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Abstract
Reliable prediction of outcomes of aneurysmal subarachnoid hemorrhage (aSAH) based on factors available at patient admission
may support responsible allocation of resources as well as treatment decisions. Radiographic and clinical scoring systems may
help clinicians estimate disease severity, but their predictive value is limited, especially in devising treatment strategies. In this
study, we aimed to examine whether a machine learning (ML) approach using variables available on admission may improve
outcome prediction in aSAH compared to established scoring systems. Combined clinical and radiographic features as well as
standard scores (Hunt & Hess, WFNS, BNI, Fisher, and VASOGRADE) available on patient admission were analyzed using a
consecutive single-center database of patients that presented with aSAH (n = 388). Different ML models (seven algorithms
including three types of traditional generalized linear models, as well as a tree bosting algorithm, a support vector machine
classifier (SVMC), a Naive Bayes (NB) classifier, and a multilayer perceptron (MLP) artificial neural net) were trained for single
features, scores, and combined features with a random split into training and test sets (4:1 ratio), ten-fold cross-validation, and 50
shuffles. For combined features, feature importance was calculated. There was no difference in performance between traditional
and other ML applications using traditional clinico-radiographic features. Also, no relevant difference was identified between a
combined set of clinico-radiological features available on admission (highest AUC 0.78, tree boosting) and the best performing
clinical score GCS (highest AUC 0.76, tree boosting). GCS and age were the most important variables for the feature combi-
nation. In this cohort of patients with aSAH, the performance of functional outcome prediction by machine learning techniques
was comparable to traditional methods and established clinical scores. Future work is necessary to examine input variables other
than traditional clinico-radiographic features and to evaluate whether a higher performance for outcome prediction in aSAH can
be achieved.
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ICU Intensive care unit
IVH Intraventricular hemorrhage
ML Machine learning
MLP Multilayer perceptron artificial neural net
mRS Modified Rankin Scale
NB Naive Bayes
ROC Receiver operating characteristics
SVMC Support vector machine classifier
WFNS World Federation of Neurological Societies

Introduction

Scoring systems help clinicians to classify the severity of a
disease, to estimate the natural course, and to select treatment
strategies[1, 23]. For aneurysmal subarachnoid hemorrhage
(aSAH), the Hunt and Hess scale and the WFNS scale have
been used in clinical routine for many decades. Both scores
are based on clinical patient characteristics in terms of con-
sciousness and neurological deficits [15, 28]. Numerous ra-
diographic scores were introduced, using qualitative imaging
features like the dispersion of the subarachnoid blood clot as
well as the presence of intraventricular hemorrhage (IVH) or
intracerebral hemorrhage (ICH)[13, 14]. The first semi-
quantitative radiological predictive tool was proposed by the
Barrow Neurological Institute (BNI) in 2012 [35]. However,
to date, neither clinical nor radiographic scores reached the
accuracy needed for definite decision-making [9, 34].
Combinations of radiographic and clinical features using tra-
ditional statistic methods have also not resulted in improved
predictions [6, 17].

There is a clinical need to find tools that facilitate individ-
ualized risk stratification at an early time point of the disease
to responsibly allocate resources (e.g., intensive care unit
(ICU) beds) and decide on treatment strategies. Recently, ma-
chine learning (ML) approaches are increasingly applied in
healthcare. Such techniques include support vector machines,
decision trees, Bayesian approaches, and artificial neural net-
works. They may improve the clinical performance of predic-
tive models [27, 30]. In this context, especially artificial neural
nets (ANN) and methods of tree boosting, a decision tree–
based algorithm, showed better performance than traditional
ML approaches such as linear and logistic regression for nu-
merous applications [12, 18, 37]. However, the substantial
heterogeneity of clinical questions, input and output variables,
and applied algorithms may reduce traceability and reproduc-
ibility [24, 32].

We aimed to examine in this study whether applying ML
techniques improves the performance of outcome prediction
in aSAH. First, we analyzed whether existing scores would
benefit from the application of ML techniques. Second, we
combined a set of traditional clinico-radiological features that
showed to be relevant for patient outcome with availability on

admission and compared its predictive performance to tradi-
tional clinical scores to maintain transparency and compara-
bility with existing studies.

