E[Ni (t)] = E[Ni (0)] = 0, i ∈ {1, 3, 5, 6, 8, 9, 10, 11, 13, 14}, (5.15)

R 	 E[N2(t)] �= 0 and R 	 E[N12(t)] �= 0, (5.16)

C 	 E[N4(t)] �= 0 and C 	 E[N7(t)] �= 0. (5.17)

Intuitively, we would like to replace Ni with Ni := E[Ni (0)] for i ∈ {1, . . . , 14}.
The solution (5.14) can still be approximated in some sense with small error (the
estimation relies on (Blömker et al. (2007), Corollary 4.5)). We rephrase the statement
of (Blömker et al. (2007), Corollary 4.5) and provide it in the following theorem.

Theorem 29 Let f be an α̃-Hölder continuous function on [0, τ ∗]. Assume that for
every ε > 0 and fixed κ > 0, there exist a constant C1 such that

E

[∥
∥
∥
∥

∫ t

s
(N (r)− N (r)dr

∥
∥
∥
∥

p

α

]

≤ C1(t − s)p/2ε p.

Then, for every γ < 2α̃/(1+ 2α̃), there exists a constant C depending only on p and
γ such that

E

[

sup
t∈[0,τ∗]

∣
∣
∣
∣

∫ t

0
f (s)(N (s)− N (s))ds

∣
∣
∣
∣

p
]

≤ Cεγ p
(

E
[‖ f ‖C α̃

]2p
)1/2

,

where ‖ · ‖C α̃ denotes the α̃-Hölder norm.

Remark 30 The above theorem can be used to approximate ẑ(t) by replacing Ni with
Ni for each i ∈ {1, 2, . . . , 14}, and the error is within O(ε pγ ) in pth-moment. In

(5.14), f1 = f5 = f8 = f13 = ẑ, f2 = f4 = f7 = f12 = ẑ, f3 = f10 = f11 = ẑ
2
,

f6 = f9 = f14 = 1. Note that for α̃ < 1/2, we have fi ’s satisfy the condition in
Theorem 29, and as a concequence we can choose γ < 1/2. To use Theorem 29, it

suffices to show the condition E

[∥
∥
∥

∫ t
s (Ni − Ni )dr

∥
∥
∥

p

α

]

≤ C1(t − s)p/2ε p holds. We

only show the cases when k ∈ Z \ {0} (the case for [Φ̂∗
δ , Ψ̂

∗
δ ]T is similar).

Let g◦
k represent either g

Re∗
k or gIm

∗
k (from (5.2)), we have the following estimations.

Lemma 31 For every k ∈ Z \ {0}, we have

E

[(∫ t

σ

g◦
k (r)dr

)2p
]

≤ q p
k ε

2p

(αsk)
2p ε

2p(t − σ)p
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Proof Let p = 1, then

E

[(∫ t

σ

g◦
k (r)dr

)2
]

= E

[(∫ t

σ

g◦
k (r)dr

)(∫ t

σ

g◦
k (u)du

)]

=
∫ t

σ

∫ t

σ

E[g◦
k (r)g

◦
k (u)]drdu

= −2
∫ t

σ

∫ t

σ

qk
2αsk

e
αsk (r−u)

ε2 drdu

= qkε2

(αsk)
2

(

t − σ − ε2

(αsk)
2 (1 − e

αεk (t−σ)
ε2 )

)

≤ qkε2

(αsk)
2 (t − σ),

where the 2nd equality is by Fubini. Let Ik := ∫ t
σ
g◦
k (r)dr , then Ik is Gaussian with

E[Ik] = 0 and E[I 2k ] ≤ − qkε2

αs2k
(t − σ). Therefore,

E[|Ik |2p] = E[I 2k ]p ≤
(
qkε2

(αsk)
2 (t − σ)

)p

for every p > 0.