Materials and methods

Data collection

We included radiographic and clinical data of consecutive
patients after aSAH treated at two hospitals of a single aca-
demic institution between 2009 and 2015. The study was ap-
p roved by the e th i c s r ev i ew boa rd o f Cha r i t é
Universitaetsmedizin Berlin (EA1/291/14). Patients with doc-
umented aSAH on CT or positive lumbar puncture were en-
rolled in the study. Patients with bleeding sources other than
an intracranial aneurysm documented by CT angiogram or
digital subtraction angiography were excluded. Clinical scores
were applied on admission and radiographic scores were cal-
culated based on admission CT.

Patient management

The local treatment protocol was previously described [8, 25].
In brief, patients were treated according to international guide-
lines with early aneurysm occlusion, clinical and/or multi-
modal invasive neuromonitoring in the ICU [2].

Outcome assessment

The primary outcome measure in our study was functional
outcome using the Modified Rankin Scale (mRS) [31].
Clinical outcome was acquired from files during scheduled
control visits 6–12 months after the initial hemorrhage. If suf-
ficient information was not available for mRS determination, a
systematic telephone interview was conducted. Both assess-
ments were blinded to initial SAH severity grading. Outcome
was dichotomized as favorable (mRS 0–2) or unfavorable
(mRS 3–6).

Scores

CT, clinical, and combined scores were applied according to
the respective literature [13–15, 28, 35]. A routine assessment
of Hunt and Hess grading, neurological deficits, and GCS was
performed prospectively on admission and electronically doc-
umented. Calculation of WFNS score was therefore indirectly
possible based onGCS. Radiographic data were retrospective-
ly assessed by an experienced neurosurgeon blinded for out-
come. VASOGRADE was calculated based on this retrospec-
tive and prospective data assessment and according to previ-
ous literature [3]. Moreover, clinical data assessment included
patient age, sex, and pupillary state (equal, reactive to light vs.
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fixation of one or more pupil). Additional radiographic fea-
tures that were included were presence of ICH, IVH, subdural
hematoma (SDH), and midline shift (MLS) larger than 5 mm.
Aneurysm size and aneurysm position dichotomized for pos-
terior or anterior location were assessed with the help of CT
angiography and/or digital subtraction angiogram (DSA) on
admission. An overview of the scores used for prediction is
presented in Table 1.

Feature selection

The available database consisted of 408 patients. Of these, 20
patients did not have mRS values and were thus excluded
resulting in the final number of 388 patients. There were very
few missing values present (age 0.8%, ICH 0.3%, MLS 0.5%,
SDH 0.3%, localization 0.8%, VASOGRADE score 1%). We
used mean/mode imputation in each fold to impute missing
values (see section “Model training and validation”).

For input features, inclusion criteria were a ratio of at least
1 to 4 for binary variables (absence/presence) and no more
than 10% missing values. As an exception, we included pupil
status (13.4 % of patients with pathological pupil status) due
to its clinical importance (20). The following features were
available: age, sex, pupil status, presence of IVH, presence
of ICH, presence of MLS, presence of SDH, and the localiza-
tion of the aneurysm. Categorical features with more than two
or more categories were transformed into binary features as
they had too few instances per category. Pupil status was
dichotomized to “both pupils reactive to light” vs “patholog-
ical.” Radiologically defined ICH was dichotomized to “yes”/
”no.” Radiologically defined change in the brain midline was
dichotomized to shift > 5 mm “yes”/”no.” Location of the
aneurysm was dichotomized to anterior circulation “yes”/

”no.” Thus, all resulting features were either binary categories
or continuous.

Model selection

We trained a model for each single score (HH, WFNS, orig-
inal Fisher, modified Fisher, VASOGRADE combined, BNI,
and GCS). Additionally, we a priori constructed a combined
feature set of selected scores (GCS, BNI) and individual fea-
tures in a way that all clinically relevant (age, pupil state, and
GCS) and radiographically important parameters (including
IVH, ICH, SDH,MLS, and BNI for semi-quantitative descrip-
tion of the thickness of subarachnoidal blood) available on
admission were included. The final set of input features for
each tested model is listed in Table 1.