Lemma 32 For every k ∈ Z\{0,±1}, k �= l and k + l �= 0, there exists a constant
C > 0 such that

E

[(∫ t

σ

g◦
k (r)g

◦
l (r)dr

)2p
]

≤ C

(
qkql
αskα

s
l

)p

(t − σ)pε2p

Lemma 33 For every k ∈ Z \ {0,±1}, k = l or k + l = 0, there exists a constant
C > 0 such that

E

[(∫ t

σ

g◦
k (s)g

◦
l (s)− E[g◦

k (s)g
◦
l (s)]ds

)2p
]

≤ C

(
qkql
αskα

s
l

)p

(t − σ)pε2p

Lemma 34 For every k ∈ Z \ {0,±1}, there exists a constant C > 0 such that

E

[(∫ t

σ

g◦
k (s)g

◦
l (s)g

◦
j (s)ds

)2p
]

≤ C

(

qkqlq j

αskα
s
l α

s
j

)p

(t − σ)pε2p

The proof for Lemma 32 to 34 is based on expanding the product of integrals
that have Gaussian properties. The idea follows the proof of (Blömker et al. (2007),
Lemma 4.1). We do not provide the proof in this paper as we can simply treat the
complex-valued g∗

k as we did in Lemma 31, and the rest follows exactly as (Blömker
et al. (2007), Lemma 4.1).

123



Journal of Nonlinear Science            (2023) 33:74 Page 25 of 36    74 

Corollary 35 For every i ∈ {1, 2, . . . , 14}, there exists a constant C > 0 such that

E

[∥
∥
∥

∫ t
s (Ni − Ni )dr

∥
∥
∥

p

α

]

≤ C(t − s)p/2ε p.

Proof By Def. 6 and Assumption 15, combining the definition of Ni and Ni , it can be
shown that the bounds generated from Lemma 32 to 34 converge. ��
Renaming some constant quantities, we put (5.14) in a concise form. To this end, let

c1 + ic2 := E[2N2 + 4N4 + N7 + N12].
We also define

σ1 := −K1

2
l11, σ2 := −K1

2
l12

σ3 := − K1α
s
2
√
q2

2((αs2)
2 + (ωs

2)
2)
, σ4 := − K1ω

s
2
√
q2

2((αs2)
2 + (ωs

2)
2)

and

M(va) =
[

σ1v
a
1 σ2v

a
1 σ3v

a
1 − σ4v

a
2 σ4v

a
1 + σ3v

a
2

σ1v
a
2 σ2v

a
2 −σ3va2 − σ4v

a
1 −σ4va2 + σ3v

a
1

]

2×4
.

Now we use ẑ = x1 + i x2, let va := [x1, x2]T represent the converted amplitudes.
Moreover, we set

A(q) :=
[

αc(q)+ c1 −ωc(q)− c2
ωc(q)+ c2 αc(q)+ c1

]

2×2
, (5.18)

B :=
[

2hαs2 − j 2hωs
2−2hωs

2 2hαs2 − j

]

2×2
, (5.19)

W = [βΦ, βΨ , β2, β−2]T, (5.20)

where αc, ωc are defined in Def. 19. Then (5.14) is equivalent to

va(t) = va(0)+
∫ t

0
A(q)vadt +

∫ t

0
|va |2Bvadt +

∫ t

0
M(va)dWs + Er(t)

E

[

sup
t∈[0,τ∗]

‖Er(t)‖p

]

= O(ε p/2−)

va(0) = [Re(ẑ(0)), Im(ẑ(0)]T

(5.21)

where Er is an error term that vanishes as ε → 0.

Remark 36 va from (5.21) is the finite-dimensional (2d) representation of the original
SPDE (3.1) close to the stall bifurcation point. However, the small error term Er(t)
implicitly contains stochastic components from the stable modes. Below we use the
Martingale problem (Ethier and Kurtz 2009; Stroock and Varadhan 2007; Sviridenko
1990) to derive a self-contained Markov process approximation for va .
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6 Weak Convergence of the Probability Measure

In this section, we investigate how the stopped solution to (5.21) or the probability
measure converge as ε → 0. Given the probability law νε of the stopped process
{v̂(t ∧ τ ∗)}t≥0 driven by noise with intensity ε, the process {va(t ∧ τ ∗)}t≥0 of (5.21)
lies in the induced canonical space with probability law νεc = Pcνε := νε ◦ P−1

c .
Here we show that the unique limit νc of νεc solves the Martingale problem (Ethier and
Kurtz 2009) related to the 2-dimensional SDE for t ∈ [0, T ]:

ṽa = ṽa(0)+
∫ t

0
A(q)ṽadt +

∫ t

0
|ṽa |2Bṽadt +

∫ t

0
Σ(ṽa)dβt (6.1)

where ṽa = [ṽa1 , ṽa2 ]T , β stands for a two-dimensional standard Wiener process, and

Σ(ṽa) :=

⎡

⎢
⎢
⎣

(
4∑

i=1
σi

)

ṽa1 + (σ3 − σ4) ṽ
a
2

(
2∑

i=1
σi −

4∑

i=3
σi

)

ṽa2 + (σ3 − σ4) ṽ
a
1

⎤

⎥
⎥
⎦

(6.2)

Theorem 37 Suppose 2hαs2 − j < 0 in (5.19). For each fixed T > 0, the sequence of
measures νεc convergesweakly toνc,which is the lawof the solution ṽa ∈ C([0, T ];R2)

to (6.1).