Machine learning framework

The ML framework was written in Python using standard ML
libraries. The main framework has previously been described
in full technical detail in an open access publication [38]. The
current framework code is available onGitHub (https://github.
com/prediction2020/explainable-predictive-models). In a
supervised ML approach, the above-mentioned clinical pa-
rameters and clinical scores (see also Table 1) were used to
predict the final outcome of aSAH patients according to mRS.
The applied dichotomization resulted in 181 positive (favor-
able outcome) and 207 negative (unfavorable outcome) cases.
This small imbalance causes negligible bias and therefore did
not warrant a sub-sampling approach limiting the available
data for model training.

Applied algorithms

Seven different algorithms were applied for all eight feature
selections. We used three types of generalized linear models
(GLM): a plain GLM, an L1 regularized GLM (equivalent to
Lasso logistic regression), and a GLM elastic net adding an
additional L2 regularization. Additionally, the CatBoost tree
boosting algorithm, a support vector machine classifier
(SVMC), a Naive Bayes (NB) classifier, and a multilayer
perceptron (MLP) artificial neural net were used. For feature
selection 8 (the only model with more than one feature, see
also Table 1), feature importance ratings were calculated, for
all seven algorithms, using SHapley Additive exPlanations
(SHAP) values. A full technical overview of the algorithms
and the feature importance calculations are available in the
open access publication of the applied framework [38] and
the GitHub page of our framework (see above). Since
multicollinearity may confound the predictive performance,
we estimated multicollinearity of the features using the vari-
ance inflation factor (VIF) [22].

Table 1 Overview of the 8 different feature selections. ICH =
intracranial hemorrhage; IVH = intraventricular hemorrhage; SDH =
subdural hemorrhage; GCS = Glasgow Coma Scale score; BNI =
Barrow Neurological Institute scale; WFNS = World Federation of
Neurosurgical Societies

Feature(s)

1 Hunt and Hess Score value

2 WFNS score value

3 Original Fisher score value

4 Modified Fisher score value

5 VASOGRADE score value

6 BNI score value

7 Glasgow Coma Scale value

8 Age, GCS score, sex, pupil status, presence of IVH, presence of ICH,
presence of midline shift > 5 mm, presence of SDH, localization
anterior circulation or other, BNI score
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Model training and validation

The data were randomly split into training and test sets with a
corresponding 4:1 ratio. Mean/mode imputation and feature
scaling using zero-mean unit variance normalization based on
the training set was performed on both sets. The models were
then tuned using 10-fold cross-validation. The whole process
was repeated in 50 shuffles.

Performance assessment

The model performance was tested on the test set using re-
ceiver operating characteristic (ROC)-analysis by measuring
the area under the curve (AUC) as the primary measure.
Additional performance measures were accuracy, average
class accuracy, precision, recall, f1 score, negative predictive
value, and specificity. To estimate calibration of the models,
the Brier score was calculated. All measures are given as the
median over 50 shuffles.

Interpretability assessment

The absolute values of the calculated feature importance
scores were scaled to unit norm to provide comparable feature
rating acrossmodels: for each of the 50 shuffles, the calculated
importance scores were rescaled to the range [0,1] with their
sum equal to one. Then, for each feature, the mean and stan-
dard deviation over the shuffles were calculated and reported
as the final rating measures.

Results

Patient characteristics and importance of features

Three hundred eighty-eight patients with a median age of 54
years (IQR 46; 63) and a female:male ratio of 2.3 were includ-
ed in the final analysis. Clinical and radiographic patient char-
acteristics are depicted in Table 2. Functional outcome was
evaluated after a median of 10 months (IQR 6; 17).

The chosen features in feature selection eight demonstrated
negligible multicollinearity with VIFs < 3.48 (age 1.08, GCS
1.81, sex 2.77, pupil status 1.44, presence of IVH 2.41, pres-
ence of ICH 2.17, presence of MLS 1.85, presence of SDH
1.17, localization of the aneurysm 3.47, BNI score 1.24).

Predictive performance of existing clinical,
radiographic, and combined scores

Predictive performance of established scores for outcome pre-
diction after aSAH ranged between very low (AUC 0.55,
original Fisher score) and moderately good (AUC 0.76,
Hunt and Hess score and GCS score). The performance of

the other scores showed similar ranges. The predictive perfor-
mances of machine learning models were comparable with
traditional GLM methods. For an overview of the perfor-
mance values and the measures of spread, see Table 2.
Detailed results for all additional performance measures are
presented in the Supplementary Material (Tables 1–8).