To prove the above theorem,we need to demonstrate that: (1) the family of probabil-
itymeasure {νε} or {νεc } is tight, such that there exists aweakly convergent subsequence
within that family, and (2) every accumulation point of νεc is the unique solution to the
Martingale problem associated with (6.1).

6.1 Tightness of {�"
c }

The proof falls in standard procedures. Let f (·) = ‖ · ‖p, and h = va − Er. Then, by
(Blömker and Fu (2020), Lemma 4.9), we have

Tr[ f ′′(h(σ ))M(h(σ )+ Er(σ ))M∗(h(σ )+ Er(σ ))] ≤ Cp(p − 1)‖h(σ )‖p−2‖h(σ )
+Er(σ )‖2. (6.3)
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Applying Itô formula to ‖h‖p for p ≥ 2 and use the above inequality, for all t ∈ [0, T ],
we have

‖h(t ∧ τ ∗)‖p − ‖h(0)‖p

≤ p
∫ t∧τ∗

0
‖h(s)‖p−2〈A(q)(h(s)+ Er(s)), h(s)+ Er(s)〉ds

+
∫ t∧τ∗

0
‖h(s)‖p−2〈|h(s)+ Er(s)|2B|h(s)+ Er(s)|, h(s)+ Er(s)〉ds

+ Cp(p − 1)
∫ t∧τ∗

0
‖h(s)‖p−2‖h(s)+ Er(s)‖2ds

+
∫ t∧τ∗

0
‖h(s)‖p−2〈h(s),M(h(s)+ Er(s))dWs〉.

(6.4)

By the assumption, we can verify that there exists some b < 0 such that 〈x, |x |2Bx〉 ≤
b|x |4 for all x ∈ R

2. Consequently, the first three terms can be bounded by

C
∫ t∧τ∗

0
‖h(s)‖p−2‖h(s)+ Er(s)‖2ds. (6.5)

By triangle inequality and Young’s inequality (for products), (6.5) can be further
bounded by

C
∫ t∧τ∗

0
‖h(s)‖pds + C

∫ t∧τ∗

0
‖Er(s)‖pds. (6.6)

Applying Burkholder–Davis–Gundy inequality and then Young’s inequality to the last
term in (6.4), we can obtain the bound

E
νεc sup

0≤t≤τ∗
‖h(s)‖p−2〈h(s),M(h(s)+ Er(s))dWs〉

≤ C
∫ t∧τ∗

0
E
νεc sup

0≤s≤τ∗
‖h(s)‖pds + C .

(6.7)

Combining the above, we have

E
νεc sup

0≤t≤τ∗
‖h(t)‖p ≤ C

∫ t∧τ∗

0
E
νεc sup

0≤s≤τ∗
‖h(s)‖pds + C .

By Gronwall’s inequality, we can verify that Eνεc sup0≤t≤τ∗ ‖h(t)‖p ≤ C , which
implies the uniform boundedness of the quantityEνεc sup0≤t≤τ∗ ‖va(t)‖p. The uniform
tightness of {νεc } follows.
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Remark 38 Note that by introducing the compact operator Gα : L p([0, T ];U )) →
C([0, T ];U ) for 0 < 1/p < α ≤ 1 and t ∈ [0, T ]:

Gα f (t) =
∫ t

0
(t − s)α−1S(t − s) f (s)ds, f ∈ L p([0, T ], H),

as well as Y ε
α (t) = ε

∫ t
0 (t − r)−αS(t − r)dW (r), the mild solution can be expressed

as

v(t) = S(t)v0 + G1(ε
−1B(v, v) + F(v))(t)+ sin απ

π
Gα(Y

ε
α )(t). (6.8)

The compactness ofGα has been shown in (Da Prato and Zabczyk (2014), Proposition
8.4). To show the tightness of {νε}, it suffices to show that for each η > 0, there exist
uniformly bounded sets Jη and Hη of ε−1B(v, v) + F(v) and Y ε

α , respectively, as
L p([0, T ],U ) functions, such that νε(Kη) ≥ 1 − η for Kη = {S(t)v0 + G1(Jη) +
sin απ
π

Gα(Hη)}. However, for a fixed p ≥ 2 we can only find C(ε) > 0 for each ε > 0
such that

E
ε

[
∫ t∧τ∗

0
|Y ε
α (s)|pds

]

≤ C(ε), ∀t ∈ [0, T ], (6.9)

and

E
ε

[
∫ t∧τ∗

0
|ε−1B + F|pds

]

≤ C(ε) ∀t ∈ [0, T ]. (6.10)

The nonuniform bounds fail to guarantee the tightness of {νε}.
Proposition 39 Suppose 2hαs2 − j < 0 in (5.19). Then, for μ̂ ∈ B(μc, ε

2q), we have
P[τ ∗ < T ] → 0 as ε → 0 for all T > 0.

Proof By the same procedure as in (Blömker et al. (2007), Corollary 3.7), one can
show that, for each T ,

P[τ ∗ < T ] = P

[

sup
0≤t≤T

‖x̂(t)+ ŷ(t)‖α ≥ ε−κ
]

≤ P[K |va(τ ∗)| ≥ ε−κ ] + Cε p,

(6.11)

where the small term Cε p is contributed by the stable mode. By the assumption and
the uniform boundedness of Eνεc sup0≤t≤τ∗ ‖va(t)‖p for each p ≥ 2 from the above
proof, the conclusion follows immediately by (6.11) and Markov inequality.

Remark 40 Note that we always have h > 0 by definition, which implies that hαs2 < 0.
On the other hand, the term j in (5.19) is generated as the result of homogenization.
The configuration parameters of jet engine compressors should be carefully designed
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to guarantee the satisfaction of the condition. The intuitive purpose of introducing such
a condition is to guarantee that the cubic nonlinearity of the homogenized system still
possesses certain level dissipativity.

6.2 Martingale Problem

Given a test function φ ∈ C∞
0 (PcU ), for each q, the generator A(q) of (6.1) is given

by

A(q)φ(x) = 〈A(q)x + |x |2Bx, ∇φ〉 + 1

2

2
∑

i, j

(

ΣΣT
)

i j

∂2φ

∂xi∂x j
. (6.12)

Then, by defining

Mε
t := φ(va − Er)(t ∧ τ ∗)− φ(va)(0)−

∫ t∧τ∗

0
A(q)φ(va − Er)(s)ds, (6.13)

it is clear that {Mε} is a family of stopped martingales. Due to the boundedness of Er
and the smoothness of the test function φ, there exists a process Ẽr(t) such that

Mε
t = φ(va)(t ∧ τ ∗)− φ(va)(0)−

∫ t∧τ∗

0
A(q)φ(va)(s)ds + Ẽr(t ∧ τ ∗), (6.14)

and limε→0 E
νεc [supt∈[0,τ∗] Ẽr(t)] = 0, where E

νεc is the expectation operator w.r.t.
the measure νεc . Therefore, for any 0 ≤ r1 < r2 < · · · < rn ≤ s < t and {ψ j ; j =
1, 2, . . . , n} ⊂ C(PcU ), we alternatively have

E
νεc

⎡

⎣{Mε
t − Mε

s }
n
∏

j=1

ϕ j (v
a
r j )

⎤

⎦ = 0 (6.15)

We also define the Martingale process w.r.t. (6.1) as

Mt = φ(vat )− φ(va0 )−
∫ t

0
A(q)φ(vas )ds. (6.16)

Since the smooth test function has a compact support, we can also justify that
{Mt∧τ∗}t∈[0,T ] is uniformly integrable. By the tightness of {νεc } on PcU , we can
find a convergent subsequence ν

εn
c ⇀νc as n → ∞ (where εn → 0). Therefore,

by Proposition 39 and the convergence of Eν
εn
c [supt∈[0,τ∗] Ẽr(t)], we have

E
νc

⎡

⎣{Mt − Ms}
n
∏

j=1

ϕ j (v
a
r j )

⎤

⎦ = lim
n→∞E

ν
εn
c

⎡

⎣{Mt∧τ∗ − Ms∧τ∗}
n
∏

j=1

ϕ j (v
a
r j )

⎤

⎦
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= lim
n→∞E

ν
εn
c

⎡

⎣{Mεn
t − Mεn

s }
n
∏

j=1

ϕ j (v
a
r j )

⎤

⎦ = 0 (6.17)

which means every limit of νεnc solves the martingale problem w.r.t. (6.16). Note
that under the dissipativity and local Lipschitz continuity, by Yamada-Watanabe, the
solution to the Martingale problem is unique, which means every limit point νc is
unique, and therefor the claim in Theorem 37 holds.