Predictive performances of the combined set of
clinico-radiological features

The combined set of clinical and radiographic features showed
an AUC of 0.78 for the tree boosting model and 0.77 for all
other models with the exception of the Naive Bayes model
(0.75) (Table 3, Fig. 1A). There was no apparent superiority of
the combined model over single clinical score models. The
feature importance rating identified the GCS score as the most
important feature in all models (Fig. 1B). Consistently, the
second most important feature was age. The models also
assigned importance to BNI and the presence of ICH. The
Naive Bayes model was the only model assigning very high
importance to pupil status. Results for the additional perfor-
mance measures are presented in the supplementary material
(Suppl. Tables).

Estimation of calibration

Based on the Brier score, the calibration was sufficient, rang-
ing from 0.18 to 0.25 over all models. The best calibrated
models were the combined set, the GCS model, and the
Hunt and Hess score model (Table 4).

Discussion

In this study on aSAH outcome prediction, we observed mod-
erately good performances of ML methods using traditional
clinico-radiographic features available on admission. There
was no difference in performance between any of the applied
techniques, especially not between the traditional techniques
(GLM), and the most modern techniques (CatBoost tree
boosting, MLP). Furthermore, we observed no superiority of
the examinedML techniques over the best performing clinical
scores on admission (GCS and Hunt and Hess). Thus, we
could not establish a relevant advantage of state-of-the-art
ML methods for aSAH outcome prediction by using patient-
specific clinical and radiographic features available on
admission.

Outcome prediction in aSAH is usually conducted using
traditional clinical and radiological scores on patient admis-
sion. Outcome prediction models find use in counseling of
patients and their relatives as well as in the selection of treat-
ment strategies. Especially in the presence of an ongoing glob-
al pandemic, precise predictions of outcomes in critically ill
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Table 2 Clinical, radiographic,
and treatment characteristics of
patients with aSAH. Pathological
pupil reaction describes a pupil
reaction other than pupils equal
and reactive to light. WFNS
World Federation of Neurological
Societies, IVH intraventricular
hemorrhage, ICH intracerebral
hemorrhage, SDH subdural
hemorrhage, SAH subarachnoidal
hemorrhage, ACA anterior
cerebral artery, MCA middle
cerebral artery, ICA internal
cerebral artery, mRS Modified
Rankin Scale. Localization of the
aneurysm was available for 380/
388 patients

% (n)

Clinical features Pathological pupil reaction 13.4% (52)

GCS at admission 3 32.3% (125)

4–8 8.7% (34)

9–12 9.0% (35)

13–15 50.0% (194)

Clinical scores WFNS I 36.6% (142)

II 9.8% (38)

III 3.4% (13)

IV 12.6% (49)

V 37.6% (146)

Hunt and Hess I 24.2% (94)

II 17.5% (68)

III 14.7% (57)

IV 14.2% (55)

V 29.4% (114)

Radiographic features IVH 44.3% (172)

ICH 32.0% (124)

SDH 6.5% (25)

Midline shift (> = 5 mm) 23.1% (89)

Thickness of SAH (BNI) < 5 mm (1°) 6.4% (25)

6–10 mm (2°) 16.0% (62)

11–15 mm (3°) 29.9% (116)

15–20 mm (4°) 32.0% (124)

> 25 mm (5°) 15.7% (61)

Aneurysm location ACA 35.8% (136)

ICA 19.2% (73)

MCA 26.1% (99)

Posterior circulation 18.9% (72)

Radiographic scores Modified Fisher 0 4.6% (18)

1 12.1% (47)

2 5.9% (23)

3 26.8% (104)

4 50.5% (196)

Combined score VASOGRADE Green 15.9% (62)

Yellow 34.1% (132)

Red 50.0% (194)

Outcome Favorable mRS 0 22.2% (86)

mRS 1 18.3% (71)

mRS 2 6.2% (24)

mRS 3 7.2% (28)

Unfavorable mRS 4 7.7% (30)

mRS 5 4.9% (19)

mRS 6 33.5% (130)

Treatment Coiling 57.9% (220)

Clipping 27.9% (106)