Remark 41 Theorem 37 also implies that va converges to ṽa in law.

7 Conclusions

Based on recent advances in stochastic PDEs given in Blömker et al. (2007), this
paper further develops the bifurcation analysis of the stochastic version of the Moore
and Greitzer PDE model (1.4) for an axial flow compressor, in the presence of a Hopf
bifurcation. Close to bifurcation, the null-space being finite-dimensional simplifies the
analysis of such PDEs. We provides approximations for the state g(t) for the stall case
in the neighborhood of the deterministic bifurcation point. The evolution equation
for slow-varying coordinates ṽa is derived by a careful analysis of the coupling of
slow-fast modes arising from the spectral gap.

As explained previously, in addition to the direct influence that the additive noise has
on the critical modes, which we assumed to be identically zero, the additive stochastic
components in the stable, heavily damped modes also contribute to the critical modes.
These contributions enter the critical modes as multiplicative noise through the terms
N ′
i = E[Ni (t)] for i ∈ {1, . . . , 14} in (5.14) and are eventually incorporated into the

2-dimensional SDE (5.21). Hence, the stochastic bifurcation points for stall are shifted
due to the evolution (stochastic) of heavily dampedmodes,Φδ and g±n for all n ∈ Z

+.
As the intensity ε → 0, we justified a weak convergence of the probability measure
of the slow-varying processes. The approximated slow processes also converge in law
to the solution to (6.1).
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A Properties of the Linear Operator

For references, we list crucial properties of the linear operator L(q̂).

1. L(q̂) generates an analytic compact C0 semigroup Ŝ(t) := eL(q̂)t on U (Xiao
2008).

2. For each q̂, there exist constants ω ≥ 0 and M ≥ 1 such that

‖Ŝ(t)‖U ≤ Meωt , ∀t > 0.

For the stable projection, there exists a ω > 0 and M > 0 such that

‖Ps Ŝ(t)‖U ≤ Me−ωt , ∀t > 0.

3. L(q̂) can be represented as

L(q̂) =
[

L|H(q̂) 0
0 L|R2(q̂)

]

, (A.1)

where L|H : H → H is the restriction of L onto H, whilst L restricted to R
2 is

a 2 × 2 matrix L|R2 . The decoupling of the eigenspace makes the flow of g and
(Φ,Ψ ) invariant respectively under the semigroups eL|H(q̂)t and eL|

R2 (q̂)t .
4. We can expect the solution v to be in the domain of L(q̂) (a subspace ofU ), which

is

D(L(q̂)) = H2
0 × R × R.

5. We verify the type of Hopf bifurcation by the sign of the indicator (Xiao 2008)

Δ :=
ψc0 + ι

[

1 + 3
2

√

1 − νΘ
3aι − 1

2

(√

1 − νΘ
3aι

)3
]

Θ

(

1 +
√

1 − νΘ
3aι

) − a

4B2ν
. (A.2)

In particular, the stall bifurcation happens when Δ < 0.

B Proof of Lemma 10

Proof The proof easily follows (Lord et al. (2014), Proposition 1.93). Initially, we
have

D(L|H) = H2
0 (D) ⊂ U .
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For u ∈ Hr , we can write u = ∑

n∈Z\{0} uneinθ , then the Sobolev norm can be
expanded as

‖u‖2Hr =
∑

n∈Z\{0}
(1 + n2 + · · · + n2r )|un|2

However, as the discrete spectrum of L|H are λn ∈ C (∀n ∈ Z∩I), we can explicitly
express ‖u‖2r/2 by

‖u‖2r/2 = 〈Lr/2u, K Lr/2u〉H = K
∑

(λnλ−n)
r/2|un |2 =

∑
(

1 + am

|n|
)

(λnλ−n)
r/2|un |2

By the definition of K and λn , we can find C1,C2 > 0 such that C1(1 + n2)r ≤
(

1 + am
|n|
)

(λnλ−n)
r/2 ≤ C2(1 + n2)r . We also have

1

2r
(1 + n2)r ≤ (1 + n2 + · · · + n2r ) ≤ (1 + n2)r

Combine the above two sets of inequalities,

1

C22r

(

1 + am

|n|
)