Other 2.6% (10)

None 10.9% (25)
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patients may help allocate scarce medical resources [4, 11,
33]. Therefore, the transparency, comparability, and reproduc-
ibility of outcome prediction models are of utmost impor-
tance. Recently, the comparability of clinical, radiographic,
and combined scores in the same patient cohort was
established. A combination of clinical and radiographic ele-
ments within single combined scores (VASOGRADE) did not
show a significant improvement of predictive score perfor-
mance regarding the prediction of angiographic vasospasm,
cerebral infarction, and unfavorable outcome [9]. Another
study showed that even patients with the highest Hunt and
Hess score (V) have favorable outcome in 26 % of cases in
a retrospective multicenter series [36].

The majority of previously established aSAH outcome pre-
diction models are based on neurological deficits on admis-
sion and radiographic features, such as thickness of subarach-
noid blood clots and the presence of IVH or ICH. However,
more recent evidence suggests that other factors play a role in
precise outcome prediction, such as patient age, pupil status,
and aneurysm size and location[21, 29]. The inclusion of a
high number of variables is one of the main strengths of ML
approaches. In numerous medical fields, ML-based prediction
models were shown to be superior to traditional techniques
[12, 38]. In neurosurgery, ML prediction models have been
evaluated for a variety of pathologies with variable predictive
performances (AUC 0.71 to 0.96) [26]. In the prediction of the

occurrence of shunt-dependent hydrocephalus after aSAH,
ML methods proved to be superior to traditional methods
[24]. They included dynamic variables such as infections,
treatment timing from symptom onset, and fever onset. In
predicting early complications after intracranial tumor sur-
gery, MLmethods showed slight superiority over convention-
al traditional methods [30]. In our present study, we applied—
amongst others—two of the most promising state-of-the-art
ML techniques to predict functional outcome after aSAH: tree
boosting and ANN. Both have shown considerable advances
over traditional linear or logistic regression techniques in the
past [12, 38], even though traceability and comparability
across different studies is reduced by substantial heterogeneity
of clinical questions, input and output variables, and applied
algorithms [19, 24, 26, 30].

To maintain transparency and comparability to existing
models, our current approach uses established scoring
systems. We applied a variety of ML techniques to the
same dataset and acquired rather equivalent results regard-
ing predictive power, sensitivity, and specificity but some
difference regarding feature rating. Our analyses showed
no superiority of any of the examined ML methods over
traditional methods for aSAH outcome prediction. A com-
bined set of relevant radiological and clinical features
showed only a small superiority to simple and established
clinical scores (e.g., tree boosting on the combined

Table 3 Predictive performance of clinical, radiological, and combined
scores as well as the combined feature set (see “Materials and methods”
section) for unfavorable patient outcome (mRS 3–6) measured by AUC.
Median AUC for the training and the test set (in bold) as well as the
interquartile range (IQR) for the test set (in brackets) over 50 shuffles
are shown. AUC area under the curve, BNI Barrow Neurological Institute

scale, GCS Glasgow Coma Scale, GLM generalized linear model, ICH
intracerebral hemorrhage, IVH intraventricular hemorrhage, MLP multi-
layer perceptron, mRS Modified Rankin Scale, NB Naive Bayes, WFNS
World Federation of Neurological Societies, SAH subarachnoidal hemor-
rhage, SDH subdural hemorrhage, SVMC support vector machine
classifier

Features GLM GLM_Lasso GLM_elastic_net CatBoost MLP SVMC NB

Hunt and Hess score 0.75/0.76
(0.07)

0.75/0.75
(0.08)

0.75/0.0.75
(0.08)

0.75/0.76
(0.07)

0.75/0.76
(0.07)

0.75/0.75
(0.07)

0.75/0.76
(0.07)

WFNS score 0.74/0.74
(0.04)

0.74/0.74
(0.04)

0.73/0.74 (0.09) 0.74/0.74
(0.04)

0.74/0.74
(0.04)

0.74/0.74
(0.05)

0.74/0.74
(0.04)

Modified Fisher score 0.65/0.65
(0.07)

0.65/0.65
(0.07)

0.64/0.62 (0.15) 0.65/0.65
(0.07)

0.64/0.65
(0.07)

0.65/0.64
(0.07)

0.65/0.65
(0.07)

Original Fisher score 0.55/0.55
(0.04)

0.55/0.55
(0.05)

0.55/0.52 (0.11) 0.55/0.55
(0.06)

0.55/0.55
(0.04)

0.49/0.47
(0.11)

0.55/0.54
(0.08)

VASOGRADE score 0.72/0.72
(0.07)

0.72/0.72
(0.07)

0.72/0.72 (0.09) 0.72/0.71
(0.06)

0.72/0.72
(0.06)

0.72/0.72
(0.07)

0.72/0.72
(0.07)

BNI score 0.62/0.0.63
(0.06)

0.62/0.63
(0.06)

0.61/0.60 (0.15) 0.62/0.62
(0.07)

0.62/0.62
(0.07)

0.62/0.62
(0.08)

0.62/0.63
(0.06)

GCS score 0.75/0.76
(0.05)

0.75/0.76
(0.05)

0.75/0.75 (0.07) 0.76/0.76
(0.06)

0.75/0.76
(0.06)

0.75/0.76
(0.05)

0.75/0.76
(0.05)

Age, GCS score, sex, pupil status,
presence of IVH, presence of ICH,
presence of midline shift > 5 mm,
presence of SDH, localization anterior
circulation or other, BNI score

0.79/0.77
(0.06)

0.78/0.77
(0.06)

0.77/0.77 (0.07) 0.82/0.78
(0.07)

0.78/0.77
(0.06)

0.78/0.77
(0.06)

0.76/0.75
(0.07)
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features vs. Hunt and Hess and GCS alone). This was also
shown for a decision tree model that reached similar ac-
curacy than logistic regression in another study [7].
Notably, one of the main advantages of ML methods is
their ability to capture even weak interactions between
variables to make predictions. Nevertheless, our findings
suggest that currently available scores and variables used
to feed ML-based prediction models for aSAH may not

contain enough information to improve the accuracy of
outcome predictions.

Thus, it is warranted to explore the addition of other fea-
tures available on patient admission in future works on early
prediction models. These features could include laboratory
data, imaging source data, and comorbidities. Also, events
occurring during later phases of the course of aSAH, such as
infectious diseases (e.g., pneumonia, meningitis), or

Fig. 1 Graphical representation of the performance and feature rating for
the clinico-radiological model. A The highest test-AUC was 0.78 for the
tree boosting model, with the exception of NB (0.75); the other models
had a test-AUC value of 0.77. A larger difference between training and
test set was observed for the tree boosting model indicative of overfitting.
B The feature importance rankings consistently identified GCS as the
most important factor. Note that model 7, GCS alone, already reached a
test-AUC of 0.76. AUC area under the curve,GCSGlasgow Coma Scale,

GLM generalized linear model, IVH presence of intraventricular hemor-
rhage, ICH presence of intracranial hemorrhage, NB Naive Bayes, MLP
multilayer perceptron, SDH presence of subdural hematoma, SVMC sup-
port vectormachine classifier,BNI semi-quantitative analysis of the thick-
ness of subarachnoidal blood with respect to the scale introduced by the
Barrow Neurological Institute in 2012[7]. The term “localization” refers
to the localization of the aneurysm (anterior circulation yes/no)
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cardiovascular complications (e.g., Takotsubo myocarditis)
may be added over time to improve predictive performances
[5, 16, 20]. General scores with special focus on physiology
parameters shown to predict the course of intensive care treat-
ment like the APACHE or SOFA scores could be added as
well. To our knowledge, only one other work used ML tech-
niques to predict outcome after aSAH [19]. While the analysis
was performed in a large prospective multicenter cohort of
aSAH patients, in that work outdated methodology, selection
of features beyond admission, the lack of reported AUC, and
Glasgow Outcome Score as the outcome measure make the
models clinically less applicable and not comparable to our
work.