(λnλ−n)
r/2 ≤ (1 + n2 + · · · + n2r ) ≤ 1

C1

(

1 + am

|n|
)

(λnλ−n)
r/2

Then, by the definition of the two norms, it is not hard to see that ‖u‖2r/2 ∼ ‖u‖2Hr . ��

C Proof of Lemma 21

Proof Note that B̂(ŷ, ŷ) = a(ψ ′′
c )

1+am

∑k+l=1
k∈{−2,−3,...} ĝk ĝl . From (4.2b) we keep the terms

up to O(ε−1) and regard the rest as higher order terms (h.o.t.), then

dĝl = ε−2λsl ĝldt + ε−1〈ν∗
l , Ps B(x̂ + ŷ, x̂ + ŷ)〉Udt

+ ε−1√ql(dβl(t)+ idβ−l(t))+ h.o.t., ∀l ∈ {3, 4 . . .},

and

dĝk = ε−2λsk ĝkdt + ε−1〈ν∗
k , Ps B(x̂ + ŷ, x̂ + ŷ)〉Udt

+ ε−1√qk(dβ−k(t)− idβk(t))+ h.o.t.,∀k ∈ {−2,−3 . . .}

For l ∈ {3, 4, . . .} we have,
〈ζ ∗

l , Ps B(x̂ + ŷ, x̂ + ŷ)〉U = 〈ζ ∗
l , B(x̂, x̂)〉U + 2〈ζ ∗

l , Ps B(x̂, ŷ)〉U + 〈ζ ∗
l , Ps B(ŷ, ŷ)〉U

= 0 +
(

ẑKl−1 ĝl−1 + ẑKl+1 ĝl+1

)

+ Gl
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for k = −2,

〈ζ ∗
k , Ps B(x̂ + ŷ, x̂ + ŷ)〉U = 〈ζ ∗

k , B(x̂, x̂)〉U + 2〈ζ ∗
k , Ps B(x̂, ŷ)〉U + 〈ζ ∗

k , Ps B(ŷ, ŷ)〉U

= aψ ′′
c ẑ

2

2 + 2am
+
(

ẑKk−1 ĝk−1 + ẑKk+1 ĝk+1

)

+ Gk

and for k ∈ {−3,−4, . . .}, 〈ν∗
k , Ps B1(x̂+ ŷ, x̂+ ŷ)〉U =

(

ẑKk−1ĝk−1+ẑKk+1ĝk+1

)

+
Gk

Applying Ito’s formula on d(ĝk ĝl) for k ∈ {−3,−4 . . .} and k + l = 1 we have:

d(ĝk ĝl) = ĝkdĝl + ĝld ĝk

= ε−2λsl ĝk ĝldt + ε−1
(

ẑKk ĝk ĝ−k + ẑKl+1ĝk ĝl+1

)

dt + ε−1ĝkGldt

+ ε−2λsk ĝk ĝldt + ε−1
(

ẑKl ĝl ĝ−l + ẑKk+1ĝl ĝk+1

)

dt + ε−1ĝlGkdt
+ ε−1ĝk

√
ql(dβl(t)+ idβ−l(t))+ ε−1ĝl

√
qk(dβ−k(t)− idβk(t));

for k = −2 and l = 3 we have:

d(ĝk ĝl ) = ĝkd ĝl + ĝl d ĝk

= ε−2λsl ĝk ĝl dt + ε−1
(

ẑKk ĝk ĝ−k + ẑKl+1 ĝk ĝl+1

)

dt + ε−1 ĝkGl dt + ε−1 ĝlGkdt

+ ε−2λsk ĝk ĝl dt + ε−1
(

ẑKl ĝl ĝ−l + ẑKk+1 ĝl ĝk+1

)

dt + ε−1

(

aψ ′′
c ẑ

2
g3

2 + 2am

)

dt

+ ε−1 ĝk
√
ql (dβl(t)+ idβ−l (t))+ ε−1 ĝl

√
qk(dβ−k(t)− idβk(t)).