Limitations of our study

Limitations of our study include the retrospective, single-
center study design impacting the availability of features.
Our patient sample is medium sized compared to existing
studies applying ML methods for aSAH outcome prediction
[7, 19]. However, a selection bias applies for most other stud-
ies that analyze aSAH as they are often taken frommulticenter
trial data with specific study protocols and inclusion/exclusion
criteria. Our data represent real-world data from a single high-
volume center in Germany. Our results may therefore not be
generalized to other centers or countries [10]. Mean/mode
imputation is not a state-of-the-art imputation method. State-

of-the-art imputation methods are currently not tailored to
predictive modelling, i.e., the transfer of imputation models
from training to test set is not straightforward. However, given
the very low ratio of missing values in our study, we deem this
issue negligible and encourage the development of methods
allowing the transfer of imputation models tailored to predic-
tive modelling in Python. The very small imbalance in dichot-
omized outcome numbers may cause negligible bias. It is thus
acknowledged but did not warrant a sub-sampling approach
limiting the available data for model training.

Conclusion

Our study applies ML techniques for functional outcome pre-
diction after aSAH on the basis of clinico-radiographic vari-
ables available at patient admission. We could demonstrate
that the predictive performance of ML techniques was com-
parable but not superior to established traditional methods and
established clinical scores. In conclusion, our findings make a
compelling case for the exploration of new input variables
other than traditional clinico-radiographic features to achieve
a higher accuracy for outcome prediction in aSAH in the
future.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10143-020-01453-6.

Table 4 Brier score results for clinical, radiological, and combined
scores as well as the combined feature set (see “Materials and methods”
section) for prediction of unfavorable patient outcome (mRS 3–6).
Median Brier score for the training and the test set (in bold) as well as
the interquartile range (IQR) for the test set (in brackets) over 50 shuffles
are shown. AUC area under the curve, BNI Barrow Neurological Institute

scale, GCS Glasgow Coma Scale, GLM generalized linear model, ICH
intracerebral hemorrhage, IVH intraventricular hemorrhage, MLP multi-
layer perceptron, mRS Modified Rankin Scale, NB Naive Bayes, WFNS
World Federation of Neurological Surgeons, SAH subarachnoidal hem-
orrhage, SDH subdural hemorrhage, SVMC support vector machine
classifier

Features GLM GLM_Lasso GLM_elastic_net CatBoost MLP SVMC NB

Hunt and Hess score 0.20/0.20
(0.02)

0.20/0.20
(0.02)

0.24/0.0.24
(0.06)

0.20/0.20
(0.02)

0.21/0.23
(0.05)

0.20/0.20
(0.02)

0.20/0.20
(0.03)

WFNS score 0.20/0.20
(0.02)

0.20/0.20
(0.01)

0.23/0.22 (0.06) 0.20/0.20
(0.02)

0.23/0.24
(0.05)

0.20/0.20
(0.02)

0.20/0.20
(0.02)

Modified Fisher score 0.23/0.23
(0.02)

0.24/0.24
(0.01)

0.25/0.25 (0.03) 0.23/0.23
(0.02)

0.24/0.25
(0.02)

0.23/0.23
(0.01)

0.24/0.24
(0.02)

Original Fisher score 0.25/0.25
(0.01)

0.25/0.25
(0.00)

0.28/0.27 (0.06) 0.25/0.25
(0.01)

0.25/0.25
(0.00)

0.25/0.25
(0.00)

0.25/0.25
(0.02)

VASOGRADE score 0.21/0.21
(0.02)

0.21/0.21
(0.02)

0.24/0.24 (0.07) 0.20/0.20
(0.03)

0.20/0.20
(0.03)

0.20/0.21
(0.03)

0.21/0.21
(0.03)

BNI score 0.24/0.0.24
(0.01)

0.24/0.24
(0.01)

0.25/0.25 (0.04) 0.24/0.24
(0.01)

0.25/0.25
(0.01)

0.24/0.24
(0.01)

0.24/0.24
(0.01)

GCS score 0.20/0.20
(0.02)

0.20/0.20
(0.02)

0.24/0.23 (0.05) 0.19/0.19
(0.03)

0.21/0.23
(0.05)

0.20/0.20
(0.02)

0.20/0.20
(0.03)

Age, GCS score, sex, pupil status, presence of IVH,
presence of ICH, presence of midline shift > 5 mm,
presence of SDH, localization anterior circulation or
other, BNI score

0.19/0.19
(0.03)

0.19/0.19
(0.03)

0.20/0.21 (0.03) 0.18/0.19
(0.03)

0.19/0.20
(0.04)

0.19/0.19
(0.03)

0.24/0.23
(0.07)
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