Therefore, for k ∈ {−3,−4 . . .} and k + l = 1,

ĝk ĝldt = −ε
(

1

λsk + λsl

)(

ẑKk ĝk ĝ−k + ẑKl+1ĝk ĝl+1 + ĝkGl
)

dt

− ε

(
1

λsk + λsl

)(

ẑKl ĝl ĝ−l + ẑKk+1ĝl ĝk+1 + ĝlGk
)

dt

− ε

[
ĝl

√
qk(dβ−k(t)− idβk(t))+ ĝk

√
ql(dβl(t)+ idβ−l(t))

λsk + λsl

]

;

123



   74 Page 34 of 36 Journal of Nonlinear Science            (2023) 33:74 

for k = −2 and l = 3,

ĝk ĝldt = −ε
(

1

λsk + λsl

)(

ẑKk ĝk ĝ−k + ẑKl+1ĝk ĝl+1 + ĝkGl
)

dt

− ε

(
1

λsk + λsl

)(

ẑKl ĝl ĝ−l + ẑKk+1ĝl ĝk+1 + ĝlGk
)

dt

− ε

(
1

λsk + λsl

)(

aψ ′′
c ẑ

2
g3

2 + 2am

)

dt

− ε

[
ĝl

√
qk(dβ−k(t)− idβk(t))+ ĝk

√
ql(dβl(t)+ idβ−l(t))

λsk + λsl

]

,

and the result follows easily from a combination of the above. ��

DHomogenization Results in Eq. (5.14)

N1(ω) = −K1K2

4λs2

⎛

⎝2Φ∗
δ g

∗
2 +

k+l=2
∑

k∈Z\{0,±1}
g∗
k g

∗
l

⎞

⎠ (D.1)

N2(ω) = −K1

4lc

⎡

⎣(l11ψ
′′
c,μc

)

⎛

⎝Φ∗2
δ + 2

∑

k∈{−2,−3,...}
g∗
k g

∗−k

⎞

⎠− (l12S ′′′
μc
)(Ψ ∗2

δ )

⎤

⎦ (D.2)

N3(ω) = −K1K2

4λ2
g∗
3 , (D.3)

N4(ω) = −K2
1

4
g∗−2

(
g∗
2

λs2

)

− K2
1

4
(Φ∗

δ )(l11Φ
∗
δ + l12Ψ

∗
δ ) (D.4)

N5(ω) = −K2
1

4
(Φ∗

δ )

(
g∗
2

λs2

)

− K2
1

4
g∗
2 (l11Φ

∗
δ + l12Ψ

∗
δ ) (D.5)

N6(ω) = −K2
1

4

⎛

⎝

k+l=1
∑

k∈Z\{0,±1}
g∗
k g

∗
l

⎞

⎠ (l11Φ
∗
δ + l12Ψ

∗
δ )− K2

1

4

⎛

⎝

k+l=−1
∑

k∈Z\{0,±1}
g∗
k g

∗
l

⎞

⎠

(
g∗
2

λs2

)

(D.6)

N7(ω) = −K1

k+l=1
∑

k∈{−2,−3...}

(Kk g∗
k g

∗−k + Kl g∗
l g

∗−l

λsk + λsl

)

(D.7)

N8(ω) = −K1

k+l=1
∑

k∈{−2,−3...}

Kl+1g∗
k g

∗
l+1 + Kk+1g∗

l g
∗
k+1

λsk + λsl
(D.8)

N9(ω) = −K1

k+l=1
∑

k∈{−2,−3...}

(
g∗
kGl + g∗

l Gk

λsk + λsl

)

(D.9)

N10(ω) = − K1K2g∗
3

2(λs−2 + λs3)
(D.10)
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N11(ω) = −K1ψ
′′′
c

2ψ ′′
c,μc

g∗
3 (D.11)

N12(ω) = −K1ψ
′′′
c

2ψ ′′
c,μc

⎡

⎣Φ∗2
δ + 2

∑

k∈{−2,−3...}
g∗
k g

∗−k

⎤

⎦ (D.12)

N13(ω) = −K1ψ
′′′
c

2ψ ′′
c,μc

⎡

⎣2Φ∗
δ g

∗
2 +

k+l=2
∑

k∈Z\{0,±1}
g∗
k g

∗
l

⎤

⎦ (D.13)

N14(ω) = −K1ψ
′′′
c

6ψ ′′
c,μc

⎡

⎣3Φ∗
δ

⎛

⎝

k+l=1
∑

k∈Z\{0,±1}
g∗
k g

∗
l

⎞

⎠+
k+l+m=1
∑

k,l∈Z\{0,±1}
g∗
k g

∗
l g

∗
m

⎤

⎦ (D.14)
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